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Abstract

A variety of advanced statistics are used to
evaluate player actions in the National Hockey
League, but they fail to account for the context
in which an action occurs or to look ahead to
the long-term effects of an action. We apply the
Markov Game formalism to develop a novel ap-
proach to valuing player actions in ice hockey
that incorporates context and lookahead. Dy-
namic programming is used to learn Q-functions
that quantify the impact of actions on goal scor-
ing resp. penalties. Learning is based on a
massive dataset that contains over 2.8M events
in the National Hockey League. The impact of
player actions is found to vary widely depend-
ing on the context, with possible positive and
negative effects for the same action. We show
that lookahead makes a substantial difference to
the action impact scores. Players are ranked ac-
cording to the aggregate impact of their actions.
We compare this impact ranking with previous
player metrics, such as plus-minus, total points,
and salary.

1 INTRODUCTION

A fundamental goal of sports statistics is to understand
which actions contribute to winning in what situation. As
sports have entered the world of big data, there is increas-
ing opportunity for large-scale machine learning to model
complex sports dynamics. The research described in this
paper applies AI techniques to model the dynamics of ice
hockey; specifically the Markov Game model formalism
[Littman, 1994], and related computational techniques such
as the dynamic programming value iteration algorithm. We
make use of a massive dataset about matches in the Na-
tional Hockey League (NHL). This dataset comprises all
play-by-play events from 2007 to 2014, for a total of over
2.8M events/actions and almost 600K play sequences. The

Markov Game model comprises over 1.3M states. Whereas
most previous works on Markov Game models aim to com-
pute optimal strategies or policies [Littman, 1994] (i.e.,
minimax or equilibrium strategies), we learn a model of
how hockey is actually played, and do not aim to com-
pute optimal strategies. In reinforcement learning (RL)
terminology, we use dynamic programming to compute an
action-value Q-function in the on policy setting [Sutton and
Barto, 1998]. In RL notation, the expression Q(s, a) de-
notes the expected reward of taking action a in state s.

Motivation Motivation for learning a Q-function for
NHL hockey dynamics includes the following.

Knowledge Discovery. The Markov Game model provides
information about the likely consequences of actions. The
basic model and algorithms can easily be adapted to study
different outcomes of interest, such as goals and penalties.

Player Evaluation. One of the main tasks for sports statis-
tics is evaluating the performance of players [Schumaker
et al., 2010]. A common approach is to assign action
values, and sum the corresponding values each time a
player takes the respective action. An advantage of this
additive approach is that it provides highly interpretable
player rankings. A simple and widely used example in ice
hockey is the +/- score: for each goal scored by (against)
a player’s team when he is on the ice, add +1 (-1) point.
Researchers have developed several extensions of +/- for
hockey [Macdonald, 2011; Spagnola, 2013; Schuckers and
Curro, 2013].

There are two major problems with the previous action
count approaches used in ice hockey. (1) They are unaware
of the context of actions within a game. For example, a
goal is more valuable in a tied-game situation than when
the scorer’s team is already four goals ahead [Pettigrew,
2015]. Another example is that if a team manages two
successive shots on goal, the second attempt typically has
a higher chance of success. In the Markov Game model,
context = state. Formally, the Q function depends both on
the state s and the action a. Richer state spaces therefore
capture more of the context of an action. (2) Previous ac-



tion scores are based on immediate positive consequences
of an action (e.g. goals following a shot). However, an
action may have medium-term and/or ripple effects rather
than immediate consequences in terms of visible rewards
like goals. Therefore evaluating the impact of an action
requires lookahead. Long-term lookahead is especially im-
portant in ice hockey because evident rewards like goals oc-
cur infrequently [Lock and Schuckers, 2009]. For example,
if a player receives a penalty, this leads to a manpower dis-
advantage for his team, known as a powerplay for the other
team. It is easier to score a goal during a powerplay, but this
does not mean that a goal will be scored immediately after
the penalty. For another example, if a team loses the puck
in their offensive zone, the resulting counterattack by the
other team may lead to a goal eventually but not immedi-
ately. The dynamic programming value iteration algorithm
of Markov Decision Processes provides a computationally
efficient way to perform unbounded lookahead.

Evaluation Our evaluation learns Q-functions for two re-
ward events, scoring the next goal and receiving the next
penalty. We observe a wide variance of the impact of ac-
tions with respect to states, showing context makes a sub-
stantial difference. We provide examples of the context de-
pendence to give a qualitative sense of how the Markov
Game model accounts for context. To evaluate player per-
formance, we use the Q-function to quantify the value of
a player’s action in a context. The action values are then
aggregated over games and seasons to get player impact
scores. Player impact scores correlate with plausible alter-
native scores, such as a player’s total points, but improve
on these measures, as our impact score is based on many
more events.

Contributions We make our extensive dataset available
on-line, in addition to our code and the learned Markov
game model [Routley et al., 2015]. The main contributions
of this paper may be summarized as follows:

1. The first Markov Game model for a large ice hockey
state space (over 1.3M), based on play sequence data.

2. Learning a Q-function that models play dynamics in
the National Hockey League from a massive data set
(2.8M events). We introduce a variant of AD-Trees
as a data structure to (1) compute and store the large
number of sufficient statistics required [Moore and
Lee, 1998], and (2) support value iteration updates.

3. Applying the Q-function to define a context-aware
look-ahead measure of the value of an action, over
configurable objective functions (rewards).

4. Applying the context-aware action values to score
hockey player actions, including how players affect
penalties as well as goals.

Paper Organization. We review related work in measur-
ing player contributions and machine learning in sports in
Section 2. We then give some background information on
the ice hockey domain and NHL play-by-play sequences
data. Our Markov Game model translates the hockey do-
main features into the Markov formalism. We describe how
we implement a scalable value iteration for the ice hockey
domain. The evaluation section addresses the impact of
context and lookahead. We apply the model to rank the
aggregate performance of players and describe the result-
ing player ranking. We view our work as taking the first
step, not the last, in applying AI modelling techniques to
ice hockey. Therefore, we conclude with a number of po-
tential extensions and open problems for future work.

2 RELATED WORK

Evaluating Actions and Players in Ice Hockey Several
papers aim to improve the basic +/- score with statistical
techniques [Macdonald, 2011; Gramacy et al., 2013; Spag-
nola, 2013]. A common approach is to use regression tech-
niques where an indicator variable for each player is used
as a regressor for a goal-related quantity (e.g., log-odds of
a goal for the player’s team vs. the opposing team). The
regression weight measures the extent to which the pres-
ence of a player contributes to goals for his team or pre-
vents goals for the other team. These approaches look at
only goals, no other actions. The only context they take
into account is which players are on the ice when a goal
is scored. Regression could be combined with our Markov
game model to capture how team impact scores depend on
the presence or absence of individual players.

The closest predecessor to our work in ice hockey is the
Total Hockey Rating (THoR) [Schuckers and Curro, 2013].
This assigns a value to all actions, not only goals. Actions
were evaluated based on whether or not a goal occurred in
the following 20 seconds after an action. This work used
data from the 2006/2007 NHL season only. THoR assumes
a fixed value for every action and does not account for the
context in which an action takes place. Furthermore, the
window of 20 seconds restricts the lookahead value of each
action. Our Q-learning method is not restricted to any par-
ticular time window for lookahead.

Expected Possession Value [Cervone et al., 2014] uses
spatial-temporal tracking data for basketball to build the
POINTWISE model for valuing player decisions and player
actions. Conceptually, their approach to defining action
values is the closest predecessor to ours: The counterpart
to the value of a state in a Markov game is called expected
possession value (EPV). The counterpart to the impact of
an action on this value is called EPV-added (EPVA). Cer-
vone et al. emphasize the broad potential of the context-
based impact definitions: “we assert that most questions
that coaches, players, and fans have about basketball, par-



ticularly those that involve the offense, can be phrased and
answered in terms of EPV.”

While the definition of action impact is conceptually very
similar, Cervone et al. use neither AI terminology nor AI
techniques, which we cover in this paper. Moreover, all
the underlying details are different between our model and
theirs: The NHL does not yet have and therefore we do not
use spatial tracking data, which is the main focus of Cer-
vone et al.. Cervone et al. discuss the advantages of using a
discrete state space for stochastic consistency, but consider
it computationally infeasible for their data. We show that
leveraging AI data structures and algorithms makes han-
dling a large discrete state space feasible for ice hockey.
Including the local action history in the state space allows
us to capture the medium-term effects of actions. This is
more important for ice hockey than for basketball, because
scoring in basketball occurs at much shorter intervals.

Markov Decision Process Models for Other Sports
MDP-type models have been applied in a number of sports
settings, such as baseball, soccer and football. For review,
please see Cervone et al. [2014]. Our work is similar in
that our method uses value iteration on a Markovian state
space, however, previous Markov models in sports use a
much smaller state space. The goal of these models is to
find an optimal policy for a critical situation in a sport or
game. In contrast, we learn in the on-policy setting whose
aim is to model hockey dynamics as it is actually played.

3 DOMAIN DESCRIPTION: HOCKEY
RULES AND HOCKEY DATA

We outline the rules of hockey and describe the dataset
available from the NHL.

3.1 HOCKEY RULES

We give a brief overview of rules of play in the NHL [Na-
tional Hockey League, 2014]. NHL games consist of three
periods, each 20 minutes in duration. A team has to score
more goals than their opponent within three periods in or-
der to win the game. If the game is still tied after three
periods, the teams will enter a fourth overtime period,
where the first team to score a goal wins the game. If
the game is still tied after overtime during the regular sea-
son, a shootout will commence. During the playoffs, over-
time periods are repeated until a team scores a goal to win
the game. Teams have five skaters and one goalie on the
ice during even strength situations. Penalties result in a
player sitting in the penalty box for two, four, or five min-
utes and the penalized team will be shorthanded, creating a
manpower differential between the two teams. The period
where one team is penalized is called a powerplay for the
opposing team with a manpower advantage. A shorthanded

goal is a goal scored by the penalized team, and a power-
play goal is a goal scored by the team on the powerplay.

3.2 DATA FORMAT

The NHL provides information about sequences of play-
by-play events, which are scraped from http://www.
nhl.com and stored in a relational database. The real-
world dataset is formed from 2, 827, 467 play-by-play
events recorded by the NHL for the complete 2007-2014
seasons, regular season and playoff games, and the first
512 games of the 2014-2015 regular season. A break-
down of this dataset is shown in Table 1. The type of
events recorded by the NHL from the 2007-2008 regular
season and onwards are listed in Table 2. There are two
types of events: actions performed by players and start
and end markers for each play sequence. Every event is
marked with a continuous timestamp, and every action is
also marked with a zone Z and which team, Home or Away,
carries out the action.

Table 1: Size of Dataset
Number of Teams 32
Number of Players 1,951
Number of Games 9,220
Number of Sequences 590,924
Number of Events 2,827,467

Table 2: NHL Play-By-Play Events Recorded

Action Event Start/End Event
Faceoff Period Start
Shot Period End
Missed Shot Early Intermission Start
Blocked Shot Penalty
Takeaway Stoppage
Giveaway Shootout Completed
Hit Game End
Goal Game Off

Early Intermission End

4 MARKOV GAMES

A Markov Game [Littman, 1994], sometimes called a
stochastic game, is defined by a set of states, S, and a col-
lection of action sets, one for each agent in the environ-
ment. State transitions are controlled by the current state
and one action from each agent. For each agent, there is
an associated reward function mapping a state transition to
a reward. An overview of how our Markov Game model
fills in this schema is as follows. There are two players,
the Home Team H and the Away Team A. In each state,



only one team performs an action, although not in a turn-
based sequence. This reflects the way the NHL records
actions. Thus at each state of the Markov Game, exactly
one player chooses No-operation. State transitions follow
a semi-episodic model [Sutton and Barto, 1998] where play
moves from episode to episode, and information from past
episodes is recorded as a list of context features. The past
information includes the goal score and manpower. A se-
quence in the NHL play-by-play data corresponds to an
episode in Markov decision process terminology. Within
each episode/sequence, our game model corresponds to a
game tree with perfect information as used in AI game re-
search [Russell and Norvig, 2010]. We introduce the fol-
lowing generic notation for all states, following [Russell
and Norvig, 2010; Littman, 1994].

• Occ(s) is the number of occurrences of state s as ob-
served in the play-by-play data.

• Occ(s, s′) is the number of occurrences of state s be-
ing immediately followed by state s′ as observed in
the play-by-play data. (s, s′) forms an edge in the
transition graph of the Markov Game model.

• The transition probability function TP is a mapping
of S × S → (0, 1]. We estimate it using the observed

transition frequency
Occ(s, s′)

Occ(s)
.

We begin by defining context features, then play sequences.

4.1 STATE SPACE: CONTEXT FEATURES

Previous work on Markov process models for ice hockey
[Thomas et al., 2013] defined states in terms of hand-
selected features that are intuitively relevant for the game
dynamics, such as the goal differential and penalties. We
refer to such features as context features. Context features
remain the same throughout each play sequence.

Table 3: Context Features
Notation Name Range

GD Goal Differential [-8,8]
MD Manpower Differential [-3,3]
P Period [1,7]

A context state lists the values of relevant features at a
point in the game. These features are shown in Table 3,
together with the range of integer values observed. Goal
Differential GD is calculated as Number of Home Goals
- Number of Away Goals. A positive (negative) goal dif-
ferential means the home team is leading (trailing). Man-
power Differential MD is calculated as Number of Home
Skaters on Ice - Number of Away Skaters on Ice. A posi-
tive manpower differential typically means the home team

is on the powerplay (away team is penalized), and a nega-
tive manpower differential typically means the home team
is shorthanded (away team is on the powerplay).1 Period
P represents the current period number the play sequence
occurs in, typically ranging in value from 1 to 5. Periods
1 to 3 are the regular play of an ice hockey game, and pe-
riods 4 and onwards are for overtime and shootout periods
as needed.

Potentially, there are (17 × 7 × 7) = 833 context states.
In our NHL dataset, 450 context states occur at least once.
Table 4 includes statistics for the top-20 context states over
all 590, 924 play sequences, and lists 52, 793 total goals
and 89, 612 total penalties. Positive differences are for the
home team and negative differences are for the away team.
For example, a Goal Difference of 7.1% means the home
team is 7.1% more likely to score a goal in that context state
than the away team. Similarly, a Penalty Difference of -
33.2% means the away team is 33.2% more likely to receive
a penalty in that context state than the home team. Our
Markov model is very well calibrated, due to the frequency
estimation method, meaning that its predictions match the
observed frequencies of goals and penalties. We explain
below how the model predictions are computed.

A number of previous papers on hockey dynamics have
considered the context features of play sequences. The im-
portant trends that it is possible to glean from statistics such
as those shown in Table 4 have been discussed in several
papers. Our data analysis confirms these observations on
a larger dataset than previously used. Notable findings in-
clude the following.

1. Home team advantage: the same advantages in terms
of context features translate into higher scoring rates.

2. Penalties are more frequent than goals, except for the
overtime period 4 (cf. [Schuckers and Brozowski,
2012]).

3. Gaining a powerplay substantially increases the con-
ditional probability of scoring a goal [Thomas et al.,
2013].

4. Gaining a powerplay also significantly increases
the conditional probability of receiving a penalty
[Schuckers and Brozowski, 2012].

5. Shorthanded goals are surprisingly likely: a man-
power advantage translates only into a goal scoring
difference of at most 64.8%, meaning the shorthanded
team scores the next goal with a conditional probabil-
ity of 17.6%. (Home team powerplay when P = 1.)

While such patterns provide interesting and useful insights
into hockey dynamics, they do not consider action events.

1Pulling the goalie can also result in a skater manpower ad-
vantage.



Table 4: Statistics for Top-20 Most Frequent Context States. GD = Goal Differential, MD = Manpower Differential, P =
Period.

Observed Model Predicts
GD MD P #Sequences #Goals #Penalties Goal Difference Penalty Difference Goal Difference Penalty Difference

0 0 1 78,118 5,524 11,398 7.06% -2.26% 7.06% -2.26%
0 0 2 38,315 2,935 5,968 7.60% -2.92% 7.60% -2.92%
0 0 3 30,142 2,050 3,149 5.85% -2.19% 5.85% -2.19%
1 0 2 29,662 2,329 4,749 2.02% 2.17% 2.02% 2.17%
1 0 3 25,780 2,076 3,025 4.34% 3.54% 4.34% 3.54%
-1 0 2 25,498 1,970 4,044 8.63% -8.70% 8.63% -8.70%
1 0 1 24,721 1,656 4,061 5.31% 3.42% 5.31% 3.42%
-1 0 3 22,535 1,751 2,565 0.74% -18.28% 0.74% -18.28%
-1 0 1 20,813 1,444 3,352 4.57% -8.05% 4.57% -8.05%
2 0 3 17,551 1,459 2,286 6.92% -0.87% 6.92% -0.87%
2 0 2 15,419 1,217 2,620 2.71% 2.90% 2.71% 2.90%
-2 0 3 13,834 1,077 1,686 -2.32% -12.57% -2.32% -12.57%
0 1 1 12,435 1,442 2,006 64.77% 31.70% 64.77% 31.70%
-2 0 2 11,799 882 1,927 3.85% -15.72% 3.85% -15.72%
0 -1 1 11,717 1,260 2,177 -54.76% -44.79% -54.76% -44.79%
3 0 3 10,819 678 1,859 0.29% 1.24% 0.29% 1.24%
-3 0 3 7,569 469 1,184 7.04% -6.25% 7.04% -6.25%
0 1 2 7,480 851 1,157 56.99% 25.67% 56.99% 25.67%
0 0 4 7,024 721 535 5.69% -10.65% 5.69% -10.65%
0 -1 2 6,853 791 1,150 -52.47% -37.39% -52.47% -37.39%

This means that analysis at the sequence level does not con-
sider the internal dynamics within each sequence, and that
it is not suitable for evaluating the impact of hockey ac-
tions. We next extend our state space to include actions.

4.2 STATE SPACE: PLAY SEQUENCES

We expand our state space with actions and action histo-
ries. The basic set of 8 possible actions is listed in Table 2.
Each of these actions has two parameters: which team T
performs the action and the zone Z where the action takes
place. Zone Z represents the area of the ice rink in which
an action takes place. Z can have values Offensive, Neu-
tral, or Defensive, relative to the team performing an action.
For example, Z = Offensive zone relative to the home team
is equivalent to Z = Defensive zone relative to the away
team. A specification of an action plus parameters is an
action event. Using action description language notation
[Levesque et al., 1998], we write action events in the form
a(T,Z ). For example, faceoff (Home,Neutral) denotes
the home team wins a faceoff in the neutral zone. We usu-
ally omit the action parameters from generic notation and
write a for a generic action event.

A play sequence h is a sequence of events starting with ex-
actly one start marker, followed by a list of action events,
and ended by at most one end marker. Start and end mark-
ers are shown in Table 2, adding shots and faceoffs as
start markers, and goals as end markers. We also allow
empty history ∅ as a valid play sequence. A complete
play sequence ends with an end marker. A state is a pair

s = 〈x, h〉 where x denotes a list of context features and h
an action history. State s represents a play sequence con-
sisting of action events a1, a2, . . . , an and with a particular
GD, MD, and P as the context. If the sequence h is empty,
then state s is purely a context node. Table 5 shows an ex-
ample of a NHL play-by-play action sequence in tabular
form. Potentially, there are (7 × 2 × 3)40 = 4240 action
histories. In our dataset, 1,325,809 states, that is, combina-
tions of context features and action histories, occur at least
once. We store sequence data in SQL tables (see Table 5).
SQL provides fast retrieval, and native support for the nec-
essary COUNT operations.

Table 5: Sample Play-By-Play Data in Tabular Format

GameId Period Sequence Number Event Number Event
1 1 1 1 PERIOD START
1 1 1 2 faceoff(Home,Neutral)
1 1 1 3 hit(Away,Neutral)
1 1 1 4 takeaway(Home,Defensive)
1 1 1 5 missed shot(Away,Offensive)
1 1 1 6 shot(Away,Offensive)
1 1 1 7 giveaway(Away,Defensive)
1 1 1 8 takeaway(Home,Offensive)
1 1 1 9 missed shot(Away,Offensive)
1 1 1 10 goal(Home,Offensive)
1 1 2 11 faceoff(Away,Neutral)

. . .

4.3 STATE TRANSITIONS

If h is an incomplete play sequence, we write h ? a for the
play sequence that results from appending a to h , where a
is an action event or an end marker. Similarly if s = 〈x, h〉,



then s ? a ≡ 〈x, h ? a〉 denotes the unique successor state
that results from executing action a in s. This notation uti-
lizes the fact that context features do not change until an
end marker is reached. For example, the goal differen-
tial does not change unless a goal event occurs. If h is a
complete play sequence, then the state 〈x, h〉 has a unique
successor 〈x′, ∅〉, where the mapping from x to x′ is deter-
mined by the end marker. For instance, if the end marker
is goal(Home, ∗), then the goal differential increases by 1.
A sample of our state transition graph is shown in Figure 1.
Note that R(s) is the reward value for the state, and will be
discussed in Section 4.4. In Figure 1, the reward encodes
the objective of scoring a goal.

Figure 1: State Transition Graph

Since the complete action history is encoded in the state,
action-state pairs are equivalent to state pairs. For exam-
ple, we can write Q(s ? a) to denote the expected reward
from taking action a in state s, where Q maps states to
real numbers, rather than mapping action-state pairs to real
numbers, as is more usual.

4.4 REWARD FUNCTIONS: NEXT GOAL AND
NEXT PENALTY

A strength of Markov Game modelling is value iteration
can be applied to many reward functions depending on
what results are of interest. We focus on two: scoring the
next goal, and receiving the next penalty (a cost rather than
a reward). These are two important events that change the
course of an ice hockey game. For example, penalties af-
fect goal scoring differentials, as shown in Table 4. Penal-
ties are also one path to goals that a coach may want to
understand in more detail. For instance, if a team receives
an unusual number of penalties, a coach may want to know
which players are responsible and by which actions. The
next goal objective can be represented in the Markov Game

model as follows.

1. For any state s with a complete play sequence that
ends in a Home resp. Away goal, we set RH (s) := 1
resp. RA(s) := 1 . For other states the reward is 0.

2. Any state s with a complete play sequence that ends
in a Home resp. Away goal is an absorbing state (no
transitions from this state).

With these definitions, the expected reward represents the
probability that if play starts in state s, a random walk
through the state space of unbounded length ends with a
goal for the Home team resp. the Away team. The cost
function for Receiving the Next Penalty can be represented
in exactly the same way.

5 CONSTRUCTING THE STATE
TRANSITION GRAPH

The main computational challenge is to build a data struc-
ture for managing the state space. The state space is large
because each (sub)sequence of actions defines a new state.
Since we are modelling the actual hockey dynamics in the
on policy setting, we need consider only action sequences
observed in some NHL match, rather than the much larger
space of all possible action sequences. We use the classic
AD-tree structure [Moore and Lee, 1998] to compute and
store sufficient statistics over observed action sequences.
The AD-tree is a tree of play sequences where a node is
expanded only with those successors observed in at least
one match. The play sequence tree is augmented with ad-
ditional edges that model further state transitions; for ex-
ample, a new action sequence is started after a goal. The
augmented AD-tree structure compactly manages sufficient
statistics, in this case state transition probabilities. It also
supports value iteration updates very efficiently.

We outline an algorithm for Context-Aware State Tran-
sition Graph construction. The root node initializes the
graph, and is an empty node with no context or event in-
formation. For each node, the context information GD,
MD, and P are set when the new node is created, and
the new action a is added to the sequence along with the
zone Z that a occurs in. The reward R(s) is also applied
to each node. The node counts Occ(s) and edge counts
Occ(s, s′) are applied to each node and edge respectively,
and are used to generate transition probabilities TP for the
value iteration using observed frequencies. The NHL play-
by-play event data records goals, but no separate event for
the shot leading to the goal exists. Following [Schuckers
and Curro, 2013], we record the shot leading to the goal in
addition to the goal itself by injecting a shot event into the
event sequence prior to the goal.



6 VALUE ITERATION

Recall that since states encode action histories, in our
model learning the expected value of states is equivalent to
learning a Q-function (Section 4.3). In reinforcement learn-
ing terms, there is no difference between the value function
V and the Q-function in our model. We can therefore ap-
ply standard value iteration over states [Sutton and Barto,
1998] to learn a Q-function for our ice hockey Markov
Game. Algorithm 1 shows pseudo-code. We compute sepa-
rate Q-functions for the Home team and for the Away team.
Since we are in the on policy setting, we have a fixed pol-
icy for the other team. This means we can treat the other
team as part of the environment, and reduce the Markov
Game to two single-agent Markov decision processes. In
our experiments, we use a relative convergence of 0.0001
as our convergence criterion, and 100,000 as the maximum
number of iterations.

Algorithm 1 Dynamic Programming for Value Iteration
Require: Markov Game model, convergence criterion c,

maximum number of iterations M
1: lastV alue = 0
2: currentV alue = 0
3: converged = false
4: for i = 1; i ≤M ; i← i+ 1 do
5: for all states s in the Markov Game model do
6: if converged == false then
7: Qi+1(s) =

R(s)+
1

Occ(s)

∑
(s,s′)∈E(Occ(s, s′)×Qi(s

′))

8: currentV alue = currentV alue+ |Qi+1(s)|
9: end if

10: end for
11: if converged == false then
12: if currentV alue−lastV alue

currentV alue < c then
13: converged = true
14: end if
15: end if
16: lastV alue = currentV alue
17: currentV alue = 0
18: end for

7 EVALUATION AND RESULTS

We discuss the results of action values in Section 7.1 and
player values in Section 7.2.

7.1 ACTION IMPACT VALUES

The main quantity we consider is the impact of an action
as a function of context (= Markov state). This is defined
as follows:

impact(s, a) ≡ QT (s ? a)−QT (s)

where T is the team executing the action a. In a zero-sum
game, the state value is usually defined as the final result
following optimal play [Russell and Norvig, 2010]. Intu-
itively, the value specifies which player has a better posi-
tion in a state. Since we are not modelling optimal play, but
actual play in an on policy setting, the expected difference
in rewards is the natural counterpart. The impact quantity
measures how performing an action in a state affects the
expected reward difference. Figure 2 shows a boxplot for
the action impact values as they range over different con-
texts, i.e., states in the Markov Game model. (Boxplots
produced with MATLAB R2014a.) The red dots are out-
liers beyond 2.7 s.d. A cutoff of -0.2 and 0.2, shown by
the horizontal dashed line, was used for the impact values
on both boxplots. While the Q-values are based on the fre-
quency of states, we weight all states equally in discussing
the properties of the Q-function. The boxplot does not in-
clude Q-values for states whose frequency is below 5%. It
is clear from Figure 2 that depending on the context and
event history, the value of an action can vary greatly. The
context-dependence is observed for both scoring goals and
receiving penalties.

Impact on Scoring the Next Goal. All actions, with the
exception of faceoffs won in the offensive zone, have at
least one state where the action has a positive impact, and
another state with a negative impact. Two examples of how
the value of the same action can depend on the context in-
clude the following, which we found by examining states
with extreme impact values.

Blocked Shot. Blocking the first shot on net when killing
a penalty decreases a team’s scoring rate (impact =
−0.0864). But blocking the second shot on net increases
the scoring rate (impact = 0.1399).

Penalty. Receiving a penalty when on the powerplay is
very bad (impact = −0.1789). But if a player, while on
the penalty kill, receives a penalty while goading their op-
ponent into an offsetting penalty, the penalty actually in-
creases their team’s scoring rate (impact = 0.0474).

The THoR player ratings compute the impact of actions
based on goals that immediately follow the action ([Lock
and Schuckers, 2009; Schuckers et al., 2011]; see Sec-
tion 2). The values given for each action in [Lock and
Schuckers, 2009] are displayed as an asterisk in Fig-
ure 2(a). The THoR values agree with our median impact
values in terms of whether an action generally has posi-
tive or negative impact. For example, penalties are known
to generally be good for the opposing team, and shots are
good for the shooter’s team. THoR values are close to the
median Markov model values in 6 out of 10 cases. This
comparison suggests THoR aggregates action values over
many contexts the Markov game models explicitly. In a le-



sion study described in the supplementary material, we ex-
amine directly defining the value of an action as the average
impact of the action over all states. Using the averge im-
pact as a fixed action value leads to a loss of information, as
measured by the entropy of the prediction for which team
scores the next goal. Another lesion study described in the
supplementary material assesses the importance of propa-
gating information between states, especially from one play
sequence to subsequent ones. Our results show that goal
impact values of the actions change substantially depend-
ing on how much information the model propagates.

Impact on Receiving Penalties. The range of action val-
ues with the probability of the next penalty as the objec-
tive function is shown in Figure 2(b). Faceoffs in the Of-
fensive Zone and takeaways cause penalties for the oppo-
nent. Giveaways and goals tend to be followed by a penalty
for the player’s team. The latter finding is consistent with
the observation that there are more penalties called against
teams with higher leads [Schuckers and Brozowski, 2012].
A possible explanation is referees are reluctant to penalize
a trailing team.

Figure 3: 2013-2014 Player Goal Impact Vs. Season Points

7.2 PLAYER VALUATIONS

As players perform actions on behalf of their team, it is
intuitive to apply the impact scores of team actions to the
players performing the action, yielding player valuations.
To calculate player valuations, we apply the impact of an
action to the player as they perform the action. Next, we
sum the impact scores of a player’s actions over a single
game, and then over a single season, to compute a net sea-
son impact score for the player. This procedure is equiv-
alent to comparing the actions taken by a specific player
to those of the league-average player, similar to previous
work [Pettigrew, 2015; Cervone et al., 2014]. We compare

Table 6: 2013-2014 Top-8 Player Impact Scores For Goals

Name Goal Impact Points +/- Salary
Jason Spezza 29.64 66 -26 $5,000,000
Jonathan Toews 28.75 67 25 $6,500,000
Joe Pavelski 27.20 79 23 $4,000,000
Marian Hossa 26.12 57 26 $7,900,000
Patrick Sharp 24.43 77 12 $6,500,000
Sidney Crosby 24.23 104 18 $12,000,000
Claude Giroux 23.89 86 7 $5,000,000
Tyler Seguin 23.89 84 16 $4,500,000

impact on Next Goal Scored with three other player rank-
ing metrics: points earned, salary, and +/-. To avoid con-
founding effects between different seasons, we use only the
most recent full season, 2013-2014. Player impact scores
are shown in Table 6. Tables for all seasons are available as
well [Routley, 2015]. Figure 3 shows that next goal impact
correlates well with points earned. A point is earned for
each goal or assist by a player. Since these players have a
high impact on goals, they also tend to have a positive +/-
rating. Jason Spezza is an anomaly, as he has the highest
impact score but a very negative +/- score. This is because
his Ottawa team performed poorly overall in the 2013-2014
season: The team overall had a goal differential of -29, one
of the highest goal differentials that season. This example
shows that impact scores distinguish a player who gener-
ally performs useful actions but happens to be on a poor
team.

In Table 7, we see player impact with respect to Next
Penalty Received. High impact numbers indicate a ten-
dency to cause penalties for a player’s own team, or prevent
penalties for the opponent. We compare the Q-function
impact numbers to Penalties in Minutes (PIM), +/-, and
salary. Players with high Q-function numbers have high
penalty minutes as we would expect. They also have low
+/-, which shows the importance of penalties for scoring
chances. Their salaries tend to be lower. There are how-
ever notable exceptions, such as Dion Phaneuf, who draws
a high salary although his actions have a strong tendency to
incur penalties.

Table 7: 2013-2014 Top-8 Player Impacts For Penalties

Name Penalty Impact PIM +/- Salary
Chris Neil 62.58 211 -10 $2,100,000
Antoine Roussel 54.26 209 -1 $625,000
Dion Phaneuf 52.52 144 2 $5,500,000
Zac Rinaldo 48.65 153 -13 $750,000
Rich Clune 47.08 166 -7 $525,000
Tom Sestito 46.34 213 -14 $650,000
Zack Smith 44.55 111 -9 $1,500,000
David Perron 42.49 90 -16 $3,500,000



(a) Impact on the probability of Scoring the Next Goal. Higher
numbers are better for the team that performs the action.

(b) Impact on the probability of Receiving the Next Penalty.
Higher numbers are worse for the team that performs the action.

Figure 2: Action Impact Values vary with context. The central mark is the median, the edges of the box are the 25th and
75th percentiles. The whiskers are at the default value, approximately 2.7 s.d.

8 CONCLUSION

We have constructed a Markov Game Model for a mas-
sive set of NHL play-by-play events with a rich state space.
Tree-based data structures support efficient parameter esti-
mation and storage. Value iteration computes the values
of each action given its context and sequence history—
the Q-function of the model. Compared to previous work
that assigns a single value to actions, the Q-function in-
corporates two powerful sources of information for valuing
hockey actions: (1) It takes into account the context of the
action, represented by the Markov Game state. (2) It mod-
els the medium-term impact of an action by propagating its
effect to future states. Propagating action effects across se-
quences utilizes the ordering of play sequences in a game,
rather than treating sequences as an unordered independent
set. Analysis of the computed Q-function shows the impact
of an action varies greatly with context, and medium-term
ripple effects make a difference. We apply our model to
evaluate the performance of players in terms of their ac-
tions’ total impact. Impact scores for the next goal corre-
late with points. The impact of players on the next penalty
has to our knowledge not been previously considered, and
shows some surprises, as some highly-paid players hurt
their team by causing penalties. In sum, the Q-function
is a powerful AI concept that captures much information
about hockey dynamics as the game is played in the NHL.

Future Work The NHL data provides a rich dataset for
real-world event modelling. A number of further AI tech-
niques can be applied to utilize even more of the available
information than our Markov Game model does. A promis-

ing direction is to extend our discrete Markov Game model
with data about continuous quantities. These include (i)
the time between events, (ii) the absolute game time of the
events, (iii) location of shots [Krzywicki, 2005]. Our use
of reinforcement learning techniques has been mainly for
finding patterns in a rich data set, in the spirit of descrip-
tive statistics and data mining. Another goal is to predict a
player or team’s future performance based on past perfor-
mance using machine learning techniques. For example,
sequence modelling would be able to generalize from play
sequence information. A promising model class are Piece-
wise Constant Conditional Intensity Models for continuous
time event sequences [Gunawardana et al., 2011; Parikh
et al., 2012]. These models are especially well suited for
sequences with a large set of possible events, such as our
action events. Another extension is to evaluate players with
respect to similar players [Cervone et al., 2014], for in-
stance, players who play the same position. A potential
future application for improving play and advising coaches
is in finding strengths and weaknesses of teams: We can
use the Q-function to find situations in which a team’s mix
of actions provides a substantially different expected result
from that of a generic team.
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