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Abstract

We show new limits on the efficiency of us-
ing current techniques to make exact probabilis-
tic inference for large classes of natural prob-
lems. In particular we show new lower bounds
on knowledge compilation to SDD and DNNF
forms. We give strong lower bounds on the com-
plexity of SDD representations by relating SDD
size to best-partition communication complex-
ity. We use this relationship to prove exponen-
tial lower bounds on the SDD size for represent-
ing a large class of problems that occur natu-
rally as queries over probabilistic databases. A
consequence is that for representing unions of
conjunctive queries, SDDs are not qualitatively
more concise than OBDDs. We also derive sim-
ple examples for which SDDs must be exponen-
tially less concise than FBDDs. Finally, we de-
rive exponential lower bounds on the sizes of
DNNF representations using a new quasipolyno-
mial simulation of DNNFs by nondeterministic
FBDDs.

1 Introduction

Weighted model counting is a fundamental problem in
probabilistic inference that captures the computation of
probabilities of complex predicates over independent ran-
dom events (Boolean variables). Although the problem is
#P-hard in general, there are a number of practical al-
gorithms for model counting based on DPLL algorithms
and on knowledge compilation techniques. The knowl-
edge compilation approach, though more space intensive,
can be much more convenient since it builds a represen-
tation for an input predicate independent of its weights
that allows the count to evaluated easily given a particu-
lar choice of weights; that representation also can be re-
used to analyze more complicated predicates. Moreover,
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with only a constant-factor increase in time, the methods
using DPLL algorithms can be easily extended to be knowl-
edge compilation algorithms [Huang and Darwiche, 2007].
(See [Gomes et al., 2009] for a survey.)

The representation to be used for knowledge compilation
is an important key to the utility of these methods in prac-
tice; the best methods are based on restricted classes of cir-
cuits and on decision diagrams. All of the ones consid-
ered to date can be seen as natural sub-classes of the class
of Decomposable Negation Normal Form (DNNF) formu-
las/circuits introduced in [Darwiche, 2001], though it is not
known how to do model counting efficiently for the full
class of DNNF formulas/circuits. One sub-class for which
model counting is efficient given the representation is that
of d-DNNF formulas, though there is no efficient algorithm
known to recognize whether a DNNF formula is d-DNNF.

A special case of d-DNNF formulas (with a minor change
of syntax) that is easy to recognize is that of decision-
DNNF formulas. This class of representations cap-
tures all of the practical model counting algorithms dis-
cussed in [Gomes et al., 2009] including those based on
DPLL algorithms. Decision-DNNFs include Ordered Bi-
nary Decision Diagrams (OBDDs), which are canonical
and have been highly effective representations for veri-
fication, and also Free BDDs (FBDDs), which are also
known as read-once branching programs. Using a quasi-
polynomial simulation of decision-DNNFs by FBDDs,
[Beame et al., 2013, Beame et al., 2014] showed that the
best decision-DNNF representations must be exponential
even for many very simple 2-DNF predicates that arise in
probabilistic databases.

Recently, [Darwiche, 2011] introduced another subclass of
d-DNNF formulas called Sentential Decision Diagrams
(SDDs). This class is strictly more general than OBDDs
and (in its basic form) is similarly canonical. (OBDDs
use a fixed ordering of variables, while SDDs use a fixed
binary tree of variables, known as a vtree.) There has
been substantial development and growing application of
SDDs to knowledge representation problems, including a
recently released SDD software package [SDD, 2014]. In-



deed, SDDs hold potential to be more concise than OB-
DDs. [Van den Broeck and Darwiche, 2015] showed that
compressing an SDD with a fixed vtree so that it is canon-
ical can lead to an exponential blow-up in size, but much
regarding the complexity of SDD representations has re-
mained open.

In this paper we show the limitations both of gen-
eral DNNFs and especially of SDDs. We show
that the simulation of decision-DNNFs by FBDDs
from [Beame et al., 2013] can be extended to yield a simu-
lation of general DNNFs by OR-FBDDs, the nondetermin-
istic extension of FBDDs, from which we can derive ex-
ponential lower bounds for DNNF representations of some
simple functions.

For SDDs we obtain much stronger results. In particu-
lar, we relate the SDD size required to represent predi-
cate f to the ”best-case partition” communication complex-
ity [Kushilevitz and Nisan, 1997] of f . Using this, together
with reductions to the communication complexity of dis-
jointness (set intersection), we derive the following results:
(1) There are simple predicates given by 2-DNF formulas
for which FBDD size is polynomial but for which SDD size
must be exponential.
(2) For a natural, widely-studied class of database queries
known as Unions of Conjunctive Queries (UCQ), the SDD
size is linear iff the OBDD size is linear and is exponential
otherwise (which corresponds to a query that contains an
inversion [Jha and Suciu, 2013]).
(3) Similar lower bounds apply to the dual of UCQ, which
consists of universal, positive queries.

To prove our SDD results, we show that for any predi-
cate f given by an SDD of size S, using its associated
vtree we can partition the variables of f between two play-
ers, Alice and Bob, in a nearly balanced way so that they
only need to send log2 S bits of communication to com-
pute f . The characterization goes through an interme-
diate step involving unambiguous communication proto-
cols and a clever deterministic simulation of such protocols
from [Yannakakis, 1991].

Related work: Beyond the lower bounds for decision-
DNNFs in [Beame et al., 2013, Beame et al., 2014]
which give related analyses for decision-DNNFs, the
work of [Pipatsrisawat and Darwiche, 2010] on struc-
tured DNNFs is particularly relevant to this paper1.
[Pipatsrisawat and Darwiche, 2010] show how sizes of
what they term (deterministic) X-decompositions can
yield lower bounds on the sizes of structured (determin-
istic) DNNFs, which include SDDs as a special case.
[Pipatsrisawat, 2010] contains the full details of how
this can be applied to prove lower bounds for specific
predicates. These bounds are actually equivalent to lower

1We thank the conference reviewers for bringing this work to
our attention.

bounds exponential in the best-partition nondeterministic
(respectively, unambiguous) communication complexity of
the given predicates. Our paper derives this lower bound
for SDDs directly but, more importantly, provides the
connection to best-partition deterministic communication
complexity, which allows us to have a much wider range
of application; this strengthening is necessary for our
applications.

Roadmap: We give the background and some formal def-
initions including some generalization required for this
work in Section 2. We prove our characterization of SDDs
in terms of best-partition communication complexity in
Section 3 and derive the resulting bounds for SDDs for nat-
ural predicates in Section 4. We describe the simulation of
DNNFs by OR-FBDDs, and its consequences, in Section 5.

2 Background and Definitions

We first give some basic definitions of DNNFs and decision
diagrams.

Definition 2.1. A Negation Normal Form (NNF) circuit is
a Boolean circuit with ¬ gates, which may only be applied
to inputs, and ∨ and ∧ gates. Further, it is Decompos-
able (DNNF) iff the children of each ∧ gate are reachable
from disjoint sets of input variables. (Following conven-
tion, we call this circuit a “DNNF formula”, though it is
not a Boolean formula in the usual sense of circuit com-
plexity.) A DNNF formula is deterministic (d-DNNF) iff
the functions computed at the children of each ∨ gate are
not simultaneously satisfiable.

Definition 2.2. A Free Binary Decision Diagram (FBDD)
is a directed acyclic graph with a single source (the root)
and two specified sink nodes, one labeled 0 and the other 1.
Every non-sink node is labeled by a Boolean variable and
has two out-edges, one labeled 0 and the other 1. No path
from the root to either sink is labeled by the same variable
more than once. It is an OBDD if the order of variable
labels is the same on every path. The Boolean function
computed by an FBDD is 1 on input a iff there is a path
from the root to the sink labeled 1 so that for every node
label Xi on the path, ai is the label of the out-edge taken
by the path. An OR-FBDD is an FBDD augmented with
additional nodes of arbitrary fan-out labeled ∨. The func-
tion value for the OR-FBDD follows the same definition as
for FBDDs; the ∨-nodes simply make more than one path
possible for a given input. (See [Wegener, 2000].)

We now define sentential decision diagrams as well as a
small generalization that we will find useful.

Definition 2.3. For a set X, let > : {0, 1}X → {0, 1} and
⊥ : {0, 1}X → {0, 1} denote the constant 1 function and
constant 0 function, respectively.

Definition 2.4. We say that a set of Boolean functions
{p1, p2, . . . , p`}, where each pi has domain {0, 1}X, is dis-



joint if for each i 6= j, pi∧pj = ⊥. We call {p1, p2, . . . , p`}
a partition if it is disjoint and

∨`
i=1 pi = >.

Definition 2.5. A vtree for variables X is a full binary tree
whose leaves are in one-to-one correspondence with the
variables in X.

We define Sentential Decision Diagrams (SDDs) together
with the Boolean functions they represent and use 〈.〉 to
denote the mapping from SDDs into Boolean functions.
(This notation is extended to sets of SDDs yielding sets
of Boolean functions.) At the same time, we also define a
directed acyclic graph (DAG) representation of the SDD.

Definition 2.6. α is an SDD that respects vtree v rooted at
v iff:

• α = > or α = ⊥.
Semantics: 〈>〉 = > and 〈⊥〉 = ⊥.
G(α) consists of a single leaf node labeled with 〈α〉.

• α = X or α = ¬X and v is a leaf with variable X .
Semantics: 〈X〉 = X and 〈¬X〉 = ¬X
G(α) consists of a single leaf node labeled with 〈α〉.

• α = {(p1, s1), . . . , (p`, s`)}, v is an internal ver-
tex with children vL and vR, p1, . . . , p` are SDDs
that respect the subtree rooted at vL, s1, . . . , s` are
SDDs that respect the subtree rooted at vR, and
〈p1〉, . . . , 〈p`〉 is a partition.
Semantics: 〈α〉 =

∨n
i=1

(
〈pi〉 ∧ 〈si〉

)
G(α) has a circle node for α labeled v with ` child
box nodes labeled by the pairs (pi, si). A box node
labeled (pi, si) has a left child that is the root of
G(pi) and and a right child that is the root of G(si).
The rest of G(α) is the (non-disjoint) union of graphs
G(p1), . . . , G(p`) and G(s1), . . . , G(s`) with com-
mon sub-DAGs merged. (See Figure 1.)

Each circle node α′ in G(α) itself represents an SDD that
respects a subtree of v rooted at some vertex v′ of v; We say
that α′ is in α and use Sdds(v′, α) to denote the collection
of α′ in α that respect the subtree rooted at v′. The size of
an SDD α is the number of nodes in G(α).

Circle nodes in G(α) may be interpreted as OR gates and
paired box nodes may be interpreted as AND gates. In the
rest of this paper, we will view SDDs as a class of Boolean
circuit. The vtree property and partition property of SDDs
together ensure that this resulting circuit is a d-DNNF.

We define a small generalization of vtrees which will be
useful for describing SDDs with respect to a partial assign-
ment of variables.

Definition 2.7. A pruned vtree for variables X is a full
binary tree whose leaves are either marked stub or by a
variable in X, and whose leaves marked by variables are
in one-to-one correspondence with the variables in X.

Figure 1: An SDD with its associated vtree that computes
the formula (A ∧B ∧ C) ∨ (¬C ∧D)

We generalize SDDs so that they can respect pruned vtrees.
The definition is almost identical to that for regular SDDs
so we only point out the differences.

Definition 2.8. The definition of a pruned SDD α respect-
ing a pruned vtree v, its semantics, and its graph G(α),
are identical to those of an SDD except that
• if the root vertex v of v is a stub then 〈α〉 must be ⊥

or >, and

• if the root vertex v of v is internal then we only require
that 〈p1〉, . . . , 〈p`〉 are disjoint but not necessarily that
they form a partition.

We now sketch a very brief overview of the communica-
tion complexity we will need. Many more details may be
found in [Kushilevitz and Nisan, 1997]. Given a Boolean
function f on {0, 1}X × {0, 1}Y, one can define two-
party protocols in which two players, Alice, who receives
x ∈ {0, 1}X and Bob, who receives y ∈ {0, 1}Y exchange
a sequence of messages m1, . . . ,mC = f(x, y) ∈ {0, 1}
to compute f . (After each bit, the player to send the next bit
must be determined from previous messages.) The (deter-
ministic) communication complexity of f , CC(f(X,Y)),
is the minimum value C over all protocols computing f
such that all message sequences are of length at most C.
The one-way deterministic communication complexity of
f , CCX→Y(f(X,Y)) is the minimum value of C over all
protocols where Alice may send messages to Bob, but Bob
cannot send messages to Alice.

For nondeterministic protocols, Alice simply guesses a
string based on her input x and sends the resulting message
m to Bob, who uses m together with y to verify whether
or not f(x, y) = 1. The communication complexity in
this case is the minimum |m| over all protocols. Such a
protocol is unambiguous iff for each (x, y) pair such that
f(x, y) = 1 there is precisely one message m that will
cause Bob to output 1. A set of the form A × B for
A ⊆ {0, 1}X, B ⊆ {0, 1}Y is called a rectangle. The
minimum of |m| over all unambiguous protocols is the un-
ambiguous communication complexity of f ; it is known to
be the logarithm base 2 of the minimum number of rectan-
gles into which one can partition the set of inputs on which
f is 1.

A canonical hard problem for communication complex-
ity is the two-party disjointness (set intersection) problem,



∨n
i=1 xi ∧ yi where x and y are indicator vectors of sets in

[n]. It has deterministic communication complexity n + 1
(and requires Ω(n) bits be sent even with randomness, but
that is beyond what we need). We will need a variant of
the “best partition” version of communication complexity
in which the protocol includes a choice of the best split of
input indices X and Y between Alice and Bob.

A typical method for proving lower bounds on OBDD size
for a Boolean function f begins by observing that a size
s OBDD may be simulated by a log s-bit one-way com-
munication protocol where Alice holds the first half of the
variables read by the OBDD and Bob holds the second half.
In this protocol, Alice starts at the root of the OBDD and
follows the (unique) OBDD path determined by her half
of the input until she reaches a node v querying a variable
held by Bob. She then sends the identity of the node v to
Bob, who can finish the computation starting from v. Thus,
if we show that f has one-way communication complexity
CCX→Y(f(X,Y)) at least C in the best split {X,Y} of
its input variables, then any OBDD computing f must have
at least 2C nodes.

Our lower bound for SDDs uses related ideas but in a more
sophisticated way, and instead of providing a one-way de-
terministic protocol, we give an unambiguous protocol that
simulates the SDD computation. In particular, the conver-
sion to deterministic protocols requires two-way communi-
cation.

3 SDDs and Best-Partition Communication
Complexity

In this section, we show how we can use any small SDD
representing a function f to build an efficient communica-
tion protocol for f given an approximately balanced parti-
tion of input variables that is determined by its associated
vtree. As a consequence, any function requiring large com-
munication complexity under all such partitions requires
large SDDs. To begin this analysis, we consider how an
SDD simplifies under a partial assignment to its input vari-
ables.

3.1 Pruning SDDs Using Restrictions

Definition 3.1. Suppose that v is a pruned vtree for a set
of variables X, and that v is a vertex in v. Let Vars(v)
denote the set of variables that are descendants of v in v
and Shell(v) = X \ Vars(v). Also let Parent(v) denote
the (unique) vertex in v that has v as a child.

We define a construction to capture what happens to an
SDD under a partial assignment of its variables.

Definition 3.2. Let α be an SDD that respects v, a vtree for
the variables X, and suppose that α computes the function
f . Let B ⊆ X and A = X \B and let ρ : A→ {0, 1} be

an assignment to the variables in A. Let α|ρ be Boolean
circuit remaining after plugging the partial assignment ρ
into the SDD α and making the following simplifications:

1. If a gate computes a constant c ∈ {>,⊥} under the
partial assignment ρ, we can replace that gate and its
outgoing edges with c.

2. Remove any children of OR-gates that compute ⊥.

3. Remove any nodes disconnected from the root.

For each vtree vertex v ∈ v that was not removed in this
process, we denote its counterpart in the pruned vtree v|A
by v|A.

Construct the pruned vtree v|A from v as follows: for each
vertex v, if Vars(v) ⊆ A and Vars(Parent(v)) 6⊆ A, re-
place v and its subtree by a stub. We say that we have
pruned the subtree rooted at v.

For A ⊆ X, we call {A,X \A} a shell partition for X if
there is a vtree vertex v ∈ v such that Shell(v) = A. We
call A the shell. If, for a restriction ρ : A → {0, 1}, there
exists a vtree vertex v ∈ v such that Shell(v) = A, we call
ρ a shell restriction.

Proposition 3.3. Let α be an SDD that respects v, a vtree
for the variables X, and suppose that α computes the func-
tion f . Let A ⊆ X and ρ : A → {0, 1} be a partial
assignment of the variables in A. The pruned SDD α|ρ has
the following properties:
(a) 〈α|ρ〉 = f |ρ.
(b) α|ρ is a pruned SDD respecting v|A.
(c) G(α|ρ) is a subgraph of G(α).

Proof. (a): An SDD may be equivalently described as a
Boolean circuit of alternating OR and AND gates. For any
Boolean circuit in the variables X that computes f , plug-
ging in the values for the restriction ρ yields a circuit com-

Figure 2: An SDD and its vtree, as well as the pruned pair
after setting B to 0 and A,E, F to 1.



puting f |ρ. Furthermore, the simplification steps do not
change the function computed.

(b): For each v such that Vars(v) ⊆ A and
Vars(Parent(v)) 6⊆ A, we have replaced the subtree
rooted at v by a stub and replaced the SDDs in α respecting
v by either > or ⊥. Thus α|ρ respects v|A.

We now check that α|ρ is a pruned SDD. In par-
ticular we need to ensure that for each SDD α′ =
{(p1, s1), . . . , (p`, s`)} in α, the corresponding pruned
SDDs that remain from p1, . . . , p` in its pruned counterpart
α′|ρ represent a collection of disjoint functions. From the
first part of this proposition, these are 〈pi1〉|ρ, . . . , 〈pik〉|ρ
for some k ≤ n, where we have only included those
SDDs that are consistent under ρ. Since the original set of
SDDs was a partition and thus disjoint, this set of restricted
(pruned) SDDs is also disjoint.

(c): The process in Definition 3.2 only removes nodes from
G(α) to construct G(α|ρ). Further, it does not change the
label of any SDD that was not removed.

3.2 Unambiguous Communication Protocol for SDDs

The way that we will partition the input variables to an
SDD between the parties Alice and Bob in the communi-
cation protocol will respect the structure of its associated
vtree. The restrictions will correspond to assignments that
reflect Alice’s knowledge of the input and will similarly re-
spect that structure.

Notice that a vtree cut along an edge (u, v) (where u is the
parent of v) induces a shell partition for X consisting of the
set B = Vars(v), and the shell A = X \B.

Proposition 3.4. Let α be an SDD of size s computing a
function f : {0, 1}X → {0, 1} that respects a vtree v.
Suppose that {A,B} is a shell partition for X and that A
is its shell. Let b be the vertex in v for which Vars(b) = B
and Vars(Parent(b)) 6⊆ B.

For any shell restriction ρ : A → {0, 1}, the set
〈Sddsα|ρ(b|A)〉 is a disjoint collection of functions.

Proof. For non-shell restrictions ρ′, the collection of func-
tions 〈Sddsα|ρ′ (v)〉 for a vtree node v is not disjoint; we
need to use the specific properties of A and b. Since ρ
was a shell restriction, the pruned vtree v|A takes the form
of a path v1|A, . . . , vk|A of internal vertices, where v1 is
the root of v, and vk|A = b|A, with the other child of
each of v1|A, . . . , vk−1|A being a stub, together with a
vtree for the variables B rooted at b. We will show that if
〈Sddsα|ρ(vi|A)〉 is disjoint then so is 〈Sddsα|ρ(vi+1|A)〉.
This will prove the proposition since 〈Sddsα|ρ(v1|A)〉 only
contains the function 〈α|ρ〉 and is therefore trivially dis-
joint.

We will use the fact that every pruned-SDD from

Sddsα|ρ(vi+1|A) is contained in some SDD from
Sddsα|ρ(vi|A). We have two cases to check: vi+1|A is
either a left child or a right child of vi|A.

If vi+1|A was a right child then each pruned-SDD η|ρ con-
tained in Sddsα|ρ(vi|A) takes the form η|ρ = {(>, s|ρ)}.
Then 〈Sddsα|ρ(vi+1|A)〉 = 〈Sddsα|ρ(vi|A)〉 and is there-
fore disjoint by assumption.

Otherwise suppose that vi+1|A is the left child of
vi|A. Let η|ρ ∈ Sddsα|ρ(vi|A). Let η|ρ =

{(η1|ρ,>), . . . , (ηk|ρ),>)} where
∨k
i=1〈ηi|ρ〉 = 〈η|ρ〉 and

{〈η1|ρ〉, . . . , 〈ηk|ρ〉} , being a collection of primes for η|ρ,
is disjoint. By assumption 〈Sddsα|ρ(vi|A)〉 is disjoint,
so for any other η′|ρ = {(η′1|ρ,>), . . . , (η′k′ |ρ,>)} ∈
Sddsα|ρ(vi|A)} distinct from η|ρ, we have 〈η|ρ〉∧〈η′|ρ〉 =
⊥. Then for any i ∈ [k] and j ∈ [k′], we have 〈ηi|ρ〉 ∧
〈η′j |ρ〉 = ⊥. Thus 〈Sddsα|ρ(vi+1|A)〉 is disjoint.

Theorem 3.5. Let α be an SDD of size s that respects
a vtree v and suppose that it computes the function f :
{0, 1}X → {0, 1}. Suppose that {A,B} is a shell parti-
tion for X and that A is the shell. Let b be the vertex in v
for which Vars(b) = B and Vars(Parent(b)) 6⊆ B.

Consider the communication game where Alice has the
variables A, Bob has the variables B, and they are try-
ing to compute f(A,B). There is a log s-bit unambiguous
communication protocol computing f .

Proof. Suppose that Alice and Bob both know the SDD α.
Let ρ : A → {0, 1} be the partial assignment correspond-
ing to Alice’s input. This is a shell restriction. Alice may
then privately construct the pruned SDD α|ρ, which com-
putes f |ρ by Proposition 3.3. Further, α|ρ evaluates to 1
under Bob’s input φ : B→ {0, 1} if and only if there exists
a pruned-SDD η|ρ ∈ Sddsα|ρ(b|A) such that 〈η|ρ〉(φ) = 1.

By Proposition 3.4, 〈Sddsα|ρ(b|A)〉 is disjoint. Also, since
ρ is a shell restriction with shell A, and Vars(b) = B =
X\A, every SDD in Sddsα|ρ(b|A) was unchanged by ρ. In
particular, this means that Sddsα|ρ(b|A) ⊆ Sddsα(b) and
any pruned-SDD η|ρ can be viewed as some η ∈ Sddsα(b)
that is also in Sddsα|ρ(b|A).

For the protocol Alice nondeterministically selects an η
from Sddsα|ρ(b|A) and then sends its identity as a member
of Sddsα(b) to Bob. This requires at most log s bits. Bob
will output 1 on his input φ if and only if 〈η〉(φ) = 1, which
he can test since he knows α and b. This protocol is unam-
biguous since the fact that 〈Sddsα|ρ(b|A)〉 is disjoint means
means that for any input φ to Bob there is at most one
η ∈ Sddsα|ρ(b|A) such that 〈η〉(φ) = 1. Since Bob knows
α, he also knows η and can therefore compute 〈η〉(φ).
Since α computes f , if 〈η〉(φ) = 1 then f(φ, ρ) = 1. Oth-
erwise all of the functions in 〈Sddsα|ρ(b|A)〉 evaluate to 0
on input φ so f(φ, ρ) = 0.



We can relate the deterministic and unambiguous commu-
nication complexities of a function using the following re-
sult from [Yannakakis, 1991].
Theorem 3.6 (Yannakakis). If there is an g-bit unambigu-
ous communication protocol for a function f : {0, 1}A ×
{0, 1}B → {0, 1}, then there is a (g+1)2-bit deterministic
protocol for f .

The following 1/3-2/3 lemma is standard.
Lemma 3.7. For a vtree v for L variables, if a vertex b
satisfies 1

3L ≤ |Vars(b)| ≤ 2
3L, we call it a (1/3, 2/3)

vertex. Every vtree contains a (1/3, 2/3) vertex.
Definition 3.8. Let X be a set of variables and (A,B) a
partition of X. We call the partition (A,B) a (δ, 1 − δ)-
partition for δ ∈ [0, 1/2] if min(|A|, |B|) ≥ δ|X|. That is,
the minimum size of one side of the partition is at least a
δ-fraction of the total number of variables.

The best (δ, 1 − δ)-partition communication complex-
ity of a Boolean function f : {0, 1}X → {0, 1} is
min(CC(f(A,B))) where the minimum is taken over all
(δ, 1− δ)-partitions (A,B).
Theorem 3.9. If the best (1/3, 2/3)-partition communi-
cation complexity of a Boolean function f : {0, 1}X →
{0, 1} is C, then an SDD computing f has size at least
2
√
C−1.

Proof. Suppose that α is an SDD of size s respecting the
vtree v for variables X, and that α computes f . From
Lemma 3.7 the vtree v contains a (1/3, 2/3) vertex b. This
(1/3, 2/3) vertex b induces a (1/3, 2/3)-partition of the
variables {A,B} where B = Vars(b) and A = Shell(b).
Further, this partition {A,B} is a shell partition. By The-
orem 3.5, there exists a log s-bit unambiguous commu-
nication protocol for f(A,B). Then by Theorem 3.6,
there exists a (log(s) + 1)2-bit deterministic communi-
cation protocol for f(A,B). Since the best (1/3, 2/3)-
partition communication complexity of f is C, we have
that C ≤ (log(s) + 1)2 which implies that s ≥ 2

√
C−1

as stated.

4 Lower Bounds for SDDs

There are a large number of predicates f : {0, 1}n →
{0, 1} for which the (1/3, 2/3)-partition communication
complexity is Ω(n) and by Theorem 3.9 each of these re-
quires SDD size 2Ω(

√
n). The usual best-partition com-

munication complexity is (1/2, 1/2)-partition communi-
cation complexity. For example, the function SHIFT-
EDEQ which takes as inputs x, y ∈ {0, 1}n and z ∈
{0, 1}dlog2 ne and tests whether or not y = SHIFT (x, z)
where SHIFT (x, z) is the cyclic shift of x by (z)2 posi-
tions. However, as is typical of these functions, the same
proof which shows that the (1/2, 1/2)-partition commu-
nication complexity of SHIFTEDEQ is Ω(n) also shows

that its (1/3, 2/3)-partition communication complexity is
Ω(n). However, most of these functions are not typical
of predicates to which one might want to apply weighted
model counting. Instead we analyze SDDs for formulas
derived from a natural class of database queries. We are
able to characterize SDD size for these queries, proving
exponential lower bounds for every such query that cannot
already be represented in linear size by an OBDD. This in-
cludes an example of a query called QV for which FBDDs
are polynomial size but the best SDD requires exponential
size.

4.1 SDD Knowledge Compilation for Database Query
Lineages

We analyze SDDs for a natural class of database queries
called the union of conjunctive queries (UCQ). This in-
cludes all queries given by the grammar

q ::= R(x) | ∃xq | q ∧ q | q ∨ q

where R(x) is an elementary relation and x is a vari-
able. For each such query q, given an input database
D, the query’s lineage, ΦDq , is a Boolean expression
for q over Boolean variables that correspond to tuples
in D. In general, one thinks of the query size as
fixed and considers the complexity of query evaluation
as a function of the size of the database. The fol-
lowing formulas are lineages (or parts thereof) of well-
known queries that that are fundamental for probabilis-
tic databases [Dalvi and Suciu, 2012, Jha and Suciu, 2013]
over a particular databaseD0 (called the complete bipartite
graph of size m in [Jha and Suciu, 2013]):

H0 =
∨

i,j∈[m]

RiSijTj

QV =
∨

i,j∈[m]

RiSij ∨ SijTj ∨RiTj

H1 =
∨

i,j∈[m]

RiSij ∨ SijTj

Hk0 =
∨
i∈[m]

RiS
1
ij for k ≥ 1

Hk` =
∨

i,j∈[m]

S`ijS
`+1
ij for 0 < ` < k

Hkk =
∨
i∈[m]

SkijTj for k ≥ 1.

(The corresponding queries are represented using lower
case letters h0, qV , h1, hk0, . . . , hkk and involve unary re-
lations R and T , as well as binary relations S and Sk. For
example, h0 = ∃x0∃y0R(x0)S(x0, y0)T (y0).) The fol-
lowing lemma will be useful in identifying subformulas of
the above query lineages that can be used to compute the
set disjointness function.



Proposition 4.1. Let the elements of [m] × [m] be parti-
tioned into two sets A and B, each of size at least δm2.
Let Row(i) denote {i}× [m] and Col(j) denote [m]×{j}.
Define WRow = {i ∈ [m] | ∅ 6= Row(i) ∩ A and ∅ 6=
Row(i) ∩ B}. That is, Row(i) for i ∈ WRow is split
into two nonempty pieces by the partition. Similarly, define
WCol = {i ∈ [m] | ∅ 6= Col(j) ∩A and ∅ 6= Col(j) ∩B}.
Then

max(|WRow|, |WCol|) ≥
√
δ ·m.

Proof. Suppose that both |WRow| < m and |WCol| < m.
By definition, if i /∈ WRow then one of A or B contains
an entire row, Row(i), say A without loss of generality.
This implies that no column Col(j) is entirely contained in
B. Since |WCol| < m, there is some column Col(j) that is
entirely contained inA. This in turn implies thatB does not
contain any full row. In particular, we have that A contains
all rows in [m] \WRow and all columns in [m] \WCol and
thusB ⊆WRow×WCol and so |B| ≤ |WRow| · |WCol|. By
assumption, |B| ≥ δm2. Hence |WRow| · |WCol| ≥ δm2

and so max{|wRow|, |wCol|} ≥
√
δ ·m.

Theorem 4.2. For m ≥ 6, the best (1/3, 2/3)-partition
communication complexity ofQV ,H0, and ofH1 is at least
m/3.

Proof. Let X be the set of variables appearing in QV (or
H1) and let (A,B) be a (1/3, 2/3)-partition of X. Let
(A,B) be the partition of [m] × [m] induced by (A,B)
and define WRow and WCol as in Proposition 4.1. Since
|X| = m2+2m and only elements of [m]×[m] are relevant,
|A|, |B| ≥ (m2+2m)/3−2m = (1−4/m)m2/3 ≥ m2/9
for m ≥ 6 and hence max(|WRow|, |WCol|) ≥ m/3. We
complete the proof by showing that computing QV (A,B)
and H1(A,B) each require at least max(|WRow|, |WCol|)
bits of communication between Alice and Bob. We will
do this by showing that for a particular subset of in-
puts, QV is equivalent to the disjointness function for a
max(|WRow|, |WCol|) size set.

Suppose without loss of generality that |WRow| ≥ |WCol|.
Set all Tj = 0 and for each i /∈ WRow set Ri = 0. For
each i ∈ WRow for which Ri ∈ A, set all Sij ∈ A
to 0, let ji be minimal such that Siji ∈ B, and set
Sij ∈ B to 0 for all j > ji. (Such an index ji must
exist since i ∈ WRow.) Similarly, For each i ∈ WRow

for which Ri ∈ B, set all Sij ∈ B to 0, let ji be
minimal such that Siji ∈ A, and set Sij ∈ A to 0 for all
j > ji. In particular, under this partial assignment, we have

QV = H1 =
∨

i∈WRow

RiSiji

and for each i ∈ WRow, Alice holds one of Ri or Siji and
Bob holds the other. We can reduceH0 to the same quantity
by setting all Tj = 1. This is precisely the set disjointness
problem on two sets of size |WRow|where membership of i
in each player’s set is determined by the value of the unset
bit indexed by i that player holds. Therefore, computing

QV or H1 requires at least |WRow| bits of communication,
as desired.

Combining this with Theorem 3.9, we immediately obtain
the following:
Theorem 4.3. For m ≥ 6, any SDD representing QV or
H1 requires size at least 2

√
m/3−1.

As [Jha and Suciu, 2013] has shown that QV has FBDD
size O(m2), we obtain the following separation.
Corollary 4.4. FBDDs can be exponentially more succinct
than SDDs. In particular, QV has FBDD size O(m2) but

every SDD for QV requires size 2
√
m/3−1 for m ≥ 6.

We now consider the formulas Hki above. Though they
seem somewhat specialized, these formulas are fundamen-
tal to UCQ queries: [Jha and Suciu, 2013] define the notion
of an inversion in a UCQ query and use it to characterize
the OBDD size of UCQ queries. In particular they show
that if a query q is inversion-free then the OBDD size of
its lineage Q is linear and if q has an minimum inversion
length k ≥ 1 then it requires OBDD size 2Ω(n/k) where n
is the domain size of all attributes. Jha and Suciu obtain this
lower bound by analyzing the Hki we defined above. (We
will not define the notion of inversions, or their lengths,
and instead use the definition as a black box. However, as
an example, the query associated with H1 has an inversion
of length 1 so its OBDD size is 2Ω(m).)
Proposition 4.5. [Jha and Suciu, 2013] Let q be a query
with a length k ≥ 1 inversion. Let D0 be the complete
bipartite graph of size m. There exists a database D for q,
along with variable restrictions ρi for all i ∈ [0, k], such
that |D| = O(|D0|) and ΦDq |ρi = ΦD0

hki
= Hki

Theorem 4.6. Let k ≥ 2 and assume that m ≥ 6. Let q
be a query with a length k ≥ 2 inversion. Then there exists
a database D for which any SDD for Q = ΦDq has size at

least 2
√
m/k/3−1.

Proof. Given a query q, let D be the database for q con-
structed in Proposition 4.5. Fix the vtree v over Xk re-
spected by an SDD α for ΦDq . By Lemma 3.7, there exists
a (1/3, 2/3) node b in the vtree v that gives a (1/3, 2/3)
partition {A,B} of Xk. By Proposition 4.5, there are re-
strictions ρ0, . . . , ρk such that ΦDq |ρi = Hki for all i. Thus
α|ρi is a (pruned) SDD, of size ≤ that of α, respecting v|ρi
and computingHki. Observe that the restriction of {A,B}
to the variables of Xki is also shell partition of v|ρi at node
b.

We will show that there must exist an Hki for which
CC(Hki(A,B)) ≥ m/(9k) and therefore by Theorem 3.6,
this implies that the unambiguous communication com-
plexity ofHki is at least 1

3

√
m/k−1 Then by Theorem 3.5,

any SDD respecting v that computes Hki has size at least
2

1
3

√
m/k−1.



Let WChain contain all pairs (i, j) for which both A ∩⋃k
`=1{S`ij} 6= ∅ and B∩

⋃k
`=1{S`ij} 6= ∅ and Let γ = 1/9.

We will consider two cases: either |WChain| ≥ γ · m or
|WChain| < γ ·m.

In the first case, since |WChain| ≥ γ ·m, there must exist
at least γ ·m tuples (i, j, `) for which either S`ij ∈ A and
S`+1
ij ∈ B or vice-versa. Call the set of these tuples T.

Then, since there are k − 1 choices of ` < k, there exists
some `∗ such that the set T`∗ := T∩ [m]× [m]×{`∗} con-
tains at least γ ·m/(k − 1) > m/(9k) elements. If we set
all variables of Xk`∗ outside of T`∗ to 0, the functionHk`∗

corresponds to solving a disjointness problem between Al-
ice and Bob on the elements of T`∗ . Thus the communi-
cation complexity of Hk`∗ under the partition {A,B} is at
least m/(9k).

In the second case, consider the largest square submatrix
M of [m] × [m] that does not contain any member
of WChain. We mimic the argument of Theorem 4.2
on this submatrix M . By definition, M has side
m′ ≥ (1 − γ)m. For every (i, j) in M , either A or B
contains all S`ij ; let A be those (i, j) such that these are
in A and B be those (i, j) for which they are in B. Since
|A|, |B| ≥ |Xk|/3 = (km2 + 2m)/3 and there are at most
2m+ (γ2 + 2γ)km2 variables not in M ,

|A|, |B| ≥ [(km2 + 2m)/3− 2m+ (γ2 + 2γ)km2]/k

= [(1− γ)2 − 2/3− 4/(3km)]m2 > (m/18)2)

since k ≥ 2. Applying Proposition 4.1, we see that
max(|WRow|, |WCol|) ≥ m/18 ≥ m/(9k). By the same
argument presented in the proof of Theorem 4.2, we have
both CC(Hk0(A,B)) ≥ |WRow| and CC(Hkk(A,B)) ≥
|WCol| so at least one of these is at least m/(9k) and the
theorem follows.

It follows that for inversion-free UCQ queries, both SDD
and OBDD sizes of any lineage are linear, while UCQ
queries with inversions (of length k) have worse-case lin-
eage size that is exponential (2Ω(m/k) for OBDDs and
2Ω(
√
m/k) for SDDs). Note that the same SDD size lower

bound for UCQ query lineage Q = ΦDq applies to its dual
Q∗ = ΦDq∗ as follows: Flipping the signs on the variables
in Q∗ yields a function equivalent to ¬Q. So flipping the
variable signs at the leaves of an SDD for Q∗ we obtain
an SDD of the same size for ¬Q and hence a deteministic
protocol that also can compute Q.

5 Simulating DNNFs by OR-FBDDs

In this section, we extend the simulation of decision-
DNNFs by FBDDs from [Beame et al., 2013] to obtain
a simulation of general DNNFs by OR-FBDDs with at
most a quasipolynomial increase in size. This simulation
yields lower bounds on DNNF size from OR-FBDD lower
bounds.

Definition 5.1. For each AND node u in a DNNF D, let
Mu be the number of AND nodes in the subgraph Du. We
call u’s left child ul and its right child ur. We will assume
Mul ≤Mur (otherwise we swap ul and ur).

For each AND node u, we classify the edge (u, ul) as a
light edge and the edge (u, ur) a heavy edge. We classify
every other edge in D as a neutral edge.

For a DNNFD or an OR-FBDDF , we denote the functions
that D and F compute as ΦD and ΦF .

Constructing the OR-FBDD

For a DNNF D, we will treat a leaf labeled by the variable
X as a decision node that points to a 0-sink node if X =
0 and a 1-sink node if X = 1, and vice-versa for a leaf
labeled by ¬X . We also assume that each AND node has
just two children, which only affects the DNNF size by at
most polynomially.

Definition 5.2. Fix a DNNF D. For a node u in D
and a path P from the root to u, let S(P ) be the
set of light edges along P and S(u) = {S(P ) |
P is a path from the root to u}.

We will construct an OR-FBDD F that computes the same
boolean function as D. Its nodes are pairs (u, s) where u
is a node in D and the set of light edges s belongs to S(u).
Its root is (root(D), ∅). The edges in F are of three types:

Type 1: For each light edge e = (u, v) in D and s ∈ S(u),
add the edge ((u, s), (v, s ∪ {e})) to F .

Type 2: For each neutral edge e = (u, v) in D and s ∈
S(u), add the edge ((u, s), (v, s)) to F .

Type 3: For each heavy edge (u, vr), let e = (u, vl) be its
sibling light edge. For each s ∈ S(u) and 1-sink node w in
Dvl , add the edge ((w, s ∪ {e}), (vr, s)) to F .

We label the nodes u′ = (u, s) as follows: (1) if u is a
decision node in D for the variable X then u′ is a decision
node in F testing the same variable X , (2) if u is an AND-
node, then u′ is a no-op node, (3) if u is an OR node it
remains an OR node. (4) if u is a 0-sink node, then u′ is a
0-sink node, (5) if u is a 1-sink node, then: if s = ∅ then u′

is a 1-sink node, otherwise it is a no-op node.

We show an example of this construction in Figure 3.

Size and Correctness

Lemma 5.3. For the DNNF D let L denote the maximum
number of light edges from the root to a leaf,M the number
of AND nodes and N the total number of nodes. ThenF has
at most NML nodes. Further, this is N · 2log2N .

Proof. The nodes in F are labeled (u, s). There are N
possible nodes u and at most ML choices for the set s, as



Figure 3: A DNNF and our construction of an equivalent
OR-FBDD.

each path to u has at most L light edges.

Consider a root to leaf path with L light edges. As we
traverse this path, every time we cross a light edge, we de-
crease the number of descendant AND nodes by more than
half. Thus we must have begun with more than 2L descen-
dant AND nodes at the root so that N ≥ M > 2L. This
implies that NML is quasipolynomial in N ,

This upper bound is quasipolynomial in N , we will show
that M > 2L. Then, since N ≥M , NML ≤ N2log2M ≤
N2log2N .

The proof of the following lemma is in the full paper.

Lemma 5.4. F is a correct OR-FBDD with no-op nodes
that computes the same function as D.

Using the quasipolynomial simulation of DNNFs by OR-
FBDDs, we obtain DNNF lower bounds from OR-FBDD
lower bounds.

Definition 5.5. Function PERMn takes an n× n boolean
matrix M as input and outputs 1 if and only if M is a per-
mutation matrix. The function ROW-COLn takes an n×n
boolean matrix M as input and outputs 1 if and only if M
has an all-0 row or an all-0 column.

Theorem 5.6. Any OR-FBDD computing PERMn or
ROW-COL, must have size 2Ω(n) [Wegener, 2000].

Corollary 5.7. Any DNNF computing PERMn or
ROW-COL has size at least 2Ω(

√
n)

6 Discussion

We have made the first significant progress in understand-
ing the complexity of general DNNF representations. We
have also provided a new connection between SDD rep-
resentations and best-partition communication complex-
ity. Best-partition communication complexity is a stan-
dard technique used to derive lower bounds on OBDD size,
where it often yields asymptotically tight results. For com-
munication lower bound C, the lower bound for OBDD
size is 2C and the lower bound we have shown for SDD size
is 2
√
C−1. This is a quasipolynomial difference. Are SDDs

that much more efficient than OBDDs? Is there always a

quasipolynomial simulation of SDDs by OBDDs in gen-
eral, matching the quasipolynomial simulation of decision-
DNNFs by FBDDs? Our separation result shows an exam-
ple for which SDDs are sometimes exponentially less con-
cise than FBDDs, and hence decision-DNNFs also. Are
SDDs ever more concise than decision-DNNFs?

By plugging in the arguments of
[Pipatsrisawat and Darwiche, 2010, Pipatsrisawat, 2010]
in place of Theorem 3.5, all of our lower bounds im-
mediately extend to size lower bounds for structured
deterministic DNNFs (d-DNNFs), of which SDDs
are a special case. It remains open whether struc-
tured d-DNNFs are strictly more concise than SDDs.
[Pipatsrisawat and Darwiche, 2008, Pipatsrisawat, 2010]
have proved an exponential separation between structured
d-DNNFs and OBDDs using the Indirect Storage Access
(ISA) function [Breitbart et al., 1995], but the small struc-
tured d-DNNF for this function is very far from an SDD. It
is immediate that, under any variable partition, the ISAn
function has an O(log n)-bit two-round deterministic
communication protocol. On the other hand, efficient
one-round (i.e., one-way) communication protocols yield
small OBDDs so there are two possibilities if SDDs and
structured d-DNNFs have different power. Either (1)
communication complexity considerations on their own
are not enough to derive a separation between SDDs and
structured d-DNNFs, or (2) every SDD can be simulated
by an efficient one-way communication protocol, in which
case SDDs can be simulated efficiently by OBDDs (though
the ordering cannot be the same as the natural traversal of
the associated vtree, as shown by [Xue et al., 2012]).
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