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Abstract

When belief propagation (BP) converges, it does
so to a stationary point of the Bethe free en-
ergy F, and is often strikingly accurate. How-
ever, it may converge only to a local optimum
or may not converge at all. An algorithm was
recently introduced by Weller and Jebara for at-
tractive binary pairwise MRFs which is guaran-
teed to return ar-approximation to the global
minimum of F in polynomial time provided the
maximum degreé\ = O(logn), wheren is the
number of variables. Here we extend their ap-
proach and derive a new method based on an-
alyzing first derivatives ofF, which leads to
much better performance and, for attractive mod-
els, yields a fully polynomial-time approxima-
tion scheme (FPTAS) without any degree restric-
tion. Further, our methods apply to general (non-
attractive) models, though with no polynomial
time guarantee in this case, demonstrating that
approximatinglog of the Bethe partition func-
tion, log Zp = — min F, for a general model to
additivee-accuracy may be reduced to a discrete
MAP inference problem. This allows the merits
of the global Bethe optimum to be tested.
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stant for the probability distribution; (2) Marginal infer
ence, which is computing the probability distribution of a
given subset of variables; and (3) Maximum a posteriori
(MAP) inference, which is the task of identifying a setting
of all the variables which has maximum probability.

All these are NP-hard, and (1) and (2) are closely related
(marginals are a ratio of two partition functions). Vari-
ational methods show that the partition function may be
obtained by minimizing the free energy over the marginal
polytope, and that if instead the Bethe free energy (Bethe,
1935) is minimized over the local polytope, this should
yield a good approximatidn Although this is not a for-
mal result, and there are cases where it performs poorly
- typically when there are many short cycles with strong
edge interactions (Wainwright and Jordan, 20§8}.1),
still, the approach has proved very popular and often strik-
ingly accurate. Belief propagation is often used to perform
this minimization (Pearl, 1988; Yedidia et al., 2001). Per-
formance is often excellent (McEliece et al., 1998; Mur-
phy et al., 1999), but when applied to models with cycles,
termed loopy belief propagation (LBP), convergence is not
guaranteed in general, even to alocal minimum. Some con-
jectured that when LBP behaves poorly, it is likely that the
Bethe approximation, as given by the global minimum, also
performs poorly, but it has not previously been possible to
test this.

Approaches such as gradient descent (Welling and Teh,
2001), double-loop methods (Yuille, 2002) or Frank-Wolfe
(Belanger et al., 2013) will converge but only to a local
minimum, and with no runtime guarantee. Recently, two

Undirected graphical models, also termed Markov randommethods with polynomial runtime were given for the im-
fields (MRFs), are central tools in machine learning. A setportant subclass of binary pairwise models: one returns
of variables and a score function is specified such that than approximately stationary point (Shin, 2012), though its
probability of a configuration of variables is proportiotml  value may be far even from a local minimum; the other re-
the value of the score function, which factorizes into sub-turns ane-approximate global optimum value (Weller and
functions over subsets of variables in a way that defines debara, 2013a) but only for the restricted case of attrac-
topology on the variables. tive models (where pairwise relationships tend to pull con-
nected variables to the same vafueBoth these methods

r}estrlct the topology to have maximum degi@
function Z, which is the sum of the score function over pology gredogn),

all possible settings, and hence is the normalization con- *All terms are defined if§2.



wheren is the number of variables. Algorithm 1 Mesh method to retura-approximate global
optimumlog Z g for a general binary pairwise model

1.1 CONTRIBUTION AND SUMMARY Input: ¢, model parameters (convert usig@ 1 if required)
Output: estimate of global optimunibg Zp guaranteed

We obtain results for binary pairwise MRFs by expandingio be in rangeflog Zp — €, log Zp], together with cor-

on ideas from Weller and Jebara (2013a). The approach iesponding pseudo-marginal asg for the discrete opti-

to construct aufficient mesbf discretized points in sucha mum

way that the optimum mesh poigt is guaranteed to have 1. preprocess by computing bounds on the locations of

F(g*) within ¢ of the true optimum. Our first derivative minima, se€;2.4.
method typically results in a mesh that is much coarser (by 5. construct a sufficient mesh using one of the methods in
many orders of magnitude, s¢& 1), yet still sufficient, and this paper, seé3 & 4. All approaches are fast, so sev-

admits adaptive methods to focus points in regions where  gr5) may be used and the most efficient mesh selected.
# may vary rapidly. This leads to a FPTAS for atfractive 3. attempt to solve the resulting multi-label MAP infer-
models with no restriction on topology. In addition, we re- ence problem, segs.

fine and extend the second derivative approach of Weller 4. ¢ ,nsuccessful, but a strongly persistent partial solu-

and Jebara (2013a) to derive a method that performs well  4ion was obtained, then improved location bounds may
for very smalle. With our new methods, both approaches 4 generated (sé&.2.1), repeat from 2.

apply to general binary pairwise models (not necessarily a
tractive) to reduce the problem of finding aapproximate

global optimum to solving a derived discrete optimization
problem, which may be framed as multi-label MAP infer-

ence, where a rich family of methods already exists. partition function, but only when singleton potentials are
There are several motivations for this work: uniform (i.e. a uniform external field), and the runtime
is high atO(e2m3n'*logn). Heinemann and Glober-

e To our knowledge, we present the first way to solveson (2011) have shown that models exist such that the true
for the global Bethe optimum (withinaccuracy) ofa  marginal probability cannot possibly be the location of a
general binary pairwise MRF. Runtime is practical for minimum of the Bethe free energy. Approaches have been
small real-world problems. developed to solve related convex problems but results are

typically less good (Meshi et al., 2009). Our work demon-

strates an interesting connection between MAP inference

) ) . techniques (NP-hard) and estimating the partition fumctio

e For attractive models, we obtain a fully polynomial 7 4p_hard). A different connection was shown by using
time approximation scheme for any topology, thus an-\yap inference on randomly perturbed models to approxi-

swering an open theoretical question. mate and bound (Hazan and Jaakkola, 2012).

tAt anytime, one may stop and compute bound$w@r? 5,
see§s.2.

e This now allows the accuracy of the global Bethe op-
timum to be tested.

In §2, we establish notation and present preliminary result
then apply these if3 to derive our new approach for mesh
construction based on analyzing first derivativesrofIn
§4 we revisit the second derivative approach of Weller and2Ur notation is similar to Weller and Jebara (2013a) and
Jebara (2013a). We show how this method can be refine¥/elling and Teh (2001). We focus on a binary pairwise
and extended to yield better performance and also to admffodel withn variablesX;,.... X,, € B = {0,1} and
non-attractive models, though for most cases of interesgraph topology(V, £) with m = [£[; that isV contains

unless is very small, the method @8 is much superior. ~ hodes{1,..., n} wherei corresponds td(;, and€ C V x
V' contains an edge for each pairwise score relationship.

In §5, we discuss the resulting discrete optimization prOb'LetN(z') be the neighbors of Letz = (z1,...,,) be

lem. In certain settings this is tractable, and in general Weyne particular configuration, and introduce the notion of
mention several features that can make it easier to find @nergyr/(2) through?
satisfactory solution, or at least to bound its value. Exper
ments are described & demonstrating practical applica- e~ E(@)
(z) E==) Oxi— Y Wyza;, (1)

tion of the algorithm. Conclusions are presentefiin L) = 7>

32 NOTATION & PRELIMINARIES

i€y (i,5)€€
For a sketch of the overall approach, see Algorithm,12. —
2The probability or score function can always be reparameter
ized in this way, with finited; and W;; terms providedy(z) >
12 RELATED WORK 0 Vz, which is a requirement for our approach. There are rea-
. ) . o sonable distributions where this does not hold, i.e. distrons
Jerrum and Sinclair (1993) derived a fully polynomial-time where3z - p(x) = 0, but this can often be handled by assigning
randomized approximation scheme (FPRAS) for the truesuch configurations a sufficiently small positive probapidi



where the partition functiod = >~ e~ #) is the normal-
izing constant, andld;, W, } are parameters of the model.

Given any joint probability distributiorp(Xy, ..., X,,)
over all variables, the (Gibbs) free energy is defined a
Fa(p) = E,(E) — S(p), whereS(p) is the (Shannon)
entropy of the distribution. Using variational methods, a
remarkable result is easily shown (Wainwright and Jordan
2008): minimizingF over the set of all globally valid dis-
tributions (termed thenarginal polytopgyields a value of
—log Z at the true marginal distribution, given in (1).

This minimization is, however, computationally in-

We are interested iniscretized pseudo-marginalghere
for eachy;, we restrict its possible values to a discrete mesh
M, of points in[0, 1]. The points may be spaced unevenly
and we may haveM; # M;. Let N; = | M;|, and define

= > ey Ni andIl = JJ,.,, Ny, the sum and product
respectively of the number of mesh points in each dimen-
sion. Write M for the entire mesh. Lej be the location
of a global optimum ofF. We say that a mesh construc-
tion M(e) is sufficientf, givene > 0, it can be guaranteed
that3 a mesh poing* € [],.,, M; s.t. F(¢*) — F(q) < e.
The resulting discrete optimization problem may be framed
as MAP inference in a multi-label MRF, where variable

tractable, hence the approach of minimizing the Bethe fre¢akes values inV1;, with the same topology (s&&).

energy / makes two approximations: (i) the marginal
polytope is relaxed to théocal polytope where we re-
quire onlylocal consistency, that is we deal withpaeudo-
marginalvectorg, which in our context may be considered
{ai = o(Xi = 1) Vi € V,pij = q(xi, x;) V(i j) € E}
subjecttog; = 3¢ i) Mij» 4 = Dieny) Mij Vi, J € V5
and (i) the entropys is approximated by the Bethe entropy
Sp = Z(m—)eg Sij + > sev(1 — di)S;, whereS;; is the
entropy ofy;;, S; is the entropy of the singleton distribu-
tion andd; = [N (i)| is the degree of. The local polytope
constraints imply that, giveq andg;,

a4 — fz'j)

Wij = ( ¢

for someg;; € [0, min(g;, g;)], wherep;;(a,b) = ¢(X; =
a, X; = b). Hence, the global optimum of the Bethe free
energy,

F(q) = Eq(E) — Sp(q)
> = (Wi + Sii(aira5))
(i,5)€E

+ > (=i + (di — 1)Si(:)),

%

1+&;—a—
qi — &ij

o (2)

)

®3)

is achieved by minimizingF over the local polytope, with
Zp defined s.t. the result obtained equaldog Z5. See
(Wainwright and Jordan, 2008) for details. Lef; =
eii — 1. a;; = 0 & W;; = 0 may be assumed not to
occur else the edgé, j) may be deletedw;; has the same
sign asiv;;, if positive then the edgg, j) is attractive if
negative then the edgetispulsive The MRF is attractive

if all edges are attractive. As shown by Welling and Teh
(2001), one can solve fa;; explicitly in terms ofg; and

¢; by minimizing 7, leading to a quadratic with real roots,

i€ — 1+ aij(gi + ¢5)16i; + (1 + aig)giq; = 0. (4)

Fora;; > 0, &;5(q:, g;) is the lower root, fory;; < 0itis
the higher. Thus we may consider the minimizationfof
overq = (q1,-.-,qn) € [0,1]™. Collecting the pairwise
terms of 7 from (3) for one edge, define

fii(gisa5) = —Wi;&ii(ai, q5) — Sij(gi,q5). (5)

21 INPUT MODEL SPECIFICATION

To be consistent with Welling and Teh (2001) and Weller
and Jebara (2013a), for all theoretical analysis in thigpap
we assume the reparameterization in (1). However, when
an input model is specified, in order to avoid bias, we use
singleton termg; as in (1), but instead use pairwise energy
terms given by—@xixj - Wgﬂ (1—z;)(1—x;). With this
form, varyingW;; simply alters the degree of association
between andj. We assume maximum possible valu€&s
andT are known with|f;| < T Vi € V, and|W;;| <

W V(i,j) € £ The required transformation to convert
from input model to the format of (1), simply takés «+

0; — Zje/v(i) Wi;/2, leavingWW;; unaffected.

2.2 SUBMODULARITY

If all pairwise cost functionsf;; over M; x M; from

(5) are submoduldy then the global discretized optimum
may be found efficiently using graph cuts (Schlesinger and
Flach, 2006). We require the following earlier result.

Theorem 1 (Submodularity for any discretization of an at-
tractive model, see Weller and Jebara (2013a) Theorem 8,
Kort et al. (2012)) In a binary pairwise MRF, if an edge
(i,7) is attractive, i.e.W;; > 0, then the discretized multi-
label MRF for any mesbiM is submodular for that edge.
Hence if the MRF is fully attractive, then the discretized
multi-label MRF is fully submodular for any discretization

2.3 FLIPPING VARIABLES

A useful technique for our analysis is to consider a model
where some variables are flipped, i.e. given a model on
{X,}, consider a new model of)X/} whereX! X;

for somei € V. New model parametef®;, W/ } may be
identified as in (Weller and Jebara, 20133) to preserve

3Here a pairwise multi-label function on a set of ordered lebe
Xi; ={1,..., K} x {1,..., K;} is submodulariff Vz,y €
Xij, f(xAy)+ f(zVy) < f(z)+ f(y), where forz = (z1,z2)
andy = (y1,%2), (z Ay) = (min(z1,y1), min(z2,y2)) and
(zVy) = (max(x1,y1), max(x2,y2)). For binary variables this
is equivalent to the edge potential being attractive.



energies of all states up to a constant. If all variables aré.et the lower bounds obtained fgrand1 — ¢; respectively
flipped, new parameters are given by be A; andB; so that4; < ¢; < 1 — B;, and let theBethe
box be the orthotope given bj], ,,[A;, 1 — B;]. Define
n; = min(A4;, B;), i.e. the closest thaf; can come to the

LW 0 — _p. >
Wij = Wij, 0; 0i Z Wij. (6) extreme values df or 1.

JEN (D)
If the original model was attractive, so too is the new. If o 5 pDERIVATIVESOF F
only a subseR C Vis flipped, letX! =1 — X; if i € R,
elseX; = X;fori € S,whereS = V\R. Let&, = {edges  Welling and Teh (2001) derived first partial derivatives of
with exactlyt ends inR} for ¢ = 0,1, 2. Then we obtain the Bethe free energy as

wro= JWi () €&UE, gf 0+ los 0, o
~Wi;  (4,5) € &1, 4
0 Wij €S whereQ; = (1—g)®! I enay (@ — &)
9; = { i + 22(137)651 'J Z_ZGGR’ (7) z q;iifl H;e/\/(l)(l T 5” - qj)
(4,5)E€E Wi .

Weller and Jebara (2013a) derived all second partial deriva
tives.

heorem 6 (All terms of the Hessian, see Weller and Je-
ara (2013aj4.3 and Lemma 9)Let H be the Hessian of

Lemma 2. Flipping variables changes affected pseudo-
marginal matrix entries’ locations but not values.is un-

changed up to a constant, hence the locations of stationar
points are unaffected. Proof in Weller and Jebara (2013a)

JF for a binary pairwise model, i.ef;; = aq aq andd;
24 PRELIMINARY BOUNDS be the degree of variablKi, then
We use the following earlier results. Hi = — ) Z 41 . (11_ )
Lemma 3 (Weller and Jebara (2013a) Lemma 2);; > o JEN() T &
0=&j; = qiqj, 2ij < 0= &5 < qig;- QTqJlef” (i,5) €€
Lemma 4 (Upper bound for¢;; for an attractive edge, Ea {0 (i,7) ¢ E,1 # 4,

Weller and Jebara (2013a) Lemma 6) «;; > 0, then

Oci]‘m(lfl\l)

. whereT; = qiq; (1 — ¢:)(1 — q;) — (&ij — ¢iq5)° 9)
&j — qiq; < Taij' wherem = mln(qi,qj) and J J J J 7

> 0 with equality iffg; or ¢; € {0,1}.
M = max(g;, q;)- quality j €{0.1}

Theorem 5 (Weller and Jebara (2013a) Theorem &pr 3 NEW APPROACH: GRADMESH
general edge types (associative or repulsive),iét = '

ZJeN(z) Wi >0 Wij, Vi = — Zye/\/(z) Wi; <0 Wi;. Atany We develop a new approach to constructing a sufficient
stationary point of the Bethe free energyel Vi) <4 < meshM by analyzing bounds on the first derivatives of
o(0; + Wi), whereo (z) = 1/(1 + exp(—x)) (sigmoid). F. To help distinguish between methods, we call the new

first derivative approaclgradMesh and the earlier, sec-

For the e_thmency of our overall approgch, Itis very desir- ond derivative approaaturvMesh The new gradMesh ap-
able to tighten these bounds on locations of minim&Fof . . )
groach yields several attractive features:

since this both reduces the search space and allows a lower
density of discretizing points in the mesh. For our theo-
retical results, we do not assume this can be done but i in
practice, it can be attempted efficiently by running either
of the following two algorithms: Bethe bound propagation
(BBP) from (Weller and Jebara, 20138), or using the ap-
proach from Mooij and Kappen (2007) which we term MK.
Either method can achieve striking results quickly, thoughe Our sufficient mesh is typically dramatically coarser

e For attractive models, we obtain a FPTAS with worst
case runtimeD (e 3n3m3W?) and no restriction on
topology, unlike earlier work (Weller and Jebara,
2013a) which requireghax degreeA = O(logn).

MK is our preferred methdd- this considers cavity fields than the earlier method of Weller and Jebara (2013a)
around each variable and determines the range of possible unlesse is very small, leading to a much smaller
beliefs after iterating LBP, starting from any initial vals subsequent MAP problem. Here, the sum of the
since any minimum ofF corresponds to a fixed point of number of discretizing points in each dimension,
LBP (Yedidia et al., 2001), this bounds all minima. N=0 (@) For comparison, the earlier method,

B — . even after our improvementsid, forms a mesh with
“Both BBP and MK are anytime methods that converge X it

_ —1/2, 7/4 A3/4 1
quickly, and can be implemented such that each iteratios imin N=0 (6 2T/ AS exp [E(W(l +A4A/2)+ T)])-
O(m) time. MK takes a little longer but can yield tighter bounds. See§6.1 for examples.



e The approach immediately handles a general model witl Upper and Lower Bounds for 5
both attractive and repulsive edges. Hence approxi ol 1 !
mating log Zp may be reduced to a discrete multi-
label MAP inference problem. This is valuable due

to the availability of many MAP techniques, s¢&

I

g sty
f(@)=01
I

101

First consider a model which is fully attractive around vari
ableX;, i.e.W;; > 0Vj € N(i). From (8) and Lemma 3,

we obtain
07 0 +105Qi < 0, + log (10)

an —q; -10

Partial derivative

Parameters used in this example:
0=1, V=2, W=3

|
|
|
|
|
|
|
L18U29 |
|

Flip all variables (se§2.3). Write’ for the parameters of . ‘
the new flipped model, which is also fully attractive, then Mo er ez ea S ol 0T 0o
using (6) and (10), ‘

OF' q Figure 1: Upper and Lower Bounds fog— Solid blue curves

/
Bq- < —0; +log 1—¢ show worst case bounds (11) as functiong.ofand are different
! ! by a constan¥; + Wi = >, ;) [Wi;|. Dashed red curves

< oF show the upperf? (¢;) and lowerf/ (¢;) bounds (12) after being
1 i 9q;° lowered bylog L; and raised byog U; respectively, which incor-
porate the information from the bounds of neighboring \@&sa.
Combining this with (10) yields the sandwich result All bounding curves are strictly monotonic. The Bethe bayioa
for ¢; must lie within the shaded region demarcated by vertical red
qi OF dashed lines, but we may have better bounds available,remg. f

di
< < —0; +lo .
1—q — 9g 08 1T . MK, as shown byA; and1 — B

& —0; — W; + log

—0; — W; + log

Now generalize to consider the case thahs some neigh-
borsR to which it is adjacent by repulsive edges. In this i» Ui are each> 1with log L; +log U; < V; + W;. They
case, flip those node® (see§2.3) to yield a model, which ~ are computed a&; = [, Lij» Ui = [Tienq) Ui
we denote by, which is fully attractive aroundl hence we with L., — 1+ 1+%(1°‘_IJ£J)(1_AJ_) if Wi; >0
may apply the above result. By (7) we hale= 0, — V;, ij = @ijB; if T, '

: : + Taga-B a—Ey T Wi <0
and usinglv/” = W; + V;, we obtain that for a general auB; - '

{1+ Tra, (1-A)(1-B;) if Wij >0
1%

model, A _
1+ 1+(¥ij(1_1]A7?—3(1_Aj) if Wiy <0

¢ S8]:

—0; —W; +1
ey ¢ ~— 0q;

q
< —0i+Vi+log 1— See Figure 1 for an example. We make the following ob-

(11)  servations:

This bounds each first denvatw%Z within a range of | 14 upper bound is equal to the lower bound plus the

width V; + Wi = 3°.c i) [Wis], which is sufficient for constantD; = V; + W; — log L; — log U; > 0.
the main theoretical result see (15). We take the opportu- N

nity, however, to describe a method which sometimes sige The bound curves are monotonically increasing with
nificantly narrows this range, thereby improving the result ranging from—oo to +oo asg; ranges front to 1.

in practice. N - _
e A necessary condition to be within the Bethe box is

Using oneO(m)_ iteration of the belief propagation algo- that the upper bound is 0 and the lower bound is
rithm (BBP) derived in (Weller and Jebara, 2013a, Supple- < (. Hence, anywhere within the Bethe box, we must
ment), allows us to refine the bounds for varialleof (11) have bounded der|vat|v¢87| < D,. BBP gener-

based on théd4;, 1 — B,] location bounds on its neighbors

€ N(i), to sho ates{[A;, 1— B;]} bounds by iteratively updating with
J i), W

L;,U; terms. In general, however, we may have better
bounds from any other method, such as MK, which
i (i), where lead to highet.; andU; parameters and loweD,.

f (gi) < a]:

@) =—0; - W+10g1

+logU; . : . . ,
" F is continuous o0, 1]™ and differentiable everywhere in

—log L;. (12) (0, 1)™ with partial derivatives satisfying (12):%(¢;) and
—4qi fY(q;) are continuous and integrable. Indeed, using the

fY(qi) = —0; + V; +log 1



r=b

notation|¢(z)] — = ¢(b) — ¢(a), 1994), it is helpful to minimize its size. As noted above,
settingy; = Vo which we term thesimple method

b qi:b —

/ log 1 sz = [Qi log q; + (1 — ¢;)log(1 — Qi)} yields a sufficient mesh, whe¢§—| <D;=Vi+ W,

a gi=a log L; — logU;. However, since ‘the bounding curves are

. _ (13)  monotonic with f¥ > 0 and f < 0, a better bound

for0 < a <b <1, which relates to the binary entropy {or the magnitude of the derivative is available by setting
functionH (p) = —plogp — (1 — p) log(1 — p), recallthe  p _ max{fY (1 — B;),—fF(A)}.
definition of 7. We remark that althougf” tends to—oo ‘ ‘
or +o0 asg; tends ta0 or 1, the integral converges (takind 311 Theminsum Method

0log0 = 0).
o . . . .. We defineN; = the number of mesh points in dimension
Hence if¢ = (1, ..., ¢n) is the location of a global mini- .~ .
mum, then for any; = (1 ¢n) in the Bethe box i, With sumN = .ZiGV N; and productl = e, Ni
' P ' For a fully attractive model, the resulting MAP problem
R U . may be solved in timé&(N?) by graph cuts (Theorem 1,
Flg)—F@) < Y f (qi)dgi+ Y f (¢:)dgi-  (Schlesinger and Flach, 2006; Greig et al., 1989; Goldberg
i <q; 7 iqi<qi ” T and Tarjan, 1988)), so it is sensible to minimi¥e In other
(14) cases, however, it is less clear what to minimize. For ex-

To construct a sufficient mesh, a simple initial bound reliesample, a brute force search over all points would take time
on|§Z| < D;. If mesh pointsM; are chosen s.t. in di- o(II).

mension; there must be a point™ within 4; of a global pefine the spread of possible values in dimensiass; —
minimum (which can be achieved using a mesh width iny _ B, — A, and noteN, = 1 + [s 1 is required to cover

each dimension atv;), then by settingy; = ;5o We 0b- e \yhole range. To minimizay while ensuring the mesh
tain F(q") — f( 1) < 2 Digp; = e Itis eaS|Iy seenthat s gyfficient, consider the Lagrangiah = 3., 2= —
N; <14 [5- ~ | hence the total number of mesh points, A=Y,y 7:Di), whereD; is set as in the simple rYnethod
N=> v Nz, satisfies (§3.1). Optimizing gives

N <on+— ZD <2n+— > Wyl

i v = ,/ andN< 2n+ \/SiD;
( j)EE Z;ev \/S—D <Z )

eV
n nmW (16)
=0 « Z (Wil | =0 < B > ’ (15)  which we term theminsum methad Note D; < dl-W
i, . 2
(h.5)es whered; is the degree of(;, hence(> ;. vSiD;)” <
sinceD; < V; + Wi = 3,y Wil HereW = W (Xiev \/_) ByCauchy -Schwartz and the handshake
max(; jyee |Wij| andm = || is the number of edges. lemma, (3, Vdi)® < n ey di = 2mn, with equal-

If the initial model is fully attractive, then by Theo- 1V iff the d; are constant, i.e. the graphiis regular.

rem 1 we obtain a submodular multi-label MAP problem |f insteadII is minimized, rather thaiV, a similar argu-
which is solvable using graph cuts with worst case runtimement shows that the simple methg@(1) is optimal.
O(N?) = O(e*n®*m>W?) (Schlesinger and Flach, 2006;

Greig et al., 1989; Goldberg and Tarjan, 1988). 3.1.2 Adaptive Methods

Note from the first expression in (15) that if we have in- 1,4
formation on individual edge weights then we have a bette{
bound usingd_ ; ;¢ [Wi;| rather than justa .

previous methods rely on one boubdfor |af| over

he whole rangéA;, 1 — B;]. However, we may increase
efficiency by using local bounds to vary the mesh width
For comparison, the earlier second derivative approach ddcross the range. A bound on the maximum magnitude of
Weller and Jebara (2013a) has runtim&—%nGE%Q%), the derivative over any sub-range may be found by check-
where, even using the improved methodhhere,2 = ing just— fL at the lower end and” at the upper end.
O(AeV(+A/2+T) - Unlesse is very small, the new first
derivative approach is typically dramatically more effidie
and more useful in practice. Further, it naturally handle
both attractive and repulsive edge weights in the same way-

This may be improved by using the exactintegral as in (14).
First, constant proportions; > 0 should be chosen with
. ki = 1. Next, the first or smallest mesh poifit € M;

should be set s. tf fU (¢:)dg; = k;e. This will ensure
3.1 REFINEMENTS, ADAPTIVE METHODS thatvi covers all pOIntS to its left in the sense ti#@ly; =

i) — Flai € [Ai,7i]] < kie where all other variables
Since the resulting multi-label MAP inference problem ¢;,j # ¢, are held constant at any values within the Bethe
(which is not submodular in general) is NP-hard (Shimony,box. v} also covers all points to its right up to what we term



its reach i.e. the point-; s.t. f;; —fE(qi)dg; = kie. Next, tentially small term in the numerator and denominator to be

+i is chosen as before, using as the left extreme rather C2nceled before bounding. Writig= min;cy n;(1 — ),

than 4;, and so on, until the final mesh point is computed'€: tlt:_e i:?steSt that any dimension can come to 0 or 1, the
with reach> 1 — B;. This yields an optimal mesh for the "5 t&

choice of{k;}. s o \2
71 | SN iy = (12) Ja(1- (72 Jan
If ki = -, we achle;/eD an optlmlzeeildapnve swnple J 1+ 1+ aij
method. Ifk; = 2157 V‘)\/ﬁ we achieve aradaptive _ O(eW(HA/QHT).
minsummethod. For many problems, this adaptive min-
sum method will be the most efficient. Thus,a = O(eW(+2/2+T) which compares favorably

Int | i ted Usi 13) T K | to the earlier bound in Weller and Jebara (2013a) , where
ntegrals are easily computed using (13). To our know "o = O(eWIHATY  Recallh — O(AeWUI+A/2)4T)

edge, computing optimal pointsy:} is not possible ana- and Q0 — max(a,b), S0 using the newi bound, now
lytically, but each may be found with high accuracy in justQ _ O(AeW(HA’/Q)LrT) Details and derivationé are in
a few iterations using a search method, hence total time tﬂqe supplement ‘

compute the mesh ©(N), which is negligible compared '

to solving the subsequent MAP problem.
4.2 EXTENDING TO A GENERAL MODEL

4 REVISITING THE SECOND Using flipping arguments frorg2.3, we are able to extend
DERIVATIVE APPROACH: the method of Weller and Jebara (2013a) to apply to general
CURVMESH (non-attractive) models. Interestingly, the bounds dstiv

for Q = max(a,b) take exactly the same form as for the

. , N i oW < W;; <
We shall review and then refine the second derivative appurely attractive case, except that n s Wy < W,

proach used in (Weller and Jebara, 201§%), which we vlslhter_(leas DJ%V'QUSLY It was _re(tqu:wed m;ﬁ‘tﬁ V[/;ij < W.
call curvMesh Its mesh size (measured By, the total €talls and derivations are in the supplement.

number of points summed over the dimensions) grows as

O(e~'/2) rather than a®(e~') in the new first derivatve 5 RESULTING MULTI-LABEL MAP
gradMesh approach. In practice, however, unteissvery

small, gradMesh is much more efficient (see Figure 2).  After computing a sufficient mesh, it remains to solve the
multi-label MAP inference problem on a MRF with the
same topology as the initial model, where eactakes val-
ues inM;. In general, this is NP-hard (Shimony, 1994).

As in this paper, the possible location of a global min-
imum ¢ was first bounded in the Bethe box given by
[I;cv[Ai, 1 — Bs]. Next an upper bound was derived
on the maximum possible eigenvalue of the Hessian
of F anywhere within the Bethe box, where it was re-5.1 TRACTABLE CASES

quired that all edges be attractive. Then a mesh of constant ) )
width in every dimension was introduced s.t. the neareslf it happensthatall cost functions are submodular (as s al
mesh pointg* to ¢ was at mosty away in each dimen- Ways the case if the initial model is fully attractive by The-
sion. Hence the, distances satisfiesi?> < n+2 and by ~ Orem 1), then as already noted_, it may be solvepl efficiently
Taylor's theorem,F(q*) < F(4) + 3Aé2. A was com-  USing graph cut methods, which rely on solving a max
puted by bounding the maximum magnitude of any ele-flow/min cut problem on a related graph, with worst case
ment of /. Considering Theorem 6, this involves sepa-untimeO(N?) (Schlesinger and Flach, 2006; Greig et al.,
rate analysis of diagond;; terms, which are positive and 1989; Goldberg and Tarjan, 1988). Using the algorithm of
were bounded above by the teimand edgeH;; terms, Boykov and Kolmogorov (2004), p_erforman(_:e is typically
which are negative for attractive edges, whose magnitudgluch faster, sometimes approachigV). This submod-
was bounded above by, ThenQ was set asnax(a,b),  Ular setting is the only known class of problem which is
andy. as the proportion of non-zero entriesfih Finally, ~ Solvable for any topology.

A <VU(HTH) < VER2Q0? = nQvy. Alternatively, the topological restriction of boundedere
width allows tractable inference (Pearl, 1988). Furthef, u
4.1 IMPROVED BOUND FOR AN ATTRACTIVE der mild assumptions, this was shown to be the only re-
MODEL striction which will allow efficient inference for any cost

functions (Chandrasekaran et al., 2008). We note that if
We improve the upper bound fax by improving thea  the problem has bounded tree-width, then so too does the
bound for attractive edges to deriwga better upper bound original binary pairwise model, hence exact inference (to
on —H;;. Essentially, a more careful analysis allows a po-yield the true marginals or the true partition functighon



20 20

the original model is tractable using the junction tree algo 10 10

rithm, making our approximation result less interesting fo - Cunaniw - Cunaniw
this class. In contrast, although MAP inference is traeabl —recesh —recesh
for any attractive binary pairwise model, marginal infer- =" S 10*
ence and computing are not (Jerrum and Sinclair, 1993). - P —
A recent approach reducing MAP inference to identifying 10’ /5 T — 10° /5 T %
a maximum weight stable set in a derived weighted grapt. n n
(Jebara, 2014; Weller and Jebara, 2013b) shows promis  —srwesons 10— viesors
allowing efficient inference if the derived graph is perfect e e
Further, testing if this graph is perfect can be performedin_ ) .
polynomial time (Jebara, 2014; Chudnovsky et al., 2005). = *° P
] /*”*7777777
5.2 INTRACTABLE MAP CASES 5 B 10 5 B 10

Many different methods are available, see Kappes et alr_.. e L
igure 2: Variation in N = sum of number of mesh points in
(2013) for arecent survey. Some, such as dual approach€sg,cp, gimensionlog scale, as: (top)n = number of variables
may provide a helpful bound even if the optimum is notjs changed, keepingy’ = 5 fixed; (bottom)W = maximum
found. Indeed, a LP relaxation will run in polynomial time coupling strength is changed, keeping= 10 fixed. On the left,

and return an upper bound sg Zp that may be useful. ¢ = 1 (medium resolution); on the right,= 0.1 (fine resolution).
A lower bound may be found from any discrete point, and'” €ach case the topology is a complete graph, edge weights ar

hi be i d using local h hod chosenW;; ~ U[-W,W] and§; ~ U[-2,2]. Average over
this may be improved using local search methods. 10 random models for each valueurvMeshOrigis the original

Note that the Bethe box bounds on eagke [A;,1 — B;] method of Wellfer and Jeba}ra (2013a)JIrvMesh.Ne\{\is our re-
. . . finement, se&4; gradMeshis our new first derivative minsum
are worst case, irrespective of other variables. However,othod se&3. For more details, see text $6.1.
given a particular value for one or moge, j € N (i), ei-
ther BBP (Weller and Jebara, 20136) or MK (Mooij and
Kappen, 2007) can produce better boundg,owhich may

be helpful for pruning the solution space.
P P g P U[-W, W], using the input convention ¢2.1° We show

results first for fixed’ = 5 asn is varied from 3 to 20,
then for fixedn = 10 asW is varied from 1 to 10, gen-
The multi-label implementation of quadratic pseudo_erating 10 random models for each value. Of the various

Boolean optimization (Kohli et al., 2008, MQPBO), and first derivative gradMesh methods, only minsum is shown

the method of Kovtun (2003), are examples of this classsmce the others would not be sufficiently distinguishable

Both consider LP-relaxations and run in polynomial time. %" these plotS.

In our context, the output consists of ranges (which in theNote thatV is shown on dog axis, thus we observe that
best case could be one point) of settings for some subthe new methods dramatically outperform that of Weller
set of the variables. If any such ranges are returned, thend Jebara (2013a) by many orders of magnitude for most
strong persistence property ensures tay MAP solu-  cases of interest, even for small Further, recall that
tion satisfies the ranges. Hence, these may be used to upr = >~ N; is the sum of the number of mesh points in
date{A;, B;} bounds (padding the discretized range to theeach dimension. The runtime of the overall algorithm is
full continuous range covered by the end points if needed)eertainly Q(N), even for attractive modélsand for gen-
compute a new, smaller, sufficient mesh and repeat until neral models is typically a significantly higher power, thus
improvement is obtained. further demonstrating the benefit of the new methods.

5.2.1 Persistent partial optimization approaches

6 EXPERIMENTS

6.1 COMPARISON TO EARLIER WORK 5The original method of Weller and Jebara (2013a) could only
handle attractive models but we augment it ag§4r2. Plots for

We compared the new mesh construction methods fronattractive models, whené’;; ~ U[0, W]are very similar to those

this paper with the earlier approach by Weller and Je-Shog’V”- , , ,

bara (2013a), see Figure 2. We considered two values of In practice, the adaptive methods typically produce a mesh

: di ' luti ' d fi uti with about half the number of points in each dimension.
¢ 1 (medium resolution) and 0.1 (fine reso Ut'_on)' For “In our experiments on attractive models, the Boykov-
each value, we generated random MRFsromariables,  Kolmogorov algorithm typically runs in timeO(N'%) to

all pairwise connected, whete ~ U[-2,2] andW;; ~  O(N>®).



6.2 POWER NETWORK much more efficient than the earlier method of Weller and
Jebara (2013a). From experiments run, we note that the

As a first step toward applying our algorithm to explore hounds for the adaptive minsum first derivaty@dMesh

the usefulness of the global optimum of the Bethe approxapproach appear to be close to tight since we have found

imation, here we consider one setting where LBP fails tomodels where the optimum returned when run wits 1

converge, yet still we achieve reasonable results. is more tharf.5 different to that for: = 0.1. When applied

We aim to predict transformer failures in a power network!© attractive models, we guarantee a FPTAS with no degree
(Rudin et al., 2012). Since the real data is sensitive, oufestriction.

experiments use synthetic data. L€t € {0,1} indicate  As described ir6.2, Bethe pseudo-marginals may be re-
if transformer; has failed or not. Each transformer has acovered from our approach by taking tiiethat is returned
probability of failure on its own which is represented by 55 thearg min of F over the discrete mesh. However, al-
a singleton potentia#;. However, when connected in a thoughZ(¢*) is guaranteed within of the optimum, there
network, a transformer can propagate its failure to nearbys no guarantee that* will necessarily be close to a true
nodes (as in viral contagion) since the edges in the networgethe optimum pseudo-marginal. For example, the surface
form associative dependencies. We assume that homoggould be very flat over a wide region, or the true optimum
neous attractive pairwise potentials couple all transéyem might be better at a location far frong*. We sketch out
that are connected by an edge, I1&;; = W V(i,j) € £.  how our approach may be used to bound the location of a
The network topology creates a Markov random field specylobal optimum pseudo-marginal, though note that there is
ifying the distributionp(X, ..., X;,). Our goalis to com-  ng runtime guarantee. First pick an initial and run the
pute the marginal probability of failure of each transforme main algorithm to find;z. Now use any method to solve
within the network (not Slmply inisolation as in Rudin et al. for the second best discretized mesh pqy]ﬂf it happens
(2012)). Since recovering X;) is hard, we estimate Bethe that F(¢3) > F(q}) + e then, by the nature of the mesh
pseudo-marginalg; = q(X; = 1) through our algorithm,  construction, there must be a global minimum within the
which emerge as therg min when optimizing the Bethe orthotope given by the neighboring mesh pointspfin

free energy. each dimensicdhand we terminate. On the other hand, if

A single simulated sub-network of 55 connected transform+ (43) < }_—(‘IT), then we reduce, for example to- and
ers was generated using a random preferential attachmeffPeat until we're successful.

model, resulting in average degree 2 (see Figure 3 in theyture work includes further reducing the size of the mesh,
Appendix). Typical settings of; = —2 andW = 4 considering how it should be selected to simplify the subse-
were specified (using the input model specificatiofdl).  quent discrete optimization problem, and exploring appli-
We attempted to run BP using the libDAI package (Mooij, cations. Importantly, we now have the opportunity to ex-
2010) but were unable to achieve convergence, even Wltam”']e rigorous|y the performance of the g|oba| Bethe op-
multiple initial values, using various sequential or par-timum. In addition, this will provide a benchmark against
allel settings and with damping. However, running ourwhich to compare other (non-global) Bethe approaches that
gradMesh adaptive minsum algorithm with= 1 achieved  typically run more quickly, such as LBP or CCCP (Yuille,
reasonable results as shown in Table 1, where true valuegooz)_ Another interesting avenue is to use our algorithm
were obtained with the junction tree algorithm. as a subroutine in a dual decomposition approach to opti-
mize over a tighter relaxation of the marginal polytope.

e = 1 PTAS forlog Zp Error from true value
Mean/; error of single marginals 0.003
Log-partition function 0.26
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