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Abstract
The existing work on densification of one permu-
tation hashing [24] reduces the query processing
cost of the (K,L)-parameterized Locality Sen-
sitive Hashing (LSH) algorithm with minwise
hashing, from O(dKL) to merely O(d + KL),
where d is the number of nonzeros of the data
vector, K is the number of hashes in each hash
table, and L is the number of hash tables. While
that is a substantial improvement, our analy-
sis reveals that the existing densification scheme
in [24] is sub-optimal. In particular, there is no
enough randomness in that procedure, which af-
fects its accuracy on very sparse datasets.

In this paper, we provide a new densification pro-
cedure which is provably better than the existing
scheme [24]. This improvement is more signifi-
cant for very sparse datasets which are common
over the web. The improved technique has the
same cost of O(d + KL) for query processing,
thereby making it strictly preferable over the ex-
isting procedure. Experimental evaluations on
public datasets, in the task of hashing based near
neighbor search, support our theoretical findings.

1 Introduction
Binary representations are common for high dimensional
sparse data over the web [8, 25, 26, 1], especially for text
data represented by high-order n-grams [4, 12]. Binary
vectors can also be equivalently viewed as sets, over the
universe of all the features, containing only locations of
the non-zero entries. Given two sets S1, S2 ⊆ Ω =
{1, 2, ..., D}, a popular measure of similarity between sets
(or binary vectors) is the resemblance R, defined as

R =
|S1 ∩ S2|
|S1 ∪ S2|

=
a

f1 + f2 − a
, (1)

where f1 = |S1|, f2 = |S2|, and a = |S1 ∩ S2|.

It is well-known that minwise hashing belongs to the Lo-
cality Sensitive Hashing (LSH) family [5, 9]. The method

applies a random permutation π : Ω → Ω, on the given
set S, and stores the minimum value after the permutation
mapping. Formally,

hπ(S) = min(π(S)). (2)

Given sets S1 and S2, it can be shown by elementary prob-
ability arguments that

Pr(hπ(S1) = hπ(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

= R. (3)

The probability of collision (equality of hash values), un-
der minwise hashing, is equal to the similarity of interest
R. This property, also known as the LSH property [14, 9],
makes minwise hash functions hπ suitable for creating hash
buckets, which leads to sublinear algorithms for similarity
search. Because of this same LSH property, minwise hash-
ing is a popular indexing technique for a variety of large-
scale data processing applications, which include duplicate
detection [4, 13], all-pair similarity [3], fast linear learn-
ing [19], temporal correlation [10], 3-way similarity & re-
trieval [17, 23], graph algorithms [6, 11, 21], and more.

Querying with a standard (K,L)-parameterized LSH al-
gorithm [14], for fast similarity search, requires comput-
ing K × L min-hash values per query, where K is the
number of hashes in each hash table and L is the num-
ber of hash tables. In theory, the value of KL grows
with the data size [14]. In practice, typically, this number
ranges from a few hundreds to a few thousands. Thus, pro-
cessing a single query, for near-neighbor search, requires
evaluating hundreds or thousands of independent permuta-
tions π (or cheaper universal approximations to permuta-
tions [7, 22, 20]) over the given data vector. If d denotes
the number of non-zeros in the query vector, then the query
preprocessing cost is O(dKL) which is also the bottleneck
step in the LSH algorithm [14]. Query time (latency) is
crucial in many user-facing applications, such as search.

Linear learning with b-bit minwise hashing [19], requires
multiple evaluations (say k) of hπ for a given data vec-
tor. Computing k different min-hashes of the test data costs
O(dk), while after processing, classifying this data vector



(with SVM or logistic regression) only requires a single in-
ner product with the weight vector which is O(k). Again,
the bottleneck step during testing prediction is the evalua-
tion of k min-hashes. Testing time directly translates into
the latency of on-line classification systems.

The idea of storing k contiguous minimum values after one
single permutation [4, 15, 16] leads to hash values which
do not satisfy the LSH property because the hashes are not
properly aligned. The estimators are also not linear, and
therefore they do not lead to feature representation for lin-
ear learning with resemblance. This is a serious limitation.

Recently it was shown that a “rotation” technique [24]
for densifying sparse sketches from one permutation hash-
ing [18] solves the problem of costly processing with min-
wise hashing (See Sec. 2). The scheme only requires a
single permutation and generates k different hash values,
satisfying the LSH property (i.e., Eq.(3)), in linear time
O(d + k), thereby reducing a factor d in the processing
cost compared to the original minwise hashing.

Our Contributions: In this paper, we argue that the exist-
ing densification scheme [24] is not the optimal way of den-
sifying the sparse sketches of one permutation hashing at
the given processing cost. In particular, we provide a prov-
ably better densification scheme for generating k hashes
with the same processing cost of O(d + k). Our contribu-
tions can be summarized as follows.

• Our detailed variance analysis of the hashes obtained
from the existing densification scheme [24] reveals
that there is no enough randomness in that procedure
which leads to high variance in very sparse datasets.

• We provide a new densification scheme for one per-
mutation hashing with provably smaller variance than
the scheme in [24]. The improvement becomes more
significant for very sparse datasets which are common
in practice. The improved scheme retains the com-
putational complexity of O(d + k) for computing k
different hash evaluations of a given vector.

• We provide experimental evidences on publicly avail-
able datasets, which demonstrate the superiority of
the improved densification procedure over the exist-
ing scheme, in the task of resemblance estimation and
as well as the task of near neighbor retrieval with LSH.

2 Background

2.1 One Permutation Hashing

As illustrated in Figure 1, instead of conducting k inde-
pendent permutations, one permutation hashing [18] uses
only one permutation and partitions the (permuted) feature
space into k bins. In other words, a single permutation π
is used to first shuffle the given binary vector, and then the
shuffled vector is binned into k evenly spaced bins. The

k minimums, computed for each bin separately, are the k
different hash values. Obviously, empty bins are possible.

 

 

 

Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

Ê:¹; 0    1   2    3      4     5    6    7        8   9   10  11 12  13  14  15 16  17  18  19 20  21  22 23 

 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

Ê:�Ú) 0 0 0 0 0 1 0 1  0 0 0 0 0 0 1 1  1 0 1 0 0 1 1 0 

Ê:�Û) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0  1 1 0 0 0 0 0 0 

OPH(�Ú) E      1 E 2       0 1 

OPH(�Û) E      1 E 0       0 E 

Figure 1: One permutation hashes [18] for vectors S1 and
S2 using a single permutation π. For bins not containing
any non-zeros, we use special symbol “E”.

For example, in Figure 1, π(S1) and π(S2) denote the state
of the binary vectors S1 and S2 after applying permutation
π. These shuffled vectors are then divided into 6 bins of
length 4 each. We start the numbering from 0. We look
into each bin and store the corresponding minimum non-
zero index. For bins not containing any non-zeros, we use
a special symbol “E” to denote empty bins. We also denote

Mj(π(S)) =

{
π(S) ∩

[
Dj

k
,
D(j + 1)

k

)}
(4)

We assume for the rest of the paper that D is divisible by
k, otherwise we can always pad extra dummy features. We
define OPH

j
(“OPH” for one permutation hashing) as

OPH
j

(π(S)) =

{
E, if π(S) ∩

[
Dj
k , D(j+1)

k

)
= ϕ

Mj(π(S)) mod D
k , otherwise

(5)

i.e., OPH
j

(π(S)) denotes the minimum value in Bin j,

under permutation mapping π, as shown in the exam-
ple in Figure 1. If this intersection is null, i.e., π(S) ∩[
Dj
k , D(j+1)

k

)
= ϕ, then OPH

j
(π(S)) = E.

Consider the events of “simultaneously empty bin” Ijemp =

1 and “simultaneously non-empty bin” Ijemp = 0, between
given vectors S1 and S2, defined as:

Ijemp =

{
1, if OPH

j
(π(S1)) = OPH

j
(π(S2)) = E

0 otherwise
(6)

Simultaneously empty bins are only defined with respect to
two sets S1 and S2. In Figure 1, I0emp = 1 and I2emp = 1,
while I1emp = I3emp = I4emp = I5emp = 0. Bin 5 is only
empty for S2 and not for S1, so I5emp = 0.

Given a bin number j, if it is not simultaneously empty



(Ijemp = 0) for both the vectors S1 and S2, [18] showed

Pr

(
OPH

j
(π(S1)) = OPH

j
(π(S2))

∣∣∣∣Ijemp = 0

)
= R

(7)

On the other hand, when Ijemp = 1, no such guarantee ex-
ists. When Ijemp = 1 collision does not have enough infor-
mation about the similarity R. Since the event Ijemp = 1
can only be determined given the two vectors S1 and S2

and the materialization of π, one permutation hashing can-
not be directly used for indexing, especially when the data
are very sparse. In particular, OPH

j
(π(S)) does not lead

to a valid LSH hash function because of the coupled event
Ijemp = 1 in (7). The simple strategy of ignoring empty
bins leads to biased estimators of resemblance and shows
poor performance [24]. Because of this same reason, one
permutation hashing cannot be directly used to extract ran-
dom features for linear learning with resemblance kernel.

2.2 Densifying One Permutation Hashing for
Indexing and Linear Learning

[24] proposed a “rotation” scheme that assigns new values
to all the empty bins, generated from one permutation hash-
ing, in an unbiased fashion. The rotation scheme for filling
the empty bins from Figure 1 is shown in Figure 2. The
idea is that for every empty bin, the scheme borrows the
value of the closest non-empty bin in the clockwise direc-
tion (circular right hand side) added with offset C.

�

Bin�0� Bin�1� Bin�2� Bin�3� Bin�4� Bin�5�

H(S1)� 1+C� �����1� 2+C� 2� ������0� 1�

H(S2)� 1+C� �����1� 0+C� 0� ������0� 1+2C�
�

�

Figure 2: Densification by “rotation” for filling empty bins
generated from one permutation hashing [24]. Every empty
bin is assigned the value of the closest non-empty bin, to-
wards right (circular), with an offset C. For the configu-
ration shown in Figure 1, the above figure shows the new
assigned values (in red) of empty bins after densification.

Given the configuration in Figure 1, for Bin 2 correspond-
ing to S1, we borrow the value 2 from Bin 3 along with
an additional offset of C. Interesting is the case of Bin 5
for S2, the circular right is Bin 0 which was empty. Bin 0
borrows from Bin 1 acquiring value 1 + C, Bin 5 borrows
this value with another offset C. The value of Bin 5 finally
becomes 1+2C. The value of C = D

k +1 enforces proper
alignment and ensures no unexpected collisions. Without
this offset C, Bin 5, which was not simultaneously empty,
after reassignment, will have value 1 for both S1 and S2.
This would be an error as initially there was no collision
(note I5emp = 0). Multiplication by the distance of the non-
empty bin, from where the value was borrowed, ensures

that the new values of simultaneous empty bins (Ijemp = 1),
at any location j for S1 and S2, never match if their new
values come from different bin numbers.

Formally the hashing scheme with “rotation”, denoted by
H, is defined as:

Hj(S) =


OPH

j
(π(S)) if OPH

j
(π(S)) ̸= E

OPH
(j+t) mod k

(π(S)) + tC otherwise
(8)

t = min z, s.t. OPH
(j+z) mod k

(π(S)) ̸= E (9)

Here C = D
k + 1 is a constant.

This densification scheme ensures that whenever Ijemp = 0,
i.e., Bin j is simultaneously empty for any two S1 and
S2 under considerations, the newly assigned value mimics
the collision probability of the nearest simultaneously non-
empty bin towards right (circular) hand side making the fi-
nal collision probability equal to R, irrespective of whether
Ijemp = 0 or Ijemp = 1. [24] proved this fact as a theorem.

Theorem 1 [24]

Pr (Hj(S1) = Hj(S2)) = R (10)

Theorem 1 implies that H satisfies the LSH property and
hence it is suitable for indexing based sublinear similarity
search. Generating KL different hash values of H only re-
quires O(d +KL), which saves a factor of d in the query
processing cost compared to the cost of O(dKL) with tra-
ditional minwise hashing. For fast linear learning [19] with
k different hash values the new scheme only needs O(d+k)
testing (or prediction) time compared to standard b-bit min-
wise hashing which requires O(dk) time for testing.

3 Variance Analysis of Existing Scheme

We first provide the variance analysis of the existing
scheme [24]. Theorem 1 leads to an unbiased estimator
of R between S1 and S2 defined as:

R̂ =
1

k

k−1∑
j=0

1{Hj(S1) = Hj(S2)}. (11)

Denote the number of simultaneously empty bins by

Nemp =
k−1∑
j=0

1{Ijemp = 1}, (12)

where 1 is the indicator function. We partition the event
(Hj(S1) = Hj(S2)) into two cases depending on Ijemp.
Let MN

j (Non-empty Match at j) and ME
j (Empty Match

at j) be the events defined as:

MN
j = 1{Ijemp = 0 and Hj(S1) = Hj(S2)} (13)

ME
j = 1{Ijemp = 1 and Hj(S1) = Hj(S2)} (14)



Note that, MN
j = 1 =⇒ ME

j = 0 and ME
j = 1 =⇒

MN
j = 0. This combined with Theorem 1 implies,

E(MN
j |Ijemp = 0) = E(ME

j |Ijemp = 1)

= E(ME
j +MN

j ) = R ∀j (15)

It is not difficult to show that,

E
(
MN

j MN
i

∣∣i ̸= j, Ijemp = 0 and Iiemp = 0
)
= RR̃,

where R̃ = a−1
f1+f2−a−1 . Using these new events, we have

R̂ =
1

k

k−1∑
j=0

[
ME

j +MN
j

]
(16)

We are interested in computing

V ar(R̂) = E


1

k

k−1∑
j=0

[
ME

j +MN
j

]2
−R2 (17)

For notational convenience we will use m to denote the
event k − Nemp = m, i.e., the expression E(.|m) means
E(.|k−Nemp = m). To simplify the analysis, we will first
compute the conditional expectation

f(m) = E


1

k

k−1∑
j=0

[
ME

j +MN
j

]2 ∣∣∣∣m
 (18)

By expansion and linearity of expectation, we obtain

k2f(m) = E

∑
i ̸=j

MN
i MN

j

∣∣∣∣m
+ E

∑
i ̸=j

MN
i ME

j

∣∣∣∣m


+E

∑
i ̸=j

ME
i ME

j

∣∣∣∣m
+ E

[
k∑

i=1

[
(MN

j )2 + (ME
j )2

] ∣∣∣∣m
]

MN
j = (MN

j )2 and ME
j = (ME

j )2 as they are indicator
functions and can only take values 0 and 1. Hence,

E

k−1∑
j=0

[
(MN

j )2 + (ME
j )2

] ∣∣∣∣m
 = kR (19)

The values of the remaining three terms are given by the
following 3 Lemmas; See the proofs in the Appendix.

Lemma 1

E

∑
i ̸=j

MN
i MN

j

∣∣∣∣m
 = m(m− 1)RR̃ (20)

Lemma 2

E

∑
i ̸=j

MN
i ME

j

∣∣∣∣m
 = 2m(k −m)

[
R

m
+

(m− 1)RR̃

m

]
(21)

Lemma 3

E

∑
i ̸=j

ME
i ME

j

∣∣∣∣m
 = (k −m)(k −m− 1)

×

[
2R

m+ 1
+

(m− 1)RR̃

m+ 1

]
(22)

Combining the expressions from the above 3 Lemmas and
Eq.(19), we can compute f(m). Taking a further expec-
tation over values of m to remove the conditional depen-
dency, the variance of R̂ can be shown in the next Theorem.

Theorem 2

V ar(R̂) =
R

k
+A

R

k
+B

RR̃

k
−R2 (23)

A = 2E
[

Nemp

k −Nemp + 1

]
B = (k + 1)E

[
k −Nemp − 1

k −Nemp + 1

]
The theoretical values of A and B can be computed using
the probability of the event Pr(Nemp = i), denoted by Pi,
which is given by Theorem 3 in [18].

Pi =
k−i∑
s=0

(−1)sk!

i!s!(k − i− s)!

f1+f2−a−1∏
t=0

D
(
1− i+s

k

)
− t

D − t

4 Intuition for the Improved Scheme
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Figure 3: Illustration of the existing densification
scheme [24]. The 3 boxes indicate 3 simultaneously non-
empty bins. Any simultaneously empty bin has 4 possi-
ble positions shown by blank spaces. Arrow indicates the
choice of simultaneous non-empty bins picked by simul-
taneously empty bins occurring in the corresponding posi-
tions. A simultaneously empty bin occurring in position 3
uses the information from Bin c. The randomness is in the
position number of these bins which depends on π.

Consider a situation in Figure 3, where there are 3 simul-
taneously non-empty bins (Iemp = 0) for given S1 and
S2. The actual position numbers of these simultaneously
non-empty bins are random. The simultaneously empty
bins (Iemp = 1) can occur in any order in the 4 blank
spaces. The arrows in the figure show the simultaneously



non-empty bins which are being picked by the simultane-
ously empty bins (Iemp = 1) located in the shown blank
spaces. The randomness in the system is in the ordering of
simultaneously empty and simultaneously non-empty bins.

Given a simultaneously non-empty Bin t (Itemp = 0),
the probability that it is picked by a given simultaneously
empty Bin i (Iiemp = 1) is exactly 1

m . This is because
the permutation π is perfectly random and given m, any
ordering of m simultaneously non-empty bins and k − m
simultaneously empty bins are equally likely. Hence, we
obtain the term

[
R
m + (m−1)RR̃

m

]
in Lemma 2.

On the other hand, under the given scheme, the probability
that two simultaneously empty bins, i and j, (i.e., Iiemp =

1, Ijemp = 1), both pick the same simultaneous non-empty
Bin t (Itemp = 0) is given by (see proof of Lemma 3)

p =
2

m+ 1
(24)

The value of p is high because there is no enough random-
ness in the selection procedure. Since R ≤ 1 and R ≤ RR̃,
if we can reduce this probability p then we reduce the value
of [pR + (1 − p)RR̃]. This directly reduces the value
of (k − m)(k − m − 1)

[
2R

m+1 + (m−1)RR̃
m+1

]
as given by

Lemma 3. The reduction scales with Nemp.

For every simultaneously empty bin, the current scheme
uses the information of the closest non-empty bin in the
right. Because of the symmetry in the arguments, changing
the direction to left instead of right also leads to a valid
densification scheme with exactly same variance. This
is where we can infuse randomness without violating the
alignment necessary for unbiased densification. We show
that randomly switching between left and right provably
improves (reduces) the variance by making the sampling
procedure of simultaneously non-empty bins more random.

5 The Improved Densification Scheme
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Figure 4: Illustration of the improved densification scheme.
For every simultaneously empty bin, in the blank position,
instead of always choosing the simultaneously non-empty
bin from right, the new scheme randomly chooses to go
either left or right. A simultaneously empty bin occurring
at position 2 uniformly chooses among Bin a or Bin b.

Our proposal is explained in Figure 4. Instead of using the
value of the closest non-empty bin from the right (circular),

we will choose to go either left or right with probability 1
2 .

This adds more randomness in the selection procedure.

In the new scheme, we only need to store 1 random bit for
each bin, which decides the direction (circular left or cir-
cular right) to proceed for finding the closest non-empty
bin. The new assignment of the empty bins from Figure 1
is shown in Figure 5. Every bin number i has an i.i.d.
Bernoulli random variable qi (1 bit) associated with it. If
Bin i is empty, we check the value of qi. If qi = 1, we
move circular right to find the closest non-empty bin and
use its value. In case when q = 0, we move circular left.

�

Bin�0� Bin�1� Bin�2� Bin�3� Bin�4� Bin�5�

�

�

Direction�

Bits�(q)�

0� 1� 0� 0� 1� 1�

H
+
(S1)� 1+C� �����1� 1+C� 2� ������0� 1�

H
+
(S2)� 0+2C� �����1� 1+C� 0� ������0� 1+2C�

Figure 5: Assigned values (in red) of empty bins from Fig-
ure 1 using the improved densification procedure. Every
empty Bin i uses the value of the closest non-empty bin,
towards circular left or circular right depending on the ran-
dom direction bit qi, with offset C.

For S1, we have q0 = 0 for empty Bin 0, we therefore
move circular left and borrow value from Bin 5 with offset
C making the final value 1 +C. Similarly for empty Bin 2
we have q2 = 0 and we use the value of Bin 1 (circular left)
added with C. For S2 and Bin 0, we have q0 = 0 and the
next circular left bin is Bin 5 which is empty so we continue
and borrow value from Bin 4, which is 0, with offset 2C. It
is a factor of 2 because we traveled 2 bins to locate the first
non-empty bin. For Bin 2, again q2 = 0 and the closest
circular left non-empty bin is Bin 1, at distance 1, so the
new value of Bin 2 for S2 is 1 + C. For Bin 5, q5 = 1, so
we go circular right and find non-empty Bin 1 at distance
2. The new hash value of Bin 5 is therefore 1 + 2C. Note
that the non-empty bins remain unchanged.

Formally, let qj j = {0, 1, 2, ..., k−1} be k i.i.d. Bernoulli
random variables such that qj = 1 with probability 1

2 . The
improved hash function H+ is given by

H+
j (S) =



OPH
(j−t1)mod k

(π(S)) + t1C

if qj = 0 and OPH
j

(π(S)) = E

OPH
(j+t2)mod k

(π(S)) + t2C

if qj = 1 and OPH
j

(π(S)) = E

OPH
j

(π(S)) otherwise

(25)



where

t1 = min z, s.t. OPH
(j−z) mod k

(π(S)) ̸= E (26)

t2 = min z, s.t. OPH
(j+z) mod k

(π(S)) ̸= E (27)

with same C = D
k +1. Computing k hash evaluations with

H+ requires evaluating π(S) followed by two passes over
the k bins from different directions. The total complexity
of computing k hash evaluations is again O(d + k) which
is the same as that of the existing densification scheme. We
need an additional storage of the k bits (roughly hundreds
or thousands in practice) which is practically negligible.

It is not difficult to show that H+ satisfies the LSH property
for resemblance, which we state as a theorem.

Theorem 3

Pr
(
H+

j (S1) = H+
j (S2)

)
= R (28)

H+ leads to an unbiased estimator of resemblance R̂+

R̂+ =
1

k

k−1∑
j=0

1{H+
j (S1) = H+

j (S2)}. (29)

6 Variance Analysis of Improved Scheme

When m = 1 (an event with prob
(
1
k

)f1+f2−a ≃ 0), i.e.,
only one simultaneously non-empty bin, both the schemes
are exactly same. For simplicity of expressions, we will
assume that the number of simultaneous non-empty bins is
strictly greater than 1, i.e., m > 1. The general case has an
extra term for m = 1, which makes the expression unnec-
essarily complicated without changing the final conclusion.

Following the notation as in Sec. 3, we denote

MN+
j = 1{Ijemp = 0 and H+

j (S1) = H+
j (S2)} (30)

ME+
j = 1{Ijemp = 1 and H+

j (S1) = H+
j (S2)} (31)

The two expectations E
[∑

i ̸=j M
N+
i MN+

j

∣∣∣∣m]
and

E
[∑

i ̸=j M
N+
i ME+

j

∣∣∣∣m]
are the same as given by

Lemma 1 and Lemma 2 respectively, as all the arguments
used to prove them still hold for the new scheme. The only

change is in the term E
[∑

i̸=j M
E
i ME

j

∣∣∣∣m]
.

Lemma 4

E

∑
i ̸=j

ME+
i ME+

j

∣∣∣∣m
 = (k −m)(k −m− 1)

×

[
3R

2(m+ 1)
+

(2m− 1)RR̃

2(m+ 1)

]
(32)

The theoretical variance of the new estimator R̂+ is given
by the following Theorem 4.

Theorem 4

V ar(R̂+) =
R

k
+A+ R

k2
+B+RR̃

k2
−R2 (33)

A+ = E
[
Nemp(4k −Nemp + 1)

2(k −Nemp + 1)

]
B+ = E

[
2k3 +N2

emp −Nemp(2k
2 + 2k + 1)− 2k

2(k −Nemp + 1)

]

The new scheme reduces the value of p (see Eq.(24)) from
2

m+1 to 1.5
m+1 . As argued in Sec. 4, this reduces the overall

variance. Here, we state it as theorem that V ar(R̂+) ≤
V ar(R̂) always.

Theorem 5

V ar(R̂+) ≤ V ar(R̂) (34)

More precisely,

V ar(R̂)− V ar(R̂+)

=E
[
(Nemp)(Nemp − 1)

2k2(k −Nemp + 1)
[R−RR̃]

]
(35)

The probability of simultaneously empty bins increases
with increasing sparsity in dataset and the total number of
bins k. We can see from Theorem 5 that with more simul-
taneously empty bins, i.e., higher Nemp, the gain with the
improved scheme H+ is higher compared to H. Hence,
H+ should be significantly better than the existing scheme
for very sparse datasets or in scenarios when we need a
large number of hash values.

7 Evaluations

Our first experiment concerns the validation of the theoreti-
cal variances of the two densification schemes. The second
experiment focuses on comparing the two schemes in the
context of near neighbor search with LSH.

7.1 Comparisons of Mean Square Errors

We empirically verify the theoretical variances of R and
R+ and their effects in many practical scenarios. To
achieve this, we extracted 12 pairs of words (which cover
a wide spectrum of sparsity and similarity) from the web-
crawl dataset which consists of word representation from
216 documents. Every word is represented as a binary vec-
tor (or set) of D = 216 dimension, with a feature value of
1 indicating the presence of that word in the corresponding
document. See Table 1 for detailed information of the data.

For all 12 pairs of words, we estimate the resemblance us-
ing the two estimators R and R+. We plot the empirical
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Figure 6: Mean Square Error (MSE) of the old scheme R̂ and the improved scheme R̂+ along with their theoretical values
on 12 word pairs (Table 1) from a web crawl dataset.

Table 1: Information of 12 pairs of word vectors. Each
word stands for a set of documents in which the word is
contained. For example, “A” corresponds to the set of doc-
ument IDs which contained word “A”.

Word 1 Word 2 f1 f2 R
HONG KONG 940 948 0.925
RIGHTS RESERVED 12,234 11,272 0.877
A THE 39,063 42,754 0.644
UNITED STATES 4,079 3,981 0.591
TOGO GREENLAND 231 200 0.528
ANTILLES ALBANIA 184 275 0.457
CREDIT CARD 2,999 2,697 0.285
COSTA RICO 773 611 0.234
LOW PAY 2,936 2,828 0.112
VIRUSES ANTIVIRUS 212 152 0.113
REVIEW PAPER 3,197 1,944 0.078
FUNNIEST ADDICT 68 77 0.028

Mean Square Error (MSE) of both estimators with respect
to k which is the number of hash evaluations. To validate
the theoretical variances (which is also the MSE because
the estimators are unbiased), we also plot the values of the
theoretical variances computed from Theorem 2 and Theo-
rem 4. The results are summarized in Figure 6.

From the plots we can see that the theoretical and the em-
pirical MSE values overlap in both the cases validating
both Theorem 2 and Theorem 4. When k is small both
the schemes have similar variances, but when k increases

the improved scheme always shows better variance. For
very sparse pairs, we start seeing a significant difference in
variance even for k as small as 100. For a sparse pair, e.g.,
“TOGO” and “GREENLAND”, the difference in variance,
between the two schemes, is more compared to the dense
pair “A” and “THE”. This is in agreement with Theorem 5.

7.2 Near Neighbor Retrieval with LSH

In this experiment, we evaluate the two hashing schemes
H and H+ on the standard (K,L)-parameterized LSH al-
gorithm [14, 2] for retrieving near neighbors. Two publicly
available sparse text datasets are described in Table 2.

Table 2: Dataset information.

Data # dim # nonzeros # train # query
RCV1 47,236 73 100,000 5,000
URL 3,231,961 115 90,000 5,000

In (K,L)-parameterized LSH algorithm for near neighbor
search, we generate L different meta-hash functions. Each
of these meta-hash functions is formed by concatenating K
different hash values as

Bj(S) = [hj1(S);hj2(S); ...;hjK(S)], (36)

where hij , i ∈ {1, 2, ...,K}, j ∈ {1, 2, ..., L}, are KL re-
alizations of the hash function under consideration. The
(K,L)-parameterized LSH works in two phases:



1. Preprocessing Phase: We construct L hash tables
from the data by storing element S, in the train set,
at location Bj(S) in hash-table j.

2. Query Phase: Given a query Q, we report the
union of all the points in the buckets Bj(Q) ∀j ∈
{1, 2, ..., L}, where the union is over L hash tables.

For every dataset, based on the similarity levels, we chose a
K based on standard recommendation. For this K we show
results for a set of values of L depending on the recall val-
ues. Please refer to [2] for details on the implementation of
LSH. Since both H and H+ have the same collision prob-
ability, the choice of K and L is the same in both cases.

For every query point, the gold standard top 10 near neigh-
bors from the training set are computed based on actual re-
semblance. We then compute the recall of these gold stan-
dard neighbors and the total number of points retrieved by
the (K,L) bucketing scheme. We report the mean com-
puted over all the points in the query set. Since the exper-
iments involve randomization, the final results presented
are averaged over 10 independent runs. The recalls and the
points retrieved per query are summarized in Figure 7.
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Figure 7: Average number of points scanned per query and
the mean recall values of top 10 near neighbors, obtained
from (K,L)-parameterized LSH algorithm, using H (old)
and H+ (Imp). Both schemes achieve the same recall but
H+ reports fewer points compared to H. Results are aver-
aged over 10 independent runs.

It is clear from Figure 7 that the improved hashing scheme
H+ achieves the same recall but at the same time retrieves
less number of points compared to the old scheme H. To
achieve 90% recall on URL dataset, the old scheme re-
trieves around 3300 points per query on an average while
the improved scheme only needs to check around 2700
points per query. For RCV1 dataset, with L = 200 the
old scheme retrieves around 3000 points and achieves a re-

call of 80%, while the same recall is achieved by the im-
proved scheme after retrieving only about 2350 points per
query. A good hash function provides a right balance be-
tween recall and number of points retrieved. In particular, a
hash function which achieves a given recall and at the same
time retrieves less number of points is desirable because it
implies better precision. The above results clearly demon-
strate the superiority of the indexing scheme with improved
hash function H+ over the indexing scheme with H.

7.3 Why H+ retrieves less number of points than H ?

The number of points retrieved, by the (K,L) parameter-
ized LSH algorithm, is directly related to the collision prob-
ability of the meta-hash function Bj(.) (Eq.(36)). Given
S1 and S2 with resemblance R, the higher the probability
of event Bj(S1) = Bj(S2), under a hashing scheme, the
more number of points will be retrieved per table.

The analysis of the variance (second moment) about the
event Bj(S1) = Bj(S2) under H+ and H provides some
reasonable insight. Recall that since both estimators under
the two hashing schemes are unbiased, the analysis of the
first moment does not provide information in this regard.

E
[
1{Hj1(S1) = Hj1(S2)} × 1{Hj2(S1) = Hj2(S2)}

]
= E

[
MN

j1M
N
j2 +MN

j1M
E
j2 +ME

j1M
N
j2 +ME

j1M
E
j2

]
As we know from our analysis that the first three terms in-
side expectation, in the RHS of the above equation, behaves
similarly for both H+ and H. The fourth term E

[
ME

j1M
E
j2

]
is likely to be smaller in case of H+ because of smaller
values of p. We therefore see that H retrieves more points
than necessary as compared to H+. The difference is vis-
ible when empty bins dominate and ME

1 ME
2 = 1 is more

likely. This happens in the case of sparse datasets which
are common in practice.

8 Conclusion

Analysis of the densification scheme for one permutation
hashing, which reduces the processing time of minwise
hashes, reveals a sub-optimality in the existing procedure.
We provide a simple improved procedure which adds more
randomness in the current densification technique leading
to a provably better scheme, especially for very sparse
datasets. The improvement comes without any compro-
mise with the computation and only requires O(d+k) (lin-
ear) cost for generating k hash evaluations. We hope that
our improved scheme will be adopted in practice.
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A Proofs

For the analysis, it is sufficient to consider the configura-
tions, of empty and non-empty bins, arising after throwing
|S1 ∪ S2| balls uniformly into k bins with exactly m non-
empty bins and k−m empty bins. Under uniform throwing
of balls, any ordering of m non-empty and k − m empty
bins is equally likely. The proofs involve elementary com-
binatorial arguments of counting configurations.

A.1 Proof of Lemma 1

Given exactly m simultaneously non-empty bins, any two
of them can be chosen in m(m − 1) ways (with order-
ing of i and j). Each term MN

i MN
j , for both simultane-

ously non-empty i and j, is 1 with probability RR̃ (Note,
E
(
MN

i MN
j

∣∣i ̸= j, Iiemp = 0, Ijemp = 0
)
= RR̃).

A.2 Proof of Lemma 2

The permutation is random and any sequence of simulta-
neously m non-empty and remaining k − m empty bins
are equal likely. This is because, while randomly throw-
ing |S1 ∪ S2| balls into k bins with exactly m non-empty
bins every sequence of simultaneously empty and non-
empty bins has equal probability. Given m, there are total
2m(k − m) different pairs of empty and non-empty bins
(including the ordering). Now, for every simultaneously
empty bin j, i.e., Ijemp = 1, ME

j replicates MN
t corre-

sponding to nearest non-empty Bin t which is towards the
circular right. There are two cases we need to consider:

Case 1: t = i, which has probability 1
m and

E(MN
i ME

j |Iiemp = 0, Ijemp = 1) = E(MN
i |Iiemp = 0) = R

Case 2: t ̸= i, which has probability m−1
m and

E(MN
i ME

j |Iiemp = 0, Ijemp = 1)

=E(MN
i MN

t |t ̸= i, Iiemp = 0, Itemp = 0) = RR̃

Thus, the value of E
[∑

i ̸=j M
N
i ME

j

∣∣∣∣m]
comes out to be

2m(k −m)

[
R

m
+

(m− 1)RR̃

m

]

which is the desired expression.

A.3 Proof of Lemma 3

Given m, we have (k −m)(k −m − 1) different pairs of
simultaneous non-empty bins. There are two cases, if the
closest simultaneous non-empty bins towards their circu-
lar right are identical, then for such i and j, ME

i ME
j = 1

with probability R, else ME
i ME

j = 1 with probability RR̃.
Let p be the probability that two simultaneously empty

bins i and j have the same closest bin on the right. Then

E
[∑

i ̸=j M
E
i ME

j

∣∣∣∣m]
is given by

(k −m)(k −m− 1)
[
pR+ (1− p)RR̃

]
(37)

because with probability (1 − p), it uses estimators from
different simultaneous non-empty bins and in that case the
ME

i ME
j = 1 with probability RR̃.

Consider Figure 3, where we have 3 simultaneous non-
empty bins, i.e., m = 3 (shown by colored boxes). Given
any two simultaneous empty bins Bin i and Bin j (out of
total k −m) they will occupy any of the m+ 1 = 4 blank
positions. The arrow shows the chosen non-empty bins for
filling the empty bins. There are (m + 1)2 + (m + 1) =
(m+1)(m+2) different ways of fitting two simultaneous
non-empty bins i and j between m non-empty bins. Note,
if both i and j go to the same blank position they can be
permuted. This adds extra term (m+ 1).

If both i and j choose the same blank space or the first
and the last blank space, then both the simultaneous empty
bins, Bin i and Bin j, corresponds to the same non-empty
bin. The number of ways in which this happens is 2(m +
1) + 2 = 2(m+ 2). So, we have

p =
2(m+ 2)

(m+ 1)(m+ 2)
=

2

m+ 1
.

Substituting p in Eq.(37) leads to the desired expression.

A.4 Proof of Lemma 4

Similar to the proof of Lemma 3, we need to compute
p which is the probability that two simultaneously empty
bins, Bin i and Bin j, use information from the same bin.
As argued before, the total number of positions for any two
simultaneously empty bins i and j, given m simultaneously
non-empty bins is (m+1)(m+2). Consider Figure 4, un-
der the improved scheme, if both Bin i and Bin j choose the
same blank position then they choose the same simultane-
ously non-empty bin with probability 1

2 . If Bin i and Bin j
choose consecutive positions (e.g., position 2 and position
3) then they choose the same simultaneously non-empty
bin (Bin b) with probability 1

4 . There are several boundary
cases to consider too. Accumulating the terms leads to

p =
2(m+2)

2 + 2m+4
4

(m+ 1)(m+ 2)
=

1.5

m+ 1
.

Substituting p in Eq.(37) yields the desired result.

Note that m = 1 (an event with almost zero probability)
leads to the value of p = 1. We ignore this case because it
unnecessarily complicates the final expressions. m = 1 can
be easily handled and does not affect the final conclusion.
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