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Abstract

Scientists often express their understanding of
the world through a computationally demand-
ing simulation program. Analyzing the posterior
distribution of the parameters given observations
(the inverse problem) can be extremely chal-
lenging. The Approximate Bayesian Computa-
tion (ABC) framework is the standard statisti-
cal tool to handle these likelihood free problems,
but they require a very large number of simula-
tions. In this work we develop two new ABC
sampling algorithms that significantly reduce the
number of simulations necessary for posterior in-
ference. Both algorithms use confidence esti-
mates for the accept probability in the Metropo-
lis Hastings step to adaptively choose the number
of necessary simulations. Our GPS-ABC algo-
rithm stores the information obtained from every
simulation in a Gaussian process which acts as
a surrogate function for the simulated statistics.
Experiments on a challenging realistic biologi-
cal problem illustrate the potential of these algo-
rithms.

1 Introduction

The morphogenesis of complex biological systems, the
birth of neutrons stars, and weather forecasting are all nat-
ural phenomena whose understanding relies deeply upon
the interaction between simulations of their underlying pro-
cesses and their naturally observed data. Hypotheses that
posit the generation of observations evolve after critical
evaluation of the match between simulation and observa-
tion.

This hypothesis–simulation–evaluation cycle is the foun-
dation of simulation-based modeling. For all but the most
trivial phenomena, this cycle is grossly inefficient. A typ-
ical simulator is a complex computer program with a po-
tentially large number of interacting parameters that not

only drive the simulation program, but are also often the
variables of scientific interest because they play a role in
explaining the natural phenomena. Choosing an optimal
value setting for these parameters can be immensely ex-
pensive.

While a single, optimal parameter setting may be useful
to scientists, often they are more interested in the distri-
bution of parameter settings that provide accurate simula-
tion results [20, 3, 18]. The interaction between parameters
can provide insight regarding not only the properties of the
simulation program, but more importantly, the underlying
phenomena of interest. The main challenges that we ad-
dress in this paper are 1) simulation-based modeling in a
likelihood-free setting (we do not have a model in the typ-
ical machine learning sense, and therefore we do not have
a standard likelihood function), and 2) running simulations
is very expensive.

The first challenge is partly addressed by the approxi-
mate Bayesian computation (ABC) approach to sampling
in likelihood-free scenarios [25, 5]. The ABC approach
will be described in a later section, but in short it uses
the distance between simulated and observed data as a
proxy for the likelihood term in the parameter posterior.
ABC provides the necessary framework to make progress
in simulation-based modeling, but it is a very inefficient
approach, even on simple problems.

The second challenge is approached with a surrogate model
in mind. This means that every simulation (parameters and
result) is stored and used to maintain a surrogate of the
mapping from parameters to result. By carefully construct-
ing an approximate Markov chain Monte Carlo (MCMC)
sampler, we are able to sample from the parameter distri-
bution in such a way that our sampling error is controlled
and decreases over time. The main advantage of this ap-
proach is that by accepting some bias, we are able to very
efficiently sample from the approximate posterior because
parameters can sometimes be accepted within MCMC with
high confidence by relying on the surrogate and thus avoid-
ing expensive simulations.



In this paper we present a procedure for approximate
Bayesian inference using a Gaussian process surrogate for
expensive simulation-based models. In our approach, sim-
ulations that are run over the course of the inference pro-
cedure are incorporated into a GP model, gradually im-
proving the surrogate over time. Using MCMC with a
Metropolis-Hastings (MH) accept/reject rule, our method
uses the surrogate and its uncertainty to make all MH de-
cisions. The key insight is that the uncertainty in the ac-
ceptance probability is used to determine if simulations are
required to confidently proceed to the MH step. If the un-
certainty is high, and we are likely to make an error, then
more simulations are run.

2 Approximate Bayesian Computation

The current state-of-the-art for simulation-based model in-
ference is likelihood-free or approximate Bayesian compu-
tation methods [23, 15]. In this section we briefly introduce
likelihood-free inference with a focus on MCMC inference
procedures as our modeling approach will extend naturally
from this work.

In likelihood-free sampling, we do not have a model in
the typical sense. Instead, we have access to a simulator
that generates pseudo-data that, given an accurate model
of the world, look like the observations. The goal is to
infer the parameters of the simulator which produce accu-
rate pseudo-data. Importantly, we do not have access to a
tractable likelihood function. We now describe in detail the
likelihood-free set-up and in particular MCMC sampling
techniques.

One of the primary goals of Bayesian inference is to infer
the posterior distribution of latent variables θ using its prior
π(θ) and its data likelihood π(y|θ):

π(θ|y) =
π(θ)π(y|θ)∫
π(θ)π(y|θ)dθ

(1)

where θ is a vector of latent parameters and y is the ob-
served data set. In simulation-based modeling, we do not
have access to the likelihood π(y|θ). Instead our model
of the world consists of a simulator that generates samples
x

sim∼ π(x|θ) (where we indicate that the simulator was
run with parameters θ and returns pseudo-data x). Sim-
ulation results x are then compared with the observations
y through a distribution πε(y|x,θ), which measures how
similar x is to y. The distribution is parameterized by ε
which controls the acceptable discrepancy between x and
y. We can thus approximately infer the posterior distribu-
tion as

πε(θ|y) =
π(θ)

π(y)

∫
πε(y|x)π(x|θ)dx (2)

This approximate posterior is only equal to the true pos-
terior for πε=0(y|x) = δ(y,x) where δ(·) is the delta-

function. For the exact posterior, one could apply a re-
jection sampling procedure that would repeatedly sample
θ ∼ π(θ), run a simulation x

sim∼ π(x|θ), then accept θ
only if it equals y. For continuous data, ε acts as a slack
variable because equality cannot be achieved. However, we
prefer small ε because this will improve our approximation
to the true posterior. Unfortunately, there remains an un-
avoidable trade-off between approximation bias (large for
large ε) and rejection rate (large for small ε).

2.1 Marginal and Pseudo-Marginal ABC

Instead of the rejection sampler described in the previous
section (which is hopeless in high dimensions), we now
describe two MCMC procedures, the marginal sampler and
the pseudo-marginal sampler [2]. At every iteration of
MCMC we propose a new θ

′ ∼ q(θ
′ |θ). Next we gen-

erate S samples x
′

s
sim∼ π(x

′ |θ′
), s = 1..S from the sim-

ulator. From these samples we approximate the marginal
likelihood as follows,

πε(y|θ
′
) =

∫
πε(y|x)π(x|θ′

)dx ≈ 1

S

S∑
s=1

πε(y|x(s),θ
′
)

(3)
We accept the proposed parameter θ

′
with probability

equal to,

α(θ
′ |θ) = min

(
1,
π(θ

′
)
∑
s πε(y|x

′(s),θ
′
)q(θ|θ′

)

π(θ)
∑
s πε(y|x(s),θ)q(θ′ |θ)

)
(4)

where the estimate of the marginal likelihood in the denom-
inator (based on {xs,θ}) is carried over from the previous
iteration. It can be shown that this algorithm is an instance
of the more general pseudo-marginal procedure [2] because
the estimate of the marginal likelihood is unbiased. From
this we can immediately infer that this Markov chain con-
verges to the posterior πε(θ|y). Interestingly, there is an
alternative view of this sampler [22] that interprets it as a
Markov chain over the extended state {θ,x1, ...,xS}which
also leads to the conclusion that the samples θ

′
will asymp-

totically follow the distribution πε(θ|y).

Unfortunately, it is well known that pseudo-marginal sam-
plers can suffer from slow mixing. In particular, when
through a “lucky” draw our marginal likelihood estimate in
Eqn. 3 attains a large value, then it is very difficult for the
sampler to mix away from that state. To avoid this behavior
it is sometimes beneficial to re-estimate the denominator
(as well as the numerator) in every iteration. This proce-
dure is more expensive and does not guarantee convergence
to πε(θ|y) (unless S → ∞), but can result in much better
mixing. We will call this the marginal LF MCMC method
[2].

While for the pseudo-marginal approach we can interpret
the fluctuations induced by estimating the π(y|θ) from a



finite sample set as part of randomly proposing a new state,
this is no longer true for the approximate marginal MCMC.
For the latter it is instructive to study the uncertainty in the
acceptance probability α(θ

′ |θ) due to these fluctuations:
repeatedly estimating π(y|θ) with S samples will produce
a distribution over α. Clearly for small S the distribution
will be wider while for very large S it will approach a delta
peak. Our approach uses this distribution directly to deter-
mine the confidence in the MH accept step, allowing it to
implicitly set S based on the local uncertainty. This will be
discussed further in next sections.

Besides the marginal and pseudo-marginal approaches to
ABC, there is a large body of work using sequential Monte
Carlo sampling to approach this problem [21, 4, 26].

3 The Synthetic Likelihood

We next discuss the approximation introduced by Wood
[29], who models the simulated pseudo-data {x1, ..,xS} at
θ using a normal distribution, i.e. π(x|θ) ≈ N (x|µ̂θ, Σ̂θ).
We will later replace this with a Gaussian process. The pro-
cedure is very simple: we draw S samples from our simu-
lator and compute first and second order statistics,

µ̂θ =
1

S

∑
s

x(s) (5)

Σ̂θ =
1

S − 1

∑
s

(
x(s) − µ̂θ

)(
x(s) − µ̂θ

)T
(6)

Using estimators µ̂θ and Σ̂θ we set π(x|θ) =

N
(
µ̂θ, Σ̂θ

)
. Moreover, if we use a Gaussian kernel, then

πε(y|x) = Kε (y,x) =
1

(2πε)J/2
e−

1
2ε2

(x−y)T (x−y) (7)

where J is the dimension of y, we can then analytically
integrate over x in Eqn 2 giving the synthetic-ABC likeli-
hood:

π(y|θ) =

∫
Kε (y,x)N

(
µ̂θ, Σ̂θ

)
dx (8)

= N
(
µ̂θ, Σ̂θ + ε2I

)
(9)

which has the satisfying result that likelihood of y|θ is the
density under a Gaussian model at each simulation param-
eter setting θ.

This approximation has two advantages. First, we can take
the limit ε → 0.1 This implies that the bias introduced by
the need to use a distribution πε(y|θ) to measure the sim-
ilarity between simulations x and observations y is now

1We may not always want to do this as ε2 acts both as a prior
over and a smoother of the likelihood. In practice, smoothing the
likelihood may be necessary for mixing, and likewise, we may
have access to a prior which could make the sampler more robust.

Algorithm 1 Synthetic-likelihood ABC MH step

inputs: q,θ, π(x|θ), S, ε,y
θ

′ ∼ q(θ′ |θ)
for s = 1 : S do

x
′(s) sim∼ π(x|θ′

), x(s) sim∼ π(x|θ)
end for
Set µ̂θ′ ,Σ̂θ′ , µ̂θ, Σ̂θ using Eqns 5 and 6.
Set α using Eqn 10
if U(0, 1) ≤ α then

return θ
′

end if
return θ

removed. But this is traded off with the bias introduced by
modeling the simulations from π(x|θ) with a normal dis-
tribution. The second advantage was the main motivation
in [29], namely that this procedure is more robust for ex-
tremely irregular probability distributions as encountered
in chaotic or near chaotic simulation dynamics.

A marginal sampler based on a Gaussian approximation
(Algorithm 1) has the following acceptance probability:

α(θ
′ |θ) = min

1,
π(θ

′
)N
(
µ̂θ′ , Σ̂θ′ + ε2I

)
q(θ|θ′

)

π(θ)N
(
µ̂θ, Σ̂θ + ε2I

)
q(θ′ |θ)


(10)

As with the marginal sampler of Section 2, the fact that
we estimate first and second order statistics from a finite
sample set introduces uncertainty in the accept probabil-
ity α(θ

′ |θ): another run of S simulations would have re-
sulted in different values for these statistics and hence of
the accept probability. See Figure 1 for an illustration. In
the following section we will analyze the distribution over
α(θ

′ |θ) and develop a method to decide how many simula-
tions S we need in order to be sufficiently confident that we
are making the correct accept/reject decision. Random ac-
ceptance probability distributions have been studied in gen-
eral [16] and for the specific case of Gaussian log-energy
estimates [9].

3.1 MCMC with a Random Acceptance Probability

We now make explicit the role of randomness in the
MCMC sampler with synthetic (normal) likelihoods. At
each iteration of the MCMC sampler, we compute estima-
tors {µ̂θ, Σ̂θ, µ̂θ′ , Σ̂θ′} as before using Eqns 5 and 6. To
estimate the distribution over accept probabilities we would
need M sets of S simulations, which would be too expen-
sive. Instead, we use our Gaussian assumption to derive
that the variance of the mean is 1/S times the variance in
the sample {x1, ...,xS},

µθ ∼ N
(
µ̂θ, Σ̂θ/S

)
(11)



Figure 1: An example of p(α), the distribution over acceptance
probabilities (top) and its CDF shown folded at its median (bot-
tom).

and similarly for µθ′ . This shortcut is important because it
allows us to avoid a significant number of expensive simu-
lations and replace them with samples from a normal dis-
tribution.

Given our M samples of (µθ,µθ′ ), we can compute M
samples of α(θ

′ |θ) by inserting them into the expression
for the randomized MH accept probability:

α(m) = min

1,
π(θ

′
)N
(
y|µ(m)

θ′ , Σ̂θ′ + ε2I
)
q(θ|θ′

)

π(θ)N
(
y|µ(m)

θ , Σ̂θ + ε2I
)
q(θ′ |θ)


(12)

We now derive a procedure to estimate the probability of
making an error in an accept/reject decision (E(α), the
Metropolis-Hastings error) and a threshold τ for actually
making the decision. The error of making an incorrect de-
cision can either be measured conditioned on u ∼ U(0, 1)
(the uniformly distributed draw used in the MH decision),
or unconditionally, by integrating over U(0, 1). First we
start with the conditional error which trivially extends to
the unconditional error by averaging.

If u ≤ τ , then we accept the MH proposal and move to the
proposed state. The probability of making an error in this
case is P (α < u) (i.e. the probability we should actually
reject):

P (α < u) =
1

M

∑
m

[
α(m) < u

]
(13)

Similarly, if u > τ then we reject, and the error is P (α >
u) (i.e. the probability we should actually accept):

P (α > u) =
1

M

∑
m

[
α(m) ≥ u

]
(14)

The total conditional error is therefore:

Eu(α) = [u ≤ τ ]P (α < u) + [u > τ ]P (α ≥ u) (15)

and the total unconditional error is:

E(α) =

∫
Eu(α)U(0, 1)du (16)

which can again be estimated by Monte Carlo or grid values
of u. The analytic calculation of E(α) is the area under the
cumulative distribution function of p(α) folded at τ (see
Figure 1). This integral is also known as the mean absolute
deviation [30] which is minimized at the median of p(α)
(the value of α where the CDF equals 1/2), justifying our
decision threshold τ = median(α) (also determined by
samples α(m)).

With this in hand, we now have the necessary tools to con-
struct an adaptive synthetic-likelihood MCMC algorithm
that uses E(α) as a guide for running simulations (Algo-
rithm 2). At the start of each MH step, S0 simulations are
run for both θ and θ

′
; estimators are computed; then M

α(m) are sampled. Based on these samples, the median and
E(α) is computed. Note that this phase of the algorithm is
very cheap; here we are sampling from J bivariate Gaus-
sian distributions to compute Monte Carlo estimates of τ
and E(α), so M can be set high without a computational
hit, though in practice M < 100 should be fine. While
E(α) > ξ, ∆S new simulations are run and the estimators
updated, along with new draws of α(m), etc. The user-
defined error threshold ξ is a knob which controls both the
accuracy and computational cost of the MCMC. New sim-
ulations can be run at either θ or θ

′
; we run simulations at

both locations, though selecting one over the other based
on the higher individual mean uncertainty could result in
fewer simulations. As S increases, the uncertainty around
p(α) decreases such that E(α) < ξ; once this occurs, the
MH is now confident and it proceeds using the usual accep-
tance test, with τ as the acceptance threshold.

In many cases, the actual number of simulations required
at each step can be quite small, for example when one pa-
rameter setting is clearly better than another (where the me-
dian is at or close to 0 or 1). Nevertheless, there remains
a serious drawback to this algorithm for expensive simu-
lations: all simulations are discarded after each MH step;
a great waste considering the result is a single binary de-
cision. Using a Gaussian process surrogate, described in
the next section, we will remember all simulations and use
them to gradually improve the surrogate and as a conse-
quence, eventually eliminate the need to run simulations.

4 Gaussian Process Surrogate ABC

As mentioned in the introduction, in many scientific dis-
ciplines simulations can be extremely expensive. The al-
gorithms up till now all have the downside that at each
MCMC update a minimum number of simulations needs
to be conducted. This seems unavoidable unless we store
the information of previous simulations and use them to
make accept/reject decisions in the future. In particular,
we can learn the mean and covariance µθ,Σθ of the syn-
thetic likelihood as a function of θ and as such avoid hav-



Algorithm 2 Adaptive Synthetic-likelihood ABC MH step

inputs: q,θ, π(x|θ), S0,∆S, ε,y, ξ
θ

′ ∼ q(θ′ |θ)
Init c = 1, S = S0

repeat
for s = c : c+ S do

x
′(s) sim∼ π(x|θ′

), x(s) sim∼ π(x|θ)
end for
Update c = S, S = S + ∆S
Set µ̂θ′ ,Σ̂θ′ , µ̂θ, Σ̂θ using Eqns 5 and 6.
for m = 1 : M do

Sample µ(m)

θ′ , µ(m)
θ using Eqn 11

Set α(m) using Eqn 12
end for
Set τ = median(α(m))
Set E(α) using Eqn 16

until E(α) < ξ
if U(0, 1) ≤ τ then

return θ
′

end if
return θ

ing to perform simulations to compute them. There is a
very natural tool that provides exactly this functionality,
namely the Gaussian process (GP). For our purposes, the
GP will “store” the simulation runs θn,xn for all simula-
tions conducted during the MCMC run. We will use the GP
as a “surrogate” function for the simulated statistics from
which will be able to estimate the marginal likelihood val-
ues away from regions where actual simulations were run.
Importantly, the GP provides us with uncertainty estimates
of the marginal likelihood which will inform us of the need
to conduct additional experiments in order to make confi-
dent accept/reject decisions. Going from the synthetic like-
lihood model to the GP represents a change from frequen-
tist statistics in favor of (nonparametric) Bayesian statis-
tics. Gaussian processes have recently also become a pop-
ular tool in the machine learning literature as surrogates of
expensive regression surfaces, such as log-likelihoods [17];
optimization surfaces [8, 24]; simulations of physical sys-
tems [6]; emulation of computer codes [10]; and for accel-
erating ABC [28].

Similar in spirit to our own work, [28] uses GP surro-
gates to model the ABC log-likelihood surface in succes-
sive waves of inference, each eliminating regions of im-
plausibility and producing more and more accurate mod-
els of the log-likelihood. There are two important differ-
ences. Space-filling design points are used by [28] to train
their GP models, whereas we control the simulations with
ξ, and we model all J simulation outputs versus a single
log-likelihood, which is a much larger overhead for our ap-
proach, but has advantages, e.g. enabling posterior analysis
and evaluation of the simulator.

Our surrogate model and algorithm follow directly from
the synthetic-ABC approximation and randomized accep-
tance algorithm. The main difference between the two is
that in this paper, we model the J statistics as J indepen-
dent Gaussian processes (recall J is the dimensionality of
y). We note that it would be better to model the J statis-
tics using a single joint Gaussian process. This can be done
using “co-Kriging” or variants thereof [12, 7]. Although
the independence assumption may lead to overconfidence
(because it is assuming–falsely–independent evidence), it
is also more robust in high-dimensions where the estimator
of the full output covariance has high variance (it overfits).
It may be that the mentioned multi-output GPs can provide
an appropriate solution by tying the covariance structure
across parameter space using a small number of kernel hy-
perparameters. For our experiments we found that indepen-
dent GPs worked well enough to illustrate the algorithm’s
potential. For high-dimensional outputs, modeling the log-
likelihood directly may be more appropriate [28].

For each statistic j, the surrogate provides the following
conditional predictive distribution of the expected value of
statistic j:

µθj ∼ N
(
µ̄θj , σ

2
θj

)
(17)

where the mean and covariance are determined by the set of
N training inputs {θn} andN training outputs {xn} (using
only statistic j). They are given by the usual expressions
for the GP mean and covariance,

µ̄θj = kθΘj

[
KΘΘj + σ2

j I
]−1

X[:, j] (18)

and

σ2
θj = kθθj − kθΘj

[
KΘΘj + σ2

j I
]−1

kθΘj

where kθΘj is a 1 by N vector of kernel evaluations for
the j’th Gaussian process between θ and the input train-
ing set Θ, KΘΘj is the jth kernel matrix evaluated on the
training data; σ2

j is the data noise term for the j’th statis-
tic (used below in the acceptance ratio), X is the N by J
training output data set and X[:, j] is column j from the
training data, and kθθj is a single kernel evaluation at θ for
Gaussian process j.

The GPS-ABC algorithm is now run as follows (Algo-
rithm 3). At each MH step, using Eqn 17, and for each j,M
independent draws of µθ′ and µθ are sampled from their
conditional predictive distribution. Note that this signifi-
cantly different from the SL-ABC because there are now
no default simulations to be run at each MH step; instead,
the current surrogate model is used to predict both the ex-
pectation and uncertainty in simulation output. As before,
Monte Carlo statistics are computed from acceptance prob-
abilities α(m) as follows,

α(m) = min

1,
π(θ

′
)
∏
j N

(
yj |µ(m)

θ′ j
, σ2
j + ε2

)
q(θ|θ′

)

π(θ)
∏
j N

(
yj |µ(m)

θj , σ
2
j + ε2

)
q(θ′ |θ)


(19)



Algorithm 3 GPS-ABC MH step

inputs: q,θ, π(x|θ), S0,∆S, ε,y, ξ
θ

′ ∼ q(θ′ |θ)
repeat

for m = 1 : M do
Sample µ(m)

θ′ j
, µ(m)

θj using Eqn 17

Set α(m) using Eqn 19
end for
Set τ = median(α(m))
Set E(α) using Eqn 16
if E(α) > ξ then

Acquire new training point.
end if

until E(α) < ξ
if U(0, 1) ≤ τ then

return θ
′

end if
return θ

The error E(α) and acceptance threshold τ are computed
from the M samples; if E(α) > ξ, then a procedure for
acquiring training points (i.e. simulations) is run, with the
objective of reducing uncertainty for this specific MH step.
Again, as with the adaptive synthetic likelihood algorithm,
computing the M samples is very cheap. The procedure
is then free to select any input location to run a simulation
(whereas before we were forced to run at either θ or θ

′
),

though the new simulation should be impactful for the cur-
rent MH step. This means that we can choose locations
other than θ and θ

′
, perhaps trying to limit the number of

future simulation runs required in the vicinity. Analogous
to acquisition functions for Bayesian optimization [8], ac-
tively acquiring points has the implicit goals of speeding up
MCMC, reducing MCMC error, and limiting simulations.
We have intentionally left vague the procedure for acquir-
ing training points; for now we run simulations at θ or θ

′
,

even though this is an inefficient use of our surrogate. Once
a new training point is selected and run, the training input-
output pair is added to all J Gaussian processes and the
model hyperparameters may or may not be modified (with
a small number of optimization steps or by sampling).

The key advantage of GPS-ABC is that with increasing fre-
quency, we will not have to do any expensive simulations
whatsoever during a MH step because the GP surrogate is
sufficiently confident about the statistics’ surface in that re-
gion of parameter space.

4.1 Theoretical Aspects of GPS-ABC

Two of the main contributions of GPS-ABC are MCMC
under uncertainty and the introduction of memory into the
Markov chain; we consider these steps as the only way to
reduce the number of expensive simulations and as such

a necessary ingredient to GPS-ABC. Nevertheless, they
present major differences from typical Bayesian inference
procedures.

We now address two major theoretical aspects of the GPS-
ABC algorithm: the approximate and adaptive nature of
GPS-ABC. Although we have postponed formal proofs for
future work we have outlined their main arguments below.

GPS-ABC is approximate because at each MH-step there
is some probability that the chain will make an error, and
that this corresponds to an error in the stationary distribu-
tion of the Markov chain (i.e. it is an approximation to
the stationary distribution). In [14], another approximate
MCMC algorithm is presented and it provides a proof for
an upper bound on the error in the stationary distribution.
The main argument is that if the MH-step error is small and
bounded (along with a few other mild conditions), then the
error in stationary distribution is bounded as well. We feel
GPS-ABC fits into this same proof framework.

GPS-ABC is also adaptive since the approximation to the
stationary distribution changes as more training points are
added to the Gaussian process (we are learning the sur-
rogate as we run the MCMC). Two of the major require-
ments for a valid adaptive MCMC algorithm are diminish-
ing adaptation and ergodicity [19]. GPS-ABC satisfies the
former as the number of training points acquired over an
MCMC run rapidly decreases over time. When the adap-
tation slows and becomes insignificant, the Markov chain
resembles the algorithm in [14], which, as we stated above,
provides a proof of bounded convergence to the stationary
distribution (and hence ergodicity); therefore we believe
that GPS-ABC satisfies the latter requirement.

5 Experiments

The main goal of our experiments is to show the correct-
ness and computational gains of GPS-ABC. Our results
indicate that correct posterior samples can be obtained by
GPS-ABC with orders of magnitude fewer simulation calls
than traditional ABC sampling procedures.

We perform experiments on two simulation problems: 1)
a toy Bayesian inference problem (the exponential prob-
lem) and 2) inference of parameters in a chaotic ecological
system (the blowfly problem). In the former, the true pos-
terior distribution is known and therefore provides a useful
test-case for determining the correctness and convergence
properties of ABC algorithms. There is no ground truth in
the latter problem, making inference much more difficult,
but we can nevertheless assess it by the quality of raw simu-
lation outputs and convergence to a set of chosen statistics.

Here is a brief description of the algorithms used in
our experiments. We ran ε-tube rejection sampling
(REJ); synthetic-likelihood (SL, both marginal and pseudo-
marginal); and two adaptive ξ-ABC algorithms: adaptive
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Figure 2: The exponential problem. Shown on the same y-axis
are values from the simulator x and the density of the true and
approximate posteriors (π(θ|y) and πε(θ|y), respectively). The
horizontal lines indicate y +/- ε. The approximate posterior was
generated from ε-tube rejection sampling (ε = 2).

synthetic likelihood (ASL) and Gaussian process surrogate
ABC (GPS). Rejection sampling is a procedure where θ is
repeatedly drawn from the prior until all simulation statis-
tics are within the ε-tube. This is repeated independently
for each sample. Algorithms SL, ASL perform at least S
simulations at each MH-step of a MCMC run; for marginal
algorithms, this is 2S (the simulations at the current loca-
tion are re-run), for ASL this can be higher, depending on ξ
and due to randomness within the MH-step. Marginal ver-
sus pseudo-marginal results are indicated by the prefixes
‘m’ or ‘p’, respectively. Our MCMC algorithms are ini-
tialized with a single rejection sample, so initial simulation
counts are affected by its ε value. GPS uses a small initial
training set of size S0 = 50. For the exponential prob-
lem, this training set was generated by rejection sampling.
For the blowfly problem, a short MCMC run using SL was
used to generate higher quality training points. GPS adapts
its Gaussian process hyperparameters using MAP estimates
found by conjugate gradient methods during initialization,
and subsequently when the number of training points dou-
bles (i.e. 100, 200, 400, etc). Finally, ASL and GPS adapt
the number of simulations at each MH-step ∆S = 5. Due
to space constraints, some of the results are not shown in
the main paper, but can be found in the supplementary ma-
terial.

5.1 Inferring the parameter of an exponential
distribution

In this illustrative problem we infer the rate of an exponen-
tial distribution under a gamma prior with shape α and rate
β, having N observations at the true rate θ?; this is the ex-
ponential example in [27]. Let w be a vector of N draws
from an exponential distribution, i.e. wn ∼ Exp(θ). The
posterior is a gamma distribution with shape α + N and
rate β +

∑
wn. To use this problem with ABC, we use the

exponential draws as the simulator and the mean of w as
the statistic y and assume that N is known. The inference

problem is therefore to sample from p(θ|y, α, β,N).

For all runs we fixed α = β = 0.1; a very broad prior
over θ. Using the same random seed and θ? = 0.1, we
generated y = 10.0867, which induces the θ-MAP value
0.09916 (not quite 10 and 0.1 due to their random draw
and to a small influence from the prior). An illustration of
this problem is shown in Figure 2.

Figure 3 show the results of running REJ, SL, and GPS to
generate 50000 samples; this is repeated 10 times per al-
gorithm. These three algorithms were chosen because they
give roughly the same final error in distribution. In Fig-
ure 3a, the convergence to the (known) target posterior dis-
tribution (error), per sample, is shown. Figure 3b shows the
same convergence in error, but is overlaid with the conver-
gence per simulation call instead of per sample. Rejection
sampling, as expected, provides the best convergence per
sample (each sample is an independent sample from the
approximate posterior) but computationally performs very
poorly when ε is set to a value that gives small error in dis-
tribution.

As GPS-ABC acquires training points it is also sam-
pling from the approximate posterior. Once the surro-
gate has learned the statistic surfaces in a region of pa-
rameter space, it no longer makes any simulation calls in
that region. Eventually, the surrogate learns the surface
for all the regions of parameter space where the poste-
rior density is high. For this problem (with ξ = 0.2),
this occurs after approximately 1000 simulations. As the
MCMC run progresses, GPS-ABC gathers samples with
decreasing amounts of computation. Figure 3c shows how
the Gaussian process adaptation levels off during MCMC
runs, whereas traditional ABC algorithms require a con-
stant number of simulation calls per sample. As ξ de-
creases, more simulation calls are required for the GPS-
ABC to model the statistics surfaces with increased preci-
sion; they all, however, have adaptation curves similar to
Figure 3c.

5.2 Chaotic Ecological Systems
Adult blowfly populations exhibit dynamic behavior for
which several competing population models exist. In this
experiment, we use observational data and a simulation
model from Wood [29], based on their improvement upon
previous population dynamics theory. Population dynamics
are modeled using (discretized) differential equations that
can produce chaotic behavior for some parameter settings.
An example blowfly replicate series is shown in Figure 4a,
along with times-series generated by a sample from π(θ|y)
using GPS-ABC.

In [29] there are several explanations of the population dy-
namics, corresponding to different simulations and param-
eters. We concentrate on the equation (1) in section 1.2.3
of the supplementary information, considered “a better al-
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Figure 3: Convergence to target distribution for three algorithms: REJ (ε = 0.5), p-SL ()S = 2), and GPS (ξ = 0.2). The three have
roughly the same final error in distribution. In (a) the convergence to the target per sample is shown; in (b) this convergence is overlaid
with convergence per simulation. Around sample 1000, GPS has essentially stopped adapting, has learned the statistic surfaces, and no
longer requires simulations. In (c) the growth of simulations per time step (i.e. a sample) for the sample algorithms is shown; both REJ
and SL use a fixed number of simulations per iteration, whereas GPS stops adding new training points around time 1000. Note that we
start the plot at the 10th sample, which requires a different number of simulations, depending on the algorithm.

ternative model” by the author. The population dynamics
equation generates N1, . . . , NT using the following update
rule:

Nt+1 = PNt−τ exp(−Nt−τ/N0)et +Nt exp(−δεt)
where et ∼ G(1/σ2

p, 1/σ
2
p) and εt ∼ G(1/σ2

d, 1/σ
2
d)

are sources of noise, and τ is an integer (not to be con-
fused with the τ used as the MH acceptance threshold
in our algorithms). In total, there are 6 parameters θ =
{logP, log δ, logN0, log σd, log σp, τ}. See [29] for fur-
ther details about the significance of the parameters. We put
Gaussian priors over all the parameters (with Gaussian pro-
posal distributions), except for τ which has a Poisson prior
(and a left/right increment proposal). Time-series gener-
ated with parameters from this prior distribution produce
extremely varied results, some are chaotic, some are de-
generate, etc. Modeling this simulator is very challenging.

As with any ABC problem the choice of statistics is impor-
tant as it directly affects the quality of the results. It is also
non-trivial and requires careful thought and sometimes trial
and error. In total there are 10 statistics: the log of the mean
of all 25% quantiles of N/1000 (4 statistics), the mean of
the 25% quantiles of the first-order differences of N/1000
(4 statistics), and the maximal peaks of smoothed N , with
2 different thresholds (2 statistics). With these statistics it is
possible to reproduce time-series that appear similar to the
observations. Note that these statistics are different from
Wood’s, but they capture similar time-series features and
are sufficient to produce credible population dynamics.

The first set of experiments for the blowfly problem is
shown in Figure 4b. For these experiments we compared
REJ (ε = 5), corresponding to an acceptance rate of
roughly 2%), p-SL (S = 10), and finally GPS (ξ = 0.3).
For SL, a small ε = 0.5 was required to improve mix-
ing. This helped all algorithms, but was less important
for GPS, though it can be important if the Gaussian pro-
cesses are not properly calibrated. Each algorithm was

run 5 times collecting 10K samples each. The GPS model
for this problem consists of J = 10 independent Gaus-
sian processes with D = 6 inputs each. The GPS was
initialized with S0 = 50 samples from a short SL-ABC
MCMC run. In Figure 4b we show the posterior distri-
butions for logP , log δ, and logN0. Rejection sampling
produces much broader posteriors than both SL and GPS,
though they all share roughly the same mode. Between SL
and GPS there is little difference in mode or shape, though
GPS appears to have tighter confidence intervals. The real
difference is the computational effort required: GPS used
only 384 simulations to produce 10K, roughly 0.04 simu-
lations per sample, whereas SL and REJ require 10 and 45
simulations for a single sample, respectively. Of course,
GPS has much higher efficiency in practice, as the value
0.04 simulations per sample decreases over time and even-
tually reaches 0.

The second set of experiments examined the convergence
properties of GPS compared to the other algorithms, focus-
ing on the quality of the posterior predictive distributions
per sample versus simulation call. For the blowfly data we
do not have the ground-truth θ?, but we do have the statis-
tics of the observations for which we can monitor conver-
gence. We do this by evaluating the posterior predictive
distribution p(y|y?). Please note that we slightly change
notation when discussing posterior predictive distributions
by denoting y? the observed statistics, and y as statistics
generated by the posterior samples p(θ|y?). Pairs y and
θ are generated, with the exception of GPS, during the
MCMC run, and are exactly the quantities we require for
p(y|y?). Convergence will tell us the amount of compu-
tational effort required for an independent and (un)biased
sample.

In Figure 4c we show the convergence in expected value
of y to y? per simulation. This is calculated in an online
fashion by averaging statistics generated at θ (each pos-
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Figure 4: (a) The blowfly population time-series. The observations are in black lines and a generated time-series is shown in red.
Note that θ is a sample from the GPS posterior (ξ = 0.3). See paper for description of the statistics. (b) Blowfly p(θ|y) for different
algorithms. The top (blue) row is REJ ε = 5, the middle (green) is pseudo-marginal SL S10, and the bottom (red) is GPS ξ = 0.3.
Their respective simulations per sample ratios were: 45, 10, and 0.04. I.e. REJ had an acceptance rate of 2.2%, and GPS only used
384 simulations for 10K samples. Similar distributions were observed for ASL and other pseudo-marginal SL. (c) Convergence to y?

for different algorithms, using normalized mean-squared error. Each sub-plot shows the convergence to a single statistic as a function of
simulation calls.

terior θ sample is allowed one y). We show the log-log
plots of the normalized mean squared error (NMSE) ver-
sus number of simulations for the first 9 statistics. Algo-
rithms run in this experiment were GPS (ξ = 0.2), p-SL
(S = 10, 50), ASL (ξ = 0.3, 0.1), and REJ (ε = 5). GPS
not only converges systematically to y? but does so with
dramatically less effort. For some statistics REJ performed
reasonably well, but in general exhibited significant bias.
Both SL and ASL converged to similar biases, usually out-
performing REJ, but in some cases was worse. Parameter
settings where more computation was required for SL and
ASL did result in slightly improved convergence, but the
gain comes with a significantly higher computational cost.
In summary, GPS is able to model the statistic surfaces, en-
abling it to correctly sample from the approximate posterior
target distribution with higher precision and with orders of
magnitude fewer simulation calls than the other algorithms.

6 Discussion and Future Work
We have presented a promising framework for performing
inference in expensive, simulation-based models. Our al-
gorithms improve current state-of-the-art ABC methods in
that they require many fewer calls to the simulator, some-
times orders of magnitude fewer.

Using GPs for surrogate modeling has an appealing ele-
gance; as nonparametric Bayesian models, they naturally
incorporate both model and pseudo-data uncertainty into
the MCMC algorithms. However, there are several tech-
nical issues and modeling limitations with GPs used for
surrogate modeling. Heteroskedatic noise is more likely
the norm than the exception for complicated simulators.
The blowfly simulator is a prime example of this. Im-
provements to our GPs may be achieved using an input-
dependent noise model [11, 13], where the noise is an ad-
ditional independent Gaussian process. Another limitation

of our GP model is the output independence assumption.
A more realistic assumption is a full covariance Gaussian
process such as the convolution processes of [12, 7, 1]. One
final limitation is GP calibration. We found that initializing
the Gaussian process with rejection samples produced in-
ferior results, as it tended to adapt its hyper-parameters op-
timally for those training points and had difficulty readapt-
ing. Despite these limitations, we feel that GPS-ABC de-
serves a place within the ABC toolbox.

Our GPS-ABC uses a random-walk proposal distribution
which is inefficient for exploring the target distribution.
Using GPs offers the opportunity to use other techniques to
improve the mixing (and in turn computational cost). For
example, in [17] a Hamiltonian Monte Carlo run on the GP
surface is used to generate independent proposals. If ap-
plied to ABC, their algorithm would require the equivalent
of a full simulation at the proposed location, whereas if we
incorporated a similar technique, we would then test the GP
uncertainty to determine if a simulation was required.

There has been a recent surge in interest in Bayesian opti-
mization using Gaussian process (GP-BO) surrogates of the
objective surface [8, 24]. GP-BO is often applied to prob-
lems where simulation or sometimes user feedback guides
the surrogate’s construction. What is most interesting about
GP-BO is its use of model uncertainty to actively determine
the next simulation location implemented through acquisi-
tion functions. These ideas can be generalized to our GPS-
ABC algorithm to further reduce simulation costs, while at
the same time maintaining control of the MCMC error.
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