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Abstract

We consider the problem of recovering sparse
correlated data on networks. To improve accu-
racy and reduce costs, it is strongly desirable
to take the potentially useful side-information of
network structure into consideration. In this pa-
per we present a novel correlated compressive
sensing method called CorrCS for networked
data. By naturally extending Bayesian compres-
sive sensing, we extract correlations from net-
work topology and encode them into a graphical
model as prior. Then we derive posterior infer-
ence algorithms for the recovery of jointly sparse
and correlated networked data. First, we design
algorithms to recover the data based on pairwise
correlations between neighboring nodes in the
network. Next, we generalize this model through
a diffusion process to capture higher-order cor-
relations. Both real-valued and binary data are
considered. Our models are extensively tested
on several real datasets from social and sensor
networks and are shown to outperform baseline
compressive sensing models in terms of recovery
performance.

1 INTRODUCTION

Networked data, from domains such as social network
of friends, hyper-linked networks of webpages and dis-
tributed network of sensors, are becoming increasingly per-
vasive and important in modern signal processing and ma-
chine learning. Recent research has demonstrated com-
pelling approaches to extract useful information from
these networked data, including latent structure of social
links (Kemp et al., 2004), community detection (Fortunato,
2010), etc. However, with the massive amount of data gen-
erated at an exploding rate, conventional ways of collect-
ing networked data are being challenged, particularly when
measurements are expensive and/or data are redundant.

Figure 1: A graphical illustration of Compressive Sensing
(CS) and Correlated Compressive Sensing (CorrCS) on
networked data. In CS, each sparse signal xi is recovered
independently as yi; in CorrCS, they are recovered jointly
with the network structure.

A significant finding of a large class of high-dimensional
data over the last two decades is their inherent spar-
sity (Candès and Wakin, 2008). As a robust tool to leverage
the sparsity, Compressive Sensing (CS) (Donoho, 2006)
has been developed to collect high-dimensional sparse data
from their low-dimensional projections. With sufficiently
sparse signals, compressive sensing is guaranteed to re-
cover the original signal from fewer samples required by
Shannon-Nyquist limit (Candès, 2006). Compressive sens-
ing has therefore been sucessfully applied to attack vari-
ous problems of data collection in a wide range of fields,
such as medical imaging (Lustig et al., 2008), low-level vi-
sion (Yang et al., 2008), etc.

Successful attempts have been made to apply compressive
sensing to collect and analyze sparse networked data. For
example, in studying large-scale sensor networks, the pi-
oneering work by Luo et al. (2009) shows a successful
scheme to efficiently gather spatially sparse sensor read-
ings. For social networks, Compressive Network Anal-



ysis (Jiang et al., 2011) proposes a novel framework for
clique detection. These approaches typically require find-
ing a proper basis over the network topology so that data
could be sparsely represented.

In many cases, however, it is unclear how the network
topology could imply the sparse structure of the data, and
therefore difficult to identify the sparse basis. Take the
social network for example. It has been known that so-
cial influence and correlation exist at a large statistical
level (Backstrom et al., 2006), but it turns out hard to di-
rectly model due to unobserved latent factors (Anagnos-
topoulos et al., 2008). An interesting question would be,
under uncertainty about correlation of sparse data across
the network, is it possible to seriously incorporate the net-
work structure into compressive sensing and hopefully to
improve recover performance?

In this paper, we present Correlated Compressive Sensing
(CorrCS) to solve this problem. In particular, the setting
in Figure 1 is considered. Each node i is equipped with a
sensor, and we aim to recover the original high-dimensional
data xi from its low-dimensional measurements yi. In-
stead of independently recover sparse signals, CorrCS in-
corporates side-information of the network structure and
build correlation into signal modeling jointly with the in-
herent sparsity. By adopting a probabilistic approach, we
show that it is possible to exploit the flexibility of graphical
models to improve compressive sensing. Our approach is
extensively tested on several real datasets, including prod-
uct review data from social trust networks, social polling
data and Air Quality Index from distributed sensors. The
results show that CorrCS outperforms CS in terms of re-
cover performance and demonstrates the usefulness of cor-
relation in sensing networked data.

2 PRELIMINARY

In a typical sensing problem, the data of interest is regarded
as a signal, which is a vector x in a high-dimensional
space Rr. A measurement of x is a low-dimensional vec-
tor y ∈ Rm (m ≤ r) from which the information of x can
be extracted. From a Bayesian point of view, this corre-
sponds to inferring p(x | y) ∝ p(y | x)p(x). The likeli-
hood term p(y | x) describes a sensing model, which is the
noisy measurement process, and the term p(x) corresponds
to a signal model, which represents the prior knowledge.

2.1 THE SENSING MODEL

A large body of sensing methods focus on the linear system

y = V x (1)

with the goal to recover x from y accurately. However,
since r � m, the inversion problem is highly ill-posed due
to the undetermined solutions. One way to deal with the

uncertainty is to adopt a Gaussian generative model for y
as follows,

y | x ∼ N (V x, β), (2)

where β is the variance controlling the precision of mea-
surement.

2.2 THE SIGNAL MODEL

Many natural signals x ∈ Rr can be sparsely represented
under some basis Φ = [φ1,φ2, ...,φK ] as

x = Φz (3)

where z is the sparse coefficients such that ||z||0 = S �
K. Compressive sensing (Donoho, 2006; Candès and
Wakin, 2008) shows that if the signal x is sufficiently
sparse, one can recover it effectively through minimizing
the number of non-zero components in z:

min ||z||0
s.t. y = Mz (4)

where M = VΦ. In practice, it is often hard to solve
the non-convex objective in (4) exactly, and a `1 relaxation
is usually adopted, which corresponds to the basis pursuit
(BP) algorithm (Chen et al., 1998). Candès et al. (2006)
have proved that, under certain isometry properties, one can
recover x perfectly from m = Ω(S log r) observations y
through BP.

To allow extra flexibility that we would exploit later, the
framework of CS could be reformulated approximately as
a Bayesian inference problem (Ji et al., 2008), and its goal
is to design a signal model p(z;Γ) with some parameter Γ
so that z is controlled to be sufficiently sparse. Below we
describe two common sparse signal models in social and
sensor networks.

`1 prior for real-valued z. Using sparsity-favoring
Laplace priors on the coefficients (Babacan et al., 2010),
one could use the following signal model:

p(z;λ) =
λK/2

2K
exp

(
−
√
λ||z||1

)
(5)

In practice, it is often inconvenient that the Laplace prior
is not conjugate to the Gaussian signal model. However,
one can show that (5) is equivalent to a hierarchical conju-
gate model parametrized by Γ = ({γk}Kk=1, λ) (Seeger and
Nickisch, 2008).

p(z;Γ) =

K∏
k=1

N (zk; 0, γk)

p(Γ) = Gamma(γk; 1,
λ

2
) (6)

The inference of z for (6) can be efficient via the EM algo-
rithm (Dempster et al., 1977).



Beta process for binary z. An efficient way to charac-
terize the sparsity of binary-valued coefficients is the Beta
process (Paisley and Carin, 2009). In practice, a finite trun-
cation of the process is used and leads to the following hi-
erarchical conjugate model:

p(z;Γ) =

K∏
k=1

Bernoulli(zk;πk) (7)

p(Γ) =

K∏
k=1

Beta(πk;
a

K
, b(1− 1

K
))

where Γ = ({πk}Kk=1, a, b) and a, b are hyper-prior af-
fecting sparsity. The exact posterior inference of (7) is in-
tractable, but can be approximated through MCMC (Mo-
hamed et al., 2011) or mean-field variational infer-
ence (Paisley and Carin, 2009).

3 CORRELATED COMPRESSIVE
SENSING

Now, consider the problem of collecting data distributed
on a network of n nodes. When the network structure is
known, it can be described by a graph G(V,E), where the
edges have weight

Eij =

{
wij , node i and j are adjacent
0, otherwise , (8)

where wij encodes the side-information about the correla-
tion between the node i and j. In practice, such weight can
either be collected directly from network or be computed
through some metrics such as Pearson correlation and some
function of geographic distance. When this weight is not
exactly available, it is convenient to set wij = 1 for all
edges uniformly. Let (Z,X,Y ) = {zi,xi,yi}ni=1, the
Bayesian formulation of sensing is generalized as the fol-
lowing principle

p(Z|Y ) ∝ p(Z)

N∏
i=1

N (M izi, β). (9)

Instead of applying compressive sensing independently to
each node (i.e. p(Z) =

∏
i p(z

i)), Correlated Compres-
sive Sensing (CorrCS) fuses the network structure G into
recovery as side-information. To fulfill this goal, a joint
distribution p(Z) is explored in this section to capture the
notion of joint sparsity and correlation.

3.1 PAIRWISE CORRELATION

The simplest form of correlation among networked data
is pairwise according to the edge connecting neighbor-
ing nodes. Inspired by graphical models, we con-
sider a range of pairwise Correlated Compressive Sensing

(CorrCS-Pair) that can be formulated as the Gibbs dis-
tribution

p(Z | Γ) ∝ exp
(
−
∑
i

Si− c
∑

(i,j)∈E

Cij(zi, zj)
)
. (10)

where Si is the sparsity of individual node zi controlled by
hyper-parameter Γ and Cij models the pairwise correlation
between two neighboring signal coefficients zi, zj . The
parameter c controls prior on the strength of correlation.

Notice when c = 0, equation (10) reduces to independently
applying BCS to each node. And the bigger c is, more cor-
relation between neighboring nodes is favored over spar-
sity. On networked data with inherent correlation, we
would expectedly improve the recovery performance with
proper choice of positive c. However, if c→∞, the model
would totally neglect sparsity, and therefore be undesirable.
This variation of the recovery performance happens in ac-
tual experiments, as will be discussed later.

Below we consider two specific forms of CorrCS for real-
valued and binary networked data. We discuss their infer-
ence algorithm in section 3.3.

Laplace-GRF Model. Assume Z = Rk×n. Often we
have the prior knowledge that neighboring sparse coeffi-
cient zi, zj are close. This intuition leads to combining
Laplace prior and Gaussian Random Field (GRF). Let

Si = ||zi||1
Cij = wij ||zi − zj ||2 .

The distribution p(Z ; Γ) is jointly Gaussian.

Beta-Ising Model. Assume Z = {0, 1}k×n. This case
is appealing for potential social network applications. For
example, zij could be a latent feature indicating whether
user i likes the product j. The Beta process (7) enforces the
sparsity of binary coefficients. And based on similar idea
of closeness, the Ising model shows a way to incorporate
pairwise correlation into the model:

Cij =

K∑
k=1

wij(2zik − 1)(2zjk − 1). (11)

3.2 DIFFUSION PROCESS

We show that the pairwise correlation for real-valued sig-
nals can be generalized through a Diffusion Process (DP)
on the graph G. The Correlated Compressive Sensing with
Diffusion Process (CorrCS-DP) characterizes the covari-
ant structure of the latent signals with a generative model,
whose zeroth-order approximation is compressive sensing,
and first-order approximation is pairwise CorrCS.

Diffusion Process. For any graph G(V,E), a value func-
tion f : V → R can be defined. Diffusion Process (DP)



is a natural class of stochastic processes on graphs that
yields covariance structure of the function f (Kondor and
Lafferty, 2002). First, we extend our value function as a
function of time t: define f [t] be the snapshot vector of
[f(v1), f(v2), ..., f(vn)] at time t. Next, a diffusion gen-
erator H is defined as a Laplacian matrix of graph G as:

Hij =

 wij for i 6= j and j ∈ A(i)
−
∑

i′ wii′ for i = j
0 otherwise.

(12)

Then H is applied to the value function in the following
way

∂f [t]

∂t
= αHf [t]. (13)

Solving (13), we obtain

f [t] = Kf [0], (14)

where K = exp(αtH) is the Diffusion Kernel. Notice that
heat kernel is always invertible, which means given f [t] at
any time t it is easy to compute f [0] = exp(−αtH)f [t].
Notice that when t = 0, K = I; when t is small, we have
the first-order approximation K = I − αtH .

Correlation via Diffusion. In CorrCS, we can define fk :
V → R for each dimension of the features as f ik = zik,
so the snapshot fk is a vector. By studying the statistical
characteristics of fk, k = 1, 2, ...,K, we can then build a
correlated sparse signal model p(Z), which is the core of
CorrCS-DP.

Imagine that fk is generated through the following process:
Initially fk[0] is sparse. This means each entry f ik[0] is
distributed i.i.d as

f ik[0] ∼ N
(

0, γik

)
, ∀vi ∈ V (15)

Hyper-parameters γik control the sparsity of each entry.
They are both drawn from hyper-priors according to equa-
tion (6).

A diffusion process is then run on the graph G(V,E) and
stops at some time t producing fk[t] = Kfk[0]. Using
the diffusion-based generative model, the inference prob-
lem (9) for real-valued signals becomes

p(Z | Y ;Γ) ∝ Pr(Γ) exp
(
− 1

2

∑
k

(fk)>(K−1)>DkK
−1fk

−1

2
β
∑
i

(yi −Mixi)
>(yi −Mixi)

)
(16)

where Dk = diag(γk)−1. Notice that in this formulation,
we no longer need constant c to control the extent of corre-
lation, since it is directly induced by the prior uncertainty
γik. A few observations can be made about the connec-
tion of CorrCS-DP to other compressive sensing methods
summarized as follows.

Proposition 3.1. Using zeroth-order approximation K :=
I , where I is the identity matrix, CorrCS-DP subsumes
BCS.

Proof. Straightforward. By replacing K := I in (16), the
posterior p(X|Y ) is exactly the same as BCS.

Proposition 3.2. Using first-order approximation K :=
I −αtH , CorrCS-DP reduces to Laplace-GRF model.

Proof. This claim is induced by the general property of
Laplacian H that f>k Hf =

∑
ij wij(f

i
k − f

j
k)2. Using

the first order approximation, we have

− log p(Z|Y ;Γ)=
1

2

∑
ik

(
fk
i

γki
)2 − αt

∑
k

(fk)>DkHf
k

+Const (17)

Let dki = 1/(γki )2. Notice H is a Laplacian matrix,

−(fk)>DH
k f

k=
∑
ij

wij

(
dki (fki )2 + dkj (fkj )2

−(dki + dkj )fki f
k
j

)
=
∑
ij

wij(
di + dj

2
)(fki − fkj )2

−αt
2

∑
i

(Hdk)i

Let
S =

1

2

∑
ik

(fki )2((I − αt

2
)dk)i

and

Cij = wij(
di + dj

2
)(fki − fkj )2,

then p(X|Y ;Γ) ∝ exp(−S −
∑

ij Cij) shows that
Corr-DP reduces to a pairwise correlation model.

3.3 INFERENCE ALGORITHM

The exact inference of CorrCS is largely intractable due to
two reasons. First, the signal model and the sensing model
is not in same conjugate family. Second, even if p(X;Γ) is
jointly Gaussian, in real applications either the number of
nodes or the dimension of features is big.

Instead, we resort to approximation methods and de-
velop the posterior inference based on Variational Bayes
EM (Bernardo et al., 2003). In particular, we use the
mean-field approximation p(X|Y ;Γ) =

∏
ik q(zik;Γ)

and perform the following two-step scheme. In the E-
step, we propagate information across nodes to spread cor-
relation, which can be related to a message-passing pro-
cess (Donoho et al., 2009); in the M-step, we update Γ to
enforce sparsity. The details are outlined in Algorithm 1.



Algorithm 1 Correlated Compressive Sensing

1: Input: Network G(V,E), Y = [y1,y2, ...,yn], basis
Φ, measurement matrices V i and iter.

2: for i = 1→ n do
3: compute M i = V iΦ for all i = 1, 2, ..., n.
4: initialize zi = (M i)>yi.
5: end for
6: for j = 1→ iter do
7: for i = 1→ n do
8: for k = 1→ k do
9: Update factor qik(zik) using equation (19), (20),

(21).
10: end for
11: end for
12: for i = 1→ n do
13: For binary case, use equation (22) to update πi;

for real-valued case, use equation (24) to update
γi.

14: end for
15: end for

E-Step: Spread Correlation.

In the pairwise case, the update algorithm in general is

qi(z
i
k) ∝ exp

(
Eq(zi

¬k)
[ 12β||y

i −Mizi||2 + Si]

+c
∑

j∈A(i)

Eqj(zj)[Cij + Cji]
)
. (18)

where zi¬k denotes all variables in zi except zik. Intuitively,
the first expectation in (18) propagates information across
dimensions of zi, while the second expectation in (18)
spreads correlation among different nodes on the graph via
the edges in between. Notice that for directed networks
wij 6= wji, the information propgates forward and back-
ward the edge in the same way, due to the symmetry of
Cij + Cij .

Specifically, for Beta-Ising model,

q(zik = 1) ∝ πi
k exp

(
− 1

2β(M i
k)>(M i

k)

−2(M i
k)>(yi −M i

¬kE[zi¬k])

+c
∑

j∈A(i)

(wij + wji)(2z
i
k − 1)

)
q(zik = 0) ∝ 1− πi

k.

(19)

Similarly for Laplace-GRF model, the mean-field up-
date for each factor is qik(zik) = N (µi

k, σ
i
k), where

σi
k= (β(M i

k)>M i
k + 1/γik)−1

µi
k= σi

k ·
(
β(M i

k)>(yi −M i
¬kµ

i
¬k)

+c
∑

j∈A(i)

(wij + wji)µ
j
k

)
.

(20)

where µi
¬k denotes all entries in µi except µi

k. For the ex-
tention of Laplace-GRF model, CorrCS-DP contains
long-range interaction among the node, so all other nodes
contribute to the distribution of the current node being up-
dated. As in Laplace-GRF, we still have qik(zik) =
N (µi

k, σ
i
k), but instead

σi
k=
(
β(M i

k)>M i
k + Uk

ii

)−1
µi
k= σi

k ·
(
β(M i

k)>(yi −M i
¬kµ

i
¬k)

+
∑
j∈V

(Uk
¬i + (Uk)>¬i)

>uj
k

)
.

(21)

where Uk = K−TDkK
−1 and uk = [µ1

k, µ
2
k, ..., µ

n
k ].

Iteratively updating the factors according to equation (20),
(19) and (21) guarantees convergence (Wainwright and Jor-
dan, 2008).

M-Step: Update hyper-parameters. With the expec-
tation of current belief about the signal to recover, we
can further update the hyper-parameters Γ to enforce spar-
sity based on EM algorithm (Dempster et al., 1977). For
Beta-Ising, we update the parameters of the Bernoulli
prior πi

k as follows

πi
k ∼

a/K + E[zk]− 1

a/K + b(1− 1/K)− 1
. (22)

For Laplace-GRF, we update the global parameters

γik = − 1

2λ2
+

√
1

4λ2
+

(σi
k + (µi

k)2)

λ
. (23)

The update of γik in CorrCS-DP is similar to
Laplace-GRF. Specifcally, let Qk be a diagonal matrix
at time t such thatQk

ii = σi
k, compute Q̃k = K−1QkK−>,

which can be regarded as the uncertainty about fk[0]. Then
we modify (24) as

γik = − 1

2λ2
+

√
1

4λ2
+
Q̃k

ii

λ
. (24)

Combining E-step and M-step, we can jointly optimize Γ
and infer Z, which eventually recovers the networked data
on the graph G.

4 EXPERIMENT

We evaluate Correlated Compressive Sensing (CorrCS)
empirically on real datasets from social and sensor net-
works with pairwise or Diffusion-like correlation.



4.1 SOCIAL NETWORK DATA WITH PAIRWISE
CORRELATION

Using compressive sensing with pairwise correlation,
we test the two recovery models Laplace-GRF and
Beta-Ising on two datasets: product review on Epin-
ion 1 and consumer polling data in Michigan.

4.1.1 Performance on different datasets

Michigan Polling Data. The social polling data is col-
lected from a survey of consumers in Michigan with 500
monthly telephone calls from January, 1978 to December
2012. The data is real-valued aggregation of four hundred
economic indices. It has been known that pairwise corre-
lation exists in these indices. Using half of the dataset as
past history, this pairwise correlation is computed through
Pearson correlation and taken as the weightwij . Therefore,
we establish a graph of features representing their inherent
correlation. Furthermore, the data is continuous real values
and to sparsify it, we use online sparse matrix factoriza-
tion (Mairal et al., 2010) to find a set of sparse basis.

We test Laplace-GRF model on the Michigan polling
data with a = 1, b = 0.1 and c = 1. As measurements,
we randomly select a fraction of the polling data for each
feature. We refer to the dimension of the selected data ver-
sus the dimension of the original data as measurement ra-
tio. The performance is evaluated via Mean Squared Error
(MSE) of the recover signal with respect to the original one.
The MSE is normalized by the 2-norm of the original sig-
nal. For independent compressive sensing, we include two
popular choices – Bayesian Compressive Sensing (Ji et al.,
2008)(BCS) and Orthogonal Matching Pursuit (Tropp and
Gilbert, 2007)(OMP) – as baseline algorithms. Notice that
some baseline implementations of compressive sensing,
such as Basis Pursuit (Chen et al., 1998)(BP), are too slow
and impractical for networked data.

The result is reported in Figure 2. As we can see,
Laplace-GRF outperforms BCS and OMP largely for
small measurement ratios (less than 0.6). When the mea-
surement ratio is large (exceed 0.6), Laplace-GRF will
have a performance similar to BCS, and it still outperform
OMP to a big extent. Correlation is less useful for large
measurement ratios, mainly because the numbers of obser-
vations are already sufficient for sparse recovery. However,
since in practice, people usually use a measure ratio in the
rang [0.2, 0.5], and rarely measure more than 60% of the
data for recovering. Hence, this will not have strong influ-
ence on Laplace-GRF’s practical use.

To measure the superiority of Laplace-GRF for small
measurement ratio, we could compare the minimum mea-
surement ratio that is needed to achieve a fixed accuracy
level (i.e. MSE level) for different models. Like in this

1Available at trustlet.org.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ratio of Measurement

M
S

E

 

 

OMP

BCS

Laplace−GRF

Figure 2: Performance of Laplace-GRF model versus
the BCS model and OMP on the polling data.

dataset, we compare the minimum measurement ratio for
different models to achieve a MSE not more than 0.2: our
Laplace-GRF needs a measurement ratio of 0.23, BCS
needs 0.32, while the most common baseline algorithm
OMP needs 0.56. We could see that, to achieve this same
recovery effect, Laplace-GRF needs 21% less measure-
ments than BCS, and 59% less measurements than OMP.
This result may imply that Laplace-GRF model could
have valuable practical use since we could use a small num-
ber of measurements to recover a polling result, which is
very close to the original ones. And by considering the in-
herent correlation between these indices, we could reduce
the number of measurements by a ratio of 21% to recover
a result with MSE 0.2 on this data, which means we could
save a great deal of costs for this poll.

Epinion Data. The Epinion data is derived from the social
product review network Epinions with 17,022 customers
and 139,738 products. The graph G is built from the trust-
list of all users: wij = 1 if and only if user i trusts user j,
and therefore it is directed. To reduce the dimensionality of
features, we select a subset of the most 100 popular prod-
ucts. Then zij represents whether customer i liked product
j. The dataZ is inherently sparse with only 5 to 10 nonzero
per column, because the fraction of products rated by each
customer is small. As measurements, each column zi is
projected to a low-dimensional space.

We test Beta-Ising model on the Epinion dataset
against Bayesian Compressive Sensing (BCS) with beta
prior. We choose λ = 1, c = 0.3. For the binary Epin-
ion data, MSE is not a good choice because the data is zero
almost everywhere. Instead, we regard the recovery as pre-
dicting label zij and use F1 score from classifier evalua-
tions, which is the harmonic mean of precision (ratio of
number of correct 1’s we recover over the total number of
1’s in our recovery result) and recall (ratio of number of
correct 1’s we recover over the total number of 1’s in the
ground truth).

http://www.trustlet.org/wiki/Epinions_datasets
http://www.epinions.com/?sb=1
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Figure 3: Performance of Beta-Ising model versus the
Bayesian-Compressive Sensing on the Epinion data.

Figure 3 shows the result under F1 score. It can be seen that
with correlation, the performance of BCS can be improved
with a varying number of measurement ratios.

In our experiment, Beta-Ising model takes approximately
the same amount of time for one iteration as BCS does,
which indicates that it is a feasible and practical method
for recovering binary networked data.

4.1.2 Sensitivity evaluation

Impact of parameters. In these two datasets, all parame-
ters we could set are the parameter of the hierarchical con-
jugate prior a, b, λ and weight c. As has been discussed in
BCS (Ji et al., 2008), our models are not sensitive the pa-
rameters a, b, λ. So in this paper, we focus on the impact of
the weight parameter c on the performance of the CorrCS
models.

The choice of c is the key to CorrCS, which can be viewed
as a regularization parameter controlling the tradeoff with
sparsity. To evaluate the impact of the c on the perfor-
mance, we test the variation of the behavior of the CorrCS
model on different scenario. For example, consider the
Beta-Ising model on the Epinion data, we compare
the variation of the recovery F1 score corresponding to
the change of c when some reasonable measurement ra-
tios are selected (15%, 25% and 35%). Figure 4 shows that
among all these 3 measurement ratios, the performance of
this model will be improved when c starts to grow from
0, and will be demoted when c pass some specific values.
This result accords with our discussion about c in Section
3.1. This kind of variation of the performance according to
c’s variation is reasonable since different values of c imply
different extents that we care about the inherent correlation
between nodes in the network structure. This experiment
show us that the performance will have the same trends of
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Figure 4: Relationship between the performance of the
Beta-Ising model and the parameter c on different measure
ratios.

variation on different measurement ratios when c is chang-
ing.

It is worth noting that among the 3 reasonable measurement
ratios, the best c’s that will induce an optimal performance
are very close. As shown in Figure 4, the model will pos-
sess an optimal performance when c is some value among
0.3. If c = 0.3, then the model will always have a nearly
optimal recovery result as long as the measurement ratio is
in a reasonable range. Therefore, in this model, we could
choose an optimal choice of c that works well on all rea-
sonable cases.

Impact of noise on the measured data. To test the ro-
bustness of these two models, we test the performance of
our model on the two datasets when noises are added. More
precisely, we add a Gaussian noise at each dimension of the
observation y, where the standard deviation of this noise at
each dimension is κ times the original value of this dimen-
sion, where κ is Signal-to-Noise Ratio. We test the perfor-
mance of the two models as κ increases from 0 to 0.5 on
different scenarios (i.e. different measure ratios and weight
parameters). As can be seen in Figure 5, this two models
possess strong robustness on the two datasets since even if
κ goes to 0.5 the recovery result will not vary too much.
The Beta-Ising model on the Epinion dataset has a
slightly better robustness than that of the Laplace-GRF
model on the polling dataset since it deals with binary vari-
ables, whose robust recovery turns out to be easier.

4.2 POLLUTION DATA FROIM SENSOR
NETWORK

The Beijing pollution data includes a network of 22 mon-
itoring stations collecting data in the same time window
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Figure 5: Robustness of CorrCS on the 2 datasets when
some noise is added to the measure. (a). Robustness of the
Laplace-GRF model on the Polling dataset. (b). Robust-
ness of the Beta-Ising model on the Epinion dataset
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Figure 6: Performance of CorrCS-DP on Air Quality
Dataset. Recovery accuracy of CorrCS-DP compared with
BCS and OMP.

from Feb. 8th 2013 to Dec. 17 2013. The Air Quality
Indexes (AQI) PM2.5 is recorded at an interval of 1 hour.
The geography information of the sensors are available as
GPS coordinates (gi, li), which we use to compute the edge
weight of the sensor network through their euclidean dis-
tance eij = exp(−θ

√
(gi − gj)2 + (li − lj)2).

The time sequence data is divided into 22 chunks, with
2 weeks of pollution data each chunk. The data is then
split into two parts. Then we use 11 chunks to train a
set of sparse basis using online sparse matrix factoriza-
tion (Mairal et al., 2010), and also as cross-validation to
find the best choice of diffusion time t = 0.1 and c = 5.
The rest 11 chunks are used to test CorrCS and its coun-
terparts. To simulate a real setting of measurement, we ran-
domly select a portion of the samples as measurement and
try to recover the rest. To test recovery accuracy in vari-
ous situations, we change the ratio of measurement from 0
to 1 and compute the mean square error of the recovered
signals.

Figure 6 and 7 shows the recovery accuracy and conver-
gence rate of CorrCS-DP on the pollution dataset with
comparison to the compressive sensing counterparts. The
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Figure 7: Convergence of recovery accuracy with number
of iterations.

Objective MSE CorrCS-DP OMP BCS
0.1 0.30 0.60 0.54

0.15 0.18 0.41 0.43
0.2 0.13 0.29 0.35

Table 1: Minimum measurement ratio to reach some partic-
ular values of MSE on the AQI dataset on different models

results are averaged over 10 independent runs. From Figure
6 we can see that CorrCS largely improves the recovery
accuracy for various ratio of measurement, due to exploit-
ing the correlation among different nodes. To measure the
improvement of CorrCS-DP comparing to the other two
models precisely, we could again compare the necessary
minimum measurement ratio to reach some particular val-
ues of MSE on this data set on different models. As shown
in Table 1, to reach the same MSE, CorrCS-DP could
measure at least 40% less data than the other two models.
Furthermore, as shown in Figure 7, CorrCS converges in
about 3-4 steps. The convergence is faster than both OMP
and BCS, and therefore demonstrates CorrCS-DP to be an
efficacious and pragmatic correlated-recovery model.

5 RELATED WORK

Last two decades have witnessed significant advances in
the theory and application of sensing sparse signals. Com-
pressive sensing exploited the fact that natural signals
are sparse and compressive under proper basis and de-
signed sampling algorithms beyond the Nyquist-Shannon
limit (Candès and Wakin, 2008). The theory of compres-
sive sensing was developed by Candès et al. (2006) to
explain this novel recovery performance. This theory was
further improved by Candès and Tao (2006) to account for
noisy measurements. The underlying property empower-
ing sparse recovery is Restricted Isometry Property (RIP)
of measurement matrices (Candès, 2008). On the algorith-
mic side, the first attempts to solve compressive sensing
problems rely on `1 minimization under linear program-
ming (Chen et al., 1998; Candès and Tao, 2005). Instead
of optimizing with a large number of constraints, Orthog-



onal Matching Pursuit (Tropp and Gilbert, 2007) used a
greedy heuristic to find solutions close to `0 optimum. To
facilitate large-scale applications, Donoho et al. (2009) bor-
rowed ideas from graphical models and derived a message
passing algorithm for compressive sensing.

The Bayesian formulation of compressive sensing (BCS)
is first proposed by Ji et al. (2008), which used a tractable
conjugate Gamma prior on signal precision to enforce spar-
sity. It was shown that Bayesian compressive sensing al-
lows uncertainty estimate and adaptive sampling. Based
on BCS, Ji et al. (2009) developed a multi-tasking com-
pressive sensing algorithm that allows simultaneously data
collection from multiple sensors. Babacan et al. (2010)
showed that stronger sparsity can be achieved for BCS with
an conjugate prior on signal variance that is equivalent to
the Laplace prior. As a counterpart of Laplace prior, beta
prior is also commonly used (Paisley and Carin, 2009),
with an additional latent variable controlling the support of
signals. By comparing Laplace and Beta priors for sparse
representation, Mohamed et al. (2011) concluded that Beta
prior enforced stronger sparsity than the Laplace prior.

Real data is typically not sparse and therefore one must
take effort in finding the appropriate basis. With a data-
drive approach, dictionary learning for sparse basis orig-
inated from efforts in reproducing V1-like visual neu-
rons through sparse coding (Olshausen and Field, 1997).
Aharon et al. (2006) generalized the K-means clustering al-
gorithm, and computed sparse decomposition by iteratively
updating sparse coefficients and dictionary items. Mairal
et al. (2009) proposed online dictionary learning methods,
which leads to efficient computation of sparse coding.

Compressed sensing has find great applications in sensor
networks. It was first successfully applied to network mon-
itoring for optical and all-IP networks (Coates et al., 2007).
In terms of data gathering, Luo et al. (2009) constructed
a sensor network with a sink collecting compressed mea-
surements, which is equivalent to a random matrix projec-
tion. Xu et al. (2013) considered more general compressed
sparse functions for sparse representation of signals over
graphs. Other than collecting data, compressive sensing
was also used as a network analysis tool to identify social
community on graphs (Jiang et al., 2011).

The topic of correlation in compressive sensing has been
explored preliminarily in various ways. Shahrasbi et al.
(2011) used belief propagation to handle time-correlated
signals with compressive sensing. Arildsen and Larsen
(2014) explores the correlation of signal and measurement
noise. In terms of networked data, Feizi et al. (2010) con-
siders a distributed setting and a joint recovery model. As
far as we know, our work is the first to explicitly incorpo-
rate graph structure as a hint of correlation.

Diffusion process has long been used as a general tool
to capture correlation among data (Kondor and Lafferty,

2002). Ma et al. (2008) used diffusion process to model
marketing candidate selection in social networks. The dif-
fusion process may also be utilized to produce an represent-
ing wavelet basis on graphs and manifolds (Bremer et al.,
2006). Using diffusion wavelets, it is possible to sparsify
signals on different graph topologies and allow compres-
sive sensing (Haupt et al., 2008). However, our correlated
compressive sensing does not rely on the strong assump-
tion that data on the network should be sparse under some
basis, but rather weakly correlated.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present Correlated Compressive Sensing
(CorrCS) to leverage correlation among networked data
and to empower better sparse recovery. Using a Bayesian
approach, CorrCS allows flexible representation of prior
knowledge about correlation via a graphical model. Two
common types of correlation of networked data are consid-
ered: pairwise and diffusion-based. We have shown the
diffusion-based formulation subsumes the pairwise case
via a low-order approximation. Through extensive empir-
ical evaluation on real data on social and sensor networks,
we have demonstrated the advantage of correlated com-
pressive sensing over its counterparts.

As future work, we are interested in showing bounds in its
recovery performance to better understand its properties.
Also we are interested in developing nonparametric exten-
sions of the current approach to allow adaptive inference of
key parameters and the basis for sparse representation.
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