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Abstract

We present a novel approach for constrained
Bayesian inference. Unlike current methods, our
approach does not require convexity of the con-
straint set. We reduce the constrained variational
inference to a parametric optimization over the
feasible set of densities and propose a general
recipe for such problems. We apply the proposed
constrained Bayesian inference approach to mul-
titask learning subject to rank constraints on the
weight matrix. Further, constrained parameter
estimation is applied to recover the sparse con-
ditional independence structure encoded by prior
precision matrices. Our approach is motivated
by reverse inference for high dimensional func-
tional neuroimaging, a domain where the high
dimensionality and small number of examples re-
quires the use of constraints to ensure meaning-
ful and effective models. For this application, we
propose a model that jointly learns a weight ma-
trix and the prior inverse covariance structure be-
tween different tasks. We present experimental
validation showing that the proposed approach
outperforms strong baseline models in terms of
predictive performance and structure recovery.

1 INTRODUCTION

The Bayesian paradigm has become one of the most im-
portant approaches for modeling uncertainty. Bayes’ clas-
sic theorem provides a principle for updating prior beliefs
with new information, and has become and important com-
ponent of statistics and machine learning. Despite the el-
egance of Bayes theorem, some learning problems require
model constraints that are difficult or inappropriate to en-
force using standard prior distributions. Examples include
linear inequality constraints (Gelfand et al., 1992) and mar-
gin constraints (Zhu et al., 2012).

Williams (1980) showed that the Bayesian posterior distri-
bution can be derived as the solution of a constrained rela-
tive entropy minimization problem. Constrained Bayesian
inference is proposed as an extension that combines
Bayesian inference with other constraints determined by
domain knowledge. Constrained relative entropy mini-
mization can be solved via Fenchel duality theory (Altun
& Smola, 2006), which requires convexity of the constraint
set. In this paper, we propose an alternative approach that
does not require the constraint set to be convex. We find
that the optimization problem resulting from the proposed
approach may be easier to solve than the equivalent Fenchel
dual approach even when the constraint set is convex.

Rank constraints have proven to be effective for controlling
model complexity (Candés & Recht, 2009). In addition to
superior performance in many scenarios, the decomposi-
tions learned are often useful for explaining the structure of
complex multivariate data. Low rank latent variable mod-
els have been applied to various domains including princi-
pal component analysis (Bishop, 1998), multitask learning
(Stegle et al., 2011) and collaborative filtering (Salakhutdi-
nov & Mnih, 2008). We propose a novel approach for low
rank multitask learning via Bayesian inference subject to
a nuclear norm constraint on the predictive weight matrix.
The constrained inference is combined with parameter es-
timation for the prior precision of the matrix-variate Gaus-
sian distribution. We enforce l1 regularization constraints
on the precision matrix to reveal its sparsity structure.

Our work is motivated by reverse inference for functional
neuroimaging. Functional neuroimaging datasets typically
consist of a relatively small number of correlated high di-
mensional brain images. Hence, capturing the inherent
structural properties of the imaging data is critical for ro-
bust inference. Predictive modeling (also known as “brain
reading” or “reverse inference”) has become an increas-
ingly popular approach for studying fMRI data (Pereira
et al., 2009; Poldrack, 2011). Reverse inference involves
the interpretation of the parameters of a model trained to
decode the stimulus or task using the brain images as fea-
tures. We show that the proposed approach is effective in



this domain.

The contributions of this paper are as follows:

• We propose an a novel representation approach for
constrained Bayesian inference. We prove that the op-
timizing density is a member of an exponential family.
The presented results relax the necessary conditions
on the constraint set such as convexity.

• We develop a novel constrained Bayesian model for
rank constrained multitask learning and apply l1 norm
constrained parameter estimation to estimate the inter-
task conditional independence structure.

• The proposed multitask learning approach is applied
to reverse inference for functional neuroimaging data.
We show that the proposed approach results in supe-
rior accuracy as compared to strong baseline models.

As a minor contribution, our work appears to be the first
application of constrained Bayesian inference to continu-
ous valued variables that are not margin constraints. Con-
strained Bayesian inference is discussed in Section 2 and
the proposed representation approach is introduced in Sec-
tion 2.1. We discuss the proposed rank constrained multi-
task learning approach in Section 3. Related work is dis-
cussed in Section 4 and experimental results are presented
in Section 5.

1.1 PRELIMINARIES

We denote vectors by lower case x and matrices by capital
X. Let ID represent theD×D identity matrix. Given a ma-
trix A ∈ RP×Q, vec(A) ∈ RPQ is the vector obtained by
concatenating columns of A. Given matrices A ∈ RP×Q
and B ∈ RP

′×Q′ , the Kronecker product of A and B is
denoted as A ⊗ B ∈ RPP

′×QQ′ . We use ‖·‖p to denote

the vector Lp norm with ‖x‖p = (
∑
i x

p
i )

1
p , and use |||·||| to

denote spectral (matrix) norms i.e. |||X|||p is the Lp norm
of the singular values of X.

Let X be a Banach space and let X ∗ be the dual space of
X . The Legendre-Fenchel transformation (or convex con-
jugate) of a function f : X 7→ [−∞,+∞] is given by
f∗ : X ∗ 7→ [−∞,+∞] as f∗(x∗) = sup

x∈X
{〈x, x∗〉−f(x)}.

where 〈x, x∗〉 denotes the dual pairing. See Borwein & Zhu
(2005) for further details on Fenchel duality, particularly as
applied to variational optimization.

Let E be the expectation operator with Ep [ f(z) ] =∫
z
p(z)f(z)dz. The Kullback-Leibler divergence be-

tween densities q and p is given by KL(q(z)‖p(z)) =
Eq(z) [ log q(z)− log p(z) ]. The delta function as a gener-
alized function that satisfies

∫
Z
f(z)δa{dz} = f(a), where

f is absolutely continuous with respect to dz, and a ∈ Z.
Following from the definition, the expectation with respect

to the delta function satisfies Eδa [ f ] = f(a), and given
the density p, we have that Ep [ δa ] = p(a). Further, it can
be shown (Williams, 1980) that KL(δa‖p) = − log p(a).

An exponential family is a class of probability distributions
whose density functions take the form:

p(x|θ) = h(x)e〈η(θ),t(x)〉−G(θ),

where η(θ) is known as the natural parameter vector, t(x)
is the vector of natural statistics, G(θ) is the log partition
function and h(x) is known as the base measure. The ex-
ponential family is in canonical form if η(θ) = θ. Further
details on exponential family distributions may be found in
(Brown, 1986).

Let x ∈ RD be drawn from a multivariate Gaussian distri-
bution. The density is given as:

N (m,Σ) =
exp

(
− 1

2 tr
(
(x−m)>Σ−1(x−m)

))
(2π)D/2|Σ|P/2

,

where m ∈ RD is the mean vector and Σ ∈ RD×D is
the covariance matrix. | · | denotes the matrix determinant
and tr(·) denotes the matrix trace. Let X ∈ RD×K be
drawn from a matrix-variate Gaussian distribution repre-
sented as MN (M,ΣR,ΣC) where M ∈ RD×K is the
mean matrix, ΣR ∈ RD×D is the row covariance matrix
and ΣC ∈ RK×K is the column covariance matrix. The
density is given by:

exp
(
− 1

2 tr
(
Σ−1C (X−M)>Σ−1R (X−M)

))
(2π)DL/2|ΣR|D/2|ΣC |K/2

.

2 CONSTRAINED BAYESIAN
INFERENCE

Constrained relative entropy inference follows from the
principle of minimum discrimination information (Kull-
back, 1959); a conceptual framework for updating a dis-
tribution given constraints. It defines a procedure for up-
dating the distribution as one that satisfies the constraints
and is closest to a predefined prior distribution in terms
of relative entropy. Bayesian inference is recovered from
the constrained relative entropy framework when the data
constraints correspond to knowledge of the value of y with
certainty (Williams, 1980). Given the observation ỹ ∼ Py ,
this knowledge is encoded using the constraint Eq [ δỹ ] = 1
that must be satisfied by the updated distribution q. The re-
sulting constrained relative entropy minimization problem
is given by:

min
q∈P

[
KL(q(z, y)‖p(z, y)) s.t.Eq [ δỹ ] = 1

]
. (1)

It is clear that any distribution q that optimizes (1) must
satisfy the equivalent conditional distribution constraint



q(y) =
∫
Z
q(z, y) = δỹ , so we will focus on estimating the

portion of the distribution that remains unknown, which,
from the basic rules of probability, is the conditional distri-
bution q(z|y). Thus, it will be useful to express the joint
relative entropy in a form that separates the latent variables
from the observations by expressing KL(q(z, y)‖p(z, y))
as:

Eq(y) [ KL(q(z|y)‖p(z|y)) ] + KL(q(y)‖p(y)).

Enforcing the constraint q(y) = δỹ , we recover that
KL(q(x|y)q(y)‖p(x|y)p(y)) is given by:

KL(q(x|y = ỹ)‖p(x|y = ỹ))− log(p(ỹ)).

The second term log(p(ỹ)) is the log evidence, and is fixed
independent of the first term. The first term is minimized
when q(x|y = ỹ) = p(x|y = ỹ), recovering the Bayesian
posterior distribution1. Thus, the solution of the relative en-
tropy minimization problem (1) takes the form of the gen-
eralized density q∗(x, y) = p(x|y = ỹ)δỹ .

For the rest of the discussion, we focus on q as a density
with respect to Z (ignoring the implicit conditioning). It
is instructive to expand the terms of the loss function. The
relative entropy expands as follows:

KL(q(z)‖p(z|y))− log p(y) (2a)
=Eq [ log q(z)− log p(z|y)− log p(y) ] (2b)
=Eq [ log q(z)− log p(z)− log p(y|z) ] (2c)
=KL(q(z)‖p(z))− Eq [ log p(y|z) ] . (2d)

where (2b) and (2d) follow directly by expansion of the KL
divergence, and (2c) follows from the rules of conditional
probability as p(z|y)p(y) = p(z, y) = p(y|z)p(z). The re-
sult of (2c) also recovers the identity discovered by Zellner
(1988), who showed that the Bayesian posterior density is
given by:

p(z|y) = argmin
q∈P

KL(q(z)‖p(z))−Eq [ log p(y|z) ] . (3)

Constrained Bayesian inference defines a procedure for en-
forcing constraints on latent variables in addition to the
constraints on the observation variables. Let β represent
feature functions that map Z to a feature space with com-
ponents β(z) = {βj(z)} and let C denote a constraint set
of interest. We consider information encoded as expecta-
tion constraints in this paper. The constrained Bayesian
inference procedure is defined by the following equivalent
optimization problems:

min
q∈P, Eq [β(z) ]∈C

[
KL(q(z)‖p(z|y))

]
(4a)

min
q∈P,Eq [β(z) ]∈C

[
KL(q(z)‖p(z))− Eq [log p(y|z)]

]
(4b)

1Recall Bayes rule: p(z|y) = p(y|z)p(z)/p(y)

It is clear from (4a) that constrained Bayesian inference
corresponds to an information projection of the Bayesian
posterior distribution to the set to distributions q that sat-
isfy the constraints Eq [β(z) ] ∈ C. Following Zellner, we
call q∗ the postdata distribution to distinguish it from the
unconstrained Bayesian posterior distribution.

We now consider probabilistic inference via constrained
relative entropy minimization. Altun & Smola (2006) stud-
ied norm ball constraints given by ‖Eq [β(z)) ]− b‖B ≤ ε
where ‖ · ‖B is the norm ball on a the Banach space B cen-
tered at b ∈ B, and ε ≥ 0 is the width. The solution
was found by an elegant application of Fenchel duality for
variational optimization (Borwein & Zhu, 2005). The fol-
lowing Lemma characterizes relative entropy minimization
subject to norm ball constraints.

Lemma 1 (Altun & Smola (2006)).

min
q∈P

KL(q(z)‖p(z)) s.t. ‖Eq [β(z) ]− b‖B ≤ ε (5)

= max
λ
〈λ,b〉 − log

∫
Z

p(z)e〈λ,β(z)〉dz − ε‖λ‖B∗ + e−1

(6)

and the unique solution is given by q∗(z) =
p(z)e〈λ∗,β(z)〉−G(λ∗) where λ∗ is the solution of the
dual optimization (6) and G(λ∗) ensures normalization.

There may be several equivalent representations for a given
density q ∈ P . However, Lemma 1 shows that the density
that minimizes relative entropy subject to norm ball con-
straints, if it exists, has a canonical representation a mem-
ber of the exponential family with base measure p, natu-
ral statistics β(z) and parameters λ∗. The conditions for
Lemma 1 include constraint qualification, which requires
the existence of densities that satisfy the set of constraints,
and a finite cost (6) at the solution λ∗. More details are
given in Altun & Smola (2006) and Chapter 4 of Borwein
& Zhu (2005).

2.1 A REPRESENTATION APPROACH

The dual solution presented in Lemma 1 requires convexity
of the constraint set C. Further, solving the resulting dual
optimization (6) requires the evaluation of the log partition
function which is often challenging. We present an alter-
native representation approach that separates the problem
into two parts. First we find the parametric family of the
optimizing postdata density, then we directly optimize over
that parametric family. Unlike the dual approach, the pro-
posed representation approach does not require convexity
of the constraint set.

For the rest of this paper, we will assume that the set of
solutions q∗ of the constrained Bayesian optimization (4)
is not empty so the optimization problem is well defined.
This implies the existence of at least one density q ∈ P that



satisfies the constraints Eq [β(z) ] ∈ C. This also implies
that the solution of the variational optimization problem is
achieved at a density q∗. Further, we assume that for each
solution q∗, the expectation Eq∗ [β(z)) ] = a∗ is bounded
to avoid the degenerate problem of unbounded constraints.
Finally, we assume that C ⊂ B is a closed subset of the Ba-
nach space B. This assumption is mostly for convenience
and clarity and can easily be relaxed.

Let Ec = {q ∈ P |Eq [β(z) ] = c} denote the constraint
set subject to equality constraints. The constrained Bayes
optimization problem (4b) can be written as:

min
c∈C

[
min
q∈Ec

KL(q(z)‖p(z|y))
]
, (7)

which requires the solution of an inner optimization:

qc = argmin
q∈Ec

KL(q(z)‖p(z|y)). (8)

Let A ⊂ C represent the set of points c ∈ C where c is
bounded, and the optimization problem of (4b) is finite and
attained. Assuming the existence of at least one solution
q∗, it follows that the set A is not empty. We associate a
density function qc to every element c ∈ A. We define a
feasible set of solutions characterized by the set of densities
F = {qc(z) | c ∈ A}. The following proposition is a direct
consequence of Lemma 1 and is stated without proof.

Proposition 2. For any c ∈ A, the unique minimizer of (8)
is given by: qc(z) = p(z|y)e〈λc,β(z)〉−G(λc) where λc is
the solution of the dual optimization (6) with ε = 0 and
G(λc) ensures normalization.

We may now state the main result.

Theorem 3. Let F = {qc | c ∈ A} denote the feasible set
of (8). The postdata density given by the minimizer of (4a)
is the solution of:

q∗ = argmin
q∈F

KL(q(z)‖p(z|y))

and the solution is given by q∗ = qa∗ for the optimal
a∗ ∈ A with q∗(z) = p(z|y)e〈λa∗ ,β(z)〉−G(λa∗ ) where λa∗

is the solution of the dual optimization (6) with the con-
straint set C′ = {Eq [β(z) ] = a∗} and G(λa∗) ensures
normalization. The solution is unique if A is convex.

Sketch of proof: First we prove that q∗ ∈ F by contradic-
tion. Suppose q∗ /∈ F , then q∗ = qv for v /∈ A. This is
a contradiction by definition of A. The first claim follows
directly. The parametric form of the solution follows from
Proposition 2 and the uniqueness of the solution for convex
A follows from the strict convexity of the relative entropy.

Applied directly, Theorem 3 requires the solution of the
equality constrained variational inference (8) in the inner
loop. The key insight from Proposition 2 is that the solution

of (8) fully specifies the parametric form of the density. In
other words, all the members of the set F = {qc | c ∈ A}
have the same parametric form f where qc = fθc(z) is
determined by the choice of c. By definition of the expo-
nential family, all θ ∈ Θ where Θ is the constraint set of
the parametric distribution family containing fθ.
Corollary 4. The postdata density is the minimizer of (4a)
and is given by q∗ = fθ∗ where θ∗ is the solution of:

θ∗ = argmin
θ∈Θ

[
KL(fθ(z)‖p(z|y))
s.t. Efθ [β(z) ] ∈ C

]
.

Sketch of proof: Let the exponential family G = {fθ | ∀θ ∈
Θ}. Clearly F ⊆ G by definition. Suppose fθ∗ /∈ F ,
feasibility implies that fθ∗ satisfies the constraints. Thus
∃ v such that Efθ∗ [β(z) ] = v and v /∈ A. This is a
contradiction by definition of A. Thus fθ∗ = q∗ ∈ F ⊂ G
and the proof follows from Theorem 3.

Our approach suggests the following recipe for constrained
Bayesian inference. First, Proposition 2 is applied to spec-
ify the parametric form of q∗, then Corollary 4 is applied to
convert the variational problem into a parametric optimiza-
tion problem.

3 RANK CONSTRAINED MULTITASK
LEARNING

Let n = 1 . . . N denote the number of training examples
and k = 1 . . .K denote each task so that the output is
given by yn,k ∈ R. Given a D dimensional feature vec-
tor xn ∈ RD and a weight vector wk ∈ RD, each output
is generated as:

yn,k = w>k xn + ε

where ε ∼ N
(
0, σ2

)
. The outputs may be collected into

a output matrix Y ∈ RN×K and the features may be col-
lected into a feature matrix X ∈ RD×K with X(n) = x>n .
The latent matrix W is drawn from a zero mean matrix-
variate Gaussian distribution W ∼ MN (0,R,C) with
row covariance R ∈ RD×D and column covariance ma-
trix C ∈ RK×K . Fig. 1 illustrates the combined generative
model. Without loss of generality, we assume that the out-
put matrix is normalized to zero mean over the columns so
we do not include a bias term. The model parameters are
given by Θ = {R,C, σ2}.

The unconstrained posterior distribution can be computed
in closed form (Bishop, 2006). Let w = vec(W) and y =
vec(Y), then p(w|y) = N (µ,Σ) where:

µ =
1

σ2
Σ(IK ⊗X>)y (9)

Σ−1 = (C−1 ⊗R−1) +
1

σ2
(IK ⊗X>X) (10)

with µ ∈ RDK and Σ ∈ RDK×DK .
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Figure 1: Generative Model for Multitask Learning

3.1 CONSTRAINED INFERENCE

We seek to enforce a rank constraint via the constraint
set B = {B | rank(B) ≤ R}. We apply the recipe dis-
cussed in Section 2.1. First we must define the paramet-
ric form of the postdata distribution by solving (8) for a
fixed b ∈ B. We find that qb(w) is Gaussian distributed
with density N (m,S) and m = b. Following the argu-
ments of Corollary 4, the postdata distribution is found by
minimizing the KL divergence between the Gaussian dis-
tribution N (m,S) and the Bayesian posterior distribution
N (µ,Σ). This is given by:

min
m∈B,S

tr
(
Σ−1S

)
+ (µ−m)>Σ−1(µ−m)

− log |S|+ log |Σ| (11)

where m = vec(M). The optimization decouples between
the mean term m and the covariance term S. The minimum
in terms of the covariance is achieved for S = Σ and the
mean optimization is given by the solution of a rank con-
strained quadratic optimization. We note that the Gaussian
form of the constrained postdata density was not assumed
a-priori, but was found as the solution to the constrained
inference.

The solution of (11) requires computation and storage of
the posterior covariance Σ. This may become computa-
tionally infeasible for high dimensional data. In such situa-
tions, it may be more computationally efficient to estimate
the postdata mean matrix using the form of (4b). Ignoring
terms independent of the mean, this results in the optimiza-
tion problem:

min
M∈B

1

σ2
|||Y −XM|||22 + tr

(
M>R−1MC−1

)
(12)

Nuclear norm constraint: The rank constraint is non-
convex and is challenging to optimize directly. To simplify
the optimization, we replace the rank constraint with a nu-
clear norm constraint D = {D | |||D|||1 ≤ C}. The nuclear
norm is computed as sum of the singular values of the ma-
trix i.e. |||D|||1 =

∑
σi(D) where σi(D) is the ith singular

value of the matrix D. The nuclear norm is known to en-
courage low rank solutions Candés & Recht (2009). The re-
sulting postdata mean inference retains the same form with
the new constraint set. Replacing the constraint set with

a regularization function, we find that the postdata mean
optimization can be rewritten as:

min
M

1

σ2
|||Y −XM|||22 + tr

(
M>R−1MC−1

)
+ |||M|||1

(13)
We note that there is no need for a regularization parameter
if we learn the hyperparameters Θ = {R,C, σ2}, as the
optimization only depends on the relative scale of the three
terms.

Kronecker Covariance constraint: Unlike the prior co-
variance, the posterior covariance matrix does not decom-
pose into Kronecker form. Hence, the size of the posterior
covariance may be of computational concern. We propose
a Kronecker factorization constraint structure for the pos-
terior covariance matrix. Following Theorem 3, we find
that the postdata distribution retains its Gaussian form. Let
S = H ⊗ G where G ∈ RD×D is constrained row co-
variance matrix and H ∈ RK×K is the constrained column
covariance matrix. Employing the cost function (4b) and
ignoring terms independent of the postdata covariance, we
compute:

min
G,H

1

σ2
tr
(
X>XG

)
tr(H) + tr

(
R−1G

)
tr
(
C−1H

)
−K log |G| −D log |H|

This can be solved using an alternating optimization ap-
proach:

G−1 =
1

K

(
tr(H)

σ2
X>X + tr

(
C−1H

)
R−1

)
(14)

H−1 =
1

D

(
tr
(
X>XG

)
σ2

IK + tr
(
R−1G

)
C−1

)
(15)

The result of constrained inference is the postdata distribu-
tion q∗(W|Y) =MN (M,G,H).

3.2 PARAMETER ESTIMATION

In addition to low rank constraints on the weight matrix,
we are interested in learning the prior conditional inde-
pendence structure between the features and between the
tasks. This is achieved by placing Laplacian priors (Fried-
man et al., 2008; Stegle et al., 2011) on the row and column
prior precision matrices:

p(R−1) ∝ exp(−λr
∥∥R−1∥∥

1
)[R−1 � 0],

p(C−1) ∝ exp(−λc
∥∥C−1∥∥

1
)[C−1 � 0],

where the l1 norm is given by ‖R‖1 =
∑
i,j |rij |. Ignor-

ing terms independent of the precision matrices, the loss
function is given by:

min
R−1,C−1

tr
(
R−1G

)
tr
(
C−1H

)
+ tr

(
W>R−1WC−1

)
−K log |R| −D log |C|+ λr

∥∥R−1∥∥
1
+ λc

∥∥C−1∥∥
1

(16)



Algorithm 1 Constrained Inference and Parameter Estima-
tion for Multitask Learning

Initialize G, H, Θ = {R,C, σ2}
repeat

Update M|Θ by solving (13) (equiv. (11) or (12))
repeat

Update G|H,Θ using (14)
Update H|G,Θ using (15)

until converged
repeat

Update R|C,G,H, λr by optimizing (16)
Update C|R,G,H, λc by optimizing (16)

until converged
Update σ2|M,G,H using (17)

until converged
Return M, G, H, Θ

We apply an alternating optimization approach, alternating
between solving for R−1 and C−1. Each of these sub-
optimization problems can be solved using glasso (Fried-
man et al., 2008)

Noise variance update: We also may also update the out-
put noise variance. Ignoring terms independent of the noise
variance, the optimization is given by minimizing (with re-
spect to σ2):

ND log σ2 +
1

σ2

[
|||Y −XW|||22 + tr

(
X>XG

)
tr(H)

]
This can be solved in closed form. The solution is given
by:

σ2 =
1

ND

[
|||Y −XW|||22 + tr

(
X>XG

)
tr(H)

]
(17)

3.3 ALGORITHM

Our goal is to minimize the cost function (4). We solve
this by alternating between constrained inference and pa-
rameter estimation. Constrained inference involves estima-
tion of the postdata distribution q(W|Y) subject to rank
(nuclear norm) and Kronecker covariance constraints, and
constrained parameter estimation involves the estimation of
updated parameters Θ. The proposed algorithm is summa-
rized in Algorithm 1.

4 RELATED WORK

Examples of constrained Bayesian inference in the liter-
ature include maximum entropy discrimination (Jaakkola
et al., 1999) and posterior regularization Ganchev et al.
(2010). Ganchev et al. (2010) applied constrained Bayesian
inference techniques to statistical word alignment, mul-
tiview learning, dependency parsing and part of speech
induction. More recently, researchers have applied con-
strained Bayesian inference for combining complicated

nonparametric topic models with support vector machine
inspired large margin constraints for document classifica-
tion (Zhu et al., 2009), multitask classification (Zhu et al.,
2011) and link prediction (Zhu, 2012).

Constrained Bayesian inference is closely related to tech-
niques for approximate variational Bayesian inference
(Bishop, 2006), used to approximate intractable Bayesian
posterior densities. The approximation typically takes the
form of factorization assumptions between subsets of the
latent variables. The result is often much easier to solve.
Although approximate variational inference also requires
solving a constrained version of (3), the motivations and
results are quite different than in constrained Bayesian in-
ference methods. In particular, the estimated constrained
Bayes distributions may not factorize over subsets of the
latent variables.

Partial Least squares (PLS) (Abdi, 2010) is a popular ap-
proach for low rank multiple regression. PLS estimates
low rank factors that best matches the cross correlation be-
tween the features and the response and is known to be
especially effective when the feature matrix has co-linear
rows and when the features are very high dimensional. Ar-
gyriou et al. (2007) and Yuan et al. (2007) proposed models
for multitask learning using a regularizer that penalizes the
nuclear norm of the weight matrix. This constraint often
results in a weight matrix of low rank. Rai & Daumé III
(2010) proposed a nonparametric Bayesian model for mul-
titask learning using the direct low rank factor representa-
tion. The proposed approach is able to estimate the number
of factors using the Indian buffet process prior.

(Zhang & Schneider, 2010; Allen & Tibshirani, 2012) stud-
ied covariance estimation for the matrix-variate Gaussian
distribution subject to l1 constraints on the precision when
the observed data was generated directly from a matrix-
variate Gaussian distribution. Stegle et al. (2011) extended
the work to the case where the matrix-variate Gaussian dis-
tribution is used a the prior, coupled with additive noise.
They showed that capturing the additive noise structure can
make a significant impact on the quality of the recovered
precision matrix. They noted the in difficulty of inference
in the model and proposed a heuristic using only the pos-
terior mean and ignoring the posterior covariance. Follow-
ing our development, the heuristic inference approach of
Stegle et al. (2011) can now be explained as a constrained
Bayesian inference subject to the constraint the the pos-
terior covariance vanishes. We compare the performance
of this heuristic with the Kronecker constrained inference
approach on simulated and real data experiments, showing
the utility of the richer posterior covariance structure.

5 EXPERIMENTS

We present experimental results comparing the proposed
rank constrained variational approach to other matrix-



variate learning models in the literature. We compared
the models in terms of regression accuracy and in terms
of structure recovery for the underlying precision matrices.
The compared models are as follows:

• Graphical Lasso (GLasso) (Friedman et al., 2008) es-
timates a sparse precision matrix to match the sample
covariance of the response matrix. GLasso was used a
the baseline for inter-task structure recovery.

• Multiple regularized ridge regression (Ridge ) was
used a the baseline for the regression accuracy.
Ridge does not estimate the precision matrix.

• Partial least squares (PLS) (Abdi, 2010) estimates low
rank factors that best matches the cross correlation be-
tween the features and the response. The resulting
weight vector can be used for prediction. PLS does
not estimate the precision matrix.

• Nuclear norm regularized linear regression (Nuc.
Norm) (Yuan et al., 2007) estimates the regression ma-
trix that best predicts the target response subject to a
nuclear norm constraint. The resulting weight matrix
is often of low rank. Nuc. Norm does not estimate the
precision matrix.

• We implemented the matrix variate regression and
sparse precision matrix estimation procedure of (Ste-
gle et al., 2011) (MVG ). Our approach fixed the fea-
ture matrix instead of estimating it from data. As
noted in Section 4, Stegle et al. (2011) used a heuristic
procedure with a degenerate posterior covariance for
the model inference. There is no low rank constraint
applied to the model.

• We implemented a corrected matrix variate regression
and sparse precision matrix estimation procedure us-
ing the Kronecker product posterior covariance con-
straint proposed in Section 3.1 (MVGcorr.). There is
no low rank constraint applied to the model.

• We implemented the proposed nuclear norm con-
strained matrix variate regression and sparse precision
matrix estimation using the constrained Bayesian in-
ference approach regression (MVGrank). This com-
bines the nuclear norm constrained inference for the
low rank weight matrix with l1 constrained precision
matrix learning.

We optimized the proposed MVGrank model by using the
approach outlined in Algorithm 1. A similar procedure
without the nuclear norm constraint was used to optimize
the MVGcorr. and MVG models. Nuc. Norm was optimized
using a special case of MVGrank without any of the covari-
ance matrices. GLasso, Ridge and PLS were optimized us-
ing implementations from the scikit-learn python package
(Pedregosa et al., 2011).

5.1 SIMULATED DATA

Constrained inference is most useful when data is scarce.
We are most interested in high dimensional multiple re-
gression where there are more dimensions than samples. In
such scenarios, the model constraints can be critical for ef-
fective regression and parameter estimation. We performed
experiments using simulated data that matches the charac-
teristics of functional neuroimaging data. We fixed the row
precision matrix and tested the models ability of estimate
the structure of the column precision matrix and the predic-
tive accuracy of the model.

We generated a random row precision matrix by generat-
ing using the approach outlined in Example 1 of Li & Toh
(2010). We first generated a sparse matrix U with non zero
entries equal to +1 or −1, then set C−1 = UU>. Fi-
nally, we added a diagonal term to ensure C−1 is positive
definite. The resulting column precision matrix had a spar-
sity of 20%. The column precision was generated as the
normalized Laplacian matrix (Smola & Kondor, 2003) of
a chain graph with a adjacency matrix set as Ai,j = 1 if
j = {i, i+ 1, i− 1} and zero otherwise.

We generated a low rank weight matrix using the factor
model as W = AB>. The columns of A were gener-
ated from the zero mean multivariate Gaussian distribu-
tion N (0,R) and the columns of B were generated from
the zero mean multivariate Gaussian distributionN (0,C).
We also generated random high dimensional feature ma-
trices X ∈ RN×D with xi,j ∼ N (0, 1). Finally the re-
sponse matrix was generated as Y = XW + N where
N represents independent additive noise with each entry
ni,j ∼ N

(
0, σ2

)
. We selected σ2 to maintain a signal to

noise ratio of 10.

Our domain of interest is characterized by high dimen-
sional feature variables and few samples. Hence we set
the dimensions as N = 50, D = 200 and K = 10. we
performed experiments in the low rank regime (rank = 2)
and the full rank regime (rank = 10). Experiments were
performed using training, validation and test sets with the
same number of samples. All experiments were repeated
10 times. The validation set was used for parameter selec-
tion. The regularization parameter for all the models except
for PLS were selected from the set {10−3, 10−2, . . . 103}.
PLS is not regularized but requires selection of the number
of factors. These were chosen from the set {2, 4, . . . 10}.

The regression accuracy was measured using the coeffi-
cient of determination on the test set. The R2 metric given
by 1 −

∑
(ŷ − y)2/

∑
(y − µ)2 where y is the target re-

sponse with sample mean µ and ŷ is the predicted response.
R2 measures the gain in predictive accuracy compared to a
mean model and has a maximum value of 1. The structure
recovery was measured using the area under the roc curve
(AUC ) (Cortes & Mohri, 2004) using the structure of the
true precision matrix as the binary target, and the values in
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(d) MVGrank

Figure 2: Ground Truth and Recovered Precision Structure with Rank 2 Simulated Data.

Table 1: Average (std.) Accuracy (R2) and Structure Re-
covery (AUC) for Rank 2 Simulated Data.

MODEL R2 AUC

GLasso – 0.610 (0.071)
Ridge 0.219 (0.029) –
PLS 0.214 (0.033) –
Nuc. Norm 0.220 (0.035) –
MVG∗ 0.215 (0.033) –
MVGcorr.

∗ 0.271 (0.038) –
MVGrank

∗ 0.296 (0.038) –
MVG 0.220 (0.035) 0.646 (0.048)
MVGcorr. 0.221 (0.035) 0.648 (0.069)
MVGrank 0.299 (0.038) 0.665 (0.064)

the recovered precision matrix as scores. AUC measures
the quality of the ranking recovered by by the estimated
precision matrix. We also present inference only results
with the proposed models using the known precision ma-
trix. The results from the simulated data experiments are
shown in Table 1 and Table 2. In both tables, we note that
(*) represents inference only results using the true precision
matrix.

Regression: We found that that accounting for the prior
correlation structure had a significant effect on the qual-
ity of the recovered regression. Hence, although the
Nuc. Norm model performed better than Ridge , mod-
els that combined regression with structure recovery out-
performed models using regression only. The corrected
MVGcorr. outperformed the MVG in regression suggesting
the importance of capturing the posterior covariance for re-
gression and parameter estimation performance. We note
that even when the rank is full, the underlying weight ma-
trix is given by the product of the factors is not Gaussian
distributed. This may account for the observation that the
Gaussian based models perform worse for the full rank
data. Another reason may be the significant increase in the
effective dimensionality of the weight matrix parameter to
be estimated using the same amount of data. MVGrank is
able to compensate for this mismatch.

Table 2: Average (std.) Accuracy (R2) and Structure Re-
covery (AUC) for Rank 10 Simulated Data.

MODEL R2 AUC

GLasso – 0.708 (0.071)
Ridge 0.180 (0.036) –
PLS 0.169 (0.037) –
Nuc. Norm 0.168 (0.037) –
MVG∗ 0.179 (0.042) –
MVGcorr.

∗ 0.246 (0.035) –
MVGrank

∗ 0.246 (0.035) –
MVG 0.172 (0.037) 0.702 (0.068)
MVGcorr. 0.172 (0.038) 0.721 (0.071)
MVGrank 0.245 (0.033) 0.700 (0.052)

Structure recovery: Overall, all models improved accu-
racy of recovery for the precision structure as the rank
was increased. At the low rank, the MVGrank model
was the most effective for structure recovery, but the
MVGcorr. model was the most effective at high rank. We
also found that correcting the inference procedure im-
proved the structure recovery performance by comparing
MVGcorr. to MVG . We counted the number of times each
edge was selected over the random repetitions. We present
the recovered graphs for rank 2 simulated data showing
links selected in at least 70% of the repetitions with weight
greater than 10−6 in Fig. 2. MVG selects many more edges
than the MVGcorr. method in this experiment.

5.2 FUNCTIONAL NEUROIMAGING DATA

Functional magnetic resonance imaging (fMRI) is an im-
portant tool for non-invasive study of brain activity. Most
fMRI studies involve measurements of blood oxygenation
(which are sensitive to the amount of local neuronal activ-
ity) while the participant is presented with a stimulus or
cognitive task. Neuroimaging signals are then analyzed
to identify which brain regions exhibit a systematic re-
sponse to the stimulation, and thus to infer the functional
properties of those brain regions. Functional neuroimaging
datasets typically consist of a relatively small number of



correlated high dimensional brain images. Hence, captur-
ing the inherent structural properties of the imaging data is
critical for robust inference.

We completed experiments using brain image data from
an extended set of the openfMRI database2. The data
was preprocessed using a general linear model with FM-
RIB Software Library (FSL) to compute contrast images
for each subject resulting in N = 479 contrast images for
K = 26 contrasts. The target contrasts were encoded into
a response matrix using the 1-of-k representation, where
yn,k = 1 if image n corresponds to task k and is zero oth-
erwise. after masking, we are left with D = 174264 di-
mensions. Each dimension in the brain image corresponds
to a spatial location in the brain. We used the normalized
Laplacian of the 3-dimensional spatial graph of the brain
image voxels to define the row precision matrix. This cor-
responds to the observation that nearby voxels tend to have
similar functional activation. Our approach is motivated
by the observation that functional neuroimages are highly
correlated for different tasks (Poldrack, 2011). We seek to
extract this correlation structure as encoded in the prior pre-
cision matrix. In addition, the high dimensionality and the
similarity between different tasks suggests that the optimal
weight matrix may be of low rank.

We divided the training data into five sets using a stratified
cross validation to ensure that each training set contains a
similar relative number of images corresponding to each
task. In addition to the proposed models, we present ex-
perimental results using the support vector machine clas-
sifier (SVM) using implementations from the scikit-learn
python package (Pedregosa et al., 2011). We also note
that the ridge regression is exactly equivalent to the least
square support vector machine (LS-SVM) (Ye & Xiong,
2007) with a linear kernel. For all models (except for
PLS ), we selected the regularization parameter from the set
{10−3, 10−2, . . . 103}. The number of factors in PLS was
selected from the set {2, 4, 6 . . . 26}. The results are pro-
vided in Table 3.

Table 3: Average (std.) Classification Accuracy for fMRI
Data

MODEL ACCURACY

SVM 0.463 (0.052)
PLS 0.422 (0.030)
LS-SVM 0.472 (0.040)
Nuc. Norm 0.234 (0.022)
MVG 0.463 (0.052)
MVGcorr. 0.476 (0.050)
MVGrank 0.512 (0.034)

2https://openfmri.org/, extended data provided
courtesy of openfMRI.
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Figure 3: Recovered Precision Structure for fMRI Data

We note the difficulty of this classification task due to
the large number of classes and the high dimensional-
ity of the features. Fig. 3 compares the most significant
edges recovered by the precision matrices of MVG and
MVGcorr. methods. The figure shows edges with ab-
solute value of the weight greater than the 90th per-
centile. We found that MVG selected more edges than the
MVGcorr. method. We are in the process of collaborating
with domain experts for further analysis of the task simi-
larities encoded by the the task precision matrices. These
results will be included in an extended version of the paper.

6 CONCLUSION

We proposed a novel primal approach for Bayesian infer-
ence subject to possibly non-convex constraints. We ap-
plied the proposed inference approach to rank constrained
multitask learning. Our approach was motivated by an ap-
plication to reverse inference for high dimensional func-
tional neuroimaging data. We developed an algorithm for
constrained inference that accounts for the latent structure
of the predictive weight matrix and constrained parame-
ter estimation to learn the sparse conditional independence
structure between the tasks as encoded by the prior pre-
cision matrices. We presented experimental performance
results compared to strong baseline models on simulated
data and real functional neuroimaging data.

We are interested in extending the proposed approach to
constrained inference for nonparametric Bayesian models.
In particular, we are interested in rank constrained mod-
els for the matrix-variate Gaussian process applied to ma-
trix completion. We are also interested in further theoreti-
cal development to understand the trade-offs of constrained
Bayesian inference compared to other approaches.
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