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Abstract

We introduce the class of pay or play games,
which captures scenarios in which each deci-
sion maker is faced with a choice between two
actions: one with a fixed payoff and another
with a payoff dependent on others’ selected
actions. This is, arguably, the simplest set-
ting that models selection among certain and
uncertain outcomes in a multi-agent system.
We study the properties of equilibria in such
games from both a game-theoretic perspec-
tive and a computational perspective. Our
main positive result establishes the existence
of a semi-strong equilibrium in every such
game. We show that although simple, pay
or play games contain well-studied environ-
ments, e.g., vaccination games. We discuss
the interesting implications of our results for
these environments.

1 Introduction

The situation in which a decision-maker has to choose
between an action with fixed, certain, outcome to a
course of action with uncertain consequences is a fun-
damental topic in decision making under uncertainty.
We introduce a new framework, called pay or play.
In pay or play each of multiple decision makers must
choose among an action with a known, fixed, payoff,
and an action interpreted as participation in a game
with other decision makers. The outcome of this game
is dependent on who of the other decision makers also
choose to take part in this game. The pay or play set-
ting captures what is arguably the simplest scenario
in which decision makers select between certain and
uncertain outcomes, and the realization of the uncer-
tain outcome is solely dependent on the decision mak-

∗ This work was done while S. Oren was a research
intern at Microsoft Research .

ers and not on “nature”. Importantly, in addition to
its theoretical and conceptual appeal, pay or play en-
compasses, unifies, and abstracts classical models of
immunization and of differential pricing.

A Game-Theoretic Formulation. We now give
an informal, high-level, exposition of our (game-
theoretic) pay or play model. In a pay or play game
there are n self-interested players, each with two possi-
ble strategies (actions). Each player i has a cost func-
tion ci which specifies, for every n-tuple of players’
strategies, the cost of player i. ci is such that when-
ever player i’s strategy is pay his cost is some fixed
value hi, regardless of what the other players’ strate-
gies are. When player i’s strategy is play, however, his
cost is a function of the other players whose strategy
is also play. We require each cost function ci to be
monotone nondecreasing, i.e., as more players choose
play the cost of player i cannot decrease.

We are interested in the properties of (Nash) equilib-
ria in this game-theoretic setting. An equilibrium is
an n-tuple of strategies from which no player wishes
to unilaterally deviate. We explore both pure (deter-
ministic) equilibria, in which each player must choose
one of these two strategies, and mixed (randomized)
equilibria in which a player can choose a probability
distribution over the two strategies. We tackle funda-
mental questions, including: Does a pure equilibrium
always exist? Are equilibria in this environment “glob-
ally efficient”? What is the complexity of determining
the existence and computing equilibria? And more.

Our Contributions. We study the properties of
equilibria in pay or play games both from a game-
theoretic perspective and a computational perspective.
We now briefly summarize our results:

We begin by showing that a pure Nash equilibrium
may not always exists and characterize some sub-
classes pay or play games which always admit a pure
Nash equilibrium. The next natural question is how



hard is it to determine whether such an equilibrium
exists or not—a question tackled in a large variety
of other game-theoretic contexts. We show that this
task is, in general, intractable from both a com-
putational perspective (NP-hard) and information-
theoretic (communication complexity) perspective.

A main criticism against Nash equilibria is that they
are not resilient to deviations by coalitions of players.
Equilibria that are resilient against all such deviations,
called “strong equilibria”, are hence of special interest.
We identify conditions for the existence of a strong
equilibrium. Our main positive result is that any pay
or play game admits an equilibrium with a slightly
weaker property, namely, a “semi-strong” equilibrium.

Next, we explore the conditions under which pay or
play games are Pareto efficient, i.e., when no scenario
that is strictly better for at least a single player and no
worse for all others exists. We also quantify the gap
in global efficiency (sum of players’ costs) between an
equilibrium and the optimum solution (which does not
take into account players’ own selfish agendas).

Lastly, we discuss the implications of our results for
two special cases of pay or play games: classical mod-
els of immunization [1, 2] and of differential pricing
[15, 16]. In particular, we show that the game de-
scribed in [1] always admits a Pareto efficient pure
Nash equilibrium.

Related Work Decision between actions with cer-
tain and uncertain outcomes is the subject of much
research in decision theory. Indeed, the rich litera-
ture about the (so called) value of information, which
concentrates on measuring the gain one obtains by ac-
quiring information. See, e.g., [6, 12, 5, 13].

Equilibrium analysis is fundamental to game theory
and has recently also received much attention from
a computer science perspective. In particular, estab-
lishing when different kinds of equilibria (pure Nash
equilibrium, strong Nash equilibrium, and more) are
guaranteed to exist, and the complexity of comput-
ing such equilibria, are two important, and extensively
studied, research topics. See, e.g., classical game-
theoretic results on the existence of pure Nash equilib-
ria in congestion games [14], potential games [11], and
player-specific congestion games [10], and also more
recent results on computing equilibria in these envi-
ronments [3, 4].

We have already mentioned that pay or play games
generalizes classical models of immunization and dif-
ferential pricing. An additional class of games gener-
alized by the pay or play class are Interdependent Se-
curity Games [7, 8]. Similarly to immunization games
in these games players decide whether to invest in se-

curity or not and their decision affects both their own
vulnerability and their peers vulnerability.

2 Model and Preliminaries

In pay or play games we have a set of N self-interested
players (|N | = n), each with two strategies: pay or
play. We denote the choices of the players by a strat-
egy vector x = (x1, . . . , xn). When referring to pure
(deterministic) strategy profiles, that is, the scenario
that each player selects either pay or play with prob-
ability 1, we shall use xi = 0 to indicate that player i
chooses the play strategy and xi = 1 to indicate that
player i chooses the pay strategy. We denote by A(x)
the set of players who choose the play strategy in pure
strategy vector x. The cost of player i in pure strategy-
vector x, ci(x), is some fixed number hi if i pays in x
(i.e., xi = 1) and a function of the set of players who
play in x, gi(A(x)), if i plays in x. Formally, we define:

ci(x) =

{
hi xi = 1

gi(A(x)) xi = 0

In cases that all the players have the same cost function
we will refer to the fixed cost as simply h and the cost
of the play strategy as g(·).

We require gi(·) to be monotone nondecreasing (that
is, as more players choose play the cost of player i
should increase). Formally, if S ⊆ T and i ∈ S then
gi(S) ≤ gi(T ).

Recall that a player plays a mixed strategy when he
selects some probability distribution over the two ac-
tions. For mixed strategies, xi will denote the proba-
bility that player i chooses the pay strategy. (Observe
that a pure strategy is a special case of a mixed strat-
egy.) The cost of player i in a mixed strategy vector x,
ci(x), is his expected cost over the induced distribution
over pure strategy vectors: ci(x) =

xi · hi + (1− xi) ·
∑

S⊆N−{i}
∏

j∈S(1− xj)gi(S ∪ {i}).

Our focus in this paper is on the Nash equilibria of
play or play games that are defined as follows:

Definition 2.1 A vector of mixed (pure) strategies x
is a mixed (pure) Nash equilibrium if for every player i
and every mixed (pure) strategy x′i: ci(x

′
i, x−i) ≥ ci(x).

As common is game theory literature, x−i is used as
shorthand for the strategy vector describing all play-
ers’ strategies but that of player i, and (xi, x−i) de-
notes the strategy vector in which player i’s strategy
is xi and the other players’ strategies are as in x−i.



3 Pure Nash Equilibria

We begin by addressing the natural question of
whether a pure Nash equilibrium always exists in pay
or play games. We provide an affirmative answer to
this question for some subclasses of pay or play games,
but show that, in general, the class includes games
that do not admit a pure Nash equilibrium. Further-
more, we show that determining whether a specific pay
or play game admits a pure Nash equilibrium is hard
both from a computational perspective (NP-hardness)
and from an information-theoretic perspective (can in-
volve the communication of exponentially many bits).
As each player has a two strategies, though not all
pay or play games possess a pure Nash equilibrium,
all games do admit at least a single mixed Nash equi-
librium. We discuss the properties of such equilibria
later on.

3.1 Sufficient Conditions for Existence

Note that pay or play games in which (i) the cost func-
tions of all players depend only on the number of play-
ers who choose the play strategy and (ii) all players
have the same cost function belong to the classic game-
theoretic category of “congestion games” [14], and so
are guaranteed to possess a pure Nash equilibrium. We
now show that a sufficient condition for a play or pay
game to admit a pure Nash equilibrium is for just one
of these two properties to hold.

First, consider pay or play games in which the cost
function of the play strategy (gi(·)) of all the players
depends only on the number of players who choose the
play strategy (and not on their identities). It is not
hard to observe that such games belong to the class of
player-specific congestion games. This class of games
was defined by Milchtaich [10], who showed that these
games always admit a pure Nash equilibrium. Thus,
the following claim holds for pay or play games:

Claim 3.1 If for every player i there exists a function
wi such that for every S ⊆ N − {i},gi(S ∪ {i}) =
wi(|S|+ 1), then a pure Nash equilibrium exists.

We now show that if the players are symmetric (i.e.,
all have the same cost function), then a pure Nash
equilibrium always exists. We point out that the cost
function of the players is allowed to depend on the
identities of players who choose to play (and not just
on their number).

Claim 3.2 If all players in a pay or play game are
symmetric, then a pure Nash equilibrium of the game
always exists and can be computed efficiently.

Proof: We present a simple greedy algorithm for

computing a pure Nash equilibrium in polynomial
time: begin with the strategy vector x = 1n in which
all players choose the pay strategy. While there ex-
ists a player i /∈ A(x) such that g(A(x) ∪ {i}) < h set
xi = 0.

We claim that the resulting strategy vector is a pure
Nash equilibrium. Observe that once the algorithm
halts every player i ∈ A(x) has a cost smaller than h,
and so prefers the play strategy. On the other hand,
every player j /∈ A(x) would have a cost greater than
h for choosing the play strategy.

3.2 Computational Hardness

Next, we show that if the costs are both player-specific
and can depend on the identities of the players, a pure
Nash equilibrium might not exist at all. This is true
even when the cost functions are restricted to be sub-
modular 1.

Claim 3.3 The pay or play class contains games that
do not admit a pure Nash equilibrium, even for sub-
modular cost functions.

Proof: Consider the following game consisting of
three players numbered 0, 1, 2. The cost of player i is
defined as: hi = 1.5, gi({i − 1, i, i + 1}) = 2, gi({i −
1, i}) = 2, gi({i, i + 1}) = 1, gi({i}) = 1. Where
i+ 1 and i− 1 are computed modulo 3. We show that
this game does not admit any pure Nash equilibrium
by doing a case by case analysis of all the possible
strategy vectors:

• There is no pure Nash equilibrium in which all
players choose the play strategy – one of the play-
ers can benefit from choosing the pay strategy.

• There is no pure Nash equilibrium in which two
players choose the play strategy – if players j and
j + 1 choose the play strategy then the cost of
player j + 1 is 2 and hence he prefers to choose
the pay strategy.

• There is no pure Nash equilibrium in which at
most a single player chooses the play strategy – if
players j and j + 1 choose the pay strategy then
player j can reduce his cost to 1 by switching to
the play strategy.

We are now ready to show that determining whether
a pure Nash equilibrium exists or not is NP-hard. The
proof is based on a reduction from a 3-SAT formula
to a pay or play game and uses the construction from
the previous claim as a gadget.

1A cost function g(·) is submodular if for every two sets
of players S ⊆ T and for ever player j /∈ T it holds that:
g(T ∪ {j})− g(T ) ≤ g(S ∪ {j})− g(S).



Theorem 3.4 Determining whether a pure Nash
equilibrium exists or not in a pay or play game is NP-
hard.

Proof: Given an instance of 3-SAT we construct the
following pay or play instance where all players have
the same fixed cost of 1.5 but different cost functions
for the play strategy.

• For each variable vi of the 3-SAT formula, we cre-
ate two players – ti and fi. We construct their
cost functions such that whenever fi chooses to
play then ti prefers to pay and vice versa. For-
mally, we define for all subsets S such that fi ∈ S:
gti(S) = 2 and for all S such that fi /∈ S:
gti(S) = 1. Similarly, we define for all S such
that ti ∈ S: gfi(S) = 2 and for all S such that
ti /∈ S: gfi(S) = 1.

• For every clause i we create three players,
a3i, a3i+1, a3i+2. We find it easiest to define their
costs by an example: consider, for instance, i =
(vj ∨ v̄k ∨ vl), if tj /∈ S or fk /∈ S or tl /∈ S then
ga3i+r

(S) = 1 for r ∈ {0, 1, 2}. Else, for a set S
such that tj , fk, tl ∈ S and a3i, a3i+1, a3i+2 /∈ S ,
we reconstruct the example from Claim 3.3 and
define:

– g3i+r({a3i+r−1, a3i+r, a3i+r+1} ∪ S) = 2
– g3i+r({a3i+r−1, a3i+r} ∪ S) = 2
– g3i+r({a3i+r, a3i+r+1} ∪ S) = 1
– g3i+r({a3i+r} ∪ S) = 1

where r + 1 and r − 1 are computed modulo 3.

Claim 3.5 The 3-SAT formula can be satisfied if and
only if the previously defined game admits a pure Nash
equilibrium.

Proof: First assume that the formula is satisfiable.
Let φ be an assignment satisfying it. We show that
the following strategy vector is an equilibrium: ev-
ery player of type ai uses the play strategy, player
ti chooses the play strategy if and only if φi = T
and player fi chooses the play strategy if and only
if φi = F . To verify that this is indeed a Nash equi-
librium observe the following: first, for every i player
ai has a cost of 1 which is smaller than the cost of 1.5
for choosing the pay strategy. If player ti uses the pay
strategy, then player fi does not use the pay strategy
– thus the cost of player ti for using the pay strategy is
1.5, if it instead chooses the play strategy it would pay
2. Player fi cost is 1 for playing so this is its best re-
sponse as well. Similarly, one can show that this is also
an equilibrium for players ti and fi such that ti uses
the play strategy and player fi uses the pay strategy.

Next, we show that if there exists a pure Nash equi-
librium then the formula is satisfiable. Let x be the
Nash equilibrium. Clearly it has to be the case that

for all pairs fi, ti exactly one of the players chooses pay
and the other chooses play. Consider the assignment
φi = T if xti = 1 and φi = F if xti = 0. Assume
towards a contradiction that there exists some clause
i which is not satisfied by the assignment φ. Suppose,
for instance, that i = (vj ∨ v̄k ∨ vl). This implies that,
tj , fk and tl all use the play strategy. Therefore, by
construction the three players a3i, a3i+1, a3i+2 are in
the exact same configuration as the nodes in Claim
3.3 and thus a Nash equilibrium does not exist.

3.3 Communication Hardness

We now prove that determining whether a pure Nash
equilibrium exists in a pay or play game is also hard
from an information-theoretic perspective. Specifi-
cally, we consider the problem of determining whether
a Nash equilibrium exists in Yao’s classic communica-
tion complexity model [17]: Suppose that each of the
n players in a pay or play game knows only his own
cost function and the different players wish to find out
whether, when put together, their cost functions in-
duce a game that admits a pure Nash equilibrium. No
computational restrictions whatsoever are imposed on
the players. We set an exponential (in the number of
players, n) lower bound on the number of bits the play-
ers must exchange to learn the answer to this question.
(Observe that a player cannot always simply reveal his
entire cost function to others as its specification can,
in general, be exponential in n.)

Theorem 3.6 Determining whether a Nash equilib-
rium exists in a pay or play game requires commu-
nicating an exponential (in n) number of bits.

Proof: To prove the lower bound we present a re-
duction from the well-studied DISJOINTNESS prob-
lem from communication complexity theory. In this
classical setting, there are two parties 1 and 2, each
holding a subset Ai ⊆ {1, . . . , r}. The objective in
DISJOINTNESS is to distinguish between the follow-
ing two possibilities: (1) A1 ∩A2 6= ∅ (2) A1 ∩A2 = ∅.

Classical results in communication complexity estab-
lish that solving DISJOINTNESS necessitates (in the
worst case) transmitting Ω(r) bits. For more informa-
tion the interested reader is referred to [9].

We now show how to construct an n-player pay or play
game G such that a pure Nash equilibrium in G exists
if and only if A1 ∩ A2 6= ∅ in the DISJOINTNESS in-

stance. Suppose that r =
(n−6

2
n−6
4

)
(w.l.o.g., let n = 4k+6

for some integer k > 0). We identify each element
j ∈ {1, . . . , r} with a unique set Sj ⊆ {1, ..., n−62 } of
size n−6

4 . We create n−6 players as follows. For every
element j ∈ {1, ..., n−62 } we create two players vj and



uj . We construct their cost functions such that when-
ever vj chooses to play uj prefers to pay and vice versa.
Formally, vj ’s cost when choosing the pay strategy is
1.5, as for the play strategy, for all subsets of players
S such that uj ∈ S: gvj (S) = 2, and for all S such
that uj /∈ S: gvj (S) = 1. The cost function of player
uj is defined similarly.

We create 6 more players: t0, t1, t2, and w0, w1, w2.
The cost functions of each of the three players t0, t1,
and t2 are similar to those in the example from Claim
3.3 and are defined as follows: the cost of player ti,
hti = 1.5; for any set S ⊆ {1, ..., n−62 } let VS =⋃

i∈S{vi}; if there is some j ∈ A1 such that Sj ⊆ S,
gti(VS) = 2; if Sj is not contained in S for any
j ∈ A1, gti(ti−1, ti, ti+1, VS) = 2, gti(ti−1, ti, VS) = 2,
gti(ti, ti+1, VS) = 1, gti(ti, VS) = 1, where i + 1 and
i − 1 are computed modulo 3. The cost functions
of each of the three players w0, w1, w2 are defined
similarly: the cost of player wi, hwi

= 1.5; for any
set S ⊆ {1, ..., n−62 } let US =

⋃
i∈S{ui}; if there is

some j ∈ A2 such that SC
j ⊆ S, where SC

j denotes
the complement of Sj , then gwi(US) = 2; otherwise,
gwi

(wi−1, wi, wi+1, US) = 2, gwi
(wi−1, wi, US) = 2,

gwi
(wi, wi+1, US) = 1, gwi

(wi, US) = 1. i + 1 and
i− 1 are again computed modulo 3.

Claim 3.7 There is a Nash equilibrium in the pay or
play game G if and only if A1 ∩ A2 6= ∅ in the DIS-
JOINTNESS instance.

Proof: First consider the scenario that A1 ∩A2 6= ∅
in the original DISJOINTNESS instance. We show
that in this case there is indeed a pure Nash equilib-
rium in G. Let j ∈ A1 ∩ A2. For every i ∈ Sj set
the strategy of player vi to be play and the strategy
of player ui to be pay. For every i ∈ {1, ..., n−62 } \ Sj

set the strategy of player vi to be pay and the strat-
egy of player ui to be play. Observe that none of the
vi’s or ui’s wish to unilaterally deviate from this (still
partial) specification of players’ strategies as each of
these players’ strategies is the exact opposite of that
of his counterpart. Now, set the strategies of all ti’s
and wi’s to be pay. Observe the ti’s do not wish to
deviate as the set of vi-players who chose to play cor-
responds to the set Sj . Observe also that the wi’s do
not wish to deviate as the set of ui’s who chose to play
corresponds to the set SC

j .

Next, we show that if there exists a Nash equilibrium
then A1 ∩ A2 6= ∅. We make the following crucial ob-
servation: in any Nash equilibrium exactly n−6

4 of the
vi’s are using the play strategy. To see this, consider a
specific Nash equilibrium. Observe that if more than
n−6
4 vi’s choose to play then in any pure Nash equilib-

rium their ui counterparts would choose to pay. This
means that less than n−6

4 ui’s pay, which in turn means

that, by construction, the three players w0, w1, w2 are
in the exact same configuration as the nodes in Claim
3.3—this leads to a contradiction, since for the three
nodes in this configuration a pure Nash equilibrium
does not exist. A similar argument establishes that
no less than n−6

4 of the vi’s must play in any Nash
equilibrium as otherwise the ti’s will find themselves
in the same predicament. Consider now the case that
exactly n−6

4 vi’s play. Observe that the ti’s avoid be-
ing in the configuration in Claim 3.3 only if the set of
vi’s who play corresponds to some Sj where j ∈ A1

and the same holds for the wi players only if the set
of ui who chose play corresponds to SC

j and j ∈ A2.
Hence, j ∈ A1 ∩A2.

4 Strong and Semi-Strong Equilibria

One of the criticism often raised against Nash equilib-
ria is that they are not resilient to deviations by coali-
tions of players. Hence, games that admit an equilib-
rium that is resilient against deviations by coalitions
are of special interest. Such equilibria are called strong
equilibria.

Definition 4.1 An equilibrium x is strong if there is
no strategy vector y, such that, for every player i ∈
{j|xj 6= yj}, ci(y) < ci(x). When y is restricted to
be a pure strategy vector we say that x is strong with
respect to pure deviations.

We show that pay or play games that admit a pure
Nash equilibrium also admit a strong pure Nash equi-
librium:

Theorem 4.2 If there exists a pure Nash equilibrium
in a pay or play game then this equilibrium is strong
with respect to pure deviations.

Proof: Let x be a pure Nash equilibrium. Assume
towards contradiction that there exists a deviation of
the set of players S that reduces the cost of all of them.
Observe that S cannot include any player i that pre-
viously used the play strategy (xi = 0). The cost of
such players is at most hi since x is an equilibrium and
by switching to the pay strategy their cost would be
exactly hi. Thus, the set consists of players that use
the pay strategy in x (xi = 1) and deviate to the play
strategy. However, by monotonicity, if player i prefers
the play strategy when more players are choosing it,
then he should also prefer it when a smaller subset is
playing it – in contradiction to the fact that x is an
equilibrium.

One might also require the stronger property that an
equilibrium would be also resilient against (uncoordi-
nated) mixed deviations. Unfortunately, as the follow-



ing example demonstrates, Nash equilibria (both pure
and mixed) in our games are not necessarily strong
with respect to mixed deviations.

Example 4.3 Consider the following symmetric 2-
player instance: the cost of the pay strategy is 2+ε, for
some small ε. The cost of the play strategy is 2 if both
players choose it and 1 if only one of them chooses it.
The unique equilibrium is for both players to choose
the play strategy. Observe that this equilibrium is not
resilient against mixed deviations: if the two players
choose the play strategy each one exhibits a cost of 2.
On the other hand, if they both deviate and use the
mixed strategy of choosing to pay with probability 1/2
to play with probability 1/2, their cost is reduced to
1
2 (2 + ε) + 1

2 ( 1
2 · 1 + 1

2 · 2) = 7
4 + 1

2ε.

On the bright side, as we shall show below, the equilib-
ria of games in our class are resilient against mixed de-
viations in a slightly weaker sense, called semi-strong
Nash equilibrium. Roughly speaking, even though
players can benefit from a joint deviation, this devi-
ation is not “stable”, as there always exists a player
who can improve his cost by deviating again. For in-
stance, the players in Example 4.3 could profit from
jointly deviating to the mixed strategy xi = 1

2 . How-
ever, after this deviation, each one of the players can
decrease his cost even more by deviating to the strat-
egy xi = 0. The fact that deviations are not stable
renders coalition formation hard (as there will always
be a player who has an incentive to “betray” the others
and deviate from the plan).

Definition 4.4 A mixed equilibrium x is semi-strong
if for every mixed strategy vector y at least one of the
following properties hold:

1. There exists a player i such that xi 6= yi and
ci(y) > ci(x).

2. There exists a player i such that xi 6= yi and a
strategy zi 6= yi such that ci(zi, y−i) < ci(y).

We are now ready to prove our main positive result:
every equilibrium of a pay or play game is semi-strong.
The proof is based on the following simple, yet pow-
erful, fact: if player i plays a mixed strategy then his
expected cost is exactly hi, since in a mixed equilib-
rium the player’s two strategies should give the same
payoff.

Theorem 4.5 Every mixed Nash equilibrium in a pay
or play game is semi-strong.

Proof: Consider an equilibrium x, assume towards a
contradiction that it is not a semi-strong equilibrium.
Let strategy vector y be the one for which the two
properties of the definition do not hold. Observe that

the second property implies that y is an equilibrium
with respect to the players in the set S = {i|xi 6=
yi}. This implies that the cost of any player i ∈ S
for which yi > 0 is hi since he either plays a mixed
strategy in an equilibrium or he plays the pure pay
strategy. As the maximal cost a player can exhibit in
an equilibrium is hi, this implies that the only players
in S are ones for which yi = 0. Now, by monotonicity
of the play function, for every player i ∈ S we have
that ci(0, x−i) ≤ ci(y) < ci(x), in contradiction to the
fact that x is an equilibrium.

Corollary 4.6 Every instance of the pay or play class
admits at least a single semi-strong Nash equilibrium.

This quite remarkable property that a semi-strong
Nash equilibrium always exists ceases to hold once we
remove the restriction that one of the strategies should
have a fixed payoff. This is illustrated by the next ex-
ample which is a variation on the prisoner’s dilemma.
For ease of exposition, the game is defined in terms of
positive utility the players wish to maximize, instead
of cost.

Example 4.7 Consider the following 3-player game.
Players 1 and 2 are paired together such that unless
they pick the same strategy all the players have a utility
of 0. When players 1 and 2 choose the same strategy,
the players utilities are defined by the following matrix
where players 1 and 2 are the row player and player 3
is the column player.

c d
c 4, 4 0, 0
d 6, 0 1, 1

For brevity we only show that there is no mixed semi-
strong Nash equilibrium. Let p1, p2, p3 be the coop-
eration probabilities (strategy c) of the three players
respectively. Then, player 1 uses a mixed strategy if
4p2 · p3 = (1− p2)(6p3 + (1− p3)). Similarly, player 2
uses a mixed strategy if 4p1·p3 = (1−p1)(6p3+(1−p3)).

Therefore, we have that players 1 and 2 always play
the same strategy, implying p1 = p2. Hence, player 3
plays a mixed strategy if: 4p21 = (1− p1)2.

By solving this system of equations we get that: p1 =
p2 = 1/3 and p3 = 7/9. To complete the proof, observe
that this is not a semi-strong equilibrium since players
1 and 2 can deviate to the pure strategy d and increase
their utility from 4/3 · 7/9 to 42/9.

5 Pareto Efficient Equilibria

One of the desirable properties of an equilibrium, in-
creasing its stability, is Pareto efficiency. Roughly



speaking, a strategy vector is Pareto efficient if any de-
viation that reduces the cost of one player (or more)
strictly increases the cost of at least a single player.
More formally:

Definition 5.1 An equilibrium x is Pareto efficient
if there is no strategy vector y, such that, for every
player i, ci(y) ≤ ci(x), and for at least a single player
the inequality is strict. If y is restricted to be a pure
strategy vector we say that x is Pareto efficient with
respect to pure deviations.

We show that any Nash equilibrium of a “generic”
pay or play game, i.e., a game in which players’ best-
responses are unique, is Pareto efficient. Formally, we
define generic pay or play games as follows:

Definition 5.2 A pay or play game is generic if for
every player i and set of players S such that i ∈ S:
hi 6= gi(S).

We now prove the following:

Theorem 5.3 In a generic pay or play game, any
pure Nash equilibrium is Pareto efficient with respect
to pure deviations.

Proof: Consider a Nash equilibrium x. Assume to-
wards a contradiction that x is not Pareto efficient.
Let y be a deviation reducing the cost of at least a
single player. Define S = {i|xi 6= yi}. By the as-
sumption that this is a generic game, we have that the
cost of every player i choosing the play strategy in x
is strictly less than hi. Therefore, it has to be the case
that for all players j ∈ S it holds that xj = 1. Now,
similarly to our argument for the strong Nash equilib-
rium in Theorem 4.2, if there is a set of players that
can reduce their cost by jointly switching from the pay
strategy to the play strategy, then by monotonicity it
is beneficial for a single player to perform this devia-
tion. This is in contradiction to the fact that x is a
Nash equilibrium.

Corollary 5.4 In a pay or play game, any pure Nash
equilibrium in which every player i who uses the play
strategy incurs a cost strictly lower than hi is Pareto
efficient with respect to pure deviations.

Unfortunately, the previous theorem no longer holds
for mixed deviations, as Example 4.3 illustrates.

Next, we demonstrate the importance of requiring the
game to be generic. By tweaking the example from
Claim 3.3 we create an instance in which in every equi-
librium some players are indifferent between the two
strategies, but their choice effects other players’ cost.

Claim 5.5 The class of pay or play games contains
games that possess pure Nash equilibria, and all such
equilibria are not Pareto efficient.

Proof: Consider the following game which includes
four players numbered 0, 1, 2, 3. The cost of player
i ∈ {0, 1, 2} is defined as: hi = 1.5 for the pay strategy.
gi({i − 1, i, i + 1}) = 2, gi({i − 1, i}) = 2, gi({i, i +
1}) = 1.5, gi({i}) = 1. Where i + 1 and i − 1 are
computed modulo 3. The cost of player 3 is: h3 = 10
and g3(S) = |S| for a set S such that 3 ∈ S. Observe
that in all Nash equilibria exactly one player of the
players 0, 1, 2 chooses the pay strategy and the rest
of the players choose the pay strategy. First, without
loss of generality, we show that the strategy vector in
which player 0 is the only one using the pay strategy
is an equilibrium. Notice that player 1 is indifferent
between the two strategies as both have a cost of 1.5.
Players 2 and 3 strictly prefer the play strategy, hence
this is an equilibrium. Next, we do a case by case
analysis and show that any strategy vector in which
the number of players using the pay strategy is not
exactly one, is not an equilibrium.

1. There is no pure Nash equilibrium in which none
of the players choose the pay strategy, since in
this case one of the players {0, 1, 2} can reduce its
cost by choosing the pay strategy.

2. There is no pure Nash equilibrium in which two
players (or more) choose the pay strategy. Clearly
player 3 never choose the pay strategy. Now, if
players j and j + 1 choose the pay strategy then
if player j switches to the pay strategy it reduces
its cost to 1.

Observe that this equilibrium, in which a single player
i ∈ {0, 1, 2} chooses the pay strategy is not Pareto
efficient. The reason is that, if player i+ 1 switches to
the pay strategy then player 3 strictly benefit and the
cost of the rest of the players remains the same.

In the next section, we present in more depth one of
the well studied games that belong to the pay or play
class and show that every instance of this game admits
a Pareto efficient pure Nash equilibrium.

6 Examples: Vaccination Games and
Differential Pricing

The pay or play class is quite broad. In this section
we focus on two well-studied subclasses of games that
is contained in this class: vaccination games and dif-
ferential pricing.



6.1 Vaccination Games

We first discuss the class of games presented by Aspnes
et al. [1], which we refer to as “vaccination games”.
A vaccination game is played on a network G with
|V | = n nodes that are the players of the game. Each
player is faced with the following decision: buy a vac-
cination or not. If a player buys a vaccination then
he pays a fixed cost, denoted by c. Else, the player
risks getting his computer infected and exhibiting a
loss of l. After all the players make their decisions one
of the nodes in the network is selected uniformly at
random to be infected by some virus. Next, the virus
spreads in discrete rounds, such that in every round
all the neighbors of every infected node that are not
vaccinated get infected.

More formally, let x be the strategy vector describing
the decisions of the players whether to get the vaccine
or not. xi = 1 for a player that chooses to get the vac-
cine (pay) and xi = 0 for a player that chooses not to
get it (play). Denote by R(x) the set of nodes choos-
ing the pay strategy – getting the vaccine. Let Gx be
the attack graph that is constructed by removing all
nodes in R(x) and all their incident edges. The cost of
the play strategy for node i depends on the size of the
connected component in Gx that i belongs to and the
loss l. More precisely, the expected cost of the play
strategy for a node i in a connected component of size
ki in Gx is ki

n · l. It is not hard to see that this func-
tion is monotone increasing in the number of players
choosing the play strategy and thus, this game belongs
to the the pay or play framework.

It is shown in [1] that a pure Nash equilibrium for
this game always exists. The proof is via a potential
function, which relates the players’ best responses to
the size of the connected components in the attack
graph. Let α = cn

l . The set of pure Nash equilibria
is characterized in [1] as follows: (1) every connected
component of Gx has a size of at most α; and (2)
for every player i ∈ R(x) the size of its connected
component in Gx when node i is added to the graph
together with all its incident edges is at least α.

By utilizing the framework of pay or play games, we
are able to prove a new result for vaccination games
– showing that a pareto-optimal Nash equilibrium al-
ways exists. As was discussed in the previous section,
this property does not hold for pay or play games in
general.

Theorem 6.1 The vaccination game admits a Pareto
efficient Nash equilibrium.

Proof: Assume without loss of generality that l =
1. This implies that the cost of the play strategy for
player i in strategy vector x is simply the size of its

connected component in Gx + i divided by n. We refer
to this as its infection probability. We show that there
exists an equilibrium in which the infection probability
of every node choosing the play strategy is strictly less
than c. In other words, this implies that the size of
every connected component of Gx is strictly smaller
than c. By Corollary 5.4 we have that this implies
the equilibrium is pareto-optimal which completes the
proof.

Assume towards a contradiction that in every equilib-
rium x there exists a connected component of Gx of
size c. Let x be an equilibrium for which Gx has the
minimal number of connected components of size c.
Note that in case one of the connected components is
not a tree, then it is possible to construct a new equi-
librium with less connected components of size c. If
the connected component is not a tree then there ex-
ists a node that can change its strategy to pay without
harming the connectivity of its connected component
in the attack graph. Denote this player by i. The new
strategy vector is an equilibrium since player i is in-
different between the two strategies. The only other
affected players are ones in i’s connected component
that still want to use the play strategy and ones using
the pay strategy which are adjacent to i’s connected
component. The adjacent nodes do not want to change
their strategy to play since by doing that they will be
a part of a connected component of size at least c, thus
they do not want to switch.

Thus, it remains to handle the case in which all con-
nected components of size c are trees. Consider a leaf
i in one such tree, if this leaf is not connected to any
other node (except its parent in the tree), then it can
switch its strategy to play and it is still an equilib-
rium. Otherwise, it is connected to nodes who choose
the pay strategy, denote this set of nodes by S. Go
over the nodes in S in some arbitrary order, for each
node j check the size of its connected component, if it
is at most c − 2 change its strategy to play and con-
tinue. We claim that the resulting strategy vector is an
equilibrium with a smaller number of connected com-
ponents of size c. Observe that by construction the
size of each connected component of the attack graph
of the new strategy vector including neighbors of i,
is smaller than c, therefore all nodes using the play
strategy prefer it over the pay strategy. Also by con-
struction, all the nodes in S that use the pay strategy
would be in a connected component of size at least c
if they decide to switch their strategy. Thus, the new
strategy vector y is an equilibrium such that Gy has
less connected connected components of size c than
Gx, a contradiction.



6.2 Differential Pricing

Lastly, we briefly discuss another well-studied envi-
ronment: differential pricing. Consider the following
scenario: n buyers are interested in purchasing some
good, say a laptop. Each buyer has two options: (1)
he can buy a laptop for a fixed price p (there is a
large enough supply of laptops to sell to all buyers);
(2) take part in a lottery in which k < n laptops will
be assigned to k bidders, uniformly at random, and
each buyer who receives a laptop is charged a lower
price q < p. (Of course, if there are less than k buy-
ers who decide to participate in the lottery, each of
these buyers will be given a laptop). Observe that this
can easily be formulated as a pay or play game. We
note that every such environment admits a pure Nash
equilibrium (and it is, in fact, a congestion game).

7 Price of Anarchy and Price of
Stability

A natural metric for measuring the efficiency of a pure
Nash equilibrium is by comparing its social cost (the
sum of all players’ costs) and the cost of the socially
optimal solution (the strategy vector minimizing the
sum of all players’ costs). We present several simple re-
sults bounding the ratio between the optimal solution
and worst pure Nash equilibrium (a.k.a price of anar-
chy) and the ratio between the optimal solution and
best pure Nash equilibrium (a.k.a “price of stability”)
with respect to different restrictions on the cost func-
tions. We begin with a positive result showing that
for a very restricted subclass of pay or play games the
price of anarchy is 2:

Claim 7.1 If all players have the same submodular
cost functions, and the cost function does not depend
on players’ identities, then the (pure) price of anarchy
is bounded by 2.

Proof: Consider a specific pure Nash equilibrium
x and optimal solution o. Denote by kx and ko the
number of players using the play strategy in x and
o receptively. Observe that if ko ≤ n

2 , then at least
n/2 players choose to pay and hence the cost of the
optimal solution is at least n

2 ·h. The cost of the Nash
equilibrium is at most n · h, since players can always
choose the pay strategy and pay h. Thus, the price of
anarchy for this case is at most 2.

We are left with the case that ko >
n
2 . Observe that

this trivially implies that kx ≤ 2ko. Also, it is not
hard to see that ko ≤ kx. Now, consider the difference
in cost between the pure Nash equilibrium and the
optimal solution: c(x)−c(o) = ((n−kx)h+kx ·g(kx))−
((n − ko)h + ko · g(ko)) = (ko − kx)h + kx · g(kx) −

ko · g(ko). The fact that kn < ko

2 , together with the
submodularity of the cost function, and the fact that
the cost function is nondecreasing, imply that g(kx) ≤
g(2ko) ≤ 2g(ko). Hence, c(x)−c(o) < (ko−kx)h+2kx ·
g(ko)− kog(ko) = (ko − kx)h+ (2kx − ko)g(ko) ≤ kx ·
g(ko) ≤ n·g(ko) ≤ c(o), where the last two inequalities
follow from the simple observation that h ≥ g(ko)

Next, we show that once we lift either of the two re-
strictions previously imposed: (1) all players have the
same cost functions, (2) the cost function depends only
on the number of players choosing the play strategy,
the price of stability can be very high:

Claim 7.2 The (pure) price of stability of a game with
player-specific cost functions that are not dependent on
players’ identities can be linear in n.

Proof: Consider the following n-player instance, for
player 1, h1 = n + ε and g1(S) = |S| for i ∈ S ⊆ N .
For player j 6= 1 hj = 2ε and gj(S) = ε for j ∈ S ⊆ N .
In the optimal solution of this instance, player 1 is
the only one choosing the play strategy – the cost is
1 + 2(n− 1)ε. On the other hand, in the unique Nash
equilibrium all players choose the play strategy, the
social cost in this case n+ (n− 1)ε.

Claim 7.3 If all players have the same submodular
cost function (possibly depends on the players’ identi-
ties) then the (pure) PoS can be linear in n.

Proof: Consider the following instance where h =
1 + ε and for any set S such that 1 /∈ S we define
g({1} ∪ S) = 1 and g(S) = 0. Then, in the optimal
solution player 1 chooses the pay strategy, for a social
cost of 1+ε. In any Nash equilibrium all players choose
the play strategy for a total cost of n.

8 Conclusions

We introduced the pay or play framework, which cap-
tures a simple scenario in which decision makers se-
lect between certain and uncertain outcomes, and the
realization of the uncertain outcome is solely depen-
dent on the decision makers and not on “nature”.
We studied the properties of equilibria (existence, ef-
ficiency, complexity, and more) in pay or play games
from both a game-theoretic perspective and a compu-
tational perspective. Our main positive result estab-
lished that games in this class always possess a semi-
strong equilibrium. We regard our results for pay or
play as a first step, and believe that further explor-
ing the game-theoretic and computational properties
of this class of games (and its subclasses) can provide
valuable insights into strategic decision making under
uncertainty.
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