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Abstract

In this paper, we present structured message
passing (SMP), a unifying framework for ap-
proximate inference algorithms that take advan-
tage of structured representations such as al-
gebraic decision diagrams and sparse hash ta-
bles. These representations can yield signifi-
cant time and space savings over the conven-
tional tabular representation when the message
has several identical values (context-specific in-
dependence) or zeros (determinism) or both in
its range. Therefore, in order to fully exploit the
power of structured representations, we propose
to artificially introduce context-specific indepen-
dence and determinism in the messages. This
yields a new class of powerful approximate in-
ference algorithms which includes popular algo-
rithms such as cluster-graph Belief propagation
(BP), expectation propagation and particle BP
as special cases. We show that our new algo-
rithms introduce several interesting bias-variance
trade-offs. We evaluate these trade-offs empir-
ically and demonstrate that our new algorithms
are more accurate and scalable than state-of-the-
art techniques.

1 INTRODUCTION

Access to fast, scalable and accurate approximate inference
algorithms is the key to the successful application of graph-
ical models to real world problems. As a result, several
approximate inference algorithms have been proposed to
date, in a large body of literature spanning several decades.
Existing algorithms can be classified into two broad types:
message passing based and sampling or simulation based.
Message passing algorithms operate by passing messages
over the edges of a cluster graph derived from the graphi-
cal model while sampling algorithms operate by randomly
generating variable configurations. In this paper, we focus

on message passing algorithms and propose a new frame-
work, structured message passing (SMP) which provides a
principled approach for taking advantage of structured ap-
proaches for representing and manipulating messages.

We propose SMP because popular, approximate message
passing algorithms such as belief propagation (BP) [22],
its various generalizations [19, 34], and expectation prop-
agation (EP) [20, 21] rely on tabular representations. Tab-
ular representations, although easy to use and manipulate,
can be exponentially worse in terms of size and processing
time than structured approaches such as algebraic decision
diagrams (ADDs) [1] and sparse hash tables. As a result,
in presence of time and space resource constraints, which
is often the case in practice, we are unable to apply sev-
eral more efficient and potentially more accurate classes of
algorithms to real-world problems.

Over the last decade, there has been much research on de-
veloping exact inference algorithms that exploit the power
of structured representations. Notable examples are Cachet
[25], ACE [4], and ADD-based variable elimination [3].
The first two use weighted propositional features for rep-
resenting messages while ADD-based variable elimination
uses ADDs [1]. By taking advantage of structural features
such as context-specific independence (CSI) [2] and de-
terminism, the aforementioned algorithms can solve much
larger problems than the junction tree algorithm [17]. For
approximate inference, however, structured representations
have not been investigated as much (cf. [5, 10, 18, 27]) and
their power has not been fully realized.

The basic idea in SMP is quite simple. Unlike BP and EP
in which we associate each cluster and each edge in a clus-
ter graph with a single tabular function and a product of
tabular functions respectively [33], in SMP we associate
a structured representation of a function with each cluster
and each edge, yielding a structured cluster graph. We as-
sume that the structured representation not only defines a
suitable (computer) representation but also various infer-
ence operators such as sum and product. Thus, given a
cluster graph and a message passing schedule, each repre-
sentation defines a structured message passing algorithm.



We show that in spite of its simplicity, SMP enables us
to define more powerful BP and EP algorithms as well
as several new classes of (principled) message passing al-
gorithms. In particular, when the inference operators are
lossless, i.e., they faithfully represent the message, we get
the cluster graph BP algorithm. When the inference oper-
ators are lossy and minimize the KL divergence between
the original function and the lossy representation, we get
the EP algorithm. Defining new lossy operators yields new
classes of algorithms. However, since the structured repre-
sentations can be exponentially more efficient than the tab-
ular representation, the resulting SMP algorithms are likely
to be much more efficient in terms of time and space com-
plexity. Thus, given a bound on time and space complexity,
SMP will allow much larger clusters than tabular BP and
EP. Since the accuracy typically increases with the cluster
size, it is likely that SMP algorithms will be more accurate
than tabular BP and EP.

We consider a possible instance of the class of SMP algo-
rithms in which we artificially introduce determinism and
CSI in the messages. Such messages can then be efficiently
represented using structured approaches, yielding a signif-
icant reduction in complexity. Moreover, if each new mes-
sage includes assignments that have relatively high infor-
mation content, the resulting algorithm will also have high
accuracy. We propose to introduce determinism via Monte
Carlo simulation (e.g., via Gibbs sampling or importance
sampling), retaining only the sampled (and therefore po-
tentially high-probability) partial assignments within each
cluster. Following [10, 30], we propose to introduce CSI
by quantizing messages, namely reducing the number of
distinct values in the range of the message by replacing a
number of values that are close to each other by a single
value.

We show that our new SMP algorithm introduces several
bias-variance trade-offs. Specifically, we show that given a
set of samples and a fixed error bound for quantization, in-
creasing the cluster size increases the variance but reduces
the bias. On the other hand, for a fixed error bound and
cluster size, increasing the sample size decreases the vari-
ance and therefore improves accuracy.

Within our algorithm and the SMP framework, we consider
two structured representations: sparse hash tables and al-
gebraic decision diagrams,1 define lossy and lossless op-
erators for them and empirically evaluate their efficacy on
various benchmarks. For comparison, we use iterative join
graph propagation (IJGP) [19], co-winner of 2010 UAI
competition [8], and evaluate our algorithms on the task of
computing all single variable marginal distributions. Our

1Note that SMP is a general approach for easily designing
message-passing algorithms and as such can be used with any
structured representation, not just ADDs and sparse hash tables.
For example, it is relatively straight-forward to extend our basic
framework to Affine ADDs [26].

experiments show that our new algorithm is superior to
IJGP.

The rest of the paper is organized as follows. In section 2,
we describe notation and preliminaries. In section 3, we
introduce structured cluster graphs and describe structured
representations and operators in section 4. In section 5,
we present our new algorithm that is a possible instance of
SMP and analyze bias-variance tradeoffs for it. We empir-
ically evaluate our new algorithm in section 6. We discuss
related work in section 7 and conclude in section 8.

2 PRELIMINARIES AND NOTATION

A (discrete) graphical model or a Markov network (cf.
[6, 15, 24]), denoted by G, is a triple (X,D,Φ), where
X = {X1, . . . , Xn} is a set of variables, D =
{D(X1), . . . , D(Xn)} is a set of domains of variables,
where D(Xi) is the domain of Xi and Φ = {φ1, . . . , φm}
is a set of functions (also called factors or potentials). Each
function φi is defined over a subset of variables, called
its scope, denoted by S(φi). Let D(X) denote the Carte-
sian product of the domains of all variables in X. Let
x = (x1, . . . , xn) ∈ D(X) where xi ∈ D(Xi) denote
an assignment of values to all variables in X. A Markov
network represents the following probability distribution.

PG(x) =

∏m
i=1 φi(xS(φi))∑

x∈D(X)

∏m
i=1 φi(xS(φi))

(1)

where xS(φi) is the projection of x on S(φi). We will of-
ten abuse notation and write φi(xS(φi)) as φi(x). The de-
nominator of Eq. (1) is a normalization constant, called the
partition function. Common queries over graphical mod-
els are computing the partition function and the marginal
distribution PG(Xi) for all variables Xi ∈ X.

Cluster graph belief propagation (BP) is an approxi-
mate message passing algorithm for computing variable
marginals. It operates on a data structure called the clus-
ter graph defined below:

Definition 1. Given a graphical model G = (X,D,Φ), a
cluster graph is a graphG(V,E) in which each vertex V ∈
V and edge E ∈ E is associated with a subset of variables,
denoted by L(V ) and L(E) respectively such that: (i) for
every function φ ∈ Φ, there exists a vertex L(V ) such that
S(φ) ⊆ L(V ); and (ii) for every variableX ∈ X, the set of
vertices and edges in G that mention X form a connected
sub-tree of G (running intersection property).

In cluster graph BP, we first put each function φ ∈ Φ in
a cluster V such that S(φ) ⊆ L(V ). Then each node Vi
sends the following message to a node Vj on the edge Ei,j ,
iteratively until convergence

mi→j(y) =
∑
z

∏
φ∈Φ(Vi)

φ(y, z)
∏

Vk∈N(i,j)\{Vj}

mk→i(y, z)



where Y = L(Ei,j), y ∈ D(Y), Z = L(Vi) \ L(Ei,j),
z ∈ D(Z), Φ(Vi) is the set of functions from the graphical
model assigned to Vi, mi→j is the message sent from Vi to
Vj , and N(i, j) is the set of neighbors of Vi in G. Once
the messages have converged, we can recover the marginal
distribution for any variable Xi ∈ X by finding a clus-
ter V ∈ V that mentions Xi, multiplying all functions
and incoming messages to the cluster and then summing
out all variables other than Xi from the resulting function.
The cluster graph BP algorithm may not converge. In such
cases, we can put a bound on the number of iterations and
stop the algorithm once it exceeds this bound.

The message passing approach described above is called
sum-product message passing. An alternative approach,
which has smaller time complexity but higher space com-
plexity is belief-update message passing (see [15] for more
details). When the cluster graph is a tree, cluster graph
BP is exact and coincides with the junction tree algo-
rithm. The time and space complexity of cluster graph BP
is O(|V| exp(maxV ∈V |L(V )|)) assuming that each mes-
sage is represented using a table.

The expectation propagation algorithm (EP) [20] operates
on a cluster graph by passing approximate messages. In EP,
we associate a product of functions with each edge [33],
denoted by m̃i→j =

∏
k m̃i→j,k. The main idea here is

to approximate a large message which is computationally
infeasible using a tractable message m̃i→j such that the KL
divergence2 between the two is minimized.

Unlike cluster graph BP, in EP, sum-product and belief-
update message passing will yield different estimates. Of-
ten, however, we prefer belief-update message passing in
EP because it yields more accurate answers in practice.

3 STRUCTURED CLUSTER GRAPHS

In a cluster graph, each cluster and each edge is associated
with a tabular function or a product of tabular functions.
The main, fairly simple idea in structured cluster graphs is
to associate each edge and each cluster with a parametric
(i.e., structured) representation of a function. The paramet-
ric representation of a function is a pair (R,w) where R
denotes the structure and w is a set of real-valued param-
eters. We assume throughout that R determines the com-
plexity of representing the function. We also assume that
the structure is fixed or we have bound on its complexity.

Definition 2. Given a graphical model (X,D,Φ), a struc-
tured cluster graph (SCG) is a graph G(V,E) in which
each vertex V ∈ V and each edge E ∈ E is associated
with a parametric representation of a function, denoted by

2KL divergence between two distributionsP andQ is given by∑
x P (x) log(P (x)/Q(x)). To compute KL divergence between

two functions, we normalize the functions and then compute KL
divergence between them.

RV and RE respectively, such that: (i) for every function
φ ∈ Φ, there exists a vertex V such that S(φ) ⊆ S(RV )
and (ii) for every variable X ∈ X, the set of vertices and
edges inG that mentionX form a connected sub-tree ofG.

To perform message passing over a SCG, we need to define
the sum, product and division operators over the parametric
representation. We assume that the representation system
used defines these operators for us. In addition, we assume
that the system provides a projection operator, which takes
a function φ and a parametric representation (R,w) as in-
put and sets the parameters w. In other words, the projec-
tion operator yields an instantiation of (R,w), which we
will denote byR[φ]. We say thatR[φ] is lossless if we can
recover φ(y) for all y ∈ D(S(φ)), i.e., R[φ](y) = φ(y).
Otherwise, it is lossy.

The product and division operators take two instantiations
RA[φi] and RB [φj ], and a target representation RC as in-
put, and outputRC [φk] where φk = φi.φj and φk = φi/φj
respectively. The sum operator takes as input an instan-
tiation RA[φi], a representation RB , and a set of vari-
ables Y ⊆ S(φi) as input and outputs RB [φj ] where
φj =

∑
Y φi. We say that the sum, product and division

operators are lossless if their output is lossless. Otherwise,
they are lossy. The lossy sum, product and division opera-
tors can be defined in terms of their lossless analogues us-
ing the projection operator; the lossy instantiationRLY [φ],
is simply a projection of the lossless instantiation RLS [φ],
onRLY .

The message passing algorithm over a SCG, which we will
refer to as structured message passing (SMP) operates as
follows. First, we initialize the SCG by initializing the
parametric representation at each edge and each cluster
to the uniform distribution (or to some other distribution
based on prior knowledge). Then, for each function φ ∈ Φ,
we select a cluster V such that S(φ) ⊆ L(V ) and multi-
ply RV [φ] with the current structured representation, say
RV [φV ] at V , storing the result inRV [φV ]. Then, we pass
messages, as usual, between the clusters, using the sum,
division and product operators, until convergence. In sum-
product propagation only the sum and product operators
are used while in the belief update propagation all the three
operators are used. The complexity of structured message
passing is dependent on the representation system used.

It is straight-forward to show that:

Proposition 1. SMP is equivalent to the cluster graph BP
algorithm if all operators are lossless. Similarly, SMP is
equivalent to the EP algorithm under the restriction that
the sum, product and division operators are lossy and all
messages on all edges Ei,j = (Vi, Vj) are such that they
minimize the K-L divergence between the actual message
mi→j and the represented messageREi,j [mi→j ].

In spite of this equivalence, note that SMP with the afore-
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Figure 1: (a) Tabular representation of a Boolean function, (b)
Its ADD representation. In the ADD representation the solid and
dashed arcs correspond to the true and false assignments of the
parent variable respectively.

mentioned restrictions is more powerful than both tabular
BP and tabular EP because by using structured represen-
tations that are more efficient than tabular representations,
in practice, we can run SMP on graphs having much larger
cluster size than both BP and EP. As the accuracy typically
increases with the cluster size, we expect SMP to be more
accurate than tabular EP and BP algorithms having compa-
rable computational complexity.

4 STRUCTURED REPRESENTATIONS

In this section, we consider two structured representations,
sparse tables and algebraic decision diagrams, and describe
lossless sum, product, division and assignment operators
for them. Then, we show how we can exploit the power of
these representations by defining lossy operators.

Sparse Tables Sparse or zero-suppressed tables are often
useful when a substantial number of zeros are present in the
graphical model [13, 16]. Instead of storing a real number
for all possible configurations of variables, the function is
represented as a list of tuples having non-zero values. For
example, the sparse representation of the tabular represen-
tation given in Fig. 1(a) is a table that contains only the first
three entries. The non-zero tuples are typically stored in a
hash table for fast access. It is easy to define lossless sum,
product, division and assignment operators over this repre-
sentation. For instance, the product operator corresponds
to database hash join and the sum operator corresponds to
database project (cf. [28]). The complexity of these oper-
ations is linear in the size of the input and output tables,
assuming constant time table lookup. The lossless opera-
tors define a cluster graph BP algorithm, which is likely to
be more efficient than the tabular approach when determin-
ism is present. However, when no determinism is present,
the resulting BP algorithm will be slightly inefficient than
the tabular approach because of the constant time overhead
introduced by the sparse operators.

Algebraic Decision Diagrams Algebraic decision dia-
grams (ADDs) [1] are an efficient representation of real-

valued Boolean functions having many identical values in
their range. ADDs are directed acyclic graphs (DAG) and
have two types of nodes: leaf nodes which are labeled by
real-values and non-leaf nodes which are labeled by vari-
ables. Each decision node has two outgoing arcs corre-
sponding to the true and false assignments of the corre-
sponding variable. ADDs enforce a strict variable order-
ing from the root to the leaf node and impose the following
three constraints on the DAG: (i) no two arcs emanating
from a decision node can point to the same node, (ii) if
two decision nodes have the same variable label, then they
cannot have (both) the same true child node and the same
false child node and (iii) no two leaf nodes are labeled by
the same real value. ADDs that do not satisfy these con-
straints are referred to as unreduced ADDs while those that
do are called reduced ADDs. An unreduced ADD can be
reduced by merging isomorphic subgraphs and eliminat-
ing any nodes whose two children are isomorphic (see [1]
for more details). A reduced, ordered ADD is a canonical
representation. Namely, two functions will have the same
ADD (under the same variable ordering) iff they are the
same. For example, Fig. 1(b) shows the ADD representa-
tion of the function given in Fig. 1(a).

It is easy to define lossless sum, product and division oper-
ators using standard ADD operations (and in practice, im-
plement them using open-source ADD packages such as
CUDD [29]). The complexity of these operations is linear
in the size of the largest ADD. Note that any non-Boolean
function can be converted to a Boolean function by intro-
ducing a Boolean variable for each variable-value pair and
adding Boolean constraints which ensure that each variable
is assigned exactly one value (cf. [32]). Therefore, our ap-
proach is also applicable to multi-valued variables.

ADDs and Sparse Tables as Features ADDs and sparse
tables can be interpreted as representations of weighted fea-
tures (or propositional formulas) defined over their vari-
ables. Each entry in the sparse table represents a simple
conjunctive feature while each leaf node of an ADD repre-
sents a complex feature that is a disjunction of several con-
junctive features. For example, the first two entries in the
sparse table in Fig. 1(a) represent the conjunctive weighted
features [(¬A ∧ ¬B), 3] and [(¬A ∧ B), 3] respectively
while the rightmost leaf node in the ADD in Fig. 1(b) rep-
resents the complex weighted feature [((¬A∧¬B)∨(¬A∧
B)), 3], which is logically equivalent to [(¬A), 3].

4.1 Lossy Operators

In order to fully exploit the power of structured representa-
tions, we need lossy operators. Note that without lossy op-
erators, we cannot guarantee that the size of the computed
message will be bounded by the size of the structure asso-
ciated with each edge. Since lossy sum, product and divi-
sion operators are simply lossy projections of their lossless



counterparts, we only have to define the lossy projection
operator.

Definition 3. Given a ADD (or sparse table) R, let [fi, vi]
be the weighted feature associated with a leaf node (entry)
i. Then, the lossy projection of a probability distribution
φ on i is vi = 1

|Sol(fi)|
∑

y∈Sol(fi) φ(y) where Sol(fi) is
the set of assignments that are consistent with fi. The lossy
projection of φ on R, denoted by R[φ] is the lossy projec-
tion of φ on all leaf nodes (entries) ofR.

We can show that:

Theorem 1. Given a ADD (or sparse table) R, the lossy
projection operator (see Definition 3) minimizes the KL di-
vergence between φ and R[φ]. In other words, there exists
no other ADD (or sparse table) that has the same structure
asR but has smaller KL divergence.

At first glance, the lossy projection operator may seem im-
practical because it involves computing the number of as-
signments that are consistent with a feature, i.e., it includes
solving the #P-complete model counting problem. How-
ever, for sparse hash tables and ADDs, this is not an issue
because model counting is constant time and linear time in
the size of the representation respectively.

5 A STRUCTURED MESSAGE PASSING
ALGORITHM

Clearly, in order to exploit the compactness of ADDs and
sparse tables, a majority of the messages should contain
determinism and/or CSI. To this end, we propose to artifi-
cially introduce CSI and determinism in the messages. In-
tuitively, if the introduced CSI and determinism captures
most of the probability mass in the message, the resulting
algorithm will be as accurate as cluster graph BP. However,
its time and space complexity will be much smaller.

We cannot add zeros or determinism arbitrarily, however.
Notice that in order to guarantee that the KL divergence
between the exact message and all possible projected mes-
sages does not equal infinity, all configurations of variables
that are consistent in the exact message should also be con-
sistent in the projected message. Otherwise, the minimum
KL distance will equal infinity. For example,

Example 1. Consider a cluster that is associated with an
ADD representing two features (A∨B ∨C, 5) and (¬A∧
¬B ∧ ¬C, 0) and an edge with its neighbor that is associ-
ated with an ADD representing two features (¬A∧¬B, v)
and (A ∨ B, 0). No matter what value of v is selected,
the KL divergence between the exact message obtained by
summing outC from the cluster and any message projected
on the structured representation will be infinity.

There are a number of ways in which we can add determin-
ism so that all clusters and edges satisfy the consistency

condition described above. We propose the following ap-
proach because of its simplicity: generate a set of samples
and project them on each cluster and each edge. The pro-
jected samples define a constraint that all partial assign-
ments that are not present in the generated samples have
zero weight. For example,

Example 2. Consider a graphical model with
three binary variables {X1, X2, X3}. Let S =
{(0, 1, 1), (1, 0, 0), (1, 0, 1)} be a set of samples over
the three variables. Consider a cluster defined over two
variables {X1, X2}. Then, the projection of S on the
cluster is the relation: {(0, 1), (1, 0)}. The other two
assignments {(1, 1), (0, 0)} have zero weight. The ADD
associated with this cluster will represent the following
set of features: {(¬X1 ∧ X2, v1), (X2 ∧ ¬X2, v2),
((¬X1 ∧ ¬X2) ∨ (X1 ∧X2), 0)}.

We can show that our approach that introduces determin-
ism via sampling is correct and yields a structured EP algo-
rithm. The only assumption we have to make is that each
tuple having non-zero value in each function in the graphi-
cal model is included in the samples. This will ensure that
the KL divergence between any function in the graphical
model and its lossy projection is finite. Formally,

Theorem 2. Given a graphical model G = (X,D,Φ), a
structured cluster graph G(V,E), let S be a set of sam-
ples over X such that: (1) For each cluster V ∈ V and
each edge E ∈ E, RV andRE are such that for any func-
tion φ and for all configurations x /∈ S, RV [φ](x) = 0
and RE [φ](x) = 0 and for all configurations x ∈ S,
RV [φ](x) > 0 and RE [φ](x) > 0 and (2) For each func-
tion φ ∈ Φ, all assignments x ∈ S(φ) such that φ(x) > 0
are included in S. Then, for each edge E, there exists
a lossy message such that the KL divergence between the
lossless message and the lossy one is finite.

To artificially introduce CSI in the message, we propose to
use quantization [10, 30]. In this approach, given a small
real number ε, we put all values in the range of the function
into multiple bins such that the absolute difference between
any two values in each bin is bounded by ε. The goal is to
minimize the number of bins. Then, we replace all values
in each bin by their average value in each function. Quan-
tization reduces the number of distinct values in the range
of the function and as a result reduces the size of the ADD
representing the message.

The discussion above yields Algorithm 1, which is a possi-
ble instance of SMP. The algorithm takes as input a graphi-
cal model G = (X,D,Φ), a cluster graph G(V,E), a rep-
resentation system R, an integer k denoting the number of
samples and a real number ε, which denotes the error bound
used for quantization. The algorithm first generates sam-
ples from the graphical model. The samples can be gener-
ated using either importance sampling or Gibbs sampling.
(For higher accuracy, the samples should be such that they



Algorithm 1: Structured Message Passing
Input: A graphical model G = (X,D,Φ), a cluster graph

G = (V,E), a representation systemR, integer k > 0
and a real number 0 ≤ ε ≤ 1

Output: A structured cluster graph with (converged) messages
and potentials

begin
S=Generate k Samples from G;
for each V ∈ V and E ∈ E do

// Project S on V and E
InitializeRV [φV ] andRE [φE ] to zero;
for all configurations x ∈ S do

setRV [φV ](x) = 1 andRE [φE ](x) = 1;

Let G′ = (V′,E′) be the structured cluster graph obtained
in the above step;
for each function φ in Φ do

Find a cluster V ∈ V′ such that S(φ) ⊆ S(φV ) and
multiply φ withRV [φV ];

Run sum-product or belief-update message passing on G′

until convergence. Quantize each message using ε;

capture the modes of the distribution.) After the samples
are generated, we project the samples on each cluster and
each edge and use the representation system to yield a
structured cluster graphG′(V′,E′). Then, we initialize the
parameters of each cluster V ∈ V′ and each edge E ∈ E′

using the functions in the graphical model. Finally, the al-
gorithm runs either sum-product or belief-update message
passing on the structured cluster graph. Each message is
quantized using ε.

Algorithm 1 is equivalent to the cluster graph BP algorithm
when k =∞ and ε = 0. It is equivalent to the quantization-
based EP algorithm proposed in [10] when k = ∞ and
ε > 0. For other values of k and ε, Algorithm 1 yields a
Monte Carlo approximation of cluster graph BP and EP.

The algorithm just presented belongs to a class of al-
gorithms that combine sampling-based inference with
message-passing based inference. Many other advanced al-
gorithms proposed in literature such as Particle BP [14, 31],
AND/OR sampling [9], and sample propagation [23] be-
long to this class. The novelty in our proposed algo-
rithm is that we combine sampling-based inference with
message-passing inference over structured cluster-graphs.
This yields several interesting bias versus variance trade-
offs, which can be leveraged to improve the accuracy of
estimation. We discuss these tradeoffs next.

5.1 Analysis: Bias-Variance Tradeoffs

In this section, we analyze the bias-variance tradeoffs in
Algorithm 1. Let f(x) be the quantity that we want
to estimate (e.g., the partition function or the posterior
marginals). Given a set of samples S, a cluster graph
G and constant ε, let h(x;G, ε,S) denote the estimate of
f(x) computed using Algorithm 1 with G,S, ε as inputs.

Then, the expected mean squared error between f(x) and
h(x;G, ε,S) is

ES[{h(x;G, ε,S)−f(x)}2] = {ES[h(x;G, ε,S)]−f(x)}2

+ {ES[{h(x;G, ε,S)− ES[h(x;G, ε,S)]}2]} (2)

The first term in Eq. (2) equals bias squared and the second
term equals the variance.

We can show that:

Theorem 3. Increasing the cluster size (or decreasing ε) of
the cluster graph used by Algorithm 1 decreases the asymp-
totic bias lim|S|→∞ |ES[h(x;G, ε = 0,S)]− f(x)| but in-
creases the variance.

Proof. (Sketch) Notice that in the limit of infinite sam-
ples and assuming that ε = 0, Algorithm 1 is equivalent
to the cluster graph BP algorithm (we also assume that
the sampling algorithm generates every assignment having
non-zero probability in G with non-zero probability). Since
the set of cluster graphs whose cluster size is bounded by i
(along with the associated cluster potentials and messages)
is included in the set of cluster graphs whose cluster size is
bounded by i+1, the bias will never increase as we increase
the cluster size. Moreover, cardinality arguments (the num-
ber of different clusters of size i + 1 is far greater than the
number of different clusters of size i) dictate that there ex-
ists a particular setting of cluster potentials and messages in
a cluster graph whose cluster size is bounded by i+ 1 that
cannot be represented by any cluster graph whose cluster
size is bounded by i and therefore the asymptotic bias de-
creases as we increase the cluster size. (The asymptotic
bias of a junction tree is zero).

To prove that the variance increases as we increase the clus-
ter size, consider two clusters V and V ′ where V ′ is con-
structed from V by adding a variable to it. Clearly, project-
ing the given set S of samples on V will cover a greater
percentage of the tuples in the potential associated with V
as compared to the potential associated with V ′. As a re-
sult, the effective sample size at V is larger than the ef-
fective sample size at V ′. Since the variance decreases as
the sample size increases, the variance at V will be smaller
than the variance at V ′. Therefore, the variance increases
as we increase the cluster size. Increasing ε has the effect
of introducing new context specific (conditional) indepen-
dences, which is the same as decreasing the cluster size.
Therefore, the same arguments apply to decreasing ε.

From the central limit theorem, it is immediate that:

Theorem 4. Increasing the number of samples while fixing
G and ε decreases the variance. Moreover, the sample bias
converges to the asymptotic bias at the rate of O(|S|−1/2).

Theorems 3 and 4 summarize the bias-variance tradeoffs
associated with Algorithm 1. For a fixed sample size, clus-
ter graphs having large clusters will typically have low bias



and high variance while cluster graphs having small clus-
ters will typically have large bias and low variance.
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Figure 2: Impact of varying k (number of samples), keeping
the i-bound and ε constant for (a) 20 × 20 Ising model with 10
evidence nodes, i = 9 and ε = 2−40, (b) Block coding instance
with 255 variables and 511 functions, i = 12 and ε = 2−100

and (c) Logistics instance with 1413 nodes and 29487 functions,
i = 15 and ε = 2−40.

6 EXPERIMENTS

In this section, we compare SMP with Iterative Join Graph
propagation (IJGP) [19], a state-of-the-art tabular clus-
ter graph BP algorithm. IJGP won two out of the three
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Figure 3: Impact of varying the quantization parameter ε, keep-
ing the i-bound and k constant for (a) 20 × 20 Ising model with
10 evidence nodes, i = 6 and k = 25, (b) Block coding instance
with 255 variables and 511 functions, i = 12 and k = 216 and (c)
Logistics instance with 1413 nodes and 29487 functions, i = 12
and k = 216.

marginal estimation categories in the 2010 UAI compe-
tition [8]. We experimented with instances from three
benchmark domains: (i) Ising models (these instances are
available from the PASCAL 2011 probabilistic inference
challenge), (ii) linear block coding (these instances avail-
able from the UAI 2008 evaluation), and (iii) logistic plan-
ning (these instances are available from the authors of Ca-
chet [25]). Ising models have no determinism, the linear
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Figure 4: Impact of varying the i-bound, keeping k and ε con-
stant for (a) 20 × 20 Ising model with 5 evidence nodes, k = 214

and ε = 2−30, (b) Block coding instance with 255 variables and
511 functions, k = 218 and ε = 2−35 and (c) Logistics instance
with 1413 nodes and 29487 functions, k = 216 and ε = 2−35.

block coding networks have determinism and CSI while the
logistic planning instances have determinism but no CSI.

We used the CUDD package [29] to implement ADDs. For
a fair comparison, we constructed the cluster graphs for
SMP using the same approach used by IJGP (see [19] for
details). In IJGP, the complexity of inference is controlled
by bounding the number of variables in each cluster by an
integer parameter i, called its i-bound. We varied the i-
bound from 3 to 15 in increments of 3. For the SMP algo-
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Figure 5: KL-divergence as a function of time (a) 21 × 21 Ising
model with 5 evidence nodes, (b) Block coding instance with 255
variables and 511 functions and (c) Logistics instance with 1413
nodes and 29487 functions.

rithm, we varied ε (which controls quantization) from 2−20

to 2−100 and k (number of samples) from 25 to 220. We
used Gibbs sampling on the Ising models and importance
sampling on the other two for generating samples (This is
because Gibbs sampling does not converge in presence of
determinism). We ran each algorithm until convergence or
until 15 minutes or until it exceeded a memory bound of
512 MB, whichever was earlier. We chose these values be-
cause the benchmarks can be solved exactly in roughly 1
hour of cpu time using up to 8 GB of RAM. We used av-



erage KL divergence between the exact and approximate
marginal distribution to measure accuracy.

For lack of space, we only show a fraction of our results
in Figures 2-5. SMP-SH and SMP-ADD denote the sparse
hash table based and ADD based implementation of SMP
respectively. Note that each point in each figure denotes an
average over 10 random runs of IJGP, SMP-SH and SMP-
ADD respectively.

Figure 2 shows the impact of varying the number of sam-
ples k, keeping the i-bound and ε constant for three in-
stances, one from each domain. As expected, the accuracy
of SMP-SH and SMP-ADD improves with more samples.

Figure 3 shows the impact of varying the quantization pa-
rameter ε, keeping the i-bound and k constant for three in-
stances. In all three cases, we clearly see the bias versus
variance trade-off; as we decrease ε, the accuracy first im-
proves and then reduces before stabilizing to a fixed point.

Figure 4 shows the impact of varying the i-bound, keeping ε
and k constant for three instances. Again in all three cases,
we clearly see the bias versus variance trade-off; as we in-
crease the cluster size (i-bound), the accuracy improves un-
til a certain i-bound after which it starts decreasing.

Figure 5 shows the accuracy of various schemes as a func-
tion of time. For each time-point, we select the parameters
that yield the best accuracy for each of the three methods.
SMP-ADD is more accurate than SMP-SH which in turn is
more accurate than IJGP. Note the log-scale on the Y-axis
and therefore there is an order of magnitude difference.

7 RELATED WORK

Our work is related to the work on structured region graphs
(SRGs) by Welling et al. [33]. In it, the authors showed
that Yedidia et al.’s [34] generalized belief propagation al-
gorithm morphs into the EP algorithm [20] if each message
and cluster potential in the region graph is approximated
by a product of tractable tabular functions. Our work is
different from Welling et al.’s work in that we propose to
use structured representations which are often more com-
pact than the product of tabular functions representation.
Also, unlike our formulation, there is no straight-forward
way of introducing and exploiting determinism and CSI in
the SRG formalism.

Our work is also related to the work on non-parametric
BP by Sudderth et al. [31] and particle BP by Ihler and
McAllester [14], in which the authors propose to represent
BP messages using samples or particles. However, unlike
our work, these approaches do not exploit structured rep-
resentations and do not utilize both CSI and determinism.
Also, they do not investigate bias versus variance trade-offs
as we do. Our work connects particle BP with EP, yielding
a more unified perspective.

Another related work is that of [7, 12, 23] who perform
sampling based inference on junction trees. The main idea
in these papers is to perform message passing on a junc-
tion tree by substituting messages which are too hard to
compute exactly by their sampling-based approximations.
Unlike our work, however, they do not perform message
passing over arbitrary cluster graphs. This is problematic
because as we showed, for a small sample size, junction
trees will have low bias but high variance and as a result
they will likely yield inaccurate results.

Finally, our work is related to the work on approximation
by quantization (ABQ) by Gogate and Domingos [10]. Un-
like ABQ which only introduces CSI, we propose to intro-
duce both CSI and determinism which as we show often
yields better accuracy in practice.

8 SUMMARY AND FUTURE WORK

In this paper, we proposed structured message passing, a
unifying approach for taking advantage of structured rep-
resentations. We investigated the use of two structured rep-
resentations within this framework: algebraic decision di-
agrams (ADDs) and sparse hash tables. ADDs are useful
in the presence of CSI and/or determinism while sparse ta-
bles are useful only in the presence of determinism. There-
fore, in order to fully utilize the power of ADDs and sparse
tables, we proposed a new algorithm that artificially in-
troduces CSI via quantization and determinism via sam-
pling. Our new algorithm is quite powerful and includes
the cluster graph BP algorithm, the EP algorithm and the
particle BP algorithm as special cases. Our algorithm in-
troduces several bias versus variance tradeoffs. We inves-
tigated these tradeoffs both theoretically and empirically
and showed that our new algorithm is superior to state-of-
the-art approaches such as Iterative Join Graph Propaga-
tion [19].

Future work includes: applying our algorithm to contin-
uous and hybrid discrete/continuous graphical models; us-
ing other structured representations such as mixture models
and Affine ADDs [26] within SMP; combining SMP with
lifted inference (cf. [11]); using our algorithm for weight
learning; developing automatic tuning strategies for finding
the right balance between bias and variance; etc.
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