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Abstract

Sensory inference under conditions of uncer-
tainty is a major problem in both machine
learning and computational neuroscience.
An important but poorly understood aspect
of sensory processing is the role of active
sensing. Here, we present a Bayes-optimal
inference and control framework for active
sensing, C-DAC (Context-Dependent Active
Controller). Unlike previously proposed al-
gorithms that optimize abstract statistical
objectives such as information maximization
(Infomax) [Butko and Movellan, 2010] or
one-step look-ahead accuracy [Najemnik and
Geisler, 2005], our active sensing model di-
rectly minimizes a combination of behavioral
costs, such as temporal delay, response error,
and sensor repositioning cost. We simulate
these algorithms on a simple visual search
task to illustrate scenarios in which context-
sensitivity is particularly beneficial and op-
timization with respect to generic statisti-
cal objectives particularly inadequate. Mo-
tivated by the geometric properties of the C-
DAC policy, we present both parametric and
non-parametric approximations, which retain
context-sensitivity while significantly reduc-
ing computational complexity. These ap-
proximations enable us to investigate a more
complex search problem involving peripheral
vision, and we notice that the performance
advantage of C-DAC over generic statistical
policies is even more evident in this scenario.

1 Introduction

In the realm of symbolic problem solving, comput-
ers are sometimes comparable, or even better than,
typical human performance. In contrast, in sensory

processing, especially under conditions of noise, un-
certainty, or non-stationarity, human performance is
often still the gold standard [Martin et al., 2001, Bran-
son et al., 2011]. One important tool the brain has at
its disposal is active sensing, a goal-directed, context-
sensitive control strategy that prioritizes sensing re-
sources toward the most rewarding or informative as-
pects of the environment [Yarbus, 1967]. Most theo-
retical models of sensory processing presume passive-
ness, considering only how to represent or compute
with given inputs, and not how to actively intervene
in the input collection process itself, especially with re-
spect to behavioral goals or environmental constraints.
Having a formal understanding of active sensing is not
only important for advancing neuroscientific progress
but also for engineering applications, such as develop-
ing context-sensitive, interactive artificial agents.

The most well-studied aspect of human active sensing
is saccadic eye movements, and early work suggests
that saccades are attracted to salient targets that dif-
fer from surround in one or more of feature dimensions
such as orientation, motion, luminance, and color con-
trast [Koch and Ullman, 1985, Itti and Koch, 2000].
This passive explanation does not take into account
the fact that the observations made while attending
the task can affect the fixations decisions that follow.
More recently, there has been a shift to relax this con-
straint of passiveness, and the notion of saliency has
been reframed probabilistically in terms of maximiz-
ing the informational gain (Infomax) given the spa-
tial and temporal context [Lee and Yu, 2000, Itti and
Baldi, 2006, Butko and Movellan, 2010]. Separately, in
another active formulation, it has been proposed that
saccades are chosen to maximize the greedy, one-step
look-ahead probability of finding the target (greedy
MAP), conditioned on self knowledge about visual
acuity map [Najemnik and Geisler, 2005].

While both the Infomax and Greedy MAP algorithms
brought a new level of sophistication – represent-
ing sensory processing as iterative Bayesian inference,



quantifying the knowledge gain of different saccade
choices, and incorporating knowledge about sensory
noise – they are still limited in several key respects: (1)
they optimize abstract computational quantities that
do not directly relate to behavioral goals (eg, speed
and accuracy) or task constraints (eg, cost of switch-
ing from one location to another); (2) relatedly, it is
unclear how to adapt these algorithms to varying task
goals (eg, locating someone in a crowd versus catching
a moving object); (3) there is no explicit representa-
tion of time in these algorithms, and thus no means
of trading off fixation duration or number of fixations
with search accuracy. In the rest of the paper, we refer
to Infomax and Greedy MAP as “statistical policies”,
in the sense that they optimize generic statistical ob-
jectives insensitive to behavioral objectives or contex-
tual constraints.

In contrast to the statistical policies, we propose
a Bayes-optimal inference and control framework
for active sensing, which we call C-DAC (Context-
Dependent Active Controller). Specifically, we assume
that the observer aims to optimize a context-sensitive
objective function that takes into account behavioral
costs such as temporal delay, response error, and the
cost of switching from one sensing location to another.
C-DAC uses this objective to choose when and where
to collect sensory data, based on a continually up-
dated statistically optimal (Bayesian) representation
of the sequentially collected sensory data. This frame-
work allows us to derive behaviorally optimal proce-
dures for making decisions about (1) where to acquire
sensory inputs, (2) when to move from one observa-
tion location to another, and (3) how to negotiate
the exploration-exploitation tradeoff between collect-
ing additional data and terminating the observation
process. We also compare the performance of C-DAC
and the statistical policies under different task param-
eters, and illustrate scenarios in which the latter per-
form particularly poorly. Finally, we present two ap-
proximate value iteration algorithms, based on a low-
dimensional parametric and non-parametric approxi-
mation of the value function, which retain context-
sensitivity while significantly reducing computational
complexity.

In Sec. 2, we describe in detail the C-DAC model. In
Sec. 3, we apply the model to a visual search task,
simulating scenarios where C-DAC achieves a flexi-
ble trade-off between speed, accuracy and effort de-
pending on the task demands, whereas the statistical
policies fall short – this forms experimentally testable
predictions for future investigations. We also present
approximate value-iteration algorithms, and an exten-
sion of the search problem that incorporates peripheral
vision. We conclude with a discussion of the implica-

tions of this work, relationship to previous work, as
well as pointers to future work (Sec. 4).

2 The Model: C-DAC

We consider a scenario in which the observer must pro-
duce a response based on sequentially observed noisy
sensory inputs (e.g., identifying target location in a
search task or scene category in a classification task),
with the ability to choose where and how long to collect
the sensory inputs.

2.1 Sensory Processing: Bayesian Inference

We use a Bayesian generative model to capture the
observer’s knowledge about the statistical relationship
among hidden causes or variables and how they give
rise to noisy sensory inputs, as well as prior beliefs
of hidden variables. We assume that they use exact
Bayesian inference in the recognition model to main-
tain a statistically optimal representation of the hid-
den state of the world based on the noisy data stream.

Conditioned on the target location (s, hidden) and
the sequence of fixation locations (λt := {λ1, . . . , λt},
known), the agent sequentially observes iid inputs
(xt := {x1, . . . , xt}):

p(xt|s;λt) =

t∏
i=1

p(xi|s;λi) =

t∏
i=1

fs,λi(xi) (1)

where fs,λ(xt) is the likelihood function. These vari-
ables can be scalars or vectors, depending on the spe-
cific problem.

In the recognition model, repeated applications of
Bayes’ Rule can be used to compute the iterative pos-
terior distribution over the k possible target locations,
or the belief state:

pt := (P (s = 1|xt;λt), . . . , P (s = k|xt;λt))
pit = P (s = i|xt;λt) ∝ p(xt|s = i;λt)P (s = i|xt−1;λt−1)

= fs,λt(xt)p
i
t−1 (2)

where p0 is the prior belief over target location.

2.2 Action Selection: Bayes Risk
Minimization

The action selection component of active vision is a
stochastic control problem where the agent chooses
the sensing location and the number of data points
collected, and we assume the agent can optimize this
process dynamically based on ongoing data collection
and size of sensory data, but the exact consequence
of each action is not perfectly known ahead of time.



The goal is to find a good decision policy π, which
maps the augmented belief state (xt,λt) into an ac-
tion a ∈ A, where A consists of a set of termination
actions, stopping and choosing a response, and a set of
continuation actions, obtaining data point from a cer-
tain observation location. The policy π produces for
each observation sequence (x1, . . . , xt, . . .), a stopping
time τ (number of data points observed), a sequence
of fixation choices λτ := (λ1, . . . , λτ ), and an eventual
target choice δ.

In the Bayes risk minimization framework, the opti-
mization problem is formulated in terms of minimizing
an expected cost function, Lπ := E[l(τ,λτ , δ)]x,s, aver-
aged over stochasticity in the true target location s and
the data samples x. We assume that the cost incurred
on each trial takes into account temporal delay, switch
cost (cost associated with each switch in sensing loca-
tion), and response error, respectively. In accordance
with the typical Bayes risk formulation of the sequen-
tial decision problem, we assume the cost function to
be a linear combination of the relevant factors:

l(τ, δ;λτ , s) = cτ + csnτ + 1{δ 6=s} (3)

where nτ is the total number of switches (nτ :=∑τ−1
t=1 1{λt+1 6=λt}), c parameterizes the cost of tempo-

ral delay, cs the cost of a switch, and unit cost for
response errors is assumed (as we can always divide
c and cs by the appropriate constant to make it 1).
The expected cost is Lπ := cE[τ ]+ csE[ns]+P (δ 6= s),
where the expectation is taken over τ , λ, δ, and xτ .

Bellman’s dynamic programming equation [Bellman,
1952] tells us that the problem is optimized if at
each time point, the agent chooses the action asso-
ciated with the lowest expected cost (the Q-factor
for that action), given his current knowledge or be-
lief state, pt. The Q-factors for the stopping actions
are straight forward: Q̄it(pt,λt) := E[l(t, i)|pt,λt] =
ct + csnt + (1−pit). Obviously, the best stopping ac-
tion δ is to minimize the probability of error. Thus,
the stopping cost associated with the optimal stopping
action (i∗ := argmaxi p

i
t) is:

Q̄∗t (pt,λt) := E[l(t, i∗)|pt,λt]
= ct+ csnt + (1−pi

∗

t ) (4)

The Q-factor associated with each continuation action
j (continue sensing in location j) is:

Qjt (pt = p,λt) := c(t+ 1) + cs(nt + 1{j 6=λt})+

min
τ ′,δ,λτ′

E[l(τ ′, δ)|p0 =p, λ1 = j] (5)

with the optimal continuation action being Q∗t :=

minj Q
j
t = Qj

∗

t . The expected cost of continuing ob-
serving in location j is equivalent to solving the orig-
inal optimization problem with the prior belief set to

the posterior after the previous t time-steps, and the
first observation location being j. Suppose we define
the value function V (p, i) as the expected cost associ-
ated with the optimal policy, given prior belief p0 = p
and initial observation location λ1 = i:

V (p, i) := min
τ,δ,λτ

E[l(τ, δ)|p0 =p, λ1 = i] . (6)

Then the value function satisfies the following recur-
sive relation:

V (p, k) = min(Q̄∗1(p, k), Q∗1(p, k))

= min
((

min
i
Q̄i1(p, k)

)
,

min
j

(
c+ cs1{j 6=k} + E[V (p′, j)]

))
(7)

where p′ is the belief state at next time-step, and the
expectation is taken over the stochasticity in the next
observation x. The optimal policy effectively divides
the belief state space into a stopping region (Q̄∗ ≤
Q∗) and a continuation region (Q̄∗ > Q∗), each of
which further divided into subregions corresponding
to alternative continuation and stopping actions. Note
that the optimal decision policy is a stationary policy:
the value function depends only on the belief state and
observation location at the time the decision is to be
taken, and not on time t per se.

Bellman’s dynamic programming principle implies a
numerical algorithm for computing the optimal policy:
guess an initial setting V ′(p, k) of the value function
(e.g., minimal stopping cost associated with each be-
lief state p and observation location k), then iterate
Eq. 7 until convergence, which yields the value func-
tion V (p, k) = V∞(p, k).

3 Case Study: Visual Search

In this section, we apply the active sensing model to
a simple, three location visual search task, where we
can compute the exact optimal policy (up to discretiza-
tion of the state space), and compare its performance
with the statistical policies [Butko and Movellan, 2010,
Najemnik and Geisler, 2005]. The target and distrac-
tors differ in terms of the likelihood of observations
received, when looking at them.

3.1 C-DAC Policy

For simplicity, we assume that the observations are
binary and Bernoulli distributed (iid conditioned on
target and fixation locations):

p(x|s = i;λt = j) = 1{i=j}β
x
1 (1−β1)1−x+1{i 6=j}β

x
0 (1−β0)1−x



The difficulty of the task is determined by the discrim-
inability between target and distractor, or the differ-
ence between β1 and β0. For simplicity, we assume
that the only stopping action available is to choose
the current fixated location: ŝ(τ ;λτ = j) = j. To re-
duce the parameter space, we also set β0 = 1 − β1,
which is a reasonable assumption stating that the dis-
tractor and target stimuli only differ in one way (e.g.
opposing direction of motion when using random dots
stimulus with the coherence of dots kept the same).
In the following, we first present a brief description of
the greedy MAP and the infomax algorithms, before
moving on to model comparisons.

3.2 Greedy MAP Policy

The greedy MAP algorithm [Najemnik and Geisler,
2005] suggests that agents should try to maximize the
expected one-step look-ahead probability of finding the
target. Thus, the reward function is:

Rg(pt, j) = Ext+1
[max

i
P (s = i|xt, xt+1,λt, λt+1 = j)]

= Ext+1
[max

i
(pit+1)|xt+1, λt+1 = j]

To keep the notations consistent, we define the associ-
ated Q-factor, cost and policy as:

Qg(pt, j) = −Rg(pt, j)
V g(pt, j) = min

j
Qg(pt, j)

λgt+1 = argmin
j

Qg(pt, j)

3.3 Infomax Policy

The infomax algorithm [Butko and Movellan, 2010]
tries to maximize the information gained from each
fixation, by minimizing the expected cumulative fu-
ture entropy. Similar to [Butko and Movellan, 2010],
we can define the Q-factors, cost and the policy as:

Qim(pt, j) =

T∑
t′=t+1

Ext′ [H(pt′)|xt′ , λt+1 = j]

V im(pt, j) = min
j
Qim(pt, j)

λimt+1 = argmin
j

Qim(pt, j)

where H(p) = −
∑
i p

ilogpi is Shannon’s entropy.
Note that neither the original greedy MAP nor the
infomax algorithm provide a principled answer as to
when to stop searching and respond. They need to
be augmented to stop once the maximum probability
of any location containing the target exceeds a fixed
threshold. We come back to the problem of how we
set this threshold when we present comparison results.

3.4 Model Comparison

Before we discuss the performance of different models
in terms of “behavioral” output, we first visually il-
lustrate the decision policies (Fig. 1). The belief state
p is represented by discretizing the two-dimensional
belief state space (p1,p2) with m = 201 bins in each
dimension (p3 = 1 − p1 − p2). Although for C-DAC
the policy also depends on the current fixation loca-
tion, we only show it for fixating the first location;
the other representations being rotationally symmet-
ric. In Fig. 1, the parameters used for the C-DAC
policy are (c, cs, β) = (0.1, 0, 0.9), and for the statisti-
cal policies, (β, thresh) = (0.9, 0.8). Note that for this
simple scenario with no switch cost, the infomax policy
looks almost like the C-DAC policy – fixate the most
likely location unless there is very strong evidence that
the fixated location contains the target, in which case
the observer should stop. The greedy MAP policy,
on the other hand, looks completely different, and is
in fact ambiguous in the sense that for a large set of
belief states the policy does not give a unique next fix-
ation location. We show one instance of this seemingly
random policy, and note that there are regions where
the policy suggests to look at either location 1 or 2
or 3 (corner regions speckled with green, orange and
brown). Similarly, there are regions where the policy
suggests to look at 1 or 2 (green+orange region). In
fact, the performance of greedy MAP is so poor that
we exclude it from the model comparisons below.

Figure 1: Decision policies – Infomax resembles C-
DAC. Blue: stop. Green: fixate location 1. Orange:
fixate location 2. Brown: fixate location 3. Environ-
ment (c, cs, β) = (0.1, 0, 0.9). Threshold for infomax
and greedy MAP = 0.8

Fig. 2 shows the effects of how the C-DAC policy
changes when different parameters of the task are
changed. As seen in the figure, the stopping region ex-
pands if the cost of time increases (high c), intuitively
this makes sense – if each time step is costlier then the
observer should stop at a lower level of confidence, at
the expense of higher error rate. Similarly, for the case
when β is smaller (high noise), stopping with a lower
level of confidence makes sense – the value of each ad-
ditional observation depends on how noisy the data is,
the noisier the less worthwhile to continue observing,



thus leading to a lower stopping criterion. Lastly, and
arguably the most interesting case, is when there is an
additional switch cost (added cs); this deters the algo-
rithm from switching even when the belief in a given
location has reduced below 1/3. In fact, this is the sce-
nario where optimizing for behavioral objectives turns
out to be truly beneficial, and although infomax can
approximate the C-DAC policy when the switch cost
is 0, it cannot do so when switch cost comes in to play.

Figure 2: C-DAC policy for different environments
(c, cs, β) – high c (0.2, 0, 0.9), high noise (0.1, 0, 0.7),
and added cs (0.1, 0.1, 0.9).

Next, we look at how these intuitions from the policy
plots translate to output measures in terms of accu-
racy, response delay, and number of fixations. In order
to set the stopping threshold for the infomax policy in
the most generous/optimistic setting, we first run the
C-DAC policy, and then set the threshold for infomax
so that it matches the accuracy of C-DAC 1, while we
compare the other output measures. We choose two
scenarios: (1) no switch cost, (2) with switch cost. For
all simulations, the algorithm starts with uniform prior
(p = (1/3, 1/3, 1/3)) and initial fixation location 1,
while the true target location is uniformly distributed.
Fig. 3 shows the accuracy, number of time steps and
number of switches for both scenarios. Confirming the
intuition from the policy plots, the performance of in-
fomax and C-DAC are comparable for cs = 0. How-
ever, when a switch cost is added, cs = 0.2, we see that
although the accuracy is comparable by design, there
is small improvement in search time of C-DAC, and
a notable advantage in the number of switches. The
behavior of the infomax policy does not adapt to the
change in the behavioral cost function, thus incurring
an overall higher cost. Algorithms like infomax that
maximize abstract statistical objectives lack the inher-
ent flexibility to adapt to changing behavioral goals or
environmental constraints. Even for this simple visual
search example, Infomax does not have a principled
way of setting the stopping threshold, and we gave it
the best-scenario outcome by adopting the stopping
policy generated by C-DAC in different contexts.

1Since a binary search is required to set this matching
threshold, and the accuracy is sensitive w.r.t. this thresh-
old, we settle on an approximate accuracy match for info-
max that is comparable or lower than C-DAC.

3.5 Approximate Control

Our model is formally a variant of POMDP (Partially
Observable Markov Decision Process), or, more specif-
ically, a Mixed Observability Markov Decision Process
(MOMDP) [Ong et al., 2010, Araya-López et al., 2010],
which differs from ordinary POMDP in that part of
the state space is partly hidden (target location in our
case) and partly observable (current fixation location
in our case). In general, POMDPs are hard to solve
since the decision made at each time step depends on
all the past actions and observations, thus imposing
enormous memory requirements. This is known as the
curse of history, and is the first major hurdle towards
any practical solution. An elegant way to alleviate this
is to use belief states which serve as a sufficient statistic
for the process history, thus requiring to maintain just
a single distribution instead of the entire history. Con-
verting a POMDP to a belief-state MDP is in fact a
prevalent technique and the one we employ. However,
this leads to another computational hurdle, known as
the curse of dimensionality, since now we have a MDP
with a continuous state-space, making tabular repre-
sentation of value function infeasible. One way to work
around the problem is to discretize the belief state
space into a grid, where instead of finding the value
function at all the points in the belief state simplex,
we only do so for a finite number of grid points. The
grid approximation, that we also use, has appealing
performance guarantees which improve as the density
of the grid is increased [Lovejoy, 1991]. To evaluate
the value function at the points not in this set, we
use some sort of interpolation technique (value at the
nearest grid point, weighted average value at k-nearest
grid point, etc.). However, although grid approxima-
tion may work for small state spaces, it does not scale
well to larger, practical problems. For example, when
used for the active sensing problem with k sensing lo-
cations, a uniform grid of size n has O(knk−1) com-
plexity.

Although there is a rich body of literature on ap-
proximate solutions of POMDP (e.g. [Powell, 2007,
Lagoudakis and Parr, 2003, Kaplow, 2010]) tackling
both general as well as application-specific approxi-
mations, most are inappropriate for dealing with the
MOMDP problem such as the one encountered here.
Furthermore, most of the POMDP approximation al-
gorithms focus on discounted rewards and/or finite-
horizon problems. Our formulation does not fall into
these categories and thus require novel approximation
schemes. We note that the Q-factors and the resulting
value function are smooth and concave, making them
amenable to low dimensional approximations. At each
step, we find a low dimensional representation of the
value function, and use that for the update step of the



Figure 3: Comparison between C-DAC and Infomax for two environments (c, cs, β) = (0.1, 0, 0.8) and
(0.1, 0.2, 0.8). C-DAC has superior performance when cs > 0.

value iteration algorithm. Specifically, instead of re-
computing the value function at each grid point, here
we generate a large number of samples uniformly on
the belief state space, compute a new estimate of the
value function at those locations, and then extrapo-
late the value function to everywhere by improving its
parametric fit.

The first low-dimensional approximation we consider
is the Radial Basis Functions (RBF) representation:

1. Generate M RBFs, centered at {µi}Mi=1, with fixed

σ: φ(p) = 1
σ(2π)k/2

e
||p−µi||

2

2σ2

2. Generate m random points from belief space, p.

3. Initialize {V (pi)}mi=1 with the stopping costs.

4. Find minimum-norm w from: V (p) = Φ(p)w.

5. Generate new m random belief state points (p′).

6. Evaluate required V values using current w.

7. Update V (p′) using value iteration.

8. Find a new w from V (p′) = Φ(p′)w.

9. Repeat steps 5 through 8, until w converges.

While we adopt a Gaussian kernel function, other
constructs are possible and have been imple-
mented in our problem without significant perfor-
mance deviation (not shown), e.g. multiquadratic
(φ(p) =

√
1 + ε||p− µi||2), inverse-quadratic(φ(p) =

(1 + ε||p− µi||2)−1), thin plate spine (φ(p) = ||p −
µi||2ln||p− µi||), etc. [Buhmann, 2003].

The RBF approximation requires setting several pa-
rameters (number, mean, and variance of bases), which
can be impractical for large problems, when there is
little or no information available about the properties
of the true value function. We thus also implement
a nonparametric variation of the algorithm, whereby
we use Gaussian Process Regression (GPR) [Williams
and Rasmussen, 1996] to estimate the value function
(step 4, 6 and 8). In addition, we also implement GPR

with hyperparameter learning (Automatic Relevance
Determination, ARD), thus obviating the need to pre-
set model parameters.

The approximations lead to considerable computa-
tional savings. The complexity of the RBF approxi-
mation is O(k(mM +M3)), for k sensing locations, m
random points chosen at each step, and M bases. For
the GPR approximation, the complexity is O(kN3),
where N is the number of points used for regression.
In practice, all the approximation algorithms we con-
sider converge rapidly (under 10 iterations), though we
do not have a proof that this holds for a general case.

Figure 4: Exact vs. approximate policies shown
over n = 201 bins. (A) Environment (c, cs, β) =
(0.1, 0, 0.9). (B) (c, cs, β) = (0.1, 0.1, 0.9).

In the simulations, the RBF approximate policy uses
m = 1000 random point for each iteration, and M =
49 bases, uniformly placed in the belief simplex, with
a unit variance. The GPR approximate policy uses
a unit length scale, unit signal strength and a noise-
strength of 0.1, with N = 200 random points used
for regression. Fig. 4A shows the exact policy vs. the
learned approximate policies for different approxima-
tions when the switch cost is 0, (c, cs, β) = (0.1, 0, 0.9).
We notice that with handcrafted bases, RBF is a good
approximation of the exact policy, whereas relaxing



the parametric form in GPR and subsequently learn-
ing the hyperparameters in GPR with ARD, leads
to a slightly poorer but more robust non-parametric
approximation. Similar observations can be made in
Fig. 4B, for the environment with added switch cost,
(c, cs, β) = (0.1, 0.1, 0.9). All the results are shown
over a 201x201 grid. These faster yet robust approx-
imations motivated us to apply our model to more
complex problems. We investigate one such problem
of visual search with peripheral vision next, and show
how our model is fundamentally different from exist-
ing formulations such as infomax, even when the cost
of effort is not considered.

3.6 Visual Search with Peripheral Vision

In the very simple three-location visual search prob-
lem we considered above, we did not incorporate the
possibility of peripheral vision, or the more general
possibility that a sensor positioned in a particular lo-
cation can have distance-dependent, degraded infor-
mation about nearby locations as well. We therefore
consider a simple example with peripheral vision (see
Fig. 5B), whereby the observer can saccade to inter-
mediate locations that give reduced information about
either two (sensing locations on the edges of the tri-
angle) or three (sensing location in the center) stim-
uli. This is motivated by experimental observations
that humans not only fixate most probable target lo-
cations but sometimes also center-of-gravity locations
that are intermediate among two or more target loca-
tions [Findley, 1982, Zelinsky et al., 1997].

Figure 5: Schematics of visual search task. The
general task is to find the target (left-moving dots)
amongst distractors (right-moving dots). Not drawn
to scale. (A) Task 1: agent fixates one of the target
patches at any given time. (B) Task 2: agent fixates
one of the blue circle regions at any given time

Formally, we need an acuity map, the notion that it is
possible to gain information about stimuli peripheral
to the fixation center (fovea), such that the quality
of that information decays at greater spatial distance
away from the fovea. For example, the task of Fig. 5B
would require a continuation action space of 7 ele-
ments, L = {l1, l2, l3, l12, l23, l13, l123}, where the first

three actions correspond to fixating one of the three
target locations, the next three to fixating midway be-
tween two target locations, and the last to fixating
the center of all three. We parameterize the quality
of peripheral vision by augmenting the observations
to be three-dimensional, (x1, x2, x3), corresponding to
the three simultaneously viewed locations. We assume
that each xi is generated by a Bernoulli distribution
favoring 1 if it is the target, and 0 if it is not, and
its magnitude (absolute difference from 0.5) is great-
est when observer directly fixates the stimulus, and
smallest when the observer directly fixates one of the
other stimuli. We use 4 parameters to characterize the
observations (1 > β1 > β2 > β3 > β4 >= 0.5). So,
when the agent is fixating one of the potential target
locations (l1, l2 or l3), it gets an observation from the
fixated location (parameter β1 or 1−β1 depending on
whether it is the target or a distractor), and observa-
tions from the non-fixated locations (parameter β4 or
1 − β4 depending on whether they are a target or a
distractor). Similarly, for the midway locations (l12,
l23 or l13), the observations are received for the clos-
est locations (parameter β2 or 1 − β2 depending on
whether they are a target or a distractor), and from
the farther off location (parameter β4 or 1 − β4 de-
pending on whether it is the target or a distractor).
Lastly, for the center location (l123), the observations
are made for all three locations (parameter β3 or 1−β3
depending on whether they are a target or a distrac-
tor). Furthermore, since the agent can now look at
locations that cannot be target, we relax the assump-
tion that the agent must look at a particular location
before choosing it, allowing the agent to stop at any
location and declare the target.

3.7 Model Comparison

We first present the policies, and, similar to our dis-
cussion of simple visual search task, we only show the
C-DAC policy looking at the first location (l1) (the
other fixation-dependent policies are rotationally sym-
metric). It is evident from Fig. 6 that now the C-DAC
policy differs from the infomax policy even when no
switch cost is considered, thus pointing to a more fun-
damental difference between the two. Note that for the
parameters used here, C-DAC never chooses to look at
the center l123, but it does so for other parameter set-
tings (not shown). Infomax, however, never even looks
at the actual potential locations, favoring only midway
locations before declaring the target location.

For performance comparison in terms of behavioral
output, we again investigate two scenarios: (1) no
switch cost, (2) with switch cost. The threshold for
infomax is set so that the accuracies are matched to
facilitate fair comparison. For all simulations, the al-



Figure 6: Decision policies. Azure: stop and choose
location l1. Blue: stop and choose l2. Indigo: stop
and choose l3. Green: fixate l1. Sea-green: fixate l2.
Olive: fixate l3. Red: fixate l12. Brown: fixate l23.
Yellow: fixate l13. Environment (c, β1, β2, β3, β4) =
(0.05, 0.62, 0.6, 0.55, 0.5). Threshold for infomax = 0.6

gorithm starts with uniform prior (p = (1/3, 1/3, 1/3))
and initial fixation at the center (location l123), while
the true target location is uniformly distributed. Fig. 7
shows the accuracy, number of time steps, and num-
ber of switches for both scenarios. Now we notice that
C-DAC outperforms infomax even when switch cost is
not considered, in contrast to the simple task without
peripheral vision (Fig. 3). Note however that C-DAC
makes more switches for cs = 0, which makes sense
since switches have no cost, and search time can poten-
tially be reduced by allowing more switches. However,
when we add a switch cost (cs = 0.005), C-DAC signif-
icantly reduces number of switches, whereas infomax
lacks this adaptability to a changed environment.

4 Discussion

In this paper, we proposed a POMDP plus Bayes risk-
minimization framework for active sensing, which opti-
mizes behaviorally relevant objectives in expectation,
such as speed, accuracy, and switching efficiency. We
compared this C-DAC policy to the previously pro-
posed infomax and greedy MAP policies. We found
that greedy MAP performs very poorly, and although
Infomax can approximate the optimal policy for some
simple environments, it lacks intrinsic context sensi-
tivity or flexibility. Specifically, for different environ-
ments, there is no principled way to set a decision
threshold for either greedy MAP or Infomax, leading
to higher costs, longer fixation durations, and larger
number of switches in problem settings when those
costs are significant. This performance difference and
the advantage of the added flexibility provided by C-
DAC becomes even more profound when we consider
a more general visual search problem with peripheral
vision. The family of approximations that we present
opens up the avenue for application of our model to
complex, real world problems.

There have been several other related active sensing

algorithms that differ from C-DAC in their state rep-
resentation, inference, control and/or approximation
scheme. We briefly summarize some of these here. In
[Darrell and Pentland, 1996], the problem of active ges-
ture recognition is studied, by using historic state rep-
resentation and nearest neighbor Q-function approx-
imation. Sensing strategies for robots in RoboCup
competition is studied in [Kwok and Fox, 2004], which
uses states augmented with associated uncertainty and
model-free Least Square Policy Iteration (LSPI) ap-
proximation [Lagoudakis and Parr, 2003]. Context de-
pendent goals are considered in [Ji et al., 2007] and
[Naghshvar and Javidi, 2010]. The former concen-
trates on multi-sensor multi-aspect sensing using Point
Based Value Iteration (PBVI) approximation [Pineau
et al., 2006]. The latter aims to provide conditions
for reduction of an active sequential hypothesis test-
ing problem to passive hypothesis testing. A Rein-
forcement Learning paradigm where reward is not de-
pendent on information gain but on how close a sac-
cade brings the target to the optical axis has also been
proposed [Minut and Mahadevan, 2001]. Other con-
trol strategies like random search, sequential sweep-
ing search, “Drosophila-inspired” search [Chung and
Burdick, April 2007] and hierarchical POMDPs for
visual action planning [Sridharan et al., 2010] have
also been proposed. We choose infomax to compare
our C-DAC policy against because, as a human-vision
inspired model, it not only explains human fixation
behavior on a variety of tasks, but also has cutting
edge computer vision applications (e.g. the digital eye
[Butko and Movellan, 2010]).

A related problem domain, not typically studied as
POMDP or MDP, is Multi-Armed Bandits (MAB)
[Gittins, 1979]. The classical example of a MAB prob-
lem concerns with pulling levers (or playing arms) in a
set of slot machines. The person gambling is unaware
of the states and reward distribution of the levers, and
has to figure out which lever to pull next in order to
maximize the cumulative reward. Noting a correspon-
dence between the ideas of pulling arms and fixating
location, and between rewards and observations, the
MAB framework seems to describe the active sensing
problem. Concretely, given the locations fixated (arms
played) so far, and the observations (rewards) received,
how to choose which location to fixate (which arm to
play) next. However, there are certain characteristics
of the active sensing problem that make it difficult to
study in a MAB framework as yet. Firstly, the prob-
lem is an instance of restless bandits [Whittle, 1988],
where the state of an arm can change even when it is
not played. In active sensing, the belief about a lo-
cation being the target does change even when it is
not fixated. Whittles index is a simple rule that as-
signs a value to each arm in a restless setting, and the



Figure 7: Comparison between C-DAC and Infomax on Task 2 for two environments (c, β1, β2, β3, β4) =
(0.05, 0.62, 0.6, 0.55, 0.5), cs = 0 and cs = 0.005. C-DAC adjusts the time steps and number of switches de-
pending on the environment, taking a little longer but reducing number of switches when effort has cost.

arm with the highest value is then played. The rule
is asymptotically optimal only for a sub-class of prob-
lems (e.g. [Washburn and Schneider, 2008] and [Liu
and Zhao, 2010]), but not optimal in general. Sec-
ondly, the states of the arms in the active sensing task
are correlated (the elements of the belief-state have
to add up to 1). There is some work on correlated
arms for specific structure of correlation, like clustered
arms [Pandey et al., 2007] and Gaussian process ban-
dits [Dorard et al., 2009], but so far there is no general
strategy for handling this scenario.

Active learning is another related approach, with hy-
pothesis testing as a sub-problem that is related to
the problem of active sensing. The setting involves an
unknown true hypothesis, and an agent that can per-
form queries providing information about the under-
lying hypothesis. The task is then to determine which
query to perform next to optimally reduce the num-
ber of plausible hypothesis (version space). In active
sensing however, although the belief about a hypoth-
esis (target location) can become arbitrarily low, the
number of plausible hypothesis does not reduce. This
problem is investigated in [Golovin et al., 2010], and
a near-optimal greedy solution is proposed along with
performance guarantees. Besides the sub-optimality of
the approach, the same test cannot be performed more
than once (whereas in active sensing, one location can
be fixated more than once). The lack of this provi-
sion stems from the fact that the noisy observations
considered are actually deterministic with respect to a
hidden noise parameter. Thus, as of yet it is hard to
cast the active sensing problem in this framework.

We thus conclude that although there is a rich body of
literature on related problems, as can be seen from the
few examples we presented, our formulation is novel
(to our best knowledge) in its goals and principled ap-
proach to the problem of active sensing. In general,
the framework proposed here has the potential for not

only applications in visual search, but a host of other
problems, ranging from active scene categorization to
active foraging. The decision policies it generates are
adaptive to the environment and sensitive to contex-
tual factors. This flexibility and robustness to differ-
ent environments makes the framework an appealing
choice for a variety of active sensing applications.
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