
Learning Max-Margin Tree Predictors

Ofer Meshi†∗ Elad Eban†∗ Gal Elidan‡ Amir Globerson†

† School of Computer Science and Engineering
‡ Department of Statistics

The Hebrew University of Jerusalem, Israel

Abstract

Structured prediction is a powerful frame-
work for coping with joint prediction of
interacting outputs. A central difficulty in
using this framework is that often the correct
label dependence structure is unknown. At
the same time, we would like to avoid an
overly complex structure that will lead to
intractable prediction. In this work we ad-
dress the challenge of learning tree structured
predictive models that achieve high accuracy
while at the same time facilitate efficient
(linear time) inference. We start by proving
that this task is in general NP-hard, and then
suggest an approximate alternative. Our
CRANK approach relies on a novel Circuit-
RANK regularizer that penalizes non-tree
structures and can be optimized using a
convex-concave procedure. We demonstrate
the effectiveness of our approach on several
domains and show that its accuracy matches
that of fully connected models, while per-
forming prediction substantially faster.

1 Introduction

Numerous applications involve joint prediction of com-
plex outputs. For example, in document classification
the goal is to assign the most relevant (possibly
multiple) topics to each document; in gene annotation,
we would like to assign each gene a set of relevant func-
tional tags out of a large set of possible cellular func-
tions; in medical diagnosis, we would like to identify all
the diseases a given patient suffers from. Although the
output space in such problems is typically very large,
it often has intrinsic structure which can be exploited
to construct efficient predictors. Indeed, in recent

∗Authors contributed equally.

years using structured output prediction has resulted in
state-of-the-art results in many real-worlds problems
from computer vision, natural language processing,
computational biology, and other fields [Bakir et al.,
2007]. Such predictors can be learned from data using
formulations such as Max-Margin Markov Networks
(M3N) [Taskar et al., 2003, Tsochantaridis et al., 2006],
or conditional random fields (CRF) [Lafferty et al.,
2001].

While the prediction and the learning tasks are
generally computationally intractable [Shimony, 1994,
Sontag et al., 2010], for some models they can be
carried out efficiently. For example, when the model
consists of pairwise dependencies between output vari-
ables, and these form a tree structure, prediction can
be computed efficiently using dynamic programming
at a linear cost in the number of output variables
[Pearl, 1988]. Moreover, despite their simplicity, tree
structured models are often sufficiently expressive to
yield highly accurate predictors. Accordingly, much of
the research on structured prediction focused on this
setting [e.g., Lafferty et al., 2001, Collins, 2002, Taskar
et al., 2003, Tsochantaridis et al., 2006].

Given the above success of tree structured models,
it is unfortunate that in many scenarios, such as a
document classification task, there is no obvious way
in which to choose the most beneficial tree. Thus,
a natural question is how to find the tree model that
best fits a given structured prediction problem. This is
precisely the problem we address in the current paper.
Specifically, we ask what is the tree structure that is
optimal in terms of a max-margin objective [Taskar
et al., 2003]. Somewhat surprisingly, this optimal
tree problem has received very little attention in the
context of discriminative structured prediction (the
most relevant work is Bradley and Guestrin [2010]
which we address in Section 6).

Our contributions are as follows. We begin by proving
that it is NP-hard in general to find the optimal
max-margin predictive tree, in marked contrast to

the generative case where the optimal tree can be
learned efficiently [Chow and Liu, 1968]. To cope with
this theoretical barrier, we propose an approximation
scheme that uses regularization to penalize non-tree
models. Concretely, we propose a regularizer that is
based on the circuit rank of a graph [Berge, 1962],
namely the minimal number of edges that need to
be removed from the graph in order to obtain a tree.
Minimization of the resulting objective is still difficult,
and we further approximate it using a difference of
continuous convex envelopes. The resulting objective
can then be readily optimized using the convex concave
procedure [Yuille and Rangarajan, 2003].

We apply our method to synthetic and varied real-
world structured output prediction tasks. First, we
show that the learned tree model is competitive with
a fully connected max-margin model that is substan-
tially more computationally demanding at prediction
time. Second, we show that our approach is superior
to several baseline alternatives (e.g., greedy structure
learning) in terms of generalization performance and
running time.

2 The Max-margin Tree

Let x be an input vector (e.g., a document) and y
a discrete output vector (e.g., topics assigned to the
document, where yi = 1 when topic i is addressed
in x). As in most structured prediction approaches,
we assume that inputs are mapped to outputs ac-
cording to a linear discrimination rule: y(x;w) =
argmaxy′ w

>φ(x, y′), where φ(x, y) is a function that
maps input-output pairs to a feature vector, and w
is the corresponding weight vector. We will call
w>φ(x, y′) the score that is assigned to the prediction
y′ given an input x.

Assume we have a set of M labeled pairs
{(xm, ym)}Mm=1, and would like to learn w. In the
M3N formulation proposed by Taskar et al. [2003],
w is learned by minimizing the following (regularized)
structured hinge loss:

`(w) =
λ

2
‖w‖2 +

1

M

∑
m

hm(w),

where

hm(w) = max
y

[
w>φ(xm, y) + ∆(y, ym)

]
− w>φ(xm, ym),

(1)

and ∆(y, ym) is a label-loss function measuring the
cost of predicting y when the true label is ym (e.g., 0/1
or Hamming distance). Thus, the learning problem
involves a loss-augmented prediction problem for each
training example.

Since the space of possible outputs may be quite large,
maximization of y can be computationally intractable.
It is therefore useful to consider score functions that
decompose into simpler ones. One such decomposition
that is commonly used consists of scores over single
variables and pairs of variables that correspond to
nodes and edges of a graph G, respectively:

w>φ(x, y) =
∑

ij∈E(G)

w>ijφij(x, yi, yj) +
∑

i∈V (G)

w>i φi(x, yi).

(2)
Importantly, when the graph G has a tree structure
then the maximization over y can be solved exactly
and efficiently using dynamic programming algorithms
(e.g., Belief Propagation [Pearl, 1988]).

As mentioned above, we consider problems where there
is no natural way to choose a particular tree structure,
and our goal is to learn the optimal tree from training
data. We next formalize this objective.

In a tree structured model, the set of edges ij in Eq. (2)
forms a tree. This is equivalent to requiring that the
vectors wij in Eq. (2) be non-zero only on edges of
some tree. To make this precise, we first define, for a
given spanning tree T , the set WT of weight vectors
that “agree” with T :1

WT = {w : ij /∈ T =⇒ wij = 0} . (3)

Next we consider the set W∪ of weight vectors that
agree with some spanning tree. Denote the set of
all spanning trees by T , then: W∪ =

⋃
T∈T
WT .

The problem of finding the optimal max-margin tree
predictor is therefore:

min
w∈W∪

`(w). (4)

We denote this as the MTreeN problem. In what
follows, we first show that this problem is NP-hard,
and then present an approximation scheme.

3 Learning M3N Trees is NP-hard

We start by showing that learning the optimal tree
in the discriminative max-margin setting is NP-hard.
As noted, this is somewhat of a surprise given that
the best tree is easily learned in the generative setting
[Chow and Liu, 1968], and that tree structured models
are often used due to their computational advantages.

In particular, we consider the problem of deciding
whether there exists a tree structured model that cor-
rectly labels a given dataset (i.e., deciding whether the

1Note that weights corresponding to single node fea-
tures are not restricted.

dataset is separable with a tree model). Formally, we

define the MTreeN decision problem as determining
whether the following set is empty:{
w ∈ W∪

∣∣∣w>φ(xm, ym) ≥ w>φ(xm, y)+∆(y, ym) ∀m, y
}
.

(5)

To facilitate the identifiability of the model parameters
that is later needed, we adopt the formalism of Sontag
et al. [2010] and define the score:

S(y;x, T, w)

=
∑
ij∈T

w>ijφij(x, yi, yj) +
∑
i

(w>i φi(x, yi) + xi(yi))

≡
∑
ij∈T

θij(yi, yj) +
∑
i

θi(yi) +
∑
i

xi(yi), (6)

where xi(yi) is a bias term which does not depend on
w,2 and for notational convenience we have dropped
the dependence of θ on x and w. We can now
reformulate the set in Eq. (5) as:{
T,w

∣∣∣S(ym;xm, T, w) ≥ max
y

S(y;xm, T, w) ∀m
}
, (7)

where, for simplicity, we omit the label loss ∆(y, ym).
This is valid since the bias terms already ensure that
the trivial solution w = 0 is avoided. With this
reformulation, we can now state the hardness result.

Theorem 3.1. Given a set of training examples
{(xm, ym)}Mm=1, it is NP-hard to decide whether there
exists a tree T and weights w such that ∀m, ym =
argmaxy S(y;xm, T, w).

Proof. We show a reduction from the NP-hard
bounded-degree spanning tree (BDST) problem to the

MTreeN decision problem defined in Eq. (7).3 In the
BDST problem, given an undirected graph G and an
integer D, the goal is to decide whether there exists
a spanning tree with maximum degree D (for D = 2
this is the Hamiltonian path problem, hence the NP-
hardness).

Given an instance of BDST we construct an instance
of problem Eq. (7) on the same graph G as follows.
First, we define variables y1, . . . , yn that take values
in {0, 1, . . . , n}, where n = |V (G)|. Second, we will
define the parameters θi(yi) and θij(yi, yj) and bias

terms xi(yi) in such a way that solving the MTreeN
decision problem will also solve the BDST problem.
To complement this, we will define a set of training
examples which are separable only by the desired

2As usual, the bias term can be removed by fixing some
elements of w to 1.

3A related reduction is given in Aissi et al. [2005],
Theorem 8.

parameters. For clarity of exposition, we defer the
proof that these parameters are identifiable using a
polynomial number of training examples to App. A.

The singleton parameters are

θi(yi) =

{
D i = 1, y1 = 0

0 otherwise,
(8)

and the pairwise parameters for ij ∈ E(G) are:

θij(yi, yj) =

−n2 yi 6= yj

0 yi = yj = 0

1 yi = yj = i

1 yi = yj = j

0 otherwise.

(9)

Now consider the case where the bias term xi(yi)
is identically zero. In this case the score for (non-
zero) uniform assignments equals the degree of the
vertex in T . That is, S(i, . . . , i; 0, T, θ) = degT (i) since
θij(i, i) = 1 for all j ∈ N(i) and the other parameter
values are zero. The score for the assignment y =
0 is S(0, . . . , 0; 0, T, θ) = D, and for non-uniform
assignments we get a negative score S(y; 0, T, θ) <
0. Therefore, the maximization over y in Eq. (7)
reduces to a maximization over n uniform states
(each corresponding to a vertex in the graph). The
maximum value is thus the maximum between D
and the maximum degree in T : maxy S(y; 0, T, θ) =
max {D,maxi degT (i)}.

It follows that, if we augment the training set that
realizes the above parameters (see App. A) with a
single training example where xm = ym = (0, . . . , 0),
the set of Eq. (7) can now be written as:{

T |D ≥ max
i

degT (i)
}
.

Thus, we have that the learning problem is separable
if and only if there exists a bounded degree spanning
tree in G. This concludes the reduction, and we have
shown that the decision problem in Theorem 3.1 is
indeed NP-hard.

The above hardness proof illustrates a striking differ-
ence between generative learning of tree models (i.e.,
Chow Liu) and discriminative learning (our NP-hard
setting). Clearly, we do not want to abandon the
discriminative setting and trees remain computation-
ally appealing at test time. Thus, in the rest of the
paper, we propose practical approaches for learning
a tree structured predictive model and demonstrate
empirically that our method is competitive.

4 Tree-Inducing Regularization

Due to the hardness of the tree learning problem, we
next develop an approximation scheme for it. We
begin with the exact formulation of the problem, and
then introduce an approximate formulation along with
an optimization procedure. Our construction relies on
several properties of submodular functions and their
convex envelopes.

4.1 Exact Tree Regularization

As described in Section 2, we would like to find a
tree structured weight vector w ∈ W∪ that minimizes
the empirical hinge loss. The main difficulty in
doing so is that the sparsity pattern of w needs to
obey a fairly complex constraint, namely being tree
structured. This is in marked contrast to popular
sparsity constraints such as an upper bound on the
number of non-zero values, a constraint that does not
take into account the resulting global structure.

To overcome this difficulty, we will formulate the exact
learning problem via an appropriate regularization.
We begin by defining a function that maps w to the
space of edges: π : Rd 7→ R|E|, where E corresponds to
all edges of the full graph. Specifically, the component
in π corresponding to the edge ij is:

πij(w) = ‖wij‖1.

Now, denote by Supp(π(w)) the set of coordinates in
π(w) that are non-zero. We would like the edges cor-
responding to these coordinates to form a tree graph.
Thus, we wish to define a set function F (Supp(π(w)))
which will be equal to zero if Supp(π(w)) conforms to
some tree structure, and a positive value otherwise.
If we then add βF (Supp(π(w))) to the objective in
Eq. (4) with β large enough, the resulting w will be
tree structured. The optimization problem is then:

min
w
`(w) + βF (Supp(π(w))). (10)

In what follows, we define a set function F (A) with
the desired properties. That is, we seek a function
that takes a set of edges A and outputs zero if they
correspond to a tree, and a positive number otherwise.
Intuitively, it is also desirable to define the function
such that its value increases as the graph becomes less
“tree-like”. To make this concrete we define a measure
for “treeness” as the minimum number of edges that
need to be removed from A in order to reduce it to
a tree structure. This measure is also known as the
circuit-rank of the graph [Berge, 1962]. Formally:

r = |A|+ c(A)− n,

where c(A) is the number of connected components in
the graph, and n is the number of vertices. We note
that the circuit rank is also the co-rank of the graphic
matroid, and is hence supermodular.

Putting it all together, we have that our desired tree-
inducing function is given by:

F (Supp(π(w))) = |Supp(π(w))|+ c(Supp(π(w)))− n.

Of course, given our hardness result, optimizing
Eq. (10) with the above F (A) is still computationally
hard. From an optimization perspective, the difficulty
comes from the non-convexity of the the above func-
tion in w. Optimization is further complicated by
the fact that it is highly non-smooth, similarly to the
`0 norm. In the next section we suggest a smoothed
approximation that is more amenable to optimization.

We also note that in Eq. (10) w is generally not tree
structured, so the maximization over y in Eq. (1)
is not necessarily tractable. Therefore, we replace
the hinge loss in Eq. (1) with its overgenerating
approximation [Finley and Joachims, 2008], known as
linear programming (LP) relaxation [e.g., see Meshi
et al., 2010]. This is achieved by formulating the
optimization in Eq. (1) as an integer LP and then re-
laxing the integrality requirement, allowing fractional
solutions. Importantly, for tree structured graphs
this approximation is in fact exact [Wainwright and
Jordan, 2008]. This implies that if there exists a
tree model that separates the data, it will be found
even when using this relaxation in Eq. (10). With
slight abuse of notation, we keep referring to the
approximate objective as `(w).

4.2 Approximate Tree Regularization

The function F (A) is a set function applied to the
support of π(w). Bach [2010] (Proposition 1) shows
that when F is submodular and non-decreasing, the
convex envelope of F (Supp(π(w))) can be calculated
efficiently. This is desirable since the convex envelope
then serves as a convex regularizer. Furthermore, this
convex envelope can be elegantly understood as the
Lovász extension f of F , applied to |π(w)| (in our case,
|π(w)| = π(w)). Unfortunately, the circuit-rank r does
not satisfy these conditions, since it is supermodular
and non-decreasing (in fact, its convex envelope is a
constant).

To overcome this difficulty, we observe that F (A)
can be decomposed in a way that allows us to use
the result of Bach [2010]. Specifically, we can write
F (A) = F1(A)− F2(A), where

F1(A) = |A| , F2(A) = n− c(A). (11)

F1(A) is simply the cardinality function which is
modular and increasing. Furthermore, F2(A) is the
rank of the graphic matroid [Oxley, 2006], and is
hence submodular. It is also easy to see that F2(A)
is non-decreasing. Thus, both functions satisfy the
conditions of Proposition 1 in Bach [2010] and their
convex envelopes can be found in closed form, as
characterized in the following corollaries.

Corollary 4.1. The convex envelope of
F1(Supp(π(w)) is f1(π(w)) =

∑
ij πij(w) = ‖w‖1.

Proof. Follows directly from Prop. 1 in Bach [2010]
and the fact that the Lovász extension of the cardinal-
ity function is the `1 norm.

Corollary 4.2. The convex envelope of
F2(Supp(π(w)) is f2(π(w)), defined as follows.
Sort the elements of π(w) in decreasing order, and
construct a maximum-spanning-tree with this ordering
as in Kruskal’s algorithm [Kruskal, 1956]. Denoting
the resulting tree by T (π(w)), we obtain

f2(π(w)) =
∑

ij∈T (π(w))

πij(w) =
∑

ij∈T (π(w))

‖wij‖1

Proof. Let (ij)k denote the kth edge when sorting
π(w), then the Lovász extension f2 of F2 at π(w) is:

|E|∑
k=1

π(ij)k (w)[F2({(ij)1, . . . , (ij)k)− F2({(ij)1, . . . , (ij)k−1)]

=
∑

ij∈T (π(w))

πij(w),

where we have used Eq. (11) and the fact that the
number of connected components decreases by one
only when introducing edges in Kruskal’s tree. The
desired result follows from Prop. 1 in [Bach, 2010].

We now approximate F (Supp(π(w))) as a difference
of the two corresponding convex envelopes, denoted
by f(π(w)):

f(π(w)) ≡ f1(π(w))− f2(π(w)) =
∑

ij /∈T (π(w))

‖wij‖1

(12)
This function has two properties that make it compu-
tationally and conceptually appealing:

• f(π(w)) is a difference of two convex functions so
that a local minimum can be easily found using
the convex concave procedure (see Section 4.3).

• The set {ij /∈ T (π(w))} are precisely these edges
that form a cycle when added according to the
order implied by π(w). Thus, the penalty we use
corresponds to the magnitude of ‖wij‖1 on the
edges that form cycles, namely the non-tree edges.

4.3 Optimizing with Approximate Tree
Regularization

Using the tree inducing regularizer from the previous
section, our overall optimization problem becomes:

min
w
`(w) + βf1(π(w))− βf2(π(w)).

Since the function f2(π(w)) is rather elaborate, opti-
mizing the above objective still requires care. In what
follows, we introduce a simple procedure for doing so
that utilizes the convex concave procedure (CCCP)
[Yuille and Rangarajan, 2003].4 Recall that CCCP is
applicable for an objective function (to be minimized)
that is a sum of a convex and concave functions, and
proceeds via linearization of the concave part.

To use CCCP for our problem we observe that from
the discussion of the previous section it follows that our
objective can indeed be decomposed into the following
convex and concave components:

h∪(w) = `(w) + βf1(π(w)), h∩(w) = −βf2(π(w)),

where ∩ and ∪ correspond to the convex and concave
parts, respectively. To linearize h∩(w) around a point
wt, we need to find its subgradient at that point. The
next proposition, which follows easily from Hazan and
Kale [2009], gives the subgradient of f2(π(w)):

Proposition 4.3. The subgradient of f2(π(w)) is
given by the vector v defined as follows.5 The coor-
dinates in v corresponding to wij are given by:

vij =

{
sign(wij) ij ∈ T (π(w))

0 otherwise

where sign is taken element wise. The other coordi-
nates of v (corresponding to wi) are zero.

We can now specify the resulting algorithm, which we
call CRANK for circuit-rank regularizer.

Algorithm 1 The CRANK algorithm

Input: w1, β
for t = 1, . . . do

ht(w) = `(w) + β‖w‖1 − βv(wt)>w
wt+1 = argminw h

t(w)
end for

The objective ht(w) to be minimized at each iteration
is a convex function, which can be optimized using any
convex optimization method. In this work we use the

4To be precise, we are using the more general DC
programming framework [Tao and An, 1997], which can
be applied to non differentiable functions.

5In cases where several wij are equal, there are multiple
subgradients.

0 50 100
0.75

0.8

0.85

0.9

0.95

1
Hamming

0 50 100
0.05

0.3

0.55

0.8
0/1

Train size
0 50 100

0.7

0.8

0.9

1
F1

Empty

MST

Project

Greedy

Full

CRANK

Figure 1: Average test performance as a function of the number of training samples for the synthetic datasets.

stochastic Frank-Wolfe procedure recently proposed
by Lacoste-Julien et al. [2013].6 The advantage of
this approach is that the updates are simple, and it
generates primal and dual bounds which help monitor
convergence. In practice, we do not solve the inner
optimization problems exactly, but rather up to some
primal-dual gap.

5 Experiments

In this section we evaluate the proposed algorithm
on multi-label classification tasks and compare its
performance to several baselines. In this task the goal
is to predict the subset of labels which best fits a given
input. We use the model presented in Finley and
Joachims [2008], where each possible label yi ∈ {0, 1}
is associated with a weight vector wi, the singleton
scores are given by w>i xyi, and the pairwise scores are
simply wijyiyj (i.e., wij is scalar).

We compare our CRANK algorithm to the follow-
ing baselines: The Empty model learns each label
prediction independently of the other labels; The
Full model learns a model that can use all pairwise
dependencies; The Greedy trainer starts with the
empty model and at each iteration adds the edge
which achieves the largest gain in objective while not
forming a cycle, until no more edges can be added;
The Project algorithm, runs CRANK starting from
the weights learned by the Full algorithm, and using
a large penalty β; 7 The final baseline is an MST
algorithm, which calculates the gain in objective for
each edge separately, takes a maximum-spanning-tree

6We modified the algorithm to handle the `1 + `2 case.
7The Project scheme thus trains a model consisting of

the maximum-spanning-tree over the weights learned by
Full, and can be viewed as a “tree-projection” of the full
model.

over these weights, and then re-trains the resulting
tree. Since CCCP may be sensitive to its starting
point, we restart CRANK from 10 random points and
choose the one with lowest objective (we run those
in parallel). We apply the stochastic Frank-Wolfe
algorithm [Lacoste-Julien et al., 2013] to optimize the
weights in all algorithms. The Full and CRANK
algorithms operate on non-tree graphs, and thus use
an LP relaxation within the training loss (see Section
4.1). Since the model trained with Full is not tree
structured, we also needs to use LP relaxation at test
time (see implications on runtime below). We used the
GLPK solver for solving the LPs.

To measure the performance of the algorithms, we
consider three accuracy measures: Hamming, zero-
one, and F1 (averaged over samples). See [Zhang and
Schneider, 2012, Dembczynski et al., 2010] for similar
evaluation schemes. Regularization coefficients were
chosen using cross-validation. The parameter β in
CRANK was gradually increased until a tree structure
was obtained.

Synthetic Data: We first show results for synthetic
data where x ∈ R4. The data was created as follows:
a random tree T over n = 10 variables was picked and
corresponding weights w ∈ WT were sampled. Train
and test sets were generated randomly and labeled
using w. Test set size was 1000 and train set size
varied. Results (averaged over 10 repetitions) are
shown in Figure 1.

We observe that the structured models do significantly
better than the Empty model. Additionally, we see
that the Full, Greedy, and CRANK algorithms are
comparable in terms of prediction quality, with a slight
advantage for CRANK over the others. We also notice
that Project and MST do much worse than the other
structured models.

Hamming 0/1 F1 Hamming 0/1 F1

Scene Emotions
CRANK 90.5 (2) 58.9 (2) 64.8 (2) 79.2 (1) 29.2 (2) 60.5 (2)
Full 90.7 (1) 62.2 (1) 67.8 (1) 79.0 (3) 33.7 (1) 62.5 (1)
Greedy 90.2 (3) 56.9 (3) 62.6 (3) 78.5 (4) 24.3 (4) 54.5 (4)
Project 89.5 (5) 52.1 (5) 59.2 (5) 77.6 (5) 20.8 (5) 49.8 (5)
MST 89.9 (4) 53.0 (4) 59.6 (4) 79.1 (2) 28.2 (3) 57.5 (3)
Empty 89.3 (6) 49.5 (6) 56.5 (6) 76.7 (6) 20.3 (6) 48.5 (6)

Medical Yeast
CRANK 96.9 (1) 74.0 (2) 78.2 (3) 80.1 (2) 17.6 (2) 60.4 (3)
Full 96.9 (1) 75.0 (1) 78.3 (1) 80.2 (1) 19.0 (1) 60.9 (1)
Greedy 96.9 (1) 74.0 (2) 78.3 (1) NA NA NA
Project 96.7 (4) 72.7 (4) 77.0 (5) 80.1 (2) 16.4 (3) 60.7 (2)
MST 96.7 (4) 71.9 (5) 77.5 (4) 80.1 (2) 16.1 (4) 60.3 (4)
Empty 96.4 (6) 71.0 (6) 76.1 (6) 79.8 (5) 12.1 (5) 58.0 (5)

Table 1: Performance on test data for real-world multi-label datasets. The rank of each algorithm for each
dataset and evaluation measure is shown in brackets. Greedy was too slow to run on Yeast.

Real Data: We next performed experiments on four
real-world datasets.8 In the Scene dataset the task is
to classify a given image into several outdoor scene
types (6 labels, 294 features). In the Emotions
dataset we wish to assign emotional categories to
musical tracks (6 labels, 72 features). In the Medical
dataset the task is document classification (reduced
to 10 labels, 1449 features). This is the experimental
setting used by Zhang and Schneider [2012]. Finally,
to test how training time scales with the number of
labels, we also experiment with the Yeast dataset,
where the goal is to predict which functional classes
each gene belongs to (14 labels, 103 features). The
results are summarized in Table 1.

We first observe that in this setting the Full model
generally has the best performance and Empty the
worst. As before, CRANK is typically close to Full
and outperforms Greedy and the other baselines in
the majority of the cases.

Runtime analysis: In Table 2 we report train and
test run times, relative to the Full model, for the Yeast
dataset.

Table 2: Running times for the Yeast dataset.

Time CRANK Full Project MST Empty
Train 1.82 1.0 0.17 1.32 0.01
Test 0.02 1.0 0.06 0.02 0.02

It is important to note that the greedy algorithm is
very slow to train, since it requires solving O(n3)
training problems. It is thus impractical for large
problems, and this is true even for the Yeast dataset

8Taken from Mulan (http://mulan.sourceforge.net)

which has only n = 14 labels (and hence does not
appear in Table 2). The Full model on the other
hand has much longer test times (compared to the
tree-based models), since it must use an LP solver
for prediction. CRANK has a training time that is
reasonable (comparable to Full) and a much better test
time. On the Yeast dataset prediction with CRANK
is 50 times faster than with Full.

In conclusion, CRANK seems to strike the best
balance in terms of accuracy, training time, and test
time: it achieves an accuracy that is close to the best
among the baselines, with a scalable training time, and
very fast test time. This is particularly appealing for
applications where we can afford to spend some more
time on training while test time is critical (e.g., real-
time systems).

6 Related Work

The problem of structure learning in graphical models
has a long history, dating back to the celebrated
algorithm by Chow and Liu [1968] for finding a
maximum likelihood tree in a generative model. More
recently, several elegant works have shown the utility
of `1 regularization for structure learning in generative
models [Friedman et al., 2008, Lee et al., 2007, Raviku-
mar et al., 2008, 2010]. These works involve various
forms of `1 regularization on the model parameters,
coupled with approximation of the likelihood function
(e.g., pseudo-likelihood) when the underlying model is
non-Gaussian. Some of these works also provide finite
sample bounds on the number of of samples required to
correctly reconstruct the model structure. Unlike ours,
these works focus on generative models, a difference

http://mulan.sourceforge.net

that can be quite fundamental. For example, as we
proved in Section 3, learning trees is a problem that
is NP-hard in the M3N setting while it is polynomial
in the number of variables in the generative one. We
note that we are not aware of finite sample results in
the discriminative setting, where a different MRF is
considered for each input x.

In the discriminative setting, Zhu et al. [2009] define an
`1 regularized M3N objective and present algorithms
for its optimization. However, this approach does
not consider the structure of the underlying graphical
model over outputs y. Torralba et al. [2004] propose
a greedy procedure based on boosting to learn the
structure of a CRF, while Schmidt et al. [2008] present
a block-`1 regularized pseudo-likelihood approach for
the same task. While these methods do consider the
structure of the graphical model, they do not attempt
to produce tractable predictors. Further, they do not
aim to learn models using a max-margin objective.

Bradley and Guestrin [2010] address the problem of
learning trees in the context of conditional random
fields. They show that using a particular type
of tractable edge scores together with a maximum-
spanning-tree (MST) algorithm may fail to find the
optimal tree structure. Our work differs from theirs
in several aspects. First, we consider the max-margin
setting for structured prediction rather than the CRF
setting. Second, they assume that the feature function
φ(x, y) has a particular form where y and x are of the
same order and where the outputs depend only on local
inputs. Finally, we do not restrict our attention to
MST algorithms. Consequently, our hardness result
is more general and the approximations we propose
are quite different from theirs. Finally, Chechetka and
Guestrin [2010] also consider the problem of learning
tree CRFs. However, in contrast to our work, they
allow the structure of the tree to depend on the input
x, which is somewhat more involved as it requires
learning an additional mapping from inputs to trees.

7 Conclusion

We tackled the challenge of learning tree structured
prediction models. To the best of our knowledge,
ours is the first work that addresses the problem
of structure learning in a discriminative M3N set-
ting. Moreover, unlike common structured sparsity
approaches that are used in the setting of generative
and conditional random field models, we explicitly
target tree structures due to their appealing properties
at test time. Following a proof that the task is NP-
hard in general, we proposed a novel approximation
scheme that relies on a circuit rank regularization
objective that penalizes non-tree models, and that can
be optimized using the CCCP algorithm. We demon-

strated the effectiveness of our CRANK algorithm
in several real-life domains. Specifically, we showed
that CRANK obtained accuracies very close to those
achieved by a full-dependence model, but with a much
faster test time.

Many intriguing questions arise from our work: Under
which conditions can we learn the optimal model, or
guarantee approximation quality? Can we extend our
framework to the case where the tree depends on the
input? Can we use a similar approach to learn other
graphs, such as low treewidth or high girth graphs?
Such settings introduce novel forms of graph-structured
sparsity which would be interesting to explore.

Acknowledgments

This research is funded by the ISF Centers of Excel-
lence grant 1789/11, and by the Intel Collaborative Re-
search Institute for Computational Intelligence (ICRI-
CI). Ofer Meshi is a recipient of the Google Europe
Fellowship in Machine Learning, and this research is
supported in part by this Google Fellowship.

A Realizing the parameters

Here we complete the hardness proof in Section 3 by
describing the training set that realizes the parameters
of Eq. (8) and Eq. (9). The approach below makes use
of two training samples to constrain each parameter,
one to upper bound it and one to lower bound it.
Appealingly, the training samples are constructed in
such a way that other samples do not constrain the
parameter value, allowing us to realize the needed
value for each and every parameter in the model.

The construction is similar to Sontag et al. [2010]. For
all parameters it consists of the following steps: (i)
define an assignment x(y); (ii) identify two y values
that potentially maximize the score; and (iii) show
that these two complete assignments to x and y force
the desired parameter value.

Preliminaries: Recall that the parameter vector θ
is defined in Eq. (6) via a product of the features
φi(yi, x) and φij(yi, yj , x) and the weights wi and wij
which do not depend on x or y and are shared across
the parameters. For the hardness reduction, it will be
convenient to set the features to indicator functions
and show that the implied weight values are realizable.
Specifically, we set the features to:

φoff-diag
ij (yi, yj) =1{yi 6= yj} ∀i, j

φdiag
ij (yi, yj) =1{yi = yj = i or yi = yj = j} ∀i, j

φbound
1 (y1) =1{y1 = 0}

Recall that to realize the desired parameters θ, we need
to introduce training samples such that for all i, j:

woff-diag
ij = −n2, wdiag

ij = 1, wbound
1 = D,

with the dimension of w equalling 2|E(G)|+ 1.

Finally, using Ni to denote the set of neighbors of node
i in the graph G, we will use the following (large) value
to force variables not to take some chosen states:

γi =

{
1 + |Ni|(n2 + 1) i 6= 1

1 + |Ni|(n2 + 1) +D i = 1

Realizing the weight wbound
1 : We define x(y) as:

x1(y1) =

0 y1 = 0

−D y1 = 1

−γ1 y1 ≥ 2

xi(yi) =

{
0 yi = 2

−γi yi 6= 2
for all i 6= 1

Recalling the definition of γ above, this implies that
the only assignments to y that can maximize the
score of Eq. (6) are (0, 2, 2, ..., 2) and (1, 2, 2, ..., 2). In
particular, we have:

S(0, 2, 2, ..., 2;x,w) =
∑
k∈N1

woff-diag
1k + x1(0) + S̄

S(1, 2, 2, ..., 2;x,w) =wbound
1 +

∑
k∈N1

woff-diag
1k + x1(1) + S̄

where S̄ is the sum of all components that do not
involve the first variable.

For the final step we recall that the weights w have to
satisfy the constraints: S(ym;xm, w) ≥ S(y;xm, w)
for all m, y. Thus, we will define two instances
(xm, ym) for which some y assignment will constrain
the weight as needed (in both cases, xm is defined
as above). When y(m) = (0, 2, 2, . . . , 2), the assign-
ment y = (1, 2, 2, . . . , 2) yields wbound

1 ≤ D and all
other assignments do no further constrain the weight.
Similarly, for y(m′) = (1, 2, 2, . . . , 2), the assignment
y = (0, 2, 2, . . . , 2) yields wbound

1 ≥ D. Together, the
two assignments constrain the weight parameter to
wbound

1 = D, as desired.

Realizing the weights woff-diag
ij : We define x(y)

as:

xi(yi) =

{
0 yi = 0

−γi yi 6= 0
, xj(yj) =

0 yj = 0

n2 yj = 1

−γj yj ≥ 2

xk(yk) =

{
0 yk = k

−γk yk 6= k
for all k 6= i, j

This implies that except for i and j, all yk’s must take
their corresponding assignment so that yk = k. W.l.g.,
suppose that i = 1 and j = 2. The only assignments
that can maximize the score are (0, 0, 3, 4, 5, ..., n) and
(0, 1, 3, 4, 5, ..., n) with values:

S(0, 0, 3, 4, 5, ..., n;x,w) =∑
k∈Ni

woff-diag
ik +

∑
k′∈Nj

woff-diag
jk′ + xi(0) + xj(0) + S̄

S(0, 1, 3, 4, 5, ..., n;x,w) =

woff-diag
ij +

∑
k∈Ni

woff-diag
ik +

∑
k′∈Nj

woff-diag
jk′ + xi(0) + xj(1) + S̄

As before, setting y(m) = (0, 0, 3, 4, 5, ..., n) and
then y(m′) = (0, 1, 3, 4, 5, ..., n) yields the constraint

woff-diag
ij = −n2.

Realizing the weights wdiag
ij : We define x(y) as:

xi(yi) =

{
0 yi = i

−γi yi 6= i
, xj(yj) =

n2 yj = 0

−1 yj = i

−γj yj /∈ {0, i}

xk(yk) =

{
0 yk = k

−γk yk 6= k
for all k 6= i, j

As before, for all k 6= i, j the assignment is forced
to yk = k. The maximizing assignments are
now (1, 0, 3, 4, 5, ..., n) and (1, 1, 3, 4, 5, ..., n) (assuming
w.l.g., i = 1, j = 2) with score values:

S(1, 0, 3, 4, 5, ..., n;x,w) =

woff-diag
ij +

∑
k∈Ni

woff-diag
ik +

∑
l∈Nj

woff-diag
jl + xi(i) + xj(0) + S̄

S(1, 1, 3, 4, 5, ..., n;x,w) =

wdiag
ij +

∑
k∈Ni

woff-diag
ik +

∑
l∈Nj

woff-diag
jl + xi(i) + xj(i) + S̄

Now, setting y(m) = (1, 0, 3, 4, 5, ..., n), the assignment

y = (1, 1, 3, 4, 5, ..., n) implies woff-diag
ij +n2 ≥ wdiag

ij −1.

Since we already have that woff-diag
ij = −n2, we obtain

wdiag
ij ≤ 1. Similarly, adding y(m′) = (1, 1, 3, 4, 5, ..., n)

implies wdiag
ij ≥ 1, so together we have wdiag

ij = 1, as
required.

Importantly, our trainset realizes the same edge pa-
rameters for any possible tree, since edge weights are
constrained independently of other edges.

References

H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation
complexity of min-max (regret) versions of shortest path,
spanning tree, and knapsack. In Proceedings of the 13th
annual European conference on Algorithms, pages 862–
873, Berlin, Heidelberg, 2005. Springer-Verlag.

F. Bach. Structured sparsity-inducing norms through
submodular functions. In J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23,
pages 118–126. 2010.

G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola,
B. Taskar, and S. V. N. Vishwanathan. Predicting
Structured Data. The MIT Press, 2007.

C. Berge. The Theory of Graphs. Dover Books on
Mathematics Series. Dover, 1962.

J. K. Bradley and C. Guestrin. Learning tree conditional
random fields. In J. Fürnkranz and T. Joachims, editors,
Proceedings of the 27th International Conference on Ma-
chine Learning (ICML-10), pages 127–134. Omnipress,
2010.

A. Chechetka and C. Guestrin. Evidence-specific structures
for rich tractable crfs. In J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23,
pages 352–360. 2010.

C. I. Chow and C. N. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
Transactions on Information Theory, 14:462–467, 1968.

M. Collins. Discriminative training methods for hidden
Markov models: Theory and experiments with percep-
tron algorithms. In EMNLP, 2002.

K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes op-
timal multilabel classification via probabilistic classifier
chains. In ICML, pages 279–286, 2010.

T. Finley and T. Joachims. Training structural SVMs
when exact inference is intractable. In Proceedings of
the 25th International Conference on Machine learning,
pages 304–311, 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse
inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432–441, 2008.

E. Hazan and S. Kale. Beyond convexity: Online submod-
ular minimization. In Advances in Neural Information
Processing Systems 22, pages 700–708. 2009.

J. B. Kruskal. On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem. Proceedings
of the American Math. Society, 7(1):48–50, 1956.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher.
Block-coordinate Frank-Wolfe optimization for struc-
tural SVMs. In Proceedings of The 30th International
Conference on Machine Learning, pages 53–61, 2013.

J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In Proc. 18th Int. Conf. on
Machine Learning, pages 282–289, 2001.

S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure
learning of Markov networks using L1-regularization.
In Advances in Neural Information Processing Systems
(NIPS 2006), 2007.

O. Meshi, D. Sontag, T. Jaakkola, and A. Globerson.
Learning efficiently with approximate inference via dual
losses. In ICML, pages 783–790, New York, NY, USA,
2010. ACM.

J. G. Oxley. Matroid Theory. Oxford University Press,
2006.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
1988.

P. Ravikumar, G. Raskutti, M. J. Wainwright, and B. Yu.
Model selection in gaussian graphical models: High-
dimensional consistency of l1-regularized MLE. In
Advances in Neural Info. Processing Systems 17. 2008.

P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-
dimensional ising model selection using l1-regularized
logistic regression. Annals of Statistics, 38(3):1287–1319,
2010.

M. Schmidt, K. Murphy, G. Fung, and R. Rosales.
Structure learning in random fields for heart motion
abnormality detection. In CVPR, pages 1 –8, 2008.

Y. Shimony. Finding the MAPs for belief networks is NP-
hard. Aritifical Intelligence, 68(2):399–410, 1994.

D. Sontag, O. Meshi, T. Jaakkola, and A. Globerson. More
data means less inference: A pseudo-max approach to
structured learning. In Advances in Neural Information
Processing Systems 23, pages 2181–2189. 2010.

P. D. Tao and L. T. H. An. Convex analysis approach to
dc programming: theory, algorithms and applications.
Acta Mathematica Vietnamica, 22(1):289–355, 1997.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov
networks. In Advances in Neural Information Processing
Systems. MIT Press, 2003.

A. Torralba, K. P. Murphy, and W. T. Freeman. Contex-
tual models for object detection using boosted random
fields. In Advances in Neural Information Processing
Systems 17, pages 1401–1408. 2004.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdepen-
dent output variables. Journal of Machine Learning
Research, 6(2):1453, 2006.

M. Wainwright and M. I. Jordan. Graphical Models,
Exponential Families, and Variational Inference. Now
Publishers Inc., Hanover, MA, USA, 2008.

A. L. Yuille and A. Rangarajan. The concave-convex
procedure. Neural Comput., 15(4):915–936, Apr. 2003.

Y. Zhang and J. Schneider. Maximum margin output
coding. In ICML, 2012.

J. Zhu, E. P. Xing, and B. Zhang. Primal sparse max-
margin markov networks. In Proceedings of the ACM
SIGKDD international conf. on Knowledge discovery
and data mining, KDD ’09, pages 1047–1056, 2009.

	Introduction
	The Max-margin Tree
	Learning M3N Trees is NP-hard
	Tree-Inducing Regularization
	Exact Tree Regularization
	Approximate Tree Regularization
	Optimizing with Approximate Tree Regularization

	Experiments
	Related Work
	Conclusion
	Realizing the parameters

