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Abstract

We tackle the challenge of efficiently learning
the structure of expressive multivariate real-
valued densities of copula graphical models.
We start by theoretically substantiating the
conjecture that for many copula families the
magnitude of Spearman’s rank correlation
coefficient is monotonic in the expected con-
tribution of an edge in network, namely the
negative copula entropy. We then build on
this theory and suggest a novel Bayesian ap-
proach that makes use of a prior over values
of Spearman’s rho for learning copula-based
models that involve a mix of copula families.
We demonstrate the generalization effective-
ness of our highly efficient approach on siz-
able and varied real-life datasets.

1 Introduction

Learning expressive real-valued multivariate distribu-
tions is of central interest in numerous fields ranging
from computational biology to economics to climatol-
ogy. When the joint distribution of interest is far from
multivariate normal, this modeling task can be a great
challenge. In statistics, copulas [Joe, 1997, Nelsen,
2007] are the central tool for capturing flexible mul-
tivariate real-valued distributions by separating the
choice of the univariate marginals and the copula func-
tion that links them. Copulas are typically only effec-
tive in low dimensions, and much of the research in the
field in fact focuses on the bivariate case. Accordingly,
in the last decade, various high-dimensional construc-
tions that build on a collection of copulas have been
suggested, most notably those based on the vine con-
struction [Bedford and Cooke, 2002, Kurowicka and
Cooke, 2002]. These models have proved to be quite
effective for crossing the few variable barrier. However,
in the context of many tens of variables to hundreds

and thousands of variables, applications have been few
and involve costly and time-consuming expert elicita-
tion [Hanea et al., 2010].

In machine learning, probabilistic graphical models,
and in particular directed Bayesian networks (BNs)
[Pearl, 1988], have become increasingly popular as a
flexible and intuitive framework for modeling multi-
variate densities based on a qualitative graph struc-
ture G that encodes the independencies in the do-
main. Graphical models are geared toward the high-
dimensional case and numerous algorithms for estima-
tion, model selection and prediction using these mod-
els have been developed in recent decades [Koller and
Friedman, 2009]. Unfortunately, due to computational
considerations, real-valued high-dimensional modeling
using this framework is often limited to a structured
multivariate Gaussian model.

In recent years, several works suggested a fusion be-
tween copulas and graphical models [Kirshner, 2007,
Elidan, 2010], with the goal of allowing for flexible
real-valued modeling that is practical in the high-
dimensional setting. The basic idea is that the joint
density is defined via a collection of local copula func-
tions that capture the direct dependence between a
variable and its parents in the graph G, as well as
a set of univariate marginals that are shared across
the entire model. As with standard graphical models,
the super-exponential task of learning the structure
of such models from data poses practical difficulties.
Specifically, the computational bottleneck of structure
learning is the assessment of the quality of candidate
structures, which in turn requires costly estimation of
maximum likelihood parameters. Indeed, even when
using a simple greedy procedure to traverse the space
of structures, or when limiting ourselves to tree struc-
tured models, structure learning can be computation-
ally demanding for non-Gaussian models. Our goal in
this work is to cope with this challenge.

Recently, Elidan [2012] suggested a highly efficient
approach for learning the structure of copula-based



Bayesian networks. Briefly, the building block of struc-
ture learning is the ranking of the merit of an edge
X → Y given M training samples. Using U ≡ FX(x),
V ≡ FY (y) to denote the marginal distributions of
these variables and assuming a copula-based model,
they note that the benefit of the edge is asymptoti-
cally equal to the negative differential entropy

−H(cθ(U, V )) =

∫
cθ(u, v) log cθ(u, v)dudv, (1)

where c(·) denotes the (copula) density that corre-
sponds to the joint distribution of X and Y . They
then suggest that −H(cθ(U, V )) is monotonic in the
easy to compute Spearman’s ρs measure of correla-
tion. This in turn facilitates highly efficient struc-
ture learning where simple Spearman’s ρs computa-
tions are used to rank candidate edge modifications.
The monotonicity is proved for the Gaussian copula
and algebraically simple Farlie-Gumbel-Morgenstern
(FGM) copula family. Based on simulations, they fur-
ther conjectured that the result holds for several ad-
ditional copula families. Finally, they show that the
method can be used to learn the structure of copula-
based models that generalize well very efficiently. The
method’s main limitation, other than the gap in the-
ory, is the fact that the same copula family is used to
parameterize all edges in the model.

In this work we extend Elidan [2012] along two im-
portant axes. First, we provide a formal proof of the
monotonicity conjecture given a sufficient condition
that applies to a wide range of common copula fami-
lies, a novel contribution to the theory of copulas on
its own. Second, we tackle the challenge of perform-
ing structure learning while also allowing for a mixed
combination of copulas, thereby significantly increas-
ing the expressive power of the model. Briefly, our
theoretical result suggests that the selection between
copula families can be made based on expected like-
lihood characteristic curves that are computed once.
A natural Bayesian prior is then used to “calibrate”
the curves for several families. Finally, the posterior
curves are used to select a copula family for each edge
based only on Spearman’s ρs computations.

We use our speedy model selection (SMS) approach to
learn copula-based tree structured models for several
real-life datasets that are quite substantial in size in
the context of structure learning with the number of
variables ranging from 100 to close to 900. In all cases,
we demonstrate impressive performance benefits rela-
tive to learning a model that is constrained to using
a single copula family. Further, in many instances we
show that our highly efficient approach is competitive
with the computationally demanding golden standard
where the best copula for each edge is computed via
costly maximum likelihood estimation for each family.

2 Background

In this section we briefly provide the necessary back-
ground on copulas, Spearman’s ρs and stochastic or-
ders of multivariate distributions.

2.1 Copula and Spearman’s ρs

A copula function joins univariate marginals into a
joint real-valued multivariate distribution. Formally,

Definition 2.1: Let U1, . . . , Un be random variables
marginally uniformly distributed on [0, 1]. A copula
function C : [0, 1]n → [0, 1] is a joint distribution

Cθ(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un),

where θ are the parameters of the copula function.

Now consider an arbitrary set X = {X1, . . . Xn} of
real-valued random variables (typically not marginally
uniformly distributed). Sklar’s seminal theorem
[Sklar, 1959] states that for any joint distribution
FX (x), there exists a copula function C such that

FX (x) = C(F1(x1), . . . , Fn(xn)).

When the univariate marginals are continuous, C is
uniquely defined.

The constructive converse, which is of central inter-
est from a modeling perspective, is also true. Since
Ui ≡ Fi is itself a random variable that is always uni-
formly distributed in [0, 1], any copula function tak-
ing any marginal distributions {Fi(xi)} as its argu-
ments, defines a valid joint distribution with marginals
{Fi(xi)}. Thus, copulas are “distribution generating”
functions that allow us to separate the choice of the
univariate marginals and that of the dependence.

To derive the joint density f(x) = ∂nF (x1,...,xn)
∂x1...∂xn

from
the copula construction, assuming F has n-order par-
tial derivatives (true almost everywhere when F is con-
tinuous), and using the chain rule, we have

f(x) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) . . . ∂Fn(xn)

∏
i

fi(xi)

≡ c(F1(x1), . . . , Fn(xn))
∏
i

fi(xi),

where c(F1(x1), . . . , Fn(xn)), is called the copula den-
sity function.

Example 2.2: The Gaussian copula is undoubtedly
the most commonly used copula family and is defined
as

CΣ({Ui}) = ΦΣ

(
Φ−1(U1), . . . ,Φ−1(UN )

)
, (2)



Figure 1: Samples from the
bivariate Gaussian copula with
correlation θ = 0.25. (left)
with unit variance Gaussian
marginals; (right) with a mix-
ture of Gaussian and Gamma
marginals.

Normal marginals Gaussian Mix & Gamma marginals

where Σ is a correlation matrix, Φ is the standard nor-
mal distribution, and ΦΣ is a zero mean normal distri-
bution with correlation matrix Σ. Figure 1 exemplifies
the flexibility that comes with this seemingly limited
elliptical copula family.

Copula are intimately connected to many dependence
concepts such as Spearman’s ρs measure of association

ρs(X1, X2) =
cov(FX1

, FX2
)

STD(X1)STD(X2)
,

which is simply Pearson’s correlation applied to the
cumulative distributions of X1 and X2. For the copula
associated with the joint FX1,X2

(x1, x2), we have

ρs(X1, X2) = ρs(C) ≡ 12

∫ ∫
C(u, v)dudv − 3.

Thus, Spearman’s ρs is monotonic in the copula cumu-
lative distribution function associated with the joint
distribution of X1 and X2. See [Nelsen, 2007, Joe,
1997] for an in-depth exploration of the framework of
copulas and its relationship to dependence measures.

2.2 Stochastic Orderings

The vast majority of copula families are parameterized
by a dependence parameter θ that defines a stochastic
ordering in the bivariate case. Below we define two
such related orders that will be used in the sequel. In
the rest of the paper, we use X, Y to denote bivari-
ate random vectors with distributions FX(u, v) and
FY(u, v), respectively.

Definition 2.3: Y is said to be more positive quad-
rant dependent than X, denoted by X ≤PQD Y, if
∀(u, v) ∈ R2, FX(u, v) ≤ FY(u, v).

Thus, PQD ordering corresponds to a fast accumu-
lation of density. To define the second ordering, we
first need the notion of supermodularity. In what fol-
lows we use the following notation: u∨ v ≡ min(u, v),
u ∧ v ≡ max(u, v).

Definition 2.4: A function Ψ : R2 → R is said to be
supermodular if

∀(u, v) ∈ R2,Ψ(u ∨ v) + Ψ(u ∧ v) ≥ Ψ(u) + Ψ(v)

Ψ is submodular when the inequality is reversed.

The supermodular ordering can now be defined:

Definition 2.5: Y is said to be greater than X in the
supermodular order, denoted by X ≤sm Y, if ∀Ψ such
that Ψ is super modular: E[Ψ(X)] ≤ E[Ψ(Y)]

This property is important in our context since, in
the bivariate case, we have the following result due to
Shaked and Shanthikumar [2007]:

Theorem 2.6: X ≤PQD Y ⇐⇒ X ≤sm Y.

3 Monotonicity of the Copula Entropy
in the Dependence Parameter

As discussed in the introduction, Elidan [2012] sug-
gested that the magnitude of Spearman’s ρs is
monotonic in the negative copula entropy which in
turn asymptotically approximates the expected log-
likelihood of a model, thereby giving rise to an effi-
cient structure learning procedure. In this section we
prove the conjecture for a wide range of copula families
and discuss its relationship to real-valued majoriza-
tion. In the next section we present a novel algorithmic
approach called speedy model selection (SMS) that
builds on this theory and allows us to efficiently per-
form structure learning while at the same time choose
the local copula family.

3.1 TP2 Density Implies Entropy Ordering

We now present our central result, namely the identi-
fication of a widely applicable sufficient condition for
the monotonicity of the copula entropy in the depen-
dence parameter, and consequently in Spearman’s ρs.

Recall that X, Y are two bivariate random vec-
tors. Throughout this section let X ∼ Cθ1(u, v),Y ∼



Cθ2(u, v) with θ1 < θ2, where Cθ(u, v) is an absolutely
continuous bivariate copula family that is increasing
in <PQD so that the cumulative distribution of Y is
greater than that of X for all (u, v). Note that essen-
tially all copula families that are parameterized by a
so called dependence parameter θ are PQD ordered.

Before stating the main result, using u∨v ≡ min(u, v),
u ∧ v ≡ max(u, v), we define the following notion:

Definition 3.1: A function Ψ : R2 → R is TP2 (total
positive of order 2) if the following holds:

∀(u, v) ∈ R2 Ψ(u ∨ v) ·Ψ(u ∧ v) ≥ Ψ(u) ·Ψ(v).

Ψ is called RR2 (reversed regular of order 2) when the
inequality is reversed.

Note that the density for many copulas is a TP2 or
RR2 function (for example, 8 of the twelve B1-B12
families defined in Joe [1997] are known to be TP2
and the property may hold for some of the others).

The following property of TP2 (RR2) functions, easily
proved using logarithmic properties, will be needed:

Observation 3.2 : Given a positive function Ψ(u, v)
which is TP2 (RR2), Φ(u, v) = log(Ψ(u, v)) is super-
modular (submodular).

We are now ready for our central result:

Theorem 3.3: If Cθ(u, v) is a copula family that de-
fines a positive PQD ordering, and the copula density
cθ(u, v) is TP2 for all values of θ, then

θ1 < θ2 ⇒ −H(cθ1) ≤ −H(cθ2)

When Cθ(u, v) is RR2 the inequality is reversed.

Proof: Recall that X ∼ cθ1 and Y ∼ cθ2 , and that
θ1 < θ2. We will show that the following holds:

−H(X) =

∫
cθ1(u, v)log(cθ1(u, v))dudv

≤
∫
cθ2(u, v)log(cθ1(u, v))dudv

≤
∫
cθ2(u, v)log(cθ2(u, v))dudv = −H(Y)

First inequality. Since Cθ(u, v) defines a PQD or-
dering, we have from Theorem 2.6 that X ≤sm Y. Let
Ψ(u, v) = log(cθ1(u, v)). Since cθ1(u, v) is TP2, from
Observation 3.2 we have that Ψ(u, v) is super modular,
that is E(Ψ(X)) ≤ E(Ψ(Y)). Thus:∫
cθ1(u, v)Ψ(u, v)dudv ≤

∫
cθ2(u, v)Ψ(u, v)dudv.

The first inequality follows by substitution of Ψ.

Family CDF condition
Normal Φθ(Φ

−1(u),Φ−1(v)) 0 ≤ θ ≤ 1
FGM uv + θuv(1−u)(1−v) −1 ≤ θ ≤ 1

Gumbel e−[(û)θ+(v̂)θ)]1/θ 1 ≤ θ ≤ ∞,
û = −log(u)

Frank − 1
θ log

(
1− τ(u)τ(v)

τ(1)

) 0 ≤ θ ≤ ∞,
τ(x) = 1− e−θx

Clayton max
(
u−θ+v−θ−1, 0

)− 1
θ θ∈[−1,∞], 6= 0

Joe
1−

(
ūδ + v̄δ − ūδ v̄δ

) 1
δ δ ∈ [1,∞),

ū = 1− u
AMH* uv

1−θ(1−u)(1−v) −1 ≤ θ ≤ 1

GB* uve−θln(u)ln(v) 0 ≤ θ ≤ 1

Table 1: TP2/RR2 Copula families. ’*’ marks families
for which, to the best of our knowledge, this property
was not previously known.

Second inequality. The difference between the two
sides of the second inequality is∫

cθ2(u, v) [log(cθ1(u, v))− log(cθ2(u, v))] dudv

The result follows by noting that this is simply the
Kullback-Leibler divergence between the two densities
cθ2 and cθ1 , and the fact that this divergence is always
non-negative [Cover and Thomas, 1991].

Note that the above theorem is stated for positively
PQD ordered copula families. For negatively ordered
families (e.g., Gumbel-Barnett) a reverse monotone re-
lationship holds, as can be similarly proved.

The following is an immediate consequence of Theo-
rem 3.3 and the known monotonicity of ρs in the de-
pendence parameter θ for PQD ordered families:

Corollary 3.4 : If the copula density cθ(u, v) is
TP2/RR2 for all θ, then the magnitude of Spearman’s
ρs is monotonic in the copula entropy.

Note that, phrased in terms of the magnitude of ρs, the
result also holds for PQD families such as the Gaus-
sian copula that are TP2 for one side of the parameter
values (0 ≤ θ ≤ 1) and RR2 otherwise (−1 ≤ θ ≤ 0).

3.2 Examples of TP2/RR2 Copulas

As discussed, the density of many copulas is a
TP2/RR2 function making our theoretical result
widely applicable. Table 1 lists these copula families
and provides their distribution function.

The Gaussian, Fairlie-Gumbel-Morgenstern (FGM),
Frank, Gumbel, Clayton and Joe copulas are all known
to have a TP2/RR2 density [Joe, 1997]. Thus, for all
these families the negative entropy is monotonic in θ,
and consequently in the magnitude of Spearman’s ρs.



Two additional popular copula families are confirmed
to have a TP2/RR2 density:

Lemma 3.5: The Ali-Mikhail-haq (AMH) copula has
a TP2 density for nonnegative θ values and an RR2
density otherwise. The Gumbel-Barnett (GB) copula
has an RR2 density.

Proof of this result can be found in Appendix 7.

3.3 Other Copula Families

For completeness, we now discuss another sufficient
condition for the monotonicity of the entropy in the
dependence parameter and its relation to the TP2
condition. To the best of our knowledge, other than
the work of Elidan [2012] that formulated the conjec-
ture proved above, the only work that sheds theoret-
ical light on the relationship between the copula de-
pendence parameter θ and the entropy is that of Joe
[1987]. The relevant details are summarized below.

If f, g are two n-dimensional densities, then f is said to
be majorized by g, denoted by f � g, iff

∫
Φ(f)dx ≤∫

Φ(g)dx for all convex functions Φ. In particular,
since Φ(x) = xlog(x) is convex, then letting X,Y be
two n-dimensional random vectors, such that X ∼ f1,
Y ∼ f2, and f1 is majorized by f2, we have that

−H(X) ≡
∫
f1log(f1)dX

≤
∫
f2log(f2)dY ≡ −H(Y).

With some additional technical details (see [Joe,
1987]), it is possible to show that for all elliptical cop-
ula families the dependence parameter θ implies a ma-
jorization ordering, which in turn implies monotonicity
of the entropy in the absolute value of Spearman’s ρs.

Thus, the monotonicity of the entropy in the corre-
lation parameter for a bivariate Gaussian copula can
be proved via majorization or Theorem 3.3. However,
majorization does not hold for the other families which
have a TP2 density. Conversely, the t-copula elliptical
family defines a majorization ordering but its density
is neither TP2 nor RR2 for some degrees of freedom
[Allan.R.Sampson, 1983].

Finally, the widely used Plackett family of copulas has
a density that is neither a TP2 function, nor does it
define a majorization ordering. However, as the sim-
ulations of Elidan [2012] suggest, the monotonicity of
the entropy in the dependence parameter also holds
for this copula family. Identification of the conditions
necessary for the monotonicity relationship to hold re-
mains a future challenge.

4 A Bayesian Approach for Learning
Expressive Copula Trees

Base on the theoretical developments presented in the
previous section, we now present a speedy model se-
lection (SMS) approach for learning the structure of
copula-based graphical models while allowing for dif-
ferent copula families within the same model. For clar-
ity and simplicity of exposition, we focus on the case of
copula trees where the relationship between the the-
ory and practice is most direct. As we shall see in
Section 5, even in this seemingly simple setting, our
approach offers significant generalization benefits. We
start with a brief review of a copula tree model and
how Spearman’s ρs can be used to learn its structure
for a single copula family.

4.1 Structure Learning using Spearman’s ρs

We now we briefly review the idea put forth by Elidan
[2012] for using Spearman’s ρs to learn the structure of
a copula network, an idea whose theoretical substanti-
ation has been greatly increased by the developments
in the previous section.

In a tree structured copula model [Kirshner, 2007, El-
idan, 2010], the joint density is represented as a prod-
uct of bivariate copula densities corresponding to the
edges of the tree T and the univariate marginals:

fX (x1, . . . , xn) =
∏

(i,j)∈T

cij(Fi(xi), Fj(xk))
∏
i

fi(xi).

When learning the structure of a model, we seek a
graph for which the (penalized) maximum likelihood
function is highest. Since the likelihood function it-
self decomposes, the building block of learning is the
evaluation of the merit of an edge X → Y , indepen-
dently of all other edges. In the case of the copula
parameterization the relevant term is

Score(X,Y ) ≡
M∑
m=1

log cθ̂(FX(x[m]), FY (y[m])),

where θ̂ are the estimated parameters, the sum is over
training instances, and the marginal terms that do not
depend on the graph’s structure have been dropped.

Evaluation of Score(X,Y ) can be computationally dif-
ficult. However, all that we really need to identify the
optimal tree is a ranking of the scores for all possible
edges. If we assume that the data is generated from
the copula, then as M →∞ we have that

Score(X,Y )→ −H(Cθ(U, V )),

where U, V are the ranks of X,Y , respectively.



Figure 2: (left) expected log-likelihood vs. Spearman’s ρs for the normal, Gumbel and Clayton copula families.
(right) expected posterior vs. Spearman’s ρs.

Thus, having proved that |ρs| is monotonic in
−H(Cθ(U, V )), we can simply use an easy to compute
empirical estimate of ρs to rank candidate edges, and
find the optimal tree with respect to this measure us-
ing a simple maximum spanning tree algorithm.

4.2 Choosing From Multiple Copula Families

The above approach, suggested by Elidan [2012] allows
for efficient structure learning of a copula based model
that makes use of a single copula family. Obviously,
not all pairs of variables share the same dependence
characteristics and while the interaction between one
pair of variable be be Gaussian, the interaction be-
tween another pair may be heavy-tailed and exhibit,
for example, a behavior that is close to a Gumbel dis-
tribution. As an example, for the Crime census do-
main described in Section 5, the optimal tree includes
around 41% edges parameterized by a Gaussian cop-
ula, 48% edges parameterized by a Gumbel copula,
and 11% edges parameterized by a Clayton copula.
Obviously, the need for a mix of copula families is real.

We now present an efficient approach for learning
copula-based graphical models while allowing for a mix
of copula families while retaining the lightning-speed
efficiency of learning that is based on Spearman’s ρs
empirical evaluation. Naively, since the expected log-
likelihood is monotonic in Spearman’s ρs, the following
procedure may seem reasonable:

• Simulate the characteristic curve of expected log-
likelihood for each copula family (note that this
needs to be carried out only once).

• For each value of Spearman’s ρs choose the family
that offers the highest expected log-likelihood

Unfortunately, such a procedure can fail since the the-
oretical result guarantees monotonicity within a cop-
ula family and not between copula families. In fact, as
Figure 2(left) shows, the expected log-likelihood vs.
Spearman’s ρs is highest for Clayton copula family
through much of the range of ρs values. Using the
naive approach would lead us in this case to over-favor
the Clayton copula.

An intuitive explanation to the above phenomenon is
that while characteristic curves indeed capture the be-
havior given Spearman’s ρs for a particular family,
they do not take into account the likelihood of see-
ing a particular value of ρs within each family. In fact,
we can expect the density of ρs (which is always in the
range [−1, 1]) to be quite different between the nor-
mal copula family whose dependence parameter is in
the range [−1, 1] and, for example, the Clayton copula
family whose parameter has infinite support.

Given the above, we would like to somehow take into
account a prior density over ρs for each copula family.
Using C to denote the set of copula families and fc(ρs)
to denote the density of ρs for a copula family c ∈ C,
we will then choose the copula family that maximize
the expected posterior

argamaxc∈CE (log c(F (x), F (y); ρs) + logfc(ρs) (3)

Importantly, this approach still relies on precomputed
(posterior) characteristic curves and thus is as efficient
as learning with a single copula family, regardless of
the number of copula families considered.

The obvious question is how to choose the prior fc(ρs)
for each copula family. In depth exploration of this
question is left to future work and in here we use
a straightforward approach which, as will be seen



Figure 3: (left) Average log probability per instance over 10 folds. Compared are the Gaussian copula model,
the model with a mix of copula families using our SMS method, and the golden standard of learning using
exact maximum likelihood computations. Shown are results for the Crime, SP500, and Gene datasets. (right)
comparison of our approach to the Gaussian copula baseline for all repetitions for the SP500 domain.

in Section 5, proves quite effective in practice. We
choose a prior that, while taking into account the range
of dependence parameter for each copula family, as-
signs higher density to the independence model where
ρs = 0. Appealingly, this is both uninformative while
at the same time ensuring that we do not encourage
dependence that is due to finite data noise.

Concretely, in this paper we consider the normal cop-
ula and the most popular Archimedean copula fami-
lies, namely the Clayton, Frank, and Gumbel copula
families. For the normal copula, the above translates
into a standard truncated Laplace (also known as dou-
ble exponential prior). For the Gumbel copula we use
a shifted by unity exponential distribution (according
to dependence parameter support) and for Clayton we
take exponential distribution with parameter λ = 4.
The resulting characteristic curves are shown in Fig-
ure 2(right) where it is clear that different copula fam-
ilies are preferred (highest) in different regions. In the
next section we will show that using this curve to auto-
matically choose the copula family based on empirical
Spearman’s ρs evaluation results in competitive mod-
els that are learned very efficiently.

We note that the characteristic curve for the Frank
copula family is missing from this graph because of its
similarity to that of the normal copula family. The im-
plication of this similarity is that our method cannot
be used to separate these two copula families. This
should not come as a great surprise since the symmet-
ric Frank density, while not Gaussian, is much more
similar to the normal distribution than, for example,

the asymmetric heavy-tailed Gumbel one. While this
may sound problematic, due to the similarity of densi-
ties, the practical implications of wrongly choosing be-
tween the Frank and Gaussian copulas are relatively
small, as confirmed in preliminary experiments (not
shown here for clarity of exposition).

5 Experimental Evaluation

In this section we demonstrate the practical benefit of
our speedy model selection (SMS) method for learn-
ing expressive real-valued copula graphical models. As
noted, we focus on tree structures where the learning
task decomposes into the bivariate evaluation of the
merit of each edge in the network individually. The
significant generalization advantage of copula-based
graphical models over the standard Gaussian BN has
been demonstrated in the past [Kirshner, 2007, Elidan,
2010] (and confirmed for our datasets). For clarity, in
here we focus on the additional advantage over models
that involve only a single copula family.

For each edge we allow for a Gaussian, Clayton or
Gumbel copula, with the prior for each family as de-
fined in Section 4. As a baseline we consider learning
only with a Gaussian copula, which is the strongest
of all single family baselines. We also compare to
the golden standard of learning using exact maximum
likelihood computations. For the univariate marginals
in all cases, we use standard kernel-based approach
[Parzen, 1962] with the common Gaussian kernel (see,
for example, [Bowman and Azzalini, 1997] for details).



Figure 4: (left) Average fraction of edges that overlap between the model learned using our SMS method and
the golden standard model learned using exact maximum likelihood computations. (middle) average fraction of
edges, among those common to the two models, that agree on the copula family. (right) average speedup factor
of our SMS method over learning with exact computations.

We consider three varied real-life datasets:

• Crime (UCI repository). 100 variables relating to
crime ranging from household size to fraction of chil-
dren born outside of a marriage, for 1994 communi-
ties across the U.S.

• SP500. End of day changes of the value of the
500 stocks (variables) comprising the Standard and
Poor’s index (S&P 500) over a period of close to
2000 trading days (samples).

• Gene. A compendium of gene expression experi-
ments used in [Marion et al., 2004]. We chose genes
that have at most one missing experiment. This re-
sulted in 765 variables (genes) and 1088 samples.

Results for all three datasets are reported over 10 ran-
dom equal splits into train and test samples.

We start by considering the average test log proba-
bility per instance, shown in Figure 3(left). The su-
periority of the mixed family model (white bars) over
the Gaussian copula model (gray bar) is clear. Fur-
ther, in the two bigger datasets, our highly efficient
SMS approach improves substantially over the base-
line both when taking into account the maximum like-
lihood golden standard and in absolute terms of bit per
instance improvement. Appealingly, as the domain be-
comes more complex and the number of variable grows,
so does our advantage. Figure 3(right) shows a typ-
ical more detailed comparison of performance for the
SP500 domain. As can be clearly seen, our superiority
is consistently substantial over all random repetitions.

Next, we consider the qualitative ability of our SMS
approach that is based on Spearman’s ρs evaluation to
correctly identify both the structure and the best cop-
ula family for each edge. Figure 4 (left) shows for each
of the datasets the average percentage of edges, over
the 10 random runs, that are common to the model

learned by our SMS method and the one learned using
exact time-consuming computations. As can be clearly
seen, the overlap between the trees learned is nontriv-
ial considering the size of the domain the fact that
our structure learning approach only relies on simple
empirical Spearman’s ρs estimates. To evaluate the
ability of our approach to also correctly choose the
right parameterization for each edge, Figure 4 (mid-
dle) shows the average percentage of edges that, in
addition to being in both the SMS model and that
learned using exact computations, also agree on the
copula family. Again, given the inherent difficulty of
model selection, the similarity between the two models
is appealing. The least favorable overlap for the crime
domain also explains why our log-probability perfor-
mance for the crime domain is the least impressive.
Still, even in this case, performance is superior to the
baseline Gaussian copula only model.

Finally, we consider the speedup factor of our SMS
method when learning a mixed family copula model
relative to learning using exact computations. Fig-
ure 4(right) shows the average speedup factor. For
all three domains the speedup is quite impressive at
around two orders of magnitude. Learning the SP500
model, for example, takes only minutes on a single
CPU making structure learning a significantly more
accessible task than in the past. We note that the
growth rate of both our SMS method and the exact
one as a function of the number of variables is similar,
and that the difference is in the dependence on the op-
erations that have to be carried our for each training
instance. The speedup reported confirms this since,
for example, the Gene dataset has almost half the
samples of the Crime dataset. Thus, while achieving
impressive speedups even for the modest datasets con-
sidered here, our SMS method is particularly suited to
handle a substantial number of training samples.



6 Summary and Future Work

In this paper we addressed the computationally de-
manding challenge of structure learning for real-valued
domains in the context of expressive copula-based
models. First, we significantly extended the result
of Elidan [2012] and substantiated the conjecture of
the monotonic relationship between the magnitude of
Spearman’s ρs and the expected likelihood of an edge
in the network. Second, we suggested a novel Bayesian
approach for performing structure learning while also
allowing for the selection of a different copula family
for each edge, without incurring any computational
cost. Third, we demonstrated the effectiveness of our
SMS approach on varied real-life domains.

Importantly, the domains considered are quite sizable
by structure learning standards and dramatically so
for copula models. Further, to the best of our knowl-
edge, ours is the first method for automated learning
of multivariate copula-based models that allows for a
mix of different copula families.

An obvious open theoretical question is the identifica-
tion of necessary conditions for the monotonicity re-
lationship between Spearman’s ρs and the copula en-
tropy. Another important and practical avenue of re-
search is the exploration of appropriate priors for the
density of ρs for different copula families. More gen-
erally, it would be useful to find other efficient proxies
for speedy model selection, e.g., based on other de-
pendence measures such as the Schwizer-Wolff sigma
[Schweizer and Wolff, 1981].

7 Appendix

We now prove that the Ali-Mikhail-haq and Gumbel-
Barnett copula densities are TP2/RR2, allowing us to
apply Theorem 3.3 to these families. We start with a
useful property of TP2 that will be used in our proof:

Observation 7.1 : Let f1(x, y), f2(x, y) be two real
non-negative TP2 (RR2) functions. Then Ψ(x, y) =
f1f2 is TP2 (RR2).

Proof: From the TP2 property we have

Ψ(x1, y1)Ψ(x2, y2) =

= f1(x1, y1)f1(x2, y2)f2(x1, y1)f2(x2, y2)

≤ f1(x1 ∨ x2, y1 ∨ y2)f1(x1 ∧ x2, y1 ∧ y2)

×f2(x1 ∨ x2, y1 ∨ y2)f2(x1 ∧ x2, y1 ∧ y2)

≡ Ψ(x1 ∨ x2, y1 ∨ y2)Ψ(x1 ∧ x2, y1 ∧ y2),

where the last line follows from the previous by def-
inition after rearranging of terms. The result follows
from the definition of a TP2 density.

Lemma 7.2: The Ali-Mikhail-haq (AMH) density

c(u, v) =
1 + θ[(1 + u)(1 + v)− 3] + θ2(ũ)(ṽ)

[1− θ(ũ)(ṽ)]−3
,

for θ ∈ [−1, 1] and where ũ ≡ (1 − u), ṽ ≡ (1 − v), is
TP2 when θ ∈ [0, 1] and RR2 when θ ∈ [−1, 0).

Proof: We will show that for θ ∈ [0, 1], the AMH den-
sity is a product of two non-negative TP2 functions,
and the result will follow from Observation 7.1:

f1(u, v) = 1 + θ[(1 + u)(1 + v)− 3] + θ2ũṽ,

f2(u, v) = [1− θũṽ]−3.

The positivity of f1, f2, can be easily verified. Fur-
ther, a positive function is TP2 iff it is supermodular
on the log scale. Also, a function f(u, v) is supermod-
ular iff its second order derivatives are positive, that
is ∂u∂vf(u, v) ≥ 0, (u, v) ∈ R2. We now have,

∂2 log f2(u, v)

∂u∂v
=
−3θ2ũṽ − θ[1− θũṽ]

[1− θũṽ]2
.

This second order derivative is positive so that f2(u, v)
is TP2. Using the same technique, we can show that
log f1(u, v) is supermoduler, hence f1(u, v) is also TP2.
The proof for θ ∈ [−1, 0) is similar.

Lemma 7.3: The Gumbel-Barnett (GB) density by

c(u, v) = (−θ + [1− θù][1− θv̀]) e−θùv̀,

for θ ∈ (0, 1], and where ù = θlog(1− u), v̀ = θlog(1−
v), is an RR2 function.

Proof: We will show that the GB density is a product
of two non-negative RR2 functions. Define

f1(u, v) = −θ + [1− θù][1− θv̀]

f2(u, v) = e−θùv̀

f2 is non-negative and since c(u, v) is a density func-
tion, f1 must also be non-negative. Also note that a
function is RR2 only if is submodular on the log scale,
and that a function is submodular if its second order
derivative is non-positive. Starting with f1(u, v), we
have

∂2 log f1(u, v)

∂u∂v
=

−θ3

(1− u)(1− v)
,

and this term is always non-positive for θ ∈ (0, 1].
Thus, f1(u, v) is RR2. The proof that f2(u, v) is RR2
is similar. It follows that the Gumbel-Barnett density
is an RR2 function.
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