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Abstract

In this paper, we present the Bennett-type
generalization bounds of the learning pro-
cess for i.i.d. samples, and then show
that the generalization bounds have a faster
rate of convergence than the traditional re-
sults. In particular, we first develop two
types of Bennett-type deviation inequality
for the i.i.d. learning process: one pro-
vides the generalization bounds based on the
uniform entropy number; the other leads
to the bounds based on the Rademacher
complexity. We then adopt a new method
to obtain the alternative expressions of the
Bennett-type generalization bounds, which
imply that the bounds have a faster rate
o(N−

1
2 ) of convergence than the traditional

results O(N−
1
2 ). Additionally, we find that

the rate of the bounds will become faster in
the large-deviation case, which refers to a sit-
uation where the empirical risk is far away
from (at least not close to) the expected risk.
Finally, we analyze the asymptotical conver-
gence of the learning process and compare
our analysis with the existing results.

1 Introduction

In learning theory, one of the major concerns is to
obtain the generalization bounds of the learning pro-
cess for i.i.d. samples, which measure the probability
that a function obtained in the i.i.d. learning process
has a sufficiently small error [Vapnik, 1998, Bousquet
et al., 2004]. Generalization bounds have been widely
used to study many topics of learning theory, e.g., the
consistency of ERM-based learning processes [Vapnik,
1998], the asymptotic convergence of empirical process
[Van der Vaart and Wellner, 1996] and the learnability
of learning models [Blumer et al., 1989].

Deviation (or concentration) inequalities play an es-
sential role in obtaining generalization bounds. There
are many popular deviation and concentration in-
equalities, e.g., Hoeffding’s inequality, McDiarmid’s
inequality, Bennett’s inequality, Bernstein’s inequal-
ity and Talagrand’s inequality. Among them, Hoeffd-
ing’s inequality and McDiarmid’s inequality have been
intensively used to obtain the generalization bounds
based on the covering number (or uniform entropy
number) and the Rademacher complexity, respectively
[Mendelson, 2003, Van der Vaart and Wellner, 1996].
To obtain the generalization bounds based on the VC
dimension, Vapnik [1998] applied some classical in-
equalities, for example, Chernoff’s inequality and Ho-
effding’s inequality, but also developed specific concen-
tration inequalities. Bartlett et al. [2005] presented
generalization bounds based on the local Rademacher
complexity by using Talagrand’s inequality. Addition-
ally, there are also other works to study the general-
ization bound in statistical learning theory [Ben-David
et al., 2010, Mohri and Rostamizadeh, 2010]. However,
to our best knowledge, there is little theoretical inves-
tigation into the generalization bounds derived from
Bennett’s inequality.

1.1 Motivation

The paper is motivated by the difference between Ho-
effding’s inequality [Hoeffding, 1963] and Bennett’s in-
equality [Bennett, 1962]. It is well-known that Ho-
effding’s inequality is achieved by only exploiting the
expectation information, and Bennett’s inequality is
based on both of expectation and variance. Intuitively,
the Bennett-type generalization bounds should have a
faster rate of convergence than that of the Hoeffding-
type results. However, to our best knowledge, this
issue has not been well explored in the literature. In
this paper, we will give a theoretical argument to show
the faster rate of the Bennett-type results.



1.2 Overview of Main Results

In this paper, we are mainly concerned with the fol-
lowing three aspects: (1) Bennett-type deviation in-
equality; (2) Bennett-type generalization bounds; (3)
rate of convergence.

By extending the classical Bennett’s inequality, we
use the martingale method to develop a Bennett-type
deviation inequality for the case of multiple random
variables and this inequality leads to the generaliza-
tion bounds based on the uniform entropy number
(UEN). Moreover, under the bounded-difference con-
dition, we present another Bennett-type deviation in-
equality that is similar to McDiarmid’s inequality. We
use this deviation inequality to further obtain the gen-
eralization bounds based on the Rademacher com-
plexity. Note that the aforementioned generalization
bounds are said to be of Bennett-type, because they
are derived from the Bennett-type deviation inequali-
ties.

In order to analyze the rate of convergence of the
bounds, one needs to obtain the alternative expres-
sions of the Bennett-type generalization bounds. Dif-
fering from the Hoeffding-type bounds [see (7)], the ex-
pression of Bennett-type bounds [see (16)] are not well-
defined and thus it is difficult to directly present the
alternative expressions of the Bennett-type bounds.1

Instead, one generally transforms the Bennett-type
bound to the Bernstain-type one and then obtains the
corresponding alternative expression showing that the
bound has the rate O(N−

1
2 ) of convergence, which is

in accordance with the classical result (8). Here, we
use a new method to obtain another alternative ex-
pression of the Bennett-type bound and show that the
Bennett-type bounds have a faster rate o(N−

1
2 ) of con-

vergence than the classical result O(N−
1
2 ). Addition-

ally, we point out that the rate of the bounds will be-
come faster as the discrepancy between the empirical
risk and the expected risk becomes larger. This situ-
ation is called as the large-deviation case [see Remark
4.3].

Note that it is well-known that the rate of the em-
pirical Rademacher complexity is up to O(N−

1
2 ) [see

(10)], and thus it seems to be a contradiction that the

Bennett-type bounds have a faster rate o(N−
1
2 )) [see

Remark 5.1]. An explanation to the contradiction is
given to support the theoretical findings on the faster
rate of convergence.

1The reason is that it is difficult to directly obtain the
analytical expression of the inverse function of Γ(x) = x−
(x + 1) ln(x + 1).

1.3 Organization of the Paper

The rest of this paper is organized as follows. Section 2
formalizes the main issues of this paper and briefs the
classical results. In Section 3, we present two Bennett-
type deviation inequalities for the case of multiple ran-
dom variables. Section 4 provides the generalization
bounds and a new upper bound of the Rademacher
complexity is presented in Section 5. In Section 6, we
analyze the asymptotic convergence of the i.i.d. learn-
ing process and the last section concludes the paper.
The proofs of the main results are given in the long
version of this paper.2

2 Preliminaries

In this section, we first introduce some notations to for-
malize the proposed research of this paper, and then
present the definitions of the covering number, the uni-
form entropy number and the Rademacher complex-
ity. Moreover, we also brief the classical results of
the Heoffding-type generalization bounds of the i.i.d.
learning process.

2.1 Problem Setup

Let X ⊂ RI and Y ⊂ RJ be an input space and
its corresponding output space, respectively. Denote
Z := X × Y ⊂ RI × RJ with K = I + J . Let G ⊂ YX
be a function class with the domain X and the range
Y. Given a loss function ` : Y2 → R, it is expected
to find a function g∗ ∈ G : X → Y that minimizes the
expected risk over G

E(` ◦ g) :=

∫
`(g(x),y)dP(z), g ∈ G, (1)

where P(z) stands for the distribution of z = (x,y).

Generally, the distribution P(z) is unknown and thus
the target function g∗ cannot be directly obtained by
minimizing (1). Instead, we can apply the empirical
risk minimization (ERM) principle to handle this issue
[Vapnik, 1998]. Given a function class G and a set of
i.i.d. samples ZN1 := {zn}Nn=1 drawn from Z, we define
the empirical risk of g ∈ G as

EN (` ◦ g) :=
1

N

N∑
n=1

`(g(xn),yn), (2)

which is considered as an approximation to the ex-
pected risk (1). Let gN ∈ G be the function that mini-
mizes the empirical risk (2) over G and deem gN as an
estimate to g∗ with respect to ZN1 .

In the aforementioned i.i.d. learning process, we are
mainly interested in the following two types of quan-
tities:

2https://sites.google.com/site/czhang1015/



• E(` ◦ gN )−EN (` ◦ gN ), which corresponds to the
estimation of the expected risk from an empirical
quantity;

• E(` ◦ gN ) − E(` ◦ g∗), which corresponds to the
performance of the ERM-based algorithm.

Recalling (1) and (2), since

EN (` ◦ g∗)− EN (` ◦ gN ) ≥ 0,

we have

E(` ◦ gN ) =E(` ◦ gN )− E(` ◦ g∗) + E(` ◦ g∗)
≤EN (` ◦ g∗)− EN (` ◦ gN ) + E(` ◦ gN )

− E(` ◦ g∗) + E(` ◦ g∗)
≤2 sup

g∈G

∣∣E(` ◦ g)− EN (` ◦ g)
∣∣+ E(` ◦ g∗),

and thus

0 ≤ E(` ◦ gN )− E(` ◦ g∗) ≤ 2 sup
g∈G

∣∣E(` ◦ g)− EN (` ◦ g)
∣∣,

with

E(` ◦ gN )− EN (` ◦ gN ) ≤ sup
g∈G

∣∣E(` ◦ g)− EN (` ◦ g)
∣∣.

This shows that the asymptotic behaviors of the afore-
mentioned two quantities, when the sample number N
goes to infinity, can both be described by the supre-
mum

sup
g∈G

∣∣E(` ◦ g)− EN (` ◦ g)
∣∣, (3)

which is the so-called generalization bound of the i.i.d.
learning process.

For convenience, we define the loss function class

F := {z 7→ `(g(x),y) : g ∈ G},
and call F as the function class in the rest of this
paper. By (1) and (2), given a sample set ZN1 drawn
from Z, we briefly denote for any f ∈ F ,

Ef :=

∫
f(z)dP(z); ENf :=

1

N

N∑
n=1

f(zn).

Thus, we rewrite the generalization bound (3) as

sup
f∈F

∣∣Ef − ENf
∣∣.

2.2 Complexity Measures of Function Classes

Generally, the generalization bound of a certain learn-
ing process is achieved by incorporating the complexity
measure of the function class, e.g., the covering num-
ber, the VC dimensions and the Rademacher complex-
ity. This paper is mainly concerned with the covering
number, the uniform entropy number (UEN) and the
Rademacher complexity.

2.2.1 Covering Number and Uniform
Entropy Number (UEN)

The following is the definition of the covering number
and we refer to Mendelson [2003] for details.

Definition 2.1 Let F be a function class and d be a
metric on F . For any ξ > 0, the covering number of
F at radius ξ with respect to the metric d, denoted by
N (F , ξ, d) is the minimum size of a cover of radius ξ.

For clarity of presentation, we give a useful notation
for the following discussion. Given a sample set ZN1 :=

{zn}Nn=1 drawn from Z, we denote Z′
N
1 := {z′n}Nn=1

as the ghost-sample set drawn from Z such that the
ghost sample z′n has the same distribution as zn for
any 1 ≤ n ≤ N . Denote Z2N

1 := {ZN1 ,Z′
N
1 }. Setting

the metric d as the `p(Z
2N
1 ) (p > 0) norm, we then

obtain the covering number N
(
F , ξ, `p(Z2N

1 )
)
.

The uniform entropy number (UEN) is a variant of the
covering number and we refer to Mendelson [2003] for
details as well. By setting the metric `p(Z

N
1 ) (p > 0),

the UEN is defined as follows:

lnNp(F , ξ,N) := sup
Z2N

1

lnN
(
F , ξ, `p(ZN1 )

)
. (4)

2.2.2 Rademacher Complexity

The Rademacher complexity is one of the most fre-
quently used complexity measures of function classes
and we refer to Bousquet et al. [2004] for details.

Definition 2.2 Let F be a function class and
{zn}Nn=1 be a sample set drawn from Z. Denote
{σn}Nn=1 as a set of random variables independently
taking either value of {−1, 1} with equal probability.
The Rademacher complexity of F is defined as

R(F) := E sup
f∈F

{
1

N

N∑
n=1

σnf(zn)

}
(5)

with its empirical version

RN (F) := Eσ sup
f∈F

{
1

N

N∑
n=1

σnf(zn)

}
, (6)

where E stands for the expectation taken with respect
to all random variables {zn}Nn=1 and {σn}Nn=1, and Eσ
stands for the expectation only taken with respect to
random variables {σn}Nn=1.

2.3 Classical Hoeffding-type Generalization
Bounds

Next, we summarize some classical results of the gen-
eralization bounds. Note that the following bounds are



said to be of Hoeffding-type, because they are derived
from (or strongly related to) Hoeffding’s inequality and
Hoeffding’s lemma [Hoeffding, 1963].

First, based on the covering number, one can use Ho-
effding’s inequality (or Hoeffding’s lemma) to obtain
the following generalization bound w.r.t. a function
class F with the range [a, b] [see Mendelson, 2003, The-

orem 2.3]: for any N ≥ 8(b−a)2

ξ2 ,

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}

≤8EN
(
F , ξ/8, `1(Z2N

1 )
)

exp

{
− Nξ2

32(b− a)2

}
, (7)

which is one of the most frequently used generalization
results in statistical learning theory. Because of its
well-defined expression, we can directly obtain its al-

ternative expression: for any N ≥ 8(b−a)2

ξ2 , with prob-
ability at least 1− ε,

sup
f∈F

∣∣ENf − Ef
∣∣ (8)

≤O

( ln EN
(
F , ξ/8, `1(Z2N

1 )
)
− ln(ε/8)

N

) 1
2

 .

Following the alternative expression (8), it is observed
that the generalization bound supf∈F

∣∣ENf −Ef
∣∣ has

a convergence rate of O(N−
1
2 ).

On the other hand, McDiarmid’s inequality can pro-
vide the following generalization bound based on the
Rademacher complexity [see Bousquet et al., 2004,
Theorem 5]: for any ε > 0 and f ∈ F , with proba-
bility at least 1− ε,

Ef ≤ ENf + 2R(F) + (b− a)

(
ln(1/ε)

N

) 1
2

≤ ENf + 2RN (F) + 3(b− a)

(
ln(2/ε)

2N

) 1
2

, (9)

which is also of Hoeffding-type, because McDiarmid’s
inequality is actually derived from Hoeffiding’s lemma
under the condition that f has the bounded-differences
property [see Bousquet et al., 2004, Theorem 6]. Fur-
thermore, it is followed from Sudakov minoration for
Rademacher processes3 [Talagrand, 1994b,a, Lata la,
1997] and Massart’s finite class lemma (Dudley’s en-
tropy integral)4 [Mendelson, 2003, Van der Vaart and

3See http://www.cs.berkeley.edu/ bartlett/courses/281b-
sp08/19.pdf

4See http://ttic.uchicago.edu/∼karthik/dudley.pdf

Wellner, 1996] that:

c

lnN
sup
α>0

α

√
lnN (F , ξ, `2(ZN1 ))

N
≤ RN (F) (10)

≤ inf
ε>0

{
4ε+ 12

∫ ∞
ε

√
lnN (F , ξ, `2(ZN1 ))

N
dξ

}
,

which shows the lower and the upper bounds of the
empirical Rademacher complexity RN (F). The com-
bination of (9) and (10) implies that the rate of con-

vergence of supf∈F
∣∣ENf − Ef

∣∣ is up to O(N−
1
2 ) as

well.

3 Bennett-type Deviation Inequalities

By extending the classical Bennett’s inequality [Ben-
nett, 1962] to the case of multiple random variables,
this section will present two Bennett-type deviation
inequalities for the i.i.d. learning process. We also re-
fer to Bousquet [2002] for the application of Bennett’s
inequality in the empirical process.

Theorem 3.1 Let f be a function with the range [a, b]
and ZN1 = {zn}Nn=1 be a set of i.i.d. samples drawn
from Z. Define a function F : RKN → R as

F
(
ZN1
)

:=

N∑
n=1

f(zn). (11)

Then, we have for any 0 < ξ < N(b− a),

Pr
{∣∣E{F} − F (ZN1 )

∣∣ > ξ
}
≤ 2eNΓ( ξ

N(b−a) ), (12)

where
Γ(x) := x− (1 + x) ln(1 + x). (13)

The proof of this result is processed by the martingale
method. Compared to the classical Bennett’s inequal-
ity, this result is valid for the case of multiple random
variables and provides the convenience to obtain the
generalization bound of the i.i.d. learning process. Es-
pecially, the two inequalities will coincide, if there is
only one random variable.

Moreover, recalling the classical McDiarmid’s inequal-
ity [see Bousquet et al., 2004, Theorem 6], it is actually
derived from Hoeffiding’s lemma under the condition
that f has the bounded-differences property. Thus,
McDiarmid’s inequality has a similar expression to
that of Hoeffding’s inequality and the two inequalities
coincide if there is only one random variable. Similarly,
we obtain another Bennett-type deviation inequality
under the bounded-difference condition:

Theorem 3.2 Let z1, · · · , zN be N independent ran-
dom variables taking values from Z. Assume that



there exists a positive constant such that the function
H : ZN → R satisfies the bounded-difference condi-
tion: for any 1 ≤ n ≤ N ,

sup
z1,··· ,zN ,z′n

∣∣∣H(z1, · · · , zn, · · · , zN
)

−H
(
z1, · · · , z′n, · · · , zN

)∣∣∣ ≤ c. (14)

Then, we have for any ξ > 0

Pr
{
H
(
z1, · · · , zn, · · · , zN

)
(15)

− EH(z1, · · · , zn, · · · , zN ) ≥ ξ
}
≤ exp

{
NΓ

(
ξ

Nc

)}
,

where Γ(x) is defined in (13).

The inequality (15) is an extension of the classical Ben-
nett’s inequality and the two results will coincide if
there is only one random variable as well.

Subsequently, we will use the above two deviation in-
equalities to obtain the generalization bounds based
on the uniform entropy number and the Rademacher
complexity, respectively.

4 Bennett-type Generalization
Bounds

In this section, we will show the Bennett-type gener-
alization bounds of the i.i.d learning process. The de-
rived bounds are based on the uniform entropy number
(UEN) and the Rademacher complexity, respectively.
Note that since the presented bounds (16), (18) and
(23) are derived from the Bennett-type deviation in-
equalities, they are said to be of Bennett-type as well.

4.1 UEN-based Generalization Bounds

By using the deviation inequality (12) and the sym-
metrization inequality [see Bousquet et al., 2004,
Lemma 2], we can obtain a Bennett-type generaliza-
tion bound based on the uniform entropy number:

Theorem 4.1 Assume that F is a function class with
the range [a, b]. Let ZN1 and Z′

N
1 be drawn from Z and

denote Z2N
1 := {ZN1 ,Z′

N
1 }. Then, given any 0 < ξ ≤

(b− a), we have for any N ≥ 8(b−a)2

ξ2 ,

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}
(16)

≤8N1 (F , ξ/8, 2N) exp

{
NΓ

(
ξ

8(b− a)

)}
.

This theorem implies that the probability of the event
that the generalization bound supf∈F

∣∣Ef − ENf | is

larger than any ξ > 0 can be bounded by the right-
hand side of (16). We can find that the expression of
the bound is similar to that of Bennett’s inequality.

Different from the aforementioned Hoeffding-type re-
sult (7) and its alternative expression (8), it is difficult
to directly achieve the alternative expression of the
Bennett-type bound (16), because it is difficult to ob-
tain the analytical expression of the inverse function of
Γ(x) = x−(x+1) ln(x+1). Instead, one generally uses

the term −x2

2+(2x/3) to approximate the function Γ(x)

and then get the so-called Bernstein’s inequality.5 In
the same way, we can obtain the following alternative
expression of the Bennett-type result (16):

sup
f∈F

∣∣ENf − Ef
∣∣ (17)

≤
4(b− a)

(
lnN1(F , ξ/8, 2N)− ln(ε/8)

)
3N

+
(b− a)

√
2
(

lnN1(F , ξ/8, 2N)− ln(ε/8)
)

√
N

,

which implies that the rate of convergence of the
Bennett-type bound is also up to O

(
N−

1
2

)
. It is in ac-

cordance with the rate of the aforementioned classical
results (8). For convenience, the alternative expression
is said to be of Bernstein-type if no confusion arises.

4.2 Bennett-type Alternative Expression and
Faster Rate of Convergence

Recalling the process of obtaining Hoeffding’s inequal-
ity and Bennett’s inequality, the former is achieved by
using the information of expectation, while the lat-
ter needs to consider the information of both expecta-
tion and variance. Intuitively, the Bennett-type result
(16) should have a faster rate of convergence than that
of the Hoeffding-type result (7). From this point of
view, we introduce a new method to obtain another
alternative expression of the Bennett-type result (16)
and show that the rate of the generalization bound
supf∈F

∣∣ENf − Ef
∣∣ can reach o

(
N−

1
2

)
, when N goes

to infinity:

Theorem 4.2 Follow the notations and conditions of
Theorem 4.1. Then, given any 0 < ξ ≤ (b − a) and

for any N ≥ 8(b−a)2

ξ2 , we have with probability at least
1− ε,

sup
f∈F

∣∣ENf − Ef
∣∣ ≤ (18)

8(b− a)

(
lnN1 (F , ξ/8, 2N)− ln(ε/8)

β1N

) 1
γ

.

5http://ocw.mit.edu/courses/mathematics/18-465-
topics-in-statistics-statistical-learning-theory-spring-
2007/lecture-notes/l6.pdf



where β1 ∈ (0.0075, 0.4804),

ε := 8N1

(
F , ξ/8, 2N

)
exp {NΓ (x)} ,

and 0 < γ
(
β1;x

)
≤ γ < 2 (x ∈ (0, 1/8]) with

γ(β;x) :=
ln
((

(x+ 1) ln(x+ 1)− x
)
/β
)

lnx
. (19)

Proof. Since any f ∈ F is a bounded function with
the range [a, b], the supremum supf∈F |Ef−ENf | will
not be larger than (b − a). Therefore, the quantity

ξ
8(b−a) in (16) will not be larger than 1/8. Set x =
ξ

8(b−a) with x ∈ (0, 1/8] and consider the following

equation with respect to γ > 0

Γ(x) = x− (x+ 1) ln(x+ 1) = −β1(x γ), (20)

where β1 is some positive constant. Denote the solu-
tion to the equation (20) w.r.t. γ as

γ(β1, x) :=
ln
( (x+1) ln(x+1)−x

β1

)
ln(x)

. (21)

By numerical simulation, we find that given any β1 ∈
(0.0075, 0.4804), there holds that 0 < γ(β1;x) < 2
for any x ∈ (0, 1/8] (see Fig. 1). Then, given any
x ∈ (0, 1/8] and β1 ∈ (0.0075, 0.4804), we have for any
γ̃ ∈ [γ(β1;x), 2),

x− (x+ 1) ln(x+ 1) ≤ −β1x
γ̃ < −β1x

2. (22)

By combining Theorem 4.1 and (22), we can straight-
forwardly show an upper bound of the generalization
bound sup

f∈F

∣∣ENf − Ef
∣∣: letting

ε := 8N1 (F , ξ/8, 2N) exp {NΓ (x)} ,

and with probability at least 1− ε,

sup
f∈F

∣∣ENf − Ef
∣∣

≤8(b− a)

(
lnN1(F , ξ/8, 2N)− ln(ε/8)

β1N

) 1
γ

.

where 0 < γ
(
β1;x

)
≤ γ < 2 with x ∈ (0, 1/8]. �

The above theorem shows a Bennett-type alternative
expression of the generalization bound supf∈F |ENf−
Ef |, which provides a faster rate o(N−

1
2 ) of conver-

gence than the rate O(N−
1
2 ) of the classical result (8)

and the Bernstein-type result (17). The main starting
point of this theorem is whether there exists a positive
constant β1 such that the function γ(β1;x) is smaller
than 2 for any x ∈ (0, 1/8] [see (20) and (21)], i.e.,
there holds that 0 < γ(β1;x) < 2 for any 0 < x ≤
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Figure 1: The Function Curve of γ(β1;x)

1/8. In the proof, we show that the value interval
(0.0075, 0.4804) of β1 supports Γ(x) = −β1x

γ(β1;x) <
−β1x

2 for any x ∈ (0, 1/8]. As shown Fig. 1, given
any β1 ∈ (0.0075, 0.4804), the function γ(β1;x) is
smaller than 2 w.r.t. x ∈ (0, 1/8). Meanwhile, given
any x ∈ (0, 1/8), the function γ(β1;x) is monotoni-
cally increasing w.r.t. β1 ∈ (0.0075, 0.4804). However,
the function γ(β1;x) is not monotonically decreasing
w.r.t. x ∈ (0, 1/8) for any β1 ∈ (0.0075, 0.4804).
In fact, γ(β1;x) is monotonically decreasing when
β1 ∈ (0.0075, 0.4434] and has one single minimizer
x0 ∈ (0, 1/8] of γ(β1;x) when β1 ∈ (0.4434, 0.4804)
with γ′(β1;x0) = 0.

4.3 Large-deviation Case

Subsequently, we will show that the Bennett-type
bounds can reach a faster rate of convergence in the
large-deviation case.

Remark 4.3 The word “large-deviation” means that
the discrepancy between the empirical risk and the
expected risk is large (or not small). Given any
ξ > 0, one of our major concerns is the probability
Pr
{

supf∈F
∣∣ENf − Ef

∣∣ > ξ
}

, and then we say that
the case the value of ξ approaches to (b−a) is of large-
deviation.6

Actually, the large-deviation case is referring to a sit-
uation where the empirical quantity ENf is far away
from (at least not close to) the expected risk Ef . As
shown in Fig. 1, for any β1 ∈ (0.0075, 0.4434], the
curve of γ(β1;x) is monotonically decreasing w.r.t.

6The function class F is composed of bounded functions
with the range [a, b].



x ∈ (0, 1/8], and for any β1 ∈ (0.4434, 0.4804) the
function γ(β1;x) is still smaller than 2 for any x ∈
(0, 1/8]. Moreover, there holds that for any β1 ∈
(0.0075, 0.4804),

lim
x→0+

γ(β1, x) := lim
x→0+

ln
( (x+1) ln(x+1)−x

β1

)
ln(x)

= 2.

This illustrates that the rate O(N−
1
γ ) (γ(β1;x) ≤ γ) of

the Bennett-type generalization bound (18) becomes
faster as the empirical quantity ENf goes further away
from the expected risk Ef (i.e. x approaches to 1/8).
However, when ENf approaches to Ef (i.e. x goes to

0), the rate O(N−
1
γ ) will approach to O(N−

1
2 ), which

is in accordance with the classical Hoeffding-type re-
sults.

In contrast, the Hoeffding-type results consistently
provide the rate O(N−

1
2 ) regardless of the discrepancy

between ENf and Ef . Thus, the Bennett-type results
can give a more detailed description to the asymptot-
ical behavior of the learning process.

4.4 Effect of the Parameter β1

As addressed in the introduction, the main motivation
of this paper is to study whether the Bennett-type gen-
eralization bounds have a faster rate of convergence
than that of the Hoeffding-type generalization results,
because the Bennett-type results are derived from the
corporation of the expectation information and the
variance information and in contrast, the Hoeffding-
type results are only related to the expectation infor-
mation. However, the main challenge to analyze the
rate lies in obtaining the alternative expression of the
bound (16), because it is difficult to analytically ex-
press the inverse function of Γ(x). Instead, we exploit
the term −βxγ to substitute Γ(x) [see (20)] and Fig.
2 illustrates the validity of this method. In Fig. 2, the
curve e−x

2/32 and eΓ(x/8) correspond to the Hoeffding-
type bound (7) and the Bennett-type bound (16), re-
spectively. Evidently, setting β1 = 0.4804 makes the
curve e−β1(x/8)2 almost coincide with the curve eΓ(x/8).

4.5 Rademacher-complexity-based
Generalization Bounds

By using the deviation inequality (15), we can obtain
the generalization bounds based on the Rademacher
complexity:

Theorem 4.4 Assume that F is a function class con-
sisting of functions with the range [a, b]. Let ZN1 =
{zn}Nn=1 be a set of i.i.d. samples drawn from Z.
Then, for any f ∈ F , we have with probability at least
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Figure 2: The Function Curves of eΓ(x/8), e−x
2/32 and

e−0.4804(x/8)2 .

1− ε,

Ef < ENf + 2R(F) + (b− a)

(
ln(1/ε)

β2N

) 1
γ

< ENf + 2RN (F) + 3(b− a)

(
ln(2/ε)

β2N

) 1
γ

, (23)

where β2 is taken from the interval (0.0075, 0.3863),
ε := exp

{
NΓ(x)

}
and 0 < γ

(
β2;x

)
≤ γ < 2 (x ∈

(0, 1]) with γ(β;x) defined in (19).

The above theorem presents the Bennett-type general-
ization bounds based on the Rademacher complexity.
Compared to the classical Rademacher-complexity-
based results (9), the new bounds (23) incorporate a

term O
(
N−

1
γ
)

(i.e., o
(
N−

1
2

)
because γ < 2) with a

faster rate of convergence than the term O
(
N−

1
2

)
ap-

pearing in (9), when N goes to infinity.

5 Bounds of Rademacher
Complexities

Recalling (16) and (23), it is observed that there might
be a contradiction:

Remark 5.1 The generalization bound (16) has the

faster rate o
(
N−

1
2

)
, while the magnitude of the em-

pirical Rademacher complexity has been proved to be
O
(
N−

1
2

)
as shown in the classical result (10).

In order to explain this contradiction, we should con-
sider the following two questions:



(Q1) whether the empirical Rademacher complex-
ity RN (F) can totally describe the behavior of
Rademacher complexity R(F);

(Q2) whether the classical results (10) are either ap-
plicable to R(F).

5.1 Answer to Question Q1

Recalling (9) and (23), the quantity (Ef−ENf) is orig-
inally bounded by the Rademacher complexity R(F),
while it is difficult to compute R(F) due to the un-
known distribution of ZN1 . Instead, by using deviation
inequalities (e.g. Hoeffding’s inequality and Bennett’s
inequality), one can further bound R(F) by using its
empirical version RN (F) as follows: with probability
as least 1− ε/2,

R(F) ≤ RN (F) + (b− a)

(
ln(2/ε)

2N

) 1
2

,

and

R(F) ≤ RN (F) + (b− a)

(
ln(2/ε)

β2N

) 1
γ

.

However, the behavior of Rademacher complexity
R(F) cannot be totally described by its empirical
version RN (F). In fact, the joint distribution of∑
σnf(zn) may not be a Rademacher process because

z is a random variable of an unknown distribution.

5.2 Answer to Question Q2

Recalling (10), the lower and the upper bounds of
RN (F) are respectively derived from the Sudakov mi-
noration for Rademacher processes and Massart’s fi-
nite class lemma, both of which are strongly related to
(or have the similar forms as that of) the Hoeffding-
type results.7 Thus, all Hoeffding-type conclusions
mentioned in Section 2.3 are consistent.

However, as answered above, the joint distribution of∑
σnf(zn) may not be a Rademacher process. Since

Sudakov minoration is not valid for an arbitrary pro-
cess [see Talagrand, 1994b,a, Lata la, 1997], the lower

bound of RN (F) with the rate O(N−
1
2 ) is not appli-

cable to the lower bound of R(F).

Additionally, we also need to consider the following
question: why we do not use Bennett’s inequality to
obtain the upper bound of RN (F)? In fact, in or-
der to obtain the upper bound of RN (F), one needs

7Recalling Massart’s finite class lemma, the main step

of its proof is processed by using a term eλ
2r2/2 which is

also similar to the term eλ
2r2/8 appearing in Hoeffding’s

lemma.
See http://ttic.uchicago.edu/∼tewari/lectures/lecture10.pdf

to consider the following term Eeσf(z). Since σ is a
Rademacher variable taking values from {±1} with
equivalent probability for a given sample z, there holds
that

Eeσf(z) =
ef(z) + e−f(z)

2
≤ e

(f(z))2

2 ,

which differs from the related formula (28) in Lemma
A.1 that is built in the case that the distribution of z
is unknown.

6 Asymptotical Convergence

Based on the generalization bound (16), we study the
asymptotic convergence of the i.i.d. learning process.
We also give a comparison with the existing results.

Recalling (13), it is noteworthy that there is only one
solution x = 0 to the equation Γ(x) = 0 and Γ(x)
is monotonically decreasing when x ≥ 0 [see Fig. 3].
Following Theorem 4.1, we can directly obtain the fol-
lowing result indicating that the asymptotic conver-
gence of the i.i.d. learning process is determined by
the uniform entropy number lnN1(F , ξ/8, 2N).
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Figure 3: The Function Curve of Γ(x)

Theorem 6.1 Under the notations and conditions of
Theorem 4.1, if the following condition is supported:

lim
N→+∞

lnN1(F , ξ/8, 2N)

N
< +∞, (24)

then we have for any ξ > 0,

lim
N→+∞

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}
= 0. (25)



As shown in Theorem 6.1, if the uniform entropy num-
ber lnN1(F , ξ/8, 2N) satisfies the condition (24), the
probability of the event

sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

will converge to zero for any ξ > 0, when the sample
number N goes to infinity. This is in accordance with
the classical result shown in (7): the probability of
the event that supf∈F

∣∣Ef − ENf
∣∣ > ξ will converge

to zero for any ξ > 0, if the uniform entropy number
lnN1(F , ξ/8, 2N) satisfies the same condition as (24).

7 Conclusion

In this paper, we present the Bennett-type generaliza-
tion bounds and analyze the rate of convergence of the
derived bounds. In particular, we first extend the clas-
sical Bennett’s inequality to develop two Bennett-type
deviation inequalities. Based on the derived inequal-
ity, we then obtain the generalization bounds based
on the uniform entropy number and the Rademcaher
complexity, respectively.

Moreover, we show that the Bennett-type generaliza-
tion bounds have a faster rate o(N−

1
2 ) of convergence

than the rate O(N−
1
2 ) of the classical Hoeffding-type

results [see (7) and (8)]. Especially, we show that
the rate will become faster in the large-deviation case,
where the empirical risk ENf is far away from the ex-
pected risk Ef . In contrast, the Hoeffding-type results
provide the rate O(N−

1
2 ) regardless of the discrepancy

between ENf and Ef . From view of this point, the
Bennett-type results give a more detailed description
to the asymmetrical behavior of the learning process.

We give an explanation to the “contradiction” men-
tioned in Remark 5.1. As shown in Talagrand
[1994b,a], Lata la [1997], Sudakov minoration provides
a lower bound of the empirical Rademacher complex-
ity RN (F) with the rate O(N−

1
2 ) [Mendelson, 2003],

because the empirical Rademacher complexity RN (F)
actually is a special case of subgaussian process given a
sample set {zn}Nn=1. In contrast, it is difficult to spec-
ify the distribution characteristics of R(F) and thus
the classical result (10) could not be applied to bound
R(F).
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