
Unsupervised Learning of Noisy-Or Bayesian Networks

Yoni Halpern, David Sontag
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

Abstract

This paper considers the problem of learn-
ing the parameters in Bayesian networks
of discrete variables with known structure
and hidden variables. Previous approaches
in these settings typically use expectation
maximization; when the network has high
treewidth, the required expectations might
be approximated using Monte Carlo or vari-
ational methods. We show how to avoid
inference altogether during learning by giv-
ing a polynomial-time algorithm based on
the method-of-moments, building upon re-
cent work on learning discrete-valued mix-
ture models. In particular, we show how to
learn the parameters for a family of bipartite
noisy-or Bayesian networks. In our experi-
mental results, we demonstrate an applica-
tion of our algorithm to learning QMR-DT,
a large Bayesian network used for medical di-
agnosis. We show that it is possible to fully
learn the parameters of QMR-DT even when
only the findings are observed in the training
data (ground truth diseases unknown).

1 Introduction

We address the problem of unsupervised learning of
the parameters of bipartite noisy-or Bayesian net-
works. Networks of this form are frequently used
models for expert systems and include the well-known
Quick Medical Reference (QMR-DT) model for medi-
cal diagnosis (Miller et al. , 1982; Shwe et al. , 1991).

Given that QMR-DT is one of the most well-studied
noisy-or Bayesian networks, we use it as a running ex-
ample for the type of network that we would like to
provably learn. It is a large bipartite network, describ-
ing the relationships between 570 binary disease vari-
ables and 4,075 binary symptom variables using 45,470

directed edges. It was laboriously assembled based on
information elicited from experts and represents an ex-
ample of a network that captures (at least some of) the
complexities of real-world medical diagnosis tasks.

Learning these parameters is important. Both the
structure and the parameters of the QMR-DT model
were manually specified, taking over 15 person-years
of work (Miller et al. , 1982). Each disease took one
to two weeks of full-time effort, involving in-depth re-
view of the medical literature, to incorporate into the
model. Despite this effort, the original INTERNIST-
1/QMR model still lacked an estimated 180 diseases
relevant to general internists (Miller et al. , 1986). Fur-
thermore, model parameters such as the priors over the
diseases can vary over time and location.

Although it is often possible to extract symptoms or
findings from unstructured clinical data, obtaining re-
liable ground truth for a patient’s underlying disease
state is much more difficult. Often all we have avail-
able are noisy and biased estimates of the patient’s
disease state in the form of billing or diagnosis codes
and free text. We can, however, treat these noisy la-
bels as additional findings (for training) and perform
unsupervised learning. The ability to learn parameters
from unlabeled data could make models like QMR-DT
much more widely applicable.

Exact inference in the QMR-DT network is known to
be intractable (Cooper, 1987), so it would be expected
to resort to expectation-maximization techniques us-
ing approximate inference in order to learn the param-
eters of the model (Jaakkola & Jordan, 1999; Šingliar
& Hauskrecht, 2006). However, these methods can be
computationally costly and are not guaranteed to re-
cover the true parameters of the network even when
presented with infinite data drawn from the model.

We give a polynomial-time algorithm for provably
learning a large family of bipartite noisy-or Bayesian
networks. It is important to note that this method
does not extend to all bipartite networks. It does not



work on certain densely connected structures. We pro-
vide a criterion based on the network structure to de-
termine whether or not the network is learnable by our
algorithm. Though the algorithm is limited, the fam-
ily of networks for which we can learn parameters is
certainly non-trivial.

Our approach is based on the method-of-moments,
and builds upon recent work on learning discrete-
valued mixture models (Anandkumar et al. , 2012c;
Chang, 1996; Mossel & Roch, 2005). We assume that
the observed data is drawn independently and iden-
tically distributed from a model of known structure
and unknown parameters, and show that we can ac-
curately and efficiently recover those parameters with
high probability using a reasonable number of samples.
Making these additional assumptions allows us to cir-
cumvent the hardness of maximum likelihood learning.

Our parameter learning algorithm begins by finding
triplets of observed variables that are singly-coupled,
meaning that they are marginally mixture models. Af-
ter learning the parameters involving these, we show
how one can subtract their influence from the empir-
ical distribution, which then allows for more param-
eters to be learned. This process continues until no
new parameters can be learned. Surprisingly, we show
that this simple algorithm is able to learn almost all of
the parameters of the QMR-DT structure. Finally, we
study the identifiability of the learning problem with
hidden variables and show that even in dense networks,
the true model is often identifiable from third-order
moments. Our identifiability results suggest that the
final parameters of QMR-DT can be learned with a
grid search over a single parameter.

We see the significance of our work as presenting one
of the first polynomial-time algorithms for learning a
family of discrete-valued Bayesian networks with hid-
den variables where exact inference on the hidden vari-
ables is intractable. We believe that our algorithm will
be of practical interest in applications (such as med-
ical diagnosis) where prior knowledge can be used to
specify the Bayesian network structure involving the
hidden variables and the observed variables.

2 Background

We consider bipartite noisy-or Bayesian networks with
n binary latent variables, D = {D1, D2, ..., Dn}, Di ∈
{0, 1}, and m observed binary variables, S =
{S1, S2, ..., Sm}, Si ∈ {0, 1}. Continuing with the med-
ical diagnosis example, we refer to the latent variables
as diseases and the observed variables as symptoms.
The edges in the model are directed from the latent
diseases to the observed symptoms. We assume that
the diseases are never observed, neither at training nor

test time, and show how to recover the parameters of
the model in an unsupervised manner.

By using a noisy-or conditional distribution to model
the interactions from the latent variables to the ob-
served variables, the entire Bayesian network can be
parametrized by n×m+n+m parameters. These pa-
rameters consist of prior probabilities on the diseases
Π = {p1, p2, ..., pn}, failure probabilities between dis-

eases and symptoms, F = {~f1, ~f2, ... ~fn}, where each ~fi
is a vector of size m, and noise (or leak) probabilities
~ν = {ν1, ...νm}. An equivalent formulation includes
the noise in the model by introducing a single ‘noise’
disease, d0, which is present with probability p0 = 1
and has failure probabilities ~f0 = 1− ~ν.

Observations are sampled from the noisy-or network
by the following generative process:
— The set of present diseases is drawn according to
Bernoulli(Π).
— For each present disease Di, the set of active edges
~ai, is drawn according to Bernoulli(1− ~fi).
— The observed value of the jth symptom is then given
by sj =

⋃
i ai,j (this part is deterministic).

While the network can be described generally as being
fully connected, in practice many of the diseases have
zero probability of generating many of the symptoms
(ie. fail with probability 1). The Bayesian network
only has an edge between disease Di and symptom Sj
if fi,j < 1. As we explain in Section 3, our ability to
learn parameters will depend on the particular sparsity
pattern of these edges.

The marginal distribution over a set of symptoms, S,
in the noisy-or network has the following form:

p(S) =
∑
{D}

n∏
i=1

p(di)
∏
j∈S

p(sj |D), (1)

where {D} is the set of 2n configurations of the disease
variables {d1, ..., dn}. The disease priors are given by
p(di) = pdii (1 − pi)1−di , and the conditional distribu-
tion of the symptoms by a noisy-or distribution:

p(sj |D) =
(

1− f0,j

n∏
i=1

fdii,j

)sj(
f0,j

n∏
i=1

fdii,j

)1−sj
(2)

The algorithms described in this paper make substan-
tial use of sets of moments of the observed variables.
The first moment that will be important is the joint
distribution over a set of symptoms, S, which we call
TS . TS is a |S|th order tensor where each dimension is
of size 2. For a set of symptoms S = (Sa, Sb, Sc) the
elements of TS are defined as: TS(sa,sb,sc) = p(Sa =
sa, Sb = sb, Sc = sc). Throughout the paper we will
make use of sets of at most three variables, so the joint
distributions are of maximal size 2× 2× 2.



We also make use of the negative moment of a set of
symptoms S, which we denote as M̄S , defined as the
marginal probability of observing all of the symptoms
in S to be absent. The negative moments of S have
the following compact form:

M̄S ≡ p(
⋂
Sj∈S

Sj = 0) =

n∏
i=0

(
1− pi + pi

∏
Sj∈S

fi,j

)
(3)

The form of Eq. 3 makes it clear that the parameters
associated with each parent are all grouped together in
a single term, which we call the influence of disease Di

on symptoms S. Define this influence term to be Ii,S ≡
1 − pi + pi

∏
Sj∈S fi,j . Using this, we rewrite Eq. 3

using influences as M̄S =
∏n
i=0 Ii,S . This formulation

is found in Heckerman (1990) and provides a compact
form that makes it easy to take advantage of the noisy-
or properties of the network.

2.1 Related Work

The problem of inference in bipartite noisy-or net-
works with fixed parameters has been studied and
exact inference in large models like the QMR-DT
model is known to be intractable (Cooper, 1987). The
Quickscore formulation by Heckerman (1990) takes ad-
vantage of the noisy-or parameterization to give an ex-
act inference algorithm that is polynomial in the num-
ber of negative findings but still exponential in the
number of positive findings.

Any expectation maximization (EM) approach to
learning the network parameters must contend with
the computational complexity of inference in these
models. Many approximate inference strategies have
been developed, notably Jaakkola & Jordan (1999)
and Ng & Jordan (2000). The closest related work to
our paper is by Šingliar & Hauskrecht (2006), who give
a variational EM algorithm for unsupervised learning
of the parameters of a noisy-or network. We will use
their algorithm as a baseline in our experimental re-
sults. Importantly, variational EM algorithms do not
have consistency guarantees.

Kearns & Mansour (1998) develop an inference-free
approach which is guaranteed to learn the exact struc-
ture and parameters of a noisy-or network under spe-
cific identifiability assumptions by performing a search
over network structures. In order to achieve their re-
sults, they impose strong constraints such as identical
priors on all of the parents. Their structure learning
algorithm is exponential in the maximal in-degree of
the symptom nodes, which for QMR-DT is 570. More
importantly, the overall approach relies on the model
family having a property called “unique polynomials”,
closely related to the question of identifiability, but
which is left mostly uncharacterized in their paper. It
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Figure 1: A small noisy-or network. The triplets (b,d,e)

and (c,d,e) are both singly-coupled by B. The presence

of disease B prevents (a,b,c) from being singly-coupled.

However, after learning the parameters of disease B, we can

subtract off its influence, leaving (a,b,c) singly-coupled.

is not clear whether their algorithm can be modified to
take advantage of a known structure. As such, no ex-
isting method is sufficient for learning the parameters
of a large network like the QMR-DT network.

Spectral approaches to learning mixture models orig-
inated with Chang’s spectral method (Chang 1996;
analyzed in Mossel & Roch 2005). These methods
have been successfully applied to learning discrete mix-
ture models and hidden Markov models (Anandkumar
et al. , 2012c), as well as continuous admixture models
such as latent Dirichlet allocation (Anandkumar et al.
, 2012b). In recent work, these have been generalized
to a large class of linear latent variable models (Anand-
kumar et al. , 2012d). However, the noisy-or model is
not linear, making it non-trivial to apply these meth-
ods that rely on linearity of expectation to relate the
general formula for observed moments to a low rank
matrix or tensor decomposition.

3 Parameter Learning with Known
Structure

In this section we present a learning algorithm that
takes advantage of the known structure of a noisy-
or network in order to learn parameters using only
low-order moments. We first identify singly-coupled
triplets, which are marginally mixture models and
therefore we can learn their parameters. Once some
parameters of the network are learned, we make ad-
justments to the observed moments, subtracting off
the influence of some parents, essentially removing
them from the network, making more triplets singly-
coupled (illustrated in Figure 1). Algorithm 1 outlines
the parameter learning procedure.

We discuss the running time in Section 3.4. The clean
up procedure is not part of the main algorithm and
may increase the runtime to exponential, depending
on the configuration of the network of remaining pa-
rameters at the end of the main algorithm. We present
it because it allows us to extend the algorithm to learn



Algorithm 1 Learn Parameters

Inputs: A bipartite noisy-or network structure with
unknown parameters F,Π. N samples from the net-
work.
Outputs: Estimates of F and Π.
– Main Routine

1: unknown = {fi,j ∈ F} ∪ {pi ∈ Π}
2: knowns = {}
3: while not converged do
4: learned = {}
5: for all fi,a in unknown parameters do
6: for all (Sb, Sc), siblings of Sa do
7: Parents = parents of (Sa, Sb, Sc)
8: knownParents = All Dk in Parents for

which fk,a, fk,b and fk,c are known.
9: Remove knownParents from the graph.

10: if (Sa, Sb, Sc) are singly-coupled (Def. 1)
then

11: Form joint distribution Ta,b,c
12: for all Dk in knownParents do
13: Ta,b,c = RemoveInfluence(Ta,b,c, Dk)

(Section 3.2)
14: end for
15: Learn pi, fi,a, fi,b, fi,c. (Eq. 4)
16: unknown = unknown - (pi, fi,a, fi,b, fi,c).
17: learned = learned ∪(pi, fi,a, fi,b, fi,c)
18: end if
19: Add back knownParents to the graph.
20: end for
21: end for
22: known = known ∪ learned
23: Converge if no new parameters are learned.
24: end while
25: Learn noise parameters (Eq. 5).

– Clean up

1: Check identifiability of remaining parameters with
third-order moments and use clean up procedure
to learn remaining parameters. (Section 3.3)

the QMR-DT network which has a very simple net-
work of remaining parameters after running the main
algorithm to completion.

The algorithm can be further optimized by precom-
puting and storing dependencies between triplets (i.e.,
triplet A can be learned after triplet B is learned)
to avoid repeated searches for singly-coupled triplets.
The algorithm is also greedy in that it learns each fail-
ure parameter fi,j with the first suitable triplet it en-
counters. A more sophisticated version would attempt
to determine the best triplet to learn fi,j with high
confidence, which we do not explore in this paper.

The following sections go into more detail on the var-
ious steps of the algorithm, and assume that we have

access to the exact moments (i.e., infinite data). In
Section 3.4 we show that the error incurred by using
sample estimates of the expectations is bounded.

3.1 Learning Singly-coupled Symptoms

The condition that we require to learn the parameters
is that the observed variables be singly-coupled:

Definition 1. A set of symptoms, S is singly-coupled
by parent Di if Di is a parent of Sj for all Sj ∈ S and
there is no other parent, Dk ∈ {D1, ..., Dn}, such that
Dk is a parent of at least two symptoms in S.

The intuition behind using singly coupled symptoms is
they can be viewed locally as mixture models with two
mixture components corresponding to the states of the
coupling parent. For example, in Figure 1, (b, d, e) and
(c, d, e) form singly-coupled triplets coupled by disease
B. Their observations are independent conditioned on
the state of B. The noise disease, D0, does not have to
be considered here since it is present with probability
1, and so its state is always observed. Thus, the noise
parent can never act as a coupling parent.

Observing that the singly-coupled condition locally
creates a binary mixture model, we conclude that we
can learn the noisy-or parameters associated with a
singly-coupled triplet by using already existing meth-
ods for learning 3-view mixture models from the
third-order moment Ta,b,c. While the general method
of learning multi-view mixture models described in
Anandkumar et al. (2012a) would suffice, we employ
a simpler method (given in Algorithm 2) applicable to
mixture models of binary variables based on a tensor
decomposition described in Berge (1991). This proce-
dure uniquely decomposes Ta,b,c into two rank-1 ten-
sors which describe the conditional distributions of the
symptoms conditioned on the state of the parent.

The tensor decomposition returns the prior probabil-
ities of the parent states and the probabilities of the
children conditioned on the state of the parent. Am-
biguity in the labeling of the parent states is avoided
since for noisy-or networks p(Sj = 0|Di = 0) > p(Sj =
0|Di = 1). To obtain the noisy-or parameters, we ob-
serve that the prior for the disease is simply given by
the mixture prior, and the failure probability fi,j be-
tween the coupling disease Di and symptom Sj is the
ratio of two conditional probabilities:

pi = p(Di = 1), fi,j =
p(Sj = 0|Di = 1)

p(Sj = 0|Di = 0)
. (4)

The noise parameter f0,j is not learned using the above
equations since D0 never acts as a coupling parent.
However, once all of the other parameters are learned,
the noise parameter simply provides for any otherwise



Algorithm 2 Binary Tensor Decomposition

Input: Tensor T of size 2×2×2 which is a joint prob-
ability distribution over three variables (Sa, Sb, Sc)
which are singly-coupled by disease Z.
Output: Prior probability p(Z = 1), and conditional
distributions p(sa, sb, sc|Z = 0), p(sa, sb, sc|Z = 1).

1: Matrix X1 = T(0,·,·)
2: Matrix X2 = T(1,·,·)
3: Y2 = X2X

−1
1

4: Find eigenvalues of Y2 using quadratic equation:
5: λ1, λ2 = roots(λ2 − Tr(Y2)λ+ Det(Y2))
6: ~u1~v

T
1 = (λ1 − λ2)−1(X2 − λ2X1)

7: ~u2~v
T
2 = −(λ1 − λ2)−1(X2 − λ1X1)

8: Decompose* ~u1~v
T
1 , ~u2~v

T
2 into ~u1, ~u2, ~v1, ~v2.

9: ~l1 =
(
1 λ1

)T
, ~l2 =

(
1 λ2

)T
10: T1 = ~u1 ⊗ ~v1 ⊗~l1, T2 = ~u2 ⊗ ~v2 ⊗~l2
11: if T1(0,0,0) > T2(0,0,0) then
12: swap T1, T2

13: end if
14: p(Z = 1) =

∑
i,j,k T2(i,j,k)

15: normalize p(sa, sb, sc|Z = 0) = T1/
∑
i,j,k T1(i,j,k)

16: normalize p(sa, sb, sc|Z = 1) = T2/
∑
i,j,k T2(i,j,k)

*To decompose the 2×2 matrix ~u~vT into vectors ~u and

~v, set ~vT to the top row and ~uT =
(

1
(~u~vT )(2,2)
(~u~vT )(1,2)

)
.

–Notation T = ~u⊗ ~v ⊗~l means that T(i,j,k) = uivj lk.

unaccounted observations, i.e.

f0,j =
M̄j∏

Di∈Parents(Sj) Ii,j
. (5)

3.2 Adjusting Moments

Consider a triplet (a, b, c) which has a common parent
A, but is not singly coupled due to the presence of a
parent B shared by b and c (Figure 1). If we wish to
learn the parameters involving this triplet and A using
the methods described above, we would need to form
an adjusted moment, T̃a,b,c which would describe the
joint distribution of (a, b, c) if B did not exist.

The influence of B on variables (b, c) is fully described
by the parameters pB , fB,b, fB,c. Thus, if we have es-
timates for these parameters, we can remove the influ-
ence of B to form the joint distribution over (a, b, c) as
though B did not exist. This can be seen explicitly in
Equation 3. In this form, the influence of each parent,
if known, can be isolated and removed from the nega-
tive moments with a division operation. Since all the
variables are binary, the mapping between the nega-
tive moments and the joint distribution is simple and
the adjusted joint distribution can be formed from the
power set of adjusted negative moments.

This procedure of adjusting moments by removing the
influence of parents vastly expands the class of net-
works whose parameters are fully learnable using the
singly-coupled triplet method from Section 3.1. Using
these methods, complicated real-world networks such
as the QMR-DT network can be learned almost fully.
The clean up procedure described in the next section
will make it possible to learn the remaining parameters
of the QMR-DT network.

3.3 Extensions of the Main Algorithm

Learning with singly-coupled pairs. It is not pos-
sible to identify the parameters of a noisy-or model by
only looking at singly-coupled pairs. However, once
we have information about some of the parameters
from looking at triplets, we can use it to find more
parameter values by examining pairs. For example, in
Figure 1, if pB and fB,d were learned using the triplet
(b, d, e), it would be possible to find fB,c using only the
pairwise moment between (c, d). More generally, for a
singly-coupled pair of observables (Si, Sj) coupled by
parent Di, the following linear equation holds and can
be used to solve for the unknown fi,k assuming fi,j
and pi are already estimated:

M̄{j,k}

M̄jM̄k
=

1− pi + pifi,jfi,k
(1− pi + pifi,j)(1− pi + pifi,k)

. (6)

Thus, once some parameters have been estimated,
singly-coupled pairs provide an alternative to singly-
coupled triplets. Extending Algorithm 1 to search for
singly-coupled pairs as well as triplets is trivial. For
complex networks, using pairs allows us to learn more
parameters with fewer adjustment steps.

Clean up procedure. For some Bayesian network
structures, after running the main algorithm to com-
pletion, we may be left with some unlearned parame-
ters. This occurs because it may be impossible to find
enough singly-coupled triplets and pairs.

In these settings, it is natural to ask whether it is pos-
sible to uniquely identify the remaining parameters.
We use a technique developed by Hsu et al. (2012) to
show that most fully connected bipartite networks are
locally identifiable, meaning that they are identifiable
on all but a measure zero set of parameter settings. In
particular, we use their CheckIdentifiability routine,
which computes the Jacobian matrix of the system of
moment constraint equations and evaluates its rank
at a random setting of the parameters. We start with
first-order moments and increase the order until the
Jacobian is full rank, which implies that the model
is locally identifiable with these moments. When the
test succeeds it gives hope that, for all but a very small
number of pathological cases, the networks can still be
identifiable (up to a trivial relabeling of parents).



Number	  of	  Symptoms	  

N
um

be
r	  o

f	  H
id
de

n	  
Va

ria
bl
es
	  

1	   2	   3	   4	   5	   6	   7	  
1	   -‐1	   -‐1	   3	   3	   3	   3	   3	  
2	   -‐1	   -‐1	   -‐1	   3	   3	   3	   3	  
3	   -‐1	   -‐1	   -‐1	   -‐1	   3	   3	   3	  
4	   -‐1	   -‐1	   -‐1	   -‐1	   4	   3	   3	  
5	   -‐1	   -‐1	   -‐1	   -‐1	   -‐1	   3	   3	  
6	   -‐1	   -‐1	   -‐1	   -‐1	   -‐1	   4	   3	  
7	   -‐1	   -‐1	   -‐1	   -‐1	   -‐1	   4	   3	  

Table 1: Identifiability of parameters in fully-connected

bipartite networks. Each row represents a number of hid-

den variables and each column is the number of observed

variables. The value at location (i, j) is the number of mo-

ments required to make the model identifiable according

to the local identifiability criteria of the Jacobian method.

E.g., 3rd order moments are needed to learn with a sin-

gle hidden variable. The value -1 means the model is not

identifiable even with the highest possible order moments.

Table 1 summarizes the results on networks with vary-
ing number of children. Even for fully connected net-
works, third-order moments are sufficient to satisfy the
local identifiability criteria provided that there are a
sufficient number of children.1

At this point, we can make progress by relying on
the identifiability of the network from third-order mo-
ments and doing a grid search over parameter values
to find the values that best match the observed third-
order moments. For example, consider the network in
Figure 2. This could be a sub-network that is left to
learn after a number of other parameters have been
learned and possibly removed. If we knew the values
for the prior pA and failure probability fA,a, then we
would learn all of the edges from A and subtract them
off using the pairs learning procedure. When we do
not know pA and fA,a, we can search over the range
of values and choose the values that yield the closest
third-order moments to the observed moments.

Significantly, this method of doing a grid search over
two parameters can be used no matter how many chil-
dren are shared by A and B. It only depends on the
number of parents whose parameters are not learned.
Thus, even if there are a large number of parameters
left at the end of the main algorithm, we can proceed
efficiently if they belong to a small number of parents.
In Section 4.2 we note that in the QMR-DT network,
all of the parameters that are left at the end of the
main algorithm belong to only two parents and thus
can be learned efficiently using the clean up phase.

1Third-order moments are also necessary for identifia-
bility. Appendix G of Anandkumar et al. (2012a) gives
an example of two networks, each with a single latent vari-
able and three observations, that are indistinguishable us-
ing only second-order moments.

A B 
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Figure 2: Similar to Figure 1, with the addition of a single

edge from A to d. There are now no singly-coupled triplets

and learning cannot proceed. In the clean up procedure,

we perform a grid search over values for pA and fA,a, use

them to learn all of the edges leading to A and then proceed

to subtract off the influence of A and learn the edges of B.

3.4 Theoretical Properties

Valid schedule. We call a schedule, describing an
order of adjustment and learning steps, valid if every
learning step operates on a singly-coupled triplet (pos-
sibly after adjustment) and every parameter used in an
adjustment is learned in a preceding step.

Note that a schedule is completely data independent,
and depends only on the structure of the network. Al-
gorithm 1 can be used to find a valid schedule if one
exists. A valid schedule can also be used as a certifi-
cate of parameter identifiability for noisy-or networks
with known structure:

Theorem 1. If there exists a valid schedule for a
noisy-or network, then all parameters are uniquely
identifiable using only third-order moments.

The proof follows from the uniqueness of the tensor
decomposition described in Berge (1991).

Computational complexity. We run Algorithm 1
in two passes. In the first pass, we take as input the
structure and find a valid schedule. The schedule will
use one triplet per edge fij ∈ F , resulting in at most
|F | triplets for which to estimate the moments. Next,
we iterate through the data, computing the required
statistics. Finally, we do a second pass with the sched-
ule to learn the parameters. The running time without
the clean up procedure is O(nm2|F |2 + |F |N), where
N is the number of samples.

Sample complexity. The parameter learning and
adjustments presented above recover the parameters of
the network exactly under the assumption that perfect
estimates of the moments are available. With finite
data sampled i.i.d. from a noisy-or network, the esti-
mates of the moments are subject to sampling noise.
In what follows, we bound the error accumulation due
to using imperfect estimates of the moments.

Since error accumulates with each learning and ad-



justment step, we define the depth of a parameter θ
to be the number of extraction and adjustment steps
required to reach the state in which θ can be learned.
This depth is defined recursively:

Definition 2. Denote the parameters used in the ad-
justment step before learning θ as Θadj. Depth(θ) =
maxθi∈Θadj

Depth(θi) + 1. If no adjustment is needed
to learn θ then we say its depth is 0.

To ensure that parameters are learned with the min-
imum depth, we construct the schedule in rounds. In
round k we learn all parameters that can be learned
using parameters learned in previous rounds. We only
update the set of known parameters at the end of the
round. In this manner we are ensured that at each
round, the algorithm learns all of the parameters that
can be learned at a given depth.

The sample complexity result will depend on how close
the parameters of the model are to 0 or 1. In par-
ticular, we define pmin, pmax as the minimum and
maximum disease priors, and fmax as the maximum
failure probability. Additionally, we define M̄min =
minSj∈S Pr(Sj = 0) to be the minimum marginal prob-
ability of any symptom being absent.

Our algorithm makes black-box use of an algorithm
for learning mixture models of binary variables. In
giving our sample complexity result, we abstract the
dependence on the particular mixture model learning
algorithm as follows:

Definition 3. Let f(M̄min, fmax, pmax, pmin, δ̂) be a
function that represents the multiplicative increase in
error incurred by learning the parameters of a mixture
model from an estimate T̂a,b,c of the third-order mo-
ment Ta,b,c, such that for all mixture parameters θ,

||T̂a,b,c − Ta,b,c||1 < ε̂ =⇒
|θ̂ − θ| < f(M̄min, fmax, pmax, pmin, δ̂)ε̂

with probability at least 1− δ̂.

Using this, we obtain the sample complexity result (K
refers to the maximal in-degree of any symptom):

Theorem 2. Let Θ be the set of parameters to be
learned. Given a noisy-or network with known struc-
ture and a valid schedule with some constant maximal
depth d, after a number of samples equal to

N = Õ
((
f
(
M̄min, fmax, pmax, pmin,

δ

|Θ|Kd

))2d+2

·

K2dM̄−6d
min · ε−2 · ln(|Θ|/δ)

)
and with probability 1 − δ, for all θ ∈ Θ Algorithm 1
returns an estimate θ̂ such that |θ̂− θ| < ε. This holds

for ε < 1
2f
(
M̄min, fmax, pmax, pmin,

δ
|Θ|Kd

)−1 (
M̄3

min

15K

)
.

The proof consists of bounding the error incurred at
each successive operation of learning parameters, using
them to adjust the joint distributions, and applying
standard sampling error bounds. The multiplicative
increase in error with every adjustment and learning
step leads to an exponential increase in error when
these steps are applied repeatedly in series. The de-
pendence on the maximal in-degree, K, comes from
the possibility that in any adjustment step it may be
necessary to subtract off the influence of all but one
parent of the symptoms in the triplet. The maximum
value for ε comes from division operations in both the
learning and adjustment steps. If ε is not sufficiently
small then the error can blow up in these steps.

Using the bounds presented for the mixture model
learning approach in Anandkumar et al. (2012a) gives

f(M̄min, fmax, pmax, pmin, δ̂) ∝ M̄−11
min(1− fmax)−10

· (min{1− pmax, pmin})−2 · ln(1/δ̂)

δ̂
,

though these bounds may not be tight. In particularly,
the 1

δ dependency in f comes from a randomized step
of the learning procedure. For binary variables this
step may not be necessary and the 1

δ dependency may
be avoidable.

We emphasize that although the sample complexity
is exponential in the depth, even complex networks
like the QMR-DT network can be shown to have very
small maximal depths. In fact, the vast majority of the
parameters of the QMR-DT network can be learned
with no adjustment at all (i.e., at a depth of 0).

4 Experiments

Our first set of experiments look at parameter recov-
ery in samples drawn from a simple synthetic network
with the structure of Figure 1, and compare against
the variational EM algorithm of Šingliar & Hauskrecht
(2006). This network was chosen because it is the sim-
plest network that requires our method to perform the
adjustment procedure to learn some of the parameters.

The comparison is done on a small model to show that
that even in this simple case, the variational EM base-
line performs poorly. Any larger network could have
a subnetwork that looks like the network in Figure 1.
In our second set of experiments, we apply our algo-
rithm to the large QMR-DT network and show that
our algorithm’s performance scales to large models.

4.1 Comparison with (Variational) EM

Our method-of-moments algorithm is compared to
variational EM on 64 networks with the structure of
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Figure 3: (left) Sum of L1 errors from the true parame-

ters. Error bars show standard deviation from the mean.
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estimating the failures of the noise parent as 1 and failures

and priors of all other parents uniformly as 0.5. (right) Run

time in seconds of a single run using the network structure

from Figure 1 (shown in log scale).

Figure 1 and random parameters. The failure and
prior parameters of each network were generated uni-
formly at random in the range [0.2, 0.8]. The noise
probabilities are set to ν = 0.01. For all algorithms,
the true structure of the network was provided and
only the parameters were left to be estimated. With
insufficient data, method-of-moments can estimate pa-
rameters outside of the range [0,1]. Any invalid param-
eters are clipped to lie within [10−6, 1 − 10−6]. Since
the variational algorithm can become stuck at local
maxima, it was seeded with 64 random seeds for each
random network and the run that has the best varia-
tional lower bound on the likelihood was reported.

Figure 3 shows the L1 error in parameters and run
times of the algorithms as a function of the number
of samples, averaged over the 64 different networks.
Error bars show standard deviation from the mean.
The timing test was run on a single machine. Vari-
ational EM was run using the authors’ C++ imple-
mentation of the algorithm2 and Algorithm 1 was run
using a Python implementation. In the large data set-
ting, the method-of-moments algorithm is much faster
than variational EM because it only has to iterate
through the data once to form empirical estimates of
the triplet moments. The variational method requires
a pass through the data for every iteration.

In nearly all of the runs, variational EM converges to
a set of parameters that effectively assign the children
b and c in the network (Figure 1) to one of the two
parents A or B by setting the failure probabilities of
the other parent to very close to 1. Thus, even though
it was provided with the correct structure, the varia-
tional EM algorithm effectively pruned out some edges
from the network. This bias of the variational EM al-
gorithm towards sparse networks was already noted

2We thank the authors of Šingliar & Hauskrecht (2006)
for kindly providing their implementation.

in Šingliar & Hauskrecht (2006) and appears to be a
significant detriment to recovery of the true network
parameters.

In addition to the variational EM algorithm, we also
show results for EM using exact inference, which is fea-
sible for this simple structure. Exact EM was tested
on 16 networks with random parameters and used 4
random initializations, with the run having the best
likelihood being reported. These results serve two pur-
poses. First, we want to understand whether the fail-
ure of variational EM is due to the error introduced by
mean-field inference approximation or due to the fact
that EM only reaches a local maxima of the likelihood.
The fact that exact EM significantly outperforms vari-
ational EM suggests that the problem is with the vari-
ational inference. The second purpose is to compare
the sample complexity of our method-of-moments ap-
proach with a maximum-likelihood based approach.
On this small network, the sample complexity of the
two approaches appears to be comparable. We em-
phasize that the exact EM method would be infeasible
to run on any reasonably sized network due to the in-
tractability of exact inference in these models.

4.2 Synthetic Data from aQMR-DT

We use the Anonymized QMR Knowledge Base3 which
has the same structure as the true network, but the
names of the variables have been obscured and the pa-
rameters perturbed. To generate the synthetic data,
we transform the parameters of the anonymized knowl-
edge base to parameters of a noisy-or Bayesian network
using the procedure described in Morris (2001). The
disease priors (not given in aQMR-DT) were sampled
according to a Zipf law with exponentially more low
probability diseases than high probability diseases.

Using Algorithm 1 extended to take advantage of
singly-coupled pairs (as described in Section 3.3), we
find a schedule with depth 3 that learns all but a sin-
gle highly connected subnetwork of QMR-DT. This
troublesome subnetwork has two parents, each with 61
children, that overlap on all but one child each (similar
to Figure 2 but 60 overlapping children instead of 3).
It cannot be learned fully using the main algorithm,
though it can be learned with the clean up procedure
described in Section 3.3.

The pairs method is very useful for decreasing the
maximum depth of the network. Figure 4 (right) com-
pares the depths of parameters learned only with the
triplet method to those learned using triplets and pairs
combined. Using only triplets eventually learns all of

3The QMR Knowledge Base is provided by University
of Pittsburgh through the efforts of Frances Connell, Ran-
dolph A. Miller, and Gregory F. Cooper.
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Figure 4: (Left) Mean parameter error as a function of

sample size for the failure parameters learned at different

depths on the QMR-DT network. Only a small number
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all of the parameters remain to be learned. The remaining
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graph that we can learn with the clean up step.

the same parameters as using both triplets and pairs,
but requires more adjustment steps.

Figure 4 (left) shows the average L1 error for param-
eters learned as a function of the depth they were
learned at. As expected the error compounds with
depth, but with sufficiently large samples, all of the
errors tend toward zero. Additionally, as shown in
Figure 4 (right), the vast majority of the parameters
are learned at depth 0 and 1.

Timings were reported using an AMD-based Dell R815
machine with 64 cores and 256GB RAM. First, a valid
schedule to learn all of the parameters of the aQMR-
DT network (except the subnetwork described above)
was found using Algorithm 1 extended to use pairs.
Finding a schedule took 4.5 hours using 32 processors
in parallel. Once the schedule is determined, the learn-
ing procedure only requires sufficient statistics in the
form of the joint distributions of the triplets and pairs
and single variables present in the schedule (36,506
triplets, 7,682 pairs and 4,013 singles). The network
was sampled and sufficient statistics were computed
from each sample. Updating the sufficient statistics
took approximately 2.5 · 10−4 seconds per sample and
can be trivially parallelized. Solving for the network
parameters using the sufficient statistics takes under 3
minutes with no parallelization at all.

5 Discussion

We presented a method-of-moments approach to learn-
ing the parameters of bipartite noisy-or Bayesian net-
works of known structure and sufficient sparsity, us-

ing unlabeled training data that only needs to observe
the bottom layer’s variables. The method is fast, has
theoretical guarantees, and compares favorably to ex-
isting variational methods of parameter learning. We
show that using this method we can learn almost all of
the parameters of the QMR-DT Bayesian network and
provide local identifiability results and a method that
suggests the remaining parameters can be estimated
efficiently as well.

The main algorithm presented in this paper uses third-
order moments, but only recovers parameters of a bi-
partite noisy-or network for a restricted family of net-
work structures. The clean up algorithm can recover
all locally identifiable network structures, including
fully connected networks, but requires grid searches
for parameters that can be exponential in the number
of parents. This leaves open the question of whether
there are efficient algorithms for recovering a more ex-
pansive family of network structures than those cov-
ered by the main algorithm.

Provably learning the structure of the noisy-or network
as well as its parameters from data is more difficult
because of identifiability problems. For example, one
can show that third-order moments are insufficient for
determining the number of hidden variables. We con-
sider this an open problem for further work. Also, in
most real-world applications involving expert systems
for diagnosis, the hidden variables are not marginally
independent (e.g., having diabetes increases the risk
of hypertension). It is possible that the techniques de-
scribed here can be extended to allow for dependencies
between the hidden variables.

Another important direction is to attempt to general-
ize the learning algorithms beyond noisy-or networks
of binary variables. The noisy-or distribution is special
because adding parents can only decrease the negative
moments (Eq. 3), and its factorization allows for the
effect of individual parents to be isolated. Moreover,
since the noisy-or parameterization has a single pa-
rameter per hidden variable and observed variable, it
is possible to learn part of the model and then hope to
adjust the remaining moments (a more general distri-
bution with the same property is the logistic function).
New techniques will likely need to be developed to
enable learning of arbitrary discrete-valued Bayesian
networks with hidden values.
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