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Abstract

Reasoning about degrees of belief in uncertain dy-
namic worlds is fundamental to many applications,
such as robotics and planning, where actions mod-
ify state properties and sensors provide measurements,
both of which are prone to noise. With the exception
of limited cases such as Gaussian processes over lin-
ear phenomena, belief state evolution can be complex
and hard to reason with in a general way. This pa-
per proposes a framework with new results that allows
the reduction of subjective probabilities after sensing
and acting, both in discrete and continuous domains,
to questions about the initial state only. We build
on an expressive probabilistic first-order logical ac-
count by Bacchus, Halpern and Levesque, resulting in
a methodology that, in principle, can be coupled with
a variety of existing inference solutions.

1 INTRODUCTION

Reasoning about degrees of belief in uncertain dynamic
worlds is fundamental to many applications, such as
robotics and planning, where actions modify state prop-
erties and sensors provide measurements, both of which
are prone to noise. However, there seem to be two dis-
parate paradigms to address this concern, both of which
have their limitations. At one extreme, there are logi-
cal formalisms, such as the situation calculus (McCarthy
and Hayes, 1969; Reiter, 2001), which allows us to ex-
press strict uncertainty, and exploits regularities in the ef-
fects actions have on propositions to describe physical laws
compactly. Probabilistic sensor fusion, however, has re-
ceived less attention here. At the other extreme, revising
beliefs after noisy observations over rich error profiles is ef-
fortlessly addressed using probabilistic techniques such as
Kalman filtering and Dynamic Bayesian Networks (Dean
and Kanazawa, 1989; Dean and Wellman, 1991). How-
ever, in these frameworks, a complete specification of the
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dependencies between variables is taken as given, making it
difficult to deal with other forms of incomplete knowledge
as well as complex actions that shift dependencies between
variables in nontrivial ways.

An influential but nevertheless simple proposal by Bac-
chus, Halpern and Levesque (1999), BHL henceforth, was
among the first to merge these broad areas in a general way.
Their specification is widely applicable because it is not
constrained to particular structural assumptions. In a nut-
shell, they extend the situation calculus language with a
provision for specifying the degrees of belief in formulas in
the initial state, closely fashioned after intuitions on incor-
porating probability in modal logics (Halpern, 1990; Fagin
and Halpern, 1994). This then allows incomplete and par-
tial specifications, which might be compatible with one or
very many initial distributions and sets of independence as-
sumptions, with beliefs following at a corresponding level
of specificity. Moreover, together with a rich action theory,
the model not only exhibits Bayesian conditioning (Pearl,
1988) (which, then, captures special cases such as Kalman
filtering), but also allows flexibility in the ways dependen-
cies and distributions may change over actions.

What is left open, however, is the following computational
concern: how do we effectively reason about degrees of
belief in the framework? That is, while changing degrees
of belief do indeed emerge as logical entailments of the
given action theory, no procedure is given for computing
these entailments. On closer examination, in fact, this is a
two-part question:

(i) How do we effectively reason about beliefs in a par-
ticular state?

(ii) How do we effectively reason about belief state evolu-
tion and belief change?

In the simplest case, part (i) puts aside acting and sensing,
and considers reasoning about the initial state only, which
is then the classical problem of (first-order) probabilistic
inference. We do not attempt to do a full survey here, but
this has received a lot of attention, often under reasonable
assumptions such as the ability to factorize domains (Poole,
2003; Gogate and Domingos, 2010).



This paper is about part (ii). Addressing this concern has
a critical bearing on the assumptions made about the do-
main for tractability purposes. For example, if the initial
state supports a decomposed representation of the distribu-
tion, can we expect the same after actions? In the exception
of very limited cases such as Kalman filtering that harness
the conjugate property of Gaussian processes, the situation
is discouraging. In fact, even in the slightly more general
case of Dynamic Bayesian Networks, which are in essence
atomic propositions, if one were to assume that state vari-
ables are independent at time 0, they can become fully cor-
related after a few steps (Dean and Kanazawa, 1988; Boyen
and Koller, 1998; Hajishirzi and Amir, 2010). Dealing with
complex actions, incomplete specifications and mixed rep-
resentations, therefore, is significantly more involved.

In this paper, we propose a new alternative to infer de-
grees of belief in the presence of a rich theory of actions,
closely related to goal regression (Waldinger, 1977; Reiter,
2001). The procedure is general, not requiring (but allow-
ing) structural constraints about the domain, nor imposing
(but allowing) limitations to the family of actions. Regres-
sion derives a mathematical formula, using term and for-
mula substitution only, that relates belief after a sequence
of actions and observations, even when they are noisy, to
beliefs about the initial state. That is, among other things, if
the initial state supports efficient factorizations, regression
will maintain this advantage no matter how actions affect
the dependencies between state variables over time. Going
further, the formalism will work seamlessly with discrete
probability distributions, probability densities, and perhaps
most significantly, with difficult combinations of the two.
(See Example 9.3 in Section 4 below.)

To see a simple example of what goal regression does,
imagine a robot facing a wall and at a certain distance h
to it, as in Figure 1. The robot might initially believe h to
be drawn from a uniform distribution on [2, 12]. Assume
the robot moves away by 2 units and is now interested in
the belief about h ≤ 5. Regression would tell the robot that
this is equivalent to its initial beliefs about h ≤ 3 which
here would lead to a value of .1. To see a nontrivial exam-
ple, imagine now the robot is also equipped with a sonar
unit aimed at the wall, that adds Gaussian noise with mean
µ and variance σ2. After moving away by 2 units, if the
sonar were now to provide a reading of 8, then regression
would derive that belief about h ≤ 5 is equivalent to

1
γ

∫ 3

2
.1 × N(6 − x; µ, σ2) dx.

where γ is the normalization factor. Essentially, the poste-
rior belief about h ≤ 5 is reformulated as the product of the
prior belief about h ≤ 3 and the likelihood of h ≤ 3 given an
observation of 6. (That is, observing 8 after moving away
by 2 units is related here to observing 6 initially.)

We believe the broader contributions of this line of work are

h

Figure 1: Robot moving towards a wall.

two-fold. On the one hand, as we show later, simple cases
of belief state evolution, as applicable to conjugate distri-
butions for example, are special cases of regression’s back-
ward chaining procedure. Thus, regression could serve as a
formal basis to study probabilistic belief change wrt limited
forms of actions. On the other hand, our contribution can
be viewed as a methodology for combining actions with re-
cent advances in probabilistic inference, because reasoning
about actions reduces to reasoning about the initial state.

We now describe the structure of the paper. Before mov-
ing on, we note that although the original BHL account is
only suitable for discrete domains (as they assume values
are taken from countable sets), in a companion paper (Belle
and Levesque, 2013a) we show that the account can be gen-
eralized to domains with both discrete and continuous vari-
ables with minimal additions. In the preliminaries section,
we cover the situation calculus, recap BHL and go over the
essentials of its continuous extension. We then present re-
gression for discrete domains, followed by regression for
general domains. We end with related and future work.
For this version of the paper, we allow noisy sensors but
assume deterministic (noise-free) physical actions. Noisy
actions are left for an extended version.

2 BACKGROUND

The language L of the situation calculus (Reiter, 2001) is
a many-sorted dialect of predicate calculus, with sorts for
physical actions, sensing actions, situations and objects
(including the set of reals R as a subsort). A situation repre-
sents a history as a sequence of actions. A set of initial sit-
uations correspond to the ways the world might be initially.
Successor situations are the result of doing actions, where
the term do(a, s) denotes the unique situation obtained on
doing a in s. The term do(α, s), where α is the sequence
[a1, . . . , an], abbreviates do(an, do(. . . , do(a1, s) . . . )). For
example, do([grasp(o1), repair(o1)], s) represents the situa-
tion obtained after grasping and repairing object o1 starting
from s. Initial situations are those without a predecessor:

Init(s) � ¬∃a, s′. s = do(a, s′).

We let the constant S0 denote the actual initial situation, and
we use the variable ι to range over initial situations only. L
also includes functions whose values vary from situation to
situation, called fluents, whose last argument is a situation.

We follow two notational conventions. We often suppress
the situation argument in a formula φ, or use a distinguished



variable now. Either way, φ[t] is used to denote the formula
with that variable replaced by t, e.g. both ( f < 12)[s] and
( f (now) < 12)[s] mean f (s) < 12. We also use conditional
if-then-else expressions in formulas throughout. We write
f = If φ Then t1 Else t2 to mean [φ∧ f = t1]∨[¬φ∧ f = t2].
In case quantifiers appear inside the if -condition, we take
some liberties with notation and the scope of variables in
that we write f = If ∃x. φ Then t1 Else t2 to mean ∃x [φ ∧
f = t1] ∨ [( f = t2) ∧ ¬∃x. φ].

Basic action theory

Following (Reiter, 2001), we model dynamic domains in
L by means of a basic action theory D, which consists
of domain-independent foundational axioms, unique name
axioms for actions (see (Reiter, 2001)), and (1) axioms D0
that describe what is true in the initial states, including
S0;1 (2) precondition axioms2 of the form Poss(A(~x), s) ≡
ΠA(~x, s) describing executability conditions using a special
fluent Poss; and (3) successor state axioms of the following
form stipulating how fluents change:

f (do(a, s)) = u ≡ ∃~z1[a = A1(~z1) ∧ u = e1(~z1, s)] ∨ . . .
∃~zk[a = Ak(~zk) ∧ u = ek(~zk, s)] ∨∧
¬∃~zi[a = Ai(~zi)] ∧ u = f (s).

(1)
where ei(~zi, s) is any expression whose only free variables
are ~zi and s. For example, consider the action fwd(z) of
moving precisely z units towards or away from the wall,
but the motion stops when the wall is reached:

h(do(a, s)) = u ≡ ∃z[a = fwd(z) ∧ u = max(0, h(s) − z)] ∨
¬∃z[a = fwd(z)] ∧ u = h(s).

(2)
This sentence states that fwd(z) is the only action affect-
ing fluent h, in effect incorporating a solution to the frame
problem (Reiter, 2001). Given an action theory, an agent
reasons about actions by means of entailments ofD.3

Likelihood and belief

The BHL model of belief builds on a treatment of knowl-
edge in L (Scherl and Levesque, 2003). Here we present a
simpler variant based on two distinguished fluents l and p.

The term l(a, s) is intended to denote the likelihood of ac-
tion a in situation s. For example, suppose sonar(z) is the
action of reading the value z from a sonar that measures the
distance to the wall, h. We might assume that this action is
characterized by a simple discrete error model (continuous

1Note that D0 can include any (classical) first-order sentence
about S0, such as h(S0) > 12 and f1(S0) , 2 ∨ f2(S0) = 5.

2Free variables in any of these axioms should be understood
as universally quantified from the outside.

3Entailments are wrt standard Tarskian models, but we will
also assume that models assign the usual interpretations to =, <,
>, 0, 1, +, ×, /, −, e, π, and xy (exponentials).

error models are considered later):

l(sonar(z), s) = If |h(s) − z| ≤ 1 Then 1/3 Else 0
(3)

which stipulates that the difference between a reading of
z and the true value h is either {0,−1, 1} with probability
1/3, assuming that h and z take integer values. In general,
the action theory D is assumed to contain for each sensor
sensei(~x) that measures a fluent f , an axiom of the form:

l(sensei(~x), s) = Erri(~x, f (s)),

where Erri(u1, u2) is some expression with only two free
variables u1 and u2, both numeric.4 (Noise-free physical
actions are given a likelihood of 1.)

Next, the p fluent determines a (subjective) probability dis-
tribution on situations. The term p(s′, s) denotes the relative
weight accorded to situation s′ when the agent happens to
be in situation s, as in modal probability logics (Fagin and
Halpern, 1994). Now, the task of the modeler is to specify
the initial properties of p as part ofD0 using ι and S0, e.g.:

p(ι, S0) = If h(ι) ∈ {2, . . . , 11} Then .1 Else 0 (4)

says that h is drawn from a uniform distribution. The fol-
lowing nonnegative constraint is also included inD0:

∀ι, s. p(s, ι) ≥ 0 ∧ (p(s, ι) > 0 ⊃ Init(s)) (P1)

Then, by means of a remarkably simple successor state ax-
iom for p, (P2) below, the formal specification is complete.

p(s′, do(a, s)) =

If ∃s′′. s′ = do(a, s′′) ∧ Poss(a, s′′)
Then p(s′′, s) × l(a, s′′)

Else 0

(P2)

In particular, the degree of belief in a formula φ can be
accounted for in terms of an abbreviation:5

Bel(φ, s) �
1
γ

∑
{s′:φ[s′]}

p(s′, s) (B)

where γ, the normalization factor, is understood throughout
as the same expression as the numerator but with φ replaced
by true, e.g. here γ is

∑
s′ p(s′, s). So, as in probability log-

ics, belief is simply the total weight of worlds satisfying φ.
But the novelty here is that in a dynamical setting, belief
change via (B) is identical to Bayesian conditioning:

4This captures the idea that the error model of a sensor mea-
suring f depends only on the true value of f , and is independent
of other factors. In a sense this follows the Bayesian model that
conditioning on a random variable f is the same as conditioning
on the event of observing f . But this is not required in general in
the BHL scheme, an issue we ignore for this paper.

5Summations can be expressed as logical terms. See BHL.



Proposition 1: Suppose D includes (P1), (P2) and the
likelihood axiom for a sensor sense(z) measuring f . Then

D |= Bel( f = t, do(sense(z), S0)) =

Bel( f = t, S0) · Err(z, t)∑
x Bel( f = x, S0) · Err(z, x)

Essentially, if the robot’s sensors are informative, in the
sense of returning values closer to the true value, beliefs
are strengthened over time.

From sums to integrals

While the definition of belief in BHL has many desirable
properties, it is defined in terms of a summation over situ-
ations, and therefore precludes fluents whose values range
over the reals. The continuous analogue of (B) then re-
quires integrating over some suitable space of values.

As it turns out, a suitable space can be found. First, as-
sume that there are n fluents f1, . . . , fn in L, and that these
take no arguments other than the situation argument.6 Next,
suppose that that there is exactly one initial situation for ev-
ery possible value of these fluents (Levesque et al., 1998):

[∀~x∃ι
∧

fi(ι) = xi] ∧ [∀ι, ι′.
∧

fi(ι) = fi(ι′) ⊃ ι = ι′] (I)

Under these assumptions, it can be shown that the summa-
tion over all situations in (B) can be recast as a summation
over all possible initial values x1, . . . , xn for the fluents:

Bel(φ, s) �
1
γ

∑
~x

P(~x, φ, s) (B′)

where P(~x, φ, s) is the (unnormalized) weight accorded to
the successor of an initial world where fi equals xi:

P(~x, φ, do(α, S0)) �
If ∃ι.

∧
fi(ι) = xi ∧ φ[do(α, ι)]

Then p(do(α, ι), do(α, S0))
Else 0

for any action sequence α. In a nutshell, because every sit-
uation has an initial situation as an ancestor, and because
there is a bijection between initial situations and possible
fluent values, it is sufficient to sum over fluent values to ob-
tain the belief even for non-initial situations. Note that un-
like (B), this one expects the final situation term do(α, S0)
mentioning what actions and observations took place to be
explicitly specified, but that is just what one expects when
the agent reasons about its belief after acting and sensing.

The generalization to the continuous case then proceeds as
follows. First, we observe that some (though possibly not
all) fluents will be real-valued, and that p(s′, s) will now
be a measure of density not weight. For example, if h is
real-valued, we might have the following analogue to (4):

p(ι, S0) = If 2 ≤ h(ι) ≤ 12 Then .1 Else 0 (5)
6It might be desirable to have fluents take arguments other than

the situation. See (Belle and Levesque, 2013a) for discussions.

which says that the true initial value of h is drawn from a
uniform distribution on [2,12]. Similarly, the P term above
now measures (unnormalized) density rather than weight.

Now suppose fluents are partitioned into two groups: the
first k take their values x1, . . . , xk from R, while the rest
take their values yk+1, . . . , yn from countable domains, then
the degree of belief in φ is an abbreviation for:

Bel(φ, s) �
1
γ

∫
~x

∑
~y
P(~x · ~y, φ, s) (B+)

That is, the belief in φ is obtained by ranging over all pos-
sible fluent values, and integrating7 and summing the den-
sities of successor situations where φ holds.8

To summarize the formalization, a basic action theory D
henceforth is assumed to additionally include: (a) (P1) and
(I) as part of D0; (b) (P2) as part of D’s successor state
axioms, and (c) sensor likelihood axioms.

3 REGRESSION FOR DISCRETE
DOMAINS

We now investigate a computational mechanism for reason-
ing about beliefs after a trajectory. In this section, we focus
on discrete domains, where a weight-based notion of be-
lief would be appropriate. Domains with both discrete and
continuous variables are reserved for the next section.

Formally, given a basic action theory D, a sequence of ac-
tions α, we might want to determine whether a formula φ
holds after executing α starting from S0:

D |= φ[do(α, S0)] (6)

which is called projection (Reiter, 2001). When it comes to
beliefs, and in particular how that changes after acting and
sensing, we might be interested in calculating the degrees
of belief in φ after α: find a real number n such that

D |= Bel(φ, do(α, S0)) = n. (7)

The obvious method for answering (6) is to translate both
D and φ into a predicate logic formula. This approach,
however, presents a serious computational problem be-
cause belief formulas expand into a large number of sen-
tences using (P2), resulting in an enormous search space
with initial and successor situations. The other issue with

7Like in BHL, where summations are captured as logical terms
using second-order quantification, we can use logical formulas to
capture a variety of sorts of integrals. See (Belle and Levesque,
2013a). We will henceforth simply suppose that for any term t and
variable x,

∫
x

t is a term which evaluates (in the standard calculus
sense) to the integral of t between [−∞,∞].

8We are assuming here that the density function is (Riemann)
integrable. If it is not or if γ = 0 then belief is clearly not defined,
nor should it be.



this approach is that sums (and integrals in the continuous
case) reduce to complicated second-order formulas.

We now introduce a regression procedure to simplify both
(6) and (7) to queries about Bel(φ, S0), over arithmetic ex-
pressions, for which standard probabilistic reasoning meth-
ods can be applied. For this purpose, in the sequel, Bel is
treated as a special syntactic operator rather than as an ab-
breviation for other formulas. To see a simple example of
the procedure, imagine the robot is interested in the proba-
bility of h=7, given (4), after reading 5 from a sonar:

Bel(h = 7, do(sonar(5), S0)) (8)

If we are to take the sonar’s model to be (3), then (8) should
be 0 by Bayesian conditioning because the likelihood of the
true value being 7 given an observation of 5 is 0. Regres-
sion would reduce the term (8) to one over initial priors:

1
γ

∑
x∈{2,...,11}

Err(5, x) × Bel(h = x ∧ h = 7, S0) (9)

where Err is the error model from (3). By the condition
inside Bel, the only valid value for x is 7 for which the
prior is .1 but Err(5, 7) is 0. Thus, (8) = (9) = 0. In general,
regression is a recursive procedure that works iteratively
over a sequence of actions discarding one action at a time,
and it can be utilized to measure any logical property about
the variables, e.g. 2π · h < 12, h/fuel ≤ mileage, etc.

Formally, regression operates at two levels. (Note that this
differs slightly from (Reiter, 2001; Scherl and Levesque,
2003).) At the formula level,9 we introduce an opera-
tor R for regressing formulas, which over equality literals
sends the individual terms to an operator T for regress-
ing terms. The fundamental objective of these operators is
eliminate do symbols. The end result, then, is to transform
any expression whose situation term is a successor of S0,
say do([a1, a2], S0), to one about S0 only, at which point
D0 is all that is needed. As hinted earlier, these operators
treat Bel(φ, s) as though they are special sorts of terms.10

Throughout the presentation, we assume that the inputs to
these operators do not quantify over all situations.

Definition 2: For any term t, we inductively define T [t]:

1. If t is situation-independent (e.g. x, π2/3) thenT [t] = t.

2. T [g(t1, . . . , tk)] = g(T [t1], . . . ,T [tk]),

where g is any non-fluent function (e.g. ×,+,N).
9For simplicity, in what follows, functional fluents in formu-

las are only allowed to occur as arguments of an equality literal.
It is easy to show that every sentence can be transformed into an
equivalent one in the required form, and the transformation is lin-
ear in the size of the original sentence, e.g. h ≤ 9 is written as
∃u (h = u ∧ u ≤ 9).

10In the context of Bel, φ is understood to be any situation-
suppressed formula not mentioning p, l and Bel. If situation terms
do appear in φ, then they may only be the distinguished variable
now.

3. For a fluent function f , T [ f (s)] is defined inductively

(a) if s is of the form do(A(~t), s′) then
T [ f (s)] = T [e(~t, s′)]

(b) else T [ f (s)] = f (s)

where, in (a), an appropriate instance of the rhs of the
successor state axiom is used, as obtained from (1).

4. T [Bel(φ, s)] is defined inductively:

(a) if s is of the form do(a, s′) and a is a physical
action, then

T [Bel(φ, s)] = T [Bel(ψ, s′)]

where ψ is Poss(a, now) ⊃ R[φ[do(a, now)]].
(b) if s is of the form do(a, s′) and a is a sens-

ing action sense(z) such that l(sense(z), s) =

Err(z, fi(s)) is inD then

T [Bel(φ, s)] =

1
γ

∑
xi

Err(z, xi) × T [Bel(ψ, s′)]

where ψ is Poss(a, now) ⊃ φ ∧ fi(now) = xi, and
γ is the normalization factor and is the same ex-
pression as the numerator but φ replaced by true.

(c) else T [Bel(φ, s)] = Bel(φ, s).

Definition 3: For any formula φ, we define R[φ] induc-
tively:

1. R[t1 = t2] = (T [t1] = T [t2])

2. R[G(t1, . . . , tk)] = G(T [t1], . . . ,T [tk])

where G is any non-fluent predicate (e.g. =, <).

3. R[Poss(A(~t), s)] = R[ΠA(~t, s)],

where an appropriate instance of the rhs of the pre-
condition axiom replaces the atom (see Section 2).

4. When ψ is a formula, R[¬ψ] = ¬R[ψ],
R[∀xψ] = ∀xR[ψ], R[∃xψ] = ∃xR[ψ].

5. When ψ1 and ψ2 are formulas,
R[ψ1 ∧ ψ2] = R[ψ1] ∧ R[ψ2],
R[ψ1 ∨ ψ2] = R[ψ1] ∨ R[ψ2].

This completes the definition of T and R. We now go over
the justifications for the items, starting with the operator
T . In item 1, non-fluents simply do not change after ac-
tions. In item 2, T operates over sums and products in a
modular manner. In item 3, provided there are remaining
do symbols, the physics of the domain determines what the
conditions must have been in the previous situation for the
current value to hold. In item 4, if there is a remainder
physical action, part (a) says that belief in φ after actions is
simply the prior belief about the regression of φ, contingent
on action executability. Part (b) says that the belief about



φ after observing z for the true value of fi is the prior be-
lief for all possible values xi for fi that agree with φ, times
the likelihood of fi being xi given z. The appropriateness
of parts (a) and (b) depend on the fact that physical actions
do not have any sensing aspect, while sensing actions do
not change the world. Part (c) simply says that T stops
when no do symbols appear in s. We proceed now with the
justifications for R. Over equality atoms, R separates the
terms of the equality and sends them to T . Likewise, over
non-fluent predicates. When Poss is encountered, precon-
ditions take its place. Finally, R simplifies over connectives
in a straightforward way. The main result for R regarding
projection is:

Theorem 4 : Suppose D is any action theory, φ any
situation-suppressed formula and α any action sequence:

D |= φ[do(α, S0)] iff D0 ∪Duna |= R[φ[do(α, S0)]]

where Duna is the unique name assumption and
R[φ[do(α, S0)]] mentions only a single situation term, S0.

Here,Duna is only needed to simplify action terms (Reiter,
2001) e.g. from fwd(4) = fwd(z), Duna infers z = 4. Now
when our goal is to explicitly compute the degrees of belief
in the sense of (7), we have the following property for T :

Theorem 5: LetD be as above, φ any situation-suppressed
formula and α any sequence of actions. Then:

D |= Bel(φ, do(α, S0)) = T [Bel(φ, do(α, S0))]

where T [Bel(φ, do(α, S0))] is a term about S0 only.

Theorem 5 essentially shows how belief about trajectories
is computable using beliefs about S0 only. Note that, since
the result of T is a term about S0, no sentence outside of
D − D0 is needed. We now illustrate regression with ex-
amples. Using Theorem 5, we reduce beliefs after actions
to initial ones. At the final step, standard probabilistic rea-
soning is applied to obtain the end values.

Example 6: Let D contain the union of (2), (3) and (4).11

Then the following equality expressions are entailed byD:

1. Bel(h = 10 ∨ h = 11, S0) = .2

Bel(h ≤ 9, S0) = .8

Terms about S0 are unaffected by T . So this amounts
to inferring probabilities usingD0.

2. Bel(h = 11, do(fwd(1), S0))

= T [ Bel(h = 11, do(fwd(1), S0)) ]

= T [ Bel( R[(h = 11)[do(fwd(1), now)]] , S0) ] (i)

11Initial beliefs can also be specified for D0 using Bel, e.g. (4)
can be replaced inD0 with Bel(h = u, S0) = .1 for u ∈ {2, . . . , 11}.

= T [Bel( T [h(do(fwd(1), now))] = T [11] , S0)] (ii)

= T [Bel(max(0, h − 1) = 11, S0)] (iii)

= Bel(max(0, h − 1) = 11, S0) (iv)

= 0

First, since action preconditions are all true, Poss is
ignored everywhere. We underline to emphasize the
expressions undergoing transformations. We begin al-
ways by applying T to the main term, in this case get-
ting (i), by means of T ’s item 4(a). Next, R’s item 1
is applied in (ii). While T [11] = 11 by T ’s item 1, for
T [h(do(fwd(1), now))] we use item 3 and (2) to get:

T [max(0, h(now) − 1)] = max(0, h(now) − 1)

which is substituted in (ii) to give (iii). Finally, T ’s
item 4(c) yields (iv), which is a belief term about S0.
Now the only valid value for h in (iv) is 12, but for
h = 12 the robot has a belief of 0 initially.

3. Bel(h ≤ 5, do(sonar(5), S0))

=
1
γ

∑
x∈{2,...,11}

Err(5, x) × T [Bel(h = x ∧ h ≤ 5, S0)] (i)

=
1
γ

∑
x∈{2,...,11}

Err(5, x) × Bel(h = x ∧ h ≤ 5, S0) (ii)

=
1
γ

(
1
3
· Bel(h = 4 ∧ h ≤ 5, S0)

+
1
3
· Bel(h = 5 ∧ h ≤ 5, S0) (iii)

+
1
3
· Bel(h = 6 ∧ h ≤ 5, S0)

)
=

1
γ

(
1
3
· Bel(h = 4, S0) +

1
3
· Bel(h = 5, S0)

)
(iv)

=
1
γ
·

2
30

= 2/3

where Err(5, x) is the model from (3). First, T ’s item
4(b) yields (i), and then item 4(c) yields (ii). Since
Err(5, x) is non-zero only for x ∈ {4, 5, 6}, (ii) is sim-
plified to (iii) and (iv) resulting in 1/15 · 1/γ. We cal-
culate γ as follows:

=
∑

x∈{2,...,11}

Err(5, x) × T [Bel(h = x ∧ true, S0)] (i′)

=
∑

x∈{2,...,11}

Err(5, x) × Bel(h = x, S0) (ii′)

= 3/30.

4 REGRESSION FOR GENERAL
DOMAINS

We now generalize regression for domains with discrete
and continuous variables, for which a density-based notion



of belief is appropriate. The main issue is that when formu-
lating posterior beliefs after sensing, something like Defini-
tion 2’s item 4(b) will not work. This is because over con-
tinuous spaces the belief about any individual point is 0.
Therefore, we will be unpacking belief in terms of the
density function, i.e. in terms of P. These P(~x, φ, s) terms,
which will now also be treated as special sorts of syntac-
tic terms, are separately regressed. (Of course, the regres-
sion of weight-based belief can be approached on similar
lines.) Recall that P(~x, φ, S0) is simply the density of an
initial world (where fi = xi) satisfying φ. Formally, term
regression T is defined as follows:

Definition 7: For any term t, we inductively define:

1, 2 and 3 as before.

4. T [P(~x, φ, s)] is defined inductively:

(a) if s is of the form do(a, s′) and a is a physical
action then

T [P(~x, φ, s)] = T [P(~x, ψ, s′)]

where ψ is Poss(a, now) ⊃ R[φ[do(a, now)]].
(b) if s is of the form do(a, s′) and a is a sens-

ing action sense(z) such that l(sense(z), s) =

Err(z, fi(s)) is inD, then:

T [P(~x, φ, s)] = Err(z, xi) × T [P(~x, ψ, s′)]

where ψ is Poss(a, now) ⊃ φ ∧ fi(now) = xi.

(c) else T [P(~x, φ, s)] = P(~x, φ, s).

5. T [Bel(φ, s)] =
1
γ

∫
~z

∑
~y
T [P(~z · ~y, φ, s)].

R is defined as before. We have the following property:

Theorem 8: Let D be any action theory, φ any situation-
suppressed formula and α any action sequence. Then

D |= Bel(φ, do(α, S0)) = T [Bel(φ, do(α, S0))]

where T [Bel(φ, do(α, S0))] is a term about S0 only.

Similarly, the analogue of Theorem 4 holds as well.

Example 9: Consider the following continuous variant of
the robot example. Imagine a continuous uniform distribu-
tion for the true value of h, as provided by (5). Suppose the
sonar has the following error profile:

l(sonar(z), s) = If z ≥ 0
Then N(z − h(s); 0, 4)

Else 0
(10)

which says the difference between a nonnegative reading
and the true value is normally distributed with mean 0 and
variance 4. (A mean of 0 implies there is no systematic
bias.) Now, letD be any action theory that includes (2), (5)
and (10). Then the following equalities are entailed byD:

1. Bel(h = 3 ∨ h = 4, S0) = 0,

Bel(4 ≤ h ≤ 6, S0) = .2

T does not change terms about S0. Here, for example,
the second belief term equals ∫ 6

4 .1dx = .2.

2. Bel(h ≥ 11, do(fwd(1), S0))

=
1
γ

∫
x∈R
T [ P(x, h ≥ 11, do(fwd(1), S0)) ] (i)

=
1
γ

∫
x∈R
T [P(x,R[ψ], S0)] (ii)

where ψ is (h ≥ 11)[do(fwd(1), now)]

=
1
γ

∫
x∈R
T [P(x,max(0, h − 1) ≥ 11, S0)] (iii)

=
1
γ

∫
x∈R

P(x,max(0, h − 1) ≥ 11, S0) (iv)

=
1
γ

∫
x∈R

p(ι, S0) if ∃ι. h(ι) = x ∧ h(ι) ≥ 12
0 otherwise

(v)

=
1
γ

∫
x∈R

.1 if x ∈ [2, 12] and x ≥ 12
0 otherwise

(vi)

=
1
γ

∫
x∈R

.1 if x = 12
0 otherwise

(vii)

= 0

We use T ’s item 5 to get (i), after which item 4(a) is
applied. On doingR in (ii), along the lines of Example
6.2, we obtain (iii). T ’s item 4(c) then yields (iv),
and stops. In the steps following (iv), we show how P
expands in terms of p, and how the space of situations
resolves into a mathematical expression, yielding 0.12

3. Bel(h = 0, do(fwd(4), S0))

=
1
γ

∫
x∈R
T [P(x,R[(h = 0)[do(fwd(4), now)]], S0)] (i)

=
1
γ

∫
x∈R
T [P(x,max(0, h − 4) = 0, S0)] (ii)

=
1
γ

∫
x∈R

.1 if x ∈ [2, 12] and x ≤ 4
0 otherwise

(iii)

= .2

By means of (2), after moving forward by 4 units the
belief about h is characterized by a mixed distribution
because h = 0 is accorded a .2 weight (i.e. from all
points where h ∈ [2, 4] initially), while h ∈ (0, 8] are
associated with a density of .1. Here, T ’s item 5 and
4(a) are triggered, and the removal of T using 4(c) is
not shown. The end result is that the density function
is integrated for 2 ≤ x ≤ 4 leading to .2. (γ is 1.)

12Given certain assumptions, it is possible to further reduce
logical expressions involving fluents to a mathematical expression
using only those variables that appear in the integral. We expand
on this in a longer version of the paper.



4. Bel(h = 4, do(fwd(−4), do(fwd(4), S0)))

=
1
γ

∫
x∈R
T [P(x,∃u. h = u ∧

4 = max(0, u + 4), do(fwd(4), S0))] (i)

=
1
γ

∫
x∈R
T [P(x,∃u. u = max(0, h − 4) ∧

4 = max(0, u + 4), S0)] (ii)

=
1
γ

∫
x∈R

.1 if x ∈ [2, 12], x ≤ 4
0 otherwise

(iii)

= .2

We noted above that the point h = 4 gets a .2 weight
on executing fwd(4), after which it obtains a h value of
0. The weight is retained on reversing by 4 units, with
the point now obtaining a h value of 4. The derivation
invokes two applications of T ’s item 4(a). We skip the
intermediate R steps. (γ evaluates to 1.)

5. Bel(h = 4, do(fwd(4), do(fwd(−4), S0)))

=
1
γ

∫
x∈R
T [P(x,∃u. u = max(0, h + 4) ∧

4 = max(0, u − 4), S0)] (i)

= 0

Had the robot moved away first, no “collapsing” of
points takes place, h remains a continuous distribution
and no point is accorded a non-zero weight. T steps
are skipped but they are symmetric to the one above,
e.g. compare (i) here and (ii) above. But then the den-
sity function is non-zero only for the individual h = 4.

6. Bel(4 ≤ h ≤ 6, do(sonar(5), S0))

=
1
γ

∫
x∈R
N(5 − x; 0, 4) × T [P(x, ψ, S0)] (i)

where ψ is h = x ∧ 4 ≤ h ≤ 6

=
1
γ

∫
x∈R

.1 · N(5 − x; 0, 4) if x ∈ [2, 12], x ∈ [4, 6]
0 otherwise

≈ .41

We obtain (i) afterT ’s item 5 and then 4(b) for sensing
actions. That is, belief about h ∈ [4, 6] is sharpened
after observing 5. Basically, we are integrating a func-
tion that is 0 everywhere except when 4 ≤ x ≤ 6 where
it is .1 × N(5 − x; 0, 4), normalized over 2 ≤ x ≤ 12.

7. Bel(4 ≤ h ≤ 6, do(sonar(5), do(sonar(5), S0))

=
1
γ

∫
x∈R
N(5 − x; 0, 4) × T [P(x, ψ, s))] (i)

where s = do(sonar(5), S0), ψ is h = x ∧ 4 ≤ h ≤ 6

=
1
γ

∫
x∈R

[N(5 − x; 0, 4)]2 × T [P(x, ψ, S0)] (ii)

≈ .52

As expected, two successive observations of 5 sharp-
ens belief further. Derivations (i) and (ii) follow from

2.5 5 7.5 10 12.5

0.1

0.2

0.3

S0

do(sonar(5), S0)

do(sonar(5), do(sonar(5), S0))

Figure 2: Belief density change for h at S0 (in blue), after sensing
5 (in green) and after sensing 5 twice (in red).

T ’s item 5, and two successive applications of item
4(b). Thus, we are to integrate .1×[N(5−x; 0, 4)]2 be-
tween [4, 6] and normalize over [2, 12]. These chang-
ing densities are plotted in Figure 2.

5 TWO SPECIAL CASES

Regression is a general property for computing properties
about posteriors in terms of priors after actions. It is there-
fore possible to explore limited cases, which might be ap-
propriate for some applications. We present two such cases.

Conjugate distributions

Certain types of systems, such as Gaussian processes, ad-
mit an effective propagation model. The same advantages
can be observed in our framework. We illustrate this us-
ing an example. Assume a fluent f , and suppose D0 is the
union of (I), (P1) and the following specification:

p(ι, S0) = N( f (ι); µ1, σ1
2)

which stipulates that the true value of f is believed to be
normally distributed. Assume the following sensor inD:

l(sense(z), s) = N(z − f (s); µ2, σ2
2)

Then it is easy to show that estimating posteriors yields a
product of Gaussians (that is also a Gaussian process (Box
and Tiao, 1973)), which is inferred by T :13

T [Bel(b ≤ f ≤ c, do(sense(z), S0))] =

1
γ

∫ c
b N(x; µ1, σ1

2) · N(z − x; µ2, σ2
2)dx

Distribution transformations

Certain actions affect priors in a characteristically simple
manner, and regression would account for these changes
as an appropriate function of the initial belief state. We
illustrate two instances using Example 9. First, consider an

13This corresponds to a simple case of Kalman filtering (Dean
and Wellman, 1991), where the sensed value is static. In the com-
plete framework with noisy effectors, we would obtain a model
where distinct actions may condition priors in distinct ways.



action grasp(z) that grabs object z. Because the action of
grasping does not affect h by way of (2), we get:

T [Bel(h ≤ b, do(grasp(obj5), S0))] = Bel(h ≤ b, S0)

So no changes to h’s density are required. Second, consider
ground actions with the property that two distinct values of
f do not become the same after that action, e.g., for initial
states this means:

∀ι, ι′. f (ι) , f (ι′) ⊃ f (do(a, ι)) , f (do(a, ι′)) (EQ)

Think of fwd(−4) that agrees with this, but fwd(4) need not.
We can show that such actions “shift” priors:

T [Bel(h ≤ b, do(fwd(−n), S0))] = Bel(h ≤ b − n, S0)

Intuitively, the probability of h being in the interval [b, c],
irrespective of the distribution family, is the same as the
probability of h ∈ [b + n, c + n] after fwd(−n). Thus, regres-
sion derives the initial interval given the current one.14

6 RELATED WORK

Perhaps the most popular models to treat sensor fusion in-
clude variants of Kalman filtering (Fox et al., 2003; Thrun
et al., 2005), where priors and likelihoods are assumed to
be Gaussian. We already pointed out some instances of
Kalman filtering in our example. Where we differ is that
backward chaining is possible even when: (a) no assump-
tions about the nature of distributions, nor about how dis-
tributions and dependencies change need to be made, (b)
the framework is embedded in a rich theory of actions, and
(c) arbitrary forms of incomplete knowledge are allowed,
including strict uncertainty.15 Domain-specific dependen-
cies, then, may be exploited as appropriate.

There have been, of course, other attempts to extend the
situation calculus to reason about probabilistic belief, such
as (Poole, 1998). See BHL for a discussion on the differ-
ences to that work. On a related note, there are numerous
approaches that combine logic and probability. In partic-
ular, we mention dynamic logic proposals (Van Benthem
et al., 2009), planning languages (Younes and Littman,
2004; Sanner, 2011; Kushmerick et al., 1995), and first-
order frameworks based on the situation calculus and close
relatives (Thielscher, 2001). For discussions on these and
non-dynamic proposals such as Markov logics (Richardson
and Domingos, 2006), see (Belle and Levesque, 2013a,b).

14Although fwd shifts the distribution linearly, in general, pro-
vided something like (EQ) is true, actions may also result in non-
linear changes to state variables, which would nonlinearly change
the mean of the distribution. Nevertheless, similar features would
be observed. See the longer version of the paper for more details.

15Moreover, the BHL model is compatible with a wide vari-
ety of formalisms such as (Fagin and Halpern, 1994; Halpern and
Tuttle, 1993; Halpern, 1990). See BHL for discussions.

There is one other thread of related work, that of sym-
bolic dynamic programming (Boutilier et al., 2000, 2001)
which also has recent continuous extensions (Sanner et al.,
2011). While regression is used in this literature as well,
the concerns are very different: they focus on policy gen-
eration, while ours is strictly about belief change. Conse-
quently, the regression in that literature is adapted from the
regression for the non-epistemic situation calculus (Reiter,
2001). Ours, on the other hand, continues in the tradition
of the epistemic situation calculus (Scherl and Levesque,
2003) by extending those intuitions to probabilistic belief
and noisy sensing. In this regard, our account allows the
modeler to explicitly reason about beliefs in the language,
which would prove useful in formalizing the achievability
of plans (Levesque, 1996), among other things. The idea of
regression is not new and lies at the heart of many planning
systems (Fritz and McIlraith, 2007). For STRIPS actions,
regression has at most linear complexity in the length of
the action sequence (Reiter, 2001). For other studies, see
(Van Ditmarsch et al., 2007; Rintanen, 2008).

7 CONCLUSIONS

Planning and robotic applications have to deal with numer-
ous sources of complexity regarding action and change.
Consequently, irrespective of the decompositions and fac-
torizations that are justifiable initially, belief state evolu-
tion is known to invalidate these efforts even over simple
temporal phenomena. In this paper, we obtain a general
methodology to relate beliefs after acting and sensing to
initial beliefs. We investigated the methodology in an exist-
ing model by BHL, and a continuous extension to it, mak-
ing the technique applicable to discrete domains as well as
general ones. We demonstrated regression using an exam-
ple where actions affect priors in nonstandard ways, such as
transforming a continuous distribution to a mixed one. In
general, regression does not insist on (but allows) restric-
tions to actions, that is, no assumptions need to be made
about how actions affect variables and their dependencies
over time. Moreover, at the specification level, we do not
assume (but allow) structurally constrained initial states.

There are many avenues for future work. Extending au-
tomated regression solutions (Reiter, 2001) to subjective
probabilities is ongoing work. Moreover, given the promis-
ing advances made in the area of relational probabilistic in-
ference, we believe regression suggests natural ways to ap-
ply those developments with actions. This line of research
would allow us to address effective belief propagation for
numerous planning problems that require both logical and
probabilistic representations. On another front, note that
after applying the reductions, one may also use approxi-
mate inference methods. Perhaps then, regression can serve
as a computational framework to study approximate belief
propagation, on the one hand, and using approximate infer-
ence at the initial state after goal regression, on the other.
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