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Abstract

We consider partially observable Markov
decision processes (POMDPs) with limit-
average payoff, where a reward value in the
interval [0, 1] is associated to every transi-
tion, and the payoff of an infinite path is
the long-run average of the rewards. We con-
sider two types of path constraints: (i) quan-
titative constraint defines the set of paths
where the payoff is at least a given thresh-
old λ1 ∈ (0, 1]; and (ii) qualitative constraint
which is a special case of quantitative con-
straint with λ1 = 1. We consider the compu-
tation of the almost-sure winning set, where
the controller needs to ensure that the path
constraint is satisfied with probability 1. Our
main results for qualitative path constraint
are as follows: (i) the problem of deciding
the existence of a finite-memory controller is
EXPTIME-complete; and (ii) the problem of
deciding the existence of an infinite-memory
controller is undecidable. For quantitative
path constraint we show that the problem
of deciding the existence of a finite-memory
controller is undecidable.

1 Introduction

Partially observable Markov decision processes
(POMDPs). Markov decision processes (MDPs) are
standard models for probabilistic systems that ex-
hibit both probabilistic and nondeterministic behav-
ior [10]. MDPs have been used to model and solve
control problems for stochastic systems [7, 23]: nonde-
terminism represents the freedom of the controller to
choose a control action, while the probabilistic com-
ponent of the behavior describes the system response
to control actions. In perfect-observation (or perfect-
information) MDPs (PIMDPs) the controller can ob-

serve the current state of the system to choose the next
control actions, whereas in partially observable MDPs
(POMDPs) the state space is partitioned according
to observations that the controller can observe, i.e.,
given the current state, the controller can only view
the observation of the state (the partition the state
belongs to), but not the precise state [20]. POMDPs
provide the appropriate model to study a wide va-
riety of applications such as in computational biol-
ogy [5], speech processing [19], image processing [4],
robot planning [13, 11], reinforcement learning [12],
to name a few. POMDPs also subsume many other
powerful computational models such as probabilistic
finite automata (PFA) [24, 21] (since probabilistic fi-
nite automata (aka blind POMDPs) are a special case
of POMDPs with a single observation).

Limit-average payoff. A payoff function maps every
infinite path (infinite sequence of state action pairs)
of a POMDP to a real value. The most well-studied
payoff in the setting of POMDPs is the limit-average
payoff where every state action pair is assigned a real-
valued reward in the interval [0, 1] and the payoff of
an infinite path is the long-run average of the rewards
on the path [7, 23]. POMDPs with limit-average pay-
off provide the theoretical framework to study many
important problems of practical relevance, including
probabilistic planning and several stochastic optimiza-
tion problems [11, 2, 16, 17, 27].

Expectation vs probabilistic semantics. Tradi-
tionally, MDPs with limit-average payoff have been
studied with the expectation semantics, where the goal
of the controller is to maximize the expected limit-
average payoff. The expected payoff value can be 1

2
when with probability 1

2 the payoff is 1, and with
remaining probability the payoff is 0. In many ap-
plications of system analysis (such as robot planning
and control) the relevant question is the probability
measure of the paths that satisfy certain criteria, e.g.,
whether the probability measure of the paths such that
the limit-average payoff is 1 (or the payoff is at least



1
2 ) is at least a given threshold (e.g., see [1, 13]). We
classify the path constraints for limit-average payoff
as follows: (1) quantitative constraint that defines the
set of paths with limit-average payoff at least λ1, for
a threshold λ1 ∈ (0, 1]; and (2) qualitative constraint
is the special case of quantitative constraint that de-
fines the set of paths with limit-average payoff 1 (i.e.,
the special case with λ1 = 1). We refer to the prob-
lem where the controller must satisfy a path constraint
with a probability threshold λ2 ∈ (0, 1] as the proba-
bilistic semantics. An important special case of prob-
abilistic semantics is the almost-sure semantics, where
the probability threshold is 1. The almost-sure seman-
tics is of great importance because there are many ap-
plications where the requirement is to know whether
the correct behavior arises with probability 1. For in-
stance, when analyzing a randomized embedded sched-
uler, the relevant question is whether every thread pro-
gresses with probability 1. Even in settings where it
suffices to satisfy certain specifications with probabil-
ity λ2 < 1, the correct choice of λ2 is a challenging
problem, due to the simplifications introduced during
modeling. For example, in the analysis of randomized
distributed algorithms it is quite common to require
correctness with probability 1 (e.g., [22, 26]). Besides
its importance in practical applications, almost-sure
convergence, is a fundamental concept in probability
theory, and provide stronger convergence guarantee
than convergence in expectation [6].

Previous results. There are several deep undecid-
ability results established for the special case of proba-
bilistic finite automata (PFA) (that immediately imply
undecidability for POMDPs). The basic undecidabil-
ity results are for PFA over finite words: The empti-
ness problem for PFA under probabilistic semantics is
undecidable over finite words [24, 21, 3]; and it was
shown in [16] that even the following approximation
version is undecidable: for any fixed 0 < ε < 1

2 , given
a probabilistic automaton and the guarantee that ei-
ther (a) there is a word accepted with probability at
least 1−ε; or (ii) all words are accepted with probabil-
ity at most ε; decide whether it is case (i) or case (ii).
The almost-sure problem for probabilistic automata
over finite words reduces to the non-emptiness ques-
tion of universal automata over finite words and is
PSPACE-complete. However, another related decision
question whether for every ε > 0 there is a word that
is accepted with probability at least 1 − ε (called the
value 1 problem) is undecidable for probabilistic au-
tomata over finite words [8]. Also observe that all
undecidability results for probabilistic automata over
finite words carry over to POMDPs where the con-
troller is restricted to finite-memory strategies. The
importance of finite-memory strategies in applications
has been established in [9, 14, 18].

Table 1: Complexity: New results are in bold fonts
Almost-sure semantics Prob. semantics

Fin. mem. Inf. mem. Fin./Inf. mem.

PFA PSPACE-c PSPACE-c Undec.
POMDP Qual. Constr. EXPTIME-c Undec. Undec.
POMDP Quan. Constr. Undec. Undec. Undec.

Our contributions. Since under the general proba-
bilistic semantics, the decision problems are undecid-
able even for PFA, we consider POMDPs with limit-
average payoff under the almost-sure semantics. We
present a complete picture of decidability as well as
optimal complexity.

(Almost-sure winning for qualitative constraint). We
first consider limit-average payoff with qualitative
constraint under almost-sure semantics. We show
that belief-based strategies are not sufficient (where
a belief-based strategy is based on the subset con-
struction that remembers the possible set of current
states): we show that there exist POMDPs with limit-
average payoff with qualitative constraint where finite-
memory almost-sure winning strategy exists but there
exists no belief-based almost-sure winning strategy.
Our counter-example shows that standard techniques
based on subset construction (to construct an expo-
nential size PIMDP) are not adequate to solve the
problem. We then show one of our main result that
given a POMDP with |S| states and |A| actions, if
there is a finite-memory almost-sure winning strategy
to satisfy the limit-average payoff with qualitative con-
straint, then there is an almost-sure winning strategy
that uses at most 23·|S|+|A| memory. Our exponen-
tial memory upper bound is asymptotically optimal,
as even for PFA over finite words, exponential memory
is required for almost-sure winning (follows from the
fact that the shortest witness word for non-emptiness
of universal finite automata is at least exponential).
We then show that the problem of deciding the exis-
tence of a finite-memory almost-sure winning strategy
for limit-average payoff with qualitative constraint is
EXPTIME-complete for POMDPs. In contrast to our
result for finite-memory strategies, we show that de-
ciding the existence of an infinite-memory almost-sure
winning strategy for limit-average payoff with qualita-
tive constraint is undecidable for POMDPs.

(Almost-sure winning with quantitative constraint). In
contrast to our decidability result under finite-memory
strategies for qualitative constraint, we show that the
almost-sure winning problem for limit-average payoff
with quantitative constraint is undecidable even for
finite-memory strategies for POMDPs.

In summary we establish the precise decidability fron-



tier for POMDPs with limit-average payoff under
probabilistic semantics (see Table 1). For practical
purposes, the most prominent question is the prob-
lem of finite-memory strategies, and for finite-memory
strategies we establish decidability with EXPTIME-
complete complexity for the important special case of
qualitative constraint under almost-sure semantics.

2 Definitions

We present the definitions of POMDPs, strategies, ob-
jectives, and other basic notions required for our re-
sults. We follow standard notations from [23, 15].

Notations. Given a finite set X, we denote by P(X)
the set of subsets of X, i.e., P(X) is the power set of
X. A probability distribution f on X is a function
f : X → [0, 1] such that

∑
x∈X f(x) = 1, and we

denote by D(X) the set of all probability distributions
on X. For f ∈ D(X) we denote by Supp(f) = {x ∈
X | f(x) > 0} the support of f .

Definition 1 (POMDP). A Partially Observable
Markov Decision Process (POMDP) is a tuple G =
(S,A, δ,O, γ, s0) where: (i) S is a finite set of states;
(ii) A is a finite alphabet of actions; (iii) δ : S×A →
D(S) is a probabilistic transition function that given
a state s and an action a ∈ A gives the probability
distribution over the successor states, i.e., δ(s, a)(s′)
denotes the transition probability from s to s′ given
action a; (iv) O is a finite set of observations; (v) γ :
S → O is an observation function that maps every
state to an observation; and (vi) s0 is the initial state.

Given s, s′ ∈ S and a ∈ A, we also write δ(s′|s, a) for
δ(s, a)(s′). A state s is absorbing if for all actions a
we have δ(s, a)(s) = 1 (i.e., s is never left from s).
For an observation o, we denote by γ−1(o) = {s ∈
S | γ(s) = o} the set of states with observation o.
For a set U ⊆ S of states and O ⊆ O of observations
we denote γ(U) = {o ∈ O | ∃s ∈ U. γ(s) = o} and
γ−1(O) =

⋃
o∈O γ

−1(o).

Plays and belief-updates. A play (or a
path) in a POMDP is an infinite sequence
(s0, a0, s1, a1, s2, a2, . . .) of states and actions such
that for all i ≥ 0 we have δ(si, ai)(si+1) > 0.
We write Ω for the set of all plays. For a fi-
nite prefix w = (s0, a0, s1, a1, . . . , sn) we denote by
γ(w) = (γ(s0), a0, γ(s1), a1, . . . , γ(sn)) the observa-
tion and action sequence associated with w. For a
finite sequence ρ = (o0, a0, o1, a1, . . . , on) of obser-
vations and actions, the belief B(ρ) after the pre-
fix ρ is the set of states in which a finite prefix of
a play can be after the sequence ρ of observations
and actions, i.e., B(ρ) = {sn = Last(w) | w =
(s0, a0, s1, a1, . . . , sn), w is a prefix of a play, and for

all 0 ≤ i ≤ n. γ(si) = oi}. The belief-updates associ-
ated with finite-prefixes are as follows: for prefixes w
and w′ = w·a·s the belief update is defined inductively

B(γ(w′)) =
(⋃

s1∈B(γ(w)) Supp(δ(s1, a))
)
∩ γ−1(γ(s)).

Strategies. A strategy (or a policy) is a recipe
to extend prefixes of plays and is a function σ :
(S · A)∗ · S → D(A) that given a finite history
(i.e., a finite prefix of a play) selects a probabil-
ity distribution over the actions. Since we consider
POMDPs, strategies are observation-based, i.e., for all
histories w = (s0, a0, s1, a1, . . . , an−1, sn) and w′ =
(s′0, a0, s

′
1, a1, . . . , an−1, s

′
n) such that for all 0 ≤ i ≤ n

we have γ(si) = γ(s′i) (i.e., γ(w) = γ(w′)), we must
have σ(w) = σ(w′). In other words, if the obser-
vation sequence is the same, then the strategy can-
not distinguish between the prefixes and must play
the same. We now present an equivalent definition of
observation-based strategies such that the memory of
the strategy is explicitly specified, and will be required
to present finite-memory strategies.

Definition 2 (Strategies with memory and
finite-memory strategies). A strategy with mem-
ory is a tuple σ = (σu, σn,M,m0) where:(i) (Memory
set). M is a denumerable set (finite or infinite) of
memory elements (or memory states). (ii) (Action
selection function). The function σn : M → D(A) is
the action selection function that given the current
memory state gives the probability distribution over
actions. (iii) (Memory update function). The func-
tion σu : M ×O ×A → D(M) is the memory update
function that given the current memory state, the
current observation and action, updates the memory
state probabilistically. (iv) (Initial memory). The
memory state m0 ∈ M is the initial memory state.
A strategy is a finite-memory strategy if the set M
of memory elements is finite. A strategy is pure (or
deterministic) if the memory update function and
the action selection function are deterministic, i.e.,
σu : M ×O×A →M and σn : M → A. A strategy is
memoryless (or stationary) if it is independent of the
history but depends only on the current observation,
and can be represented as a function σ : O → D(A).

Objectives. An objective in a POMDPG is a measur-
able set ϕ ⊆ Ω of plays. We first define limit-average
payoff (aka mean-payoff) function. Given a POMDP
we consider a reward function r : S × A → [0, 1]
that maps every state action pair to a real-valued re-
ward in the interval [0, 1]. The LimAvg payoff func-
tion maps every play to a real-valued reward that
is the long-run average of the rewards of the play.
Formally, given a play ρ = (s0, a0, s1, a1, s2, a2, . . .)
we have LimAvg(r, ρ) = lim infn→∞

1
n ·
∑n
i=0 r(si, ai).

When the reward function r is clear from the context,



we drop it for simplicity. For a reward function r, we
consider two types of limit-average payoff constraints:
(i) Qualitative constraint. The qualitative constraint
limit-average objective LimAvg=1 defines the set of
paths such that the limit-average payoff is 1; i.e.,
LimAvg=1 = {ρ | LimAvg(ρ) = 1}. (ii) Quantitative
constraints. Given a threshold λ1 ∈ (0, 1), the quan-
titative constraint limit-average objective LimAvg>λ1

defines the set of paths such that the limit-average
payoff is strictly greater than λ1; i.e., LimAvg>λ1

=
{ρ | LimAvg(ρ) > λ1}.

Probabilistic and almost-sure winning. Given a
POMDP, an objective ϕ, and a class C of strategies, we
say that: (i) a strategy σ ∈ C is almost-sure winning
if Pσ(ϕ) = 1; (ii) a strategy σ ∈ C is probabilistic
winning, for a threshold λ2 ∈ (0, 1), if Pσ(ϕ) ≥ λ2.

Theorem 1 (Results for PFA (probabilistic automata
over finite words) [21]). The following assertions hold
for the class C of all infinite-memory as well as finite-
memory strategies: (1) the probabilistic winning prob-
lem is undecidable for PFA; and (2) the almost-sure
winning problem is PSPACE-complete for PFA.

Since PFA are a special case of POMDPs, the undecid-
ability of the probabilistic winning problem for PFA
implies the undecidability of the probabilistic win-
ning problem for POMDPs with both qualitative and
quantitative constraint limit-average objectives. The
almost-sure winning problem is PSPACE-complete for
PFAs, and we study the complexity of the almost-sure
winning problem for POMDPs with both qualitative
and quantitative constraint limit-average objectives,
under infinite-memory and finite-memory strategies.

Basic properties of Markov Chains. Since our
proofs will use results of Markov chains, we start with
some basic results related to Markov chains.

Markov chains and recurrent classes. A Markov chain
G = (S, δ) consists of a finite set S of states and a prob-
abilistic transition function δ : S → D(S). Given the
Markov chain, we consider the directed graph (S,E)
where E = {(s, s′) | δ(s′ | s) > 0}. A recurrent class
C ⊆ S of the Markov chain is a bottom strongly con-
nected component (scc) in the graph (S,E) (a bottom
scc is an scc with no edges out of the scc). We denote
by Rec(G) the set of recurrent classes of the Markov
chain, i.e., Rec(G) = {C | C is a recurrent class}.
Given a state s and a set U of states, we say that
U is reachable from s if there is a path from s to some
state in U in the graph (S,E). Given a state s of the
Markov chain we denote by Rec(G)(s) ⊆ Rec(G) the
subset of the recurrent classes reachable from s in G.
A state is recurrent if it belongs to a recurrent class.
The following standard properties of reachability and
the recurrent classes will be used in our proofs:

• Property 1. (a) For a set T ⊆ S, if for all states
s ∈ S there is a path to T (i.e., for all states there
is a positive probability to reach T ), then from
all states the set T is reached with probability 1.
(b) For all states s, if the Markov chain starts at s,
then the set C =

⋃
C∈Rec(G)(s) C is reached with

probability 1, i.e., the set of recurrent classes is
reached with probability 1.

• Property 2. For a recurrent class C, for all states
s ∈ C, if the Markov chain starts at s, then for
all states t ∈ C the state t is visited infinitely
often with probability 1, and is visited with posi-
tive average frequency (i.e., positive limit-average
frequency) with probability 1.

Lemma 1 is a consequence of the above properties.

Lemma 1. Let G = (S, δ) be a Markov chain with a
reward function r : S → [0, 1], and s ∈ S a state of the
Markov chain. The state s is almost-sure winning for
the objective LimAvg=1 iff for all recurrent classes C ∈
Rec(G)(s) and for all states s1 ∈ C we have r(s1) = 1.

Markov chains under finite memory strategies. We
now define Markov chains obtained by fixing a finite-
memory strategy in a POMDP G. A finite-memory
strategy σ = (σu, σn,M,m0) induces a Markov chain
(S ×M, δσ), denoted G�σ, with the probabilistic tran-
sition function δσ : S×M → D(S×M): given s, s′ ∈ S
and m,m′ ∈ M , the transition δσ

(
(s′,m′) | (s,m)

)
is

the probability to go from state (s,m) to state (s′,m′)
in one step under the strategy σ. The probability
of transition can be decomposed as follows: (i) First
an action a ∈ A is sampled according to the dis-
tribution σn(m); (ii) then the next state s′ is sam-
pled according to the distribution δ(s, a); and (iii) fi-
nally the new memory m′ is sampled according to the
distribution σu(m, γ(s′), a) (i.e., the new memory is
sampled according σu given the old memory, new ob-
servation and the action). More formally, we have:
δσ
(
(s′,m′) | (s,m)

)
=
∑
a∈A σn(m)(a) · δ(s, a)(s′) ·

σu(m, γ(s′), a)(m′).

3 Finite-memory strategies with
Qualitative Constraint

In this section we show the following three results
for finite-memory strategies: (i) in POMDPs with
LimAvg=1 objectives belief-based strategies are not
sufficient for almost-sure winning; (ii) an exponential
upper bound on the memory required by an almost-
sure winning strategy for LimAvg=1 objectives; and
(iii) the decision problem is EXPTIME-complete.

Belief is not sufficient. We now show with an ex-
ample that there exist POMDPs with LimAvg=1 ob-
jectives, where finite-memory randomized almost-sure



winning strategies exist, but there exists no belief-
based randomized almost-sure winning strategy (a
belief-based strategy only uses memory that relies on
the subset construction where the subset denotes the
possible current states called belief). We will present
the counter-example even for POMDPs with restricted
reward function r assigning only Boolean rewards 0
and 1 to the states (does not depend on the action).

Example 1. We consider a POMDP with state space
{s0, X,X ′, Y, Y ′, Z, Z ′} and action set {a, b}, and let
U = {X,X ′, Y, Y ′, Z, Z ′}. From the initial state s0 all
the other states are reached with uniform probability in
one-step, i.e., for all s′ ∈ U = {X,X ′, Y, Y ′, Z, Z ′} we
have δ(s0, a)(s′) = δ(s0, b)(s

′) = 1
6 . The transitions

from the other states are shown in Figure 1. All states
in U have the same observation. The reward function
r assigns the reward 1 to states X,X ′, Z, Z ′ and 0 to
states Y and Y ′. The belief initially after one-step is
the set U = {X,X ′, Y, Y ′, Z, Z ′} since from s0 all of
them are reached with positive probability. The belief
is always the set U since every state has an input edge
for every action, i.e., if the current belief is U (the
set of states that the POMDP is currently in with pos-
itive probability is U), then irrespective of whether a
or b is chosen all states of U are reached with positive
probability and thus the belief is again U . There are
three belief-based strategies: (i) σ1 that plays always a;
(ii) σ2 that plays always b; or (iii) σ3 that plays both
a and b with positive probability. The Markov chains
G�σ1

and G�σ2
are also shown in Figure 1, and the

graph of G �σ3
is the same as the POMDP G (with

edge labels removed). For all the three strategies, the
Markov chains contain the whole set U as the reachable
recurrent class, and it follows by Lemma 1 that none
of the belief-based strategies σ1, σ2 or σ3 are almost-
sure winning for the LimAvg=1 objective. The strategy
σ4 that plays action a and b alternately gives rise to a
Markov chain where the recurrent classes do not inter-
sect with Y or Y ′, and is a finite-memory almost-sure
winning strategy for the LimAvg=1 objective.

3.1 Strategy complexity

For the rest of the subsection we fix a finite-memory
almost-sure winning strategy σ = (σu, σn,M,m0) on
the POMDP G = (S,A, δ,O, γ, s0) with a reward
function r for the objective LimAvg=1. Our goal is
to construct an almost-sure winning strategy for the
LimAvg=1 objective with memory size at most Mem∗ =
23·|S| · 2|A|. We start with a few definitions associated
with strategy σ. For m ∈M :

• The function RecFunσ(m) : S → {0, 1} is such
that RecFunσ(m)(s) is 1 iff the state (s,m) is re-
current in the Markov chain G�σ and 0 otherwise.
• The function AWFunσ(m) : S → {0, 1} is such

X X ′

Y Y ′

Z Z ′

a

b

b

a

a

b

a
b

a,b a,b

a,b a,b

1
2

1
2

POMDP G

X X ′

Y Y ′

Z Z ′

1
2

1
2

MC G�σ1

Rec: {X,X ′, Y, Y ′, Z, Z ′}

X X ′

Y Y ′

Z Z ′

1
2

1
2

Rec: {X,X ′, Y, Y ′, Z, Z ′}

MC G�σ2

Figure 1: Belief is not sufficient

that AWFunσ(m)(s) is 1 iff the state (s,m) is
almost-sure winning for the LimAvg=1 objective
in the Markov chain G�σ and 0 otherwise.

• We also consider Actσ(m) = Supp(σn(m)) that
for every memory element gives the support of the
probability distribution over actions played at m.

Remark 1. Let (s′,m′) be reachable from (s,m) in
G �σ. If the state (s,m) is almost-sure winning for
the LimAvg=1 objective, then the state (s′,m′) is also
almost-sure winning for the LimAvg=1 objective.

Collapsed graph of σ. Given the strategy σ we
define the notion of a collapsed graph CoGr(σ) =
(V,E). The states of the graph are elements from
the set V = {(Y,AWFunσ(m),RecFunσ(m),Actσ(m)) |
Y ⊆ S and m ∈ M} and the initial state is
({s0},AWFunσ(m0),RecFunσ(m0),Actσ(m0)). The
edges in E are labeled by actions in A. In-
tuitively, the action labeled edges of the graph
depict the updates of the belief and the func-
tions upon a particular action. Formally, there
is an edge (Y,AWFunσ(m),RecFunσ(m),Actσ(m))

a→
(Y ′,AWFunσ(m′),RecFunσ(m′),Actσ(m′)) in the col-
lapsed graph CoGr(σ) iff there exists an observa-
tion o ∈ O such that (i) the action a ∈ Actσ(m);
(ii) the set Y ′ is non-empty and it is the belief up-
date from Y , under action a and the observation o,
i.e., Y ′ =

⋃
s∈Y Supp(δ(s, a)) ∩ γ−1(o); and (iii) m′ ∈

Supp(σu(m, o, a)). Note that the number of states in
the graph is bounded by |V | ≤ 23·|S| · 2|A| = Mem∗.

We now define the collapsed strategy for σ. Intuitively
we collapse memory elements of σ whenever they agree
on all the RecFun, AWFun, and Act functions. The
collapsed strategy plays uniformly all the actions from
the set given by Act in the collapsed state.

Collapsed strategy. We now construct the collapsed
strategy σ′ = (σ′u, σ

′
n,M

′,m′0) of σ based on the col-
lapsed graph CoGr(σ) = (V,E). We will refer to this
construction by σ′ = CoSt(σ).

• The memory set M ′ are the vertices of the col-
lapsed graph CoGr(σ) = (V,E), i.e., M ′ = V =



{(Y,AWFunσ(m),RecFunσ(m),Actσ(m)) | Y ⊆
S and m ∈M}. Note that |M ′| ≤ Mem∗.

• The initial memory is m′0 =
({s0},AWFunσ(m0),RecFunσ(m0),Actσ(m0)).

• The next action function given a memory
(Y,W,R,A) ∈ M ′ is the uniform distribution
over the set of actions {a | ∃(Y ′,W ′, R′, A′) ∈
M ′ and (Y,W,R,A)

a→ (Y ′,W ′, R′, A′) ∈ E},
where E are the edges of the collapsed graph.

• The memory update function
σ′u((Y,W,R,A), o, a) given a memory ele-
ment (Y,W,R,A) ∈ M ′, a ∈ A, and o ∈ O
is the uniform distribution over the set
of states {(Y ′,W ′, R′, A′) | (Y,W,R,A)

a→
(Y ′,W ′, R′, A′) ∈ E and Y ′ ⊆ γ−1(o)}.

Random variable notation. For all n ≥ 0 we
write Xn, Yn,Wn, Rn, An, Ln for the random variables
that correspond to the projection of the nth state
of the Markov chain G�σ′ on the S component, the
belief P(S) component, the AWFunσ component, the
RecFunσ component, the Actσ component, and the nth

action, respectively.

Run of the Markov chain G �σ′ . A run of the
Markov chain G�σ′ is an infinite sequence

(X0, Y0,W0, R0, A0)
L0→ (X1, Y1,W1, R1, A1)

L1→ · · ·

such that each finite prefix of the run is
generated with positive probability on the
Markov chain, i.e., for all i ≥ 0, we have
(i) Li ∈ Supp(σ′n(Yi,Wi, Ri, Ai)); (ii) Xi+1 ∈
Supp(δ(Xi, Li)); and (iii) (Yi+1,Wi+1, Ri+1, Ai+1) ∈
Supp(σ′u((Yi,Wi, Ri, Ai), γ(Xi+1), Li)). In the follow-
ing lemma we establish important properties of the
Markov chain G�σ′ that are essential for our proof.

Lemma 2. Let (X0, Y0,W0, R0, A0)
L0→

(X1, Y1,W1, R1, A1)
L1→ · · · be a run of the Markov

chain G �σ′ , then the following assertions hold
for all i ≥ 0: 1. Xi+1 ∈ Supp(δ(Xi, Li)) ∩ Yi+1;

2. (Yi,Wi, Ri, Ai)
Li→ (Yi+1,Wi+1, Ri+1, Ai+1) is

an edge in the collapsed graph CoGr(σ); 3. if
Wi(Xi) = 1, then Wi+1(Xi+1) = 1; 4. if Ri(Xi) = 1,
then Ri+1(Xi+1) = 1; and 5. if Wi(Xi) = 1 and
Ri(Xi) = 1, then r(Xi, Li) = 1.

Proof. We present the proof of the fifth point, and the
other points are straight-forward. For the fifth point
consider that Wi(Xi) = 1 and Ri(Xi) = 1. Then there
exists a memory m ∈ M such that (i) AWFunσ(m) =
Wi, and (ii) RecFunσ(m) = Ri. Moreover, the state
(Xi,m) is a recurrent (since Ri(Xi) = 1) and almost-
sure winning state (since Wi(Xi) = 1) in the Markov
chain G �σ. As Li ∈ Actσ(m) it follows that Li ∈

Supp(σn(m)), i.e., the action Li is played with pos-
itive probability in state Xi given memory m, and
(Xi,m) is in an almost-sure winning recurrent class.
By Lemma 1 it follows that the reward r(Xi, Li) must
be 1. The desired result follows.

We now introduce the final notion of a collapsed-
recurrent state that is required to complete the proof.
A state (X,Y,W,R,A) of the Markov chain G�σ′ is
collapsed-recurrent, if for all memory elements m ∈M
that were merged to the memory element (Y,W,R,A),
the state (X,m) of the Markov chain G �σ is recur-
rent. It will turn out that every recurrent state of the
Markov chain G�σ is also collapsed-recurrent.

Definition 3. A state (X,Y,W,R,A) of the Markov
chain G�σ′ is called collapsed-recurrent iff R(X) = 1.

Note that due to point 4 of Lemma 2 all the states
reachable from a collapsed-recurrent state are also
collapsed-recurrent. In the following lemma we show
that the set of collapsed-recurrent states is reached
with probability 1; and the key fact we show is that
from every state in G�σ′ a collapsed-recurrent state is
reached with positive probability, and then use Prop-
erty 1 (a) of Markov chains to establish the lemma.

Lemma 3. With probability 1 a run of the Markov
chain G�σ′ reaches a collapsed-recurrent state.

Lemma 4. The collapsed strategy σ′ is a finite-
memory almost-sure winning strategy for the
LimAvg=1 objective on the POMDP G with the
reward function r.

Proof. The initial state of the Markov chain G �σ′

is ({s0},AWFunσ(m0),RecFunσ(m0),Actσ(m0)) and as
the strategy σ is an almost-sure winning strategy we
have that AWFunσ(m0)(s0) = 1. It follows from the
third point of Lemma 2 that every reachable state
(X,Y,W,R,A) in the Markov chain G �σ′ satisfies
that W (X) = 1. From the initial state a collapsed-
recurrent state is reached with probability 1. It follows
that all the recurrent states in the Markov chain G�σ′

are also collapsed-recurrent states. As in all reach-
able states (X,Y,W,R,A) we have W (X) = 1, by the
fifth point of Lemma 2 it follows that every action
L played in a collapsed-recurrent state (X,Y,W,R,A)
satisfies that the reward r(X,L) = 1. As this true for
every reachable recurrent class, the fact that the col-
lapsed strategy is an almost-sure winning strategy for
LimAvg=1 objective follows from Lemma 1.

Theorem 2 (Strategy complexity). The follow-
ing assertions hold: (1) If there exists a finite-
memory almost-sure winning strategy in the POMDP
G = (S,A, δ,O, γ, s0) with reward function r for the
LimAvg=1 objective, then there exists a finite-memory



almost-sure winning strategy with memory size at
most 23·|S|+|A|. (2) Finite-memory almost-sure win-
ning strategies for LimAvg=1 objectives in POMDPs
in general require exponential memory and belief-based
strategies are not sufficient.

Proof. The first point follows from Lemma 4 and the
fact that the size of the memory set of the collapsed
strategy σ′ of any finite-memory strategy σ (which is
the size of the vertex set of the collapsed graph of σ)
is bounded by 23·|S|+|A|.

3.2 Computational complexity

A naive double-exponential time algorithm would be
to enumerate all finite-memory strategies with mem-
ory bounded by 23·|S|+|A| (by Theorem 2). Our
improved exponential-time algorithm consists of two
steps: (i) first it constructs a special type of a belief-
observation POMDP G from a POMDP G (and G
is exponential in G); and we show that there exists
a finite-memory almost-sure winning strategy for the
objective LimAvg=1 in G iff there exists a randomized
memoryless almost-sure winning strategy in G for the
objective LimAvg=1; and (ii) then we show how to de-
termine whether there exists a randomized memoryless
almost-sure winning strategy in G for the LimAvg=1

objective in polynomial time with respect to the size
of G. For a belief-observation POMDP the current be-
lief is always the set of states with current observation.

Definition 4. A POMDP G = (S,A, δ,O, γ, s0) is
a belief-observation POMDP iff for every finite prefix
w = (s0, a0, s1, a1, . . . , an−1, sn) the belief associated
with the observation sequence ρ = γ(w) is the set of
states with the last observation γ(sn) of the observa-
tion sequence ρ, i.e., B(ρ) = γ−1(γ(sn)).

Construction of the belief-observation
POMDP. Intuitively, the construction of G from G
will proceed as follows: if there exists an almost-sure
winning finite-memory strategy, then there exists an
almost-sure winning collapsed strategy with memory
bounded by 23·|S|+|A|. This allows us to consider the
memory elements M = 2S × {0, 1}|S| × {0, 1}|S| × 2A;
and intuitively construct the product of the memory
M with the POMDP G. The POMDP G is con-
structed such that it allows all possible ways the
collapsed strategy of a finite-memory almost-sure
winning strategy could play. The reward function r in
G is obtained from the reward function r in G. In the
POMDP G the belief is already included in the state
space itself of the POMDP, and the belief represents
exactly the set of states in which the POMDP can be
with positive probability. Therefore, the POMDP G is
a belief-observation POMDP. Since possible memory

states of collapsed strategies are part of state space,
we only need to consider memoryless strategies in G.

Lemma 5. The POMDP G is a belief-observation
POMDP, such that there exists a finite-memory
almost-sure winning strategy for the LimAvg=1 objec-
tive with the reward function r in the POMDP G iff
there exists a memoryless almost-sure winning strategy
for the LimAvg=1 objective with the reward function r
in the POMDP G.

Almost-sure winning observations. Given a
POMDP G = (S,A, δ,O, γ) and an objective ψ, let
AlmostM(ψ) denote the set of observations o ∈ O,
such that there exists a memoryless almost-sure win-
ning strategy to ensure ψ from every state s ∈ γ−1(o).

Almost-sure winning for LimAvg=1 objectives.
Our goal is to compute the set AlmostM(LimAvg=1)
given the belief-observation POMDP G (of our con-
struction of G with product with M). Let F ⊆ S
be the set of states of G where some actions can be
played consistently with the collapsed strategy of any
finite-memory almost-sure winning strategy. Let G̃
denote the POMDP G restricted to F . We define
a subset of states of the belief-observation POMDP
G̃ that intuitively correspond to winning collapsed-
recurrent states (wcs), i.e., S̃wcs = {(s, (Y,W,R,A)) |
W (s) = 1, R(s) = 1}. Then, we compute the set of

observations ÃW that can ensure to reach Swcs almost-
surely in the the POMDP G̃. We show that the set

of observations ÃW is equal to the set of observa-
tions AlmostM(LimAvg=1) in the POMDP G. Thus
the computation reduces to computation of almost-
sure states for reachability objectives. Finally we show
that almost-sure reachability set can be computed in
quadratic time for belief-observation POMDPs. The
quadratic time algorithm is obtained as follows: we
show almost-sure winning observations to ensure to
reach a target set T with probability 1 is the greatest
fixpoint of a set Y of observations such that playing
all actions uniformly that ensures Y is not left, ensures
to reach T almost-surely. This characterization gives
a nested iterative algorithm that is quadratic time.

Lemma 6. ÃW = AlmostM(LimAvg=1); and ÃW can
be computed in quadratic time in the size of G.

The EXPTIME-completeness. In this section we
first showed that given a POMDP G with a LimAvg=1

objective we can construct an exponential size belief-
observation POMDP G and the computation of the
almost-sure winning set for LimAvg=1 objectives is
reduced to the computation of the almost-sure win-
ning set for reachability objectives, which we solve in
quadratic time in G. This gives us an exponential-
time algorithm to decide (and construct if one ex-
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ists) the existence of finite-memory almost-sure win-
ning strategies in POMDPs with LimAvg=1 objectives.
The EXPTIME-hardness for almost-sure winning can
be obtained easily from the result of Reif for two-player
partial-observation games with safety objectives [25].

Theorem 3. The following assertions hold: (1) Given
a POMDP G with |S| states, |A| actions, and a
LimAvg=1 objective, the existence (and construction
if one exists) of a finite-memory almost-sure winning
strategy can be achieved in 2O(|S|+|A|) time. (2) The
decision problem of given a POMDP and a LimAvg=1

objective whether there exists a finite-memory almost-
sure winning strategy is EXPTIME-complete.

Remark 2. We considered observation function that
assigns an observation to every state. In general the
observation function γ : S → 2O \ ∅ may assign mul-
tiple observations to a single state. In that case we
consider the set of observations as O′ = 2O \ ∅ and
consider the mapping that assigns to every state an
observation from O′ and then apply our results.

4 Finite-memory strategies with
Quantitative Constraint

We will show that the problem of deciding whether
there exists a finite-memory (as well as an infinite-
memory) almost-sure winning strategy for the objec-
tive LimAvg> 1

2
is undecidable. We present a reduction

from the standard undecidable problem for probabilis-
tic finite automata (PFA). A PFA P = (S,A, δ, F, s0)
is a special case of a POMDP G = (S,A, δ,O, γ, s0)
with a single observation O = {o} such that for all
states s ∈ S we have γ(s) = o. Moreover, the PFA
proceeds for only finitely many steps, and has a set
F of desired final states. The strict emptiness prob-
lem asks for the existence of a strategy w (a finite
word over the alphabet A) such that the measure of
the runs ending in the desired final states F is strictly
greater than 1

2 ; and the strict emptiness problem for
PFA is undecidable [21].

Reduction. Given a PFA P = (S,A, δ, F, s0) we
construct a POMDP G = (S′,A′, δ′,O, γ, s′0) with a
Boolean reward function r such that there exists a word
w ∈ A∗ accepted with probability strictly greater than
1
2 in P iff there exists a finite-memory almost-sure win-

ning strategy in G for the objective LimAvg> 1
2
. Intu-

itively, the construction of the POMDP G is as fol-
lows: for every state s ∈ S of P we construct a pair
of states (s, 1) and (s, 0) in S′ with the property that
(s, 0) can only be reached with a new action $ (not in
A) played in state (s, 1). The transition function δ′

from the state (s, 0) mimics the transition function δ,
i.e., δ′((s, 0), a)((s′, 1)) = δ(s, a)(s′). The reward r of
(s, 1) (resp. (s, 0)) is 1 (resp. 0), ensuring the average
of the pair to be 1

2 . We add a new available action
# that when played in a final state reaches a state
good ∈ S′ with reward 1, and when played in a non-
final state reaches a state bad ∈ S′ with reward 0, and
for states good and bad given action # the next state
is the initial state. An illustration of the construction
on an example is depicted on Figure 2. Whenever an
action is played in a state where it is not available,
the POMDP reaches a loosing absorbing state, i.e., an
absorbing state with reward 0, and for brevity we omit
transitions to the loosing absorbing state. We present
key proof ideas to establish the correctness:

(Strict emptiness implies almost-sure LimAvg> 1
2
). Let

w ∈ A∗ be a word accepted in P with probability
µ > 1

2 and let the length of the word be |w| =
n. We construct a pure finite-memory almost-sure
winning strategy for the objective LimAvg> 1

2
in the

POMDP G as follows: We denote by w[i] the ith ac-
tion in the word w. The finite-memory strategy we
construct is specified as an ultimately periodic word
($w[1]$w[2] . . . $w[n]##)ω. Observe that by the con-
struction of the POMDP G, the sequence of rewards
(that appear on the transitions) is (10)n followed by
(i) 1 with probability µ (when F is reached), and (ii) 0
otherwise; and the whole sequence is repeated ad in-
finitum. Then using the Strong Law of Large Numbers
(SLLN) [6, Theorem 7.1, page 56] we show that with
probability 1 the objective LimAvg> 1

2
is satisfied.

(Almost-sure LimAvg> 1
2

implies strict emptiness).
Conversely, if there is a pure finite-memory strategy
σ to ensure the objective LimAvg> 1

2
in the POMDP,

then the strategy σ can be viewed as an ultimately
periodic infinite word of the form u · vω, where u, v
are finite words from A′. Note that v must contain
the subsequence ##, as otherwise the LimAvg pay-
off would be only 1

2 . Similarly, before every letter
a ∈ A in the words u, v, the strategy must necessarily
play the $ action, as otherwise the loosing absorbing
state is reached. Again using SLLN we show that from
the word v we can extract a word w that is accepted
in the PFA with probability strictly greater than 1

2 .
Finally, we show that if there is randomized (possi-
bly infinite-memory strategy) to ensure the objective
LimAvg> 1

2
in the POMDP, then there is a pure finite-

memory strategy as well (the technical proof uses Fa-
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tou’s lemma [6]).

Theorem 4. The problem whether there exists a finite
(or infinite-memory) almost-sure winning strategy in a
POMDP for the objective LimAvg> 1

2
is undecidable.

5 Infinite-memory strategies with
Qualitative Constraint

In this section we show that the problem of deciding
the existence of infinite-memory almost-sure winning
strategies in POMDPs with LimAvg=1 objectives is un-
decidable. We prove this fact by a reduction from the
value 1 problem in PFA, which is undecidable [8]. The
value 1 problem given a PFA P asks whether for every
ε > 0 there exists a finite word w such that the word
is accepted in P with probability at least 1 − ε (i.e.,
the limit of the acceptance probabilities is 1).

Reduction. Given a PFA P = (S,A, δ, F, s0), we
construct a POMDP G′ = (S′,A′, δ′,O′, γ′, s′0) with
a reward function r′, such that P satisfies the value 1
problem iff there exists an infinite-memory almost-sure
winning strategy in G′ for the objective LimAvg=1. In-
tuitively, the construction adds two additional states
good and bad. We add an edge from every state of the
PFA under a new action $, this edge leads to the state
good when played in a final state, and to the state bad
otherwise. In the states good and bad we add self-loops
under a new action #. The action $ in the states good
or bad leads back to the initial state. An example of
the construction is illustrated with Figure 3. All the
states belong to a single observation, and we will use
Boolean reward function on states. The reward for all
states except the newly added state good is 0, and the
reward for the state good is 1.

The key proof ideas for correctness are as follows:

(Value 1 implies almost-sure LimAvg=1). If P satisfies
the value 1 problem, then there exists a sequence of fi-
nite words (wi)i≥1, such that each wi is accepted in P
with probability at least 1− 1

2i+1 . We construct an infi-
nite word w1·$·#n1 ·w2·$·#n2 · · · , where each ni ∈ N is
a natural number that satisfies the following condition:
let ki = |wi+1 · $| +

∑i
j=1(|wj · $| + nj) be the length

of the word sequence before #ni+1 , then we must have
ni

ki
≥ 1− 1

i . The construction ensures that if the state

bad appears only finitely often with probability 1, then
LimAvg=1 is ensured with probability 1. The argument
to show that bad is visited infinitely often with prob-
ability 0 is as follows. We first upper bound the prob-
ability uk+1 to visit the state bad at least k+ 1 times,
given k visits to state bad. The probability uk+1 is at
most 1

2k+1 (1+ 1
2 + 1

4 + · · · ). The above bound for uk+1

is obtained as follows: following the visit to bad for k
times, the words wj , for j ≥ k are played; and hence
the probability to reach bad decreases by 1

2 every time
the next word is played; and after k visits the probabil-
ity is always smaller than 1

2k+1 . Hence the probability
to visit bad at least k+1 times, given k visits, is at most
the sum above, which is 1

2k
. Let Ek denote the event

that bad is visited at least k + 1 times given k visits
to bad. Then we have

∑
k≥0 P(Ek) ≤

∑
k≥1

1
2k

< ∞.
By Borel-Cantelli lemma [6, Theorem 6.1, page 47] we
have that the probability that bad is visited infinitely
often is 0.

(Almost-sure LimAvg=1 implies value 1). We prove
the converse. Consider that the PFA P does not sat-
isfy the value 1 problem, i.e., there exists a constant
c > 0 such that for all w ∈ A∗ we have that the proba-
bility that w is accepted in P is at most 1− c < 1. We
will show that there is no almost-sure winning strat-
egy. Assume towards contradiction that there exists
an infinite-memory almost-sure winning strategy σ in
the POMDP G′; and the infinite word correspond-
ing to σ must play infinitely many sequences of #’s
to ensure LimAvg=1. Let Xi be the random variable
for the rewards for the i-th sequence of #’s. Then
we have that Xi = 1 with probability at most 1 − c
and 0 otherwise. The expected LimAvg payoff is then
at most: E(lim inf

n→∞
1
n

∑n
i=0Xi). Since Xi’s are non-

negative measurable function, by Fatou’s lemma [6,
Theorem 3.5, page 16]

E(lim inf
n→∞

1

n

n∑
i=0

Xi) ≤ lim inf
n→∞

E(
1

n

n∑
i=0

Xi) ≤ 1− c.

It follows that Eσ(LimAvg) ≤ 1 − c. Note that if
the strategy σ was almost-sure winning for the ob-
jective LimAvg=1 (i.e., Pσ(LimAvg=1) = 1), then the
expectation of the LimAvg payoff would also be 1 (i.e.,
Eσ(LimAvg) = 1). Therefore we have reached a con-
tradiction to the fact that the strategy σ is almost-sure
winning for the objective LimAvg=1.

Theorem 5. The problem whether there exists an
infinite-memory almost-sure winning strategy in a
POMDP with the objective LimAvg=1 is undecidable.
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