
Probabilistic Conditional Preference Networks

Damien Bigot
IRIT-CNRS

Toulouse University
31400 Toulouse, France

damien.bigot@irit.fr

Hélène Fargier
IRIT-CNRS

Toulouse University
31400 Toulouse, France

helene.fargier@irit.fr

Jérôme Mengin
IRIT-CNRS

Toulouse University
31400 Toulouse, France
jerome.mengin@irit.fr

Bruno Zanuttini
GREYC

Caen University
14000 Caen, France

bruno.zanuttini@unicaen.fr

Abstract

This paper proposes a “probabilistic” exten-
sion of conditional preference networks as a
way to compactly represent a probability dis-
tributions over preference orderings. It stud-
ies the probabilistic counterparts of the main
reasoning tasks, namely dominance testing
and optimisation from the algorithmical and
complexity viewpoints. Efficient algorithms
for tree-structured probabilistic CP-nets are
given. As a by-product we obtain a linear-
time algorithm for dominance testing in stan-
dard, tree-structured CP-nets.

1 Introduction

Modelling preferences has been an active research
topic in Artificial Intelligence for more than fifteen
years. In recent years, several formalisms have been
proposed that are rich enough to describe complex
preferences of a user in a compact way, by e.g. Rao
and Georgeff [1991], Gonzales et al. [2008], Boutilier
et al. [2001, 2004]. Ordinal preferences, where alter-
natives, or outcomes, are ranked without the use of
numerical functions, are usually easier to obtain, and
are the topic of this paper.

In many contexts, the preferences of the user are ill-
known, e.g. because they depend on the value of
non controllable state variable, or because the system
has no information about the user – her preferences
may then be extrapolated from information gathered
for previous customers. This is typically the case in
anonymous recommendation systems, where several
users with similar preferences can be grouped into a
single model – that can then be finely tuned to fit one
particular user. In this paper, we propose to use a
probability distribution over preference models to rep-
resent ill known preferences. Specifically, we propose
to extend conditional preference networks (CP-nets,

one of the most popular ordinal preference represen-
tation formalisms [Boutilier et al., 2004]) by attaching
probabilities to the local preference rules.

Probabilistic CP-nets are evoked for preference elicita-
tion in by de Amo et al. [2012]. However, the authors
do not give a precise semantics to their CP-nets, nor
do they study their computational properties. A more
general form of Probabilistic CP-net is also described
by Cornelio [2012], who prove that the problem of find-
ing the most probably optimal outcome is similar to
an optimisation problem in a Bayesian network.

In the present paper, we detail the Probabilistic CP
model, and especially its semantics, and provide effi-
cient algorithms to solve the corresponding dominance
and optimisation problems. After a brief presentation
of CP-nets (Section 2), we present Probabilistic CP-
nets, their semantics and explain how they can be used
in several practical settings (Section 3). In Section 4,
we give efficient algorithms and complexity results for
dominance testing. In Section 5, we turn to the opti-
misation task and prove that it can be performed in
linear time when some restriction is put on the struc-
ture of the PCP-net. Section 6 concludes the paper.

2 Background

We consider combinatorial objects defined over a set
of n variables V. Variables are denoted by uppercase
letters A,B,X, Y, X denotes the domain of a vari-
able X. More generally, for a set of variables U⊆V
, U denotes the Cartesian product of their domains.
Elements of V are called objects or outcomes, denoted
by o, o′, Elements of U for some U⊆V are denoted
by u, u′, Given two sets of variables U⊆V ⊆V and
v∈V , we write v[U] for the restriction of v to the vari-
ables in U .

In this paper we essentially consider variables with a
Boolean domain. We consistently write x and x̄ for
the two values in the domain of X.

Preference Relations We assume that individual
preferences can be represented by an order (reflex-
ive, antisymmetric and transitive) over the set of all
outcomes V. A convenient way to specify such or-
ders over outcomes in a multi-attribute domain is
by means of local preference rules: each rule en-
ables one to compare outcomes that have some spe-
cific values for some attributes. Conditional preference
networks [Boutilier et al., 2004] enable direct compar-
isons between outcomes that differ in the value of one
variable only (called swap pairs of outcomes). Such a
rule has the form (X,u :>), with X∈V, u∈U for some
U⊆V − {X}, and > a total order on X. According
to (X,u :>), for every pair of outcomes o, o′ such that
o[U]=o′[U]=u and o[V−(U∪{X})]=o′[V−(U∪{X})],
o is preferred to o′ if and only if o[X]>o[X ′]. Intu-
itively, the rule (X,u :>) can be read: “Whenever u is
the case, outcomes are ordered as their values for X
are ordered by >, everything else being equal”.

Example 1. Assuming a set of binary variables V=
{X1, . . . , X4}, the rule (x3, x̄2 :x3>x̄3) entails that o=
x1x̄2x3x4 is preferred to o′=x1x̄2x̄3x4. On the other
hand, it tells nothing about the preference between o
and o′′= x̄1x̄2x̄3x4 (everything else is not equal), nor
between x1x2x3x4 and x1x2x̄3x4 (it does not apply).

Considering the transitive closure of the relation over
swap pairs, the set of all outcomes can be (partially)
ordered by a set R of such rules using the notion of flip.
An R-worsening flip is an ordered swap pair (o, o′)
for which there is a rule r=(X,u :>)∈R satisfying:
o[U]=o′[U]=u, o[V \ (U ∪ {X})]=o′[V \ (U ∪ {X})],
and o[X]>o′[X]. A sequence of outcomes o1, . . . , ok is
an R-worsening sequence if for 1≤ i≤k−1, (oi, oi+1) is
an R-worsening flip. We write o�R o′ whenever there
is an R-worsening sequence from o to o′. By construc-
tion, the relation �R precisely captures the transitive
closure of the relation induced by R on swap pairs.
We say that the set of rules R is consistent if �R is
irreflexive, and inconsistent otherwise.

Conditional Preference Networks With a con-
ditional preference network (CP-net), one can specify
preferential dependencies between variables by means
of a directed graph G=(V, E): an edge (X,Y) indi-
cates that the preference over the domain of Y may
depend on the values of X. Given such a graph and a
vertex X∈V, we write pa(X) for the set of parents of
X in (V, E): pa(X)={Y ∈V |(Y,X)∈E}.
Definition 1 (CP-net). A (deterministic) CP-net N
over a set of variables V is defined by a directed graph
(V, E), and by a conditional preference table for each
vertex / variable X∈V, written CPT(X). The table
CPT(X) gives a local preference rule (X,u :>) for each
combination of values u∈pa(X) for the parents of X.

A B

C

CP-Table A

a>ā
CP-Table B

ac :b>b̄
ac̄ : b̄>b
āc : b̄>b
āc̄ : b̄>b

CP-Table C

a : c̄>c
ā :c>c̄

Figure 1: A deterministic CP-net

The graph G is called the structure of N .

When X is clear from the context, we write u :> in-
stead of (X,u :>) for a conditional rule. For instance,
given a CP-net and a binary variable B with a single
parent A, we write a :b>b̄ for the rule (B, a :b>b̄). We
also write >uN,X for the total order over X specified by
a CP-net N for some variable X and some assignment
u∈pa(X). Finally, if no ambiguity can arise, we use
the same notation for a CP-net and its set of local
preference rules. In particular, we write o�N o′ to in-
dicate that there is a worsening sequence from o to o′

using the rules of N . When this is the case, we also
say that N entails o�o′.

For complexity analysis, we write |N | for the size of
N , defined to be the number of symbols needed to
write all rules, where writing a rule (X,u :>) is con-
sidered to require |U |+ |X| symbols. We also use spe-
cific classes of CP-nets, defined by restrictions on their
structure G. For instance, the class of acyclic (resp.
tree-structured) CP-nets is the class of CP-nets whose
structure is an acyclic graph (resp. a forest).

A CP-net N is said to be inconsistent if the set of rules
of N is inconsistent, and consistent otherwise. It is
known [Boutilier et al., 2004] that all acyclic CP-nets
are consistent, but the converse is not true in general.

Example 2. Figure 1 shows a CP-net over three vari-
ables A,B,C. This CP-net is consistent (it is acyclic),
and it entails abc� āb̄c, as can be seen from the wors-
ening sequence abc�ab̄c� āb̄c, which uses the first rule
in CPT(B), then the rule on A.

Given a (consistent) CP-net N the two main reason-
ing problems are dominance and optimisation. Dom-
inance is the problem of deciding whether N entails
o�o′ for two given outcomes o, o′, and optimisation
consists in computing the “best” outcomes according
to N ; that is, the outcomes which are undominated
under �N . For acyclic CP-nets, optimisation is fea-
sible in linear time, and there is always a unique op-
timal outcome. Contrastingly, testing dominance is
PSPACE-complete for unrestricted CP-nets, NP-hard
for acyclic ones, and quadratic for tree-structured
ones [Goldsmith et al., 2005].

3 Probabilistic CP-Nets

When the preferences of the user are ill-known, typi-
cally because they depend on the value of non control-
lable state variables, or because the system has few in-
formation about the user, we would like to be able to
answer questions like “What is the probability that o is
preferred to o′ by some unknown agent?”. Probabilistic
CP-nets enable to compactly represent a probability
distribution over CP-nets and answer such queries. A
typical application is recommendation, where the pref-
erences of the current (anonymous) user are extrapo-
lated from profiles or from information gathered from
previous customers in order to estimate how likely it
is that a new customer makes a given choice.

Definition 2 (PCP-net). A probabilistic conditional
preference network N , or PCP-net, over a set of vari-
ables V, is defined by a directed graph G=(V, E) and,
for each vertex / variable X∈V, a probabilistic condi-
tional preference table, written PCPT(X). The PCP-
table on X gives, for each assignment u∈pa(X), a
probability distribution over the set of the total orders
on X. We write puN ,X for this distribution. We also
call G the structure of N .

In particular, when all variables are binary, a PCP-
table on X gives for each assignment u∈pa(X) a prob-
ability distribution on the set of two orders {x>x̄, x̄>
x}1 . For brevity, we write u :x>x̄ (p) for the distri-
bution which assigns probability p to u :x>x̄ and 1−p
to u : x̄>x, as in Figure 2.

Taken as a whole, a PCP-net N is not intended to
represent a preference relation. Rather, it represents
a probability distribution over a set of (deterministic)
CP-nets, namely, those which are compatible with N .

Definition 3 (compatibility, probability). A (deter-
ministic) CP-net N is said to be compatible with a
PCP-net N , or to be N -compatible, if it has the same
structure as N . In this case we write N∝N . If N is
N -compatible, we define the probability of N accord-
ing to N by pN (N)=

∏
X∈V,u∈pa(X) p

u
N ,X(>uN,X).

It easily comes that pN is a probability distribution
over the set of deterministic N -compatible CP-nets.

Example 3. Figure 2 shows a PCP-net N over vari-
ables X,Y, Z, T, U, V . The first rule on Y , for in-
stance, says that there is a .2 probability that a de-

1The situation might become less simple when the size
of the domains increases: the PCP-table on X gives for
each assignment u∈pa(X) a probability distribution on the

possible orders on X. Allthrough there are |X|! potential
orders, only a few may receive a significant probability and
shall explicity appear in the PCP table; the remaining mass
of probabilty is then assumed to be shared by the other,
less significant, preference orders.

X

Y

Z T

U

V

x>x̄ (.1)
x y>ȳ (.2)
x̄ y>ȳ (.3)
y z>z̄ (.5)
ȳ z>z̄ (.5)
y t>t̄ (.2)
ȳ t> t̄ (.7)
t u>ū (.1)
t̄ u>ū (.8)
u v>v̄ (.7)
ū v>v̄ (.6)

Figure 2: A probabilistic CP-net

terministic CP-net drawn at random contains the rule
x :y>ȳ; otherwise (i.e. with probability 1−0.2) it con-
tains the opposite rule x : ȳ>y. Independently, there is
a .3 probability that it contains x̄ :y>ȳ. In particular,
there is a .2× .3= .06 probability that it contains both
and hence, that y is unconditionally preferred to ȳ.

The deterministic, N -compatible CP-net with the
negated value of each variable always preferred has
probability p=(1−.1)×(1−.2)×· · ·×(1−.7)×(1−.6).

Observe that when N contains cycles, pN may be
nonzero for some inconsistent CP-nets, which seems
undesirable. Moreover , while deciding whether a
given (cyclic) CP-net is consistent is a PSPACE-hard
problem [Goldsmith et al., 2005], the task is tractable
in the acyclic case. Therefore, the remainder of the
paper considers acyclic structures only.

Motivation Our motivation for studying PCP-nets
stems from several different applicative settings. In the
first one, the preference of the current (anonymous)
user are unknown but the system has at its disposal
the preferences of each of m individuals (e.g., past cus-
tomers), and for each one the preferences are given by
a (deterministic) CP-net Ni over some common struc-
ture G. Then the probabilistic CP-net N over the
graph G defined by puN ,X(>)=#{i |(X,u :>)∈Ni}/m
(proportion of Ni’s which contains this rule, indepen-
dently from other rules) provides a compact summary
of the set of all individual preferences.

Such aggregation obviously induces a certain approxi-
mation of the distribution of preferences in the popu-
lation. Namely, the probability of a given CP-net N as
computed from the PCP-netN (Definition 3) is in gen-
eral different from the proportion of individuals which
indeed have the preferences encoded by N . Precisely,
the construction amounts to approximate the distri-
bution of preference relations as an independent one,
considering each rule as a random variable. This may

look like a crude approximation; still, as shown below,
it is sound and complete for some restricted queries.
Moreover, we discuss in Section 6 how PCP-nets can
be extended to richer representations of distributions.

A close setting in which PCP-nets may prove useful
is the one where a system interacts with a lot of in-
dividuals, but each one gives only a few preferences.
For instance, in a recommender system, assume that
each customer implicitly gives a preference of the form
u :x>x̄, by choosing one of two objects in a swap pair.
This is the case when, say, a customer chooses the
colour for a car in a context of interactive configura-
tion [Gelle and Weigel, 1996]: she implicitly expresses
a preference of the form u :x>x̄, where U is the set
of variables that have already been assigned and x is
the chosen colour. Individual (deterministic) rules are
thus obtained from different customers and, in the ab-
sence of other information, it clearly makes sense to
aggregate these rules independently from each other.

A third applicative context is one in which only one
person or agent expresses her preferences, but some
noise must be taken into account, due to the elic-
itation process, or possibly from the person’s pref-
erences themselves (e.g., “for dinner, with pasta
bolognese I most often prefer having parmiggiano”).
Assuming independent noise on each rule, PCP-
nets are well suited for representing such preferences
(through a rule like: dinner∧bolognese :parmiggiano>
¬parmiggiano(.9) for the above example).

In all these settings, a PCP-net comes with a structure,
which constrains the dependencies among variables.
In case several CP-nets are aggregated into a PCP-
net, it is natural to build the latter with the union
of all individual graphs as its own structure. Indeed,
an individual CP-net with structure (V,E) can always
be seen as one over (V,E′), for any superset E′ of E.
In the remainder of this paper we will mainly focus
on tree-structured (P)CP-nets. While this is a clear
restriction on expressivity, as we will see even such
networks raise nontrivial computational problems.

Reasoning Tasks Since a PCP-net represents a
probability distribution on a set of deterministic CP-
nets, the most natural queries are the following.

Definition 4 (probability of dominance). Given a
PCP-net N and two outcomes o, o′, the probability of
o�o′, written pN (o�o′), is defined to be the probabil-
ity mass of N -compatible CP-nets which entail o�o′:

pN (o�o′)=
∑

N∝N ,o�No′

pN (N)

Clearly enough, the probability of o�o′ given N is
precisely the probability, when drawing a CP-net at

random according to pN , of obtaining one which en-
tails o�o′. In the remainder of the paper, we will
essentially study how to compute such probability.

The second query is the probabilistic counterpart of
optimisation in deterministic CP-nets.

Definition 5 (probability of being optimal). Given an
acyclic PCP-net N and an outcome o, the probability
for o to be optimal, written pN (o), is defined to be the
probability mass of N -compatible CP-nets which have
o as their optimal outcome 2.

Interestingly, despite the important approximation in-
duced when summarising a population of CP-nets
into a single PCP-net, some reasoning tasks can be
performed exactly with the approximation (PCP-net)
only. So let N be an acyclic PCP-net built from the
rulewise aggregation of individual CP-nets.

Proposition 1. Let N be an acyclic PCP-net and
{o, o′} a swap pair of outcomes, differing only on the
value of X. The probability pN (o�o′) is precisely the
proportion of individual CP-nets which entail o�o′.

Proof. This follows from the fact that for acyclic
G, a deterministic CP-net N entails o�o′ if
and only if it contains the rule o[pa(X)] :o[X]>
ō[X] [Koriche and Zanuttini, 2009, Lemma 1]. �

Another interesting property is the preserva-
tion of local Condorcet winners [Xia et al., 2008,
Li et al., 2011], also called ”hypercubewise Condorcet
winners” by Conitzer et al. [2011]: they are the
outcomes o which are preferred by at least one half of
the individual CP-nets to all o′ that differ from o in
the value of one variable only. Proposition 1 proves
that the hypercubewise Condorcet winners are the
outcomes that dominate each of their neighbors in the
aggregated PCP-net with a probability of at least 0.5.

Moreover, let us insist that PCP-nets may serve other
purposes than preference aggregation, as, for instance,
modelling ill-known preferences of a single user, and
that in such settings no approximation occurs.

4 Complexity of Dominance Testing

We now study the complexity of the dominance prob-
lem, namely, of computing the probability of o�o′
given a PCP-net N . We restrict our attention to tree-
structured CP-nets, that is, to the case when G is
acyclic and assigns at most one parent to each vari-
able. This arguably cannot capture all interesting de-
pendency structures among variables, but as we will
see this is already a nontrivial setting.

2Under our assumption of acyclicity, each CP-net is
guaranteed to have a unique optimal outcome, hence the
soundness of the definition.

We first give a generic construction, and use it for de-
riving a fixed-parameter tractability result, with the
number of variables over which o, o′ differ as the pa-
rameter. Then as a by-product, we derive an interest-
ing result for deterministic CP-nets, namely, an O(n)
algorithm for dominance testing. Finally, we show that
with slightly more general structures, computing the
probability of dominance is #P-hard.

4.1 Construction

The cornerstone of our results is a characterisation of
all deterministic CP-nets for which there exists a wors-
ening sequence from o to o′, given a tree structure G.
The characterisation is given as a propositional for-
mula for each leaf X, written worseno,o

′
(X), over vari-

ables of the form y :x>x̄, ȳ :x>x̄, etc., with Y the
parent of X in G. An assignment of, say, y :x>x̄ to
>, means that the corresponding CP-net contains the
rule; a complete assignment to all variables thus de-
fines a deterministic CP-net with structure G.

Precisely, fix a forest G=(V,E) and two outcomes
o, o′. For each variable X with no parent in G, we in-
troduce the propositional variable x>x̄, and we write
x̄>x for its negation (because > is total, x>x̄ is true
iff x̄>x is false) . Similarly, for each variable X with
pa(X)={Y }, and yε∈{y, ȳ}, we introduce the propo-
sitional variables y :x>x̄ and ȳ :x>x̄ and we write
y : x̄>x and ȳ : x̄>x for their respective negations.

Boutilier et al. [2004, Appendix A] show that a wors-
ening sequence may include up to Θ(n) changes of
the value of some variable, even with binary tree-
structured CP-nets. We exploit it by reasoning on the
number of changes of each variable.

Precisely, the formula changeo,o
′

k (X) means that there
is a worsening sequence in which X alternates value at
least k times, starting from its value in o and ending
with its value in o′. For instance, changex...,x̄...3 (X)
means that there is a worsening sequence in which X
successively takes values x, x̄, x, x̄ (at least 4 values

and 3 alternations). Formula changeo,o
′

k (X) is defined
inductively in Table 1, where Y denotes the parent
of X. We give the formulas for the case where o[X]=
x, o[Y]=y, the other cases can be obtained by symetry.
Then worseno,o

′
(X) is defined as follows:

• worseno,o
′
(X)=changeo,o

′

0 (X) if o[X]=o′[X];

• worseno,o
′
(X)=changeo,o

′

1 (X) otherwise.

Example 4. Consider again the PCP-net depicted in
Figure 2, and let o=xyztuv, o′= x̄yz̄tūv. The corre-
sponding formulas are given in Table 2.

In the following, we write o[≥X] for o restricted to the
variables which are ascendants of X in G (X included).

Proposition 2. There is a worsening sequence from
o[≥X] to o′[≥X] in which X changes value at least k

times if and only if N is a model of changeo,o
′

k (X).

Proof. The proof goes by induction on the definition
of the formula. For lack of space, we omit the proof
for the base cases.

For the inductive step, we give a proof only for
Rule 1 (Case o[X]=o′[X]=x, o[Y]=o′[Y]=y). The
other rules are proved in exactly the same manner.
So assume first that N satisfies the formula in Rule 1.
Then by IH there is a worsening sequence

ω1y, ω2ȳ, . . . , ωkȳ, ωk+1y

in which all ωi’s are assignments to the proper ascen-
dants of Y and ω1y (resp. ωk+1y) is o[≥Y] (resp.
o′[≥Y]). If moreover N satisfies the first disjunct
(y :x>x̄ ∧ ȳ : x̄>x), since the value of X has no in-
fluence on the preference over the values of Y we can
build the sequence

ω1yx, ω1yx̄, ω2ȳx̄, ω2ȳx, . . . , ωkȳx̄, ωkȳx, ωk+1yx

which is a worsening sequence from o[≥X] to o′[≥X]
where X changes value k times, as desired. Similarly,
if N satisfies the second disjunct, we can build the fol-
lowing sequence, where X also changes value k times.

ω1yx, ω2ȳx, ω2ȳx̄, . . . , ωkȳx, ωkȳx̄, ωk+1yx̄, ωk+1yx

Conversely, we show that if there is a sequence as in
the claim, then N satisfies the formula in Rule 1. Let

ω1x, ω2x̄, . . . , ωkx̄, ωk+1x

be a sequence from o[≥X] to o′[≥X] in which x
changes value at least k≥2 times. There must be two
opposite rules on X, for otherwise X cannot change
value back and forth. Hence the disjunction in the def-

inition of changeo,o
′

k (X) is satisfied. Moreover, these
rules must fire alternatively at least k times overall,
hence Y must take at least k different values in the se-
quence ω1, ω2, . . . , ωk+1, that is, change value at least
k−1 times. But since it starts and ends with the same
value y and k−1 is odd, in fact it must change at least

k times. Hence by IH, N must satisfy changeo,o
′

k (Y).
�

Proposition 3. There is a worsening sequence from
o to o′ if and only if N satisfies the formula∧
X worseno,o

′
(X), where X ranges over all leaves in

the tree structure of N .

Proof. Proposition 2 shows the claim if G is reduced
to a chain. For the more general setting, consider two
branches with a common part above X (included), and

Base cases (Pa(X)=∅ or k≤1)

Pa(X) o,o′ k changeo,o
′

k (X)

∅ o[X]=o′[X] 0 >
∅ o[X]=o′[X] >0 ⊥
∅ o[X]=x, o′[X]= x̄ 0 changeo,o

′

1 (X)
∅ o[X]=x, o′[X]= x̄ 1 x>x̄
∅ o[X]=x, o′[X]= x̄ >1 ⊥
{Y } o[X]=o′[X] 0 changeo,o

′

0 (Y)

{Y } o[X] 6=o′[X] 0 changeo,o
′

1 (X)

{Y } o[X]=o′[X] 1 changeo,o
′

2 (X)

{Y } o[X]=x, o′[X]= x̄, o[Y]=o′[Y]=y 1 (y :x>x̄∧changeo,o
′

0 (Y)) ∨ (ȳ :x>x̄∧changeo,o
′

2 (Y))

{Y } o[X]=x, o′[X]= x̄, o[Y]=y, o′[Y]= ȳ 1 (y :x>x̄∨ȳ :x>x̄) ∧ changeo,o
′

1 (Y)

Inductive step (Pa(X) 6=∅ and k>1)

Rule k o[X],o′[X],o[Y],o′[Y] changeo,o
′

k (X)

0 odd x, x, indifferent, indiff. changeo,o
′

k+1(X)

1 even x, x, y, y ((y :x>x̄∧ȳ : x̄>x)∨(y : x̄>x∧ȳ :x>x̄)) ∧ changeo,o
′

k (Y)

2 even x, x, y, ȳ (y :x>x̄∧ȳ : x̄>x∧changeo,o
′

k−1(Y)) ∨ (y : x̄>x∧ȳ :x>x̄∧changeo,o
′

k+1(Y)

3 even x, x̄, indifferent, indiff. changeo,o
′

k+1(X)

4 odd x, x̄, y, y (y :x>x̄∧ȳ : x̄>x∧changeo,o
′

k−1(Y)) ∨ (y : x̄>x∧ȳ :x>x̄∧changeo,o
′

k+1(Y)

5 odd x, x̄, y, ȳ ((y :x>x̄∧ȳ : x̄>x)∨(y : x̄>x∧ȳ :x>x̄)) ∧ changeo,o
′

k (Y)

Table 1: Inductive definition of the formula changeo,o
′

k (X)

worseno,o
′
(V) = worseno,o

′
(U)

worseno,o
′
(U) = (t :u>ū ∧ changeo,o

′

0 (T)) ∨ (t̄ :u>ū ∧ changeo,o
′

2 (T))

changeo,o
′

0 (T) = worseno,o
′
(Y)

changeo,o
′

2 (T) = ((y : t>t̄ ∧ ȳ : t̄>t) ∨ (y : t̄>t ∧ ȳ : t>t̄)) ∧ changeo,o
′

2 (Y)

worseno,o
′
(Z) = (y :z>z̄ ∧ changeo,o

′

0 (Y)) ∨ (ȳ :z>z̄ ∧ changeo,o
′

2 (Y))

worseno,o
′
(Y) = changeo,o

′

0 (Y)

changeo,o
′

0 (Y) = worseno,o
′
(X)

changeo,o
′

2 (Y) = (x :y>ȳ ∧ x̄ : ȳ>y ∧ changeo,o
′

1 (X)) ∨ (x : ȳ>y ∧ x̄ :y>ȳ ∧ changeo,o
′

3 (X)

changeo,o
′

1 (X) = x>x̄

changeo,o
′

3 (X) = ⊥

Table 2: Formulas for the example of Figure 2 with o=xyztuv, o′= x̄yz̄tūv

write X ,Y,Z for the set of variables above X (in-
cluded), in the left subtree below X, and in the right
subtree below X, respectively.

Clearly, if there is a worsening sequence from o to o′,
then N must satisfy the formula for both branches (by
Proposition 2). For the converse, if N satisfies both

formulas, by Proposition 2 again there is a worsening
sequence from the outcome o[≥Y]=o[X]o[Y] to o′[≥
Y]=o′[X]o′[Y], and one from o[X]o[Z] to o′[X]o′[Z].
By construction of the formula worseno,o

′
(·), there is

one of these sequences in which the values of the vari-
ables above X change most, say, the one for Y. Then
since Y and Z are independent of each other, all flips

over Z can also be performed in this sequence and in-
terleaved with those over Y. In this manner we get a
worsening sequence from o to o′, as desired.

The proof for a generic forest is obtained by applying
this reasoning inductively on the set of branches. �

4.2 Efficient Dominance Testing

From Propositions 2–3 we first derive a fixed-parameter
tractable (FPT) algorithm for dominance testing in
tree-structured PCP-nets. Recall that a FPT algo-
rithm is one with running time O(f(k) .nc), where
n is the size of the input, c is a constant, f is a
computable function, and k is some measure of the
input size, called the parameter and assumed to be
small [Flum and Grohe, 2006]. The running time of
such an algorithm is essentially a polynomial modulo
a factor which may be exponential (or more) in the
value of the parameter.

As a parameter for the dominance problem in PCP-
nets, we take the number of variables which have a
different value in o and o′. This makes sense in prac-
tice since typically, in applications, one does not have
to compare objects which are completely different from
each other. For instance, in recommender systems a
recommendation is likely to take place once the cus-
tomer has fixed a number of features of the product
which she wants to buy (e.g., “I want a recent Blues
album, cheaper than such price, etc.”).

Definition 6. The parameterized dominance
problem for tree-structured PCP-nets, written
p-Tree-PDominance, is defined by:

Input: a tree-structured PCP-net N , o, o′

Parameter: k= |{X∈V |o[X] 6=o′[X]}|
Output: the probability of o�o′ according to N

Theorem 1. The problem p-Tree-Dominance is
fixed-parameter tractable. Precisely, it admits an al-
gorithm with running time in O(22k2n).

Proof. For each leaf variable X in the tree of N ,
the algorithm first unrolls the formula worseno,o

′
(X).

Each time if finds two different recursive calls (e.g., on
k−1 and k+1 in the second rule), it splits the formula
into two parts. By construction the algorithm ends up
with

ΦX ={ϕX1 , ϕX2 , . . . , ϕXnX
}.

The ϕXi are mutually inconsistent, since the recursive
calls in each rule are conditioned on mutually incon-
sistent formulas about the current node. Moreover, by
Proposition 2, a CP-net N∝N satisfies o[≥X]�o′[≥
X] if and only if it satisfies one of these formulas.

Now define Φ to be the set of formulas

Φ={ϕX1 ∧ ϕX2 ∧ · · · ∧ ϕXk |Xi a leaf, ϕXi ∈ΦXi}

that is, the “cartesian products” of the ΦX ’s (over all
leaves). By construction, the conjunctions in Φ are
mutually inconsistent, and a CP-net N∝N satisfies
o�o′ if and only if it satisfies one of them (Propo-
sition 3). It follows that the probability sought for
can be computed in time O(|Φ| . n): the weight of
each conjunction of Φ can be obtained by multiply-
ing the probabilities of the corresponding rules in N ,
in time O(n), and by mutual inconsistency the result
is obtained by summing up over the elements of Φ.
Observe that some elements of Φ may be inconsistent
formulas, but this can be detected efficiently since by
construction they are conjunctions of literals.

To complete the proof we only need to bound the size
of Φ. First consider ΦX for some variable X: by con-
struction, |ΦX | is 2`, where ` is the number of rules
used which result in two different recursive calls. This
is the case for the second and third rules of Table 1
only, that is, when exactly one of X,Y has a different
value in o and o′. It follows `≤2k, hence |ΦX |≤22k

for all X and finally, |Φ|≤(22k)k=22k2 , as claimed. �

4.3 The Deterministic Case

As an interesting by-product, we now derive a
linear-time algorithm for dominance testing in tree-
structured deterministic CP-nets. This improves on
the quadratic running time of the TreeDT algorithm
of Boutilier et al. [2004], and may seem odd since the
smallest worsening sequence may be of quadratic size.
This is actually not contradictory: our result says that
it is possible to decide whether this sequence exists,
without explicitly constructing it.

Theorem 2. The dominance problem for tree-
structured (deterministic) CP-nets on n variables can
be solved in linear time O(n).

Proof. The algorithm3 simply consists of decid-
ing whether N satisfies the formula

∧
X worseno,o

′
(X),

where X ranges over all leaves in the structure of N .
This can be done efficiently because for all four gen-
eral rules, N necessarily satisfies at most one of the
two disjuncts and hence, only one recursive call is in-
volved at each step. The only point to be checked
is that the algorithm can avoid considering the same
variable several times along different branches.

To do so, the algorithm unrolls the formulas
worseno,o

′
(X) in parallel. Each time two branches

meet at a node X, this must be through recursive calls
fired by the children of X. By construction, these calls

3This proof is a direct application of our PCP-algorithm
to the deterministic case; but the query may be addressed
by more dedicated and simpler (linear) algorithms. We
thank an anonymous reviewer for pointing this to us.

are all of the form changeo,o
′

ki
(X), and by construction

and Proposition 3, all of them must be satisfied.

Recall that changeo,o
′

ki
(X) reads “X changes value at

least ki times”. Then the algorithm simply needs to
replace all recursive calls by a unique one, namely,

changeo,o
′

maxi(ki)
(X). In the end each variable is visited

once, and the algorithm is indeed linear-time. �

Interestingly, a top-down algorithm is also possible:
starting from the root nodes in the structure of N , in-
ductively computes for each node X the greatest value

k such thatN satisfies the formula changeo,o
′

k (X). This
algorithm allows us to derive the following result about
incomplete deterministic CP-nets.

Say that a deterministic CP-net N is incomplete with a
given structure if it comes with a graph G but for some
variables X and assignments u to their parents, N con-
tains neither the rule u :x>x̄ nor the opposite rule u :
x̄>x. Incomplete CP-nets arise naturally in the pro-
cess of elicitation [Koriche and Zanuttini, 2009], and
more generally when a user is indifferent to some ob-
jects (for instance: “I have no preferred colour for mo-
torbikes, since I don’t like motorbikes at all”). Then a
completion of N is a (complete, deterministic) CP-net
with structure G and containing the rules of N .

Theorem 3. The problem of deciding whether there is
at least one completion of a given, incomplete CP-net
N with a given tree structure, which entails o>o′ for
given o, o′, can be solved in linear time O(n).

Proof. As evoked above, proceed top-down in the tree,
by computing for each node X the greatest k for which

there is a completion of N satisfying changeo,o
′

k (X). To
do so, complete all missing rules in a greedy manner.
For instance, if the current node Y and its child X
are in the setting of Inductive Step 2 of Table 1, and
N contains no rule over X, choose the rules in the
first disjunct to add in the completion of N . In this
manner, from the value k for Y we get k + 1 for X.

Obviously (because changeo,o
′

k (X) reads “at least k
times”), the greater the value k at each node, the more
chances there are that the current completion indeed
entails o�o′, hence the algorithm is correct. �

4.4 Hardness Result

We conclude this section by giving a hardness result,
which sheds light on the difficulty of testing dominance
in PCP-nets with a more general structure than a tree.

Theorem 4. The problem of computing pN (o�o′),
given a PCP-net N and two outcomes o and o′, is
#P-hard. This holds even if the structure is acyclic,
the longest path has length 3, each node has at most
one outgoing edge and at most 4 parents.

X

Y1 Yp

ZY1
ZYpp(zY1>z̄Y1)=1 p(zYp>z̄Yp)=1

zy1 :p(y1>ȳ1)=0.5
z̄y1 :p(y1>ȳ1)=0

zyp :p(yp>ȳp)=0.5
z̄yp :p(yp>ȳp)=0

y1 ...yp :p(x>x̄)=0.5
ȳ1 ...ȳp :p(x>x̄)=1
otherwise:p(x>x̄)=0

Figure 3: Reduction scheme

Proof. We give a reduction from #Monotone (2-4µ)
Bipartite CNF, which is #P-complete [Vadhan, 2002].

Let X and Y be two disjoint sets of variables. A mono-
tone (2-4µ)-bipartite CNF is a conjunction of clauses
of the form X ∨ Y , with X∈X and Y ∈Y, such that
no variable appears more than 4 times in the formula.
Given such a formula φ, we build a PCP-net N over
V=X ∪ Y ∪ Z, where Z contains one fresh variable,
written ZY , for each Y ∈Y. The variables of Z have no
parent, each Y ∈Y has a single parent ZY , and each
X∈X has for parents the Y ’s such that the clause
X∨Y appears in φ (there are at most 4 of them). This
structure and the probability of each rule are given in
Figure 3, where we show the portion of the PCP-net
that corresponds to clauses X ∨ Y1, . . . , X ∨ Yp.

Now consider the two outcomes o, o′ defined by o[X]=
x, o′[X]= x̄ for every X∈X , o[Y]=o′[Y]=y for every
Y ∈Y, and o[Z]=z, o′[Z]= z̄ for every Z∈Z. We show
that pN (o�o′) is exactly the proportion of interpreta-
tions of V in which φ is true.

Let I be an interpretation of X ∪ Y, and define the
deterministic CP-net NI∝N as follows:

(1) for every Z∈Z, NI contains z>z̄; and

(2) for every Y∈Y: (a) NI contains z̄Y : ȳ>y, and
(b) if I(Y)=> then NI contains zY :y>ȳ, otherwise
it contains the opposite rule

(3) for every X∈X : (a) NI contains ȳ1 . . . ȳp :x>x̄,
(b) if I(X)=> then NI contains y1 . . . yp :x>x̄, other-
wise it contains the opposite rule, and (c) for all other
assignments u to pa(X), NI contains u : x̄>x.

We show that NI entails o>o′ if and only if
I satisfies φ. Clearly, we can reason on sets
{X,Y1, . . . , Yp, ZY1

, . . . , ZYp
} independently. So as-

sume first that I satisfies (X ∨ Y1) ∧ · · · ∧ (X ∨ Yp).

If I satisfiesX, then I entails o�o′ using the worsening
flips zY1>z̄Y1 , . . . , zYp>z̄Yp and y1 . . . yp :x>x̄ (which
can be performed in any order). Otherwise, I must
satisfy Y1∧· · ·∧Yp, hence I entails o�o′ using the flips
zY1

:y1>ȳ1, . . . , zYp
:yp>ȳp, then the flip ȳ1 . . . ȳp :x>

x̄, then the flips zY1
>z̄Y1

, . . . , zYp
>z̄Yp

, and finally the

flips z̄Y1 : ȳ1>y1, . . . , z̄Yp : ȳp>yp.

The converse is shown similarly, and finally we have
that NI entails o>o′ if and only if I satisfies φ. Now
by construction, each NI built in this manner has a
probability 1/2n according to N . Hence the probabil-
ity with which N entails o�o′ is m/2n if and only if
φ has m models, which completes the reduction. �

5 Complexity of Optimisation

We now show that optimisation with tree-structured
PCP-nets is both computationally easy and simple.
The first result even holds for the much more general
class of acyclic PCP-nets.

Proposition 4. The probability for a given outcome
o to be optimal for a given acyclic PCP-net N can be
computed in linear time O(n).

Proof. In the spirit of the “forward sweeping” proce-
dure of Boutilier et al. [2004], it can be easily shown
that o is optimal for a deterministic CP-net N∝N if
and only if N contains (1) the rule o[X]>ō[X] for all
root nodes X, and (2) the rule o[pa(X)] :o[X]>ō[X]
for all other nodes X. It follows that the probability
sought for is the product of the probabilities of all these
rules, which can clearly be computed in time O(n). �

Proposition 5. The outcome with the maximal proba-
bility of being optimal for a given, tree-structured PCP-
net N can be computed in linear time O(n).

Proof. The algorithm is a simple dynamic pro-
gramming algorithm, operating bottom-up in the tree.
First, given a leaf node X with parent Y , the algorithm
determines the optimal assignment to X given Y =y,
by taking the highest probability between rules y :x>x̄
and y : x̄>x, and similarly for Y = ȳ.

Now in the general case, given a variable Y with parent
Z and children X1, . . . , Xk, the algorithm first consid-
ers the value z for Z, and given this value searches for
the most probable assignment to Y,X1, . . . , Xk and
their descendants. This can be done efficiently by
comparing (1) py × py1 × · · · × pyk, where py is the
probability of the rule z :y>ȳ and pyi (i=1, . . . , k) is
the previously computed probability of the best as-
signment to Xi and its descendants given Y =y, and
(2) pȳ × pȳ1× · · ·× pȳk. Then the algorithm computes
in a similar manner the probability of the most proba-
ble assignment given Z= z̄, and based on this decides
on the value y or ȳ for each of z, z̄. Clearly, when
all variables have been examined, the algorithm has
computed the desired outcome. �

6 Conclusion

We proposed a “probabilistic” extension of conditional
preference networks (CP-nets) for representing the
preferences of a group of individuals over a set of com-
binatorial objects, or for representing ill-known prefer-
ences. We studied the probabilistic counterparts of the
main reasoning tasks for CP-nets, namely dominance
testing and optimisation, from the algorithmical and
complexity viewpoints. We gave efficient algorithms
for tree-structured probabilistic CP-nets, and as a by-
product we obtained a linear-time algorithm for dom-
inance testing in standard, tree-structured CP-nets.

As studied here, the expressiveness of our formalism
is limited in two aspects. First, assuming a common,
tree-like structure is unrealistic in some applicative set-
tings. As future work, we plan to extend our results,
in particular using a notion inspired from treewidth.
The second limitation is due to the fact that the prob-
ability distribution on deterministic CP-nets which is
represented by a probabilistic CP-net, is by definition
an independent one (with rules as random variables).
So as to allow PCP-net to model more realistic distri-
butions, we plan to extend the representation by sepa-
rating the probability distribution from the structure.
An obvious choice is to use a Bayesian networks over
the rules induced by the structure as random variables.
Even with simple networks, this would allow, for in-
stance, to represent fact such as: 3/4 of those individ-
uals who prefer x to x̄ given y also prefer z to z̄ given
t, u. While one could fear a jump in complexity, it is
worth noticing that our main result for tree-structured
CP-nets goes through, in the sense that with such rep-
resentation, computing the probability of o�o′ would
amount to estimate the probability of 22k2 determinis-
tic CP-nets, that is, to call an oracle for inference only
a small number of times. This leaves hope that the
framework can be extended to richer representations
while preserving the low complexity of certain tasks.

Acknowledgements

We thank Jérôme Lang and anonymous referees for
their valuable comments on previous versions of this
paper. The work presented here benefited of the sup-
port of the Agence Nationale de la Recherche, under
grants ANR-11-BS02-008 and ANR-10-BLAN-0215.

References

[Boutilier et al., 2001] Craig Boutilier, Fahiem Bac-
chus, and Ronen I. Brafman. Ucp-networks: A di-
rected graphical representation of conditional utili-
ties. In UAI, pages 56–64, 2001.

[Boutilier et al., 2004] Craig Boutilier, Ronen I. Braf-
man, Carmel Domshlak, Holger H. Hoos, and David
Poole. Cp-nets: A tool for representing and rea-
soning with conditional ceteris paribus preference
statements. JAIR, 21:135–191, 2004.

[Conitzer et al., 2011] Vincent Conitzer, Jérôme
Lang, and Lirong Xia. Hypercubewise preference
aggregation in multi-issue domains. In IJCAI,
pages 158–163, 2011.

[Cornelio, 2012] Cristina Cornelio. Dynamic and
probabilistic cp-nets. Master’s thesis, University of
Padova, 2012.

[de Amo et al., 2012] Sandra de Amo, Marcos L. P.
Bueno, Guilherme Alves, and Nádia Félix F.
da Silva. Cprefminer: An algorithm for mining user
contextual preferences based on bayesian networks.
In ICTAI, pages 114–121, 2012.

[Flum and Grohe, 2006] Jörg Flum and Martin
Grohe. Parameterized Complexity Theory (Texts in
Theoretical Computer Science. An EATCS Series).
Springer-Verlag, 2006.

[Gelle and Weigel, 1996] Esther Gelle and Rainer
Weigel. Interactive configuration using constraint
satisfaction techniques. In PACT, pages 37–44,
1996.

[Goldsmith et al., 2005] Judy Goldsmith, Jérôme
Lang, Miroslaw Truszczyński, and Nic Wilson.
The computational complexity of dominance and
consistency in cp-nets. In IJCAI, pages 144–149,
2005.

[Gonzales et al., 2008] Christophe Gonzales, Patrice
Perny, and Sergio Queiroz. Preference aggregation
with graphical utility models. In AAAI, pages 1037–
1042, 2008.

[Koriche and Zanuttini, 2009] Frédéric Koriche and
Bruno Zanuttini. Learning conditional preference
networks with queries. In IJCAI, 2009.

[Li et al., 2011] Minyi Li, Quoc Bao Vo, and Ryszard
Kowalczyk. Majority-rule-based preference aggre-
gation on multi-attribute domains with cp-nets. In
The 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2, AA-
MAS, 2011.

[Rao and Georgeff, 1991] Anand S. Rao and
Michael P. Georgeff. Modeling rational agents
within a bdi-architecture. In KR, 1991.

[Vadhan, 2002] Salil P. Vadhan. The complexity of
counting in sparse, regular, and planar graphs.
SIAM J. Comput., 31(2):398–427, February 2002.

[Xia et al., 2008] Lirong Xia, Vincent Conitzer, and
Jérôme Lang. Voting on multiattribute domains
with cyclic preferential dependencies. In AAAI,
pages 202–207, 2008.

