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Abstract

A recent result has demonstrated that the
Bethe partition function always lower bounds
the true partition function of binary, log-
supermodular graphical models. We demon-
strate that these results can be extended
to other interesting classes of graphical
models that are not necessarily binary or
log-supermodular: the ferromagnetic Potts
model with a uniform external field and
its generalizations and special classes of
weighted graph homomorphism problems.

1 Introduction

A standard inference problem is to compute the par-
tition function, or normalizing constant, of a given
graphical model. As computing the partition function
of an arbitrary graphical model is NP-hard, the par-
tition function is often replaced by a more tractable
approximation. A popular approximation to the par-
tition function, due to its relationship to the belief
propagation algorithm and its practical performance,
is given by the Bethe partition function from statis-
tical physics. However, the relationship between the
Bethe partition function and the true partition func-
tion is difficult to characterize for an arbitrary graph-
ical model.

Using a combinatorial characterization of the Bethe
partition function from (Vontobel, 2013), we recently
demonstrated that there exist nice families of graphi-
cal models for which the Bethe partition function prov-
ably lower bounds the true partition function (Ruozzi,
2012). Specifically, for binary graphical models, when-
ever the potential functions of the graphical model are
all log-supermodular, the Bethe partition function al-
ways lower bounds the true partition function. As an
example, the partition function of the ferromagnetic

Ising model with an arbitrary external field can be ex-
pressed as the partition function of a log-supermodular
function. In a very technical sense, these results can
be extended beyond binary graphical models to other
models over finite distributive lattices (e.g., any finite
totally ordered set) as every finite distributive lattice
is isomorphic to a sublattice of the Boolean lattice over
{0, 1}n for some n (Alon and Spencer, 2000). However,
natural candidates for non-binary graphical models,
such as the ferromagnetic Potts model, for which one
might suspect that the Bethe partition function again
provides a lower bound are not log-supermodular in
this sense.

In this work, we show that the results of Ruozzi (2012)
can be extended to provide bounds on the Bethe par-
tition function of other, not necessarily binary or log-
supermodular, graphical models. Specifically, we show
that the partition functions of certain graphical mod-
els can be equivalently expressed as the partition func-
tions of log-supermodular graphical models over possi-
bly different factor graphs and state spaces. Under cer-
tain conditions, this log-supermodular transformation
can then be exploited to prove that, again, the Bethe
partition function always provides a lower bound on
the true partition function.

The models considered in this work include the fer-
romagnetic Potts model (with some restrictions on
the choice of external field), generalizations of the fer-
romagnetic Potts model to matroids, certain weight
enumerators of linear codes, and a subset of graph-
ical models for the weighted graph homomorphism
problem. For these models, we demonstrate that
the Bethe partition function always provides a lower
bound on the true partition function that is prov-
ably tighter than the lower bound corresponding to
the näıve mean-field partition function.

This paper is organized as follows. In Section 2, we
review the relevant background material: graphical
models, graph covers, and approximate partition func-
tions. In Section 4, we motivate the results in this work



by looking at the simple case of pairwise binary graph-
ical models. In Section 5, we show that the Bethe free
energy provides a lower bound on the partition func-
tion of the ferromagnetic Potts model with a uniform
external field, demonstrating by counter example that
the results do not hold for arbitrary external fields.
In addition, we show that similar results are true for
several common generalizations of the ferromagnetic
Potts model that include certain weight enumerators
of linear codes. In Section 6, we consider the prob-
lem of counting weighted graph homomorphisms and
demonstrate that the Bethe partition function pro-
vides a lower bound under certain restrictions on the
target graph. Finally, we conclude with a short dis-
cussion in Section 7.

2 Graphical Models

Let f : Xn → R≥0 be a non-negative function where
X is a finite set. A function f factors with respect
to a hypergraph G = (V,A), if there exist potential
functions φi : X → R≥0 for each i ∈ V and ψα :
X |α| → R≥0 for each α ∈ A such that

f(x1, . . . , xn) =
∏
i∈V

φi(xi)
∏
α∈A

ψα(xα).

The graph G together with the collection of potential
functions φ and ψ define a graphical model that we
will denote as (G;φ, ψ). For a given graphical model
(G;φ, ψ), we are interested in computing the partition
function

Z(G;φ, ψ) =
∑

x∈X |V |

[ ∏
i∈V

φi(xi)
∏
α∈A

ψα(xα)
]
.

In general, computing the partition function is an NP-
hard problem, but in practice, local message-passing
algorithms based on approximations from statistical
physics, such as loopy belief propagation, produce rea-
sonable estimates in many settings.

2.1 Graph Covers

Graph covers have played an important role in our
understanding of inference in graphical models (Von-
tobel, 2013; Vontobel and Koetter, 2005), and in par-
ticular, they are intimately related to the approxima-
tions of the partition function that we will consider in
this work. Roughly speaking, if a graph H covers a
graph G, then H looks locally the same as G.

Definition 2.1. A graph H covers a graph G =
(V,E) if there exists a graph homomorphism h : H →
G such that for all vertices i ∈ G and all j ∈ h−1(i), h
maps the neighborhood ∂j of j in H bijectively to the
neighborhood ∂i of i in G.
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(a) A graph, G.

1 2 3 4

1 2 3 4

(b) One possible cover of G.

Figure 1: An example of a graph cover. The nodes in
the cover are labeled for the node that they copy in
the base graph.

If h(j) = i, then we say that j ∈ H is a copy of i ∈ G.
Further, H is said to be anM -cover ofG if every vertex
of G has exactly M copies in H. For an example of a
graph cover, see Figure 1.

We will typically represent the hypergraph G = (V,A)
as a factor graph: a graph with a variable node for each
vertex i ∈ V , a factor node for each α ∈ A, and an
edge from i ∈ V to α ∈ A if and only if i ∈ α. In this
way, the above definition of graph covers can easily be
extended to hypergraphs.

For a connected hypergraph G = (V,A), each M -cover
consists of a variable node for each of the M |V | vari-
ables, a factor node for each of the M |A| factors, and
an edge joining each distinct copy of i ∈ V to a distinct
copy of α ∈ A whenever i ∈ α.

To any M -cover H = (V H ,AH) of G given by the
homomorphism h, we can associate a collection of po-
tentials: the potential at node i ∈ V H is equal to φh(i),
the potential at node h(i) ∈ G, and for each α ∈ AH ,
we associate the potential ψh(α). In this way, we can

construct a function fH : XM |V | → R≥0 such that
fH factorizes over H. We will say that the graphi-
cal model (H;φH , ψH) is an M -cover of the graphical
model (G;φ, ψ) whenever H is an M -cover of G and
φH and ψH are derived from φ and ψ as above.

Finally, it will be convenient to express fH as a func-
tion over M vectors in the set X |V |. We can partition
the vertex set V H into M disjoint sets V1, . . . , VM such
that each set contains exactly one copy of each vertex
in the graph G. Then, without loss of generality, any
x ∈ XM |V | can be expressed as x1, . . . , xm ∈ X |V |
where xm is an assignment to the variables in Vm
for all m ∈ {1, . . . ,M}. In this case, we will write
fH(x) = fH(x1, . . . , xM ).

2.2 The Bethe Approximation

The Bethe free energy is a standard approximation to
the so-called Gibbs free energy that is motivated by
ideas from statistical physics. At temperature T = 1,



the Bethe approximation, is defined as follows.

logZB(G, τ ;φ, ψ) =
∑
i∈V

∑
xi

τi(xi) log φi(xi)

+
∑
α∈A

∑
xα

τα(xα) logψα(xα)

−
∑
i∈V

∑
xi

τi(xi) log τi(xi)

−
∑
α∈A

∑
xα

τα(xα) log
τα(xα)∏
i∈α τi(xi)

for τ in the local marginal polytope,

T ,{τ ≥ 0 | ∀α ∈ A, i ∈ α,
∑
xα\i

τα(xα) = τi(xi)

and ∀i ∈ V,
∑
xi

τi(xi) = 1}.

The Bethe partition function is defined to be the max-
imum value achieved by this approximation over T .

ZB(G;φ, ψ) = max
τ∈T

ZB(G, τ ;φ, ψ)

The primary reason for the popularity of this ap-
proximation is that fixed points of the belief propa-
gation algorithm correspond to stationary points of
logZB(G, τ ;φ, ψ) over T (Yedidia et al., 2005). As
such, all fixed points of the belief propagation algo-
rithm provide a lower bound on the Bethe partition
function. Our goal is to better understand the rela-
tionship between the Bethe partition function and the
true partition function for different graphical models.

A recent theorem of Vontobel (2013) provides a com-
binatorial characterization of the Bethe partition func-
tion in terms of graph covers.

Theorem 2.2.

ZB(G;φ, ψ) = lim sup
M→∞

M

√√√√ ∑
H∈CM (G)

Z(H;φH , ψH)

|CM (G)|

where CM (G) is the set of all M -covers of G.

Proof. See Theorem 33 of (Vontobel, 2013).

This characterization suggests that bounds on the par-
tition functions of individual graph covers can be used
to bound the Bethe partition function. This was the
approach taken in (Ruozzi, 2012) and the approach
that we will take in this work.

2.3 The Näıve Mean-Field Approximation

Another typical approximation, sometimes referred
to as the näıve mean-field approximation, is to fur-
ther restrict the local marginal polytope, the set T
in the definition of the Bethe approximation, so that
τα(xα) =

∏
i∈α τi(xi) for all α ∈ A.

As it is simply a specialization of ZB, we must have
that ZMF(G;φ, ψ) ≤ ZB(G;φ, ψ). However, this does
not mean that the mean-field partition function is nec-
essarily a worse approximation to the true partition
function Z(G;φ, ψ), and unlike the Bethe partition
function, the mean-field partition function always pro-
vides a lower bound on the true partition function
(Jordan et al., 1999). More details about the mean-
field approximation, its relationship to the Bethe ap-
proximation, and some experimental comparisons can
be found in (Weiss, 2001).

3 Log-supermodularity and Lower
Bounds

For a given graphical model (G;φ, ψ), we are interested
in the relationship between the true partition function,
Z(G;φ, ψ), and the Bethe approximation ZB(G;φ, ψ).
In general, ZB(G;φ, ψ) can be either an upper or a
lower bound on the true partition function, but for
special families of graphical models, ZB(G;φ, ψ) is al-
ways a lower bound on Z(G;φ, ψ). In particular, this
is true whenever the graphical model consists of only
log-supermodular potentials.

Definition 3.1. A function f : {0, 1}n → R≥0 is
called supermodular if for all x, y ∈ {0, 1}n

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y) (1)

where (x∧y)i = min{xi, yi} and (x∨y)i = max{xi, yi}.
Definition 3.2. A function f : {0, 1}n → R≥0 is
called log-supermodular if for all x, y ∈ {0, 1}n

f(x)f(y) ≤ f(x ∧ y)f(x ∨ y). (2)

Definition 3.3. A graphical model (G;φ, ψ) is log-
supermodular if for all α ∈ A, ψα(xα) is log-
supermodular.

The definition of submodular and log-submodular
functions are obtained by reversing the inequality in
(1) and (2) respectively. Log-supermodular functions
have a number of special properties: the family is
closed under multiplication and marginalization. In
addition, they can be maximized in polynomial time.
However, in general, computing (or even approxi-
mating) the partition function of a log-supermodular
graphical model is computationally intractable (Gold-
berg and Jerrum, 2010).



For any collection of vectors x1, . . . , xM ∈ {0, 1}n let
x[1], . . . , x[M ] denote the collection of vectors such that

for all i ∈ {1, . . . , n} and all m ∈ {1, . . . ,M}, x[m]
i is

the mth largest element among x1i , . . . , x
M
i . Equiva-

lently, if x1, . . . , xM are the columns of some matrix
B, then x[1], . . . , x[M ] are the columns of the matrix
obtained from B by sorting the elements in each row
from greatest to least.

In Ruozzi (2012), the following correlation inequality
was proven for log-supermodular functions.

Theorem 3.4. Let f1, . . . , fM : {0, 1}n → R≥0 and g :
{0, 1}Mn → R≥0 be nonnegative real-valued functions
such that g is log-supermodular. If for all x1, . . . , xM ∈
{0, 1}n,

g(x1, . . . , xM ) ≤
M∏
m=1

fm(x[m]), (3)

then ∑
x1,...,xM∈{0,1}n

g(x1, . . . , xM ) ≤
M∏
m=1

[ ∑
x∈{0,1}n

fm(x)
]
.

Applying this theorem to log-supermodular factoriza-
tions, with a bit of rewriting, yields the following the-
orem.

Theorem 3.5. If (G;φ, ψ) is a log-supermodular
graphical model, then for any M -cover, (H;φH , ψH),
of (G;φ, ψ), Z(H;φH , ψH) ≤ Z(G;φ, ψ)M .

Corollary 3.6. If (G;φ, ψ) is a log-supermodular
graphical model, then

ZMF(G;φ, ψ) ≤ ZB(G;φ, ψ) ≤ Z(G;φ, ψ).

As the value of the Bethe approximation at any of
the fixed points of BP is always a lower bound on
ZB(G;φ, ψ), ZB(G, τ ;φ, ψ) ≤ Z(G;φ, ψ) for any fixed
point of the BP algorithm, with corresponding be-
liefs τ , as well. Note however, that the inequality be-
tween ZB(G, τ ;φ, ψ) and the mean-field approximation
is only guaranteed to hold for the optimal choice of τ
in the local marginal polytope.

4 Pairwise Binary Models

In practice, many graphical models are not naturally
formulated as log-supermodular models, but Theorem
3.5 is a statement only about log-supermodular func-
tions. We want to understand when we can use Theo-
rem 3.5 to obtain bounds on ZB even when the graph-
ical model is not log-supermodular. In this section,
we motivate the results in this work by first examin-
ing this question for the special case of pairwise binary

graphical models (i.e., X = {0, 1} and |α| = 2 for all
α ∈ A). As each factor of a pairwise model depends
exactly two variables, the hypergraph G = (V,A) can
be represented as a standard graph, and we will abuse
notation and write G = (V,E) in this case.

We can sometimes convert a graphical model that is
not log-supermodular into a log-supermodular one by
a change of variables (e.g., for a fixed I ⊆ V , a change
of variables that sends xi 7→ 1− xi for each i ∈ I and
xi 7→ xi for each i ∈ V \I). These functions are the log-
supermodular analog of the “switching supermodular”
and “permuted submodular” functions considered in
(Crama and Hammer, 2011) and (Schlesinger, 2007)
respectively.

To illustrate this idea, consider the special case of log-
submodular, bipartite graphical models. A graph G =
(V,E) is bipartite if the vertex set can be partitioned
into two sets A ⊆ V and B = V \A such that A and B
are independent sets (i.e., there are no edges between
any two vertices v1, v2 ∈ A and similarly for B). We
will denote bipartite graphs as G = (A,B,E).

Let G = (A,B,E) be a bipartite graph1 and suppose
that (G;φ, ψ) is a pairwise binary, log-submodular
graphical model. For each edge (a, b) ∈ E with
a ∈ A and b ∈ B and all xa, xb, define ψ′ab(xa, xb) ,
ψab(xa, 1 − xb). Similarly, for each b ∈ B and all
xb, define φ′(xb) , φ(1 − xb). Finally, for each
a ∈ A and all xa, define φ′(xa) , φ(xa). Ob-
serve that ψ′ab is a log-supermodular function when-
ever ψab is a log-submodular function. The new
graphical model, (G;φ′, ψ′) is a pairwise binary, log-
supermodular graphical model that is obtained from
the original model via a change of variables. Con-
sequently, both graphical models have the same par-
tition functions and the same Bethe partition func-
tions, and we can apply Theorem 3.5 to conclude
that Z(G;φ, ψ) = Z(G;φ′, ψ′) ≥ ZB(G;φ′, ψ′) =
ZB(G;φ, ψ).

5 The Potts and Random Cluster
Models

As a first example of a family of graphical models with
non-binary state spaces for which the Bethe partition
function provides a lower bound on the true partition
function, we consider the Potts model (with no exter-
nal field) from statistical physics. For a fixed graph
G = (V,E), a positive integer q, and a vector of spins

1Factor graphs are always bipartite, but here we are
requiring that the graph G is bipartite when represented
as a standard graph.



σ ∈ {1, . . . , q}|V |,

fGPotts(σ; q, J) =
∏

(i,j)∈E

eJijδ(σi,σj)

where each edge (i, j) ∈ E is weighted by Jij ∈ R and
the notation emphasizes the dependence on the model
parameters J and q. When Jij > 0 for all (i, j) ∈ E,
the model is said to be ferromagnetic (i.e., neighbor-
ing spins prefer to align), and the model is said to be
antiferromagnetic if Jij < 0 for all (i, j) ∈ E.

The case q = 2 corresponds to the Ising model. Each
pairwise potential in the ferromagnetic Ising model is
log-supermodular, so we can immediately apply The-
orem 3.5 in order to show that ZB gives a lower
bound on the partition function. However, when
q > 2 the pairwise potential functions need not be
log-supermodular, even in the ferromagnetic case.

Our goal in this section is to show that, like switching
log-supermodular functions, the ferromagnetic Potts
model is also a log-supermodular function in disguise.
Unlike the pairwise binary case, we will need more
than variable switching in order to produce a log-
supermodular function. First, we observe that the
partition function of the ferromagnetic Potts model
can be equivalently formulated as the partition func-
tion of a closely related model in statistical physics,
the random cluster model.

The random cluster model is a measure over subsets of
edges of the graph G = (V,E) and is related to mea-
sures that arise in the study of percolation problems.
For any subset A ⊆ E and nonnegative weights pij ,

fGrc(A; q, p) = qkG(A)
∏

(i,j)∈A

pij

where q is as above and kG(A) is the number of con-
nected components of the graph G = (V,A). If q
is a positive integer, Jij ≥ 0 for all (i, j) ∈ E, and
pij = eJij − 1 for all (i, j) ∈ E, then Zrc(G; q, p) =
ZPotts(G; q, J). A short proof of this standard result
from statistical physics can be found in Appendix A,
and more details about the Potts model and its rela-
tionship to the random cluster model can be found in
(Sokal, 2005) and (Grimmett, 2006).

5.1 Lower Bounds

As kG(A) is a supermodular function (here, think of
A as being represented by its 0-1 indicator vector),
qkG(A) is a log-supermodular function. From this, we
can conclude that fGrc is a log-supermodular function
whenever eJij − 1 > 0 for all (i, j) ∈ E.

Notice that fGrc does not factor over G as qkG(A) de-
pends on the entire set A. In fact, the factor graph

corresponding to fGrc is a tree: it has one factor node
that is adjacent to all of the variable nodes. Although,
the Bethe free energy is exact for this model, com-
puting the partition function remains computationally
intractable. Instead, we will exploit the theoretical
equivalence of the two partition functions to show that
for any cover (H; q, JH) of the ferromagnetic Potts
model (G; q, J), ZPotts(H; q, JH) ≤ ZPotts(G; q, J)M .
Specifically, we will show how to apply Theorem 3.4
directly to the random cluster partition function cor-
responding to each cover of (G; q, J) in order to show
the desired inequality for the Potts model. See the end
of Section 2.1 for a reminder of the notation related to
graph covers.

Lemma 5.1. Let (H; q, JH) be an M -cover of the
Potts model (G; q, J). For any A = (A1, . . . , AM ) ⊆
EH ,

fHrc (A1, . . . , AM ; q, pH) ≤
M∏
m=1

fGrc(A[m]; q, p)

whenever q ≥ 1 and pij = eJij − 1 ≥ 0 for all (i, j) ∈
EG.

Proof. We will show that for any M -cover, H, of G,

kH(A1, . . . , AM ) ≤
M∑
m=1

kG(A[m]).

The result will then follow from the definition of frc
and the definition of H.

We prove this by induction on |A|, the number of
edges in the set A. For the base case, |A| = 0,

kH(∅) =
∑M
m=1 kG(∅). Now, suppose |A| > 0. Fix one

edge in A = (A1, . . . , AM ) and let B = (B1, . . . , BM )
be the edges of its corresponding connected compo-
nent. There are two possibilities. First, if B =
A, then the result follows from the observation that∑M
m=1 kG(A[m]) ≥ η − 1 + kH(A1, . . . , AM ) where

η is the maximum element of the vector given by∑M
m=1A

m. Otherwise, if B 6= A, let C = A \ B.
With the notation that C = (C1, . . . , CM ),

kH(A) = kH(B) + kH(C)− |V H |
(a)

≤
M∑
m=1

kG(B[m]) +

M∑
m=1

kG(C [m])− |V H |

(b)

≤
M∑
m=1

kG(A[m]) +

M∑
m=1

kG(∅)− |V H |

=

M∑
m=1

kG(A[m])

where (a) follows from the induction hypothesis and
(b) follows from the supermodularity of kG.
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Figure 2: A simple cycle.

Theorem 5.2. For the ferromagnetic Potts model
with q ≥ 1,

ZMF(G; J, q) ≤ ZB(G; J, q) ≤ ZPotts(G; J, q).

Proof. By Lemma 5.1 and Theorem 3.4,

Zrc(H; q, pH) ≤ Zrc(G; q, p)M

for any M -cover (H; q, JH) of (G; q, J) with pij =

eJij − 1 for all (i, j) ∈ EG and pHij = eJ
H
ij − 1 for

all (i, j) ∈ EH .

The proof then follows from the equivalence between
ZPotts and Zrc and the characterization of ZB in The-
orem 2.2.

5.2 Potts Models with External Fields

Unlike the results of Ruozzi (2012) for the ferromag-
netic Ising model, the results of Section 5.1 do not hold
in the case that there is an arbitrary external field (i.e.,
arbitrary self-potentials). As an example, consider an
instance of the ferromagnetic Potts model with an ex-
ternal field that factors over the graph in Figure 2.

f(x) =

3∏
k=1

eh
k
xk

∏
i 6=j

e2δ(xi,xj)

where the vectors h1, h2, and h3 are defined as follows.

h1 =

 e2

e−1

e−1

 h2 =

e−1e2
e−1

 h3 =

e−1e−1

e2


For this simple model, we can compute ZB and Z ex-
actly: ZB − Z ≈ 973.046.

In general, the Potts model becomes much more diffi-
cult to analyze when there is an external field. How-
ever, for uniform external fields, we can extend the
results of Section 5.1. Consider the following general-
ization of the Potts model for a given h ∈ Rq.

fGPotts+(σ; J, q, h) =
∏
k∈V

ehσk
∏

(i,j)∈E

eJijδ(σi,σj)

The corresponding random cluster representation is
given by

fGrc+(A; q, p, h) =
∏

C∈comp(A)

[ q∑
w=1

ehw|V (C)|
] ∏
(i,j)∈A

pij

where comp(A) is the set of connected components
of the graph (V,A) and V (C) is the set of vertices
contained in the connected component C.

The equivalence between ZPotts+ and Zrc+ for appro-
priate choices of the parameters can be verified by the
same techniques used in Appendix A. As before, fGrc+
is a log-supermodular function of A, though the proof
of this statement is non-trivial (see Theorem III.1 of
(Biskup et al., 2000)). The analogs of Lemma 5.1 and
Theorem 5.2 for this more general model can be proven
by using the same arguments as before with minimal
modification; we omit the proofs due to space con-
straints.

Lemma 5.3. Let (H; q, JH , hH) be an M -cover of
the extended Potts model (G; q, J, h). For any A =
(A1, . . . , AM ) ⊆ EH ,

fHrc+(A1, . . . , AM ; q, pH , hH) ≤
M∏
m=1

fGrc+(A[m]; q, p, h)

whenever q ≥ 1 and pij = eJij − 1 ≥ 0 for all (i, j) ∈
EG.

Theorem 5.4. For the extended ferromagnetic Potts
model with q ≥ 1,

ZMF(G; J, q, h) ≤ ZB(G; J, q, h) ≤ ZPotts+(G; J, q, h)

5.3 Generalizations to Matroids

Theorem 5.2 and Lemma 5.1 can be extended, with ar-
guments analogous to those in Appendix A, to Potts
models defined on hypergraphs as considered in Gold-
berg and Jerrum (2010). The Potts and random clus-
ter models (like the closely related Tutte polynomial)
can also be generalized to matroids Sokal (2005). In
this section, we describe the generalization to linear
matroids and demonstrate the analog of Lemma 5.1 in
this case.

Let S be a matrix over GF (q) for some prime power
q whose rows are indexed by the set V S and whose
columns are indexed by the set AS . The columns of
S define a matroid with corresponding rank function
rS(A) which is defined to be the rank, over GF (q),
of the submatrix formed by the columns indexed in

A ⊆ AS . For σ ∈ {1, . . . , q}|V S |, the normalized Potts
model corresponding to this matroid is

fSPotts(σ; q, J) =
1

q|V S |

∏
α∈AS

exp
[
Jαδ(

∑
i∈V S

Si,ασi, 0)
]



where δ(
∑
i Si,ασi, 0) = 1 if

∑
i Si,ασi ≡ 0 over GF (q).

Notice that the elements of S form the vertex-edge
incidence matrix of a hypergraph GS = (V S ,AS). As
a result, we will denote the graphical model for this
generalization as (S; q, J).

The partition function of the Potts model for the ma-
troid over S can also be expressed as the partition
function of an appropriate generalization of the ran-
dom cluster model. For each A ⊆ AS , the normalized
random cluster model over S is given by

fSrc(A; q, p) = q−rS(A)
∏
α∈A

pα.

The partition functions of these two models agree
whenever pα = exp(Jα) − 1 for all α ∈ AS . When
pα ≥ 0 for all α ∈ AS , fSrc is a log-supermodular func-
tion. For a proof of the equivalence of Zrc(S; q, J) and
ZPotts(S; q, J), see Theorem 3.1 of Sokal (2005).

Lemma 5.5. For a prime power q and a matrix S
over GF (q), let (SH ; q, JH) be an M-cover of the nor-
malized Potts model (S; q, J).

For any A = (A1, . . . , AM ) ⊆ AH ,

rSH (A1, . . . , Am) ≥
M∑
m=1

rS(A[m]).

Proof. As in the case of Lemma 5.1, the proof follows
by induction on |A| = |A1| + · · · + |AM |. For |A| = 0
or 1, the result follows trivially. Suppose |A| > 1. We
separate the proof into two cases. In the first case,
rSH (A) = |A|. Fix any a ∈ A and let B = A \ {a} and
C = {a}. We have

rSH (A1, . . . , AM ) = rSH (B) + rSH (C)

(a)

≥
M∑
m=1

rS(B[m]) + rS(C)

(b)

≥
M∑
m=1

rS(A[m])

where (a) follows from the induction hypothesis and
(b) follows from the submodularity of rS .

For the second case, rSH (A) < |A|. Choose B1 ⊇ . . . ⊇
BM such that for all m ∈ {1, . . . ,M}, Bm ⊆ A[m]

and |Bm| = rS(A[m]). This can be accomplished by
constructing a basis for the columns of S spanned by
A[M ] and then extending it to a basis of A[M−1] and
so on. Similarly, construct an “unsorted” version of
B1, . . . , BM by choosing C1, . . . , CM such that for all
m ∈ {1, . . . ,M}, Cm ⊆ Am and C [m] = B[m]. With
these definitions, we have

M∑
m=1

rS(A[m]) =

M∑
m=1

rS(Bm)

(a)
=

M∑
m=1

rS(Cm)

(b)
= rSH (C1, . . . , CM )

(c)

≤ rSH (A1, . . . , AM )

where (a) follows from the submodularity of rS , (b)
follows from the induction hypothesis, and (c) follows
from the monotonicity of rSH .

With this lemma, we can again use the observation
that ZPotts and Zrc are equivalent and apply Theorem
3.4 to conclude the following.

Theorem 5.6. For any linear matroid S over GF (q)
for some prime power q,

ZPotts(S; J, q) ≥ ZB(S; J, q) ≥ ZMF(S; J, q)

whenever Jα ≥ 0 for all α ∈ AS.

5.4 Weight Enumerators of Linear Codes

As an application of the results of Section 5.3, we
demonstrate that the Bethe partition function can be
used to compute lower bounds on the weight enumera-
tor of linear codes over GF (q) for some prime power q.
Similar results have been demonstrated for the prob-
lem of counting the number of codewords of a binary
cycle code (Vontobel, 2013). Let S ∈ GF (q)k×n be
the generator matrix of a linear code. A codeword
corresponds to any vector in GF (q)n that is contained
in the span of the rows of S. Denote the set of valid
codewords as C. The weight enumerator of a linear
code is defined to be ∑

c∈C
λw(c)

where λ is a positive real and w(c) is the number of
nonzero entries in the codeword c.

Equivalently, we can formulate this weight enumerator
as the partition function of a generalized Potts model.∑
c∈C

λw(c) =
∑

σ∈{1,...,q}k
λw(

∑k
i=1 σiSi,∗)

=
∑

σ∈{1,...,q}k

∏
α∈AS

λ1−δ(
∑k
i=1 σiSi,α,0)

= λ|A
S |

∑
σ∈{1,...,q}|V S |

∏
α∈AS

λ−δ(
∑
i∈V S σiSi,α,0)

= qkλnZPotts(S; q, log
1

λ
)

where Si,∗ is the ith row of S.



Using the previous results for the generalized ferro-
magnetic Potts model, we have that, for λ ∈ (0, 1],∑

c∈C
λw(c) ≥ qkλnZB(S; q, log

1

λ
)

≥ qkλnZMF(S; q, log
1

λ
).

As a consequence, belief propagation can be used to
compute lower bounds on the weight enumerator in
this regime.

6 Weighted Graph Homomorphisms

In this section, we consider the problem of counting
weighted graph homomorphisms. For a fixed graph
G = (V,E), a nonegative matrix Γ ∈ Rn×n, and a
vector of nonnegative weights w ∈ Rn, consider the
following function for each σ ∈ {1, . . . , n}|V |.

fGhom(σ;w,Γ) =
∏
i∈V

wσi
∏

(i,j)∈E

Γσi,σj

If Γ is the adjacency matrix of a graph G and w is
the all ones vector, then Zhom(G;w,Γ) is equal to the
number of graph homomorphisms from G to G.

We will show that the Bethe partition function pro-
vides a lower bound on the true partition function,
Zhom(G;w,Γ), whenever

Γ = aa′ + bb′, (4)

where a and b are two non-negative column vectors in
Rn and v′ denotes the transpose of the vector v ∈ Rn.

For Γ as in (4), Zhom(G;w,Γ) can be reformulated as
the partition function of an edge coloring model. For
each A ⊆ E, define

fGedge(A;w, a, b) =
∏
i∈V

[ n∑
σi=1

wσia
si(A)
σi b|∂i|−si(A)

σi

]
where si(A) = |{j ∈ ∂i : (i, j) ∈ A}|. By convention,
we take 00 = 1.

The proof of equivalence between Zhom(G;w, aa′+bb′)
and Zedge(G;w, a, b) can be found in Appendix B. This
proof is a special case of a more general relationship
between the partition function of specific vertex color-
ing functions (our weighted homomorphism function)
and the partition function of a more general class of
edge coloring functions (Szegedy, 2007).

The edge coloring function fGedge is a log-supermodular
function. However, unlike the ferromagnetic Potts
model and its generalizations, the proof of this ob-
servation for the edge coloring model requires some
work.

Lemma 6.1. If a, b, and w are nonnegative vectors in
Rn, then fGedge(A;w, a, b) is a log-supermodular func-
tion of A ⊆ E.

Proof. As a product of log-supermodualr functions is
log-supermodular, it suffices to show that

n∑
σ=1

wσa
si(A)
σ b|∂i|−si(A)

σ

is log-supermodular for each choice of i ∈ V or equiv-
alently that

n∑
σ=1

xσc
si(A)
σ

is a log-supermodular function of A for any nonnega-
tive vectors x and c.

Now, observe that, for all A1, A2 ⊆ E,[ n∑
σ=1

xσc
si(A

1)
σ

][ n∑
σ=1

xσc
si(A

2)
σ

]
=
∑
σ,γ

xσxγc
si(A

1)
σ csi(A

2)
γ .

The desired inequality will follow from the observation
that

csi(A
1)

σ csi(A
2)

γ + csi(A
2)

σ csi(A
1)

γ ≤

csi(A
1∨A2)

σ csi(A
1∧A2)

γ + csi(A
1∧A2)

σ csi(A
1∨A2)

γ (5)

for all σ, γ ∈ [1, . . . , n].

When σ = γ in (5), the inequality is tight as si(A
1 ∧

A2) + si(A
1 ∨ A2) = si(A

1) + si(A
2). To show the

inequality (5) when σ 6= γ, let s = si(A
1 ∧ A2) +

si(A
1 ∨A2), and observe that, as a function of t ∈ R,

ctσc
s−t
γ + cs−tσ ctγ

is symmetric about its minimum at t = s/2 and
monotonic increasing for t ≥ s/2. The inequal-
ity (5) follows from choosing t = si(A

1 ∨ A2) ≥
max{si(A1), si(A

2)} ≥ s/2.

Theorem 6.2. For any graph G = (V,E), any non-
negative w ∈ Rn≥0, and any matrix Γ = aa′ + bb′ for
some nonnegative vectors a, b ∈ Rn≥0,

ZMF(G;w,Γ) ≤ ZB(G;w,Γ) ≤ Zhoms(G;w,Γ).

Proof. The factor graphs corresponding to the
weighted homomorphism model and the edge color-
ing model are isomorphic (they simply exchange the
role of the factor nodes and the variable nodes).
As a result, every factor graph corresponding to
an M -cover of a weighted homomorphism model is
isomorphic to a factor graph of some M -cover of



the edge coloring model. Because, fGedge is log-
supermodular, an application of Theorem 3.5 gives
that Zedge(G;w, a, b)M ≥ Zedge(H;wH , aH , bH) for
any M -cover (H;wH , aH , bH) of (G;w, a, b). The
equivalence of the partition functions of the two mod-
els combined with the combinatorial characterization
of the Bethe partition function in Theorem 2.2 then
yields the desired result.

7 Discussion

In a survey of submodular functions, Lovász (1983)
noted that “submodularity is not a deep property, but
it is often difficult to recognize the circumstances un-
der which it occurs.” The above examples serve to
illustrate that the same is true of log-supermodularity.

For each model considered in this work, we trans-
formed the problem of computing the partition func-
tion of a graphical model (G;φ, ψ) that is not log-
supermodular into the computation of the partition
function of a log-supermodular graphical model. This
transformation was then applied to graph covers of
(G;φ, ψ) in order to demonstrate that (3) holds for
the transformed version of each cover. By the equal-
ity of the partition functions, this holds for the parti-
tion function of each graph cover of (G;φ, ψ) as well.
Finally, we applied Theorem 3.4 to demonstrate that
ZB(G;φ, ψ) ≤ Z(G;φ, ψ). This implies that any fixed
point of the belief propagation algorithm over the
model (G;φ, ψ) must yield a lower bound on the true
partition function.
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A The Potts and Random Cluster
Models

In this appendix, we present a short algebraic proof
of the equivalence between the partition function of
the Potts model and the random cluster model under
an appropriate choice of parameters. For any graph
G = (V,E) and any positive integer q, this equivalence
follows primarily from the observation that qkG(A)

counts the number of colorings of the vertices of the
graph G with q different colors such that any two ver-
tices in the same connected component of the subgraph
(V,A) are assigned the same color. This results in the
following expression.

qkG(A) =
∑

σ∈{1,...,q}|V |

∏
(i,j)∈A

δ(σi, σj) (6)

for all A ⊆ E.

Given (6), the proof of equivalence follows from simple
algebraic manipulations.∑
A⊆E

fGrc(A; q, p) =
∑
A⊆E

[
qkG(A)

∏
(i,j)∈A

pij

]
=

∑
A⊆E

[ ∑
σ∈{1,...,q}|V |

∏
(i,j)∈A

pijδ(σi, σj)
]

=
∑

σ∈{1,...,q}|V |

[ ∑
A⊆E

∏
(i,j)∈A

pijδ(σi, σj)
]

=
∑

σ∈{1,...,q}|V |

∏
(i,j)∈E

[
1 + pijδ(σi, σj)

]
Substituting pij = eJij − 1 for all (i, j) ∈ E yields∑

A⊆E

fGrc(A; q, p) =
∑

σ∈{1,...,q}|V |

∏
(i,j)∈E

eJijδ(σi,σj)

=
∑

σ∈{1,...,q}|V |
fGPotts(σ; q, J).

B The Weighted Homomorphism and
Edge Coloring Models

In this appendix, we present a short algebraic proof
of the equivalence between the partition function of
the weighted homomorphism graphical model and the
partition function of the edge coloring model whenever
Γ is a rank two matrix of the form aa′ + bb′ for two
vectors a and b.

fGedge(A; a, b, w) =
∏
i∈V

[ n∑
σi=1

wσia
si(A)
σi b|∂i|−si(A)

σi

]
=

∑
σ∈{1,...,n}|V |

∏
i∈V

[
wσia

si(A)
σi b|∂i|−si(A)

σi

]
=

∑
σ∈{1,...,n}|V |

∏
i∈V

wσi
∏

(i,j)∈E

cij(A)

where

cij(A) = a
A(i,j)
σi a

A(i,j)
σj b

1−A(i,j)
σi b

1−A(i,j)
σj

and A(i,j) = 1 if (i, j) ∈ A and zero otherwise. Notice
that

∑
A⊆E

∏
(i,j)∈E cij(A) =

∏
(i,j)∈E Γσi,σj and that

cij(A) only depends on whether or not the edge (i, j) ∈
A. Consequently,

Zedge(G; a, b, w) =
∑
A⊆E

fGedge(A; a, b, w)

=
∑

σ∈{1,...,n}|V |

∏
i∈V

wσi
∏

(i,j)∈E

Γσi,σj

= Zhom(G;w,Γ).
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