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Abstract

Transferring knowledge across a sequence of
reinforcement-learning tasks is challenging, and
has a number of important applications. Though
there is encouraging empirical evidence that
transfer can improve performance in subsequent
reinforcement-learning tasks, there has been very
little theoretical analysis. In this paper, we intro-
duce a new multi-task algorithm for a sequence
of reinforcement-learning tasks when each task is
sampled independently from (an unknown) dis-
tribution over a finite set of Markov decision pro-
cesses whose parameters are initially unknown.
For this setting, we prove under certain assump-
tions that the per-task sample complexity of ex-
ploration is reduced significantly due to trans-
fer compared to standard single-task algorithms.
Our multi-task algorithm also has the desired
characteristic that it is guaranteed not to exhibit
negative transfer: in the worst case its per-task
sample complexity is comparable to the corre-
sponding single-task algorithm.

1 INTRODUCTION

A dream of artificial intelligence is to have lifelong learn-
ing agents that learn from prior experience to improve their
performance on future tasks. Our interest in the present
paper is in how to transfer knowledge and improve perfor-
mance across a sequence of reinforcement-learning [Sut-
ton and Barto, 1998] problems, where each task itself in-
volves sequential decision making under uncertainty in an
unknown environment. We assume that each task is drawn
from a finite set of Markov decision processes with identi-
cal state and action spaces, but different reward and/or tran-
sition model parameters; however, the MDP parameters are
initially unknown and the MDP identity of each new task
is also unknown. This model is sufficiently rich to capture
important applications like tutoring systems that teach a se-

ries of students whose initially unknown learning dynam-
ics can be captured by a small set of types (such as hon-
ors, standard and remedial), marketing systems that may
characterize a customer into a finite set of types and use
that to adaptively provide targeted advertising over time,
and medical decision support systems that seek to provide
good care to patients suffering from the same condition for
whom the best treatment strategy may be characterized by
a discrete hidden latent variable that captures the patient’s
physiology.

Although there is encouraging empirical evidence that
transferring information across tasks can improve rein-
forcement learning performance (see Taylor and Stone
[2009] for a recent survey), there has been almost no theo-
retical work to justify or quantify the benefits. This is high-
lighted as one of the key limitations of the existing research
by Taylor and Stone [2009], and there have been only a
few papers since then that provide any theoretical analy-
sis [Lazaric and Restelli, 2011, Mann and Choe, 2012].
In particular, we are aware of no work that seeks to for-
mally analyze how transferred knowledge can accelerate
reinforcement learning in a multi-task settings.

In contrast, there has been a substantial amount of inter-
est over the last decade on Probably Approximately Cor-
rect (PAC) reinforcement learning in the single-task setting
(e.g. [Kearns and Singh, 2002, Brafman and Tennenholtz,
2002]). This line of work formally quantifies the worst-
case learning speed of a reinforcement-learning algorithm,
defined as the number of steps in which the agent may fail
to follow an ε-optimal policy.

In this paper, we introduce a new algorithm for multi-task
reinforcement learning, and prove under certain assump-
tions that the per-task sample complexity is significantly
reduced due to transfer compared to the single-task sam-
ple complexity. Furthermore, unlike most prior multi-task
or transfer reinforcement learning algorithms, our proposed
algorithm is guaranteed to avoid negative transfer: the de-
crease in performance that can arise when misleading in-
formation is transferred from a source to target task.



2 PRELIMINARIES

This paper focuses on discrete-time, finite Markov decision
processes (MDPs) defined as a tuple 〈S,A, P,R, γ〉, where
S is the finite state space, A the finite action space, P is
the transition probability function, R the reward function,
and γ ∈ (0, 1) the discount factor. The reward function
is bounded and without loss of generality takes values in
[0, 1]. For convenience, we also use S and A to denote the
cardinality of the state and action spaces, respectively.

A deterministic policy π : S → A defines what action to
take in a given state. Its value function, V π(s), is defined as
the expected total discounted reward received by executing
π starting from state s ∈ S. Similarly, the state–action
value function, Qπ(s, a), is defined as the expected total
discounted reward received by taking action a in state s
and following π thereafter. It is known [Puterman, 1994]
that there exist optimal value functions satisfying: V ∗ =
maxπ V

π and Q∗ = maxπ Q
π; furthermore, the greedy

policy with respective to Q∗ is optimal.

Typically, a reinforcement-learning (RL) [Sutton and
Barto, 1998] agent does not know the transition probabil-
ity and reward functions, and aims to optimize its policy
via interaction with the MDP. The main objective of RL
is to approximate an optimal policy with as few interac-
tions as possible. One formal framework for analyzing the
speed of learning in RL, which we adopt here, is the sample
complexity of exploration [Kakade, 2003], or sample com-
plexity for short. Fix parameters ε > 0 and δ > 0. An
RL algorithm A can be viewed as a nonstationary policy
whose value functions can be defined similarly to station-
ary policies π above. At any timestep h, we compare the
policy value to the optimal policy value in the current state
sh. If V ∗(sh) − V Ah > ε, then A is not near-optimal in
timestep h, and a mistake happens. If, with probability at
least 1− δ, the total number of mistakes made by an algo-
rithm is at most ζ(ε, δ), then ζ is called the sample com-
plexity of exploration. RL algorithms with a polynomial
sample complexity is called PAC-MDP. Further details and
related works are found in the survey of Strehl et al. [2009].

In this paper, we consider multi-task RL across a series of
T reinforcement-learning tasks, each run for H steps. We
assume each task is sampled from a set M of C MDPs,
which share the same state and action spaces, and discount
factor, but have different reward and/or transition dynam-
ics. Finally, we denote by Vmax an upper bound of the
value function. Note that Vmax ≤ 1/(1 − γ), but can be
much smaller than this upper bound in many problems.

3 PAC-MDP MULTI-TASK RL

We are interested in exploring whether it is possible to re-
duce sample complexity when the agent faces a sequences
of tasks drawn i.i.d. from a distribution, and if so, how this

Algorithm 1 Multi-task RL Algorithm
0: Input: T1, C̄.
1: for t = 1, 2, . . . , T1 do
2: Receives an unknown MDP Mt ∈M
3: Run E3 in Mt for H steps to get counts o(s, a, s′, t)
4: end for
5: Combine counts into Ĉ ≤ C̄ groups where
ō(s, a, s′, c) is the counts for the c-th group.

6: for t = T1 + 1, . . . , T do
7: Receive unknown Mt ∈M.
8: Run Finite-Model-RL on Mt

9: if MDP group of task Mt is identified then
10: Incorporate state–action visitation counts from

Mt to the group.
11: end if
12: end for

benefit can be achieved by an algorithm.

Prior work suggests that higher performance is achievable
when there is some known structure about the RL MDP pa-
rameters. In particular, past research has shown that when a
task is drawn from a known distribution over a known finite
set MDPs, the problem can be cast as a partially observable
MDP planning problem, and solved to yield the Bayes op-
timal solution if the set cardinality is small [Poupart et al.,
2006, Brunskill, 2012]. Although the past work did not
examine the sample complexity of this setting, it does sug-
gest the possibility of significant improvements when this
structure can be leveraged.

Encouraged by this work, we introduce a two-phase multi-
task RL algorithm. Since at the beginning the agent does
not know the model parameters, it does single-task learn-
ing, and uses the observed transitions and rewards to esti-
mate the parameters of the set of underlying MDPs at the
end of phase one. In the second phase, the agent uses these
learned models to “accelerate” learning in each new task.
We will shortly provide details about both phases of this
algorithm, whose performance is formally analyzed in the
next section. Before doing so, we also note that our multi-
task RL algorithm is designed to minimize or eliminate the
potential of negative transfer: tasks where the algorithm
performs much worse than a single-task RL algorithm.

Compared to Bayesian approaches, our algorithm develop-
ment is motivated and guided by sample-complexity anal-
ysis. In addition to the guard against negative transfer, our
approach is robust, as guaranteed by the theory; this benefit
can be shown empirically even in a toy example.

In the following discussion, for clarity we first present a
slightly simplified version of our approach (Algorithm 1),
before discussing a few additional details in Section 3.3 that
involve subtle technicalities required in the analysis.



Algorithm 2 Finite-Model-RL

0: Input: S, A, ō, Ĉ, m, ξ, ε.
1: Initialize the version space: C ← {1, . . . , Ĉ}.
2: ∀1 ≤ i < j ≤ Ĉ: cij ← 0, ∆ij ← 0,
3: ∀s, a : o(s, a)← 0 (Initialize counts in current task)
4: KNOWN← Check-Known(S,A, ε, ō, C, o,m)
5: Use E3 algorithm to compute an explore-or-exploit

policy and the corresponding value function.
6: Initialize start state s
7: for h = 1, . . . ,H do
8: Take action a, receive reward r, and transition to the

next state s′

9: for all c ∈ C do
10: Predict the model dynamics by empirical means:

θ̂c ← 〈p̂(s1|s, a, c), . . . , p̂(s|S||s, a, c), r̂c〉
11: Compute the `2-confidence interval of θ̂c (by, say,

Lemma 5); denote the confidence interval by δθc.
12: end for
13: Encode the transition (s, a, r, s′) by a vector (where

I is the indicator function)
z ← 〈I(1 = s′), I(2 = s′), . . . I(|S| = s′), r〉

14: for all i, j ∈ C such that i < j and
∥∥∥θ̂i − θ̂j∥∥∥ ≥

8 maxc∈C δθc do

15: cij ← cij + 1
4

∥∥∥θ̂i − θ̂j∥∥∥2

16: ∆ij ← ∆ij +
∥∥∥θ̂i − z∥∥∥2

−
∥∥∥θ̂j − z∥∥∥2

17: if cij ≥ ξ then
18: C ← C \ {c} where c = i if ∆ij > 0 and c = j

otherwise.
19: end if
20: end for
21: KNOWN← Check-Known(S,A, ε, ō, C, o,m)
22: If KNOWN has changed, use E3 to re-compute the

policy.
23: end for

3.1 PHASE ONE

In the first phase, T1 tasks are drawn i.i.d. from the underly-
ing unknown distribution. On each task, the agent follows
the single-task algorithmE3 [Kearns and Singh, 2002]. All
observed transitions and rewards are stored for each task.

At the end of the first phase, this data is clustered to identify
a set of at most C̄ MDPs. To do this, the transition and re-
ward parameters are estimated by the empirical means for
each task, and tasks whose parameters differ by no more
than a fixed threshold are clustered together. After this clus-
tering completes, all the observed transitions and rewards
for all tasks in the same cluster are merged to yield a single
set of data. Our analysis below shows that, under certain
assumptions, tasks corresponding to the same MDP will be
grouped correctly.

Algorithm 3 Check-Known
0: Input: S, A, ε, ō, C, o, m.
1: for (s, a) ∈ S ×A do
2: if All MDPs in C have ε-close (in `2-norm) estimates

of the transition and reward functions at (s, a) then
3: KNOWN(s, a)← true
4: else if o(s, a) ≥ m then
5: KNOWN(s, a)← true
6: else
7: KNOWN(s, a)← false
8: end if
9: end for

3.2 PHASE TWO

At the start of phase two, the agent now has access to a
set of (at most) C̄ MDPs which approximate the true set of
MDP models from which each new task is sampled. The
key insight is that the agent can use these candidate mod-
els to identify the model of the current task, and then act
according to the policy of identified model, and that this
process of model identification is generally faster than stan-
dard exploration needed in single-task learning.

To accomplish this, we introduce a new single-task RL al-
gorithm, Finite-Model-RL (Algorithm 2), that draws upon
but extends the noisy-union algorithm of Li et al. [2011].
One critical distinction is that our approach can be used to
compare models that themselves do not have perfect esti-
mates of their own parameters, and do so in way that allows
us to eliminate models that are sufficiently unlikely to have
generated the observed data.

Like many single-task PAC-MDP RL algorithms, Finite-
Model-RL partitions all state–action pairs into known and
unknown, where a known state–action pair is one for which
we have an ε-accurate estimate of its parameters. Follow-
ing E3, Finite-Model-RL maintains two MDP models for
the present task. In the exploration MDP, the algorithm as-
signs unity rewards to unknown states and zero rewards to
others. This MDP will be useful for computing a policy
to explore unknown states. The other MDP, called the ex-
ploitation MDP, is identical to the underlying MDP except
for unknown states, where rewards are all zero and state
transitions are self-loops. This MDP is used to exploit ex-
isting knowledge about the current MDP in order to follow
a reward-maximization policy.

Similar to E3, our algorithm prioritizes exploration over ex-
ploitation: if the optimal value function of the current state
in the exploration MDP is above a threshold, the estimated
exploration MDP’s optimal policy is followed; otherwise,
the estimated exploitation MDP’s optimal policy is used.
In addition, Finite-Model-RL tracks which of the possible
set of Ĉ MDP models could be the underlying MDP of the
current task. It eliminates a model when there is sufficient



evidence in the observed transitions that it is not the true
model (see lines 14–21 in Algorithm 2). We do this by
tracking the difference in the sum of the `2 error between
the current task’s observed (s, a, s′, r) transitions and the
transitions predicted given each of the Ĉ MDP models ob-
tained at the end of phase 1.

A particular state–action pair becomes known when either
there are sufficient observations from the current task that
the parameters of that state–action pair can be accurately
estimated (as in single-task PAC-MDP RL), or if the re-
maining possible MDP models have ε-close estimates of
the state–action pair’s parameter in question. If the MDP
of the current task is identified (only a single model re-
mains possible in the set), then all the observed data counts
from that MDP can be merged with the current task ob-
served data counts. This frequently causes all state–action
pairs to become immediately known, and then the algo-
rithm switches to exploitation for the remainder of the task.
At the end of each task, the underlying MDP will be iden-
tified with high probability, and the observed counts from
the current task will be added to the counts for that MDP.

Since the base algorithm in Finite-Model-RL is very much
like E3, we preserve the standard single-task sample-
complexity guarantee. Thus, negative transfer is avoided
in any single task in phase 2, 1 compared to single-task E3.

Across tasks, the observations accumulate and the Ĉ MDP
models will eventually have ε-accurate estimates of all
state–action parameters. Once this occurs, when facing a
new task, as soon as the agent identifies the task model out
of the Ĉ candidates, all state–action pairs become known.
We will shortly see that the sample complexity for this
identification to occur can be much smaller than standard
single-task sample complexity bounds.

3.3 ADDITIONAL ALGORITHM DETAILS

We now describe a few additional algorithmic details that
have been avoided on purpose to make the main ideas clear.
In our analysis later, as well as in some practical situations,
these technical details are important.

The key additional detail is that the E3 algorithm is run
with two different knownness threshold parameters at dif-
ferent stages of the multi-task algorithm: this parameter
specifies the accuracy on the parameter estimates required
for a state–action pair to be considered known in standard
E3. Usually, this parameter is set to O(V 2

max/(ε
2(1−γ)2))

so that once a state–action is known, its dynamics can be
estimated sufficiently accurately. However, in multi-task
RL, we also need to identify task identity in order to facili-
tate knowledge transfer to benefit future task.

This observation motivates the use of two different values

1Up to log factors, as shown in Section 4.

for this parameter. At the beginning of a task, one may
want to use a relatively small value just to do a more bal-
anced random walk in the whole state space, with the pri-
mary goal to identify the present task by visiting “informa-
tive” states. Here, a state is informative if two MDP mod-
els have a sufficient disagreement in its reward or transi-
tion dynamics; formal details are given in the next section.
Only after the identity is known does the algorithm switch
to a larger value, on the order of O(V 2

max/(ε
2(1 − γ)2)),

to learn a near-optimal policy. If, on the other hand, the
learner chooses the large value as specified in single-task
PAC-MDP algorithms, it is possible that the learner does
not visit informative states often enough by the end of a
task to know its identity, and the samples collected cannot
be transferred to benefit solving future tasks.

More precisely, in phase 1, we first execute E3 with known-
ness threshold O(Γ−2), where Γ, to be defined in the
next section, measures the model discrepancy between
two MDPs in M, and is in general much larger than
ε. Once E3 has finished its exploration phase (meaning
all state–action pairs have O(Γ)-accurate parameter esti-
mates), we switch to running E3 with the regular thresh-
old of O(V 2

max/(ε
2(1 − γ)2)). Since E3 performs all ex-

ploration before commencing exploitation, and ε < Γ, the
sample complexity of the resulting method stays the same
as initially running E3 with an input ε parameter. This en-
sures that we maintain the single-task sample-complexity
guarantees, but also that we gain enough samples of each
state–action pair so as to reliably cluster the tasks at the end
of phase 1. With the same approach in phase 2, we can en-
sure that the task will be identified (with high probability).2

Finally, we note that information can also be transferred
to the current task through tighter optimistic bounds on the
value function that shrink as models are eliminated. Briefly,
in phase 2, we can compute an upper bound Q̄i of the state–
action values of the i ∈ Ĉ MDPs that also accounts for
any uncertainty in the model parameters. At each step, the
value of each unknown state–action pair (s, a) can then be
set to maxi∈C Q̄i(s, a). Since this modification does not
seem to impact the worst-case sample complexity, for clar-
ity we did not include it in the description of Algorithm 2,
although it may lead to practical improvement.

4 ANALYSIS

This section provides an analysis of our multi-task RL al-
gorithm. As mentioned in Section 3.3, two values are used
to define the knownness threshold in E3. Due to space lim-
itation, some of the proof details are left to a full version.

To simplify exposition, we use θi to denote MDP i’s dy-
2Note that in phase 2, once the MDP identity of the present

task is known, the knownness threshold can switch to the larger
value, without having to wait until all state–actions visitation
counts reach the O(Γ−2) threshold.



namics including reward and transitions: the model dy-
namics in state–action (s, a) is denoted as an (S + 1)-
dimensional vector θi(·|s, a), where the first S compo-
nents are the transition probabilities to corresponding next
states, and the last component the average reward. The
model difference between two MDPs,Mi andMj , in state–
action (s, a) is defined as ‖θi(·|s, a)− θj(·|s, a)‖, the `2-
difference between their transition probabilities and reward
in that state–action. Furthermore, we let N be an upper
bound on the number of next states in the transition models
in all MDPs in M; while N can be as large as S, it can
often be much smaller in many realistic problems.

We make the following assumptions in the analysis:

1. Tasks inM are drawn from an unknown multinomial
distribution, and each task has at least pmin > 0 task-
prior probability;

2. There is a known upper bound C̄ on C = |M|, the
number of MDPs in our multi-task RL setting;

3. There is a known gap Γ of model difference in M;
that is, for all Mi,Mj ∈ M, there exists some (s, a)
such that ‖θi(·|s, a)− θj(·|s, a)‖ > Γ.

4. There is a known diameter D, such that for every
MDP in M, any state s′ is reachable from any state
s in at most D steps on average;

5. All tasks are run for H = Ω
(
DSA

Γ2 log T
δ

)
steps;

The first assumption essentially ignores extremely rare
MDPs. While it is possible to adapt our results to avoid
the assumption of pmin, we keep it mostly for the sake of
simplicity of the exposition. The second assumption says
there are not too many different underlying MDPs. In prac-
tice, one may choose C to balance flexibility and complex-
ity of multi-task learning. The third assumption says two
distinct MDPs inM must differ by a sufficient amount in
their model parameters; otherwise, there would be little
need to distinguish them in practice. The fourth assump-
tion about the diameter, introduced by Jaksch et al. [2010],
is the major assumption we need in this work. Basically,
it ensures that on average every state can be reached from
other states sufficiently fast. Consequently, it is possible to
quickly identify the underlying MDP of a task.

Our main result is the following theorem: the overall sam-
ple complexity in solving T tasks is substantially smaller
than solving them individually without transfer.

Theorem 1 Given any ε and δ, run Algorithm 1 for T
tasks, each for H = Ω

(
DSA

Γ2 log T
δ

)
steps. Then, the algo-

rithm will follow an ε-optimal policy on all but Õ
(
ζVmax

ε(1−γ)

)
steps, with probability at least 1− δ, where

ζ = Õ

(
T1ζs + C̄ζs + (T − T1)

(
NV 2

maxC̄

ε2(1− γ)2
+
DC2

Γ2

))
,

and ζs = Õ
(
NSAV 2

max

ε2(1−γ)2

)
, with probability at least 1− δ.

In particular, in phase 2, our Algorithm 1 has a sample com-
plexity that is independent of the size of the state and ac-
tion spaces, trading this for a dependence on the number of
models C̄ and diameterD. In contrast, applying single-task
learning without transfer in T tasks can lead to an overall
sample complexity of Õ(Tζs) = Õ(TNSA). Since we ex-
pect C̄ � SA, this yields a significant improvement over
single-task reinforcement learners (as long as D is not too
large), whose sample complexity has at least a linear de-
pendence on the size of the state–action space [Strehl et al.,
2006b, Szita and Szepesvári, 2010], and some have a poly-
nomial dependence on the size of the state and/or action
spaces. We expect this reduction in sample complexity to
also lead to improved empirical performance, and verify
this in an experiment later.

A few lemmas are needed to prove the main theorem.

Lemma 1 If we set T1 = p−1
min ln C̄/δ, then with probabil-

ity 1− δ, all MDPs will be encountered in phase 1.

Proof. In the T1 samples in phase 1, the probability that
every MDP is seen at least once is no smaller than 1 −
C̄(1− pmin)T1 . Setting this lower bound to 1− δ, solving
for T1, and using the inequality ln(1 − x) < −x, we get
T1 = 1

pmin
ln C̄

δ is sufficient. �

Lemma 2 If all tasks are run for H = Õ
(
DSA

Γ2

)
steps,

then with probability 1− δ, the following hold:

1. Every state–action in every task receives at least
Ω(Γ−2 lnT/δ) samples from that task;

2. The tasks encountered in phase 1 will be grouped cor-
rectly with all other tasks corresponding to the same
(hidden) MDP;

3. Each task in phase 2 will be identified correctly and
its counts added to the correct MDP.

Proof. Assumption 4 ensures that any state is reachable
from any other state within 2D steps with probability at
least 0.5, by Markov’s inequality. Chernoff’s inequality,
combined with a union bound over all T tasks and all SA
state–action pairs, implies that with probability at least 1−
δ, all state–actions can be visited Ω(Γ−2 ln TSA

δ ) times as
long as sufficiently large H .

The second statement is proved by Hoeffding’s inequality.
After phase 1 each task will have at least Ω(Γ−2 lnT/δ)
samples for each state–action with high probability. In
order to accurately merge tasks into groups implicitly as-
sociated with the same underlying MDP, we note that by
assumption, any two different MDPs must have dynamics
that differ by at least Γ in at least one state–action. In order
to detect such a difference, it is sufficient to estimate the
models of each state–action to an `2-accuracy of Γ/4. In
this case, the `2-difference between any two MDPs must
exceed Γ/2 in at least one state–action pair. A similar anal-
ysis of two tasks which come from the same MDP implies



that the difference estimated mean rewards can be at most
Γ/2 for all state–actions. This implies that tasks can be
clustered into groups corresponding to all tasks from the
same MDP by combining tasks whose reward models dif-
fer by no more than Γ/2 across all state–action pairs. This
is ensured by Hoeffding’s inequality with a union bound,
resulting in the sample size of Ω

(
Γ−2 ln TSA

δ

)
.

The third part requires that each tasks’s MDP identity can
be correctly identified with high probability in phase 2,
which can be proved similarly to the second part. �

The next lemma shows, on average, each state transition
contains information to distinguish the true MDP model
from others. Let θ1 and θ2 be two (S+1)-dimensional vec-
tors, representing two MDP models for some state–action
(s, a). Let θ̂1 and θ̂2 be their estimates that have confidence
radius δθ1 and δθ2, respectively; that is,

∥∥∥θ1 − θ̂1

∥∥∥ ≤ δθ1

and similar for θ2. For a transition (s, a, r, s′), define the
square loss of estimated model θ̂i by

`(θ̂i) =
∑

1≤τ≤S,τ 6=s′
θ̂i(τ)2+(θ̂i(s

′)−1)2+(θ̂i(S+1)−r)2.

Lemma 3 If θ1 is the true model for generating the transi-
tion (s, a, r, s′), then

Eθ1
[
`(θ̂2)− `(θ̂1)

]
≥
∥∥∥θ̂1 − θ̂2

∥∥∥(∥∥∥θ̂1 − θ̂2

∥∥∥− 2 ‖δθ1‖
)
.

Proof. Written out explicitly, the left-hand side becomes∑
i

(
θ1(i)

(
(1− θ̂2(i))2 − (1− θ̂1(i))2

)
+ (1− θ1(i))(θ̂2(i)2 − θ̂1(i)2)

)
+Er∼θ1

[
(r − θ2(S + 1))2 − (r − θ1(S + 1))2

]
.

Some algebra simplifies the above as:

S+1∑
τ=1

(
θ̂1(τ)− θ̂2(τ)

)(
2θ1(τ)− θ̂1(τ)− θ̂2(τ)

)
=

S+1∑
τ=1

(
θ̂1(τ)− θ̂2(τ)

)(
θ̂1(τ)− θ̂2(τ)2θ1(τ)− 2θ̂1(τ)

)
=

∥∥∥θ̂1 − θ̂2

∥∥∥2

+ 2〈θ̂1 − θ̂2, θ1 − θ̂1〉

≥
∥∥∥θ̂1 − θ̂2

∥∥∥2

− 2
∥∥∥θ̂1 − θ̂2

∥∥∥∥∥∥θ1 − θ̂1

∥∥∥
≥

∥∥∥θ̂1 − θ̂2

∥∥∥(∥∥∥θ̂1 − θ̂2

∥∥∥− 2 ‖δθ1‖
)
,

where the first inequality is due to Cauchy inequality, and
the second to the condition in the lemma. �

We are going to apply a generic PAC-MDP theorem of
Strehl et al. [2006a] to analyze the sample complexity
of our algorithm. As usual, define a state–action to be

known if its reward estimate is within Θ(ε(1 − γ)) ac-
curacy, and its next-state transition probability estimate is
within Θ(ε(1 − γ)/Vmax) in terms of total variation. The
next lemma bounds the number of visits to unknown state–
actions in the entire second phase.

Lemma 4 The total number of visits to unknown state–
actions in the the second phase is

Õ

(
(T − T1)DC2

Γ2
+
NV 2

maxC(T − T1)

ε2(1− γ)2
ln
C

δ
+ Cζs

)
.

Proof. (sketch) As explained earlier, Algorithm 2 starts
with model identification, and then switches to single-task
E3. The first term in the bound corresponds to the model
identification step. Note that, for a set of C models, there
are at most C-choose-2, namely O(C2), many informa-
tive states to fully identify a model. Therefore, our al-
gorithm only needs to reach these informative states be-
fore figuring out the true model. Similar to the proof of
Lemma 2 (part 1), each such state can be visited Θ(Γ−2)
times in Õ(DΓ−2) steps. So, Õ(DΓ−2C2) steps suffice to
visit all these informative states sufficiently often.

The rest of the proof (for the second and third terms) con-
sists of two parts. The first assumes the underlying MDP
identity is known at the beginning of each task. In our algo-
rithm, however, the MDP identity is unknown until all but
one model is eliminated. Then, the second part shows such
a delay of MDP identification is insignificant with respect
to the number of visits to unknown state–actions.

We begin with the assumption that the underlying MDP
identity is given at the beginning of each task. Although
the algorithm knows which MDP it is in in the current task,
it still follows the same logic in the pseudocode for model
elimination and identification. The only advantage it has
is to “boost” its history with samples of previous tasks of
the same MDP right after the task begins, rather than at
the end of the task. This is like single-task learning by
“concatenating” tasks of the same MDP into one big task.

In this scenario, an unknown state–action (s, a) implies at
least one of the following must be true. The first is when
the number of samples of (s, a) in some model has not
exceeded the known threshold ζs/(SA). For this case,
since the samples of (s, a) for the same MDP accumu-
lates over tasks, there can be at most ζs/(SA) visits to un-
known (s, a) pairs for a single MDP model, and a total of
Cζs/(SA) visits to unknown (s, a) across all C models. In
the other case, at least two models in M has a sufficient
difference in their estimates of the model parameters for
(s, a). Using Lemma 3, one can calculate the expected dif-
ference in square loss between the true model and a wrong
model. Following similar steps as in [Li et al., 2011],3

we can see the squared difference on average is at least
3The noisy union algorithm of [Li et al., 2011] is based on



Θ(ε2(1−γ)2/(V 2
maxN)), and afterO(

NV 2
maxC

ε2(1−γ)2 ln CT
δ ) vis-

its to such state–actions, all models but the true one will be
eliminated, with probability at least 1− δ

CT . Using a union
bound over all tasks in phase 2, we have that, with proba-
bility at least 1 − δ, the same statement holds for all tasks
in phase 2. Details will be given in a full version.

The first part of the proof is now completed, showing that
when the task identity is given at the beginning of a task,
the total number of visits to unknown state–actions is at
most O

(
NV 2

maxC(T−T1)
ε2(1−γ)2 ln C

δ + Cζs

)
.

We now handle the need for MDP identification, which pre-
vents samples in the present task to contribute to the cor-
responding model until the underlying MDP is identified.
Consider any state–action pair (s, a), and a fixed task in
phase 2. At the beginning of the task, the algorithm has
access to C models, the i-th of which has accumulated Ui
samples for (s, a). After the task, the true MDP (say, model
1, without loss of generality) is identified, whose sample
count for (s, a) becomes U ′1 ← U1 + U0, where U0 is the
number of visits to (s, a) in the present task. For other
models i > 1, U ′i ← Ui.

Consider three situations regarding the sample sizes U1

and U ′1. In the first case, U1 < U ′1 < ζs/(SA), so
our multi-task RL algorithm behaves identically no mat-
ter whether the samples contribute to the true model esti-
mation immediately or at the end of the task, since (s, a)
will remain unknown in either situation. In the second
case, ζs/(SA) ≤ U1 < U ′1, so (s, a) is already know
at the beginning of the task, and additional samples for
(s, a) does not change the algorithm, or increase the num-
ber of visits to unknown state–actions. In the last case, we
have U1 < ζs/(SA) ≤ U ′1. Recall that our algorithm
declares a state–action to be known if it has been visited
ζs/(SA) times in a single task, so U0 ≤ ζs/(SA). Hence,
U ′1 = U1 +U0 < 2ζs/(SA). Applying this inequality to all
state–actions and all MDPs, we conclude that the number
of visits to unknown states is at most 2Cζs.

Part II above shows the delay in sample accumulation can
only cause up to a constant factor increase in the number
of visits to unknown state–actions. The lemma follows im-
mediately from the conclusion of part I. �

We are now fully equipped to prove the main result:

Proof. (of Theorem 1) We will use the generic PAC-MDP
theorem of Strehl et al. [2006a] by verifying the three
needed conditions hold. Although the theorem of [Strehl
et al., 2006a] is stated for single-task RL, the proof works
without essential changes in multi-task RL.

The first condition holds since the value function is opti-

scalar predictions and observations, while we are dealing with
(S+1)-dimensional vectors. The only substantial change to their
proof is to replace the application of Hoeffding’s inequality with
its vector-valued extensions, such as Lemma 5 in the appendix.
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Figure 1: Gridworld domain

mistic with high probability, by construction of the known-
state MDPs when running E3 in the tasks.

The second condition also holds. Whenever a state–
action becomes known, its reward estimate is within ε(1−
γ) accuracy, and the transition estimate is within ε(1 −
γ)/(Vmax

√
N) accuracy measured by `2 error. Using the

inequality ‖v‖1 ≤ ‖v‖2
√
d, where d is the dimension

of vector v, we know the transition estimate is within
ε(1 − γ)/Vmax accuracy measured by total variation. The
simulation lemma (see, e.g., [Strehl et al., 2006a]) then im-
plies the accuracy condition holds.

What remains to be shown is that the third condition holds;
namely, we will find a bound on the total number of times
an unknown state–action pair is visited, across all T tasks.
E3 is executed on each task in phase 1. Prior analysis
for Rmax and MBIE (see e.g. [Kakade, 2003, Strehl and
Littman, 2008]) applies similarly to E3, implying that the
number of visits to unknown state–action pairs on a sin-
gle MDP at most

(
SANV 2

max

ε2(1−γ)2

)
. From Lemma 1, after T1

tasks, all tasks in C have been encountered with probability
at least 1 − δ. Therefore, with probability at least 1 − δ,
the total number of visits to unknown state–action pairs in
phase 1 is at most ζsT1.

In Phase 2, Algorithm 1 runs E3 in individual tasks
but transfers samples from one task to another of the
same underlying MDP. We have shown in Lemma 4
the number of visits to unknown state–actions is at
most O

(
(T−T1)DC2

Γ2 +
NV 2

maxC(T−T1)
ε2(1−γ)2 ln C

δ + Cζs

)
.

Hence, the total number of visits to unknown
state–actions during all T tasks is at most
O
(
ζsT1 + (T − T1)

(
DC2

Γ2 +
NV 2

maxC
ε2(1−γ)2 ln C

δ

)
+ Cζs

)
.

The theorem follows immediately by the PAC-MDP
theorem of [Strehl et al., 2006a]. �

5 EXPERIMENTS

Although the main contribution of our paper is to provide
the first theoretical justification for online multi-task Rl,
we also provide numerical evidence showing the empirical
benefit of our proposed approach over single-task learning
as well as a state-of-the-art multi-task algorithm.



There are C = 3 possible MDPs, each with the same 5× 5
state space as shown in the gridworld layout of Figure 5.
The start state is always the center state (s13). There are 4
actions that succeed in generally moving the agent in the
intended cardinal direction with probability 0.85, going in
the other directions (unless there is a wall) with probability
0.05 each. Three of the corners (s5, s21, s25) exhibit differ-
ent dynamics: the agent stays in the state with probability
0.95, or otherwise transitions back to the start state. The
three MDPs differ only in their reward models. The reward
for each state is drawn from a binomial model. Intuitively,
in each MDP, one of the corners provides a high reward,
two others provide low reward, and there is one additional
state whose medium reward can help distinguish the MDPs.
More precisely, In MDP 1, s21 has a binomial parameter of
0.99, s6 has a parameter of 0.6, s5 and s25 have a param-
eter of 0, and all other states have a parameter of 0.1. In
MDP 2, s5 has a binomial parameter of 0.99, s2 has a pa-
rameter of 0.6, s21 and s25 have a parameter of 0, and all
other states have a parameter of 0.1. In MDP 3 s25 has a
binomial parameter of 0.99, s1 has a parameter of 0.6, s21

and s25 have a parameter of 0, and all other states have a
parameter of 0.1. A new task is sampled from one of these
three MDPs with equal probability.

We compare our proposed approach to the most closely re-
lated approach we are aware of, Wilson et al. [2007]’s algo-
rithm on hierarchical multi-task learning (HMTL). Wilson
et al. learn a Bayesian mixture model over a set of MDP
classes as the agent acts in a series of MDPs, and use prior
to transfer knowledge to a new task sampled from one of
those classes. When acting in a new MDP, their approach
does not explicitly balance exploration and exploitation; in-
stead, it selects the current maximum a posterior (MAP) es-
timate of the model parameters, computes a policy for this
model, and uses this policy for a fixed number of steps, be-
fore re-computing the MAP model. Wilson et al. did not
provide formal performance guarantees for their approach,
but they did achieve promising results on both a simulated
domain and a real-time strategy game with HMTL. When
applying their approach to our setting, we limit the hierar-
chy to one level, ensuring that tasks are directly sampled
from a mixture of MDPs. We also provide their algorithm
with an upper bound on the number of MDPs, though their
algorithm is capable to learning this directly.

In both our algorithm and HMTL there are several param-
eters to be set. For HMTL we set the interval between
recomputing the MAP model parameters at 10 steps: this
was chosen after informal experimentation suggested this
improved performance compared to longer intervals. In
our approach we set the threshold for a parameter to be
known at m = 5. The number of tasks in phase 1 was
set to d3 ln(3/0.05)e = 13, matching the required length
specified by Lemma 1. We ran each task for a horizon of
H = 3000 steps, and performed multi-task reinforcement
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Figure 2: Cumulative average reward per task.

learning across 150 tasks per round. We then repeated this
process for 20 rounds.

Figure 5 displays the cumulative per-task reward for each
method, averaged across 20 rounds. As expected, our ap-
proach performs worse during phase 1, before it has ob-
tained a good estimate of each of the 3 MDPs. In phase
2, our approach performs well, successfully leveraging its
knowledge of the models to quickly determine the new
task’s MDP identity, and then act optimally for that MDP
for the remainder of the task. Since phase 1 of our al-
gorithm runs single-task E3, we can see that transferring
knowledge enables our approach to perform substantially
better than single-task E3 (p < 10−4 in a Mann-Whitney
U test comparing the first task performance to the last).

HMTL does quite well even at the start, because the al-
gorithm directly exploits the current estimated parameters,
and once the agent bumps into a good state, the algorithm
can leverage that information for the remainder of the task.
However, HMTL does not significantly improve beyond its
original performance, and performs similarly across the en-
tire length of a multi-task round. We hypothesize that this
is because in each task, this approach is not explicitly per-
forming exploration, and therefore may only get good esti-
mates of the parameters of some of the state–action pairs.
This means it can be harder to learn a good estimate of
the mixture model over the MDPs. Indeed, when we ex-
amine the multi-task posterior learned by HMTL, we find
that the resulting MDPs appear to be mixtures of the true
set of MDPs. We compare the total reward obtained in a
single round (of all 150 tasks in both phases) of the two ap-
proaches, and our approach achieved significantly higher
total reward (p = 0.03 in a Mann-Whitney U test).

These results provide empirical evidence that our algo-
rithm both achieves significantly better sample-complexity
results than prior single-task algorithms as well as a state-



of-the-art multi-task algorithm, and these gains can indeed
translate to improved empirical performance.

6 RELATED WORK

Our setting most closely matches that of Wilson et al.
[2007]; however, they consider a more general two-level
hierarchical model where tasks are sampled from a class
distribution, and there is a mixture over classes. The au-
thors update a Bayesian prior over the hierarchical model
parameters after finishing acting in each task using MCMC,
and use and update a local version of this prior during each
single-task by sampling an MDP from this prior, following
the model’s optimal policy for a fixed number of steps, up-
dating the prior, and repeating. Though the authors demon-
strate promising empirical learning improvements due to
transfer, unlike our work, no formal analysis is provided.

Other work studies the related problem of transfer RL.
For example, Lazaric and Restelli [2011] provide value-
function approximation error bounds of the target task in
a batch setting, as opposed to our online setting where the
agent has to balance exploration and exploitation. Their
bounds quantify the error potentially introduced by trans-
ferring source-task samples to an unrelated target task as
well as the reduction in error due to increasing the num-
ber of samples from the source. Sorg and Singh [2009]
prove bounds on transferring the state–action values from
a source MDP to a target MDP, where both MDP models
are known and there exists a soft homomorphism between
the two state spaces. If the target MDP model is unknown,
the authors present a promising heuristic approach without
performance guarantees. More recently, Mann and Choe
[2012] introduce an algorithm that uses a slight modifica-
tion of a source task’s optimal value as an optimistic ini-
tial value for a subset of the target task’s state–action pairs,
given a mapping between the tasks that ensures the associ-
ated value functions have similar values. The authors pro-
vide characteristics of this mapping that will improve sam-
ple complexity of their algorithm. While interesting, no al-
gorithm was given that could meet these conditions, and no
sample-complexity bounds were provided. Perhaps most
similar to us is Mehta et al. [2008], who consider sample
complexity for transfer learning across semi-MDPs with
identical (S,A) and transition models, and a distribution
of reward weight vectors. The authors provide a bound on
the number of tasks needed until they will be able to imme-
diately identify a close-to-optimal policy for a future task.
Compared to our work: (1) the authors only use transferred
information to initialize the value function in the new task,
(2) their algorithm can produce negative transfer, and more
significantly, (3) the authors assume that the model of each
new semi-MDP is completely specified.

The model-elimination idea in our Algorithm 2 is related
to several previous work on single-task RL. The most rel-

evant is probably the (more special) noisy union algorithm
of Li et al. [2011] and its application to Met-Rmax [Diuk
et al., 2009]. Here, the noisy union algorithm is general-
ized so that model elimination is possible even before a
state–action becomes fully known. Similar ideas are also
found in the Parameter Elimination algorithm [Dyagilev
et al., 2008], which uses Wald’s Sequential Probability Ra-
tio Test (SPRT) to eliminate models, as opposed to the sim-
pler square loss metric we use here. Finally, Lattimore et al.
[2013] employ model elimination in their Maximum Ex-
ploration algorithm that works in general reinforcement-
learning problems beyond MDPs.

7 CONCLUSIONS

In this paper, we analyze the sample complexity of explo-
ration for a multi-task reinforcement-learning algorithm,
and show substantial advantage compared to single-task
learning. In contrast to the majority of the literature, this
work is theoretically grounded, using tools in the PAC-
MDP framework. Furthermore, we also show the possi-
bility of avoiding negative transfer in multi-task RL.

These promising results suggest several interesting direc-
tions for future research. One of them is to relax some of
the assumptions and to develop more broadly applicable al-
gorithms. Second, we intend to test the proposed algorithm
in benchmark problems and investigate its empirical advan-
tage compared to single-task RL, as well as its robustness
with respect to parameters like C̄. Third, it is interesting
to extend the current results beyond finite MDPs, possi-
bly relying on function approximation or compact model
representations like dynamic Bayes networks [Dean and
Kanazawa, 1989]. Finally, our algorithm makes use only
of the learned MDP parameters, not of the task distribution
overM. Although our own attempt has not yet identified
theoretical benefits from such information, we suspect at
the least that it will be empirically beneficial.

A A CONCENTRATION INEQUALITY

The following result extends Hoeffding’s inequality from
real-valued random variables to vector-valued random vari-
ables. The tail probability upper bound here is only a con-
stant factor worse than that of Hoeffding’s.

Lemma 5 (Hayes [2005]) For vector-valued martingale,
Pr (‖Xn‖ ≥ a) ≤ 2 exp

(
2− a2

2n

)
; or equivalently,

Pr
(∥∥Xn

n

∥∥ ≥ ε) ≤ 2 exp
(

2− nε2

2

)
.
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