
Advances in Bayesian Network Learning using Integer Programming

Mark Barlett
Dept of Computer Science &

York Centre for Complex Systems Analysis
University of York, UK

mark.bartlett@york.ac.uk

James Cussens
Dept of Computer Science &

York Centre for Complex Systems Analysis
University of York, UK

james.cussens@york.ac.uk

Abstract

We consider the problem of learning Bayesian
networks (BNs) from complete discrete data.
This problem of discrete optimisation is for-
mulated as an integer program (IP). We de-
scribe the various steps we have taken to al-
low efficient solving of this IP. These are (i)
efficient search for cutting planes, (ii) a fast
greedy algorithm to find high-scoring (per-
haps not optimal) BNs and (iii) tightening
the linear relaxation of the IP. After relating
this BN learning problem to set covering and
the multidimensional 0-1 knapsack problem,
we present our empirical results. These show
improvements, sometimes dramatic, over ear-
lier results.

1 Introduction

Bayesian networks (BNs) use a directed acyclic graph
(DAG) to represent conditional independence relations
between random variables. Each BN defines a joint
probability distribution over joint instantiations of the
random variables. BNs are a very popular and effective
representation for probabilistic knowledge and there is
thus considerable interest in ‘learning’ them from data
(and perhaps also prior knowledge).

In this paper we present our approach to the ‘search-
and-score’ method of BN learning. As a score for any
candidate BN we choose the log marginal likelihood
with Dirichlet priors over the parameters. We choose
these Dirichlet priors so that our score is the well-
known BDeu score. Throughout we set the effective
sample size for the BDeu score to be 1. The learning
problem is a discrete optimisation problem: find the
BN structure (DAG) with the highest BDeu score.

In Section 2 we present our integer programming (IP)
encoding of the problem. Section 3 shows how we use

a ‘branch-and-cut’ approach to solve the IP problem.
Section 4 describes how we find ‘cutting planes’. Sec-
tion 5 describes our fast greedy algorithm for find-
ing good but typically sub-optimal BNs. Section 6
presents our investigation into the convex hull of DAGs
with 3 or 4 nodes, the facets of which turn out to be
useful for learning DAGs with any number of nodes.
Section 7 is more discursive in nature: pointing out
interesting connections to the set covering and multi-
dimensional knapsack problems. The central con-
tribution of the paper—faster solving for exact BN
learning—is established in Section 8 where we present
our empirical results. We finish, as is the custom, with
conclusions and pointers to future work.

This paper assumes familiarity with Bayesian networks
and basic knowledge concerning BN learning. See [14]
for a comprehensive treatment of both these topics and
much more besides. The rest of the paper assumes
the reader knows what an integer program is: it is
a discrete optimisation problem where the objective
function is a linear function of the (discrete) problem
variables and where the set of feasible solutions is de-
fined by a finite set of linear inequalities over these
variables. The linear relaxation of the IP is obtained
by removing the constraint that the problem variables
take only integer values. For further reading on inte-
ger programming, consult e.g. [16]. We refer to the
variables in the learned BN structure as ‘nodes’ rather
than ‘variables’ to more clearly distinguish them from
IP variables.

2 Integer program encoding

We encode our BN structure learning problems as an
integer program (IP) so that the log marginal likeli-
hood of any DAG is a linear function of the IP vari-
ables. This requires creating binary ‘family’ variables
I(W → v) for each node v and candidate parent set
W , where I(W → v) = 1 iff W is the parent set for v.
This encoding has been used in previous work [5, 13, 6].

The objective function then becomes∑
v,W

c(v,W)I(W → v) (1)

where c(v,W) is the ‘local’ BDeu score for W being
the parents of v. This score is computed from the
data prior to the search for an optimal BN. Evidently
the number of such scores/variables increases exponen-
tially with p, the number of nodes in the BN. However
ifW ⊂W ′ and c(v,W) > c(v,W ′) then, in the absence
of any user constraints on the DAG, it is obvious that
W cannot be the parent set for v in any optimal BN
and thus there is no need to create the unnecessary
variable I(W ′ → v). Moreover, using a pruning tech-
nique devised by de Campos and Ji [9] it is possible to
prune the search for necessary variables so that local
scores for many unnecessary variables need never be
computed. Nonetheless, unless p is small (e.g. ≤ 12),
even with this pruning we typically have to make some
restriction on the number of candidate parent sets for
any node. See Section 8 for more on this.

The I(W → v) variables encode DAGs, but in many
cases one is more interested in Markov equivalence
classes of DAGs [14] which group together DAGs rep-
resenting the same conditional independence relations.
This has motivated the standard imset and later char-
acteristic imset representation [12]. A characteristic
imset c is a zero-one vector indexed by subsets C of BN
nodes such that c(C) = 1 iff there is a node v ∈ C such
that all nodes in C \{v} are parents of v. Importantly
two DAGs have the same characteristic imset represen-
tation iff they are Markov equivalent. This represen-
tation lends itself to an IP approach to BN structure
learning. Existing [12] and ongoing work shows en-
couraging results. Connecting the characteristic imset
representation to our ‘family’ representation we have
that for any DAG and any subset of nodes C:

c(C) =
∑
v∈C

∑
W :C\{v}⊆W

I(W → v) (2)

Returning to our own encoding, to ensure that IP so-
lutions correspond to DAGs two families of linear con-
straints are used. Let V be the set of BN nodes. The
convexity constraints

∀v ∈ V :
∑
W

I(W → v) = 1 (3)

simply ensure that any variable has exactly one parent
set. The ‘cluster’ constraints

∀C ⊆ V :
∑
v∈C

∑
W :W∩C=∅

I(W → v) ≥ 1 (4)

introduced by Jaakkola et al [13], ensure that the
graph has no cycles. For each cluster C the associ-
ated constraint declares that at least one v ∈ C has

no parents in C. Since there are exponentially many
cluster constraints these are added as ‘cutting planes’
in the course of solving.

3 Branch-and-cut algorithm

Let n be the number of I(W → v) variables so that
any instantiation of these variables can be viewed as
a point in {0, 1}n ⊂ [0, 1]n ⊂ Rn. Let Pcluster be the
polytope of all points in Rn which satisfy the bounds
on the variables, convexity constraints (3) and clus-
ter constraints (4). If a point in Pcluster is entirely
integer-valued (i.e. is in {0, 1}n) then it corresponds
to a DAG, but Pcluster also contains infinitely many
non-DAG points. Due to the p convexity equations
(3) this polytope is of dimension n − p. Note that all
points in Pcluster have an objective value (1) not just
those with integer values.

Jaakkola et al [13] consider the problem of finding a
point in Pcluster with maximal objective value. They
consider the dual problem and iteratively add dual
variables corresponding to cluster constraints. This
process is continued until the problem is solved or there
are too many dual variables. In the latter case branch-
and-bound is used to continue the solving process. A
‘decoding’ approach is used to extract DAGs from val-
ues of the dual variables.

We instead take a fairly standard ‘branch-and-cut’ ap-
proach to the problem. The essentials of branch-and-
cut are as follows, where LP solution is short for ‘so-
lution of the current linear relaxation’:

1. Let x* be the LP solution.

2. If there are valid inequalities

not satisfied by x*

add them and go to 1.

Else if x* is integer-valued then

the current problem is solved

Else branch on a variable with

non-integer value in x*

to create two new sub-IPs.

The added valid inequalities are called ‘cutting planes’
since they ‘cut off’ the LP solution x∗. This process
of cutting and perhaps branching is performed on all
nodes in the search tree. If the objective value of the
LP solution of a sub-IP is worse than the current best
integer solution then the tree is pruned at that point.
Note that the term ‘branch-and-cut’ is a little mislead-
ing since there is typically much cutting in the root
node before any branching is done.

Where Jaakkola et al added dual variables to the dual
problem we add cluster constraints as cutting planes
(cluster cuts) to the original ‘primal’ problem. We do

a complete search for cluster cuts so that if none can
be found we have a guarantee that the LP solution x∗

satisfies all cluster constraints (4). Note that there is
no need to find all cluster cuts to have this guarantee;
in practice only a small fraction of the exponentially
many cluster cuts need be found.

If no cluster cuts can be found (and the problem is
not solved) we search for three other sorts of cutting
planes: Gomory, strong Chvátal-Gomory (CG) and
zero-half cuts. If none of these cuts can be found we
branch on a fractional I(W → v) variable to create two
new sub-IPs as described above. Solving the problem
returns a guaranteed optimal BN. Since we are working
with the primal representation there is no decoding
required to extract the BN from the optimal values of
the I(W → v) variables: we just return the p variables
which are set to 1.

The algorithm is implemented using the the SCIP [1]
callable library (scip.zib.de). Implementing a basic
branch-and-cut algorithm with SCIP amounts to little
more than setting SCIP parameter flags appropriately.
We used SCIP’s built-in functions to search for Go-
mory, strong CG and zero-half cuts. We also used
SCIP’s default approach to branching. See [1] and the
SCIP documentation for details. However the search
for cluster cuts we implemented ourselves, plugging
it into the branch-and-cut algorithm as a SCIP con-
straint handler. This search is described in Section 4.
Our greedy algorithm for finding good BNs is imple-
mented as a SCIP primal heuristic and is described in
Section 5.

4 Finding cluster cuts

Our system GOBNILP 1.3 uses a sub-IP to search for
cluster cuts. The approach is essentially the same as
that presented by Cussens [6]. Nonetheless we describe
it here for completeness and because our current imple-
mentation has a simple but very effective optimisation
that was missing from the earlier one.

To understand the sub-IP first note that, due to the
convexity constraints, the constraint (4) for cluster C
can be reformulated as a knapsack constraint (5):∑

v∈C

∑
W :W∩C 6=∅

I(W → v) ≤ |C| − 1 (5)

In the sub-IP the cluster is represented by |V | = p bi-
nary variables I(v ∈ C) each with objective coefficient
of -1. Now let x∗(W → v) be the value of I(W → v)
in the LP solution. For each x∗(W → v) > 0 create a
sub-IP binary variable J(W → v) with an objective co-
efficient of x∗(W → v). Abbreviating

∑
v∈V I(v ∈ C)

to |C| the sub-IP is defined to be:

Maximise: − |C|+
∑

x∗(W → v)J(W → v) (6)

Subject to, for each J(W → v):

J(W → v)⇒ I(v ∈ C) (7)

J(W → v)⇒
∨

w∈W
I(w ∈ C) (8)

The constraints (7) and (8) are posted as SCIP
logicor clausal constraints and the sub-IP search is
set to depth-first, branching only on I(v ∈ C) vari-
ables. Note that logicor constraints are a special
type of linear constraint. It is a requirement that the
objective value is greater than -1. For efficiency this is
implemented directly as a limit on the objective value
(using SCIP’s SCIPsetObjlimit function) rather than
as a linear constraint. A final constraint dictates that
|C| ≥ 2.

In any feasible solution we have that

−|C|+
∑

x∗(W → v)J(W → v) > −1 (9)

Due to the constraints (7) and (8), for J(W → v) to
be non-zero v must be in the cluster C and at least
one element of W must also be in C. So (9) can be
rewritten as:

−|C|+
∑
v∈C

∑
W :W∩C 6=∅

x∗(W → v)J(W → v) > −1

(10)
It follows that the cluster C associated with a feasible
solution of the sub-IP has a cluster constraint which
is violated by the current LP solution x∗. Each fea-
sible solution of the IP thus corresponds to a valid
cutting plane. The sub-IP is always solved to optimal-
ity, (collecting any sub-optimal feasible solutions along
the way) so it follows that if the current LP solution
violates any cluster constraint then at least one will be
found.

In [6] a sub-IP was also used to find cutting planes.
However, there “a binary variable J(W → v) is created
for each family variable I(W → v) in the main IP.”
(our emphasis). In the current approach J(W → v)
variables are created only for I(W → v) variables
which are not zero in the LP solution. This greatly re-
duces the number of variables in the sub-IP (and thus
speeds up sub-IP solving) since typically most main
IP variables are set to zero in any LP solution.

5 Sink finding algorithm

Finding a good primal solution (i.e. a BN) early on
in the search is worthwhile even if it turns out to be

I(W1,1 → 1) I(W1,2 → 1) . . . I(W1,k1
→ 1)

I(W2,1 → 2) I(W2,2 → 2) . . . I(W2,k2 → 2)
I(W3,1 → 3) I(W3,2 → 3) . . . I(W3,k3

→ 3)
.
I(Wp,1 → p) I(Wp,2 → p) . . . I(Wp,kp → p)

Table 1: Example initial state of the sink-finding
heuristic for |V | = p. Rows need not be of the same
length.

suboptimal. High scoring solutions allow more effec-
tive branch-and-bound and may help in the root node
due to root reduced cost strengthening [1, §7.7]. If a
problem cannot be solved to optimality having a good,
albeit probably suboptimal, solution is even more im-
portant.

We have a ‘sink-finding’ algorithm which proposes pri-
mal solutions using the current LP solution. The al-
gorithm is based on two ideas: (i) that there might be
good primal solutions ‘near’ the current LP solution
and (ii) that an optimal BN is easily found if we can
correctly guess an optimal total ordering of BN nodes.
The first idea is common to all rounding heuristics.
SCIP has 6 built-in rounding heuristics and we allow
SCIP to run those that are fast and they do sometimes
find high scoring BNs. The second idea has been ex-
ploited in dynamic programming approaches to exact
BN learning [15].

To understand how the algorithm works consider Ta-
ble 1. The table has a row for each node and there
are p = |V | rows. The I(W → v) variables for each
node are ordered according to their objective coeffi-
cient c(v,W), so that, for example, W1,1 is the ‘best’
parent set for node 1 and W1,k1

the worst. The objec-
tive coefficients c(v,W) play no role in the sink-finding
algorithm other than to determine this ordering. Since
the number of available parent sets may differ between
nodes the rows will typically not be of the same length.

On the first iteration of the sink finding algorithm,
for each child variable the ‘cost’ of selecting its best-
scoring parent set is computed. This cost is 1 −
x∗(Wv,1 → v), where x∗(Wv,1 → v) is the value of
I(Wv,1 → v) in the LP solution.

Denote the child variable chosen as vp. In order to
ensure that the algorithm generates an acyclic graph
a total order is also generated. This is achieved by
setting I(W → v) to 0 if vp ∈ W . As a result vp
will be a sink node of the BN which the algorithm will
eventually construct.

Suppose that it turned out that vp = 2 and that node
2 was a member of parent sets W1,1, W3,2, Wp,1 and
Wp,2. The state of the algorithm at this point is illus-

I(W1,1 → 1) I(W1,2 → 1) . . . I(W1,k1
→ 1)

I(W2,1 → 2) I(W2,2 → 2) . . . I(W2,k2 → 2)
I(W3,1 → 3) I(W3,2 → 3) . . . I(W3,k3

→ 3)
.
I(Wp,1 → p) I(Wp,2 → p) . . . I(Wp,kp → p)

Table 2: Example intermediate state of the sink-
finding heuristic.

trated in Table 2. In the next iteration I(W3,1 → 3)
remains available as the ‘best’ parent set for node 3
but for node 1 the best parent set now is I(W1,2 → 1).
In the second and subsequent iterations the algorithm
continues to choose the best available parent set for
some node according to which choice of node has min-
imal cost. However in these non-initial iterations cost
is computed as (

∑
W∈ok(v) x

∗(W → v))−x∗(Wv,best →
v), where I(Wv,best → v) is the best scoring remaining
choice for v and ok(v) is the set of remaining parent
set choices for v. After each such selection, parent set
choices for remaining nodes are updated just like for
the first iteration. Note that the node selected at any
iteration will be a sink node (in the final DAG) for the
subset of nodes available at that point.

There is an added complication if some I(W → v) are
already fixed to 1 when the sink-finding algorithm is
run. This can happen either due to user constraints
or due to branching on I(W → v). Trying to rule out
such a variable leads the algorithm to abort.

Due to its greedy nature the sink finding algorithm
is very fast and so we can afford to run it after solv-
ing every LP relaxation. For example, in one of our
bigger examples, Diabetes 100, the sink-finding algo-
rithm was called 9425 times taking only 30s in total.
Note that each new batch of cutting planes produces
a new LP and thus a new LP solution. In this way
we use the LP to help us move around to search for
high-scoring BNs.

6 Tightening the LP relaxation

Given a collection of n I(W → v) variables, each feasi-
ble DAG corresponds to a (binary) vector in Rn. Con-
sider now P, the convex hull of these points and recall
Pcluster, the polytope defined in Section 3 containing
all points satisfying the variable bounds, the convex-
ity constraints (3) and all cluster constraints (4). As
Jaakkola et al [13] note, P is strictly contained within
Pcluster, except in certain special cases. GOBNILP uses
SCIP to add Gomory, strong CG and zero-half cutting
planes in addition to cluster cuts. This produces a
linear relaxation which is tighter than Pcluster and, as
the results presented in Section 8 show, typically im-

proves overall performance, although strong CG cuts
are generally not helpful. Denote the polytope de-
fined by adding these ‘extra’ cuts by P ′cluster. Since
the searches for Gomory, strong CG and zero-half cuts
are not complete P ′cluster is specific to the problem
instance and SCIP parameter settings.

In many cases it is not possible to separate a fractional
LP solution x∗ even with these extra cuts, so we have
x∗ 6∈ P but x∗ ∈ P ′cluster. This raises the question of
which inequalities are needed to define P. We have
approached this issue by carrying out empirical inves-
tigations into P when there are 3 or 4 nodes.

For 3 nodes {1, 2, 3} there are only 25 DAGs. We
eliminated the three I(∅ → v) variables using the
equations (3) and encoded each DAG using the re-
maining nine I(W → v) variables (3 remaining choices
of parent set for each node). The lrs algorithm [2] (
http://cgm.cs.mcgill.ca/~avis/C/lrs.html) was
used to find the facets of the convex hull of these 25
vertices in R9.

Denoting this convex hull as P3, we find that it has
17 facets. These are: 9 lower bounds on the vari-
ables, 3 inequalities corresponding to the original con-
vexity constraints, cluster constraints for the 4 clusters
{1, 2}, {1, 3}, {2, 3}, and {1, 2, 3} and one additional
constraint:

I({2, 3} → 1) + I({1, 3} → 2) + I({1, 2} → 3) ≤ 1
(11)

Consider the point y∗ in R9 specified by setting
I({2, 3} → 1) = 1

2 , I({1, 3} → 2) = 1
2 , I({1, 2} → 3) =

1
2 and all other variables to zero. It is not difficult to
see that this point is on the surface of Pcluster (lying on
the hyperplanes defined by the cluster constraints for
{1, 2}, {1, 3} and {2, 3}). However it does not satisfy
(11) and so is outside of P3. Note that there are nine
3-node DAGs where one node has two parents. All of
these DAGs lie on the hyperplane defined by (11). It
is easy to show that these 9 DAGs (= points in R9)
are affinely independent which establishes that (11) is
indeed a facet.

The point y∗ was also discussed by Jaakkola et al [13].
They considered the acyclic subgraph polytope Pdag

which is the convex hull of DAGs which results from
using binary variables to represent edges rather than
parent set choices. This polytope has been extensively
studied in discrete mathematics [11] and many (but
not all) classes of facets are known for it [10]. The
parent set representation can be projected onto the
edge representation (so that the former is an extended
formulation of the latter in the language of mathe-
matical programming). As Jaakkola et al observe the
projection of y∗ is a member of Pdag.

The inequality (11) can be generalised to give a class
of valid set packing inequalities:

∀C ⊆ V :
∑
v∈C

∑
W :C\{v}⊆W

I(W → v) ≤ 1 (12)

We have found that adding all non-trivial inequalities
of this sort for |C| ≤ 4 speeds up solving considerably
(see Section 8). This is because the LP relaxation is
tighter. Since there are not too many such inequali-
ties they are added directly to the IP rather than being
added as cutting planes. Note that making the con-
nection to characteristic imsets with (2) implies these
set packing constraints.

We have not found all facets of P4, which is a poly-
tope in R28 with 543 vertices (for the 543 4-node
DAGs). We terminated lrs after a week’s computation,
by which time it had found 64 facets. We detected 10
different types of facets which we have labelled 4A to
4J. We will provide a full description of these facet
classes in a forthcoming technical report. Here we just
give a brief overview.

Consider, as an example, 4B-type facets. They are
specified as follows:∑

v4∈W∧{v2,v3}∩W 6=∅

I(W → v1)

+
∑

v3∈W∨{v1,v4}⊆W

I(W → v2)

+
∑

v2∈W∨{v1,v4}⊆W

I(W → v3)

+
∑

v1∈W∧{v2,v3}∩W 6=∅

I(W → v4) ≤ 2 (13)

Consider the point z∗ ∈ R28 where all variables take
zero value except: I({3, 4} → 1) = 1

2 , I({1, 3} →
2) = 1

2 , I({1, 4} → 2) = 1
2 , I({2, 4} → 3) = 1

2 ,
I({1, 2} → 4) = 1

2 . It is easy to check that z∗ sat-
isfies all cluster constraints and any constraint of type
(12). However, setting vi = i in (13) we have that the
left-hand side is 2 1

2 and so (13) separates (i.e. cuts off)
z∗. It follows that adding 4B-type linear inequalities
results in a strictly tighter linear relaxation.

We have implemented 6 distinct cutting plane algo-
rithms to search for inequalities of types 4B, 4C, 4E,
4F, 4G and 4H. We call cuts of this sort convex4 cuts.
Type 4A cuts are cluster cuts, and cuts of type 4D,
4I and 4J have not appeared useful in preliminary ex-
periments. We have also experimented with adding
a limited number of convex4 cuts directly to the IP
rather than finding them ‘on the fly’ as cutting planes.

In practice we have found LP solutions which vio-
late these constraints but which none of our other

cutting planes can separate (the example z∗ was ex-
tracted from one such LP solution). Cuts of type 4B
appear to be particularly useful. Preliminary exper-
iments indicate that using convex4 cuts is typically
but not always beneficial. We have yet to do a con-
trolled evaluation, but using convex4 cuts with a dif-
ferent version of SCIP (SCIP 3.0) and a slightly dif-
ferent machine from that used to present our main re-
sults, we do have some partial preliminary results. Us-
ing convex4 cuts, problem instances alarm_3_10000,
carpo_3_100, carpo_3_1000, carpo_3_10000 and
Diabetes_2_100 took 54s, 612s, 92s, 660s and 1393s
to solve, respectively. All of these times are better
than using our properly evaluated system GOBNILP
1.3 (see Section 8). The improvement is particular
dramatic for alarm_3_10000 which takes 298s using
GOBNILP 1.3 and took 12872s using the system pre-
sented by Cussens [6]. On the other hand, prob-
lems hailfinder_3_1 and Pigs_2_1000 took 139s and
2809s respectively which is slower than GOBNILP 1.3.

7 Set covering and knapsack
representations

If the convexity constraints (3) are all relaxed to set
covering constraints: ∀v :

∑
W I(W → v) ≥ 1 then

the BN learning problem becomes a pure set cov-
ering problem—albeit one with exponentially many
constraints—since all the cluster constraints (4) are
already set covering constraints. It is not difficult to
show that any optimal solution to the set covering re-
laxation of our BN learning problem is also an optimal
solution to the original problem. This opens up the
possibility of applying known results concerning the
set covering polytope to the BN learning problem. In
particular, Balas and Ng [3] provide conditions for set
covering inequalities to be facets and also show that for
an inequality with integer coefficients and right-hand
side of 1 to be a facet it must be one of the set covering
inequalities defining the IP. This is a useful result for
BN learning. It shows there is no point looking for ‘ex-
tra’ set covering inequalities in the hope they might be
facets. Relaxed convexity constraints and cluster con-
straints are the only set covering inequalities that can
be facets.

As Balas and Ng [3] note, Chvátal’s procedure [4] can
be used to generate the convex hull of integer points
satisfying an IP after a finite number of applications.
They provide a specialised version of this procedure to
find a class of valid inequalities of the form αSx ≥ 2
for the set covering polytope. These inequalities dom-
inate all other valid inequalities of the form βx ≥ 2.
Each such inequality is defined by taking a set S of
set covering inequalities, and combining them to get a

new inequality (details omitted for space, see [3]).

We can use the procedure to get new inequal-
ities for the BN learning problem by combining
cluster constraints. For example combining the
constraints for C = {a, b}, C = {a, c}, C =
{a, d} produces:

∑
W :W∩{b,c,d}=∅ 2I(W → a) +∑

W :0<|W∩{b,c,d}|<3 I(W → a) +
∑

a6∈W I(W → b) +∑
a 6∈W I(W → c) +

∑
a 6∈W I(W → d) ≥ 2.

Our BN learning problem can also be reformulated as
a multi-dimensional 0-1 knapsack problem. Due to
the convexity constraints (4) we can eliminate each
I(∅ → v) variable by replacing it with the linear ex-
pression 1 −

∑
W 6=∅ I(W → v). Due to pre-pruning,

the objective value of I(∅ → v) will be lower than
that for all other I(W → v) variables and so once the
I(∅ → v) variables have been eliminated the remain-
ing variables will all have positive objective coefficient.
Eliminating I(∅ → v) variables from the cluster con-
straints produces the knapsack constraints (5) previ-
ously mentioned.

8 Results

The system GOBNILP 1.3 described in the previous
sections was implemented using C, with SCIP 2.1.1
used as the constraint solver. The underlying LP
solver was CPLEX 12.5. Both SCIP and CPLEX are
available for free under academic licences. All exper-
iments were performed using a single core of a 64-bit
Linux machine with a 2.80 GHz 4 core processor and
7.7 GB of RAM. A time out limit of 2 hours was
imposed across all experiments after which runs were
aborted. Our results can be reproduced by going to
http://www.cs.york.ac.uk/aig/sw/gobnilp.

Experiments were performed on data taken from a va-
riety of Bayesian networks, with different numbers of
observations, N , and with different limits, m, on the
maximum number of nodes considered as the parent
set of each node. The problem sets used are shown in
Table 3. Several of these problem sets were used in [6],
with additional larger networks and parent set sizes be-
ing added to assess performance on harder problems.
Local BDeu scores were computed for all experiments
external to the systems tested and the times taken to
compute and filter these are not included in the pre-
sented results. Score computation times ranged from
1 second to 5497 seconds in the longest case, diabetes
with N = 10000.

The primary experiment in this paper is to assess how
long GOBNILP 1.3 takes to find the BN with the high-
est score, and rule out the possibility of finding a BN
with a higher score for each dataset. In particular, we
compare how the system with all features introduced

in previous sections compared to the earlier IP-based
BN learning system presented by [6] (henceforth re-
ferred to as Cussens 2011).

Additionally, we examine the behaviour of the systems
in those situations in which they failed to find the high-
est scoring BN within the 2 hour time limit. Integer
Programming can be used as an any-time learning al-
gorithm, where a current best solution can be taken at
any point during the search, though this may not turn
out to be the eventual best solution. Specifically, our
aim here is to examine the examples which reached the
two hour solving time limit and determine how close to
finding a provably best BN they are at that point. This
gives an idea of how good that system would be for use
as an any-time algorithm, and acts as an (imperfect)
proxy for comparing how much longer the search pro-
cess would take to reach completion.

The Cussens 2011 system is not publicly available.
However, GOBNILP 1.0 is available and is closely based
on Cussens 2011 with some inefficiencies taken out.
Therefore, comparisons were performed against GOB-
NILP 1.0 using exactly the same machine and SCIP
and CPLEX versions as those used to run GOBNILP
1.3. These results are shown in Table 3. As the results
reported in [6] are performed on a broadly similar ma-
chine to that used for the current experiments, times
taken directly from that paper are also shown in the
table for illustrative purposes. Results are not shown
in the table for some data sets, as [6] did not study
and report them.

The results show that in the vast majority of cases,
GOBNILP 1.3 outperforms GOBNILP 1.0, often being
2–3 times faster. GOBNILP 1.3 is also never slower
than Cussens 2011 and for the larger examples is usu-
ally an order of magnitude quicker. For example, the
alarm 3 10000 data set takes over 3.5 hours to solve
using Cussens 2011, but less than 5 minutes using
GOBNILP 1.3. Some of the difference in run times be-
tween GOBNILP 1.3 and Cussens 2011 may be due to
different machines being used, however the vastly im-
proved performance on the larger examples undoubt-
edly reflects an overwhelming improvement.

In order to discover which aspects of GOBNILP 1.3
were leading to this improvement in performance, a
second set of experiments was conducted in which the
performance of the full system was compared to that
resulting from removing parts of the system one at a
time. Three features were identified as being suitable
to remove while still leaving a system that would still
result in the best BN being found, albeit potentially
not as efficiently. These three features were

Set Packing Constraints (Section 6) As these

(12) are logically implied by the basic problem,
without them the IP for finding the BN is still
correct.

Sink Primal Heuristic (Section 5) The algo-
rithm for finding feasible solutions through sink
finding is not necessary, but may improve the
search process through tightening the lower
bound on the best BN.

Value Propagator Explicitly determining which
values must be fixed at zero or one at each
node of the search tree is not necessary as this
information will eventually be discovered through
search. However, by performing this propagation
as early as possible, a significant amount of
search may be saved.

In addition, three cutting plane algorithms which are
built into SCIP are used within GOBNILP 1.3. These
three were chosen from those available in SCIP based
on preliminary experiments to determine which poten-
tial cuts would be added reasonably often and reason-
ably quickly. Each of these was also turned off in turn
in order to assess whether it was positively contribut-
ing to the improved performance.

Six modified versions of the GOBNILP 1.3 resulted
from this; three which each had one feature turned
off and three which each had one type of cutting plane
turned off. Each of the data sets was run on each of
these systems and the time taken to find the optimal
solution recorded. The results of these experiments
are shown in Table 3.

The results show the biggest change in solution time
occurs when the set packing constraints are removed.
In nearly every case, this leads to an increase in solu-
tion time. In fact the situation can be even more ex-
treme than the table suggests; for the pigs 1000 data
set, the system without the set packing constraints was
allowed to continue running beyond the time out limit
and had still not finished after more than 30 hours,
when the full system finished in about 30 minutes.

Furthermore, in cases in which the two hour time limit
was reached, the gap between the upper and lower
bounds at that point was much larger in the version
without set packing constraints than that for the full
system. Closer examination revealed that this was
because the score of the best BN found so far was
the same as in the full system, but significantly less
progress had been made in reducing the upper (dual)
bound.

It is not immediately clear from this table if using the
sinks heuristic aids the system or not. There are a
number of problems for which it decreases solution

N
et

w
or

k
m

p
N

F
am

il
ie

s
G
O
B
N
IL
P

1.
3

G
O
B
N
IL
P

1.
0

C
u

ss
en

s
2
0
1
1

W
it

h
o
u

t
S

o
lv

er
F

ea
tu

re
N

o
C

u
ts

o
f

T
y
p

e
N

ew
V

P
S

P
C

S
P

H
V

P
G

S
C

G
Z

H

h
ai

lfi
n

d
er

3
56

10
0

24
4

1
3

1
1

1
1

1
1

1
1

10
00

76
1

5
1
4

5
1
1

5
4

4
4

4
5

10
00

0
37

08
1
0
0

3
6
1

1
6
9

1
0
2

5
6

1
0
2

5
5
8

7
5

8
3

9
8

h
ai

lfi
n

d
er

4
56

10
0

41
06

1
8

2
7
0

3
4

1
8

3
4

1
8

1
3

1
3

1
9

10
00

76
7

4
1
4

1
0

4
4

5
6

4
4

10
00

0
43

30
6
8

9
3
4

6
2

1
2
8

5
8
7

2
1
6

7
1

7
1

7
0

al
ar

m
3

37

10
0

90
7

2
6

4
3

2
1

2
2

2
2

10
00

19
28

5
1
4

1
5

1
2

4
5

7
4

5
4

10
00

0
64

73
2
8
9

7
9
2

1
2
8
7
2

4
7
9

3
9
4

3
9
7

7
3
9

1
0
4
9

7
1
0

2
9
8

al
ar

m
4

37

10
0

12
93

2
7

9
2

7
3

2
2

2

10
00

20
97

7
1
5

2
1

6
8

6
3

6
7

10
00

0
84

45
3
9
8

8
3
9

1
2
5
3

8
0
6

1
4
2
1

6
3
3

1
5
6
7

1
0
5
2

3
9
8

ca
rp

o
3

60

10
0

50
68

7
5
6

8
8
7

1
5
1
7
6

7
4
2

6
2
8

7
1
6

6
9
0

6
4
2

7
4
0

6
5
1

10
00

38
27

1
0
6

1
7
1

5
9
3

1
4
3

1
3
4

1
1
5

1
1
7

1
0
4

1
1
0

9
9

10
00

0
16

39
1

1
3
1
1

5
6
6

4
2
2
7
5

2
1
5
8

1
5
7
4

1
0
7
1

4
3
5
0

1
0
3
2

2
0
5
7

1
2
8
6

ca
rp

o
4

60

10
0

13
18

5
[0

%
]

[1
%

]
6
6
4
9

[0
%

]
[0

%
]

[0
%

]
7
0
1
4

[0
%

]
[0

%
]

10
00

47
22

1
5
1

4
0
6

2
5
2

1
6
8

1
8
8

2
4
0

2
0
8

1
4
0

1
4
9

10
00

0
34

54
0

[0
%

]
4
0
6
5

[0
%

]
[0

%
]

[0
%

]
[0

%
]

[0
%

]
[0

%
]

[0
%

]

d
ia

b
et

es
2

41
3

10
0

44
41

2
9
8
2

[3
1

%
]

[3
9

%
]

3
0
8
2

3
0
4
0

3
0
3
6

1
5
0
6

3
2
1
2

2
7
4
5

10
00

21
49

3
[1

7
%

]
[2

3
%

]
[1

6
8

%
]

[1
9
9

%
]

[1
6
%

]
[1

7
%

]
[1
5

%
]

[1
7
%

]
[1

8
%

]

10
00

0
26

21
29

[4
4
%

]
[1
7

%
]

[3
7
8

%
]

[3
8
0

%
]

[4
4
%

]
[4

4
%

]
[4

4
%

]
[4

4
%

]
[4

4
%

]

p
ig

s
2

44
1

10
0

26
92

8
9

[0
%

]
5
1
0
3

8
7

3
2

8
8

8
5

8
9

3
2

10
00

15
84

7
1
8
1
8

[7
%

]
[8

%
]

1
7
8
8

1
7
1
5

1
7
1
4

1
8
0
2

1
8
2
2

1
6
5
7

10
00

0
30

42
19

[3
%

]
[9

%
]

[1
3

%
]

[4
2

%
]

[3
%

]
[3

%
]

[3
%

]
[3

%
]

[3
%

]

T
ab

le
3:

C
om

p
ar

is
on

of
G
O
B
N
IL
P

1.
3

w
it

h
ol

d
er

sy
st

em
s

a
n

d
im

p
a
ct

o
f

va
ri

o
u

s
fe

a
tu

re
s.
p

is
th

e
n
u

m
b

er
o
f

va
ri

a
b

le
s

in
th

e
d

a
ta

se
t.
m

is
th

e
li

m
it

on
th

e
n
u

m
b

er
of

p
ar

en
ts

of
ea

ch
va

ri
ab

le
.
N

is
th

e
n
u

m
b

er
o
f

o
b

se
rv

a
ti

o
n

s
in

th
e

d
a
ta

se
t.

F
a
m

il
ie

s
is

th
e

n
u

m
b

er
o
f

fa
m

il
y

va
ri

a
b

le
s

in
th

e
d

a
ta

se
t

af
te

r
p

ru
n
in

g.
A

ll
ti

m
es

ar
e

gi
v
en

in
se

co
n

d
s

(r
ou

n
d

ed
).

“
[—

]”
in

d
ic

a
te

s
th

a
t

th
e

so
lu

ti
o
n

h
a
d

n
o
t

b
ee

n
fo

u
n

d
a
ft

er
2

h
o
u

rs
—

th
e

va
lu

e
g
iv

en
is

th
e

g
a
p

,
ro

u
n

d
ed

to
th

e
n

ea
re

st
p

er
ce

n
t,

b
et

w
ee

n
th

e
sc

or
e

of
th

e
b

es
t

fo
u

n
d

B
N

a
n

d
th

e
u

p
p

er
b

o
u

n
d

o
n

th
e

sc
or

e
o
f

th
e

b
es

t
p

o
te

n
ti

a
l

B
N

,
a
s

a
p

er
ce

n
ta

g
e

o
f

th
e

sc
or

e
of

th
e

b
es

t
fo

u
n

d
B

N
.

E
n
tr

ie
s

in
it

al
ic

s
ar

e
a
t

le
a
st

1
0
%

w
o
rs

e
th

a
n
G
O
B
N
IL
P
1.
3,

w
h
il

e
th

o
se

in
b

o
ld

a
re

a
t

le
a
st

1
0
%

b
et

te
r.

K
ey

:
S

P
C

–
S

et
P

ac
k
in

g
C

on
st

ra
in

ts
,

S
P

H
–

S
in

k
P

ri
m

al
H

eu
ri

st
ic

,
V

P
–

V
a
lu

e
P

ro
p

a
g
a
to

r,
G

–
G

o
m

o
ry

cu
ts

,
S

C
G

–
S
tr

o
n

g
C

G
cu

ts
,

Z
H

–
Z

er
o
-h

a
lf

cu
ts

.

time and a number for which it increases it. For the
most difficult problems, it appears to have little im-
pact on solving time. As with the version without
set packing constraints, the system without the primal
heuristic also resulted in much larger gaps between the
bounds in cases where it reached the time out limit.
For the version without the primal heuristic, the dif-
ference is due to the best BN found so far being sig-
nificantly worse after the time had elapsed, while the
upper bound on the best possible BN that could be
found was virtually identical to the full system. This
latter point suggests that, while the sinks heuristic was
of questionable value when solving problems to com-
pletion, on larger problems for which the algorithm
may run out of time or resources before successfully
finding the provably best BN, the heuristic plays an
import role in ensuring that the best BN found so far
is of high score.

The evidence for the effectiveness of the propagation
is also mixed. In some cases, the system performs
faster without the propagation, though study of the log
files reveals this is almost exclusively down to the time
spent directly carrying out propagation. Having noted
this, a new faster propagator was created and used to
replace the existing one. The result of running the full
system with this faster propagator was to achieve a
minor improvement over both the full system and the
system without a propagator, as shown in the final
column of Table 3.

The usefulness of each of the cutting plane algorithms
is much clearer. Without Gomory cuts, the system is
often slower and frequently by a large amount. On
the other hand, removing Strong CG cuts usually im-
proves the system’s performance with one notable ex-
ception. Though checking log files, it can be confirmed
that little time is spent generating Strong CG cuts and
hence the improvement without them is due to a bet-
ter search strategy rather than just a saving on the
time spent adding these cuts. Zero-half cuts appear to
have less effect than the other two studied but reduce
solving time noticeably on two fairly large problems.

9 Conclusions and future work

Our principal conclusion is that IP is an attractive
framework for exact BN learning from complete dis-
crete data. However, as our comparative experiments
demonstrate, some care (and empirical investigation)
is required to properly exploit its potential. We have
shown considerable advances over the results presented
by Cussens [6] who himself presented faster solving
times on four problems than [13]. However, it would
clearly be desirable to compare GOBNILP 1.3 against
further exact BN learning systems, not necessarily IP-

based. We intend to compare against the URLearning
system [17] in the immediate future.

In this paper we have focused on efficiently finding
BNs with maximal score subject to constraints on par-
ent set size. This raises the question of whether it is
worth the effort to do this if one’s ultimate goal is to
return a DAG with high structural accuracy. In the
context of ‘pedigree reconstruction’, work by Cussens
et al [8] answers this question in the positive. In that
paper an exact learning approach led to high structural
accuracy. However, in a pedigree (a ‘family tree’) no
node can have more than two parents. In other ap-
plications where the ‘true’ structure may have nodes
with many parents our current restriction on parent
set size may lead to poor structural accuracy. This is
a clear limitation which we intend to address by the
IP technique of delayed column generation where IP
variables (i.e. parent sets) are created during solving
[7].

In practical applications one often has prior knowl-
edge concerning the (likely) structure of the ‘true’ BN.
Because our GOBNILP 1.3 system is an example of
declarative machine learning it is very easy to allow
the user to declare constraints on BN structure when
these can be encoded as linear constraints. Although
we have not exploited it in the experiments reported
here, GOBNILP 1.3 allows the user to declare the ab-
sence/presence of (i) particular directed edges, (ii) par-
ticular adjacencies and (iii) particular immoralities. In
addition upper and lower bounds on the number of
edges and founder nodes are possible. It is also pos-
sible to rule out specific BNs with a linear constraint.
This allows GOBNILP 1.3 to not only find the optimal
BN but also the top k BNs in decreasing order of score.

Acknowledgements

Thanks to Milan Studený, Raymond Hemmecke and
David Haws for useful discussions concerning the im-
set representation. We would like to thank three
anonymous referees for their valuable comments. This
work has been supported by the UK Medical Research
Council (Project Grant G1002312). This work bene-
fited from a visit by the second author to the Helsinki
Institute for Information Technology supported by the
Finnish Centre of Excellence in Computational Infer-
ence Research (COIN).

References

[1] Tobias Achterberg. Constraint Integer Program-
ming. PhD thesis, TU Berlin, July 2007.

[2] David Avis. A revised implementation of the re-
verse search vertex enumeration algorithm. In Gil

Kalai and Günter M. Ziegler, editors, Polytopes
Combinatorics and Computation, volume 29 of
DMV Seminar, pages 177–198. Birkhuser Basel,
2000.

[3] Egon Balas and Shu Ming Ng. On the set cov-
ering polytope: 1. All the facets with coefficients
in {0,1,2}. Mathematical Programming, 43:57–69,
1989.

[4] Vacláv Chvátal. Edmonds polytopes and a hier-
archy of combinatorial problems. Discrete Math-
ematics, 4:305–337, 1973.

[5] James Cussens. Bayesian network learning by
compiling to weighted MAX-SAT. In Proceed-
ings of the 24th Conference on Uncertainty in Ar-
tificial Intelligence (UAI 2008), pages 105–112,
Helsinki, 2008. AUAI Press.

[6] James Cussens. Bayesian network learning with
cutting planes. In Fabio G. Cozman and Avi Pfef-
fer, editors, Proceedings of the 27th Conference on
Uncertainty in Artificial Intelligence (UAI 2011),
pages 153–160, Barcelona, 2011. AUAI Press.

[7] James Cussens. Column generation for exact BN
learning: Work in progress. In Proc. ECAI-2012
workshop on COmbining COnstraint solving with
MIning and LEarning (CoCoMile 2012), 2012.

[8] James Cussens, Mark Bartlett, Elinor M. Jones,
and Nuala A. Sheehan. Maximum likelihood pedi-
gree reconstruction using integer linear program-
ming. Genetic Epidemiology, 37(1):69–83, Janary
2013.

[9] Cassio de Campos and Qiang Ji. Properties of
Bayesian Dirichlet scores to learn Bayesian net-
work structures. In AAAI-10, pages 431–436,
2010.

[10] Michel X. Goemans and Leslie A. Hall. The
strongest facets of the acyclic subgraph poly-
tope are unknown. In Integer Programming and
Combinatorial Optimization, volume 1084 of Lec-
tures Notes in Computer Science, pages 415–429.
Springer, 1996.

[11] Martin Grötschel, Michael Jünger, and Gerhard
Reinelt. On the acyclic subgraph polytope. Math-
ematical Programming, 33(1):28–42, 1985.

[12] Raymond Hemmecke, Silvia Lindner, and Mi-
lan Studený. Characteristic imsets for learning
Bayesian network structure. International Jour-
nal of Approximate Reasoning, 53:1336–1349,
2012.

[13] Tommi Jaakkola, David Sontag, Amir Globerson,
and Marina Meila. Learning Bayesian network
structure using LP relaxations. In Proceedings of
13th International Conference on Artificial Intel-
ligence and Statistics (AISTATS 2010), volume 9,
pages 358–365, 2010. Journal of Machine Learn-
ing Research Workshop and Conference Proceed-
ings.

[14] Daphne Koller and Nir Friedman. Probabilis-
tic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[15] Tomi Silander and Petri Myllymäki. A simple ap-
proach for finding the globally optimal Bayesian
network structure. In Proceedings of the 22nd
Conference on Uncertainty in Artificial Intelli-
gence (UAI-06), pages 445–45, 2006.

[16] Laurence A. Wolsey. Integer Programming. John
Wiley, 1998.

[17] Changhe Yuan and Brandon Malone. An im-
proved admissible heuristic for learning optimal
Bayesian networks. In Proceedings of the 28th
Conference on Uncertainty in Artificial Intelli-
gence (UAI-12), Catalina Island, CA, 2012.

