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Abstract

Graphical models for structured domains are
powerful tools, but the computational com-
plexities of combinatorial prediction spaces
can force restrictions on models, or re-
quire approximate inference in order to be
tractable. Instead of working in a combina-
torial space, we use hinge-loss Markov ran-
dom fields (HL-MRFs), an expressive class
of graphical models with log-concave density
functions over continuous variables, which
can represent confidences in discrete predic-
tions. This paper demonstrates that HL-
MRFs are general tools for fast and accu-
rate structured prediction. We introduce the
first inference algorithm that is both scalable
and applicable to the full class of HL-MRFs,
and show how to train HL-MRFs with several
learning algorithms. Our experiments show
that HL-MRFs match or surpass the predic-
tive performance of state-of-the-art methods,
including discrete models, in four application
domains.

1 INTRODUCTION

The study of probabilistic modeling in structured
and relational domains primarily focuses on predict-
ing discrete variables [12, 19, 24]. However, except
for some isolated cases, the combinatorial nature of
discrete, structured prediction spaces requires conces-
sions: most notably, for inference algorithms to be
tractable, they must be relaxed or approximate (e.g.,
[19, 22, 25]), or the model’s structure must be re-
stricted (e.g., [2, 8]). Broecheler et al. [6] introduced
a class of models for continuous variables that has the
potential to combine fast and exact inference with the
expressivity of discrete graphical models, but this po-
tential has not been well explored. Now called hinge-

loss Markov random fields (HL-MRFs) [3], these mod-
els are analogous to discrete Markov random fields,
except that random variables are continuous valued
in the unit interval [0,1], and potentials are linear or
squared hinge-loss functions.

In this work, we demonstrate that HL-MRFs are
powerful tools for structured prediction by producing
state-of-the-art performance in a number of domains.
We are the first to leverage some of the most pow-
erful features of HL-MRFs, such as squared poten-
tials, which we show produce better results on mul-
tiple tasks. We show that HL-MRFs are well-suited to
structured prediction for the following reasons. They
are expressive, interpretable, and easily defined using
the modeling language probabilistic soft logic (PSL)
[6, 13]. Further, continuous variables are useful both
for modeling continuous data as well as for expressing
confidences in discrete predictions. Confidences are
desirable for the same reason that practitioners often
prefer marginal probabilities to the single most prob-
able discrete prediction. Finally, HL-MRFs have log-
concave density functions, so finding an exact most
probable explanation (MPE) for a given input is a
convex optimization, and therefore exactly solvable in
polynomial time.

Our specific contributions include the following. First,
we introduce a new, fast algorithm for MPE inference
in HL-MRFs, which is the first to be both scalable
and applicable to the full class of HL-MRFs. Sec-
ond, we show how to train HL-MRFs with several
learning algorithms. Third, we show empirically that
these advances enable HL-MRFs to tackle a diverse set
of relational and structured prediction tasks, provid-
ing state-of-the-art performance on collective classifi-
cation, social-trust prediction, collaborative filtering,
and image reconstruction. In particular, we show that
HL-MRFs can outperform their discrete counterparts,
as well as other leading methods.



1.1 RELATED WORK

Probabilistic soft logic (PSL) [6, 13] is a declarative
language for defining templated HL-MRFs. Its de-
velopment was partially motivated by the need for
rich models of continuous similarity values, for use
in tasks such as entity resolution, collective classifi-
cation, and ontology alignment. PSL is in a family of
systems for defining templated, relational probabilistic
models that includes, for instance, Markov logic net-
works [19], relational dependency networks [17], and
relational Markov networks [23]. In our experiments,
we compare against Markov logic networks, which use
a first-order syntax similar to PSL’s to build discrete
probabilistic models.

MPE inference algorithms for HL-MRFs solve a con-
strained, convex optimization. A standard approach
for general, constrained, convex optimization is to use
an interior-point method, which Broecheler et al. [6]
use. While theoretically efficient, the practical run-
ning time of interior-point optimizers quickly becomes
cumbersome for large problems. For discrete graph-
ical models, recent advances use consensus optimiza-
tion to obtain fast, approximate MPE inference algo-
rithms [5, 15, 16]. Bach et al. [3] recently developed
an analogous algorithm for exact MPE inference in
HL-MRFs that produced a significant improvement in
running time over interior-point methods, though it
was limited to pairwise potentials and constraints, and
cost considerably more computation to optimize over
squared potentials.

The learning methods we adapt for HL-MRFs are stan-
dard approaches for learning parameters of probabilis-
tic models. In particular, our adaptations are anal-
ogous to previous learning algorithms for relational
and structured models using approximate maximum-
likelihood or maximum-pseudolikelihood estimation
[6, 14, 17, 19] and large-margin estimation [11, 12, 24].

2 HINGE-LOSS MARKOV
RANDOM FIELDS

Hinge-loss Markov random fields (HL-MRFs) are a
general class of conditional, continuous probabilistic
models [3]. HL-MRFs are log-linear models whose fea-
tures are hinge-loss functions of the variable states.
Through constructions based on soft logic, hinge-loss
potentials can be used to model generalizations of log-
ical conjunction and implication. HL-MRFs can be
defined using the modeling language probabilistic soft
logic (PSL) [6, 13], making these powerful models in-
terpretable, flexible, and expressive. In this section, we
formally present constrained hinge-loss energy func-
tions, HL-MRFs, and briefly review PSL.

Definition 1. Let Y = (Y1, . . . , Yn) be a vector of
n variables and X = (X1, . . . , Xn′) a vector of n′

variables with joint domain D = [0, 1]n+n′
. Let φ =

(φ1, . . . , φm) be m continuous potentials of the form

φj(Y,X) = [max {`j(Y,X), 0}]pj

where `j is a linear function of Y and X and pj ∈
{1, 2}. Let C = (C1, . . . , Cr) be linear constraint func-
tions associated with index sets denoting equality con-
straints E and inequality constraints I, which define
the feasible set

D̃ =

{
Y,X ∈ D

∣∣∣∣ Ck(Y,X) = 0,∀k ∈ E
Ck(Y,X) ≥ 0,∀k ∈ I

}
.

For Y,X ∈ D̃, given a vector of nonnegative free
parameters, i.e., weights, λ = (λ1, . . . , λm), a con-
strained hinge-loss energy function fλ is defined as

fλ(Y,X) =

m∑
j=1

λjφj(Y,X) .

Definition 2. A hinge-loss Markov random field P
over random variables Y and conditioned on random
variables X is a probability density defined as follows:
if Y,X /∈ D̃, then P (Y|X) = 0; if Y,X ∈ D̃, then

P (Y|X) =
1

Z(λ)
exp [−fλ(Y,X)] ,

where Z(λ) =
∫
Y

exp [−fλ(Y,X)].

Thus, MPE inference is equivalent to finding the min-
imizer of the convex energy fλ.

The potentials and weights can be grouped together
into templates, which can be used to define general
classes of HL-MRFs that are parameterized by the in-
put data. Let T = (t1, . . . , ts) denote a vector of tem-
plates with associated weights Λ = (Λ1, . . . ,Λs). We
partition the potentials by their associated templates
and let Φq(Y,X) =

∑
j∈tq φj(Y,X) for all tq ∈ T . In

the HL-MRF, the weight of the j’th hinge-loss poten-
tial is set to the weight of the template from which it
was derived, i.e., λj = Λq, for each j ∈ tq.

Probabilistic soft logic [6, 13] provides a natural in-
terface to represent hinge-loss potential templates us-
ing logical rules. In particular, a logical conjunc-
tion of Boolean variables X ∧ Y can be general-
ized to continuous variables using the hinge function
max{X+Y −1, 0}, which is known as the Lukasiewicz
t-norm. Disjunction X∨Y is relaxed to min{X+Y, 1},
and negation ¬X to 1 − X. PSL allows modelers to
design rules that, given data, ground out substitutions
for logical terms. The groundings of a template define
hinge-loss potentials that share the same weight and



have the form one minus the truth value of the ground
rule. We defer to Broecheler et al. [6] and Kimmig
et al. [13] for details on PSL.

To further demonstrate this templating, consider the
task of predicting who trusts whom in a social network.
Let the network contain three individuals: A, B, and
C. We can design an HL-MRF to include potentials
that encode the belief that trust is transitive (which
is a rule we use in our experiments). Let the variable
YA,B represent how much A trusts B, and similarly so
for YB,C and YA,C . Then the potential

φ(Y,X) = [max{YA,B + YB,C − YA,C − 1, 0}]p

is equivalent to one minus the truth value of
the Boolean formula YA,B ∧ YB,C → YA,C when
YA,B , YB,C , YA,C ∈ {0, 1}. When they are allowed to
take on their full range [0, 1], the potential is a convex
relaxation of the implication. An HL-MRF with this
potential function assigns higher probability to vari-
able states that satisfy the logical implication above,
which can occur to varying degrees in the continuous
domain. Given a social network with more than these
three individuals, PSL can ground out possible sub-
stitutions for the roles of A, B, and C to generate
potential functions for each substitution, thus defining
the full, ground HL-MRF.

HL-MRFs support a few additional components useful
for modeling. The constraints in Definition 1 allow the
encoding of functional modeling requirements, which
is useful, e.g., when variables correspond to mutually
exclusive labels, and thus should sum to one. The
exponent parameter pj allows flexibility in the shape
of the hinge, affecting the sharpness of the penalty for
violating the logical implication. Setting pj to 1 penal-
izes violation linearly with the amount the implication
is unsatisfied, while setting pj to 2 penalizes small vi-
olations much less. In effect, some linear potentials
overrule others, while the influences of squared poten-
tials are averaged together.

3 MPE INFERENCE

MPE inference for HL-MRFs requires finding a feasible
assignment that minimizes fλ. Performing MPE infer-
ence quickly is crucial, especially because weight learn-
ing often requires performing inference many times
with different weights (as we discuss in Section 4).
Here, HL-MRFs have a distinct advantage over gen-
eral discrete models, since minimizing fλ is a convex
optimization rather than a combinatorial one. In this
section, we detail a new, faster MPE inference algo-
rithm for HL-MRFs.

Bach et al. [3] showed how to minimize fλ with
a consensus-optimization algorithm, based on the

alternating-direction method of multipliers (ADMM)
[5]. The algorithm works by creating local copies of the
variables in each potential and constraint, constrain-
ing them to be equal to the original variables, and re-
laxing those equality constraints to make independent
subproblems. By solving the subproblems repeatedly
and averaging the results, the algorithm reaches a con-
sensus on the best values of the original variables, also
called the consensus variables. This procedure is guar-
anteed to converge to the global minimizer of fλ. See
[3] and [5] for more details on consensus optimization
and ADMM.

This previous consensus-optimization approach to
MPE inference works well for linear potentials with at
most two unobserved variables, and empirical evidence
suggests it scales linearly with the size of the problem
[3]. However, it is restricted to pairwise potentials and
constraints, and requires an interior-point method as
a subroutine to solve subproblems induced by squared
potentials. Because of the embedded interior-point
method, its running time can increase roughly 100-fold
with squared potentials [3].

We improve the algorithm of Bach et al. [3] by refor-
mulating the optimization to enforce Y ∈ [0, 1]n only
on the consensus variables, not the local copies. This
form of consensus optimization is described in greater
detail by Boyd et al. [5]. The result is that, in our algo-
rithm, the potentials and constraints are not restricted
to a certain number of unknowns, and the subproblems
can all be solved quickly using simple linear algebra.

Algorithm 1 gives pseudocode for our new algorithm.
It starts by initializing local copies of the variables that
appear in each potential and constraint, along with
a corresponding Lagrange multiplier for each copy.
Then, until convergence, it iteratively updates La-
grange multipliers and solves suproblems induced by
the HL-MRF’s potentials and constraints. If the sub-
problem is induced by a potential, it sets the local vari-
able copies to a balance between the minimizer of the
potential and the emerging consensus. Eventually the
Lagrange multipliers will enforce agreement between
the local copies and the consensus. If instead the sub-
problem is induced by a constraint in the HL-MRF,
the algorithm projects the consensus variables’ current
values to that constraint’s feasible region. The con-
sensus variables are updated at each iteration based
on the values of their local copies and corresponding
Lagrange multipliers, and clipped to [0,1].

We take the same basic approach as Bach et al. [3] to
solve the subproblems. We first try to find a minimizer
on either side of the hinge (where `j(Y,X) is either
positive or negative) before projecting onto the plane
defined by `j(Y,X) = 0. Without the constraints on



Algorithm 1 MPE Inference for HL-MRFs

Input: HL-MRF(Y,X, φ, λ, C, E , I), ρ > 0

Initialize yj as copies of the variables Yj that appear
in φj , j = 1, . . . ,m

Initialize yk+m as copies of the variables Yk+m

that appear in Ck, k = 1, . . . , r
Initialize Lagrange multipliers αi corresponding to

variable copies yi, i = 1, . . . ,m+ r

while not converged do

for j = 1, . . . ,m do
αj ← αj + ρ(yj −Yj)
yj ← Yj −αj/ρ
if `j(yj ,X) > 0 then

yj ← arg minyj

[
λj [`j(yj ,X)]pj

+ρ
2‖yj −Yj + 1

ραj‖
2
2

]
if `j(yj ,X) < 0 then

yj ← Proj`j=0(Yj)
end if

end if
end for

for k = 1, . . . , r do
αk+m ← αk+m + ρ(yk+m −Yk+m)
yk+m ← ProjCk

(Yk+m)
end for

for i = 1, . . . , n do

Yi ← 1
|copies(Yi)|

∑
yc∈copies(Yi)

(
yc + αc

ρ

)
Clip Yi to [0,1]

end for

end while

the local variable copies, finding these minimizers and
projections is much simpler. Solving for the constraint
subproblems is now also simpler, requiring just a pro-
jection onto a hyperplane or a halfspace.

Our algorithm retains all of the benefits of the original
MPE inference algorithm while removing all restric-
tions on the numbers of unknowns in the potentials
and constraints, making MPE inference fast with both
linear and squared potentials. Another advantage of
consensus optimization for MPE inference is that it is
easy to warm start. Warm starting provides signifi-
cant efficiency gains when inference is repeated on the
same HL-MRF with small changes in the weights, as
often occurs during weight learning.

4 WEIGHT LEARNING

In this section, we present three weight learning meth-
ods for HL-MRFs, each with a different objective func-
tion, two of which are new for learning HL-MRFs.
The first method, introduced by Broecheler et al. [6],

performs approximate maximum-likelihood estimation
using MPE inference to approximate the gradient of
the log-likelihood. The second method maximizes the
pseudolikelihood. The third method finds a large-
margin solution, preferring weights that discriminate
the ground truth from other states. We describe below
how to apply these learning strategies to HL-MRFs.

4.1 MAXIMUM-LIKELIHOOD
ESTIMATION

The canonical approach for learning parameters Λ is
to maximize the log-likelihood of training data. The
partial derivative of the log-likelihood with respect to
a parameter Λq is

∂ log p(Y|X)

∂Λq
= EΛ [Φq(Y,X)]− Φq(Y,X) ,

where EΛ is the expectation under the distribution de-
fined by Λ. The voted perceptron algorithm [7] opti-
mizes Λ by taking steps of fixed length in the direc-
tion of the gradient, then averaging the points after
all steps. Any step that is outside the feasible region
is projected back before continuing. For a smoother
ascent, it is often helpful to divide the q-th component
of the gradient by the number of groundings |tq| of the
q’th template [14], which we do in our experiments.
Computing the expectation is intractable, so we use
a common approximation: the values of the potential
functions at the most probable setting of Y with the
current parameters [6].

4.2 MAXIMUM-PSEUDOLIKELIHOOD
ESTIMATION

Since exact maximum likelihood estimation is in-
tractable in general, we can instead perform
maximum-pseudolikelihood estimation (MPLE) [4],
which maximizes the likelihood of each variable condi-
tioned on all other variables, i.e.,

P ∗(Y|X) =

n∏
i=1

P ∗(Yi|MB(Yi))

=

n∏
i=1

1

Z(λ, Yi)
exp

[
−f iλ(Yi,Y,X)

]
;

Z(λ, Yi) =

∫
Yi

exp
[
−f iλ(Yi,Y,X)

]
;

f iλ(Yi,Y,X) =
∑
j:i∈φj

λjφj
(
{Yi ∪Y\i},X

)
.

Here, i ∈ φj means that Yi is involved in φj , and
MB(Yi) denotes the Markov blanket of Yi—that is,
the set of variables that co-occur with Yi in any po-



tential function. The partial derivative of the log-
pseudolikelihood with respect to Λq is

∂ logP ∗(Y |X)

∂Λq
=

n∑
i=1

EYi|MB

 ∑
j∈tq :i∈φj

φj(Y,X)


− Φj(Y,X).

Computing the pseudolikelihood gradient does not re-
quire inference and takes time linear in the size of
Y. However, the integral in the above expectation
does not readily admit a closed-form antiderivative,
so we approximate the expectation. When a variable
in unconstrained, the domain of integration is a one-
dimensional interval on the real number line, so Monte
Carlo integration quickly converges to an accurate es-
timate of the expectation.

We can also apply MPLE when the constraints are not
too interdependent. For example, for linear equality
constraints over disjoint groups of variables (e.g., vari-
able sets that must sum to 1.0), we can block-sample
the constrained variables by sampling uniformly from
a simplex. These types of constraints are often used
to represent mutual exclusivity of classification labels.
We can compute accurate estimates quickly because
these blocks are typically low-dimensional.

4.3 LARGE-MARGIN ESTIMATION

A different approach to learning drops the probabilistic
interpretation of the model and views HL-MRF infer-
ence as a prediction function. Large-margin estima-
tion (LME) shifts the goal of learning from producing
accurate probabilistic models to instead producing ac-
curate MPE predictions. The learning task is then to
find the weights Λ that provide high-accuracy struc-
tured predictions. We describe in this section a large-
margin method based on the cutting-plane approach
for structural support vector machines (SVMs) [12].

The intuition behind large-margin structured predic-
tion is that the ground-truth state should have energy
lower than any alternate state by a large margin. In
our setting, the output space is continuous, so we pa-
rameterize this margin criterion with a continuous loss
function. For any valid output state Ỹ, a large-margin
solution should satisfy:

fλ(Y,X) ≤ fλ(Ỹ,X)− L(Y, Ỹ),∀Ỹ,

where the decomposable loss function L(Y, Ỹ) =∑
i L(Yi, Ỹi) measures the disagreement between a

state Ỹ and the training label state Y. We define
L as the `1 distance. Since we do not expect all prob-
lems to be perfectly separable, we relax this constraint
with a penalized slack ξ. We obtain a convex learning

objective for a large-margin solution

min
Λ≥0

1

2
||Λ||2 + Cξ

s.t. Λ>(Φ(Y,X)− Φ(Ỹ,X)) ≤ −L(Y, Ỹ) + ξ,∀Y,

where Φ(Y,X) = (Φ1(Y,X), . . . ,Φs(Y,X)). This
formulation is analogous to the margin-rescaling ap-
proach by Joachims et al. [12]. Though such a struc-
tured objective is natural and intuitive, its number
of constraints is the cardinality of the output space,
which here is infinite. Following their approach, we
optimize subject to the infinite constraint set using
a cutting-plane algorithm: we greedily grow a set K
of constraints by iteratively adding the worst-violated
constrain given by a separation oracle, then updating
Λ subject to the current constraints. The goal of the
cutting-plane approach is to efficiently find the set of
active constraints at the solution for the full objec-
tive, without having to enumerate the infinite inactive
constraints. The worst-violated constraint is

arg min
Ỹ

Λ>Φ(Ỹ,X)− L(Y, Ỹ).

The separation oracle performs loss-augmented in-
ference by adding additional loss-augmenting poten-
tials to the HL-MRF. For ground truth in {0, 1},
these loss-augmenting potentials are also examples of
hinge-losses, and thus adding them simply creates an
augmented HL-MRF. The worst-violated constraint
is then computed as standard inference on the loss-
augmented HL-MRF. However, ground-truth variables
in the interior (0, 1) cause any distance-based loss to be
concave, which require the separation oracle to solve
a non-convex objective. For interior ground truth val-
ues, we use the difference of convex functions algo-
rithm [1] to find a local optimum. Since the concave
portion of the loss-augmented inference objective piv-
ots around the ground truth value, the subgradients
are 1 or −1, depending on whether the current value
is greater than the ground truth. We simply choose an
initial direction for interior labels by rounding, and flip
the direction of the subgradients for variables whose
solution states are not in the interval corresponding to
the subgradient direction until convergence.

Given a set K of constraints, we solve the SVM objec-
tive as in the primal form minΛ≥0

1
2 ||Λ||

2 +Cξ s.t. K.
We then iteratively invoke the separation oracle to find
the worst-violated constraint. If this new constraint is
not violated, or its violation is within numerical toler-
ance, we have found the max-margin solution. Other-
wise, we add the new constraint to K, and repeat.

One fact of note is that the large-margin criterion
always requires a little slack for squared HL-MRFs.
Since the squared hinge potential is quadratic and the



loss is linear, there always exists a small enough dis-
tance from the ground truth such that an absolute (i.e.,
linear) distance is greater than the squared distance.
In these cases, the slack parameter trades off between
the peakedness of the learned quadratic energy func-
tion and the margin criterion.

5 EXPERIMENTS

To demonstrate the flexibility and effectiveness of HL-
MRFs, we test them on four diverse learning tasks:
collective classification, social-trust prediction, prefer-
ence prediction, and image reconstruction. 1 Each of
these experiments represents a problem domain that
is best solved with relational learning approaches be-
cause structure is a critical component of their prob-
lems. The experiments show that HL-MRFs perform
as well as or better than state-of-the-art approaches.

For these diverse tasks, we compare against a number
of competing methods. For collective classification and
social-trust prediction, we compare HL-MRFs to dis-
crete Markov random fields (MRFs). We construct
them with Markov logic networks (MLNs) [19], which
template discrete MRFs using logical rules similarly to
PSL for HL-MRFs. We perform inference in discrete
MRFs using 2500 rounds of the sampling algorithm
MC-Sat (500 of which are burn in), and we find ap-
proximate MPE states during MLE learning using the
search algorithm MaxWalkSat [19]. For collaborative
filtering, a task that is inherently continuous and non-
trivial to encode in discrete logic, we compare against
Bayesian probabilistic matrix factorization [20]. Fi-
nally, for image reconstruction, we run the same exper-
imental setup as Poon and Domingos [18] and compare
against the results they report, which include tests us-
ing sum product networks, deep belief networks, and
deep Boltzmann machines.

When appropriate, we evaluate statistical significance
using a paired t-test with rejection threshold 0.01. We
omit variance statistics to save space and only report
the average and statistical significance. We describe
the HL-MRFs used for our experiments using the PSL
rules that define them. To investigate the differences
between linear and squared potentials we use both in
our experiments. HL-MRF-L refers to a model with
all linear potentials and HL-MRF-Q to one with all
squared potentials. When training with MLE and
MPLE, we use 100 steps of voted perceptron and a
step size of 1.0 (unless otherwise noted), and for LME
we set C = 0.1. We experimented with various set-
tings, but the scores of HL-MRFs and discrete MRFs
were not sensitive to changes.

1All code is available at http://psl.umiacs.umd.edu.

Table 1: Average accuracy of classification by HL-
MRFs and discrete MRFs. Scores statistically equiva-
lent to the best scoring method are typed in bold.

Citeseer Cora

HL-MRF-Q (MLE) 0.729 0.816
HL-MRF-Q (MPLE) 0.729 0.818
HL-MRF-Q (LME) 0.683 0.789

HL-MRF-L (MLE) 0.724 0.802
HL-MRF-L (MPLE) 0.729 0.808
HL-MRF-L (LME) 0.695 0.789

MRF (MLE) 0.686 0.756
MRF (MPLE) 0.715 0.797
MRF (LME) 0.687 0.783

5.1 COLLECTIVE CLASSIFICATION

When classifying documents, links between those
documents—such as hyperlinks, citations, or co-
authorship—provide extra signal beyond the local fea-
tures of individual documents. Collectively predicting
document classes with these links tends to improve
accuracy [21]. We classify documents in citation net-
works using data from the Cora and Citeseer scientific
paper repositories. The Cora data set contains 2,708
papers in seven categories, and 5,429 directed citation
links. The Citeseer data set contains 3,312 papers in
six categories, and 4,591 directed citation links.

The prediction task is, given a set of seed documents
whose labels are observed, to infer the remaining doc-
ument classes by propagating the seed information
through the network. For each of 20 runs, we split the
data sets 50/50 into training and testing partitions,
and seed half of each set. To predict discrete cate-
gories with HL-MRFs we predict the category with
the highest predicted value.

We compare HL-MRFs to discrete MRFs on this task.
We construct both using the same logical rules, which
simply encode the tendency for a class to propagate
across citations. For each category Ci, we have two
separate rules for each direction of citation:

Label(A,Ci) ∧Cites(A,B)⇒ Label(B,Ci),

Label(A,Ci) ∧Cites(B,A)⇒ Label(B,Ci).

Table 1 lists the results of this experiment. HL-MRFs
are the most accurate predictors on both data sets. We
also note that both variants of HL-MRFs are much
faster than discrete MRFs. See Table 3 for average
inference times on five folds.

http://psl.umiacs.umd.edu


Table 2: Average area under ROC and precision-recall
curves of social-trust prediction by HL-MRFs and dis-
crete MRFs. Scores statistically equivalent to the best
scoring method by metric are typed in bold.

ROC P-R (+) P-R (-)

HL-MRF-Q (MLE) 0.822 0.978 0.452
HL-MRF-Q (MPLE) 0.832 0.979 0.482
HL-MRF-Q (LME) 0.814 0.976 0.462

HL-MRF-L (MLE) 0.765 0.965 0.357
HL-MRF-L (MPLE) 0.757 0.963 0.333
HL-MRF-L (LME) 0.783 0.967 0.453

MRF (MLE) 0.655 0.942 0.270
MRF (MPLE) 0.725 0.963 0.298
MRF (LME) 0.795 0.973 0.441

5.2 SOCIAL-TRUST PREDICTION

An emerging problem in the analysis of online social
networks is the task of inferring the level of trust be-
tween individuals. Predicting the strength of trust
relationships can provide useful information for viral
marketing, recommendation engines, and internet se-
curity. HL-MRFs with linear potentials have recently
been applied by Huang et al. [10] to this task, show-
ing superior results with models based on sociologi-
cal theory. We reproduce their experimental setup us-
ing their sample of the signed Epinions trust network,
in which users indicate whether they trust or distrust
other users. We perform eight-fold cross-validation. In
each fold, the prediction algorithm observes the entire
unsigned social network and all but 1/8 of the trust
ratings. We measure prediction accuracy on the held-
out 1/8. The sampled network contains 2,000 users,
with 8,675 signed links. Of these links, 7,974 are pos-
itive and only 701 are negative.

We use a model based on the social theory of struc-
tural balance, which suggests that social structures are
governed by a system that prefers triangles that are
considered balanced. Balanced triangles have an odd
number of positive trust relationships; thus, consider-
ing all possible directions of links that form a triad of
users, there are sixteen logical implications of the form

Trusts(A,B) ∧Trusts(B,C)⇒ Trusts(A,C).

Huang et al. [10] list all sixteen of these rules, a reci-
procity rule, and a prior in their Balance-Recip model,
which we omit to save space.

Since we expect some of these structural implications
to be more or less accurate, learning weights for these
rules provides better models. Again, we use these rules
to define HL-MRFs and discrete MRFs, and we train

Table 3: Average inference times (reported in seconds)
of single-threaded HL-MRFs and discrete MRFs.

Citeseer Cora Epinions

HL-MRF-Q 0.42 0.70 0.32
HL-MRF-L 0.46 0.50 0.28
MRF 110.96 184.32 212.36

them using various learning algorithms. We compute
three metrics: the area under the receiver operating
characteristic (ROC) curve, and the areas under the
precision-recall curves for positive trust and negative
trust. On all three metrics, HL-MRFs with squared
potentials score significantly higher. The differences
among the learning methods for squared HL-MRFs are
insignificant, but the differences among the models is
statistically significant for the ROC metric. For area
under the precision-recall curve for positive trust, dis-
crete MRFs trained with LME are statistically tied
with the best score, and both HL-MRF-L and discrete
MRFs trained with LME are statistically tied with the
best area under the precision-recall curve for negative
trust. The results are listed in Table 2.

Though the random fold splits are not the same, using
the same experimental setup, Huang et al. [10] also
scored the precision-recall area for negative trust of
standard trust prediction algorithms EigenTrust and
TidalTrust, which scored 0.131 and 0.130, respectively.
The logical models based on structural balance that
we run here are significantly more accurate, and HL-
MRFs more than discrete MRFs.

Table 3 lists average inference times on five folds of
three prediction tasks: Cora, Citeseer, and Epinions.
We implemented each method in Java. Both HL-
MRF-Q and HL-MRF-L are much faster than discrete
MRFs. This illustrates an important difference be-
tween performing structured prediction via convex in-
ference versus sampling in a discrete prediction space:
using our MPE inference algorithm is much faster.

5.3 PREFERENCE PREDICTION

Preference prediction is the task of inferring user at-
titudes (often quantified by ratings) toward a set of
items. This problem is naturally structured, since a
user’s preferences are often interdependent, as are an
item’s ratings. Collaborative filtering is the task of
predicting unknown ratings using only a subset of ob-
served ratings. Methods for this task range from sim-
ple nearest-neighbor classifiers to complex latent fac-
tor models. To illustrate the versatility of HL-MRFs,
we design a simple, interpretable collaborative filtering



Table 4: Normalized mean squared/absolute errors
(NMSE/NMAE) for preference prediction using the
Jester dataset. The lowest errors are typed in bold.

NMSE NMAE

HL-MRF-Q (MLE) 0.0554 0.1974
HL-MRF-Q (MPLE) 0.0549 0.1953
HL-MRF-Q (LME) 0.0738 0.2297

HL-MRF-L (MLE) 0.0578 0.2021
HL-MRF-L (MPLE) 0.0535 0.1885
HL-MRF-L (LME) 0.0544 0.1875

BPMF 0.0501 0.1832

model for predicting humor preferences. We test this
model on the Jester dataset, a repository of ratings
from 24,983 users on a set of 100 jokes [9]. Each joke
is rated on a scale of [−10,+10], which we normalize
to [0, 1]. We sample a random 2,000 users from the
set of those who rated all 100 jokes, which we then
split into 1,000 train and 1,000 test users. From each
train and test matrix, we sample a random 50% to use
as the observed features X; the remaining ratings are
treated as the variables Y.

Our HL-MRF model uses an item-item similarity rule:

SimRate(J1, J2) ∧ Likes(U, J1)⇒ Likes(U, J2)

where J1, J2 are jokes and U is a user; the pred-
icate Likes indicates the degree of preference (i.e.,
rating value); and SimRate measures the mean-
adjusted cosine similarity between the observed rat-
ings of two jokes. We also include rules to enforce that
Likes(U, J) concentrates around the observed average
rating of user U and item J , and the global average.

We compare our HL-MRF model to a current state-
of-the-art latent factors model, Bayesian probabilis-
tic matrix factorization (BPMF) [20]. BPMF is a
fully Bayesian treatment and, as such, is considered
“parameter-free”; the only parameter that must be
specified is the rank of the decomposition.For our ex-
periments, we use Xiong et al.’s code [2010]. Since
BPMF does not train a model, we allow BPMF to use
all of the training matrix during the prediction phase.

Table 4 lists the normalized mean squared er-
ror (NMSE) and normalized mean absolute error
(NMAE), averaged over 10 random splits. Though
BPMF produces the best scores, the improvement over
HL-MRF-L (LME) is not significant in NMAE.

5.4 IMAGE RECONSTRUCTION

Digital image reconstruction requires models that un-
derstand how pixels relate to each other, such that
when some pixels are unobserved, the model can in-
fer their values from parts of the image that are ob-
served. We construct pixel-grid HL-MRFs for image
reconstruction. We test these models using the exper-
imental setup of Poon and Domingos [18]: we recon-
struct images from the Olivetti face data set and the
Caltech101 face category. The Olivetti data set con-
tains 400 images, 64 pixels wide and tall, and the Cal-
tech101 face category contains 435 examples of faces,
which we crop to the center 64 by 64 patch, as was
done by Poon and Domingos [18]. Following their ex-
perimental setup, we hold out the last fifty images and
predict either the left half of the image or the bottom
half.

The HL-MRFs in this experiment are much more com-
plex than the ones in our other experiments because
we allow each pixel to have its own weight for the fol-
lowing rules, which encode agreement or disagreement
between neighboring pixels:

Bright(Pij , I) ∧North(Pij , Q)⇒ Bright(Q, I),

Bright(Pij , I) ∧North(Pij , Q)⇒ ¬Bright(Q, I),

¬Bright(Pij , I) ∧North(Pij , Q)⇒ Bright(Q, I),

¬Bright(Pij , I) ∧North(Pij , Q)⇒ ¬Bright(Q, I),

where Bright(Pij , I) is the normalized brightness of
pixel Pij in image I, and North(Pij , Q) indicates that
Q is the north neighbor of Pij . We similarly include
analogous rules for the south, east, and west neighbors,
as well as the pixels mirrored across the horizontal and
vertical axes. This setup results in up to 24 rules per
pixel, which, in a 64 by 64 image, produces 80,896
weighted potential templates.

We train these HL-MRFs using MPE-approximate
maximum likelihood with a 5.0 step size on the first
200 images of each data set and test on the last fifty.
For training, we maximize the data log-likelihood of
uniformly random held-out pixels for each training
image, allowing for generalization throughout the im-
age. Table 5 lists our results and others reported by
Poon and Domingos [18]. HL-MRFs produce the best
mean squared error on the left- and bottom-half set-
tings for the Caltech101 set and the left-half setting in
the Olivetti set. Only sum product networks produce
lower error on the Olivetti bottom-half faces. Some
reconstructed faces are displayed in Figure 1, where
the shallow, pixel-based HL-MRFs produce compara-
bly convincing images to sum-product networks, es-
pecially in the left-half setting, where HL-MRF can
learn which pixels are likely to mimic their horizontal
mirror. While neither method is particularly good at



Table 5: Mean squared errors per pixel for image reconstruction. HL-MRFs produce the most accurate recon-
structions on the Caltech101 and the left-half Olivetti faces, and only sum-product networks produce better
reconstructions on Olivetti bottom-half faces. Scores for other methods are taken from Poon and Domingos [18].

HL-MRF-Q (MLE) SPN DBM DBN PCA NN

Caltech-Left 1741 1815 2998 4960 2851 2327
Caltech-Bottom 1910 1924 2656 3447 1944 2575
Olivetti-Left 927 942 1866 2386 1076 1527
Olivetti-Bottom 1226 918 2401 1931 1265 1793

Figure 1: Example results on image reconstruction of Caltech101 (left) and Olivetti (right) faces. From left
to right in each column: (1) true face, left side predictions by (2) HL-MRFs and (3) SPNs, and bottom half
predictions by (4) HL-MRFs and (5) SPNs. SPN reconstructions are downloaded from Poon and Domingos [18].

reconstructing the bottom half of faces, the qualitative
difference between the deep SPN and the shallow HL-
MRF reconstructions is that SPNs seem to hallucinate
different faces, often with some artifacts, while HL-
MRFs predict blurry shapes roughly the same pixel
intensity as the observed, top half of the face. The
tendency to better match pixel intensity helps HL-
MRFs score better quantitatively on the Caltech101
faces, where the lighting conditions are more varied.

Training and predicting with these HL-MRFs takes lit-
tle time. In our experiments, training each model takes
about 45 minutes on a 12-core machine, while predict-
ing takes under a second per image. While Poon and
Domingos [18] report faster training with SPNs, both
HL-MRFs and SPNs clearly belong to a class of faster
models when compared to DBNs and DBMs, which
can take days to train on modern hardware.

6 CONCLUSION

We have shown that HL-MRFs are a flexible and inter-
pretable class of models, capable of modeling a wide

variety of domains. HL-MRFs admit fast, convex in-
ference. The MPE inference algorithm we introduce
is applicable to the full class of HL-MRFs. With this
fast, general algorithm, we are the first to show results
using quadratic HL-MRFs on real-world data. In our
experiments, HL-MRFs match or exceed the predic-
tive performance of state-of-the-art methods on four
diverse tasks. The natural mapping between hinge-
loss potentials and logic rules makes HL-MRFs easy
to define and interpret.
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