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Abstract

The best current methods for exactly com-
puting the number of satisfying assignments,
or the satisfying probability, of Boolean for-
mulas can be seen, either directly or indi-
rectly, as building decision-DNNF (decision
decomposable negation normal form) repre-
sentations of the input Boolean formulas.
Decision-DNNFs are a special case of d-
DNNFs where d stands for deterministic. We
show that any decision-DNNF can be con-
verted into an equivalent FBDD (free binary
decision diagram) – also known as a read-
once branching program (ROBP or 1-BP) –
with only a quasipolynomial increase in rep-
resentation size in general, and with only
a polynomial increase in size in the special
case of monotone k-DNF formulas. Lever-
aging known exponential lower bounds for
FBDDs, we then obtain similar exponen-
tial lower bounds for decision-DNNFs which
provide lower bounds for the recent algo-
rithms. We also separate the power of
decision-DNNFs from d-DNNFs and a gener-
alization of decision-DNNFs known as AND-
FBDDs. Finally we show how these imply
exponential lower bounds for natural prob-
lems associated with probabilistic databases.

1 Introduction

Model counting is the problem of computing the num-
ber, #F , of satisfying assignments of a Boolean for-
mula F . While model counting is hard for #P, there
have been major advances in practical algorithms that
compute exact model counts for many relatively com-
plex formulas and, using similar techniques, that com-
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pute the probability that Boolean formulas are satis-
fied, given independent probabilities for their literals.

Modern exact model counting algorithms use a va-
riety of techniques (see [Gomes et al., 2009] for a
survey). Many are based on extensions of back-
tracking search using the DPLL family of algo-
rithms [Davis and Putnam, 1960, Davis et al., 1962]
that were originally designed for satisfiability search.
In the context of model counting (and related prob-
lems of exact Bayesian inference) extensions in-
clude caching the results of solved sub-problems
[Majercik and Littman, 1998], dynamically decom-
posing residual formulas into components (Rel-
sat [Bayardo et al., 2000]) and caching their counts
([Bacchus et al., 2003]), and applying dynamic com-
ponent caching together with conflict-directed clause
learning (CDCL) to further prune the search (Cachet
[Sang et al., 2004] and sharpSAT [Thurley, 2006]).

The other major approach, known as knowledge
compilation, is to convert the input formula into
a representation of the Boolean function that the
formula defines and from which the model count
can be computed efficiently in the size of the
representation [Darwiche, 2001a, Darwiche, 2001b,
Huang and Darwiche, 2007, Muise et al., 2012].
Efficiency for knowledge compilation depends
both on the size of the representation and the
time required to construct it. As noted by (c2d
[Huang and Darwiche, 2007] based on component
caching) and (Dsharp [Muise et al., 2012] based
on sharpSAT), the traces of all the DPLL-based
methods yield knowledge compilation algorithms
that can produce what are known as decision-
DNNF representations [Huang and Darwiche, 2005,
Huang and Darwiche, 2007], a syntactic subclass
of d-DNNF representations [Darwiche, 2001b,
Darwiche and Marquis, 2002]. Indeed, all the
methods for exact model counting surveyed
in [Gomes et al., 2009] (and all others of which
we are aware) can be converted to knowledge com-



pilation algorithms that produce decision-DNNF
representations, without any significant increase in
their running time.

In this paper we prove exponential lower bounds on
the size of decision-DNNFs for natural classes of for-
mulas. Therefore our results immediately imply ex-
ponential lower bounds for all modern exact model
counting algorithms. These bounds are unconditional
– they do not depend on any unproved complexity-
theoretic assumptions. These bounds apply to very
simple classes of Boolean formulas, which occur fre-
quently both in uncertainty reasoning, and in proba-
bilistic inference. We also show that our lower bounds
extend to the evaluation of the properties of a large
class of database queries, which have been studied in
the context of probabilistic databases.

We derive our exponential lower bounds by showing
how to translate any decision-DNNF to an equiva-
lent FBDD, a less powerful representation for Boolean
functions. Our translation increases the size by at
most a quasipolynomial, and by at most a polyno-
mial in the special case when the Boolean function
computed has a monotone k-DNF formula. The lower
bounds follow from well-established exponential lower
bounds for FBDDs. This translation from decision-
DNNFs to FBDDs is of independent interest: it is sim-
ple, and efficient, in the sense that it can be computed
in time linear in the size of the output FBDD.

It is interesting to note that with formula caching,
but without dynamic component caching, the trace ex-
tensions of DPLL-based searches yield FBDDs rather
than decision-DNNFs. Hence, the difference between
FBDDs and decision-DNNFs is precisely the ability
of the latter to take advantage of decompositions into
connected components of subformulas of the formula
being represented. Our conversion shows that these
connected component decompositions can only provide
quasipolynomial improvements in efficiency, or only a
polynomial improvement in the case of monotone k-
DNF formulas.

Representations Though closely related, FBDDs
and decision-DNNFs originate in completely different
approaches for representing (or computing) Boolean
functions. FBDDs are special kinds of binary deci-
sion diagrams [Akers, 1978], also known as branching
programs [Masek, 1976]. These represent a function
using a directed acyclic graph with decision nodes,
each of which queries a Boolean variable represent-
ing an input bit and has 2 out-edges, one labeled 0
and the other 1; it has a single source node, and has
sink nodes labeled by output values; the value of the
function on an assignment of the Boolean variables
is the label of the sink node reached. Free binary

decision diagrams (FBDDs), also known as read-once
branching programs (ROBPs), have the property that
each input variable is queried at most once on each
source-sink path1. There are many variants and ex-
tensions of these decision-based representations; for
an extensive discussion of their theory see the mono-
graph [Wegener, 2000]. These include nondeterminis-
tic extensions of FBDDs called OR-FBDDs, as well
as their corresponding co-nondeterministic extensions
called AND-FBDDs, which have additional internal
AND nodes through which any input can pass – the
output value is 1 for an input iff every consistent
source-sink path leads to a sink labeled 1.

Decision-DNNFs originate in the desire to find re-
stricted forms of Boolean circuits that have better
properties for knowledge representation. Negation
normal form (NNF) circuits are those that have un-
bounded fan-in AND and OR nodes (gates) with all
negations pushed to the input level using De Morgan’s
laws. Darwiche [Darwiche, 2001a] introduced decom-
posable negation normal form (DNNF) which restricts
NNF by requiring that the sub-circuits leading into
each AND gate are defined on disjoint sets of vari-
ables. He also introduced d-DNNFs [Darwiche, 2001a,
Darwiche and Marquis, 2002] which have the further
restriction that DNNFs are deterministic, i.e., the
sub-circuits leading into each OR gate never simul-
taneously evaluate to 1; d-DNNFs have the advan-
tage of probabilistic polynomial-time equivalence test-
ing [Huang and Darwiche, 2007]. Most subsequent
work has used these d-DNNFs. An easy way of en-
suring determinism is to have a single variable x
that evaluates to 1 on one branch and 0 on the
other, so d-DNNFs can be produced by the subcircuit
(x ∧ A) ∨ (¬x ∧ B), which is equivalent to having de-
cision nodes as above; moreover, the decomposability
ensures that x does not appear in either A or B. d-
DNNFs in which all OR nodes are of this form are
called decision-DNNFs [Huang and Darwiche, 2005,
Huang and Darwiche, 2007]. Virtually all algorith-
mic methods that use d-DNNFs, including those used
in exact model counting and Bayesian inference, ac-
tually ensure determinism by using decision-DNNFs.
Decision-DNNFs have the further advantage of being
syntactically checkable; by comparison, given a general
DNNF, it is not easy to check whether it satisfies the
semantic restriction of being a d-DNNF.

1The term free contrasts with ordered binary decision
diagrams (OBDDs) [Bryant, 1986] in which each root-leaf
path must query the variables in the same order. For each
variable order, minimized OBDDs are canonical represen-
tations for Boolean functions, making them extremely use-
ful for a vast number of applications. Unfortunately, OB-
DDs are often also simply referred to as BDDs, which leads
to confusion with the original general model.
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Figure 1: A summary of our contributions (see Section 3).
Here, one representation is contained in another if and only
if the first can be (locally) translated into the second with
at most a polynomial increase in size.

It is immediate that one can get a completely equiva-
lent representation to the above definition by using a
decision node on x in place of each OR of ANDs involv-
ing x, and in place of each leaf variable or its negation;
the decomposability property ensures that no root-
leaf path in the circuit queries the same variable more
than once. Clearly these form a special subclass of the
AND-FBDDs discussed above, in which each AND is
required to have the decomposability property that the
different branches below each AND node query disjoint
sets of variables. Though formally there are insignif-
icant syntactic differences between the definitions, we
will use the term decision-DNNFs to refer to these de-
composable AND-FBDDs.

Two other consequences of our simulation of decision-
DNNFs by FBDDs are provable exponential separa-
tions between the representational power of decision-
DNNFs and that of either d-DNNFs or AND-FBDDs.
There are two functions, involving simple tests on the
rows and columns of Boolean matrices, that require
exponential size FBDDs but have linear size represen-
tations as AND-FBDDs and d-DNNFs respectively (cf.
Thms 10.3.8, 10.4.7. in [Wegener, 2000]); our sim-
ulation shows that these lower bounds carry over to
decision-DNNFs, yielding the claimed separations. A
comparison of these representations in terms of their
succinctness as well as a summary of our contributions
in this paper are given in Figure 12.

Probabilistic Databases These databases an-
notate each tuple with a probability of being
true [Suciu et al., 2011]. Query evaluation on proba-
bilistic databases reduces to the problem of computing
the probability of a positive, k-DNF Boolean formula,
where the number of Boolean variables in each term
is bounded by k, which is fixed by the query, while
the size of the formula grows polynomially in the size
of the database. Our results immediately imply that,

2It is open whether the region is empty if no black
square is shown (also indicated by dotted borders).

when applied to such formulas, decision-DNNFs are
only polynomially more concise than FBDDs. By com-
bining this with previously known results, we describe
a class of queries such that any query in this class gen-
erates Boolean formulas requiring decision-DNNFs of
exponential size, thus implying that none of the recent
evaluation algorithms that either explicitly or implic-
itly yield decision-DNNFs can compute these queries
efficiently. Although the exponential lower bounds we
derive for decision-DNNFs are not the first – there are
a small number of exponential lower bounds known
even for unrestricted AND-FBDDs [Wegener, 2000],
which therefore also apply for decision-DNNFs – none
of these apply to the kinds of simple structured prop-
erties that show up in probabilistic databases that we
are able to analyze.

Compilation As noted above, the size of the decision-
DNNF required is not the only source of complex-
ity in exact model counting. The other source is
the search or compilation process itself – the time
required to produce a decision-DNNF from an in-
put Boolean formula which may greatly exceed the
size of the representation. A particularly striking
case where this is an issue is that of an unsatisfiable
Boolean formula for which the function evaluates to
the constant 0 and hence the decision-DNNF is of
size 1. Determining this fact may take exponential
time. Indeed, DPLL with caching and conflict-directed
clause learning is a special case of resolution theorem
proving [Beame et al., 2004]. There are large num-
bers of unsatisfiable formulas for which exponential
lower bounds are known for every resolution refuta-
tion (see, e.g., [Ben-Sasson and Wigderson, 2001]) and
hence this compilation process must be exponential for
such formulas3. The same issues can arise in ruling out
parts of the space of assignments for satisfiable formu-
las. However, we do not know of any lower bounds
for this excess compilation time that directly apply to
the kinds of simple highly satisfiable instances that we
discuss in this paper.

The rest of the paper is organized as follows. In
Section 2 we review FBDDs and decision-DNNFs.
Section 3 presents our two main results: a general
transformation of a decision-DNNF into an equivalent
FBDD, with only a quasipolynomial increase in size
in general, and only a polynomial increase in size for
monotone k-DNF formulas. We prove these results in
Section 4 and Section 5. In Section 6 we discuss the im-
plications of this transformation for evaluating queries
in probabilistic databases. We conclude in Section 7.

3DPLL with formula caching, but not clause learning,
can be simulated by even simpler regular resolution, though
in general it is not quite as powerful as regular resolu-
tion [Beame et al., 2010].



2 FBDDs and Decision-DNNFs

FBDDs. An FBDD is a rooted directed acyclic graph
(DAG) F , with two kinds of nodes: decision nodes,
each labeled by a Boolean variable X and two outgoing
edges labeled 0 and 1, and sink nodes labeled 0 and
1. Every path from the root to some leaf node may
test a Boolean variable X at most once. The size of
the FBDD is the number of its nodes. We denote the
sub-DAG of F rooted at an internal node u by Fu

which computes a Boolean function Φu; F computes
Φr where r is the root. For a node u labeled X with 0-
and 1-children u0 and u1, Φu = (¬X)Φu0

∨XΦu1
. The

probability of Φr can be computed in linear time in the
size of the FBDD using a simple dynamic program:
Pr[Φu] = (1− p(X)) Pr[Φu0 ] + p(X) Pr[Φu1 ].

Decision-DNNFs As noted in the introduction, we
choose to define decision-DNNFs as a sub-class of
AND-FBDDs. An AND-FBDD [Wegener, 2000] is an
FBDD with an additional kind of nodes, called AND-
nodes; the function associated to an AND-node u with
children u1, . . . , ur is Φu = Φu1

∧ . . .∧Φur
. A decision-

DNNF, D, is an AND-FBDD satisfying the additional
restriction that for any AND-node u and distinct chil-
dren ui, uj of u, the sub-DAGS Dui

and Duj
do not

mention any common Boolean variable X.

For the rest of the paper we make two assumptions
about decision-DNNFs. First, every AND-node has
exactly 2 children, and as a consequence every inter-
nal node u has exactly two children v1, v2, called the
left and right child respectively; second, that every
1-sink node has at most one incoming edge. Both as-
sumptions are easily enforced by at most a quadratic
increase in the number of nodes in the decision-DNNF.

3 Main Results

In this section we state our two main results and show
several applications. We first need some notation. For
each node u of a decision-DNNF D, let Mu be the
number of AND-nodes in the subgraph Du. If u is
an AND-node, then we have Mu = 1 + Mv1 + Mv2 ,
because, by definition, the two DAGs Dv1 and Dv2

are disjoint; we will always assume that Mv1 ≤ Mv2

(otherwise we swap the two children of the AND-node
u), and this implies that Mu ≥ 2Mv1 + 1. We classify
the edges of the decision-DNNF into three categories:
(u, v) is a light edge if u is an AND-node and v its first
child; (u, v) is a heavy edge if u is an AND-node and v
is a its second child; and (u, v) is a neutral edge if u is
a decision node. We always have Mu ≥ Mv, while for
a light edge we have Mu ≥ 2Mv + 1.

Let D be a decision-DNNF, N the total number of
nodes in D, M the number of AND-nodes, and L the
maximum number of light edges on any path from the

root node to some leaf node. Our first main result is:

Theorem 3.1. For any decision-DNNF D there exists
an equivalent FBDD F computing the same formula as
D, with at most NML nodes. Moreover, given D, F
can be constructed in time O(NML).

We give the proof in Section 4. We next show that the
bound NML is quasipolynomial in N .

Corollary 3.2. For any decision-DNNF D with N
nodes there exists an equivalent FBDD F with at most
N2log2 N nodes.

Proof. Consider any path in D with L light edges,
(u1, v1), (u2, v2), . . . , (uL, vL). We have Mui

≥ 2Mvi +
1 and Mvi ≥ Mui+1

for all i, and we also have M ≥
Mu1

and MvL ≥ 0, which implies M ≥ 2L − 1 (by in-
duction on L). Therefore, 2L ≤ M + 1 ≤ N (because
D has at least one node that is not an AND-node), and

NML = N2L log M ≤ N2log2 N , proving the claim.

Our second main result concerns monotone k-DNF
Boolean formulas, which have applications to proba-
bilistic databases, as we explain in Section 6. We show
that in this case any decision-DNNF can be converted
into an equivalent FBDD with only a polynomial in-
crease in size. This results from the following lemma,
whose proof we give in Section 5:

Lemma 3.3. If a decision-DNNF D computes a
monotone k-DNF Boolean formula then every path in
D has at most k − 1 AND-nodes.

Therefore, L ≤ k − 1, and Theorem 3.1 implies:

Theorem 3.4. For any decision-DNNF D with N
nodes that computes a monotone k-DNF Boolean for-
mula then there exists an equivalent FBDD F with at
most Nk nodes.

We give now several applications of our main results.

Lower Bounds for DPLL-based Algorithm
We give an explicit Boolean formula on which
every DPLL-based algorithm whose trace is a
decision-DNNF takes exponential time. We use
the following formula introduced by Bollig and
Wegener [Bollig and Wegener, 1998]. For any set
E ⊆ [n] × [n] define ΨE =

∨
(i,j)∈E XiYj , where

X1, . . . , Xn, Y1, . . . , Yn are Boolean variables. Let n =
p2 where p is a prime number; then each number
0 ≤ i < n can be uniquely written as i = a + bp
where 0 ≤ a, b < p. Define En = {(i+ 1, j + 1) |
i = a+ bp, j = c+ dp, c ≡ (a+ bd) mod p}. Then:

Theorem 3.5. [Bollig and Wegener, 1998, Th.3.1]
Any FBDD for ΨEn has 2Ω(

√
n) nodes.

Consider the formula Φn =
∨

1≤i,j≤nXiZijYj . Any

FBDD for Φn has size 2Ω(
√
n), because it can be con-

verted into an FBDD for ΨEn
by setting Zij = 1 or



Zij = 0, depending on whether (i, j) is in En or not.
Both ΨEn and Φn are monotone, and 2-DNF and 3-
DNF respectively, therefore, by Theorem 3.4:

Corollary 3.6. Any decision-DNNF for either ΨEn

or Φn has 2Ω(
√
n) nodes.

In particular, any DPLL-based algorithm whose trace
is a decision-DNNF will take exponential time on the
formulas ΨEn

and Φn.

Separating decision-DNNFs from AND-
FBDDs We show that decision-DNNFs are
strictly weaker than AND-FBDDs. Define Ψ′En

=
∧

(i,j)∈En
(Xi ∨ Yj), the CNF expression that is

the dual of ΨEn . Since Ψ′En
is a CNF formula, it

admits an AND-FBDD with at most n2 nodes (since
|En| ≤ n2). On the other hand, we show that any

decision-DNNF must have Ω(2n
1/4

) nodes. Indeed,
Theorem 3.5 implies that any FBDD for Ψ′En

has

2Ω(
√
n) nodes. Consider some decision-DNNF D for

Ψ′En
having N nodes. By Corollary 3.2 we obtain an

FBDD F of size 2log2 N+log N , which must be 2Ω(
√
n);

thus log2N = Ω(
√
n), hence logN = Ω(n1/4), and N

= 2Ω(n1/4). We have shown:

Corollary 3.7. Decision-DNNFs are exponentially
less concise than AND-FBDDs.

Separating decision-DNNFs from d-DNNFs De-
fine Γn on the matrix of variables Xij for i, j ∈ [n]
by Γn(X) = fn(X) ∨ gn(X) where fn is 1 if and
only if the parity of all the variables is even and the
matrix has an all-1 row and gn is 1 if and only if
the parity of all the variables is odd and the matrix
has an all-1 column. Wegener showed (cf. Theorem
10.4.7. in [Wegener, 2000]) that any FBDD for Γn has
2Ω(n) nodes (therefore, every decision-DNNF requires

2Ω(n1/2) nodes). Γn can also be computed by an O(n2)
size d-DNNF, because both fn and gn can be computed
by O(n2) size OBDDs, and fn ∧ gn ≡ false. Hence:

Corollary 3.8. Decision-DNNFs are exponentially
less concise than d-DNNFs.

4 Decision-DNNF to FBDD

In this section we prove Theorem 3.1 by describing
a construction to convert a decision-DNNF D to an
FBDD F .

4.1 Main Ideas

To construct F we must remove all AND-nodes in D
and replace them with decision nodes. An AND node
has two children, v1, v2; we need to replace this node
with an FBDD for the expression Φv1 ∧ Φv2 . Assume
that u is the only AND-node in D; then both Dv1

and Dv2 are already FBDDs, and Figure 2(a): stack
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Figure 2: (a) Basic construction for converting a decision-
DNNF into an FBDD (b) where it fails.

Dv1 over Dv2 , and redirect all 1-sink nodes in Dv1

to the root of Dv2 . Clearly this computes the same
AND function; moreover it is a correct FBDD because
Dv1 ,Dv2 do not have any common variable. If this con-
struction worked in general, then the entire decision-
DNNF would be converted into an FBDD of exactly
the same size.

But, in general, this simple idea fails, as can be seen on
the simple decision-DNNF in Figure 2(b) (it computes
(¬X)Y Z ∨ XY U). To compute the first AND node
we need to stack Dv1 over Dv2 , and to compute the
second AND node we need to stack Dv1 over Dv3 : this
creates a conflict for redirecting the 1-sink node in Dv1

to v2 or to v3
4. To get around that, we use two ideas.

The first idea is to make copies of some subgraphs. For
example if we make two copies of Dv1 , call them Dv1

and D′v1 , then we can compute the first AND-node
by stacking Dv1 over Dv2 , and compute the second
AND-node by stacking D′v1 over Dv3 and the conflict
is resolved. The second idea is to reorder the children
of the AND-nodes to limit the exponential blowup due
to copying. We present the details next.

4.2 The Construction of F

Fix the decision-DNNF D. Let u denote a node in D
and P denote a path from the root to u. Let s(P )
be the set of light edges on the path P , and let S(u)
consist of the sets s(P ) for all paths from the root to
u, formally:

s(P ) ={(v, w) | (v, w) is a light edge in P}
S(u) ={s(P ) | P is a path from the root to u}

We consider the light edges in a set s = s(P ) ordered
by their occurrences in P (from the root to u). This
order is independent of P : if s = s(P ) = s(P ′) then
the light edges occur in the same order on the paths
P and P ′ (since D is acyclic).

We will convert D into an FBDD F with no-op nodes,
unlabeled nodes having only one outgoing edge. Any

4In this particular example one could stack Dv2 and Dv3

over Dv1 and avoid the conflict; but, in general, Dv2 ,Dv3

may have conflicts with other subgraphs.



FBDD with no-op nodes is easily transformed into
a standard FBDD by removing the no-op nodes and
redirecting all incoming edges to its unique child.

We define F formally. Its nodes are pairs (u, s) where
u is a node in D and s ∈ S(u). The root node is
(root(D), ∅). The edges in F are of three types:
Type 1: For each light edge e = (u, v) in D and
every s ∈ S(u), add the edge ((u, s), (v, s∪{e})) to F ,
Type 2: For every neutral edge (u, v) in D and every
s ∈ S(u) add the edge ((u, s), (v, s)) to F ,
Type 3: For every heavy edge (u, v2), let e = (u, v1)
be the corresponding light sibling edge. Then, for
every s ∈ S(u), add all edges of the form ((w, s ∪
{e}), (v2, s)), where w is a 1-sink node in Dv1 , v2 is
the heavy child of u, s ∪ {e} ∈ S(w), and s ∈ S(v2).

Finally, we label every node u′ = (u, s) in F , as follows:
(1) If u is a decision node in D that tests the variable
X, then u′ is a decision node in F testing the same
variable X, (2) If u is an AND-node, then u′ is a no-
op node, (3) If u is a 0-sink node, then u′ is a 0-sink
node, (4) If u is a 1-sink node, then: if s = ∅ then u′

is a 1-sink node, otherwise it is a no-op node.

This completes our description of F . The intuition
behind it is that, for every AND node, we make a fresh
copy of its left child. To illustrate this, suppose D has
a single AND-node u with two children v1, v2, and let
e = (u, v1) be the light edge. Suppose there is a second,
neutral edge into v1, say (z, v1). Then F contains two
copies of the subgraph Dv1 , one with nodes labeled
(w, {e}), and the other with nodes labeled (w, ∅). Any
1-sink node in the first copy becomes a no-op node
in F and is connected to v2, similarly to Figure 2(a);
the same 1-sink node in the second copy remain 1-sink
nodes. This copying process is repeated in Dv1 .

4.3 Proof of Theorem 3.1

Theorem 3.1 follows from the following three lemmas:

Lemma 4.1. F has at most NML nodes.

Lemma 4.2. F is a correct FBDD with no-op nodes.

Lemma 4.3. F computes the same function as D.

Proof of Lemma 4.1. The nodes of F have the form
(u, s). There are N possible choices for the node u,
and at most ML possible choices for the set s, because
|s| ≤ L (since every path has ≤ L light edges), and M
is the number of light edges.

Proof of Lemma 4.2. We need to prove three proper-
ties of F : that F is a DAG, that every path in F reads
each variable only once, and that all its nodes are la-
beled consistently with the number of their children
(e.g., a no-op has one child). The first two properties
follow from the following claim:

Claim: If u is a decision node in D labeled with a
variable X, and there exists a non-trivial path (with
at least one edge) between the nodes (u, s) (v, s′) in
F , then the variable X does not occur in Dv.

Indeed, the claim implies that F is acyclic, because any
cycle in F implies a non-trivial path from some node
(u, s) to itself, and obviously X ∈ Du, contradicting
the claim. It also implies that every path in F is read-
once: if a path tests a variable X twice, once at (u, s)
and once at (u1, s1), then X ∈ Du1 , contradicting the
claim. It remains to prove the claim.

Suppose to the contrary that there exists a node (u, s)
such that u is labeled with X and there exists a path
from (u, s) to (v, s′) in F such that X occurs in Dv.
Choose v such that Dv is maximal; i.e., there is no
path from (u, s) to some (v′, s′′) such that Dv ⊂ Dv′

(in the latter case replace v with v′: we still have that
X occurs in Dv′). Consider the last edge on the path
from (u, s) to (v, s′) in F :

(u, s), . . . , (w, s′′), (v, s′) (1)

Observe that (w, v) is not an edge inD sinceDv is max-
imal and since (u, v) is not an edge in D by the read-
once property of D; therefore, the edge from (w, s′′) to
(v, s′) is of Type 3. Thus, there exists an AND-node
z with children v1, v, and our last edge is of the form
(w, s′ ∪ {e}), (v, s′), where e = (z, v1) the light edge of
z. We claim that e 6∈ s; i.e., it is not present at the be-
ginning of the path in (1). If e ∈ s then, since s ∈ S(u),
we have u, which queries X, in Dv1 . Together with the
assumption that some node in Dv queries X, we see
that descendants of the two children v1, v of AND-node
z query the same variable, contradicting the fact that
D is a decision-DNNF. This proves e 6∈ s. On the other
hand, e ∈ s′′. Now consider the first node on the path
in (1) where e is introduced. It can only be an edge of
the form (z, s1), (v1, s1∪{e}). But now we have a path
from (u, s) to (z, s1) with X ∈ Dz ⊃ Dv, contradicting
the maximality of v. This proves the claim.

Finally, we show that all nodes in F are consistently
labeled, i.e. they have the correct arity. To prove this,
we only need to show that every no-op node has a
single child. There are two cases: the node is (u, s)
where u is an AND node in D (for a Type 1 edge), in
which case its single child is (v1, s ∪ {(u, v1)}); or the
node is (w, s) where w is a 1-sink node and s 6= ∅ (for
a Type 3 edge). In that case, let e = (z, v) be the last
edge in s: more precisely, if P is any path such that
s = s(P ), then e is the last light edge on P . (This e
is well defined: if s = s(P ) = s(P ′) then P and P ′

have the same sets of light edges, and therefore must
traverse them in the same order since D is a DAG.)
Let v′ be the right child of z; then the only edge from
(w, s) goes to (v′, s− {e}).



Next we prove Lemma 4.3, which completes the proof
of Theorem 3.1. To prove this we will use the proper-
ties that (a) the value of the function computed by an
FBDD on an input assignment is the value of the sink
reached on the unique path from the root followed by
the input, and (b) the value of the function computed
by a decision-DNNF is the logical AND of all of the
sink values reachable from the root on that assignment.

Proof of Lemma 4.3. Let ΦD and ΦF be the Boolean
formulas computed by D and F respectively. We show
that for any assignment θ to the Boolean variables,
ΦD[θ] = 0 iff ΦF [θ] = 0. For the “if” direction, sup-
pose that ΦF [θ] = 0. Let P be the unique root-sink
path in F consistent with θ, which must reach a 0-sink
by assumption. We will show that there exists a path
P ′ in D from the root to a 0-sink that is consistent
with θ. This suffices to prove that ΦD[θ] = 0. First,
notice that if P does not contain edges of Type 3, then
it automatically also translates into a path leading to
a 0-sink in D and the claim holds. Otherwise, consider
an edge of Type 3 from (w, s∪{e}) to (v2, s) such that
(i) there exists an AND-node u with children v1, v2,
(ii) w is a descendant of v1, and (iii) e = (u, v1). Since
the edge e must have been introduced along the path,
P contains an edge of the form (u, s′), (v1, s

′ ∪ {e}).
Remove the fragment of P between (u, s′) and (v2, s):
this is also a path in D to a 0-sink (using the original
heavy-edge (u, v2)), with one less edge of Type 3, and
the claim follows by induction.

For the “only if” part, suppose that ΦD[θ] = 0 and
P ′ is a path in D from the root to a 0-sink node; as a
warm-up, if P ′ has no heavy edges then it translates
immediately into a path in F to a 0-sink. In general,
we proceed as follows. Consider all paths in D that
are consistent with θ and lead to a 0-sink node. Order
them lexicographically as follows: P ′1 < P ′2 if, for some
k ≥ 1, P ′1 and P ′2 agree on the first k− 1 steps, and at
step k P ′1 follows the light edge (u, v1), while P ′2 follows
the heavy edge (u, v2) of some AND-node u. Let P ′

be a minimal path under this order. We translate it
into a path P in F iteratively, starting from the root r.
Suppose we have translated the fragment r → u of P ′

into a path P in F : (r, ∅)→ (u, s). Consider the next
edge (u, v) in P ′: if it is a light edge e or a neutral edge,
we simply extend P with (v, s ∪ {e}) or (v, s) respec-
tively. If (u, v) is a heavy edge, let (u, v1) be its light
sibling, and let s1 = s∪ {e}. By the minimality of P ′,
Φv1 [θ] = 1 (otherwise we could find a consistent path
to a 0-sink in Dv1). We claim that there exists a 1-sink
node w in Dv1 s.t. the path P ′′ in F(v1,s1) defined by θ
leads from (v1, s1) to (w, s1): the claim completes the
proof of the lemma, because we simply extend P with:
(u, s), (v1, s1), P ′′, (w, s1), (v, s), where the last edge
is an edge of Type 3, (w, s ∪ {e}), (v, s), completing
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Figure 3: The decision-DNNF D(p), p = 3, in Section 4.4.
The (red and blue) bold dotted arrows denote two paths
from the root to u = X00,m. The white boxes at the lowest
level denote decision nodes to 0- and 1-sinks.

our iterative construction of P .

To prove the claim, we apply our decision-DNNF-to-
FBDD translation to Dv1 , and let F1 denote the result-
ing FBDD; by construction, any edge (z′, s′), (z′′, s′′)
in F1 corresponds to an edge (z′, s′ ∪ s1), (z′′, s′′ ∪ s1)
in F . If ΦF1

is the function computed by F1, then
we have already shown that for any θ, ΦF1 [θ] = 0 ⇒
ΦDv1

[θ] = 0: for our particular θ we have ΦDv1
[θ] =

Φv1 [θ] = 1, hence ΦF1
[θ] = 1. Therefore, the path

defined by θ in F1 goes from the root (v1, ∅) to some
node (w, ∅), where w is a 1-sink node in D; the corre-
sponding path in F(v1,s1) goes from (v1, s1) to (w, s1),
proving the claim.

4.4 A Tight Example

We conclude this section by showing that our analy-
sis cannot be tightened to a polynomial bound5 Fix
M > 0, and let m = M1/2. For each number p > 0,
the decision-DNNF Dp given in Figure 3 (for p = 3)
consists of m = 2p− 1 blocks of size m, organized into
p levels (0 to p− 1). Each block has 2 children to the
next level.

A block is identified by w ∈ {0, 1}∗, where |w| ≤ p−1.
Thus, w = 011 means “left-right-right” and w = ε
means the root block. Each block w has m+ 1 AND-
nodes, m Boolean variables (Xw,i, where 1 ≤ i ≤ m),
and m entry points at these m variables. The left
(resp. right) child of the i-th AND-node in block w
points to Xw0,i (resp. Xw1,i), where 1 ≤ i ≤ m; The
left and the right children of the (m+ 1)-st AND node
in block w points to the (m+1)-st AND node of blocks
w0 and w1 respectively. Clearly, the total number of
AND-nodes in the decision-DNNF is M = m(m+ 1).

To obtain a lower bound on the size of the FBDD given
by our conversion algorithm, we count the total num-

5This only applies to our construction. It does not sep-
arate FBDDs from decision-DNNFs, since a smaller equiv-
alent FBDD may exist for this decision-DNNF.



ber of copies (u, s) created for the node u = X00..0,m

(i.e., the last decision node in the left-most block at
the lowest level), where s ∈ S(u) is the set of light
edges on a path from the root to u. For any path
P from the root to u, let aj < m be the number of
consecutive decision nodes followed by P at the j-
th level, for 0 ≤ j ≤ p − 1; P must take the left
(light) branch of the corresponding AND-node at each

level j < m − 1. Note that
∑p−1

j=0 aj = m − 1, any
choice of aj ’s satisfying this corresponds to a valid
path P to u, and distinct choices correspond to differ-
ent sets of light edges. Therefore, |S(u)| is the number
of different choices of aj which is

(
m−1+p

p

)
≥
(
m
p

)
≥

(m/p)p = 2p(log m−log p) = 2Ω(log2 m) = 2Ω(log2 M) since
p = Θ(logm) and M = m(m+ 1).

5 Monotone k-DNFs

We prove Lemma 3.3 in this section. Fix a decision-
DNNF D computing a monotone k-DNF Boolean func-
tion Φ; w.l.o.g. we assume that D is non-redundant:
each child of each AND-node in D computes a non-
constant function.

Proposition 5.1. ∀ node u ∈ D, Φu is monotone.

Proof. The statement is true for the root node u. Sup-
pose that Φu is monotone at some node u. If u is a
decision node testing the variable X and with children
v0, v1, then both Φv0 = Φu[X = 0] and Φv1 = Φu[X =
1] are monotone. If u is an AND-node with children
u1, u2 then Φu = Φu1 ∧ Φu2 where Φu1 , Φu2 have dis-
joint sets of variables, hence they are themselves mono-
tone. The proposition follows by induction.

In the case of a monotone function Φ, a prime impli-
cant is a minimal set of variables whose conjunction
implies Φ and a minimal DNF for Φ has one term for
each of its prime implicants; hence, Φ can be written
as k-DNF iff k is the size of its largest prime implicant.
If θ is a partial assignment, then Φ[θ] is a k′-DNF for
some k′ ≤ k. Let Au be the largest number of AND-
nodes on any path from the node u to some leaf. The
following proposition proves Lemma 3.3:

Lemma 5.2. For every node u with Au ≥ 1, if Φu is
a monotone k-DNF, then k ≥ Au + 1.

Proof. The following claim, which we prove by induc-
tion on |Au|, suffices to show the lemma: for every
node u with Au ≥ 1, there exists a partial assignment
θ such that Φu[θ] is a Boolean formula that is the con-
junction of ≥ Au + 1 variables.

Observe that it suffices to prove the claim when u is an
AND-node, since for any u′ with Au′ ≥ 1 that is not an
AND-node, there is some AND-node u reachable from
u′ only via decision nodes (and hence with Au = Au′)
and we can obtain the partial assignment θ′ for u′ by

adding the partial assignment σ determined by the
path from u′ to u to the partial assignment θ for u.

If u is an AND-node with children v1, v2, then Φu =
Φv1 ∧ Φv2 where Φv1 ,Φv2

do not share any variables.
Consider a path starting at u that has Au AND-nodes
and assume w.l.o.g. that it takes the first branch, to
v1: thus, Au = Av1 + 1. If Av1 = 0 then, since D is
non-redundant, Φv1 is non-constant, so there is partial
assignment θ1 such that I1 = Φv1 [θ1] is a conjunction
of size ≥ 1 = Av1 + 1. If Av1 ≥ 1, by the induction
hypothesis, there exists a partial assignment θ1 such
that I1 = Φv1 [θ1] is a conjunction of size ≥ Av1

+
1. Since D is non-redundant, Φv2 is non-constant, so
there exists a partial assignment θ2 such that I2 =
Φv2 [θ2] is a conjunction of size ≥ 1. Taking θ = θ1∪θ2

and using the disjointness of the variables in Φv1 and
Φv2 , we get that Φu[θ] = I1 ∧ I2 is a conjunction of
size ≥ (Av1 + 1) + 1 = Au + 1, proving the claim.

6 Lower Bounds in Probabilistic
Databases

We now show an important application of our main
result to probabilistic databases. While in knowledge
compilation there exists a single complexity parame-
ter, which is the size of the input formula, in databases
there are two parameters: the database query, and the
database instance. For example, the query may be ex-
pressed in a query language, like SQL, and is usually
very small (e.g. few lines), while the database instance
is very large (e.g. billions of tuples). We are interested
here in data complexity [Vardi, 1982], where the query
is fixed, and the complexity parameter is the size of
the database instance. We use Theorem 3.4 to prove
an exponential lower bound for the query evaluation
problem for every query that is non-hierarchical.

We first briefly review the key concepts in
probabilistic databases, and refer the reader to
[Abiteboul et al., 1995, Suciu et al., 2011] for details.

A relational vocabulary consists of k relation names,
R1, . . . , Rk, where each Ri has an arity ai >
0. A (deterministic) database instance is D =
(A,RD

1 , . . . , R
D
k ), were A is a set of constants called

the domain, and for each i, RD
i ⊆ Aai . Let n = |A| be

the size of the domain of the database instance.

A Boolean query is a function Q that takes as in-
put a database instance D and returns an output
Q(D) ∈ {false, true}. A Boolean conjunctive query
(CQ) is given by an expression of the form Q =
∃x1 . . . ∃x`(P1 ∧ . . . ∧ Pm), where each Pk is a posi-
tive relational atom of the form Ri(xp1 , . . . , xpai

), with
xj either a variable ∈ {x1, . . . , x`} or a constant. A
Boolean Union of Conjunctive Queries (UCQ) is given
by an expression Q = Q1∨ . . .∨Qm where each Qi is a



Patient P
name disease
Ann asthma X1

Bob asthma X2

Carl flue X3

Friend F
name1 name2
Ann Joe Z11

Ann Tom Z12

Bob Tom Z22

Carl Tom Z32

Smoker S
name
Joe Y1

Tom Y2

Query Q = ∃x ∃y P(x, ‘asthma’) ∧ F(x, y) ∧ S(y)

Lineage expression ΦD
Q = X1Z11Y1 ∨X1Z12Y2 ∨X2Z22Y2

Figure 4: A database instance, query, and lineage

Boolean conjunctive query. We assume all queries to
be minimized (i.e. they do not have redundant atoms,
see [Abiteboul et al., 1995]).

Given an instance D and query expression Q,
the lineage ΦD

Q is a Boolean formula obtained by
grounding the atoms in Q with tuples in D; it
is similar to grounding in knowledge representa-
tion [Domingos and Lowd, 2009]. Formally, each tu-
ple t in the database D is associated with unique
Boolean variable Xt, and the lineage is defined in-
ductively on the structure of Q: (1) ΦD

Q = Xt, if

Q is the ground tuple t, (2) ΦD
Q1∧Q2

= ΦD
Q1
∧ΦD

Q2
, (3)

ΦD
Q1∨Q2

= ΦD
Q1
∨ ΦD

Q2
, and (4) ΦD

∃x.Q =
∨

a∈A ΦD
Q[a/x].

The lineage is always a monotone k-DNF of size O(n`),
where n is the domain size and k, ` are the largest num-
ber of atoms, and the largest number of variables in
any conjunctive query Qi of Q.

In a probabilistic database [Suciu et al., 2011], every
tuple t in the database instance is uncertain, and the
Boolean variable Xt indicates whether t is present or
not. The probability P (Xt = true) is known for ev-
ery tuple t, and is stored in the database as a sepa-
rate attribute of the tuple. The goal in probabilistic
databases is: given a query Q and an input database
D, compute the probability of its lineage, P (ΦD

Q).

Example 6.1. The following example is adapted
from [Jha et al., 2010], on a vocabulary with
three relations Patient(name, diseases),
Friend(name1, name2), Smoker(name) (see Fig-
ure 4). Each tuple is associated with a Boolean
variable (X1, X2 etc). The Boolean conjunctive
query Q (as well as the lineage ΦD

Q for database D)
returns true if the database instance contains an
asthma patient who has a smoker friend. Our goal
is to compute P (ΦD

Q), given the probabilities of each
Boolean variable, when Q is fixed and D is variable.

Lemma 6.2. Let h be the conjunctive query
∃x∃yR(x) ∧ S(x, y) ∧ T (y). Then any decision-DNNF
for the Boolean formula ΦD

h has size 2Ω(
√
n), where n

is the size of the domain of D.

Proof. For any n, let D be the database instance RD =
[n], SD = [n]× [n], TD = [n]. Then the lineage ΦD

h is
exactly the formula Φn of Corollary 3.6, up to variable
renaming, and the claim follows.

Fix a conjunctive query q = ∃x1 . . . ∃x`P1 ∧ . . . ∧ Pm.
For each variable xj , let at(xj) denote the set of atoms
Pi that contain the variable xj .

Definition 6.3. [Suciu et al., 2011] The query q is
called hierarchical if for any two distinct variables
xi, xj, one of the following holds: at(xi) ⊆ at(xj), or
at(xi) ⊇ at(xj), or at(xi) ∩ at(xj) = ∅. A Boolean
Union of Conjunctive Queries Q = q1 ∨ . . . ∨ qk is
called hierarchical if every qi is hierarchical for i ∈ [k].

For example, the query h in Lemma 6.2 is non-
hierarchical, because at(x) = {R,S}, at(y) = {S, T},
while the query ∃x.∃y.R(x)∧S(x, y) is hierarchical. It
is known that, for a non-hierarchical UCQ Q, comput-
ing the probability of the Boolean formulas ΦD

Q is #P-
hard [Suciu et al., 2011]. In the full paper we prove:

Theorem 6.4. Consider any Boolean Union of Con-
junctive Queries Q. If Q is non-hierarchical, then the
size of the decision-DNNF for the Boolean functions
ΦD

Q is 2Ω(
√
n), where n is the size of the domain of D.

The query Q in Example 6.1 is non-hierarchical: at(x)
= {Patient, Friend} and at(y) = {Friend, Smoker}.
Therefore, any decision-DNNF computing Q has
size 2Ω(

√
n). For another example, consider the

following non-hierarchical query that returns true iff
the database contains a triangle of friends:

q′ = ∃x∃y∃z(F(x, y) ∧ F(y, z) ∧ F(z, x))

Its lineage is ∆n =
∨

i,j,k=1,n ZijZjkZki. By Theo-

rem 6.4, any decision-DNNF for ∆n has size 2Ω(
√
n).

7 Conclusions and Open Problems

We have proved that any decision-DNNF can be effi-
ciently converted into an equivalent FBDD that is at
most quasipolynomially larger, and at most polynomi-
ally larger in the case of k-DNF formulas. As a conse-
quence, known lower bounds for FBDDs imply lower
bounds for decision-DNNFs and thus (a) exponential
separations of the representational power of decision-
DNNFs from that of both d-DNNFs and AND-FBDDs
and (b) lower bounds on the running time of any al-
gorithm that, either explicitly or implicitly, produces
a decision-DNNF, including the current generation of
exact model counting algorithms.

Some natural questions arise: Is there a polynomial
simulation of decision-DNNFs by FBDDs for the gen-
eral case? In particular, is there a polynomial-size
FBDD for the example Section 4.4? Is there some
other, more powerful syntactic subclass of d-DNNFs
that is useful for exact model counting? What can
be said about the limits of approximate model count-
ing [Gomes et al., 2009]?
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