
The Bregman Variational Dual-Tree Framework

Saeed Amizadeh
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15213

Bo Thiesson
Department of Computer Science

Aalborg University
Aalborg, Denmark

Milos Hauskrecht
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15213

Abstract

Graph-based methods provide a powerful
tool set for many non-parametric frameworks
in Machine Learning. In general, the mem-
ory and computational complexity of these
methods is quadratic in the number of exam-
ples in the data which makes them quickly in-
feasible for moderate to large scale datasets.
A significant effort to find more efficient so-
lutions to the problem has been made in
the literature. One of the state-of-the-art
methods that has been recently introduced
is the Variational Dual-Tree (VDT) frame-
work. Despite some of its unique features,
VDT is currently restricted only to Euclidean
spaces where the Euclidean distance quan-
tifies the similarity. In this paper, we ex-
tend the VDT framework beyond the Eu-
clidean distance to more general Bregman di-
vergences that include the Euclidean distance
as a special case. By exploiting the properties
of the general Bregman divergence, we show
how the new framework can maintain all the
pivotal features of the VDT framework and
yet significantly improve its performance in
non-Euclidean domains. We apply the pro-
posed framework to different text categoriza-
tion problems and demonstrate its benefits
over the original VDT.

1 Introduction

Graph-based methods provide a powerful tool set for
many non-parametric frameworks in Machine Learn-
ing (ML). The common assumption behind these
methods is the datapoints can be represented as the
nodes of a graph whose edges encode some notion of
similarity between the datapoints. Graph-based meth-
ods have been applied to various applications in ML

including clustering (Ng et al., 2001a; von Luxburg,
2007; Amizadeh et al., 2012b), semi-supervised learn-
ing (Zhu, 2005; Zhou et al., 2003), link-analysis (Ng
et al., 2001c,b) and dimensionality reduction (Belkin
and Niyogi, 2002; Zhang et al., 2012).

On the algorithmic side, many of these methods in-
volve computing the random walk on the graph which
is mathematically represented by a (Markov) transi-
tion matrix over the graph. In general, the compu-
tation of such matrix takes O(N2) time and memory,
where N is the problem size. As a result, for problems
with large N , the direct computation of the transi-
tion matrix (or its variants) quickly becomes infeasi-
ble. This is indeed a big challenge for applying many
graph-based frameworks specially with the advent of
large-scale datasets in many fields in ML. To tackle
this challenge, a significant effort has been made in
the literature to develop the approximation techniques
that somehow reduce the representation of the under-
lying graph. Based on the nature of approximation,
these methods are generally categorized into node re-
duction (Kumar et al., 2009; Talwalkar et al., 2008;
Amizadeh et al., 2011), edge reduction (von Luxburg,
2007; Jebara et al., 2009; Qiao et al., 2010), Fast Gauss
Transform (Yang et al., 2003, 2005) and hierarchical
(Amizadeh et al., 2012a; Lee et al., 2011) techniques.

Recently, Amizadeh et. al (Amizadeh et al., 2012a)
have proposed a hierarchical approximation frame-
work called the Variational Dual-Tree (VDT) frame-
work for the same purpose. In particular, by com-
bining the variational approximation with hierarchical
clustering of data, VDT provides a fast and scalable
method to directly approximate the transition matrix
of the random walk. Furthermore, the hierarchical na-
ture of VDT makes it possible to have approximations
at different levels of granularity. In fact, by chang-
ing the level of approximation in VDT, one can ad-
just the trade-off between computational complexity
and approximation accuracy. One major restriction
with the VDT framework, however, is it only works

for Euclidean spaces where similarity is expressed via
the Euclidean distance. This can be problematic in
many real applications where the Euclidean distance is
not the best way to encode similarity. Unfortunately,
the extension of VDT to a general distance metric is
not straightforward, mainly because the key compu-
tational gain of VDT is achieved by relying on the
functional form of the Euclidean distance.

In this paper, our goal is to extend the VDT frame-
work to use a general class of divergences called Breg-
man divergences (Banerjee et al., 2005). We propose
this new method as the Bregman Variational Dual Tree
(BVDT) framework. Bregman divergences cover a di-
verse set of divergences and distances which can all
be reformulated in a unified functional form. They
have been used in many ML paradigms including clus-
tering (Banerjee et al., 2005), matrix approximation
(Dhillon and Sra, 2005; Banerjee et al., 2004), nearest
neighbor retrieval (Cayton, 2008) and search (Zhang
et al., 2009). From the applied side, some famous
distances and divergences such as Euclidean distance,
KL-Divergence and Logistic Loss are in fact the in-
stances of Bregman divergences. By extending the
VDT framework to Bregman divergences, one can use
it with any instance of Bregman divergences depend-
ing on the application and therefore it becomes acces-
sible to a large class of applications where similarity is
expressed via non-Euclidean measures.

The crucial aspect of using Bregman divergences for
the VDT framework is it does not cost us any extra
order of computations; it still has the same compu-
tational and memory complexity order as the original
VDT. In particular, we show that by exploiting the
functional form of the general Bregman divergence,
one can design a similar mechanism as in VDT to
significantly cut unnecessary distance computations.
This is a very important property because the motiva-
tion to develop variational dual-trees in the first place
was to tackle large-scale problems.

One nice feature of the VDT framework is its prob-
abilistic interpretation. In fact, the whole framework
is derived from the data likelihood. We show that by
using the natural correspondence between the Breg-
man divergences and the exponential families, we can
reconstruct the same probabilistic interpretation for
the BVDT framework which induces a more general
modeling perspective for the problems we consider.
The benefit of such probabilistic view is not restricted
only to the theoretical aspects; as we show by a walk-
through example, one can utilize the probabilistic view
of our model to derive appropriate Bregman diver-
gences for those domains where the choice of a good
Bregman divergence is not apparent. In particular, in
this paper, we use this construction procedure to de-

rive a proper Bregman divergence for frequency data
(specifically text data in our experiments). By apply-
ing the BVDT framework equipped with the derived
divergence on various text datasets, we show the clear
advantage of our framework over the original VDT
framework in terms of the approximation accuracy,
while preserving the same computational complexity.
Finally, we show that the original VDT framework is
in fact a special case of the BVDT framework.

2 Euclidean Variational Dual-Trees

To prepare the reader for the proposed Bregman diver-
gence extension to the VDT framework, we will in this
section briefly review the basic elements of VDT. In-
terested readers may refer to (Amizadeh et al., 2012a)
for further details.

2.1 Motivation

Let D = {x1, x2, . . . , xN} be a set of i.i.d. datapoints
in X ⊆ Rd. The similarity graph G = 〈D,D ×D,W〉
is defined as a complete graph whose nodes are the
elements of D and the matrix W = [wij]N×N rep-
resents the edge weights of the graph. A weight
wij = k(xi, xj ;σ) = exp(−‖xi − xj‖2/2σ2) is de-
fined by the similarity between nodes xi and xj . The
closer xi and xj are in terms of the Euclidean distance
‖xi − xj‖, the higher the similarity weight wij will
be. The bandwidth parameter σ is a design parameter
that scales the similarities in the graph. By abstract-
ing the input space into a graph, the similarity graph
essentially captures the geometry of the data.

Once the similarity graph is constructed, one can de-
fine a random walk on it. The transition probability
distributions are in this case given by the transition
matrix P = [pij]N×N , where pij = wij/

∑
k 6=i wik is

the probability of jumping from node xi to node xj .
Note that the elements in each row of P sum up to 1 so
that each row is a proper probability distribution. The
transition matrix is the fundamental quantity used by
many graph-based Machine Learning frameworks, as
mentioned already in Section 1.

In terms of computational resources, it takes O(N2)
CPU and memory to construct and maintain the tran-
sition matrix, which can be problematic when the
number of datapoints, N , becomes large. This is,
in fact, quite typical in many real-world datasets and
therefore leaves us with a serious computational chal-
lenge in using many graph-based frameworks. To
overcome this challenge, the key idea is to some-
how reduce the representation of P. The Varia-
tional Dual-Tree (VDT) framework provides a non-
parametric methodology to approximate and represent

P in O(N1.5 logN). One big advantage of this frame-
work to its counterparts is that it directly computes
the transition matrix without computing the interme-
diate similarity matrix W. Another advantage of VDT
is that given a distance computation of O(1) between
any two datapoints, the overall computational com-
plexity of VDT does not depend on the dimensionality
d of the input space.

2.2 Variational Dual-Tree Partitioning

The main idea behind the computational reduction by
the VDT framework is to partition the transition ma-
trix P into blocks, where each block ties the individual
transition probabilities in that block into a single num-
ber (or parameter). The number of different elements
in P is in this way reduced from N2 to |B|, the num-
ber of blocks. In the VDT framework, a cluster tree
hierarchy of the data lets us define blocks of different
sizes according to nodes at different granularity levels
in the tree. In this way, the number of blocks |B| can
be as small as O(N) (Amizadeh et al., 2012a).

More specifically, let T be a binary tree that repre-
sents a hierarchical clustering of data. Given T , a
valid block partition B defines a mutually exclusive
and exhaustive partition of P into blocks (or sub-
matrices) (A,B) ∈ B, where A and B are two non-
overlapping subtrees in T . That is, A cannot be a
subtree of B or vice versa. A valid block partition B
relates to a similarity graph as follows. If A and B
are two non-overlapping datapoint clusters, then the
block (A,B) ∈ B represents the transition probabili-
ties from datapoints in node A to datapoints in node
B with only one parameter, which is denoted by qAB .
That is, ∀xi ∈ A, xj ∈ B, pij = qAB ; we call this a
block constraint. Valid block partitions are not unique;
in fact, any further refinement of a valid partition re-
sults in a new valid partition with increased number
of blocks. In the coarsest partition, each subtree in T
is blocked with its sibling, resulting in the minimum
number of blocks |B| = 2(N − 1). The coarsest parti-
tion embodies the approximation of P at the coarsest
level. On the other hand, in the finest partition, each
leaf in T is blocked with all the other leaves resulting
in the maximum number of blocks |B| = N(N − 1);
this partition exactly represents P with no approxima-
tion. The other valid partitions vary between these
two extremes. In this setup, a finer partition has bet-
ter approximation accuracy at the cost of increased
computational complexity and vice versa. Figure 1
borrowed from (Amizadeh et al., 2012a) shows an ex-
ample of a block partitioning with its corresponding
cluster tree.

Given a block partitioning B of P, one needs to com-
pute the parameter set Q = {qAB | (A,B) ∈ B} as

Figure 1: A block partition that, for example, enforces
the block constraint p13 = p14 = p23 = p24 for the
block (A,B) = (1− 2, 3− 4) (where a− b denotes a
through b).

the final step to complete the approximation of P. For
this purpose, the VDT framework maximizes the vari-
ational lower bound on the log-likelihood of data with
the set Q as the variational parameters. In this frame-
work, the likelihood of data is modeled by the non-
parametric kernel density estimate. In particular, a
Gaussian kernel is placed on each datapoint in the in-
put space such that each datapoint xi plays two roles:
(I) a datapoint where we want to compute the likeli-
hood at, and (II) the center of a Gaussian kernel. We
denote datapoint xi as mi when it is regarded as a
kernel center. Using this notation, the likelihood of
dataset D is computed as:

p(D) =
∏
i

p(xi) =
∏
i

∑
j 6=i

p(mj)p(xi | mj), (1)

where p(xi|mj) is the Gaussian density at xi cen-
tered at mj ; that is, p(xi|mj) = exp(−‖xi −
mj‖2/2σ2)(2πσ2)−d/2, and p(mj) = 1/(N − 1) is the
uniform mixture weight. Using Bayes rule, we observe
that the posterior p(mj | xi) is equal to the transition
probability pij . The lower-bound on the log-likelihood
is then computed as:

log p(D) =
∑
i

log
∑
j 6=i

qij
qij
p(mj)p(xi | mj)

≥
∑
i

∑
j 6=i

qij log
p(mj)p(xi | mj)

qij

= log p(D)−
∑
i

DKL

(
qi·‖pi·

)
, `(D), (2)

where qij ’s are the variational parameters approximat-
ing pij ’s and DKL(qi·‖pi·

)
is the KL-divergence be-

tween two distributions qi· and pi·. With only the
sum-to-one constraints ∀i :

∑
j 6=i qij = 1, the opti-

mization in Eq. (2) returns qij = pij ; that is, there is
no approximation! However, by adding the block con-
straints from the block partition B, one can rewrite Eq.
(2) in terms of the block parameters in Q. Let us first

reformulate the sum-to-one constraints in accordance
with the block partition as follows:∑

(A,B)∈B(xi)
|B| · qAB = 1 for all xi ∈ D. (3)

where, B(xi) , {(A,B) ∈ B | xi ∈ A}. In this case,

`(D) = c− 1
2σ2

∑
(A,B)∈B

qAB ·DAB

−
∑

(A,B)∈B

|A||B| · qAB log qAB , (4)

where

c = −N log
(
(2π)d/2σd(N − 1)

)
DAB =

∑
xi∈A

∑
mj∈B

‖xi −mj‖2. (5)

(Thiesson and Kim, 2012) has proposed anO(|B|)-time
algorithm to maximize Eq. (4) under the constraints
in Eq. (3).

A very crucial element of the VDT framework is the
way that Eq. (5) is computed; the direct computation
of the double-sum for DAB of all blocks would send
us back to an O(N2)-time algorithm! Fortunately,
this can be avoided thanks to the Euclidean distance,
where DAB can be written as:

DAB = |A|S2(B) + |B|S2(A)− 2S1(A)TS1(B), (6)

where, S1(A) =
∑
x∈A x and S2(A) =

∑
x∈A x

Tx are
the statistics of subtree A. These statistics can be
incrementally computed and stored while the cluster
tree is being built; an O(N) computation. Using these
statistics, DAB is computed in O(1). The crux of
the reformulation in Eq. (6) is the de-coupling of the
mutual interactions between two clusters A and B so
that the sum of mutual interactions can be computed
using the sufficient statistics pre-calculated indepen-
dently for each cluster.

Once the parameters Q are computed, we have the
block approximation of P which we denote by Q.
(Amizadeh et al., 2012a) has proposed an O(|B|)-time
algorithm to compute the matrix-vector multiplication
Qv for an arbitrary vector v. We will use this algo-
rithm for label propagation in Eq. (29) in Section 4.2.

2.3 Anchor Tree Construction

So far, we assumed the cluster hierarchy tree T is
given. In reality, however, one needs to efficiently build
such a hierarchy from data as the first step of the VDT
framework. (Amizadeh et al., 2012a) has used the an-
chor construction method (Moore, 2000) for this pur-
pose. Compared to the classical O(N3)-time agglom-
erative clustering algorithm, the construction time for

this tree is O(N1.5 logN) for a relatively balanced data
set (see Amizadeh et al. (2012a), Appendix). The con-
struction starts with an anchor growing phase that for
the N data points gradually grows a set of

√
N an-

chors A. Each anchor A ∈ A has a pivot datapoint Ap
and maintains a list of individual member datapoints
AM sorted by decreasing order of distance to the pivot
‖xi − Ap‖, xi ∈ AM . The distance to the first data-
point in the list therefore defines a covering radius Ar
for the anchor, where ‖xi−Ap‖ ≤ Ar for all xi ∈ AM .

The anchor growing phase constructs a first anchor by
choosing a random datapoint as pivot and assigning
all datapoints as members of that anchor. A new an-
chor Anew is now added to a current set of anchors
in three steps until

√
N anchors are found: first, its

pivot element is chosen as the datapoint with largest
distance to the pivot(s) of the current anchor(s):

Anewp = arg max
xi∈AM ,A∈A

‖xi −Ap‖. (7)

Second, the new anchor now iterates through the mem-
ber elements of current anchors and “steals” the dat-
apoints with ‖xi − Anewp ‖ < ‖xi − Ap‖. Because the
list of elements in an anchor is sorted with respect to
‖xi−Ap‖, a significant computational gain is achieved
by not evaluating the remaining datapoints in the list
once we discover that for the i-th datapoint in the list
‖xi −Ap‖ ≤ dthr, where

dthr = ‖Anewp −Ap‖/2, (8)

This guarantees that the elements with index j ≥ i
in the list are closer to their original anchor’s pivot
and cannot be stolen by the new anchor. When a new
anchor is done stealing datapoints from older anchors,
its list of elements is finally sorted.

Once the
√
N anchors are created, the anchor tree con-

struction now proceeds to anchor agglomeration phase
that assigns anchors as leaf nodes and then iteratively
merges two nodes that create a parent node with the
smallest covering radius. This agglomerative bottom-
up process continues until a hierarchical binary tree
is constructed over the

√
N initial anchors. With an

Euclidean distance metric, the covering parent for two
nodes A and B can be readily computed as the node
C with pivot and radius

Cp = (|A| ·Ap + |B| ·Bp)/(|A|+ |B|) (9)
Cr = (Ar +Br + ‖Bp −Ap‖)/2 (10)

Finally, recall that the leaves (i.e. the initial anchors)
in this newly constructed tree contain

√
N datapoints

on average each. The whole construction algorithm is
now recursively called for each anchor leaf to grow it
into a subtree. The recursion ends when the leaves of
the tree contain only one datapoint each.

3 Bregman Variational Dual-Trees

The Euclidean VDT framework has been shown to be a
practical choice for large-scale applications. However,
its inherent assumption that the underlying distance
metric in the input space should be the Euclidean
distance is somewhat restrictive. In many real-world
problems, the Euclidean distance is simply not the best
way to quantify the similarity between datapoints.

On the other hand, the VDT framework does not seem
to depend on the choice of distance metric, which
makes it very tempting to replace the Euclidean dis-
tance in the formulation of the VDT framework with
a general distance metric. However, there is one prob-
lem: the de-coupling in Eq. (6) was achieved only
because of the Euclidean distance special form which
is not the case for a general distance metric. Unfor-
tunately, we cannot compromise on this de-coupling
simply because, without it, the overall complexity of
the framework is back to O(N2). One solution is to use
some approximation technique similar to Fast Gauss
Transform techniques (Yang et al., 2005) to approxi-
mately de-couple a general distance metric. Although,
this may work well for some special cases, in general,
the computational burden of such approximation can
be prohibitive; besides, we will have a new source of
approximation error.

So, if we cannot extend VDT for general distance met-
ric, is there any sub-class of metrics or divergences
which we can safely use to extend the VDT frame-
work? The answer is yes, the family of Bregman di-
vergences is a qualified candidate. This family con-
tains a diverse set of divergences which also include the
Euclidean distance. By definition, the Bregman diver-
gence has a de-coupled form which makes it perfect for
our purpose. From the applied side, Bregman diver-
gences cover some very practical divergences and met-
rics such as Euclidean distance, KL-Divergence and
Logistic Loss that are widely used in many engineer-
ing and scientific applications. Furthermore, the nat-
ural correspondence of Bregman divergences with the
exponential families provides a neat probabilistic in-
terpretation for our framework.

3.1 Bregman Divergence and The
Exponential Families

Before illustrating the Bregman Variational Dual-Tree
(BVDT) framework, we briefly review the Bregman
divergence, its important properties and its connection
to the exponential families. Interested readers may
refer to (Banerjee et al., 2005) for further details.

Let X ⊆ Rd be a convex set in Rd, ri(X) denote the
relative interior of X , and φ : X 7→ R be a strictly con-

vex function differentiable on ri(X), then the Bregman
divergence dφ : X × ri(X) 7→ [0,∞) is defined as:

dφ(x, y) , φ(x)− φ(y)− (x− y)T∇φ(y) (11)

where, ∇φ(y) is the gradient of φ(·) evaluated at y. For
different choices of φ(·), we will get different Bregman
divergences. Table 1 lists some famous Bregman diver-
gences along with their corresponding φ(·) functions.
It is important to note that the general Bregman di-
vergence is not a distance metric: it is not symmetric,
nor does it satisfy the triangular inequality. However,
we have ∀x ∈ X , y ∈ ri(X) : dφ(x, y) ≥ 0, dφ(y, y) = 0.

Let S = {x1, . . . , xn} ⊂ X and X be a random variable
that takes values from S with uniform distribution1;
the Bregman information of the random variable X
for the Bregman divergence dφ(·, ·) is defined as:

Iφ(X) , min
s∈ri(X)

E
[
dφ(X, s)

]
= min
s∈ri(X)

1
n

n∑
i=1

dφ(xi, s)

(12)
The optimal s that minimizes Eq. (12) is called the
Bregman representative of X and is equal to:

arg min
s∈ri(X)

E
[
dφ(X, s)

]
= E[X] =

1
n

n∑
i=1

xi , µ (13)

That is, the Bregman representative of X is always
equal to the sample mean of S independent of the Breg-
man divergence dφ(·, ·).

The probability density function p(z), defined on set
Z, belongs to an exponential family if there exists a
mapping g : Z 7→ X ⊆ Rd that can be used to re-
parameterize p(z) as:

p(z) = p(x; θ) = exp(θTx− ψ(θ))p0(x) (14)

where x = g(z) is the natural statistics vector, θ is the
natural parameter vector and ψ(θ) is the log-partition
function. Eq. (14) is called the canonical form of p. If
θ takes values from parameter space Θ, Eq. (14) de-
fines the family Fψ = {p(x; θ) | θ ∈ Θ} parameterized
by θ. If Θ is an open set and we have that @c ∈ Rd
s.t. cT g(z) = 0,∀z ∈ Z, then family Fψ is called a
regular exponential family. (Banerjee et al., 2005) has
shown that any probability density function p(x; θ) of
a regular exponential family with the canonical form
of Eq. (14) can be uniquely expressed as:

p(x; θ) = exp(−dφ(x, µ)) exp(φ(x))p0(x) (15)

where φ(·) is the conjugate function of the log-partition
function ψ(·), dφ(·, ·) is the Bregman divergence de-
fined w.r.t. function φ(·), and µ is the mean param-
eter. The mean parameter vector µ and the natural

1The results hold for any distribution on S.

parameter vector θ are connected through:

µ = ∇ψ(θ), θ = ∇φ(µ) (16)

Moreover, (Banerjee et al., 2005) (Theorem 6) has
shown there is a bijection between the regular expo-
nential families and the regular Bregman divergences.
The last column in Table 1 shows the corresponding
exponential family of each Bregman divergence. Us-
ing Eq. (13), one can also show that, given the finite
sample S = {x1, . . . , xn}, the maximum-likelihood es-
timate of the mean parameter µ̂ for any regular expo-
nential family Fψ is always equal to the sample mean
of S regardless of Fψ.

3.2 Bregman Variational Approximation

Having described the basic concepts of Bregman di-
vergences, we are now ready to nail down the BVDT
framework. Let S = {z1, z2, . . . , zN} ⊂ Z be a fi-
nite sample from the convex set Z which is not nec-
essarily an Euclidean space. We are interested to ap-
proximate the transition matrix P on the similarity
graph of S where we know the Euclidean distance is
not necessarily the best way to encode similarity. To
do so, we assume S is sampled according to an un-
known mixture density model p∗(z) with K compo-
nents from the regular exponential family Fψ. That
is, there exists the mapping g : Z 7→ X ⊆ Rd such that
p∗(z) can be re-parametrized in the canonical form as
p∗(x) =

∑K
i=1 p(θi) exp(θTi x− ψ(θi))p0(x).2

Furthermore, let D = g(S) = {x1, x2, . . . , xN} ⊂ X be
the natural statistics of sample S s.t. xi = g(zi). Then
we model the likelihood of D using the kernel density
estimation:

p(D) =
N∏
i=1

∑
j 6=i

p(mj)p(xi | mj) (17)

=
N∏
i=1

∑
j 6=i

p(mj) exp(−dφ(xi,mj)) exp(φ(xi))p0(xi)

Where, we assume the kernel component p(xi | mj)
belongs to the regular exponential family Fψ such that
it can be uniquely re-parameterized using Eq. (15).
Given a block partitioning B on P, we follow the similar
steps in Eq. (2)-(5) to derive the block-partitioned
variational lower-bound on p(D):

`(D) = c−
∑

(A,B)∈B

qAB ·DAB

−
∑

(A,B)∈B

|A||B| · qAB log qAB , (18)

2For some exponential families such as Gaussian and
Multinomial, the mapping g(·) is identity.

where

c = −N log(N − 1) +
N∑
i=1

(
φ(xi) + log p0(xi)

)
DAB =

∑
xi∈A

∑
mj∈B

dφ(xi,mj). (19)

Now we can maximize `(D) subject to the constraints
in Eq. (3) to find the approximation Q of P using the
same O(|B|)-time algorithm in the VDT framework.

The crucial aspect of the BVDT framework is DAB in
Eq. (19) is de-coupled into statistics of the subtrees A
and B using the definition of the Bregman divergence:

DAB = |B|S1(A)+|A|
(
S2(B)−S1(B)

)
−S3(A)TS4(B)

(20)
where,

S1(A) =
∑
x∈A

φ(x), S2(A) =
∑
x∈A

xT∇φ(x)

S3(A) =
∑
x∈A

x, S4(A) =
∑
x∈A
∇φ(x) (21)

are the statistics of subtree A. These statistics can be
incrementally computed and stored while the cluster
tree is being built (in overall O(N) time) such that at
the optimization time, DAB is computed in O(1).

Finally, by setting φ(x) = ‖x‖2/2σ2 and doing the al-
gebra, the BVDT framework reduces to the Euclidean
VDT framework; that is, the Euclidean VDT frame-
work is a special case of the BVDT framework.

3.3 Bregman Anchor Trees

Recall that the approximation in the Euclidean VDT
framework is based on the cluster hierarchy T of the
data which is built using the anchor tree method with
the Euclidean distance. For the BVDT framework, we
can no longer use this algorithm because the Euclidean
distance no longer reflects the similarity in the input
space. For this reason, one needs to develop an an-
chor tree construction algorithm for general Bregman
divergences. This generalization is not straightforward
as a general Bregman divergence is neither symmetric
nor does it hold the triangle inequality. In particular,
we need to address two major challenges.

First, due to the asymmetry of a general Bregman di-
vergence, the merging criterion in the anchor agglom-
eration phase is no longer meaningful. For this pur-
pose, we have used the criterion suggested in the recent
work by (Telgarsky and Dasgupta, 2012). In particu-
lar, at each agglomeration step, anchors A and B with
the minimum merging cost are picked to merge into

Name X φ(x) dφ(x,y) Exponential Family
Logistic Loss (0, 1) x log x x log

`
x
y

´
+ (1− x) log

`
1−x
1−y

´
1D Bernoulli

Itakura-Saito Dist. R++ − log x− 1 x
y
− log

`
x
y

´
− 1 1D Exponential

Relative Entropy Z+ x log x− x x log
`

x
y

´
− x+ y 1D Poisson

Euclidean Dist. Rd ‖x‖2/2σ2 ‖x− y‖2/2σ2 Spherical Gaussian

Mahalonobis Dist. Rd xT Σ−1x (x− y)T Σ−1(x− y) Multivariate Gaussian

KL-Divergence d-simplex
Pd

j=1 x(j) log x(j)
Pd

j=1 x(j) log
`x(j)

y(j)

´
-

- int. d-simplex
Pd

j=1 x(j) log
`x(j)

L

´ Pd
j=1 x(j) log

`x(j)
y(j)

´
Multinomial

Table 1: Famous Bregman divergences along with their corresponding φ(·) function, its domain and the corresponding
exponential family distribution

the parent anchor C. The cost for merging a pair of
anchors A and B is defined as:

∆(A,B) = |A| · dφ(Ap, Cp) + |B| · dφ(Bp, Cp) (22)

where |A| is the number of elements in the anchor A,
and Cp is the parent anchor’s pivot which is given by
Eq. (9). (Telgarsky and Dasgupta, 2012) has shown
that the merging cost in Eq. (22) can be interpreted
as the difference of cluster unnormalized Bregman in-
formations before and after merging.

Second, as shown before, using the halfway Euclidean
distance as the stealing threshold (Eq. (8)) in the
anchor construction phase significantly cuts the un-
necessary computations. This threshold, however, is
meaningless for a general Bregman divergence simply
because a general Bregman divergence is not a metric.
Therefore, we need to develop an equivalent threshold
for Bregman divergences to achieve a similar computa-
tional gain in constructing Bregman anchor trees. The
following proposition addresses this problem:
Preposition 1. Let Acurr and Anew denote the cur-
rent and the newly created anchors, respectively, where
Anew is stealing datapoints from Acurr. Define

dthr =
1
2

min
y∈X

[
dφ(y,Acurrp) + dφ(y,Anewp)

]
(23)

Then for all x ∈ Acurr such that dφ(x,Acurrp) ≤ dthr,
we will have dφ(x,Acurrp) ≤ dφ(x,Anewp); that is, x
cannot be stolen from Acurrp by Anewp . Furthermore,
the minimizer of Eq. (23) is equal to:

y∗ = ∇φ−1

[
1
2

(
∇φ(Acurrp) +∇φ(Anewp)

)]
(24)

The proof is easily derived by contradiction. Note that
for the special case of Euclidean distance where φ(x) =
‖x‖2/2σ2, Eq. (23) reduces to Eq. (8).

4 Experiments

In order to apply the BVDT framework to a real prob-
lem, all one needs to know are the appropriate Breg-

man divergence and its corresponding φ(·) function in
the input space; knowing the corresponding exponen-
tial family that has generated the data is not neces-
sary. However, in many problems, the choice of the
appropriate Bregman divergence is not clear; instead,
we know that the underlying data generation process
belongs to or can be accurately modeled with expo-
nential families. In such cases, one can systematically
derive the appropriate Bregman divergence from the
data distribution. In this section, we use this proce-
dure to derive an appropriate Bregman divergence for
the frequency data.

4.1 Modeling Frequency Data

Given a set of d events {ej}dj=1, the frequency dataset
D consists of N feature vectors where the j-th ele-
ment of the i-th vector, xi(j), represents the number
of times that event ej happens in the i-th case for all
j ∈ {1, . . . , d}. The length of each vector is defined
as the total number of events happened in that case,
i.e. Li =

∑d
j=1 xi(j). For example, in text analy-

sis, events can represent all the terms that appeared
in a text corpus, while the data cases represent the
documents. The frequency dataset in this case is the
famous bag-of-words. We adopt the term-document
analogy for the rest of this section.

If the lengths of all documents were equal, one could
model the document generation process with a mix-
ture of multinomials, where each mixture component
had different term generation probabilities while shar-
ing the same length parameter (Banerjee et al., 2005).
However, having the same length is not the case for
many real datasets. To address this issue, we pro-
pose a mixture model for data generation whose k-th
component (k ∈ [1..K]) is modeled by the following
generative model:

pk(x;αk, λk) = p(x | L; αk)p(L;λk) (25)

where, the length of a document, L, has a poisson
distribution p(L;λk) with mean length λk and given
L, document x has a multinomial distribution p(x |

L; αk) with the term probabilities αk = [αk(j)]dj=1.
By doing the algebra, pk(x;αk, λk) can be written in
the form of Eq. (14), where we have:

θk = [θk(j)]dj=1 =
[

log(λkαk(j))
]d
j=1

,

ψ(θk) =
d∑
j=1

exp(θk(j)), p0(x) =
(d∏
j=1

x(j)!
)−1

(26)

That is, our generative model also belongs to an ex-
ponential family. By deriving the conjugate function
of ψ(·), we get the φ(·) function and its corresponding
Bregman divergence as:

φ(x) =
d∑
j=1

x(j) log x(j)−
d∑
j=1

x(j) (27)

dφ(x, y) =
d∑
j=1

[
x(j) log

(
x(j)
y(j)

)
− x(j) + y(j)

]
(28)

The divergence in Eq. (28) is called the Generalized
I-Divergence (GID) which is a generalization of KL-
Divergence (Dhillon and Sra, 2005). As a result, to
work with frequency data (in particular text data in
our experiments), we customize the BVDT framework
to use GID as its Bregman divergence. It should be
noted that GID is not the only non-Euclidean sim-
ilarity measure between documents, other techniques
such as co-citation (Šingliar and Hauskrecht, 2006) has
been used before.

4.2 Experimental Setup

To evaluate the BVDT framework, we use it for a
semi-supervised learning (SSL) task on various text
datasets. (Amizadeh et al., 2012a) has experimentally
shown the VDT framework can be well scaled to large-
scale problems. Our framework has exactly the same
order of complexity as VDT. Therefore, due to the
space limit, we focus our evaluation only on the accu-
racy of SSL for text data. In particular, we show that
while enjoying the same computational speed-up as
the Euclidean VDT framework, the BVDT framework
equipped with GID significantly improves the quality
of learning over the VDT framework for text data.

For the SSL task, we want to propagate the labels from
a small set of labeled examples to the rest of unlabeled
examples over the similarity graph built over the ex-
amples. To do so, we use the following iterative prop-
agation scheme (Zhou et al., 2003):

y(t+1) ← αMy(t) + (1− α)y0 (29)

where y(t) ∈ RN×1 is the vector of labels at time t,
M ∈ RN×N is the transition matrix P (or its approx-
imation Q), y0 is the vector of initial partial label-
ing and α ∈ [0, 1] is the mixing coefficient. For all of

our experiments, we iterate through this process 300
times with α = 0.01. Upon completion of propagation,
we compute the classification accuracy over the unla-
beled data w.r.t. the held-out true labels. Note that
this process is for binary classification problems; for
problems with multiple classes, we perform one-vs-all
scheme for each class and take the maximum.

We have compared four methods for computing ma-
trix M: (a) Euclidean VDT, (b) BVDT equipped with
GID, (c) Exact method with Euclidean distance and
(d) Exact method with GID. For Exact methods, the
transition matrix P is exactly computed using the di-
rect method. Due to memory limitations on our single
machine, we could apply Exact methods only for the
smaller datasets. For variational methods, we have
used the coarsest level of approximation for the tran-
sition matrix; that is, P is approximated with only
2(N − 1) number of parameters (or blocks).

We have applied these methods on five text datasets
represented as bag-of-words used before in (Greene
and Cunningham, 2006; Deng et al., 2011; Maas et al.,
2011; Lang, 1995). Table 2 illustrates the details.

Dataset N d C
BBC-Sport News Articles 737 4613 5
BBC News Articles 2225 9636 5
20 Newsgroup 11269 61188 20
NSF Research Abstracts 16405 18674 10
Large Movie Reviews 50000 89527 2

Table 2: Datasets used: N = number of documents, d =
number of terms, C = number of classes

4.3 Results

Figures 2(A-E) show the classification accuracy vs. the
percentage of labeled data for the datasets. The plots
show the average of 5 trials with 95% confidence inter-
vals. Although, none of the actual datasets is gener-
ated by the generative model proposed in Eq. (25), the
BVDT with GID method consistently and significantly
outperforms the Euclidean VDT. In particular, these
results show that (a) the Generalized I-Divergence de-
rived from the proposed generative model for text data
captures the document similarity much better than the
Euclidean distance does, and (b) the BVDT frame-
work provides a straightforward mechanism to extend
the variational dual-tree method beyond the Euclidean
distance to use Bregman divergences such as GID.

We have also applied the Exact methods to the two
smallest datasets. Not surprisingly, the Exact method
with GID has the best performance compared to other
methods. However, the Exact method with a wrong
distance metric (the Euclidean distance in this case)
can do even worse than the VDT method with Eu-
clidean distance, as observed for the second BBC

●

VDT−EUC
BVDT−GID
Exact−EUC
Exact−GID

0.05 0.15 0.25 0.35

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Labeled %

A
cc

ur
ac

y

●

●

●

● ●

●

●

●

●
●

A

0.05 0.15 0.25 0.35

0.
3

0.
5

0.
7

0.
9

Labeled %

A
cc

ur
ac

y

●
●

●
●

●

●

●

●
●

●

B

0.05 0.15 0.25 0.35

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Labeled %

A
cc

ur
ac

y

●

●

●

●

●

●

●

●

●

●

C

0.05 0.15 0.25 0.35

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Labeled %

A
cc

ur
ac

y

●

●

●

●
●

●

●

●

●

●

D

0.05 0.15 0.25 0.35

0.
50

0.
60

0.
70

0.
80

Labeled %

A
cc

ur
ac

y

●

●

●

●

●

●

●

●

●

●

E

sample size

C
on

st
ru

ct
io

n
tim

e
(m

s)

1e
+

04
1e

+
06

1e
+

08

1e+03 1e+04

●

●

●
●

●

F

Figure 2: The accuracy curves vs. labeled data % for (A) BBC Sport News (B) BBC News (C) 20 Newsgroup (D) NSF
Research Abstracts (E) Large Movie Reviews. (F) The computational complexity of four methods vs. the dataset size

dataset. We conjecture the existence of block regu-
larization in the VDT framework compensates for the
improper distance to some degree in this case.

Finally, we note the computational complexity of the
aforementioned methods vs. the dataset size (i.e. the
number of documents) shown in Figure 2(F). Both X
an Y axes in this plot are in log-scale. As the plot
shows while Euclidean VDT and BVDT have the same
order complexity, they both are orders of magnitude
faster than the Exact methods. In other words, while
significantly improving on learning accuracy, BVDT
still enjoys the same computational benefits as VDT.

5 Conclusions

In this paper, we proposed the Bregman Variational
Dual-Tree framework which is the generalization of the
recently developed Euclidean Variational Dual-Tree
method to Bregman divergences. The key advantage
of the BVDT framework is it covers a large class of dis-
tances and divergences and therefore makes the vari-
ational dual-trees accessible to many non-Euclidean
large-scale datasets. The crucial aspect of our general-
ization to Bregman divergences is, unlike generalizing
VDT to a general distance metric, it comes with no
extra computational cost; that is, its computational
order can still be kept the same as that of the VDT
framework. This is very important to the development
of whole framework since the variational dual-trees
were originally developed to tackle large-scale prob-
lems. To achieve this, we utilized the functional form

of the general Bregman divergence to design a bottom-
up mechanism to cut unnecessary distance computa-
tions similar to that of the Euclidean VDT framework.

Furthermore, by exploiting the connection between the
Bregman divergences and the exponential families, we
provided a probabilistic view of our model. By a walk-
through example, we showed that this probabilistic
view can be used to derive the appropriate Bregman
divergence for those domains where the best choice of
distance in not apparent at the first glance. This exam-
ple provides us with a powerful construction procedure
to develop the appropriate Bregman divergence for a
given problem. Specifically, we used this procedure to
derive the Generalized I-Divergence for the frequency
data. We showed that by incorporating GID in the
BVDT framework, our model significantly improved
the accuracy of learning for semi-supervised learning
on various text datasets, while maintaining the same
order of complexity as the original VDT framework.
It should be emphasized that although we used the
BVDT framework with one type of Bregman diver-
gence, the proposed model is general and can be cus-
tomized with any Bregman divergence.

Acknowledgements

This research work was supported by grants
1R01LM010019-01A1 and 1R01GM088224-01 from
the NIH. The content of this paper is solely the re-
sponsibility of the authors and does not necessarily
represent the official views of the NIH.

References

S. Amizadeh, S. Wang, and M. Hauskrecht. An effi-
cient framework for constructing generalized locally-
induced text metrics. In IJCAI-11, pages 1159–
1164, 2011.

S. Amizadeh, B. Thiesson, and M. Hauskrecht. Vari-
ational dual-tree framework for large-scale transi-
tion matrix approximation. In the 28th Conference
on Uncertainty in Artificial Intelligence (UAI-12),
pages 64–73, 2012a.

S. Amizadeh, H. Valizadegan, and M. Hauskrecht. Fac-
torized diffusion map approximation. Journal of
Machine Learning Research-Proceedings Track, 22:
37–46, 2012b.

A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S.
Modha. A generalized maximum entropy approach
to bregman co-clustering and matrix approximation.
In ACM SIGKDD, pages 509–514, 2004.

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh.
Clustering with bregman divergences. JMLR, 6:
1705–1749, 2005.

M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation.
Neural Computation, 15:1373–1396, 2002.

L. Cayton. Fast nearest neighbor retrieval for bregman
divergences. In ICML, pages 112–119, 2008.

H. Deng, J. Han, B. Zhao, Y. Yu, and C. X. Lin.
Probabilistic topic models with biased propagation
on heterogeneous information networks. In KDD,
pages 1271–1279, 2011.

I. Dhillon and S. Sra. Generalized nonnegative matrix
approximations with Bregman divergences. 2005.

D. Greene and P. Cunningham. Practical solutions to
the problem of diagonal dominance in kernel docu-
ment clustering. In ICML, pages 377–384, 2006.

T. Jebara, J. Wang, and S. Chang. Graph construc-
tion and b-matching for semi-supervised learning. In
ICML, volume 382, page 56. ACM, 2009.

S. Kumar, M. Mohri, and A. Talwalkar. Sampling
techniques for the nystrom method. Journal of Ma-
chine Learning Research - Proceedings Track, 5:304–
311, 2009.

Ken Lang. News weeder: Learning to filter netnews.
In Machine Learning International Workshop, pages
331–339. Morgan Kufmann Publishers, Inc., 1995.

D. Lee, A.G. Gray, and A.W. Moore. Dual-tree fast
gauss transforms. arXiv preprint arXiv:1102.2878,
2011.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y.
Ng, and C. Potts. Learning word vectors for senti-

ment analysis. In Proc. of 49th An. Meeting of the
Assoc. for Comp. Ling., pages 142–150, June 2011.

A. W. Moore. The anchors hierarchy: Using the trian-
gle inequality to survive high dimensional data. In
UAI, pages 397–405, 2000.

A. Ng, M. Jordan, and Y. Weiss. On spectral clus-
tering: Analysis and an algorithm. In Advances in
Neural Information Processing Systems 14, 2001a.

A. Y. Ng, A. X. Zheng, and M. I. Jordan. Stable
algorithms for link analysis. In SIGIR ’01, pages
258–266, August 2001b.

A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link anal-
ysis, eigenvectors and stability. IJCAI, pages 903–
910, 2001c.

L. Qiao, S. Chen, and X. Tan. Sparsity preserving pro-
jections with applications to face recognition. Pat-
tern Recognition, 43(1):331–341, 2010.

T Šingliar and M. Hauskrecht. Noisy-or compo-
nent analysis and its application to link analysis.
The Journal of Machine Learning Research, 7:2189–
2213, 2006.

A. Talwalkar, S. Kumar, and H. A. Rowley. Large-
scale manifold learning. In CVPR, pages 1–8, 2008.

M. Telgarsky and S. Dasgupta. Agglomerative breg-
man clustering. arXiv:1206.6446, 2012.

B. Thiesson and J. Kim. Fast variational mode-
seeking. In AISTATS 2012, JMLR 22: W&CP 22.
Journal of Machine Learning Research, 2012.

U. von Luxburg. A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416, 2007.

C. Yang, R. Duraiswami, N.A. Gumerov, and L. Davis.
Improved fast gauss transform and efficient kernel
density estimation. In Computer Vision, pages 664–
671, 2003.

C. Yang, R. Duraiswami, L. Davis, et al. Efficient ker-
nel machines using the improved fast gauss trans-
form. NIPS, 17:1561–1568, 2005.

L. Zhang, S. Chen, and L. Qiao. Graph opti-
mization for dimensionality reduction with sparsity
constraints. Pattern Recognition, 45(3):1205–1210,
2012.

Z. Zhang, B. C. Ooi, S. Parthasarathy, and A. KH
Tung. Similarity search on bregman divergence: To-
wards non-metric indexing. Proc. of the VLDB En-
dowment, 2(1):13–24, 2009.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schölkopf. Learning with local and global consis-
tency. In NIPS. MIT Press, 2003.

X. Zhu. Semi-supervised learning with graphs. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA,
USA, 2005.

	Introduction
	Euclidean Variational Dual-Trees
	Motivation
	Variational Dual-Tree Partitioning
	Anchor Tree Construction

	Bregman Variational Dual-Trees
	Bregman Divergence and The Exponential Families
	Bregman Variational Approximation
	Bregman Anchor Trees

	Experiments
	Modeling Frequency Data
	Experimental Setup
	Results

	Conclusions

