
Monte-Carlo Planning: Theoretically Fast Convergence Meets
Practical Efficiency

Zohar Feldman and Carmel Domshlak
Faculty of Industrial Engineering and Management

Technion, Israel

Abstract

Popular Monte-Carlo tree search (MCTS) al-
gorithms for online planning, such as ε-greedy
tree search and UCT, aim at rapidly iden-
tifying a reasonably good action, but pro-
vide rather poor worst-case guarantees on
performance improvement over time. In con-
trast, a recently introduced MCTS algorithm
BRUE guarantees exponential-rate improve-
ment over time, yet it is not geared towards
identifying reasonably good choices right at
the go. We take a stand on the individual
strengths of these two classes of algorithms,
and show how they can be effectively con-
nected. We then rationalize a principle of
“selective tree expansion”, and suggest a con-
crete implementation of this principle within
MCTS. The resulting algorithms favorably
compete with other MCTS algorithms under
short planning times, while preserving the at-
tractive convergence properties of BRUE.

1 INTRODUCTION

Markov decision processes (MDPs) are a standard
model for planning under uncertainty [19]. An MDP
〈S,A, Tr,R〉 is defined by a set of possible agent states
S, a set of agent actions A, a stochastic transition func-
tion Tr : S × A × S → [0, 1], and a reward function
R : S × A × S → R. The current state of the agent
is fully observable, and the objective of the agent is
to act so to maximize its accumulated reward. In the
finite horizon setting considered here, the reward is
accumulated over some predefined number of steps H.
The description of the MDP is assumed to be con-
cise, and, depending on the problem domain and the
representation language, it can be either declarative
or generative (or mixed). While declarative models
provide the agents with greater algorithmic flexibility,

generative models are more expressive, and both types
of models allow for simulated execution of all feasible
action sequences, from any state of the MDP.

In online planning for MDPs, the agent focuses on its
current state only, deliberates about the set of pos-
sible policies from that state onwards and, when in-
terrupted, uses the outcome of that exploratory delib-
eration to choose what action to perform next. The
quality of the action a, chosen for state s with H steps-
to-go, is assessed in terms of the probability that a is
sub-optimal, or in terms of the (closely related) mea-
sure of simple regret. The latter captures the perfor-
mance loss that results from taking a and then follow-
ing an optimal policy π∗ for the remaining H−1 steps,
instead of following π∗ from the beginning [5].

With a few recent exceptions developed for declarative
MDPs [4, 16, 7], most algorithms for online MDP plan-
ning constitute variants of what is called Monte-Carlo
tree search (MCTS) [23, 18, 15, 9, 8, 21, 25]. Most
MCTS algorithms for online planning, such as ε-greedy
tree search and UCT, aim at rapidly identifying a rea-
sonably good action, but offer only polynomial-rate
reduction of simple regret over the deliberation time.
In contrast, a recently introduced MCTS algorithm
BRUE guarantees exponential-rate reduction of simple
regret over time, yet it does not make special efforts
to home in on a reasonable alternative fast [11]. Of
course, “good” is often the best one can hope for in
large MDPs of interest under practically reasonable
deliberation-time allowances. Therefore, as we recon-
firm by an evaluation on benchmarks from the recent
probabilistic planning competition, BRUE is often em-
pirically inferior to its (guarantees-wise inferior) com-
petitors.

Reflecting on the differences between the two types
of algorithms, here we show that BRUE can be re-
designed to perform extremely well also under early
interruptions of planning, and this without compro-
mising much neither the long-term empirical perfor-
mance nor theoretical guarantees. We do that in two

steps. First, we connect between the iterative tree ex-
pansion of the standard MCTS scheme and the “sep-
aration of concerns” principle that underlies BRUE.
The resulting modification of BRUE, BRUEI , already
substantially improves over BRUE in short-term effec-
tiveness. Building upon BRUEI , we then introduce
a machinery of selective tree expansion that further
pushes the boundaries of online MDP planning. View-
ing MCTS as a message passing within the hierarchy
of forecasters, this mechanism is based on (i) classify-
ing the roles that different forecasters in the hierarchy
should fulfill in order to improve the quality of the de-
cision at the root, and on (ii) exploit this classification
to adaptively decide how each forecaster should aim at
fulfilling its role. As testified by our empirical evalua-
tion, the resulting algorithm, BRUEIC , favorably and
robustly competes with other MCTS algorithms under
short planning times, while preserving both the attrac-
tive formal properties of BRUE, as well as the empirical
strength of the latter under permissive deliberation-
time allowances.

2 BACKGROUND

Henceforth, Π denotes the set of all valid policies for
the MDP in question, A(s) ⊆ A denotes the actions
applicable in state s, the operation of drawing a sample
from a distribution D over set ℵ is denoted by ∼ D[ℵ],
U denotes uniform distribution, and JnK for n ∈ N
denotes the set {1, . . . , n}.

2.1 CANONICAL MCTS SCHEME

MCTS, a canonical scheme underlying various MCTS
algorithms for online MDP planning, is depicted in
Figure 1a. Starting with the current state s0, MCTS
performs an iterative construction of a tree1 T rooted
at s0. At each iteration, MCTS rollouts a state-space
sample ρ from s0, which is then used to update T .
First, each state/action pair (s, a) is associated with a

counter n(s, a) and a value accumulator Q̂(s, a), both
initialized to 0. When a sample ρ is rolled out, for
all states si ∈ ρ ∩ T , n(si, ai+1) and Q̂(si, ai+1) are
updated on the basis of ρ by the update-node proce-
dure. Second, T can also be expanded with any part
of ρ; The standard choice is to expand T with only the
first state along ρ that is new to T . In any case, once
the sampling is interrupted, MCTS uses the informa-
tion stored at the tree’s root to recommend an action
to perform in s0.

1In MDPs, there is no reason to distinguish between
nodes associated with the same state at the same depth.
Hence, the graph T constructed by MCTS instances typi-
cally forms a DAG. Nevertheless, for consistency with prior
literature, we stay with the term “tree”.

MCTS: [input: 〈S,A, Tr,R〉; s0 ∈ S]
search tree T ← root node s0

for n← 1 . . . time permits do
probe(s0, 0)

return arg maxa Q̂(s0, a)

probe (s : state, d : depth)
if end-of-probe(s, d) then return evaluate(s, d)
a← rollout-policy(s)
s′ ∼ P (S | s, a)
r ← R (s, a, s′) + probe(s′, d+ 1)
update-node(s, a, r)
return r

(a)

end-of-probe (s : state, d : depth)
if s 6∈ T then

add s to T and return true
else if d = H then return true else return false

evaluate (s : state, d : depth)
for t← d . . .H do

a ∼ U [A(s)]
s′ ∼ P (S | s, a)
r ← r +R (s, a, s′)
s← s′

return r

update-node (s : state, a: action, r : reward)
n (s, a)← n (s, a) + 1

Q̂(s, a)← Q̂(s, a) + r−Q̂(s,a)
n(s,a)

rollout-policy (s : state)
if n(s, a) = 0 for some a ∈ A(s) then

return a ∼ U [{a ∈ A(s) | n(s, a) = 0}]
else
n(s)←

∑
a∈A(s) n(s, a)

return argmaxa

[
Q̂(s, a) + c

√
logn(s)
n(s,a)

]
(b)

Figure 1: (a) Monte-Carlo tree search template, and
(b) the UCT specifics.

Numerous concrete instances of MCTS have been pro-
posed, with ε-greedy [23] probably being the most
widely known, and UCT [15] and its modifications [9,
24] being the most popular such instances these
days [12, 22, 3, 2, 10, 14]. Concrete instances of
MCTS vary mostly along the implementation of the
rollout-policy sub-routine, that is, in their poli-
cies for directing the rollout within T . For instance,
the specific rollout-policy of UCT is shown in Fig-
ure 1b. This policy is based on the deterministic deci-
sion rule UCB1 [1], originally proposed for optimal bal-
ance between exploration and exploitation for cumu-
lative regret minimization in stochastic multi-armed
bandit (MAB) problems [20]. In general, different in-
stances of MCTS vary in their balance between ex-
ploration and exploitation. However, it has already
been noticed that exploitation may considerably slow
down the reduction of simple regret over time [6]. In-

MCTS2e: [input: 〈S,A, Tr,R〉; s0 ∈ S]
search tree T ← root node s0; σ ← 0
for n← 1 . . . time permits do

σ ← switch-function(n, σ)
probe(s0, 0, σ)

return arg maxa Q̂(s0, a)

probe (s : state, d : depth, σ ∈ JHK)
if end-of-probe(s, d) then return evaluate(s, d)
if d < σ then
a← exploration-policy(s)

else
a← estimation-policy(s)

s′ ∼ P (S | s, a)
r ← R (s, a, s′) + probe(s′, d+ 1, σ)
if d = σ then update-node(s, a, r)
return r

(a)

end-of-probe (s : state, d : depth)
if d = H then return true else return false

evaluate (s : state, d : depth)
return 0

update-node (s : state, a: action, r : reward)
if s 6∈ T then add s to T
n (s, a)← n (s, a) + 1

Q̂(s, a)← Q̂(s, a) + r−Q̂(s,a)
n(s,a)

switch-function (n : iteration, σ ∈ JHK)
return H − ((n− 1) mod H) // round robin on JHK

exploration-policy (s : state)
return a ∼ U [A(s)]

estimation-policy (s : state)

return a ∼ U
[
{a | arg maxa∈A(s) Q̂(s, a)}

]
(b)

Figure 2: Monte-Carlo tree search with “separation of
concerns” (a), and the BRUE specifics (b).

deed, UCB1 (and thus UCT) achieves only polynomial-
rate reduction of simple regret over time [6], and the
number of samples after which the bounds of UCT on
simple regret become meaningful might be as high as
hyper-exponential in H [9]. In fact, no instance of the
MCTS scheme (Figure 1a) suggested so far breaks the
barrier of the worst-case polynomial-rate reduction of
simple regret over time.

2.2 SEPARATION OF CONCERNS

If fast convergence to optimal choice is of interest, then
Monte-Carlo planning should be as exploratory as pos-
sible [6]. However, what it means to be “as exploratory
as possible” with MDPs is less straightforward than it
is in MABs. In particular, recently it was observed
that “forecasters” s ∈ T should be devoted to two,

somewhat competing, exploratory objectives, namely
identifying an optimal action π∗(s), and estimating
the value of that action, because this information is
needed by the predecessor(s) of s in T [11].

Following this observation, Feldman and Domsh-
lak [11] introduced MCTS2e, a refinement of MCTS
scheme that implements the principle of “separation
of concerns,” whereby different parts of each sample
are devoted to different exploration objectives. In
MCTS2e (Figure 2a), rollouts are generated by a two-
phase process in which the actions are selected ac-
cording to an exploratory policy until an (iteration-
specific) switching point, and from that point on, the
actions are selected according to an estimation pol-
icy. The sub-routines end-of-probe and update
in MCTS2e are trivial, the update-node sub-routine
extends this of MCTS with tree expansion, and, in-
stead of rollout-policy of MCTS, specific instances
of MCTS2e are achieved by instantiating three new
sub-routines that determine the switching point for a
rollout, and the action selection protocols for the two
phases of the rollouts.

Feldman and Domshlak [11] show that a specific
instance of MCTS2e, dubbed BRUE, achieves an
exponential-rate reduction of simple regret over time,
with the bounds on simple regret becoming mean-
ingful after only exponential in H2 number of sam-
ples. The specific MCTS2e sub-routines that define
the BRUE algorithm are shown in Figure 2b. Simi-
larly to UCT, each node/action pair (s, a) is associ-

ated with variables n(s, a) and Q̂(s, a), but with the
latter being initialized to −∞. BRUE instantiates
MCTS2e by choosing actions uniformly at the explo-
ration phase of the sample, choosing the best empiri-
cal actions at the estimation phase, and changing the
switching point in a round-robin fashion over the en-
tire horizon. Importantly, if the switching point of a
rollout ρ = 〈s0, a1, s1, . . . , aH , sH〉 is σ, then only the
state/action pair (sσ−1, aσ) is updated by the informa-
tion collected by ρ. That is, the information obtained
by the estimation phase of ρ is used only for improving
the estimate at state sσ(n)−1, and is not pushed further
up the sample. While that may appear wasteful and
counterintuitive, this locality of update is required to
satisfy the formal guarantees of BRUE on exponential-
rate reduction of simple regret over time [11].

3 FAST OPTIMAL VS. FAST GOOD

A comparative evaluation on Sailing [18] and
PGame [15] domains showed that BRUE is contin-
ually improving towards an optimal solution, rather
quickly obtaining results better than UCT [11]. How-
ever, that evaluation also showed that UCT sometimes

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BRUE
UCT
MAB−Uniform
Random

1 4 5 8 10 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BRUE
UCT
MAB−Uniform
Random

1 3 4 7 9 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BRUE

UCT

MAB−Uniform

Random

2 3 4 7 9

Game-of-Life Crossing Navigation

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BRUE
UCT
MAB−Uniform
Random

1 2 6 8 10 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BRUE
UCT
MAB−Uniform
Random

1 3 5 7 9

SysAdmin Traffic

Figure 3: IPPC-2011 scores for the different MCTS algorithms under the (unknown to the algorithms) average
deliberation time allowance of 5 seconds per step.

manages to identify reasonably good actions rather
quickly, while BRUE is still “warming up”. Focusing
on tight deliberation deadlines, we conducted a wider
empirical evaluation on MDP benchmarks from the
last International Probabilistic Planning Competition
(IPPC-2011). These benchmarks appear ideal for our
purpose of evaluating algorithms under tight time con-
straints: Most IPPC-2011 domains induce very large
branching factors, and thus allow only a very shallow
sampling of the underlying search tree in reasonable
time.

We used five IPPC-2011 domains, Game-of-Life,
SysAdmin, Traffic, Crossing, and Navigation, with five
randomly picked problem instances from each domain.
Instances of Game-of-Life, SysAdmin, and Traffic were
ran with planning horizon of 20 steps, whereas in-
stances of (goal-driven) Crossing, and Navigation were
ran with horizon of 40 steps. Each algorithm was
allowed a (rather arbitrary chosen) deliberation time
that started with 10 seconds for the first step, and de-
creased linearly to 1 second at the last step. In addi-
tion to UCT and BRUE, the comparison includes a triv-
ial baseline of random action selection (Random), as
well as MAB-Uniform, a simple algorithm that chooses
actions everywhere uniformly at random, estimating
Q(s0, a) for each a ∈ A(s0) by the value of taking
a and then choosing actions uniformly at random for
the remaining H−1 steps. Obviously, the estimates of
MAB-Uniform are typically erroneous, and so a priori,
its only positive property appears to be its computa-
tional efficiency.

The results are presented in Figure 3; the names of
the problem instances on the x-axis are these from the
IPPC-2011 repository, and y-axis captures the IPPC-
2011 scoring scheme: The algorithms are scored rela-
tively to each other on each problem instance, with the
relative scores being then averaged over 300 runs on
that specific problem instance. The relative score of a
particular algorithm in a specific run is the difference
between the total reward achieved by that algorithm
and the worst total reward among all the algorithms,
divided by the difference between such best and worst
total rewards.

According to Figure 3, all the examined MCTS algo-
rithms, including the seemingly naive MAB-Uniform,
performed much better than Random, with SysAd-
min and Traffic being the most prominent examples
for that. In other words, even under severely lim-
ited deliberation time allowance, the value of deliber-
ation in the benchmarks in use was substantial. Like-
wise, the experiment reconfirmed that UCT is typically
more effective than BRUE under short deliberation
times. This suggests that the “fast optimal” scheme
of BRUE lacks some ingredients that make its MCTS
competitors “fast good”. Having said that, note that
different problems favored different approaches, with
MAB-Uniform being surprisingly superior on many of
the examined benchmarks. Hence, the quest for a clear
recipe for “fast good” remains open, especially if we do
not want to neglect striving for optimality, and even
more so, if we want that recipe to be robust on a wide
palette of MDPs. This is precisely the quest we con-
sider in what comes next.

4 TWO TYPES OF FORECASTERS

Consider the state/steps-to-go pairs (s, h) as a hierar-
chy of forecasters, all acting on behalf of the root fore-
caster (s0, H) that aims at minimizing its own simple
regret in a stochastic MAB induced by the applicable
actions A(s0). In the setup of online planning, there
is a conceptual difference between the exploration ob-
jective of the root forecaster and this of all other fore-
casters in the hierarchy. To see that, suppose there is
an oracle that can provide each forecaster (s, h) either
with the identity of the optimal action π∗(s, h) but
without revealing its value Qh(s, π∗(s, h)), or with the
valueQh(s, π∗(s, h)) but without revealing the identity
of π∗(s, h). For the root forecaster (s0, H), the first
type of information is all he needs, while the second
type of information buys him very little, if anything.
In contrast, even if the oracle provides all the forecast-
ers (s, h) but (s0, H) with (only) the identities of the
respective optimal actions π∗(s, h), then the root fore-
caster (s0, H) in some sense remains as clueless as it
was before, and needs to explore the state space in or-
der to obtain at least some ordinal information about
the expected value of the alternative choices A(s0).
However, if the oracle provides a non-root forecaster
(s, h) (only) with the best Q-value among its alterna-
tive choices A(s), then (s, h) can stop working since
no further exploration of the sub-hierarchy rooted in
(s, h) is needed.

In sum, what matters to the root forecaster is only
what to execute, while all other forecaster care only
about the value they can provide to their ancestors in
the hierarchy, and not about how this value can actu-
ally be acquired. Of course, the reader may question
this classification by arguing that these two objectives
are just two sides of the same coin: estimating the
value of optimal action assumes aiming at identify-
ing an optimal action and vice versa. To some extent,
that is true, but only to some extent. For instance, the
very realization that this coin has two sides, and that
these two sides are somewhat competing, is precisely
what motivates the “separation of concerns” principle
behind the MCTS2e scheme. Turns out that this clas-
sification of objectives suggests further insights into
the dynamics of MCTS algorithms.

In all MCTS algorithms for online MDP planning, each
iteration corresponds to examining a chain of forecast-
ers within the overall hierarchy under (s0, H), with the
difference between the algorithm boiling down to two
decisions:

(I) which chain of forecasters to examine, and

(II) how to estimate Qh(s, π∗(s, h)) for each fore-
caster (s, h) in the hierarchy.

At first view, choosing the right strategy for (I) seems
to be the key to rapid homing in on “good” decisions.
The details of various MCTS algorithms suggest that
their design was indeed primarily guided by choices for
(I), with choices for (II) being implied by the former.
Here, however, we suggest that decoupling these two
decisions is important, and that the key to the quest
of our interest actually lies in decision (II).

A closer look at different Monte-Carlo planning algo-
rithms for MDPs reveals an interesting generalizing
perspective on the way they all approach decision (II).
Let V πh (s) be the value of (s, h) under policy π ∈ Π,
V ∗h (s) ≡ Qh(s, π∗(s, h)) be the value of (s, h) under

the optimal policy, and let V̂ πh (s), V̂ ∗h (s) denote em-
pirical estimates of these two quantities, respectively.
In all MCTS algorithms, at each point of time, the en-
tire hierarchy of forecasters can be seen as consisting
of two types of forecasters.

TOUT forecaster (s, h) (possibly schematically) esti-
mate V ∗h (s) by an estimate of Eπ∼U [Π]V

π
h (s), that

is, of the expected total reward of a policy sam-
pled from Π uniformly at random.

TIN forecaster (s, h) distinguishes between its choices
A(s), and estimates V ∗h (s) by an estimate of
maxa∈A(s)

∑
s′ P (s′ | s, a)

[
R(s, a, s′) + V ∗h−1(s′)

]
,

where the estimate of V ∗h−1(s′) is based on the in-
formation provided by s′ to s.

Consider the way in which the specific MCTS al-
gorithms approach decision (II) in terms of this
TOUT/TIN partition of the forecasters. In both UCT
and BRUE, TIN-forecasters correspond to the nodes of
T , while all other state/steps-to-go pairs correspond to
TOUT-forecasters. Note that these TOUT-forecasters
are very much not virtual. For instance, in UCT
they are queried by the evaluate sub-routine, and
in BRUE they are queried, possibly in interleaving
with TIN-forecasters, by both exploration-policy
and estimation-policy sub-routines.

At first view, TOUT-forecasters appear to be strangely
lazy and potentially very misleading, while TIN-
forecasters seem to be doing the right thing. How-
ever, it is not all that simple. First, while each TOUT-
forecaster samples a single random variable, each TIN-
forecaster (s, h) has to sample |A(s)| random variables.
Thus, TOUT-forecasters converge to quality estimates
of quantities of their interest much faster than their
TIN counterparts. Second, while TIN-forecasters try
to estimate the right thing, their success totally de-
pends on the quality of estimates of V ∗h−1(s′) they re-
ceive from their successors. Hence, it is not clear that
forecasters of type TIN are always more effective.

We return to this issue in more detail later on. For
now, note only that both UCT and BRUE can be seen
as continuously reconsidering the typing of the forecast-
ers. Specifically, in both UCT and BRUE, (at most)
a single forecaster is “converted” from TOUT to TIN

at every iteration: in UCT it is the shallowest TOUT-
forecaster found along the rollout, and in BRUE, it is
the TOUT-forecaster that happens to lie at the rollout’s
switching point σ. This way, the set of TIN-forecasters
in UCT grows incrementally as a single community
connected to the root forecaster (s0, H). In contrast,
TIN-forecasters in BRUE evolve in H independent sets,
each distributed over the respective depth level of the
forecast hierarchy according to the transition distri-
bution induced by the uniform action selection at the
preceding levels.

This specific difference between UCT and BRUE is di-
rectly related to their relative efficiency under differ-
ent orders of deliberation time allowance. Populating
TIN-forecasters at all levels of the hierarchy is gener-
ally necessary to guarantee fast convergence to opti-
mal choice at the root. However, the marginal value
of TIN-forecasters at different levels vary with the de-
liberation time allowance: Information gathered by
TIN-forecasters at deep levels takes time to be prop-
agated to the root, making their near-term influence
on the choices at (s0, H) smaller than this of the TIN-
forecasters closer to the root.

In that respect, a modification of BRUE that suggests
itself almost immediately is as simple as it gets: In-
stead of converting the TOUT-forecaster at the switch-
ing point σ, we can resort to converting the shallowest
TOUT-forecaster on the exploratory part of the rollout,
that is, up to the level σ. By offering both exponential-
rate reduction of the simple regret at the root, as
well as incremental conversion of TOUT-forecasters as a
connected set around (s0, H), the resulting algorithm,
BRUEI , substantially improves over BRUE in short-
term effectiveness. (The specific empirical results for
BRUEI are shown later in the paper.) However, this
simple modification of BRUE is not our final destina-
tion, and next we show that this simple bridge between
MCTS and MCTS2e opens a much wider window of op-
portunity.

5 SELECTIVE TREE EXPANSION

Similarly to UCT and BRUE, each iteration of
BRUEI either finds no candidate for type conver-
sion, or unconditionally converts a concrete sin-
gle TOUT-forecaster (s, h) to type TIN. How-
ever, suppose we know that Eπ∼U [Π]V

π
h (s) equals

maxa∈A(s)

∑
s′ P (s′ | s, a)

[
R(s, a, s′) + V ∗h−1(s′)

]
.

Since direct Monte-Carlo estimation of the quantity

on the left-hand side is substantially easier than this
of the right-hand side, converting (s, h) to type TIN

is clearly not a good idea. In fact, both (s, h) and
all of its exclusive descendants in the hierarchy would
better remain TOUT-forecasters for the entire deliber-
ation process, no matter how long it is. Of course, this
equality rarely holds, and, more importantly, we have
no prior knowledge about the size of the gap between
the quality of the best policy under (s, h) and the ex-
pected quality of the randomly picked policy. How-
ever, this extreme example still hints on the promise
of selective type conversion, and below we examine the
prospects of this direction.

The variance of a Monte-Carlo estimator Q̂h(s, a) of
the value of action a at state s stems from two sources.
The first source of variance comes from following dif-
ferent policies (aka action selections) along different
rollouts. The other source of variance comes from the
stochastic nature of the action outcomes. That is, if
r is the reward obtained by following policy π for h
steps starting from state s, then

Var [r] = E [Var [r | π]] + Var [E [r | π]] . (1)

At one extreme, we have all policies yielding the same
expected reward, and thus all the variance comes from
the action outcomes. In that case, distinguishing be-
tween the policies under (s, h) is not only useless, but
also computationally harmful. Thus both (s, h) and
its descendants should be left as type TOUT, that is,
not added to T . At the other extreme, we have all
actions being deterministic, but different policies yield
very different reward. In that case, it may be valuable
to convert (s, h) to TIN, increasing the resolution at
which the policies under (s, h) are examined. Unsur-
prisingly, in between these two extremes, the “value of
conversion” is less straightforward. In the absence of
any information about the stopping time, online plan-
ning algorithms should strive to do well under the as-
sumption that termination point is near, while ensur-
ing continuous improvement as more time is allowed.
And as long as the precise mixture of these two desider-
ata remains vague, so remains the precise formulation
of the value of conversion.

Having said that, as we do understand the high-level
factors that affect the value of conversion, we can try
estimating and combining these factors so to reflect
the purported value of conversion. Here we propose
and evaluate a simple and intuitive rule: The candi-
date TOUT-forecaster (s, h) should be converted iff the
variance of the expected reward over different policies
under (s, h) exceeds the average variance of the poli-
cies, that is, iff

Var
[
E
[
V̂ πh (s) | π

]]
> E

[
Var

[
V̂ πh (s) | π

]]
, (2)

which is equivalent to

Var [E [r | π]] > E
[

Var [r | π]

n(s, π)

]
, (3)

where r is the reward obtained by following policy π
for h steps starting from state s, and n(s, π) is the

number of samples that induce the estimate V̂ πh (s).

The quantity on the left indicates the distance between
the average quality of the policies and the quality of
the optimal one, that is

Eπ∼U [Π]V
π
h (s)− V ∗h (s). (4)

The quantity on the right indicates the distance be-
tween the estimator and the mean of the policies value,
where the division by n(s, π) captures the effect of av-
eraging on the variance. As the number of samples
from each policy grows, estimators V̂ πh (s) approaches
their means V πh (s), and thus the gap captured by Eq. 4
becomes the dominant factor, in which case converting
(s, h) to TIN is estimated as valuable.

Based on this decision rule, we suggest a new instance
of MCTS2e, BRUEIC (standing for BRUE with incre-
mental and selective type conversion). The respective
MCTS2e sub-routines of BRUEIC are depicted in Fig-
ure 4.

• Similarly to BRUE, the actions are selected uni-
formly at random at the exploration phase of the
rollout, and the empirically best actions are se-
lected at the estimation phase.

• Similarly to UCT and BRUEI , the tree is ex-
panded in an incremental fashion, maintaining the
set of TIN forecasters connected to the root.

• Unlike UCT and BRUEI , after a forecaster (s, h) is
added to the tree, it goes through an “evaluation
period”, and remains of type TOUT until it passes
that evaluation. Hence, the leaves of T consist of
some TIN-forecasters, but also of all TOUT candi-
dates for TIN.

The evaluation of the “conditional candidates” (s, h) is
captured by the convert procedure depicted in Fig-
ure 5. This procedure estimates the two sources of
variance at (s, h) (lines 1-4, explained below), and only
when the variance of the policies’ values exceeds the
average variance of the policies value in the sense of
Eq. 2 (the condition in line 5 fails), (s, h) is converted
to a TIN-forecaster. At the actual conversion (lines 6-
9), the information gathered at the evaluation period

is used to initialize the standard node variables Q̂(s, a)
and n(s, a).

end-of-probe (s : state, d : depth)
if s 6∈ T then add s to T
if n(s) > 0 or convert(s) then return false
if d ≤ σ then
σ ← −1 // dummy value, to prevent node update

retract ← true
return true

evaluate (s : state, d : depth)
if
∣∣ΠA

s

∣∣ < φ then
π ← generate-policy(s,H − d)
add π to ΠA

s // and thus to Πs

else
π ∼ U

[
ΠA
s

]
for t← d . . .H do

a ∼ π(s, t)
s′ ∼ P (S | s, a)
r ← r +R (s, a, s′)
s← s′

update-node(s, π, r)

if V̂ar(s,π)
n(s,π)

< ψ then remove π from ΠA
s

return r

update-node (s: state, x: action or policy, r : reward)
n(s, x)← n(s, x) + 1

δ ← r − Q̂ (s, x)

Q̂(s, x)← Q̂(s, x) + δ
n(s,x)

V̂ar(s, x)← V̂ar(s,x)·(n(s,x)−2) + δ·(r−Q̂(s,x))
n(s,x)−1

switch-function (n : iteration, σ ∈ JHK)
if retract or σ = H then σ ← 0

else σ ← σ + 1
retract ← false
return σ

exploration-policy (s : state)
return a ∼ U [A(s)]

estimation-policy (s : state)

return a ∼ U
[
{a | arg maxa∈A(s) Q̂(s, a)}

]

Figure 4: MCTS2e sub-routines for BRUEIC . For the
convert procedure called by end-of-probe, see Fig-
ure 5.

Technically, candidate evaluation is performed as fol-
lows. For each TIN candidate (s, h), the algorithm
maintains a set of policies Πs, as well as a subset of
“active” policies ΠA

s ⊆ Πs, size of which is bounded by
a fixed parameter φ. The set ΠA

s is used by the sub-
routine evaluate that selects a policy from ΠA

s for
evaluation uniformly at random. In case φ allows ex-
panding the active subset ΠA

s , evaluate uses a newly
generated policy (e.g., by selecting actions uniformly
at all states that can be reached by following the ac-
tions at preceding states). The new policy is then
added to ΠA

s (and thus to Πs).

After a policy π is selected by evaluate, it is exe-

convert (s : state)

1. m←
∑
π∈Πs

n(s, π)

2. EE←
∑
π∈Πs

n(s,π)
m

Q̂(s, π)

3. EV←
∑
π∈Πs

n(s,π)
m

V̂ar(s, π)

4. VE←
∑
π∈Πs

n(s,π)
m

(Q̂(s, π)−EE)2

5. if EV
m
≥ VE then

return false
else

6. for a ∈ A (s) do

7. πa ← arg max{π:π(s)=a} Q̂(s, π)

8. Q̂(s, a)← Q̂(s, πa)
9. n(s, a)← n(s, πa)

return true

Figure 5: Implementation of the decision rule of
BRUEIC for type conversion.

cuted once starting at (s, h). The resulting cumula-
tive reward r is then used to update statistics about
the particular policy π, including the empirical mean
Q̂(s, π) (which is just a more convenient for us nam-

ing for the estimator V̂ πh (s)), the empirical variance

V̂ar(s, π), and the counter n (s, π). The reward r is
also used later on, in the recursive rollback of probe
(Figure 2). When the variance of π decreases below
a predefined threshold ψ, it is removed from the ac-
tive subset ΠA

s to be replaced by a new policy. This
mechanism ensures that all policies will eventually be
sampled, which is essential to guarantee convergence
of our estimates of the two sources of variance.

The sub-routine end-of-probe bares similarity to
this of UCT, but it is extended with enforcing TIN-
candidates to remain leaves as long as the respective
convert attempts come out unsuccessful. In con-
vert, the statistics about policies are used to estimate
the mean of the policies’ variance EV, the variance in
the policies value VE, the overall mean value of the
policies EE, and m, the total number of samples from
all the policies in Πs. If the evaluated TIN-candidate
(s, h) meats the conversion condition, convert re-
turns true, and the newborn TIN-forecaster (s, h) is no
longer forced to remain a leaf. Just before that, the
standard node variables Q̂(s, a) and n(s, a) are initial-
ized with the information gathered around the empir-
ically best policy πa that starts with the respective
action a. Importantly, since the candidate evaluation
criterion is not blocking, all candidates eventually con-
vert to TIN and act as in BRUE. This provides BRUEIC
with BRUE’s quality convergence rate in long term.

At last, BRUEIC borrows its incremental tree expan-
sion mechanism from BRUEI : When a leaf is encoun-
tered before the switching point σ, no node is up-
dated, and a global flag retract is set to true, signal-

Table 1: Aggregated IPPC-2011 scores from Figure 6;
boldfacing indicates top performance in the respective
domain (and overall, in the last row).

MAB UCT BRUE BRUEI BRUEIC
Traffic 0.97 0.96 0.77 0.92 0.95
Crossing 0.83 0.84 0.85 0.83 0.87
Navigation 0.61 0.69 0.46 0.65 0.75
Game-of-Life 0.78 0.79 0.68 0.79 0.82
SysAdmin 0.86 0.81 0.73 0.86 0.87
total 0.81 0.82 0.70 0.81 0.85

ing switch-function to set the switching point to 0
in the subsequent iteration. This way, the switching
point is selected systematically as in BRUE, but now
ranging between the root and a leaf rather than on the
entire horizon.

This finalizes the description of BRUEIC . To examine
its relative effectiveness, we conducted a comparative
evaluation under the same experimental setup as de-
scribed in Section 3. We evaluated five algorithms:
MAB-Uniform, UCT, BRUE, BRUEI , and BRUEIC .
The results are presented in Figure 3 and summarized
in Table 1; all scores in Table 1 are within confidence
bounds of ±0.01. For the sake of readability, here
we excluded Random from the presentation. Over-
all, BRUEIC exhibited a robustly good performance
across the domains, finishing top performer on most
problem instances. BRUEIC is also consistently bet-
ter than BRUEI , indicating that selective type conver-
sion plays an important role in its performance. We
also notice that, in most cases, MAB-Uniform was not
very far off from the leader, falling short only in few
instances of Navigation. Since MAB-Uniform can be
seen as BRUEIC with an ultra-conservative, unsatisfi-
able condition for type conversion, this suggests that
further introspection into the specific decision rule of
BRUEIC , as well as into the impact of the parameters
in its implementation, should be valuable.

Finally, we examine the simple regret reduction of
BRUEIC under varying time budgets, using the ex-
perimental settings for Sailing domain from [11]. In
the bottom part of Figure 6, we plot the simple re-
gret of the actions recommended by MAB-Uniform,
UCT, BRUE, and BRUEIC under different planning
time windows, averaged over 300 instances of 10x10
and 20x20 grid sizes. The results reveal that not only
does BRUEIC significantly outperforms UCT uniformly
over time, right from the beginning of deliberation
when BRUE is still lagging behind, but also that its
simple regret reduction rate is rather comparable to
BRUE’s in the longer term.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

1 4 5 8 10 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

1 3 4 7 9 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

2 3 4 7 9

Game-of-Life Crossing Navigation

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

1 2 6 8 10 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MAB−Uniform
UCT
BRUE
BRUEI
BRUEIC

1 3 5 7 9

SysAdmin Traffic

1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Running Time (sec)

Av
er

ag
e

Er
ro

r

MAB−Uniform

UCT
BRUE

BRUEIC

0 2 4 6 8 10 12 14 16 18 20

0.8

1

1.2

1.4

1.6

1.8

2

Running Time (sec)

Av
er

ag
e

Er
ro

r

MAB−Uniform
UCT
BRUE
BRUEIC

0 10 20 30 40 50 60 70 80 90 100

0.8

1

1.2

1.4

1.6

1.8

2

Running Time (sec)

Av
er

ag
e

Er
ro

r

MAB−Uniform
UCT
BRUE
BRUEIC

10×10 20×20 20×20 (zoom out)

Figure 6: Performance of the MCTS algorithms with and without selective tree expansion. Top: Per-instance
IPPC-2011 scores under the experimental setup as in Section 3. Bottom: Absolute performance of the algorithms
in terms of average simple regret on the Sailing domain problems with 10×10 and 20×20 grid maps.

6 SUMMARY

Considering online planning for generative MDPs, we
have investigated and combined the high-level prin-
ciples that underly different computational schemes
for this problem, and showed that their individual
strengths can be put together at work. We then ratio-
nalized a principle of selective tree expansion that aims
at automatically adapting Monte-Carlo exploration to
the specifics of the MDP in hand, and suggested a con-
crete implementation of this principle within Monte-
Carlo tree search methods. The resulting algorithm,
BRUEIC , favorably competes with other MCTS al-
gorithms under short planning times, while preserv-
ing the attractive convergence properties of the (not
so effective under short planning windows) algorithm
BRUE [11], as well as the empirical strength of the
latter under permissive planning windows.

In previous works, some forms of selective tree expan-
sion has been shown extremely effective in forward-
search planning for declarative MDPs [7, 4]. In that
context, our work can be seen as the first selective tree
expansion framework for Monte-Carlo planning, which
is applicable in generative MDPs as well. Likewise, our
work joins some other recent techniques for enhanc-
ing Monte-Carlo planning with adaptivity to the given
problem, such as hindsight optimization for declara-
tive MDPs [17, 26], and metalevel decision procedures
for sample routing for both declarative and generative
MDPs [13]. At the high level, these techniques ap-
pear complementary to selective tree expansion, and
thus studying their interplay and cumulative value is
a promising venue for future research.

Acknowledgements This work was partially sup-
ported by the EOARD grant FA8655-12-1-2096, and
the ISF grant 1045/12.

References

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-
time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235–256, 2002.

[2] R. Balla and A. Fern. UCT for tactical assault
planning in real-time strategy games. In IJCAI,
pages 40–45, 2009.

[3] R. Bjarnason, A. Fern, and P. Tadepalli. Lower
bounding Klondike Solitaire with Monte-Carlo
planning. In ICAPS, 2009.

[4] B. Bonet and H. Geffner. Action selection for
MDPs: Anytime AO∗ vs. UCT. In AAAI, 2012.

[5] S. Bubeck and R. Munos. Open loop optimistic
planning. In COLT, pages 477–489, 2010.

[6] S. Bubeck, R. Munos, and G. Stoltz. Pure ex-
ploration in finitely-armed and continuous-armed
bandits. Theor. Comput. Sci., 412(19):1832–1852,
2011.

[7] L. Busoniu and R. Munos. Optimistic planning
for Markov decision processes. In AISTATS, num-
ber 22 in JMLR (Proceedings Track), pages 182–
189, 2012.

[8] T. Cazenave. Nested Monte-Carlo search. In IJ-
CAI, pages 456–461, 2009.

[9] P-A. Coquelin and R. Munos. Bandit algorithms
for tree search. In Proceedings of the 23rd Con-
ference on Uncertainty in Artificial Intelligence
(UAI), pages 67–74, Vancouver, BC, Canada,
2007.

[10] P. Eyerich, T. Keller, and M. Helmert. High-
quality policies for the Canadian Traveler’s prob-
lem. In AAAI, 2010.

[11] Z. Feldman and C. Domshlak. Simple regret op-
timization in online planning for markov decision
processes. CoRR, arXiv:1206.3382v2 [cs.AI],
2012.

[12] S. Gelly and D. Silver. Monte-Carlo tree search
and rapid action value estimation in computer
Go. AIJ, 175(11):1856–1875, 2011.

[13] N. Hay, S. E. Shimony, D. Tolpin, and S. Russell.
Selecting computations: Theory and applications.
In UAI, 2012.

[14] T. Keller and P. Eyerich. Probabilistic planning
based on UCT. In ICAPS, 2012.

[15] L. Kocsis and C. Szepesvári. Bandit based Monte-
Carlo planning. In ECML, pages 282–293, 2006.

[16] A. Kolobov, Mausam, and D. Weld. LRTDP vs.
UCT for online probabilistic planning. In AAAI,
2012.

[17] A. Y. Ng and M. Jordan. PEGASUS: A policy
search method for large MDPs and POMDPs. In
UAI, 2000.

[18] L. Péret and F. Garcia. On-line search for solving
Markov decision processes via heuristic sampling.
In ECAI, pages 530–534, 2004.

[19] M. Puterman. Markov Decision Processes. Wiley,
1994.

[20] H. Robbins. Some aspects of the sequential de-
sign of experiments. Bull. Amer. Math. Soc.,
58(5):527535, 1952.

[21] C. D. Rosin. Nested rollout policy adaptation for
Monte Carlo tree search. In IJCAI, pages 649–
654, 2011.

[22] N. Sturtevant. An analysis of UCT in multi-player
games. In CCG, page 3749, 2008.

[23] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[24] D. Tolpin and S. E. Shimony. Doing better than
UCT: Rational Monte Carlo sampling in trees.
CoRR, arXiv:1108.3711v1 [cs.AI], 2011.

[25] D. Tolpin and S. E. Shimony. MCTS based on
simple regret. In AAAI, 2012.

[26] S. W. Yoon, A. Fern, R. Givan, and S. Kambham-
pati. Probabilistic planning via determinization
in hindsight. In AAAI, pages 1010–1016, 2008.

