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Abstract

In this paper we propose a multi-armed ban-
dit inspired, pool based active learning algo-
rithm for the problem of binary classification.
By carefully constructing an analogy between
active learning and multi-armed bandits, we
utilize ideas such as lower confidence bounds,
and self-concordant regularization from the
multi-armed bandit literature to design our
proposed algorithm. Our algorithm is a se-
quential algorithm, which in each round as-
signs a sampling distribution on the pool,
samples one point from this distribution, and
queries the oracle for the label of this sam-
pled point. The design of this sampling dis-
tribution is also inspired by the analogy be-
tween active learning and multi-armed ban-
dits. We show how to derive lower confidence
bounds required by our algorithm. Exper-
imental comparisons to previously proposed
active learning algorithms show superior per-
formance on some standard UCI data-sets.

1 Introduction

In the classical passive binary classification prob-
lem one has access to labeled samples S =
{(x1, y1), . . . , (xn, yn)}, drawn from an unknown dis-
tribution P defined on a domain X ×{−1,+1}, where
X ⊂ Rd. The points {x1, . . . , xn} are sampled i.i.d.
from the marginal distribution PX , and the labels
y1, . . . , yn are sampled from the conditional distribu-
tion PY |X=x. Classical learning algorithms, such as
boosting, SVMs, logistic regression choose a hypoth-
esis class H, and an appropriate loss function L(·),
and solve some sort of an empirical risk minimiza-
tion problem to return a hypothesis ĥ ∈ H, whose

risk R(h)
def
= Ex,y∼PL(yh(x)) is small. However, in

domains such as speech recognition, natural language

processing, there is generally a lacuna of labeled data,
and obtaining labels for unlabeled data is both tedious,
and expensive. In such cases it is of both theoretical
and practical interest to design learning algorithms,
which need only a few labeled examples for training,
and also guarantee good performance on unseen data.
In recent years active learning (AL) has emerged as a
very popular framework for solving machine learning
problems with limited labeled data (Settles, 2009). In
this framework the learning algorithm is “active”, and
is allowed to query, an oracle O, for the label of those
points which it feels are maximally informative for the
learning process. The hope is that by using few, but
wisely chosen labels the active learning algorithm will
be able to learn as well as a passive learning algorithm,
which has access to lots of labeled data.

Broadly speaking AL algorithms can be classified into
three kinds, namely membership query (MQ) based
algorithms, stream based algorithms and pool based
algorithms. All these three kinds of AL algorithms
query O for the label of the point, but differ from
each other in the nature of the queries. In MQ based
algorithms the active learner can query O, for the la-
bel of a point in the input space X . However, this
query need not necessarily be from the support of the
marginal distribution PX . MQ algorithms might work
poorly when the oracle O is a human annotator (Baum
and Lang, 1992). Stream based AL algorithms (Cohn
et al., 1994; Chu et al., 2011) sample a point x from
the marginal distribution PX , and decide on-the-fly
whether to query O for the label of x. Stream based
AL algorithms are computationally efficient, and most
appropriate when the underlying distribution changes
with time. In pool based AL we are provided with a
pool P = {x1, . . . xn} of unlabeled points, which have
been sampled i.i.d from the marginal distribution PX ,
and a labeling oracle O, which when queried for the
label of x, returns y ∼ PY |X=x. Algorithms in the
pool based setting have the luxury of deciding which
points to query by looking at the entire pool.



Contributions. In this paper we shall deal with pool
based active learning. We shall also assume that we
have a query budget, B, of the maximum number of
queries the AL algorithm can issue to the oracle.

We view AL from the lens of exploration-exploitation
trade-off. The concept of exploration-exploitation is
central to problems in decision making under uncer-
tainty, and is best illustrated by the multi-armed ban-
dit (MAB) problem 1 2. The MAB problem is a B
round game, where in a generic round t, the player
has to pull one among k arms of a multi-armed ban-
dit. On doing so the player suffers a loss Lt. The
player does not get to know the loss he could have
suffered if he had pulled a different arm. The goal of
the player is to minimize the cumulative loss suffered
over B rounds. In each round the player needs to re-
solve the dilemma of whether to explore an arm which
has not been pulled in the past, or whether to exploit
the knowledge of the cumulative losses of the arms
that have been pulled in the past. We provide a pool
based, sequential AL algorithm called LCB-AL, which
is motivated by applying algorithmic ideas from the
problem of multi-armed bandits to the problem of AL.
In order to do so we build a bridge between the MAB
problem and AL problem, providing an equivalence
between the arms of a MAB problem, and the hypoth-
esis in H, and mitigating the problem of absence of
an explicit loss signal in AL, unlike MAB. Establish-
ing this analogy is not very straightforward, but once
done allows us to readily use tools such as lower confi-
dence bounds (Auer et al., 2002a), and self-concordant
regularization (Abernethy et al., 2008) in the design of
LCB-AL. To our knowledge, our work is one of the first
in trying to use bandit type ideas for active learning,
and we strongly believe that one can build extremely
practical, yet very simple and scalable algorithms by
understanding the interplay between multi-armed ban-
dits and active learning.

In section 2 we take the first steps towards building an
analogy between MAB and AL. This inspires us to use
a very successful algorithm from the MAB literature,
for the problem of AL. We build the technical tools
needed to fill in the details of our proposed algorithm
in section 3. Section 4 discusses related work, and
section 5 compares LCB-AL with other active learning
algorithms on various datasets.

1Usually in the literature on MAB it is common to talk
of rewards. For our purposes, it would be more convenient
to talk of losses rather than rewards.

2We shall consider the non-stochastic bandit problem

2 Towards an analogy between
Multi-armed bandits and Active
Learning

In active learning the goal is to find a hypothesis h ∈ H
with low risk, by using as little labeled data as possi-
ble. In other words, we want to quickly estimate the
risk of different hypothesis, and discard suboptimal hy-
pothesis. In MAB, the goal of the player is to design
a strategy, that minimize the cumulative loss suffered
by the player over T rounds. If the player knew the
arms with the smallest possible cumulative loss then
the optimal strategy would be to pull this arm in each
and every round. Hence, in MAB the player wants to
quickly detect the (near) optimal arm to pull. Look-
ing from the lens of MAB, it is now natural to think
of AL problem as a MAB problem, where the arms
of the MAB are the different hypothesis in H. While
this is a satisfying connection there are two issues that
still need to be resolved. 1) In the MAB problem, in
each round we pull an arm of the MAB. If arms of the
MAB were equivalent to the different hypothesis in H,
then how do we decide which “hypothesis to pull”. 2)
In MAB the player gets to see an explicit loss signal
at the end of each round. However, in AL there is no
such explicit loss signal, instead the feedback that is
received is the label of the queried point x. Hence,
the next question that arises is how could one use the
label information as some kind of a loss signal? The
following subsections attempt to resolve these issues.

2.1 Which hypothesis to pull?

A very popular approach in MAB to mitigate the
exploration-exploitation trade-off is via the use of
lower confidence bounds (LCB) (Auer et al., 2002b,a;
Audibert et al., 2009a; Bubeck and Cesa-Bianchi,
2012) 3. In the LCB approach, at the end of round
t, for each arm a in the set of arms, we build a lower
confidence bound, LCBt(a) for the cumulative loss
the player would have suffered, in hindsight, had he
pulled arm a for the first t rounds. The choice of arm
at+1 to be pulled in the next round, i.e. round t + 1
is the solution to the optimization problem at+1 ∈
arg min LCBt(a). Such lower confidence bounds can
be derived via concentration inequalities (Auer et al.,
2002b; Audibert et al., 2009b), and are generally ex-

pressed as LCBt(a)
def
= L̂t(a)− U(L̂t(a)), where L̂t(a)

is an estimate of the cumulative loss of arm a, the
player would have suffered had he pulled a each time
for the first t rounds, and U(L̂t(a)) is some measure
of uncertainty (typically variance) of the cumulative

3Traditionally it has been called as the upper-confidence
bound algorithm. Since, we are dealing with losses and not
rewards, it is useful for our purpose, to rename this as LCB



loss of a, at the end of round t. The reason behind
the success of confidence bounds in the MAB prob-
lem can be explained by the fact that LCBt(a) cap-
tures both the knowledge of the cumulative loss, via
L̂t(a), as well as the uncertainty in this estimate, via
U(L̂t(at)). By pulling the arm at+1 in round t + 1 of
our MAB algorithm, and by updating our estimate of
the cumulative loss of arm at+1, our updated estimate
L̂t+1(at+1) is a better estimator as U(L̂t+1(at+1)) is
potentially smaller than U(L̂t(at+1)).

One could use a similar technique even in AL. If one
had some kind of a LCB on the risk of each hypothesis,
then we could equate pulling a hypothesis as solving
the optimization problem ht+1 ∈ arg minh∈H LCBt(h),
where LCBt(h) is the lower confidence bound on the
risk of h ∈ H. An LCB for R(h) can be obtained by
utilizing the labeled data gathered over the run of the
algorithm.

2.2 Absence of a loss signal in AL

When an arm is pulled in the MAB setting, the player
suffers a loss, and this loss is used to update the LCB
of the chosen arm. However, in AL there is no such
explicit loss signal. One might come up with a proxy
loss signal for the active learning problem which can
then be used to update the lower confidence bound of
all the hypothesis in H. However, we take a different
approach. The utility of the loss signal when the arm
at is pulled in round t of the MAB problem is two
folds. Firstly to update the cumulative loss of at, and
secondly to decrease the uncertainty in the estimate
of the cumulative loss of at. In AL when a certain
point x is queried for its label, then this label informa-
tion can be utilized to improve the error estimate of ht
as well as other hypothesis. Hence, it makes sense to
query O, for the label of some point x in P , such that
its label information maximally reduces the variance
of the estimate of risk of ht. Hence, by conceptually
viewing label information as a mechanism to reduce
the variance of the risk estimate of different hypothe-
sis, we have a disciplined way of deciding which points
to query. Table 1 summarizes the analogy between AL
and MAB.

2.3 Rough outline of LCB-AL.

LCB-AL is a sequential algorithm where in each round
a probability distribution is placed on P, and a single
point is sampled from P. We additionally assume that
the hypothesis class H is convex. For the sake of sim-
plicity we shall allow re-querying points in the pool,
i.e. if a point xi was first queried in some round t1,
then it might once again be queried in round t2. If
such a re-querying happens then we use the label that

was returned by O in round t1. 4 In order to construct
lower confidence bounds on the risk of h we use impor-
tance weighting along with Bernstein type inequalities
for martingales. The advantage of using importance
weights, is that they facilitate data reuse, when an ac-
tively sampled data with one hypothesis class, is used
in the future to learn a model from a different hypothe-
sis class. The problem with such importance weighted
estimators is that they have very high variance. The
seminal work of Abernethy et al. (2008) showed that
one could tackle the high variance of the importance
weighted estimators, via the use of self-concordant bar-
riers (Nesterov and Nemirovsky, 1994). This inspires
us to use the self-concordant barrier of H along with
lower confidence bounds in our algorithm. As a result
in each round (see step 14 of algorithm 1) we solve the
optimization problem

ht+1 ∈ arg min
h∈H

LCBt(h) +R(h),

where R(h) is the self-concordant barrier of H. Using
ht+1 we induce a sampling distribution over the pool
P, at the start of round t+1 (see step 4 of algorithm 1).
As discussed in section 2.2, the probability distribution
is such that it minimizes the (conditional) variance of
the estimate of risk of ht. We shall make this clear in
section 3.2.

3 Risk Estimates and Confidence
Bounds

We begin with the notation that will be required to de-
velop our confidence bounds. Let pti be the probability
of querying xi in round t, and Qti ∈ {0, 1} be the ran-
dom variable which takes the value 1 if xi was queried
in round t, and 0 otherwise. Hence E[Qti|pti] = 1. For
convenience, we shall denote by Q1:t

1:n the collection
of random variables Q1

1, . . . Q
t
1, . . . , Q

1
n, . . . , Q

t
n. Let

Zti
def
= yiQ

t
i. Denote by x1:n the collection of random

variables x1, . . . , xn. Also let [x]+ = max{x, 0}.

We shall make the following independence assumption:

Assumption 1. If xi has not been queried up until
the start of round t, then pti⊥⊥yi|x1:n, Z

1:t−1
1:n .

For any hypothesis h ∈ H, define

L̂t(h)
def
= 1

nt

∑n
i=1

∑t
τ=1

Qτi
pτi
L(yih(xi)). L̂t(h) is

an unbiased estimator of the risk of the hypothesis
h, and was first proposed by Ganti and Gray (2011).

4An algorithm similar to the one suggested in this pa-
per, can be designed such that re-querying is not allowed.
This requires different type of estimators, and the expres-
sions for LCBt(h) turned out to be rather complicated.
Hence, for simplicity of exposition we allow re-querying of
points in this paper.



MAB AL
Arms Hypothesis

Loss signal on pulling an arm Sampling distribution
helps improve cumulative loss estimates designed to reduce variance of risk estimates of hypothesis

Table 1: The analogy between MAB and AL that is used as a guiding principle for the design of LCB-AL

Algorithm 1 LCB-AL Input: P = {x1, . . . , xn}, Loss
function L(·), Budget B, Labeling Oracle O, pmin

1: Set h1 = 0, t = 1.
2: while num queried ≤ B do
3: for xi ∈ P do
4:

ȳi =

{
yi if xi ∈ Qt−1

sign(ht(xi)) otherwise
(1)

5: pti ← pmin + (1− npmin) L(ȳiht(xi))∑
xi∈P

L(ȳiht(xi))
.

6: end for
7: Sample a point (say x) from the probability vec-

tor pt.
8: if x was not queried in the past then
9: Query O for the label y of x.

10: num queried← num queried + 1
11: else
12: Reuse the label of x.
13: end if
14: Solve: ht+1 = arg minh∈H LCBt(h) + λtR(h).
15: t← t+ 1
16: end while
17: Return hB .

Finally let Qt
def
= {xi ∈ P|

∑t
τ=1Q

τ
i > 0}. Let

Fτ
def
= σ(x1:n, Z

1:τ
1:n) be the smallest sigma algebra that

makes the random variables x1:n, Z
1:τ
1:n measurable.

Clearly F1 ⊂ . . . ⊂ Ft form a filtration. Also we shall
assume that our loss function is a convex function of
the margin yh(x), and is upper bounded by Lmax <∞
for all x ∈ P, h ∈ H. Popular loss functions such as
logistic loss, exponential loss, squared loss all satisfy
these criteria.

3.1 Constructing lower confidence bounds

Utilizing the unbiased estimator L̂t(h), along with
Bernstein type inequalities for martingales allows us to
construct lower confidence bounds for R(h). We shall
begin with the standard Azuma-Hoeffding bound for
martingale difference sequences.

Theorem 1. [Azuma-Hoeffding inequality] Let
X1, X2, . . . be a martingale difference sequence w.r.t a
filtration F1 ⊂ F2 ⊂ . . .. If for each i ≥ 1, |Xi| ≤ ci.

Then,

P[|
n∑
i=1

Xi| ≥ ε] ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)

We shall also need the following Bernstein type result
from Bartlett et al. (2008).

Theorem 2. Let M1, . . . ,Mt be a martingale differ-
ence sequence (MDS), w.r.t. the filtration F1 ⊂ . . . ⊂
Ft, with |Mτ | ≤ b. Let VτMτ

def
= V(Mτ |Fτ−1), and

σ2 def
=
∑t
τ=1 VτMτ . Then we have, for any δ < 1/e,

and t ≥ 4, with probability at least 1− δ log(t)

t∑
τ=1

Mτ < 2 max{2σ, b
√

log(1/δ)}
√
log(1/δ).

Lemma 1. For any fixed h ∈ H, t ≥ 4, δ < 1/e, with
probability at least 1− δ log(t), we have

1

n

n∑
i=1

t∑
τ=1

Qτi
pτi
L(yih(xi))−

t

n

n∑
i=1

L(yih(xi)) ≤

2 max

(
2

n

√√√√ t∑
τ=1

n∑
i=1

L2(yih(xi))

pτi
−
( n∑
i=1

L(yih(xi))
)2

,

Lmax

(
1 +

1

npmin

)√
log(1/δ)

)√
log(1/δ)

Proof. Let,

Mτ
def
=

1

n

n∑
i=1

Qτi
pτi
L(yih(xi))−

1

n

n∑
i=1

L(yih(xi)). (2)

Utilizing the independence assumption it is easy to
see that E[Mτ |Fτ−1] = 0. Hence M1, . . . ,Mt form
a martingale difference sequence w.r.t. the filtration
F1, . . . ,Ft. In order to apply theorem 2 we need es-
timates for the sum of conditional variances, and the
range of |Mτ |. We proceed to establish upper bounds
on these quantities now.

From equation 2 and triangle inequality we get

|Mτ | ≤
1

n
|
n∑
i=1

Qτi
pτi
L(yih(xi))|+

1

n
|
n∑
i=1

L(yih(xi))|

≤ Lmax

(
1 +

1

npmin

)
. (3)



σ2 def
=

t∑
τ=1

E[M2
τ |Fτ−1]

=

t∑
τ=1

1

n2
E
[ Qτi

(pτi )2
L2(yih(xi))

+
2

n

∑
i 6=j

QτiQ
τ
j

pτi p
τ
j

L(yih(xi))L(yjh(xj))︸ ︷︷ ︸
=0

− 1

n2

( n∑
i=1

L(yih(xi))
)2

|Fτ−1

]
(4)

=
1

n2

t∑
τ=1

n∑
i=1

L2(yih(xi))

pτi
− 1

n2

( n∑
i=1

L(yih(xi))
)2

.

(5)

In equation 4 we used the fact that in each round only
one point is queried. The result now follows by the
application of theorem 2 with b, σ2 defined as in equa-
tions 3, 5 respectively.

While this theorem enables us to construct lower
bounds for the risk of the hypothesis, the major prob-
lem is that the RHS of theorem 1 depends on the labels
of all the points in the pool and not just the queried
labels. We shall now provide an estimator for the vari-
ance term σ2.

Lemma 2. With probability at least 1− δ, we have

σ2 ≤ 1

n2

[∑
i=1:n
τ=1:t

Qτi
(pτi )2

L2(yih(xi))−
(∑
Qt

L(yih(xi)
))2

+
L2

max

√
2t log(1/δ)(n− 1)
√
pmin

]
+

Proof. From the proof of theorem 1 we have

σ2 =
1

n2

t∑
τ=1

n∑
i=1

L2(yih(xi))

pτi︸ ︷︷ ︸
I1

− 1

n2

( n∑
i=1

L(yih(xi))
)2

︸ ︷︷ ︸
I2

.

A simple lower bound on I2 is

Î2
def
=

1

n2

(∑
Qt

L(yih(xi)
)2

. (6)

Now let

Î1
def
=

1

n2

t∑
τ=1

n∑
i=1

Qτi
(pτi )2

L2(yih(xi)).

Define

Mτ
def
=

1

n2

n∑
i=1

Qτi
(pτi )2

L2(yih(xi))−
1

n2

n∑
i=1

1

pτi
L2(yih(xi))

Once again utilizing our independence assumption, we
conclude that M1, . . .Mt form an MDS w.r.t. the fil-
tration F1, . . . ,Ft. Applying theorem 1 to this MDS,
we get with probability at least 1− δ

|
t∑

τ=1

Mτ | ≤
L2

max

√
2t log(1/δ)

n2

√
n− 1

pmin
. (7)

The result follows from equations 6, 7

We are now ready to establish a lower confidence
bound on the risk of hypotheses in H.

Theorem 3. Let |H| < ∞. With probability at least
1−|H|δ(2+T log(T/e)), for all h ∈ H, 4 ≤ t ≤ T , and
δ < 1/e, we have

R(h) ≥
[
L̂t(h)− 2

t
log(1/δ)Lmax

(
1 +

1

npmin

)

− 4

nt

√
Vt log(1/δ)−

√
L2

max log(1/δ)

2n

]
+

(8)

where

Vt
def
=
[∑
i=1:n
τ=1:t

Qτi
(pτi )2

L2(yih(xi))−
(∑
Qt

L(yih(xi)
))2

+
L2

max

√
2t log(1/δ)(n− 1)
√
pmin

]
+

(9)

Proof. For any fixed h ∈ H, and t ≤ T , we have from
theorems 1, 2, Hoeffding inequality, and the union
bound that with probability at least 1− δ log(t)− 2δ

R(h) ≥
[
L̂t(h)− 2

t
log(1/δ)Lmax(1 +

1

npmin
)

− 4

nt

√
Vt log(1/δ)−

√
L2

max log(1/δ)

2n

]
+
. (10)

Applying union bound over all hypothesis and over all
t ≥ 4, and approximating n − 1 with n we get the
desired result.

Specification of LCBt(h). Theorem 3 provides us
with an expression for LCBt(h). For the purpose of
solving the optimization in step 7 of our LCB-AL al-
gorithm, we can set

LCBt(h)
def
= L̂t(h)− 4

nt

√
log(1/δ)Vt, (11)

where Vt is shown in equation 9.



3.2 Query probability distribution in each
round of LCB-AL

The only thing that is left to be motivated in LCB-AL
is the choice of probability distribution in step 3. As
explained in section 2.2 we want to use a sampling dis-
tribution, such that the conditional variance of the risk
estimate L̂t(h) of ht is minimized. We shall now show
how the sampling distribution should be designed in
order to achieve this goal. Let ∆ ⊂ Rn+ be the prob-
ability simplex. Let Vt(·) denote the variance, condi-

tioned on x1:n, Z
1:t−1
1:n . Let pt

def
= (pt1, . . . , p

t
n) ∈ ∆. At

the start of round t, the desired sampling distribution,
pt should satisfy

pt = arg min
p̃t∈∆

Vt
[ 1

nt

∑
i=1:n
τ=1:t

Q̃τi
p̃τi
L(yiht(xi))

︸ ︷︷ ︸
L̂t(ht)

]

= arg min
p̃t∈∆

n∑
i=1

EtL2(yiht(xi))

p̃τi

Solving the above optimization problem yields the sim-
ple solution pti ∝

√
EtL2(yiht(xi)). If xi ∈ Qt−1,

then the label yi is known and hence, we let pti ∝
L(yiht(xi)). If xi /∈ Qt−1, then since yi is yet un-
known, we let pti ∝ L(|ht(xi)|). This is equivalent to
taking yi to be equal to sgn(ht(xi)) (see steps 3, 4 of
algorithm 1). This scheme encourages querying points
which have small margin w.r.t the current classifier,
ht, or points which have already been queried for their
label, but on which the current hypothesis, ht suffers
a large loss. In any round, the minimum probability
of querying any point is pmin. This guarantees that
L̂t(h) is an unbiased estimator of risk of h.

4 Related Work

A variety of pool based AL algorithms have been pro-
posed in the literature employing various query strate-
gies. Some of the popular querying strategies include
uncertainty sampling, where the active learner queries
the point whose label it is most uncertain about (Lewis
and Gale, 1994; Settles and Craven, 2008; Tong and
Chang, 2001). Usually the uncertainty in the label
is calculated using certain information-theoretic cri-
teria such as entropy, or variance of the label distri-
bution. Seung et al. (1992) introduced the query-by-
committee (QBC) framework where a committee of
potential models, which all agree on the currently la-
beled data is maintained and, the point where most
committee members disagree is considered for query-
ing. Other frameworks include querying the point,
which causes the maximum expected reduction in er-
ror (Zhu et al., 2003; Guo and Greiner, 2007), vari-

ance reducing query strategies such as the ones based
on optimal design (Flaherty et al., 2005; Zhang and
Oles, 2000). A very thorough literature survey of dif-
ferent active learning algorithms has been done by
Settles (2009). AL algorithms that are consistent
and have provable label complexity have been pro-
posed for the agnostic setting for the 0-1 loss in re-
cent years (Dasgupta et al., 2007; Balcan et al., 2009).
Hanneke and Yang (2012) recently provided a disagree-
ment region based algorithm, with provable guarantees
for active learning with general loss functions.

Algorithmically, LCB-AL is similar in flavor to the
UPAL algorithm introduced by Ganti and Gray
(2011). In the UPAL algorithm the authors suggested
minimizing an unbiased estimator of risk of h, and a
sampling distribution that was in proportion to the
entropy of the prediction on the pool. However as we
suggested the use of self-concordant regularizer is very
crucial in tackling the high variance of our estimators.
As we show in our experiments (see section 5) the use
of self-concordant barrier as a regularizer, helps lend
stability to our algorithm, and consequently LCB-AL
performs better than UPAL.

To our knowledge there has been only one other paper
bridging the world of active learning and MAB. Baram
et al. (2004) proposed a meta-active learning algorithm
called COMB. COMB was an implementation of the
EXP4 algorithm for MAB with expert advice, where
the different active learning algorithms are the vari-
ous “experts” and the different points in the pool are
the arms of the MAB. Briefly, in each round, each
of the experts suggest a sampling distribution on the
pool. COMB maintains an estimate of the error rate
of each expert, and uses exponential weighting to come
up with a sampling distribution on the pool. In order
to estimate the error rate of each of the experts, the
authors proposed a proxy reward function of querying
a point in terms of the entropy of label distribution of
the unlabeled pool, induced by the classifier obtained
on the labeled dataset gathered by COMB till the cur-
rent iteration. In a way, the concept of reward seems
inevitable in their formulation because the unlabeled
points in the pool are treated as arms of the MAB.
In contrast, we think of the arms of the bandit as the
different hypothesis, and querying a data point, as the
process of improving our estimate of the risk of the
different hypothesis. Hence, we bypass the need for an
explicit reward signal, yet utilize MAB ideas for AL.

5 Experiments

We implemented LCB-AL in MATLAB, and compared
it with some previously proposed active learning al-
gorithms on four UCI datasets. The competing algo-



rithms are UPAL (Ganti and Gray, 2011), BMAL (Hoi
et al., 2006), and a passive learning (PL) algorithm
that minimizes the regularized logistic loss. UPAL is
a sequential, pool based algorithm that minimizes the
unbiased estimator L̂t(h), of the risk of a hypothe-
sis h, along with the squared L2 norm of h in each
round. BMAL is a batch mode active learning al-
gorithm introduced by Hoi et al. (2006). Hoi et al.
in their paper showed superior empirical performance
of BMAL over other pool based active learning algo-
rithms, and this is the primary motivation for using
BMAL in our experiments. Given a pool P, and a bud-
get B, BMAL chooses a set of B points that minimize
the Fisher information ratio between the set of un-
queried and the queried points. The authors then pro-
pose a monotonic submodular approximation to the
original Fisher ratio objective, which is optimized by
a greedy algorithm. In order to keep our experiments
simple, and to facilitate easy comparison, we restricted
our hypothesis class to the set of linear hypothesis of
bounded L2 norm H = {h : ||h|| ≤ R}. For this
set H, the self-concordant regularizer R(h) is equal
to − log(R2 − ||h||2) (Abernethy et al., 2008), where
R > 0 was provided as an input to LCB-AL. For our
implementation of LCB-AL, we used a slightly differ-
ent definition for LCBt(h), than the one proposed in
equation 11. Let

LCB′t(h)
def
= L̂t(h)−Ct

√
V ′t −λt log(R2−||h||2), (12)

where

V ′t
def
=
[∑
i=1:n
τ=1:t

Qτi
(pτi )2

L2(yih(xi))−
(∑
Qt

L(yih(xi)
))2]

+
.

The definition of LCB′t(h) is almost similar to the one
suggested by equation 11 except that the terms that
were independent of h, in LCBt(h) were dropped to
get LCB′t(h). Ct, and λt in all our experiments were

set to

√
log(t)

10 , and 100nt(∑n
i=1

∑t−1
τ=1

Qτ
i
pτ
i

)1/3 respectively. We

used minFunc 5 to solve all of our optimization prob-
lems. We used a budget of 300 points. Finally, each of
the dataset was scaled to [−1, 1]d. Since, UPAL and
LCB-AL are randomized algorithms, on each dataset,
we ran them 10 times each, and report averaged mea-
surements.

5.1 Experimental comparisons of different
algorithms

Figure 1 shows the test error of the hypothesis ob-
tained, corresponding to the number of unique queries

5minFunc can be downloaded from http://www.di.
ens.fr/~mschmidt/Software/minFunc.html

made to the oracle, by each algorithm. Table 2 shows
the error rate on the test set, of each algorithm, once
the budget is exhausted. On three of the datasets,
namely MNIST, Abalone, and Statlog utilizing an
active learner is better than a passive learner. On
MNIST, the performance of LCB-AL and UPAL are
nearly equal as far as the final test error goes, and both
are better than BMAL. On abalone LCB-AL is better
than both BMAL and UPAL, while on Statlog the fi-
nal error achieved by BMAL is better than UPAL, and
also LCB-AL, though the difference between LCB-AL
and BMAL is pretty narrow. On Whitewine, passive
learner is better than any of the active learners. In or-
der to gain an insight into how well each of the learn-
ing algorithm learns with each query to the oracle,
we also report the cumulative error rate of each algo-
rithm, summed over all the queries. The cumulative
error rate of a learning algorithm is nothing but the
area under the curve (AUC) of error-rate vs number of
queries to the oracle. Even on this measure, LCB-AL
and UPAL are better than BMAL on MNIST, Abalone
and Whitewine datasets. On Abalone, and Statlog the
AUC of LCB-AL is appreciably smaller than that of
UPAL.

5.2 Comparing UPAL with LCB-AL

From our first set of experiments it looks like UPAL
is just as good as LCB-AL if not any better. e.g. on
the MNIST dataset, there is almost no difference be-
tween LCB-AL and UPAL. Since, both LCB-AL and
UPAL are randomized algorithms it makes sense to
measure the fluctuations in the performance of both
the algorithms. Table 3 gives the standard devia-
tion of AUC over all the runs for both LCB-AL and
UPAL. It is clear that the standard deviation of AUC
for LCB-AL is uniformly smaller than that of UPAL
over all datasets, and the difference in the standard
deviations is largest for the MNIST dataset. This can
be explained by the fact that, the unbiased estima-
tor of risk used in UPAL is a high variance estima-
tor, and hence not a reliable estimator of the risk of
a hypothesis. In LCB-AL, by utilizing lower confi-
dence bounds, and the self-concordant regularizer, we
are able to tackle the high variance of our estimator,
and at the same time harness the variance for explo-
ration in the hypothesis space. In fact, a similar phe-
nomenon occurs even in the MAB setting, where al-
gorithms built only on unbiased estimators, such as
EXP3 (Auer et al., 2002b), achieve optimal perfor-
mance only on an average, whereas algorithm using
confidence bounds such as EXP3.P achieve optimal
performance with high probability.
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Figure 1: Error rate of different learning algorithms with the number of queries made to the oracle.

Dataset LCB-AL UPAL BMAL PL
MNIST 0.0808 33.27 0.0809 32.75 0.0958 34.89 0.0918 40.08
Abalone 0.2604 83.49 0.2747 86.60 0.2695 86.21 0.2766 93.60
Statlog 0.0354 12.59 0.0433 14.97 0.0330 11.33 0.05 18.06

Whitewine 0.2771 86.30 0.2682 86.21 0.2665 86.95 0.2517 80.94

Table 2: Comparison of various active learning algorithms and passive learner on various datasets.In this table we report
both the error rate of each learner after it has exhausted its budget, as well as the area under the curve of error rate vs
number of queries made for each learning algorithm.



Dataset LCB-AL UPAL
MNIST 3.8604 5.0132
Abalone 2.6512 2.6869
Statlog 0.7944 1.6691

Whitewine 2.4097 2.9992

Table 3: Standard deviation of the AUC of LCB-AL and
UPAL on different datasets.

6 Discussion

We proposed LCB-AL a multi-armed bandit inspired
pool based active learning algorithm. By viewing the
problem of active learning as quickly detecting the hy-
pothesis with (near) optimal risk, we view the problem
of active learning as similar to a MAB problem with
the arms being the different hypothesis. By building
lower confidence bounds on the risk of each hypothe-
sis we are able to perform exploration in the hypoth-
esis space. By conceptually investigating the role of
a loss signal in MAB, we are able to design a sam-
pling distribution from which we sample the points to
be queried. Experimental results suggest that our al-
gorithm is both more accurate, and also more stabler
than competing active learning algorithms.

In the near future we would like to investigate LCB-
AL theoretically. Two properties of LCB-AL are worth
investigating. Firstly, can we guarantee that the excess
risk of our algorithm goes to 0, as n → ∞, B → ∞?
Secondly, what is the budget B, required in order to
guarantee an excess risk of ε?

An immediate extension of this work could be to in-
vestigate how different concentration inequalities can
be utilized to give different lower confidence bounds
for the risk of a hypothesis. This has proven to be an
attractive idea in the MAB setting and it is generally
accepted that tighter concentration inequalities lead
to better algorithms for MAB (Audibert et al., 2009a;
Salomon and Audibert, 2011). We would expect some-
thing similar to happen even in AL.

On a more high level we believe that there is tremen-
dous potential for ideas from multi-armed bandits, and
various other extensions of multi-armed bandits such
as contextual bandits, bandit optimization, to be used
for active learning problems. Most of these algorithms
are very simple, efficient and hence should be useful in
designing simple, efficient active learning algorithms.
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