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Denis D. Mauá Cassio P. de Campos Alessio Benavoli Alessandro Antonucci
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA),

Manno-Lugano, Switzerland,
{denis,cassio,alessio,alessandro}@idsia.ch

Abstract

Credal networks are graph-based statistical
models whose parameters take values in a
set, instead of being sharply specified as in
traditional statistical models (e.g., Bayesian
networks). The computational complexity of
inferences on such models depends on the ir-
relevance/independence concept adopted. In
this paper, we study inferential complexity
under the concepts of epistemic irrelevance
and strong independence. We show that in-
ferences under strong independence are NP-
hard even in trees with ternary variables.
We prove that under epistemic irrelevance
the polynomial time complexity of inferences
in credal trees is not likely to extend to
more general models (e.g. singly connected
networks). These results clearly distinguish
networks that admit efficient inferences and
those where inferences are most likely hard,
and settle several open questions regarding
computational complexity.

1 INTRODUCTION

Bayesian networks are multivariate statistical models
where irrelevance assessments between sets of variables
are concisely described by means of an acyclic directed
graph whose nodes are identified with variables (Pearl,
1988). The graph encodes a set of Markov conditions:
non-descendant non-parent variables are irrelevant to
a variable given its parents. The complete specification
of a Bayesian network requires the specification of a
conditional probability distribution for every variable
and every configuration of its parents. This is no easy
task. Whether these parameters (i.e., the conditional
distributions) are estimated from data or elicited from
experts, they inevitably contain imprecisions and ar-
bitrariness (Kwisthout and van der Gaag, 2008). De-

spite this fact, Bayesian networks have been success-
fully applied to a wide range of applications (Koller
and Friedman, 2009).

An arguably more principled approach to coping with
imprecision in parameters is by means of closed and
convex sets of probability mass functions called credal
sets (Levi, 1980). Unlike the representation of knowl-
edge by “precise” probability mass functions, credal
sets allow for the distinction between randomness and
ignorance (Walley, 1991). Bayesian networks whose
parameters are specified by conditional credal sets are
known as credal networks (Cozman, 2000). Credal
networks have been successfully applied to knowledge-
based expert systems, where it has been argued that
allowing parameters to be imprecisely specified facili-
tates elicitation from experts (Antonucci et al., 2007,
2009; Piatti et al., 2010).

A Bayesian network provides a concise representation
of the (single) multivariate probability mass function
that is consistent with the network parameters and
factorizes over the graph. Analogously, a credal net-
work provides a concise representation of the credal
set of multivariate mass functions that are consistent
with the local credal sets and satisfy (at least) the
irrelevances encoded in the graph. The precise charac-
terization of this joint credal set depends however on
the concept of irrelevance adopted.

The two most commonly used irrelevance concepts in
the literature are strong independence and epistemic
irrelevance. Two variables X and Y are strongly in-
dependent if the joint credal set of X,Y can be re-
garded as originating from a number of precise proba-
bility mass functions in each of which the two variables
are stochastically independent. Strong independence
is thus closely related to the sensitivity analysis inter-
pretation of credal sets, which regards an imprecisely
specified model as arising out of partial ignorance of
an ideal precisely specified one (Kwisthout and van der
Gaag, 2008; Antonucci and Piatti, 2009; Zaffalon and
Miranda, 2009). A variable X is epistemically irrel-



evant to a variable Y if the marginal credal set of Y
according to our model is the same whether we observe
the value of X or not (Walley, 1991).

Typically, credal networks are used to derive tight
bounds on the expectation of some variable conditional
on the value of some other variables. The complexity
of such an inferential task varies greatly according to
the topology of the underlying graph, the cardinality
of the variable domains, and the irrelevance concept
adopted. For instance, the 2U algorithm of Fagiuoli
and Zaffalon (1998) can solve the problem in polyno-
mial time if the underlying graph is singly connected,
variables are binary and strong independence is as-
sumed. When instead epistemic irrelevance is adopted,
no analogous polynomial-time algorithm for the task
is known. On the other hand, de Cooman et al. (2010)
developed a polynomial-time algorithm for inferences
in credal trees under epistemic irrelevance that work
for arbitrarily large variable domains. No such algo-
rithm is known under strong independence. Recently,
Mauá et al. (2012) showed the existence of a fully
polynomial-time approximation scheme for credal net-
works of bounded treewidth and bounded variable car-
dinality under strong independence. It is still unknown
whether an analogous result can be obtained under
epistemic irrelevance.

In this paper, we show that epistemic irrelevance and
strong independence induce the same upper and lower
predictive probability in HMM-like (hidden Markov
model-like) credal networks (i.e., when we query the
value of the “last” state node given some evidence),
and that they induce the same marginal expectation
bounds in any network where non-root nodes are pre-
cise and root nodes are vacuous. The former im-
plies that we can use the algorithm of de Cooman
et al. (2010) for epistemic credal trees to compute
tight bounds on the predictive probability in HMM-
like credal networks also under strong independence.
The latter implies that computing tight posterior prob-
ability bounds in singly connected credal networks over
ternary variables under epistemic irrelevance is NP-
hard, as we show this to be the case under strong in-
dependence (de Campos and Cozman (2005) have pre-
viously shown the NP-hardness of inference in singly
connected strong networks when variable cardinalities

Table 1: Inferential Complexity of Credal Networks

MODEL STRONG EPISTEMIC

(Predictive) HMM P P
Tree NP-hard P
Singly connected NP-hard NP-hard
Multiply connected NPPP-hard NPPP-hard

are unbounded). Table 1 summarizes both the previ-
ously known complexity results and the contributions
of this work, which appear in boldface.

2 CREDAL NETWORKS

Let X1, . . . , Xn be variables taking values x1, . . . , xn
in finite sets X1, . . . ,Xn, respectively. We write X :=
(X1, . . . , Xn) to denote the n-dimensional variable tak-
ing values x in X := X1 × · · · × Xn. Given X and
I ⊆ {1, . . . , n} := N , the notation XI denotes the vec-
tor obtained from X by discarding the coordinates not
in I. We also write XI to denote the Cartesian prod-
uct (in the proper order) of the sets Xi with i ∈ I, and
xI to denote an element of XI . Note that XN = X
and XN = X .

Let Z be some finite set (multidimensional or not),
and Z a variable taking values in Z. A probability
mass function (pmf) p(Z) is a non-negative real-valued
function on Z such that

∑
z∈Z p(z) = 1. Given a

pmf p on Z, we define the expectation operator as the
functional Ep[f ] :=

∑
z∈Z f(z)p(z) that maps every

real-valued function f on Z to a real number. Given
a pmf p(X) on X , and disjoint subsets I, J and K,
we say that variables XK are stochastically irrelevant
to XI given XJ if p(xI |xJ∪K) = p(xI |xJ) for all x,
where the conditional pmfs are obtained by application
of Bayes’ rule on p(X). Variables XI and XK are
independent conditional on XJ if, given XJ , XI and
XK are irrelevant to each other.

A credal set C(Z) is a closed and convex set of pmfs
p(Z) on Z (Levi, 1980). The extrema of a credal set
are the points that cannot be written as convex com-
binations of other points in the set. The extrema of
C(Z) are denoted by extC(Z). We assume that every
credal set has finitely many extrema, which are used
to represent it. Thus, the credal sets we consider are
geometrically polytopes. The vacuous credal set is the
largest credal set on a given domain Z, and is denoted
by V (Z). Given a set M(Z) of pmfs p(Z) on Z we
write coM(Z) to denote its convex closure, that is,
the credal set obtained by all convex combinations of
elements of M(Z). Given a credal set C(X), disjoint
subsets I and J of N , and an assignment xJ to XJ ,
we define the conditional credal set C(XI |xJ) (induced
by C(X)) as the set co{ p(XI |xJ) : p ∈ C(X), p(xJ) >
0 }. It can be shown that the C(XI |xJ) remains the
same if we replace C(X) with its extrema extC(X).

For disjoint subsets I, J and K of N , we say that a
variable XK is strongly irrelevant to XI given XJ (and
w.r.t. C(X)) if XK is stochastically irrelevant to XI

given XJ in every extreme p ∈ extC(X). This implies
that C(XI |xJ∪K) = C(XI |xJ) for all x. Variables XI

and XK are strongly independent given XJ if condi-
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Figure 1: A Simple Polytree

tional on XJ both XI is strongly irrelevant to XK

and XK is strongly irrelevant to XI . Since stochas-
tic irrelevance implies stochastic independence, strong
independence is implied by strong irrelevance.

We say that variables XK are epistemically irrelevant
to XI given XJ if C(XI |xJ∪K) = C(XI |xJ) for all
values of x. One can show that strong irrelevance
implies epistemic irrelevance (and the converse is not
necessarily true) (Cozman, 2000; de Cooman and Trof-
faes, 2004). Variables XI and XK are epistemically
independent conditional on XJ if, given XJ , XI and
XK are epistemically irrelevant to each other (Walley,
1991, Ch. 9).

Let G = (N,A) be an acyclic directed graph. We
denote the parents of a node i by pa(i). The set of non-
descendants of i, written nd(i), contains the nodes not
reachable from i by a directed path. Note that pa(i) ⊆
nd(i). We say that G is singly connected if there is at
most one undirected path connecting any two nodes in
the graph; it is a tree is if additionally each node has at
most one parent. If a graph is not singly connected, we
say it is multiply connected. Singly connected directed
graphs are also called polytrees.

A (separately specified) credal network N associates
to each node i in G a variable Xi and a collection
Q(Xi|Xpa(i)) of local credal sets Q(Xi|xpa(i)) indexed
by the values of Xpa(i). When every local credal set is
a singleton the model specifies a Bayesian network.

Example 1. Consider the credal network N over
Boolean variables X1, X2, X3 whose graph is shown in
Figure 1. Let [p(0), p(1)] represent a pmf of a Boolean
variable. The local credal sets are Q(X1) = Q(X2) =
co{[0.4, 0.6], [0.5, 0.5]} and Q(X3|x1,2) = {[I(x1 =
x2), I(x1 6= x2)]}, where I(·) is the indicator function.

The strong extension is the credal set C(X) whose
extrema p(X) satisfy for all x the condition

p(x) =
∏
i∈N

q(xi|xpa(i)), (1)

where q(Xi|xpa(i)) ∈ extQ(Xi|xpa(i)). The strong ex-
tension satisfies the Markov condition w.r.t. strong in-
dependence: every variable is strongly independent of
its non-descendant non-parents given its parents. The
epistemic extension is the joint credal set C(X) such
that

C(Xi|xnd(i)) = Q(Xi|xpa(i)) (2)

for every variable Xi and value xnd(i) of Xnd(i). The
epistemic extension satisfies the Markov condition
w.r.t. epistemic irrelevance: the non-descendant non-
parents are irrelevant to a variable given its par-
ents. Equation 2 implies that (and is equivalent to
for Boolean variables Xi)

min q(xi|xpa(i)) ≤ p(xi|xnd(i)) ≤ max q(xi|xpa(i)) (3)

for all x and p ∈ C(X) with p(xnd(i)) > 0, where the
optimizations are over q ∈ Q(Xi|xpa(i)). Note that
these inequalities can be turned into linear inequalities
by multiplying both sides by p(xnd(i)).

Given a function f of a query variable Xq, and an
assignment x̃O to evidence variables XO, the primary
inference with credal networks is the application of the
generalized Bayes rule (GBR), which asks for a value
of µ that solves the equation

min
p∈C(X)

∑
x∼x̃O

[f(xq)− µ]p(x) = 0 , (4)

where the sum is performed over the values x of X
whose coordinates indexed by O equal x̃O. Assuming
that minp∈C(XO) p(x̃O) > 0, it follows that

µ = min
p∈C(Xq|x̃O)

Ep[f ] , (5)

that is, µ is the lower expectation of f on the pos-
terior credal set C(Xq|x̃O) induced by the (strong or
epistemic) extension of the network.

Example 2. Consider the network in Example 1,
and let q = 3, f = I(x3 = 0) and O is the empty
set. Then applying the GBR is equivalent to finding
the lower marginal probability µ = minp∈C(X3) p(0)
induced by the network extension. Assuming strong
independence (hence strong extension), the inference
is solved by µ = min

∑
x1,2

q1(x1)q2(x2)q3(0|x1,2) =

1 + min{2q1(0)q2(0)− q1(0)− q2(0)} = 1− 1/2 = 1/2 ,
where the minimizations are performed over q1(X1) ∈
extQ(X1), q2(X2) ∈ extQ(X2), and q3(X3|x1,2) =
[I(x1 = x2), I(x1 6= x2)]. The epistemic extension is
the credal set of joint pmfs p(X) on X such that

min
q∈Q(X1)

q(x1) ≤ p(x1|x2) ≤ max
q∈Q(X1)

q(x1) ,

min
q∈Q(X1)

q(x2) ≤ p(x2|x1) ≤ max
q∈Q(X1)

q(x2) ,

q(x3|x1,2) ≤ p(x3|x{1,2}) ≤ q(x3|x1,3) .

The inference under epistemic irrelevance is the
value of the solution of the linear program µ =
min{p(0, 0, 0) + p(1, 1, 0) : p(X) ∈ C(X)} = 5/11 <
1/2, where C(X) is the epistemic extension.



3 COMPLEXITY RESULTS

In this section we present new results about the com-
putational complexity of GBR inferences in credal net-
works. We make use of previously unknown equiv-
alences between strong and epistemic extensions to
derive both positive and negative complexity results.
The section is divided in subsections addressing net-
works in increasing order of topological complexity.

3.1 HIDDEN MARKOV MODELS

An imprecise hidden Markov model (HMM) is a credal
network whose nodes can be partitioned into state and
manifest nodes such that the state nodes form a chain
(i.e., a sequence of nodes with one node linking to the
next and to no other in the sequence), and each man-
ifest node is a leaf with a single state node as par-
ent. As the following example shows, there are GBR
inferences in HMMs which depend on the irrelevance
concept adopted, even in the case of binary variables.

Example 3. Consider an HMM over four Boolean
variables X1, X2, X3, X4, where X1 and X2 are state
variables and X3 and X4 are manifest variables.
The topology of the corresponding credal network
is depicted in Figure 2. The local credal sets
are given by Q(X1) = Q(X2|0) = Q(X4|0) =
{[3/4, 1/4]}, Q(X2|1) = Q(X4|1) = {[1/4, 3/4]}, and
Q(X3|0) = co{[1/4, 3/4], [1/2, 1/2]} and Q(X3|1) =
co{[3/4, 1/4], [1/2, 1/2]}. Consider the query f(X4) =
I(x4 =0), and evidence x̃3 =0. Under strong indepen-
dence, the GBR is to solve for µ the equation

min
∑
x2

q(0|x2)gµ(x2) =
∑
x2

min q(0|x2)gµ(x2) = 0 ,

where the minimizations are performed over
q(X3|x2) ∈ Q(X3|x2), x2 = 0, 1, and

gµ(x2) =
∑
x1,4

q(x1)q(x2|x1)q(x4|x1)[I(x4 =0)− µ] ,

with q(X1) = q(X2|0) = q(X4|0) = [3/4, 1/4] and
q(X2|1) = q(X4|1) = [1/4, 3/4]. The values of q(0|x2)
depend only on the signs of gµ(x2), x2 = 0, 1. Solving
for µ for each of the four possibilities, and taking the
minimum value of µ, we find that µ = min{p(0|0) :
p(X4|X3) ∈ C(X4|X3)} = 4/7.

Under epistemic irrelevance, the GBR is equal to

min
∑
x1,2,4

q(x1)q(x2|x1)q(x4|x1)q(0|x1,2,4)hµ(x4) =

(1− µ)
∑
x1,2

q(x1)q(x2|x1)q(0|x1) min q(0|x1,2, x4 =0)

−µ
∑
x1,2

q(x1)q(x2|x1)q(1|x1) max q(0|x1,2, x4 =1) = 0 ,
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Figure 2: HMM Over Four Variables
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Figure 3: HMM Over 2n+ 1 Variables

where hµ(x4) = I(x4 = 0) − µ, q(X1), q(X2|X1) and
q(X4|X1) are defined as before, and q(X3|x1,2,4) ∈
Q(X3|x2) for every x1,2,4. Solving the equation above
for µ we get that µ = 13/28.

GBR inferences in HMMs are polynomial-time
computable under epistemic irrelevance, but no
polynomial-time algorithm is known under strong in-
dependence except for the case of binary variables (in
which case the aforementioned 2U algorithm can be
used). The following result shows that there exists a
class of GBR inferences in HMMs which are insensitive
to the irrelevance concept adopted. This implies that
the GBR is polynomial-time computable in such cases
also under strong independence.

Theorem 1. Consider an HMM over n+ 1 variables
whose state nodes are identified with odd numbers and
manifest nodes are identified with even numbers (see
Figure 3). Assume that the query node is q = n + 1,
and that evidence x̃O is set on a subset O of the man-
ifest nodes. Then the posterior lower expectation of
any function f on Xq conditional on x̃O is the same
whether we assume epistemic irrelevance or strong in-
dependence.

Proof. Let gµ(xn+1) be equal to f(xn+1)−µ. To com-
pute the GBR under strong independence, we need to
find a number µ such that

min
∑
x∼x̃O

q(x1)

n+1∏
i=2

q(xi|xpa(i))gµ(xn+1) = 0 ,

where the minimization is performed over q(x1) ∈
Q(X1) and q(Xi|xpa(i)) ∈ Q(Xi|xpa(i)) for i =
2, . . . , n+ 1. The minimization above is equivalent to
the constrained program

minimize
∑
x∼x̃O

q(x1)

n+1∏
i=2

q(xi|x1:i−1)gµ(xn+1) (6)

subject to q(xi|x1:i−1) = q(xi|xpa(i)), i > 2 , (7)



with variables q(x1) ∈ Q(X1), q(Xi|xpa(i)) ∈
Q(Xi|xpa(i)), i = 2, . . . , n + 1 and q(Xi|x1:i−1) ∈
Q(Xi|xpa(i)), i = 3, . . . , n + 1. The objective function
in (6) can be rewritten as

∑
x1:n∼x̃O

q(x1)

n∏
i=2

q(xi|x1:i−1)
∑
xn+1

q(xn+1|x1:n)gµ(xn+1).

We show the result by induction. Consider a state
node i + 1 and assume that the constrained program
(6)–(7) is equivalent to

min
s.t.(7)

∑
x1:i+1∼x̃O

q(x1)

i+1∏
j=2

q(xj |x1:j−1)hi+1(xi+1) ,

for some function hi+1 on Xi+1, and let
q∗(Xi+1|X1:i) := {q∗(Xi+1|x1:i) : x1:i} be the
solutions to the linear optimizations

hi(xi−1) := min
q∈Q(Xi+1|xi−1)

∑
xi+1

q(xi+1|x1:i)hi+1(xi+1)

for different values of X1:i. Then q∗(Xi+1|X1:i) satis-
fies (7) and minimizes (6) w.r.t. q(Xi+1|X1:i), thus

min
s.t.(7)

∑
x1:i+1∼x̃O

q(x1)

i+1∏
j=2

q(xj |x1:j−1)hi+1(xi+1) =

min
s.t.(7)

∑
x1:i∼x̃O

q(x1)

i∏
j=2

q(xj |x1:j−1)hi(xi−1) .

Similarly, consider a manifest node i and assume that
(6)–(7) is equivalent to

min
s.t.(7)

∑
x1:i∼x̃O

q(x1)

i∏
j=2

q(xj |x1:j−1)hi(xi−1) . (8)

Let q∗(Xi|X1:i−1) be the solutions to the linear opti-
mizations

hi−1(xi−1) := min
q∈Q(Xi|xi−1)

∑
xi∼x̃O

q(xi|x1:i−1)hi(xi−1)

for different values of X1:i−1. Then, q∗(Xi|X1:i−1) sat-
isfies (7) and minimizes (6), therefore (8) equals

min
s.t.(7)

∑
x1:i−1∼x̃O

q(x1)

i−1∏
j=2

q(xj |x1:j−1)hi−1(xi−1) .

The basis for i = n follows trivially by setting
hn+1(xn+1) = gµ(xn+1). Thus, the unconstrained
minimization in (6) (without the constraints (7))
achieves the same value of the constrained program.
Moreover, it can be shown that the unconstrained pro-
gram is the epistemic extension of the network (Be-
navoli et al., 2011), so that the result follows.

Corollary 1. Consider again the HMM of Theorem 1
and the same query setting, and assume that the local
credal sets associated to manifest nodes i are singletons
Q(Xi|xi−1) = {q(xi|xi−1)} such that q(xi|xi−1) = 1
whenever xi = xi−1. Then the posterior lower expec-
tations of any function f given x̃O is the same whether
we assume epistemic irrelevance or strong indepen-
dence.

The proof of Corollary 1 follows directly from Theorem
1. Observe that since q(xi|xi−1) for a manifest node i
are 0-1 probabilities, the HMM reduces to a(n impre-
cise) Markov Chain. Thus, strong and epistemic ex-
tensions coincide also in Markov Chains when evidence
is before (w.r.t. the topological order) the query node.
In the case of evidence after the query, de Cooman
et al. (2010) have shown by a counterexample that
inferences in Markov Chains are sensitive to the irrel-
evance concept adopted.

3.2 CREDAL TREES

Imprecise HMMs are particular cases of credal trees.
De Cooman et al. (2010) showed that GBR inferences
can be computed in polynomial time in credal trees un-
der epistemic irrelevance. In this section we show that
the same type of inference under strong independence
is an NP-hard task.

In the intermediate steps of reductions used to show
hardness results we make use of networks whose nu-
merical parameters are specified by (polynomial-time)
computable numbers, which might not be encodable
trivially as rationals. A number r is computable if
there exists a machine Mr that, for input b, runs in
at most time poly(b) (the notation poly(b) denotes an
arbitrary polynomial function of b) and outputs a ra-
tional number t such that |r − t| < 2−b. Of special
relevance are numbers of the form 2t1/(1 + 2t2), with
|t1|, |t2| being rationals no greater than two, for which
we can build a machine that outputs a rational t with
the necessary precision in time poly(b) as follows: com-
pute the Taylor expansions of 2t1 and 2t2 around zero
with sufficiently many terms (depending on the value
of b), and then compute the fractional expression. The
following lemma ensures that any network specified
with computable numbers can be approximated arbi-
trarily well by a network specified with rational num-
bers.

Lemma 1. Consider a credal network N over n vari-
ables whose numerical parameters q(xi|xpa(i)) are spec-
ified with computable numbers encoded by their respec-
tive machines, and let b be the size of the encoding of
the network. Given any rational number ε ≥ 2−poly(b),
we can construct in time poly(b) a credal network
N ′ over the same variables whose numerical param-



eters are all rational numbers, and such that there is
a polynomial-time computable bijection (p, p′) that as-
sociates any extreme p of the strong extension N with
an extreme p′ of the strong extension of N ′ satisfy-
ing maxxI∈XI

|p′(xI) − p(xI)| ≤ ε for every subset of
variables XI .

Proof. TakeN ′ to be equal toN except that each com-
putable number r, given by its machine Mr, used in
the specification of N is replaced by a rational t such
that |t − r| < 2−(n+1)(v+1)ε, where v := maxi∈N |Xi|
is the maximum number of values any variable can as-
sume. Because ε ≥ 2−poly(b), we can use Mr with
input poly(b) + (n + 1)(v + 1) to obtain t in time
O(poly(poly(b) + (n+ 1)(v + 1))) = O(poly(b)). Ex-
actly one of the probability values in each pmf in N ′ is
computed as one minus the sum of the other numbers
to ensure that the total mass of the pmf is exactly one;
its error is at most (v− 1) · 2−(n+1)(v+1)ε < 2−n(v+1)ε.

Let q(xi|xpa(i)) and q′(xi|xpa(i)) denote the parame-
ters of N and N ′, respectively, and consider an as-
signment x to all variables X in N (or in N ′). By
design |q′(xi|xpa(i))− q(xi|xpa(i))| ≤ 2−n(v+1)ε. It fol-
lows from the binomial expansion of the factorization
of p′(x) that (there is a term for p(x) in the expansion
and 2n − 1 terms that an be written as a product of
2−n(v+1)ε by numbers less than or equal to one)

p′(x) =
∏
i∈N

q′(xi|xpa(i))

≤
∏
i∈N

[2−n(v+1)ε+ q(xi|xpa(i))]

=
∑
S⊆N

∏
i∈S

q(xi|xpa(i))[2−n−vnε]n−|S|

≤ 2n2−n−vnε+
∏
i∈N

q(xi|xpa(i))

= p(x) + 2−nvε .

Similarly, we can show that

p′(x) ≥
n∏
i=1

[q(xi|xpa(i))− 2−n(v+1)ε] ≥ p(x)− 2−nvε .

Thus, maxx |p′(x) − p(x)| ≤ 2−nvε. Now consider a
subset of the variables XI and a value x̃I ∈ XI . Since
p′(x̃I) =

∑
x∼x̃I

p′(x), each term p′(x) in the sum sat-
isfies p′(x) ≤ p(x) + 2−nvε, and there are less than
vn ≤ 2vn terms being summed, we have that

p′(x̃I) ≤
∑
x∼x̃I

[p(x) + 2−vnε] ≤ p(x̃I) + ε .

An analogous argument can be used to show that
p′(x̃I) ≥ p(x̃I) − ε. Thus, maxxI

|p′(xI) − p(xI)| ≤
ε.

0

1 2 3 . . . n

n+1 n+2 n+3 . . . 2n

Figure 4: Credal Tree Used To Prove Theorem 2

Before proving our hardness results, we state and dis-
cuss some facts about the partition problem, which
will be used later. The partition problem is stated
as follows: given positive integers z1, . . . , zn, decide
whether there is S ⊆ N := {1, . . . , n} such that∑
i∈S zi =

∑
i/∈S zi, where the notation i /∈ S de-

notes that i ∈ N \ S. This is a well-known NP-
hard problem (Garey and Johnson, 1979). We define
vi := zi/z, i = 1, . . . , n, where z :=

∑
i zi/2, and work

w.l.o.g. with the partition problem using vi instead of
zi. Let vS :=

∑
i∈S vi. Then, it follows for any S that

vS = 2 −
∑
i/∈S vi. Also, if an instance of the par-

tition problem is a yes-instance, there is S for which
vS = 1, whereas if it is a no-instance, then for any S,
|vS − 1| ≥ 1/(2z). Consider the function

h(vS) =
2−(vS−1) + 2vS−1

2
. (9)

Seen as a function of a continuous variable vS ∈
[0, 2], the function above is strictly convex, symmet-
ric around one, and achieves the minimum value of
one at vS = 1. Thus, if the partition problem is a
yes-instance, then minS h(vS) = 1, while if it is a no-
instance, then minS h(vS) ≥ 2−1/(2z)−1 + 21/(2z)−1 ≥
2(2z)

−4

> 1 + (2z)−4/2 = 1 + 1/(32z4), where the sec-
ond inequality is due to Lemma 24 in (Mauá et al.,
2012), and the strict inequality follows from the first-

order Taylor expansion of 2(2z)
−4

.

The following result shows that inferences under strong
independence are hard even in credal trees.

Theorem 2. Computing the GBR in credal trees un-
der strong extension is NP-hard, even if all numerical
parameters are rational numbers, and all variables are
at most ternary.

Proof. We use a reduction from the partition prob-
lem as previously described. We build a credal tree
over variables X0, . . . , X2n with graph as in Figure 4.
The root node is associated to the ternary variable
X0, with X0 := {1, 2, 3} and uniform pmf q(x0) =
1/3. The remaining variables are all Boolean. For
i = 1, . . . , n, specify the local sets Q(Xi|x0) as single-



tons {q(Xi|x0)} such that

q(xi=1|x0) =


2−vi/(1 + 2−vi), if x0 = 1,

1/(1 + 2−vi), if x0 = 2,

1/2, if x0 = 3.

Finally, for i = 1 + n, . . . , 2n specify the local credal
sets such that q(Xi|xi−n) ∈ Q(Xi|xi−n) satisfies
q(xi = 1|xi−n) ∈ [ε, 1] for all xi−n, where ε =
2−n−3/(64z4). Consider the computation of the GBR
with observed nodes O = {1 + n, . . . , 2n}, observation
x̃O = (1, . . . , 1) ∈ XO, query node q = 0, and query
f(x0) = −I(x0 =3). Using the results from (Antonucci
and Zaffalon, 2006) about the conservative inference
rule, one can show that f is minimized at an extrema
p(X) such that p(xi=1|xi−n=1) 6= p(xi=1|xi−n=0),
that is, if p(xi=1|xi−n=1) is chosen to be equal to ε,
then p(xi=1|xi−n=0) = 1, and vice-versa. Hence,

µ = min
p

Ep[f ] = −max
p

p(x0 =3|x̃O)

= −max
p

(
1 + ε

2

)n
1/3

p(x̃O)

= −max
S

1

g(aS)
,

where g(a) = 1 + (1 + a)
(

2
1+ε

)n∏n
i=1 1/(1 + 2−vi) is

defined for any real number a, and aS := bS+bN\S−1
and bS :=

∏
i∈S(2−vi + ε)

∏
i/∈S(1 + 2−viε) are defined

for all S ⊆ N . Note that g(aS) > 1 + (1 + aS)2−n. It
follows from the Binomial Theorem that

2−vS ≤ bS ≤ (2−vS + 2nε)(1 + ε)n

≤ (2−vS + 2nε)(1 + 2nε)

≤ 2−vS + 2n+2ε

where we use the inequality (1 + r/k)k ≤ 1 + 2r valid
for r ∈ [0, 1] and positive integer k (Mauá et al., 2011,
Lemma 37). Thus,

h(vS)− 1 ≤ aS ≤ h(vS) + 2n+3ε− 1 .

Now if the partition problem is a yes-instance, then
aS ≤ 1/(64z4), while if it is a no-instance, we have
that aS > 1/(32z4). Hence, there is a gap of at
least 1/(64z4) in the value of aS between yes- and no-
instances, and we can decide the partition problem by
verifying whether µ ≤ −1/g(α), where α := 3/(128z4).
This proof shall be completed with the guarantee that
we can approximate in polynomial time the irrational
numbers used to specify the credal tree and g(a) well
enough so that −1/g(α) falls in the gap between the
values of µ for yes- and no-instances. First, note that

g

(
1

32z4

)
−g
(

1

64z4

)
=

1

64z4

(
2

1 + ε

)n n∏
i=1

1

1 + 2−vi
,

which is greater than 2−n/(64z4). The gap in the value
of µ is at least

1

g(1/(64z4))
− 1

g(1/(32z4))
=
g( 1

32z4 )− g( 1
64z4 )

g( 1
64z4 )g( 1

32z4 )

>
g( 1

32z4 )− g( 1
64z4 )

g( 1
32z4 )2

>
2−n/(64z4)

(1 + (1 + 1
32z4 )2−n)2

>
2−n

4 · 64z4
.

So we apply Lemma 1 with ε = 1
2

2−n

4·64z4 and use the
same rational numbers q(xi=1|xo=2) as in the spec-
ification of the new network instead of the irrational
values 1/(1 + 2−vi) to approximate g(α), which guar-
antees that the gap will continue to exist. Alterna-
tively, we can use the same argument as in Theorem 3
of (de Campos, 2011) to constructively find a suitable
encoding for the numerical parameters and g(α).

3.3 POLYTREES AND BEYOND

In general networks, it is still unclear which type of
inferences depend on the irrelevance concept used.
There is however one situation where we can show
they coincide, and this is particularly important for
the hardness results that we prove later on.

Lemma 2. Consider a credal network of arbitrary
topology, where all nodes are associated to precise pmfs
apart from the root nodes, which are associated to vac-
uous credal sets. Then the result of the GBR for an ar-
bitrary function f of a variable Xq associated to a non-
root node q and no evidence is the same whether we
assume epistemic irrelevance or strong independence.

Proof. Let XR be the variables associated root nodes
(hence to vacuous local credal sets), and XI denote
the remaining variables (which are associated to sin-
gleton local credal sets). The result of the GBR under
epistemic irrelevance is given by

µ = min
p(X)

Ep[f ] = min
p(X)

∑
x

p(xI |xR)p(xR)f(xq)

= min
p(X)

∑
xR

p(xR)
∑
xI

p(xI |xR)f(xq)

= min
p(XR)

∑
xR

p(xR)g(xR) ,

where g(xR) :=
∑
xI

∏
i∈I q(xi|xpa(i))f(xq), and

q(xi|xpa(i)) are the single pmfs in the local credal sets
of the non-root variables XI . According to the last
equality, µ is a convex combination of g(xR). Hence,

µ ≥ min
xR

g(xR) = min
xR

∑
xI

∏
i∈I

q(xi|xpa(i))f(xq) .



The rightmost minimization is exactly the value of the
GBR under strong independence, and since the strong
extension is contained in the epistemic extension, the
inequality above is tight.

The above result will be used in combination with
hardness results for strong credal networks to demon-
strate that computing the GBR under epistemic irrele-
vance is also hard. First, we focus on singly connected
networks.

For polytrees, the next theorem shows that inferences
in credal networks, either under epistemic irrelevance
or strong independence, are NP-hard, even if variables
are at most ternary. If we allowed variables to have
any arbitrary finite number of states, then this result
would follow from the proof of NP-hardness of infer-
ences in polytrees given by de Campos and Cozman
(2005), because the polytree presented there is similar
to the one in Figure 5 with no evidence and query in
the last (topological) node. By Lemma 2, we could use
an inference in the epistemic polytree to solve the same
inference, demonstrating that such inference is NP-
hard too. In this paper we devise a stronger result, as
the hardness is shown even when variables are at most
ternary. For this purpose, we perform a polynomial-
time reduction from the partition problem. A much
similar reduction has been used to show that select-
ing optimal strategies in limited memory influence di-
agrams is NP-hard (Mauá et al., 2012). While the re-
duction used here closely resembles the reduction used
in that work, due to a technicality we cannot directly
use that result (mainly because the influence diagram
could have multiple utility nodes, which would much
complicate the reduction). Instead, we directly reduce
an instance of the partition problem to a computa-
tion of the GBR without evidence in a credal polytree
whose non-root nodes are all associated to precise pmfs
and root nodes are associated to vacuous credal sets.
By using this reduction in conjunction with Lemma
2, we prove the hardness of GBR computations also
under epistemic irrelevance.

Theorem 3. Given a credal polytree, computing the
GBR with a function f of the query variable Xq and no
evidence is NP-hard, whether we assume epistemic ir-
relevance or strong independence, even if all variables
are (at most) ternary and all numbers are rational.

Proof. We build a credal polytree with underlying
graph as in Figure 5. The variables (associated
to nodes) on the upper row are Boolean and vac-
uous, namely X1, . . . , Xn, while the remaining
variables Xn+1, . . . , X2n+1 are ternary and as-
sociated to singleton local credal sets such that
Q(Xn+1) contains a uniform pmf q(xn+1) = 1/3,
and, for i = n + 2, . . . , 2n + 1, Q(Xi|xi−1, xi−n−1)

n+1

1 2 3 n

n+2 n+3 n+4 · · · 2n+1

Figure 5: Polytree Used To Prove Theorem 3

Table 2: Local Pmfs Used To Prove Theorem 3

q(xi|xi−1, xi−n−1) xi=1 xi=2 xi=3

xi−1 =1, xi−n−1 =1 2−vi 0 1− 2−vi

xi−1 =2, xi−n−1 =1 0 1 0
xi−1 =3, xi−n−1 =1 0 0 1
xi−1 =1, xi−n−1 =0 1 0 0
xi−1 =2, xi−n−1 =0 0 2−vi 1− 2−vi

xi−1 =3, xi−n−1 =0 0 0 1

contains the pmf q(Xi|xi−1, xi−n−1) as speci-
fied in Table 2. Consider a joint pmf p(X)
which is an extreme of the strong extension
of the network. One can show that p(x) =

q(xn+1)
∏2n+1
i=n+2 q(xi|xi−1, xi−n−1)

∏
i∈S I(xi =

1)
∏
i/∈S I(xi = 0) for all x, where S ⊆ N . Thus,

p(x) is equal to 1
3

∏2n+1
i=n+2 q(xi|xi−1, xi−n−1) if

xS = 1 and xN\S = 0, and otherwise van-
ishes. It follows that p(x2n+1 = 1) =

∑
x p(x) =

(2−vS )/3 and p(x2n+1 = 2) = (2vS−2)/3. Let
α := (1 + z−4/64)/3. By computing the GBR with
query f(x2n+1) = I(x2n+1 = 1) + I(x2n+1 = 2) and
no evidence, we can decide the partition problem,
as minp E[f ] = minS h(vS)/3 ≤ α, if and only if the
partition problem is a yes-instance. According to
Lemma 2, this result does not change if we assume
epistemic irrelevance. It remains to show that we
can polynomially encode the numbers 2−vi . This
is done by applying Lemma 1 with a small enough
ε computable in time polynomial in the size of the
partition problem: ε = 1/(3 · 64z4) suffices.

The hardness of inference in multiply connected credal
networks under epistemic irrelevance comes from the
fact that general credal networks under strong inde-
pendence can always be efficiently mapped to credal
networks under strong independence with all non-root
nodes precise and vacuous root nodes. Because such
inferences in general credal networks under strong in-
dependence are NPPP-hard (Cozman et al., 2004), and
because Lemma 2 demonstrates that marginal infer-
ences without evidence in these networks are equiv-
alent to the same inference in credal networks under
epistemic extension, the hardness result is obtained
also for epistemic networks. For completeness, we
write the complete proof of such result using a re-
duction from the E-MAJSAT problem, since previous



work has only provided a sketch of such proof (Cozman
et al., 2004). The proof differs only slightly from the
proof of NPPP-hardness of MAP inference in Bayesian
networks given by Park and Darwiche (2004).

Theorem 4. Computing the GBR in credal networks
under either epistemic irrelevance or strong indepen-
dence is NPPP-hard even if all variables are binary.

Proof. The hardness result follows from a reduction
from E-MAJSAT. Given a propositional formula φ
over Boolean variables Z1, . . . , Zn and an integer 1 ≤
k < n, the E-MAJSAT is the problem of deciding
whether there exists an assignment to Z1, . . . , Zk such
that the majority of the assignments to the remaining
variables Zk+1, . . . , Zn satisfy φ. The reduction pro-
ceed as follows. Create a credal network over Boolean
variables X = (X1, . . . , Xk, Xk+1, . . . , Xn) such that
X1, . . . , Xk are associated to root nodes and vacuous
credal sets, and Xk+1, . . . , Xn are associated to non-
root nodes and have uniform pmfs. The root variables
act as selectors for the Boolean variables in the propo-
sitional formula. Each variable Xi is associated to the
Boolean variable Zi of the original formula φ. Build
one new binary variable Xi (using a suitable sequence
of numbers i = n + 1, n + 2, . . . ) for each operator in
the Boolean formula φ of the E-MAJSAT problem such
that Xi has as parents its operands, that is, for logical
operations (Xa ∧ Xb) and (Xa ∨ Xb), with a, b < i,
Xi has as parents the two operands Xa and Xb and
is associated to a singleton credal set containing the
pmf q(xi|xa, xb) = I(xi=xa ◦xb), where ◦ denotes the
respective binary operation; for the operation (¬xa),
with a < i, Xi has a single parent Xa and is associ-
ated to a singleton local credal set containing the pmf
q(xi|xa) = I(xi 6= xa). There is more than one way to
build such a network, depending on the order one eval-
uates the operations in the Boolean formula, and any
valid evaluation order can be used. The final network
encodes a circuit for evaluating the formula φ.

Let t be the last node in the network in topologi-
cal order; variable Xt represents the satisfiability of
the whole formula. Consider a joint pmf p(x) =∏
i∈N q(xi|xpa(i)), for some choice of pmfs from the

extrema of local credal sets. By design, there is a sin-
gle x1:k ∈ X1:k such that

∏k
i=1 q(xi) evaluates to one.

Let x̃1:k be such (joint) value. We have that

p(Xt=1) =
∑
x∼xt

p(xt=1|xI)p(xI |xR)

n∏
i=1

q(xi)

=
1

2n−k

∑
x∼x̃1:k

p(xt=1|xI)p(xI |xR) ,

where XI are the non-root variables that represent
the logical operations in the formula φ apart from

Xt, XR = (X1, . . . , Xn) are the root variables as-
sociated to Boolean variables in φ. The value of
p(xt = 1|xI)p(xI |xR) is equal to one if and only if
the assignment xR satisfies φ (by construction) and is
zero otherwise. Thus, p(Xt=1) = #SAT/2n−k, where
#SAT is the number of assignments to the variables
Zk+1, . . . , Zn that satisfy φ with the first k Boolean
variables set to x̃1:k. By maximizing over the possible
choices of degenerate pmfs q(Xi), i = 1, . . . , k, we have
that minp p(xt=0) < 1/2 if and only if there is an as-
signment to the first k variables Z1, . . . , Zk such that
more than half of the assignments to the remaining
n−k variables Zk+1, . . . , Zn satisfy the formula φ.

4 CONCLUSION

In this paper, we have showed new computational com-
plexity results for inference in credal networks under
both epistemic irrelevance and strong independence.
There are three main contributions. First, by exploit-
ing the relations between these two irrelevance con-
cepts in HMM-like credal networks, we have shown
that predictive inferences under strong independence
can be computed in polynomial time using the same al-
gorithm developed for epistemic credal trees. To com-
plement such result, we have proved that inferences
with strong independence in general trees are NP-hard
even if all variables are (at most) ternary, which shows
that it is unlikely that more general polynomial-time
algorithms for inferences under strong independence
will ever exist. Moreover, using the relation between
strong and epistemic irrelevance concepts in networks
where the imprecision appears only in root nodes (de-
fined by vacuous credal sets), we were able to prove
that inferences in polytrees under epistemic irrelevance
are NP-hard, even if all variables are (at most) ternary.
This result closes the gap between known polynomial-
time algorithms (which were known for trees and some
polytrees) and potentially any more complicated net-
work. To the best of our knowledge, these complexity
results were all open, specially for the case of epistemic
irrelevance.
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Mauá, D. D., de Campos, C. P., and Zaffalon, M.
(2012). Solving limited memory influence diagrams.
Journal of Artificial Intelligence Research, 44:97–
140.
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