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Abstract

We seek to learn an effective policy for a
Markov Decision Process (MDP) with con-
tinuous states via Q-Learning. Given a set
of basis functions over state action pairs
we search for a corresponding set of linear
weights that minimizes the mean Bellman
residual. Our algorithm uses a Kalman filter
model to estimate those weights and we have
developed a simpler approximate Kalman fil-
ter model that outperforms the current state
of the art projected TD-Learning methods on
several standard benchmark problems.

1 INTRODUCTION

We seek an effective policy via Q-Learning for a
Markov Decision Process (MDP) with a continuous
state space. Given a set of basis functions that project
the MDP state action pairs onto a basis space, a lin-
ear function maps them into Q-values using a vector
of basis function weights. The challenge in implement-
ing such a projection-based value model is twofold: to
find a set of basis functions that allow a good fit to the
problem when using a linear model, and given a set of
basis functions, to efficiently estimate a set of basis
function weights that yields a high-performance pol-
icy. The techniques that we present here address the
second part of this challenge. For more background on
MDPs, see (Bellman, 1957, Bertsekas, 1982, Howard,
1960) and for Q-Learning see (Watkins, 1989).

In Kalman Filter Q-Learning (KFQL), we use a
Kalman filter (Kalman, 1960) to model the weights
on the basis functions. The entire distribution over
the value for any state action pair is captured in this
model, where more credible assessments will yield dis-
tributions with smaller variances. Because we have
probability distributions over the weights on the ba-
sis functions, and over the observations conditioned

on those weights, we can compute Bayesian updates
to the weight distributions. Unlike the current state
of the art method, Projected TD Learning (PTD),
Kalman Filter Q-Learning adjusts the weights on ba-
sis functions more when they are less well known and
less when they are more well known. The more obser-
vations are made for a particular basis function, the
more confident the model becomes in its assessment of
its weight.

We simplify KFQL to obtain Approximate Kalman
Filter Q-Learning (AKFQL) by ignoring depen-
dence among basis functions. As a result, each iter-
ation is linear in the number of basis functions rather
than quadratic, but it also appears to be significantly
more efficient and robust for policy generation than
either PTD or KFQL.

In the next section we present KFQL and AKFQL,
followed by sections on experimental results, related
work, and some conclusions.

2 KALMAN FILTER Q-LEARNING

In each time period an MDP has a continuous state s
and an action a is chosen from a corresponding set of
actions As. The transition probabilities to a successor
state s′ are determined by the state action pair (s, a),
and the reward R(s, a, s′) for that period is determined
by the two states and the action. We seek to learn
an optimal policy for choosing actions and the corre-
sponding optimal net present value of the future re-
wards given that we start with state action pair (s, a),
the Q-value Q(s, a). To make that analysis tractable
it is standard to introduce basis functions φ(s, a).

Given n basis functions φ(s, a) for MDP state ac-
tion pairs (s, a), we learn an n-vector of weights r for
those basis functions that minimizes the mean Bell-
man residual. Our prior belief is that r is multivariate
normal with n-vector mean µ and n×n covariance ma-
trix Σ. We model the Q-value by Q(s, a) = rTφ(s, a)



with predicted value µTφ(s, a) and variance σ2(s, a).
We then treat the Q-Learning sample update ν(s, a) as
an observation with variance ε(s, a), which we assume
is conditionally independent of the prediction given r.
Under these assumptions we can update our beliefs
about r using a Kalman filter. This notation is sum-
marized in Table 1.

Table 1: Symbol Definitions

Symbol Definition

s current MDP state
s′ successor MDP state

a ∈ As action available in state s
R(s, a, s′) MDP reward

γ MDP discount rate
φ(s, a) basis function values for state ac-

tion pair (s, a)
r weights on the basis functions

that minimize the mean Bellman
residual

µ, Σ mean vector and covariance ma-
trix for r ∼ N(µ,Σ)

Q(s, a) Q-value for (s, a)
σ2(s, a) variance of Q(s, a)
ν(s, a) Q-Learning sample update value

for (s, a)
ε(s, a) variance of observation ν(s, a),

also called the sensor noise.

Kalman Filter Q-Learning, as discussed here, is im-
plemented using the covariance form of the Kalman
filter. In out experiments the covariance form was less
prone to numerical stability issues than the precision
matrix form. We also believe that dealing with co-
variances makes the model easier to understand and
to assess priors, sensor noise, and other model param-
eters. While the update equations for the KFQL are
standard, the notation is unique to this application.
We describe the exact calculations involved in updat-
ing the KFQL below.

2.1 THE KALMAN OBSERVATION
UPDATE

The generic Kalman filter observation update equa-
tions can be computed for any r ∼ N(µ,Σ) with
predicted measurement with mean µTφ and variance
φTΣφ. The observed measurement ν has variance ε.
First we compute the Kalman gain n-vector,

G = Σφ(φTΣφ+ ε)−1. (1)

The Kalman gain determines the relative impact the
update makes on the elements of µ and Σ.

µ← µ+G(ν − µTφ) (2)

Σ← (I −GφT )Σ (3)

The posterior values for µ and Σ can then be used
as prior values in the next update. For in-depth de-
scriptions of the Kalman Filter see these excellent
references: (Koller and Friedman, 2009, Russell and
Norvig, 2003, Welch and Bishop, 2001).

2.1.1 MDP Updates

r

µ,Σ

Q(s, a) s′

Q(s′, b)

Q(s′, c)

φ(s, a)

φ(s′, b)

φ(s′, c)

state transition
(s, a)→ s′

b

c

sample backup

Q(s, a) = rTφ(s, a) ≈ ν(s, a)
ν(s, a) = R(s, a, s′) + γ

[
max

(
µTφ (s′, b) , ..., µTφ (s′, c)

)]
Figure 1: The Sample Update

To update our distribution for r, we estimate the value
of a sampled successor state s′ and use that value in
our observation update. Because this method is simi-
lar to the Bellman residual minimizing approximation
used in Q-Learning, we will refer to it as the sample
update. It is shown in Figure 1. To arrive at the up-
date formulation, we start with the Bellman equation:

Q(s, a) ≈ R(s, a, s′) + γ max
a′∈As′

Q (s′, a′) (4)

and then we apply the Q-value approximation
Q(s, a) = rTφ(s, a), to get:

Q(s, a) = rTφ(s, a) (5)

≈ R(s, a, s′) + γE
[

max
a′∈As′

rTφ(s′, a′)
]
(6)

≈ R(s, a, s′) + γ max
a′∈As′

µTφ(s′, a′) (7)

= ν(s, a) (8)

There are several approximations implicit in this up-
date in addition to the Bellman equation. First, we
assume that the Q-value Q(s, a) can be represented by
rTφ(s, a). Second, we interchange the expectation and
maximization operations to simplify the computation.



Finally, we do not account for any correlation between
the measurement prediction and the sample update,
both of which are noisy functions of the weights on
the basis functions r. Instead, we estimate the predic-
tion error σ2(s, a) = φ(s, a)TΣφ(s, a) separately from
the sensor noise ε(s, a) as explained below.

2.1.2 Computing the Sensor Noise

The sensor noise, ε(s, a), plays a role similar to that
of the learning rate in TD Learning. The larger the
sensor noise, the smaller the effect of each update
on µ. The sensor noise has three sources of uncer-
tainty. First, the sensor suffers from inaccuracies in-
herent in the model because it is unlikely that the Q-
values for all state action pairs can be fit exactly for
any value of r. Because this source of noise is due
to the model used, we will refer to it as model bias.
Second, there is sensor noise due to the random na-
ture of the state transition because the value of the
sample update depends on which new state s′ is sam-
pled. We will refer to this source of noise as sampling
noise. Both model bias and sampling noise are typi-
cally modeled as constant throughout the process, and
ε0 should be chosen to capture that combination. Fi-
nally, there is sensor noise from the assessments used
to compute ν because our assessment of Q(s′, a′) has
variance σ2(s′, a′) = φ(s′, a′)TΣφ(s′, a′). We will re-
fer to this variance as assessment noise. Assessment
noise will generally decrease as the algorithm makes
more observations. All together, the sample update is
treated as a noisy observation of Q(s, a) with sensor
noise ε(s, a).

We have tried several heuristic methods for setting the
sensor noise and found them effective. These include
using the variance of the highest valued alternative
(Equation 9), using the average of the variances of each
alternative (Equation 10), using the largest variance
(Equation 11), and using a Boltzmann-weighted aver-
age of the variances (Equation 12). Although each of
these techniques appears to have similar performance,
as is shown in the next section, the average and pol-
icy methods performed somewhat better in our exper-
iments.

The policy method:

ε(s, a) = ε0 + γ2σ2(s′, arg max
a′∈As′

µTφ(s′, a′)) (9)

The average method:

ε(s, a) = ε0 + γ2
∑
a′∈As′

σ2(s′, a′)

|As′ |
(10)

The max method:

ε(s, a) = ε0 + γ2 max
a′∈As′

σ2(s′, a′) (11)

The Boltzmann method:

ε(s, a) = ε0 + γ2
∑
a′∈As′

σ2(s′, a′)e
µT φ(s′,a′)

τ∑
a′∈As′

e
µT φ(s′,a′)

τ

(12)

Regardless which heuristic method is used, the action
selection can be made independently. For example, in
our experiments in the next section we use Boltzmann
action selection.

Kalman Filter Q-Learning belongs to the family of
least squares value models, and therefore each update
has complexity O(n2). This has traditionally given
projected TD Learning methods an advantage over
least squares methods. Although projected TD Learn-
ing is generally less efficient per iteration than least
squares methods, each update only has complexity
O(n). This means that in practice, multiple updates
to the projected TD Learning model can be made in
the same time as a single update to the Kalman filter
model.

2.2 APPROXIMATE KALMAN FILTER
Q-LEARNING

We propose Approximate Kalman Filter Q-
Learning (AKFQL) which updates the value model
with only O(n) complexity, the same complexity up-
date as projected TD Learning. The only change in
AKFQL is to simply ignore the off-diagonal elements
in the covariance matrix. Only the variances on the
diagonal of the covariance matrix are computed and
stored. This approximation has linear update com-
plexity, rather than quadratic, in the number of basis
functions. Although KFQL outperforms AKFQL early
on (on a per iteration basis), somewhat surprisingly,
AKFQL overtakes it in the long run. We do not fully
understand the mechanism of this improvement, but
suspect that KFQL is overfitting.

Approximate Kalman Filter Q-Learning’s calculations
are simplified versions of KFQL’s calculations which
involve only the diagonal elements of the covariance
matrix Σ. The Kalman gain can be computed by

d =
∑
i

φi
2Σii + ε (13)

Gi =
Σiiφi
d

. (14)



The Kalman gain determines the relative impact the
update makes on the elements of µ and Σ.

µi ← µi +Gi(ν − µTφ) (15)

Σii ← (1−Giφi)Σii (16)

The posterior values for µ and the diagonal of Σ
can then be used as prior values in the next update.
Finally, to compute the sample noise ε(s, a) we use
σ2(s, a) =

∑
i φ

2
i (s, a)Σii.

2.3 THE KFQL/AKFQL ALGORITHM

1 µ,Σ← prior distribution over r
2 s← initial state
3 while policy generation in progress do
4 choose action a ∈ As
5 observe transition s to s′

6 update µ and Σ using ν(s, a) and ε(s, a)
7 s← s′

8 if isTerminal(s) then
9 s← initial state

Algorithm 1 : [Approximate] Kalman Filter
Q-Learning

In Kalman Filter Q-Learning (KFQL) and Approxi-
mate Kalman Filter Q-Learning (AKFQL) we begin
with our prior beliefs about the basis function weights
r and we update them on each state transition, as
shown in Algorithm 1.

3 EXPERIMENTAL RESULTS

Because our primary goal is policy generation rather
than on-line performance, our techniques are not
meant to balance exploration with exploitation. In-
stead of testing them on-line, we ran the algorithms
off-line, periodically copied the current policy, and
tested that policy. This resulted in a plot of the av-
erage control performance of the current policy as a
function of the number of states visited by the algo-
rithm. In each of our experiments, we ran each test
32 − 50 times, and plotted the average of the results.
At each measurement point of each test run, we aver-
aged over several trials of the current policy.

In our results, we define a state as being visited when
the MDP entered that state while being controlled by
the algorithm. In the algorithms presented within this
paper, each state visited also corresponds to one it-
eration of the algorithm. The purpose of these mea-
surements is to show how the quality of the generated
policy varies as the algorithm is given more time to

execute. Thus, the efficiency of various algorithms can
be compared across a range of running times.

3.1 CART-POLE

The Cart-Pole process is a well known problem in
the MDP and control system literature (Anderson,
1986, Barto et al., 1983, Michie and Chambers, 1968,
Schmidhuber, 1990, Si and Wang, 2001). The Cart-
Pole process, is an instance of the inverted pendu-
lum problem. In the Cart-Pole problem, the controller
attempts to keep a long pole balanced atop a cart. At
each time step, the controller applies a lateral force, F ,
to the cart. The pole responds according to a system
of differential equations accounting for the mass of the
cart and pole, the acceleration of gravity, the friction
at the joint between the cart and pole, the friction
between the cart and the track it moves on, and more.

Figure 2: The Cart-Pole System

In our experiments, we used the corrected dynamics
derived and described by Florian in (Florian, 2007).

In our experiments, we used a control interval of .1
seconds, and the values listed in table 2. At each con-
trol interval, the controller chooses a force to apply
to the cart in {−5N, 0, 5N}. Then, this force and
an additional force which is uniformly distributed in
[−2N, 2N ] is also applied to the cart. The controller
receives a reward of 1 at each time step except when
a terminal state is reached. The problem is undis-
counted with γ = 1. Thus, the number of simulation
steps before the pole falls over is equal to the total
reward received.

3.1.1 Basis Functions

For the Cart-Pole process, we used a simple bilinear
interpolating kernel. For each action, a grid of points
is defined in the state space (θ, ω). Each point corre-
sponds to a basis function. Thus, every state-action
pair corresponds to a point within a grid box with a
basis function point at each of the four corners. All



Table 2: Variable definitions for the Cart-Pole
process

VARIABLE DEFINITION

mc = 8.0kg Mass of the cart
mp = 2.0kg Mass of the pole
l = .5m Length of the pole
g = 9.81m/s2 Acceleration of gravity
µc = .001 Coefficient of friction between

the cart and the track
µp = .002 Coefficient of friction between

the pole and the cart
θ Angle of the pole from verti-

cal (radians)

θ̇ = ω Angular velocity of the pole
(rad/s)

θ̈ Angular acceleration of the
pole (rad/s2)

F Force applied to the cart by
the controller (Newtons)

basis function values for a particular state are zero ex-
cept for these four functions. The value of each of the
non-zero basis functions is defined by:

φ̃i =

(
1−

∣∣∣∣θ − θφisθ

∣∣∣∣)(1−
∣∣∣∣ω − ωφisω

∣∣∣∣) (17)

φi =
φ̃i∑
i φ̃i

(18)

where sθ = π
2 and sω = 1

4 , and the basis func-
tion points are defined for each combination of θφi ∈
{−π,−π2 , 0,

π
2 , π} and ωφi ∈ {− 1

2 ,−
1
4 , 0,

1
2 ,

1
4}. This

set of basis functions yields 5× 5 = 25 basis functions
for each of the three possible actions, for a total of 75
basis functions.

Each test on Cart Pole consisted of averaging over 50
separate runs of the generation algorithm, evaluating
each run at each test point once. Evaluation runs
were terminated after 72000 timesteps, corresponding
to two hours of simulated balancing time. Therefore,
the best possible performance is 72000.

For projected TD-Learning, a learning rate
of .5 1e6

1e6+t was used. This learning rate
was determined by testing every combination
of s ∈ {.001, .005, .01, .05, .1, .5, 1} and c ∈
{1, 10, 100, 1000, 10000, 100000, 1000000, 10000000}
for the learning rate, αn = s c

c+n . For KFQL and
AKFQL, a sensor variance of σ = .1, a prior variance
of Σii = 10000.

3.2 CASHIER’S NIGHTMARE

The Cashier’s Nightmare, also called Klimov’s
problem is an extension of the multi-armed bandit
problem into a queueing problem with a particular
structure. In the Cashier’s Nightmare, there are d
queues and k jobs. At each time step, each queue,
i, incurs a cost proportional to it’s length, gixi. Thus,
the total immediate reward at each time step is −gTxt.
Further, at each time step the controller chooses a
queue to service. When a queue is serviced, its length
is reduced by one, and the job then joins a new queue,
j, with probabilities, pij , based on the queue serviced.
Consequently, the state space, x, is defined by the
lengths of each queue with xi equaling the length of
queue i in state x.

The Cashier’s Nightmare has a state space of
〈
d
k

〉
=(

d+k−1
k

)
states: one for each possible distribution of

the k jobs in the d queues. The instance of the
Cashier’s Nightmare that we used has d = 100 queues,
and k = 200 jobs, yielding a state space of

〈
100
200

〉
≈

1.39×1081 states. This also means that each timestep
presents 100 possible actions and each state transition,
given an action, presents 100 possible state transitions.
In this instance, we set gi = i

d with i ∈ {1, 2, ..., d} and
randomly and uniformly selected probability distribu-
tions for pij .

It is worth noting that although we use this problem
as a benchmark, the optimal controller can be derived
in closed form (Buyukkoc et al., 1983). However, this
is a challenging problem with a large state space, and
therefore presents a good benchmark for approximate
dynamic programming techniques.

3.2.1 Basis Functions

The basis functions that we use on Cashier’s Night-
mare are identical to those used by Choi and Van Roy
in (Choi and Van Roy, 2006). One basis function is
defined for each queue, and it’s value is based on the
length of the queue and the state transition probabil-
ities:

φi(x, a) = xi + (1− δxi,0)(pa,i − δa,i) (19)

This way, at least the short term effect of each action
is reflected in the basis functions.

For projected TD-Learning, a learning rate of .1 1e3
1e3+t

was used. This learning rate was determined by test-
ing every combination of s ∈ {.001, .01, .1, 1} and
c ∈ {1, 10, 100, 1000, 10000} for the learning rate, αn =
s c
c+n . For KFQL and AKFQL, a sensor variance of
σ = 1, a prior variance of Σii = 20.



3.3 CAR-HILL

The Car-Hill control problem, also called the
Mountain-Car problem is a well-known continuous
state space control problem in which the controller at-
tempts to move an underpowered car to the top of
a mountain by increasing the car’s energy over time.
There are several variations of the dynamics of the
Car-Hill problem; the variation we use here is the same
as that found in (Ernst et al., 2005).

A positive reward was given when the car reached the
summit of the hill with a low speed, and a negative
reward was given when it ventured too far from the
summit, or reached too high of a speed:

r(p, v) =

 −1 if p < −1 or |v| > 3
1 if p > 1 and |v| ≤ 3
0 otherwise

(20)

The implementation we used approximates these
differential equations using Euler’s method with a
timestep of .001s. The control interval used was .1s,
and the controller’s possible actions were to apply
forces of either +4N or −4N . A decay rate of γ = .999
was used.

Each test on Car-Hill consisted of averaging over 32
separate runs of the generation algorithm, evaluating
each run at each test point once. Evaluation runs were
terminated after 1000 timesteps, ignoring the small re-
maining discounted reward.

3.3.1 Basis Functions

We used bilinearly interpolated basis functions with
an 8x8 grid spread evenly over the p ∈ [−1, 1] and v ∈
[−3, 3] state space for each action. This configuration
yields 8x8x2 = 128 basis functions. The prior we used
was set to provide higher prior estimates for states
with positions closer to the summit:

µ0(p, v) = max

{
0, 1− 2(1− p)

3

}
(21)

For projected TD-Learning, a learning rate of .1 1e3
1e3+t

was used. This learning rate was determined by test-
ing every combination of s ∈ {.001, .01, .1, 1} and
c ∈ {1, 10, 100, 1000, 10000} for the learning rate, αn =
s c
c+n . For KFQL and AKFQL, a sensor variance of
σ = .5, a prior variance of Σii = .1.

3.4 RESULTS

Kalman Filter Q-Learning has mixed performance rel-
ative to a well-tuned projected TD Learning imple-
mentation. For the Cart-Pole process (Figure 3),

KFQL provides between 100 and 5000 times the ef-
ficiency of PTD. However, on the Cashier’s Nightmare
process (Figure 4) and the Car Hill process (Figure
5), KFQL was plagued by numerical instability, ap-
parently because KFQL underestimates the variance
leading to slow policy changes. Increasing the con-
stant sensor noise, ε0, can reduce this problem some-
what, but may not eliminate the issue.
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Figure 3: PTD, KFQL, and AKFQL on Cart-Pole
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Figure 4: PTD, KFQL, and AKFQL on Cashier’s
Nightmare
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Figure 5: PTD, KFQL, and AKFQL on Car-Hill
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Figure 6: Comparison of sensor noise models when
using KFQL on Cart-Pole

Approximate Kalman Filter Q-Learning, on the other
hand, provides a very large benefit over PTD on all
of the tested applications (Figures 3, 4, and 5). In-
terestingly, in two of the experiments, AKFQL also
outperforms KFQL by a large margin, even though
the effort per iteration is much less for AKFQL. This
is likely due to the fact that AKFQL ignores any de-
pendencies among basis functions. Instead of solving
the full least-squares problem (that a Kalman filter

solves), AKFQL is performing an update somewhere
between the least-squares problem and the gradient-
descent update of TD-Learning. This middle-ground
provides the benefits of tracking the variances on each
basis function’s weight, and the freedom from the de-
pendencies and numerical stability issues inherent in
KFQL. Additionally, AKFQL’s update complexity is
linear, just as is PTD’s, so it truly outperforms pro-
jected TD-Learning in our experiments.
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Figure 7: Comparison of sensor noise models when
using AKFQL on Cart-Pole

The choice of signal noise heuristic has a small effect
for the Cart-Pole process under either KFQL (Fig-
ure 6) or AKFQL (Figure 7). The average and pol-
icy methods appear to work better than the max and
Boltzmann methods. The other figures in this section
were generated using the max method.

4 RELATED WORK

Kalman Filter Q-Learning uses a projected value
model, where a set of basis functions φ(s, a) project
the MDP state action space onto the basis space. In
these methods, basis function weights r are used to
estimate Q-values, Q(s, a) ≈ rTφ, in order to develop
high performance policies.

4.1 PROJECTED TD LEARNING

Projected TD Learning (Roy, 1998, Sutton, 1988,
Tsitsiklis and Roy, 1996) is a popular projection-based
method for approximate dynamic programming. The



version of TD Learning that we consider here is the
off-policy Q-learning variant with λ = 0. Thus, our
objective is to find an r such that Q∗(s, a) ≈ rTφ(s, a)
because we are primarily concerned with finding effi-
cient off-line methods for approximate dynamic pro-
gramming.

The projected TD Learning update equation is:

rt+1 = rt + αtφ(st, at)×[
(FΦrt)(st, at) + wt+1 − (Φrt)(st, at)

] (22)

where F is a weighting matrix and Φ is a matrix of ba-
sis function values for multiple states. We use stochas-
tic samples to approximate (FΦrt)(xt). The standard
Q-Learning variant that we consider here sets:

(FΦrt)(st, at) + wt+1 =
R(st, at, st+1) + γ max

a∈Ast+1

rTφ(st+1, a) (23)

where the state transition (st, at)→ (st+1) is sampled
according to the state transition probabilities, P (st →
st+1|st, at), of the MDP. Substituting Equation 23 into
Equation 22, we arrive at the update equation for this
variant of projected TD Learning:

rt+1 = rt + αtφ(st, at)×[(
R(st, at, st+1) + γ max

a∈Ast+1

rTφ(st+1, a)
)

−(Φrt)(st, at)
] (24)

The convergence properties of this and other versions
of TD learning have been studied in detail (Dayan,
1992, Forster and Warmuth, 2003, Pineda, 1997, Roy,
1998, Schapire and Warmuth, 1996, Sutton, 1988, Tsit-
siklis and Roy, 1996). Unlike our Kalman filter meth-
ods, PTD has no sense of how well it knows a par-
ticular basis functions weight, and adjusts the weights
on all basis functions at the global learning rate. As
with the tabular value model version of TD learning,
the choice of learning rates may greatly impact the
performance of the algorithm.

4.2 LEAST SQUARES POLICY
ITERATION

Least squares policy iteration (LSPI) (Lagoudakis
et al., 2003) is an approximate policy iteration method
which at each iteration samples from the process using
the current policy, and then solves the least-squares
problem:

minimize ||Âtw − b̂t||µ (25)

where Â and b̂ are:

Â = 1
L

∑
i=1..L

φ(si, ai)
[
φ(si, ai)− γφ(s′i, π(s′i))

]T
≈ ΦT∆µ(Φ− γPΠΦ)

(26)

b̂t+1 = b̂t + φ(st, at)rt
≈ ΦT∆µR

(27)

where P , R, Π, and Φ are matrices of probabilities, re-
wards, policies, and basis function values, respectively.

Solving this least squares problem is equivalent to us-
ing KFQL with a fixed-point update method, an infi-
nite prior variance and infinite dynamic noise. LSPI is
effective for solving many MDPs, but it can be prone
to policy oscillations. This is due to two factors. First,
the policy biases Â and b̂, can result in a substantially
different policy at the next iteration, which could lead
to a ping-ponging effect between two or more policies.
Second, information about Â and b̂ is discarded be-
tween iterations, providing no dampening to the oscil-
lations and jitter caused by simulation noise and the
sampling bias induced by the policy.

4.3 THE FIXED POINT KALMAN FILTER

The Kalman filter has also been adapted for use as a
value model in approximate dynamic programming by
Choi and Van Roy (Choi and Van Roy, 2006). Fixed
point Kalman filter models the same multivariate
normal weights r as KFQL but parametrizes them with
means rt and precision matrix Ht

−1 such that:

rt+1 = rt + 1
tHtφ(st, at)×[

(FΦrt)(st, at) + wt+1 − (Φrt)(st, at)
] (28)

where (FΦrt)(st, at)+wt+1 is the same as in Equation
23, yielding the update rule:

rt+1 = rt + 1
tHtφ(st, at)×[(

R(st, at, st+1) + γ max
a∈Ast+1

rTφ(st+1, a)
)
−

(Φrt)(st, at)
]

(29)

where Ht is defined as:



Ht =
[1

t

t∑
i=1

φ(si, ai)φ
T (si, ai)

]−1
(30)

Non-singularity of Ht can be dealt with using any
known method, although using the psudo-inverse is
standard. The choice of an initial r0, H0 and the in-
version method for H are similar to choosing the prior
means and variance over r in the KFQL. The fixed
point Kalman filter represents the covariance of r by
a precision matrix rather than the covariance matrix
used by KFQL. This difference is significant because
KFQL performs no matrix inversion and avoids many
non-singularity and numerical stability issues.

4.4 APPROXIMATE KALMAN FILTERS

Many methods for approximating and adapting the
Kalman filter have been developed for other appli-
cations (Chen, 1993). Many of these methods can
be used in this application as well. AKFQL is just
one simple approximation technique that works well
and achieves O(n) instead of O(n2) complexity up-
dates. Other possible approximation techniques in-
clude fixed-rank approximation of Σ and particle filter-
ing (Doucet et al., 2001, Gordon et al., 1993, Kitagawa
and Gersch, 1996, Rubin, 1987).

5 CONCLUSIONS

In this paper we have presented two new methods
for policy generation in MDPs with continuous state
spaces. The Approximate Kalman Filter Q-Learning
algorithm provides significant improvement on sev-
eral benchmark problems over existing methods, such
as projected TD-Learning, as well as our other new
method, Kalman Filter Q-Learning. Continuous state
MDPs are challenging problems that arise in multiple
areas of artificial intelligence, and we believe that AK-
FQL provides a significant improvement over the state
of the art. We believe these same benefits apply to
other problems where basis functions are useful, such
as MDPs with large discrete sample spaces and mixed
continuous and discrete state spaces.

There are a variety of ways this work could be ex-
tended. The Kalman filter allows for linear dynamics
in the distribution of basis function weights r during
transitions from one MDP state action pair to another
or from one policy to another. Another possibility is
to incorporate more of a fixed point approach, recog-
nizing the dependence between the prediction variance
σ2(s, a) and the signal noise ε(s, a) conditioned on r.
Still another possibility is to use an approximation, ig-
noring off-diagonal elements like AKFQL, in the tradi-
tional fixed point approach. Finally, we could apply a

similar Kalman filter model to perform policy iteration
directly rather than by Q-Learning.
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