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Abstract

This paper shows that causal model discov-
ery is not an NP-hard problem, in the sense
that for sparse graphs bounded by node de-
gree k the sound and complete causal model
can be obtained in worst case order N2(k+2)

independence tests, even when latent vari-
ables and selection bias may be present. We
present a modification of the well-known FCI
algorithm that implements the method for
an independence oracle, and suggest improve-
ments for sample/real-world data versions. It
does not contradict any known hardness re-
sults, and does not solve an NP-hard prob-
lem: it just proves that sparse causal discov-
ery is perhaps more complicated, but not as
hard as learning minimal Bayesian networks.

1 Introduction

Causal discovery is one of the cornerstones behind sci-
entific progress. In recent years, significant break-
throughs have been made in causal inference under
very reasonable assumptions, even when only data
from observations are available (Pearl, 2000; Spirtes
et al., 2000). Still, it is probably safe to say that many
researchers consider causal discovery to be a difficult
problem, and that it is generally thought to be com-
putationally at least as hard as related problems such
as learning minimal Bayesian networks.

The class of NP problems (non-deterministic, polyno-
mial time) are problems for which a solution can be
verified in polynomial time: order O(Nk) for some
constant k given input size N , but for which no known
polynomial time algorithm exists (or is thought to ex-
ist) that finds such a solution. In many cases algo-
rithms exist that are able to find a solution quickly,
or at least provide good approximations, but still have
worst-case exponential running time order O(2Nk

).

Typical examples include finding the shortest path
through all nodes in a weighted graph (travelling sales-
man), coloring vertices in a graph so that no two ad-
jacent vertices share the same color, probabilistic in-
ference in a Bayesian network (Cooper, 1990), and the
Boolean satisfiability problem (k -SAT, the first known
NP-complete problem).

A problem is NP-hard if it is at least as hard as the
hardest problems in NP. Put differently, a problem is
NP-hard if there is a polynomial time reduction of an
NP-complete problem to it, so that any polynomial
time solution to the NP-hard problem implies that
all NP-complete problems can be solved in polynomial
time. See (Garey and Johnson, 1979) for a standard
introduction to the subject, and e.g. (Goldreich, 2008)
for a more modern approach.

In this article we focus on the problem of learning a
causal model from probabilistic information. We as-
sume there is a system that is characterized by a so-
called causal DAG GC that describes the causal in-
teractions between the variables in the system. The
structure of this causal DAG is invariant and respon-
sible for a probability distribution over the subset of
observed variables. The goal is to learn as much as pos-
sible about the presence or absence of certain causal
relations between variables in the underlying causal
DAG from the available probabilistic information.

Chickering et al. (2004) showed that finding an
inclusion-optimal (minimal) Bayesian network for a
given probability distribution is NP-hard, even when
a constant-time independence oracle is available (see
§2 for more details). Such hardness results have in-
spired many creative approaches to network learning,
e.g. methods that seek to find efficient approxima-
tions to minimal Bayesian networks through greedy
search (Chickering, 2002), or methods that employ
specialized heuristics or solver techniques to make ex-
act learning feasible from 30, up to even 60 variables
if the graph is sufficiently sparse (Yuan and Malone,
2012; Cussens, 2011).



On the face of it, minimal Bayesian network inference
seems close to a simplified and idealized version of a
causal model discovery problem. Hence it may be un-
surprising to find that currently available methods also
have worst-case exponential complexity (see §3.2).

However, in this paper we show that causal model dis-
covery in sparse graphs is in fact not an NP-hard prob-
lem, even in the presence of latent confounders and/or
selection bias. We do this by providing an adaptation
of the well-known FCI algorithm (see §3.2) for learn-
ing the sound and complete causal model in the form
of a PAG with running time in the worst case poly-
nomial in the number of independence tests to order
O(N2(k+2)), where N is the number of variables and
k the maximum node degree in the causal model over
the observed variables.

Graphical causal models

A mixed graph G is a graphical model that can con-
tain three types of edges between pairs of nodes: di-
rected (→), bi-directed (↔), and undirected (−). In a
mixed graph, standard graph-theoretical notions, e.g.
child/parent, ancestor/descendant, directed path, cy-
cle, still apply, with natural extension to sets. In par-
ticular AdjG(X) indicates all nodes adjacent to (but
not in) the set of nodes X in the graph G, and AnG(X)
indicates all (ancestors of) nodes in X in the graph G.
A vertex Z is a collider on a path u = 〈. . . , X, Z, Y, . . .〉
if there are arrowheads at Z on both edges from X and
Y , otherwise it is a noncollider.

A mixed graph G is ancestral iff an arrowhead at X
on an edge to Y implies there is no directed path from
X to Y in G, and there are no arrowheads at nodes
with undirected edges. As a result, arrowhead marks
can be read as ‘is not an ancestor of’. In a mixed
graph G, a vertex X is m-connected to Y by a path
u, relative to a set of vertices Z, iff every noncollider
on u is not in Z, and every collider on u is an an-
cestor of Z. If there is no such path, then X and Y
are m-separated by Z. An ancestral graph is maxi-
mal (MAG) if for any two nonadjacent vertices there
is a set that separates them. A directed acyclic graph
(DAG) is a special kind of MAG, containing only →
edges, for which m-separation reduces to the familiar
d -separation criterion. The Markov property links the
structure of an ancestral graph G to observed prob-
abilistic independencies: X ⊥⊥ Y |Z, if X and Y are
m-separated by Z. Faithfulness implies that the only
observed independencies in a system are those entailed
by the Markov property. For more details, see (Koller
and Friedman, 2009; Spirtes et al., 2000).

A causal DAG GC is a directed acyclic model where
the arcs represent direct causal interactions (Pearl,

2000). In general, the independence relations between
observed variables in a causal DAG can be represented
in the form of a MAG (Richardson and Spirtes, 2002).
The (complete) partial ancestral graph (PAG) repre-
sents all invariant features that characterize the equiv-
alence class [G] of such a MAG, with a tail ‘−’ or ar-
rowhead ‘>’ end mark on an edge, iff it is invariant
in [G], otherwise it has a circle mark ‘◦’, see (Zhang,
2008). Figure 1 illustrates the relation between these
three types of graphs.
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Figure 1: (a) Assumed underlying causal DAG GC ; (b)
corresponding MAGM over observed variables; (c) causal
model as PAG, with N = 4 and k ≤ 3.

C-LEARN

The completed PAG represents all valid causal infor-
mation that can be inferred from independencies be-
tween observed variables: this will be the target causal
model of the learning task (C-LEARN).

To distinguish between the contribution of the learning
task and the calculation of the independencies them-
selves, we introduce the following notion from (Chick-
ering et al., 2004):

Definition 1. An independence oracle for a dis-
tribution p(X) is an oracle that, in constant time,
can determine whether or not X ⊥⊥ Y |Z, for any
({X,Y } ∪ Z) ⊆ X.

The C-LEARN task can now be described as:
INSTANCE: Given an independence oracle O for a
set of variables X = {X1, .., XN} that is faithful to an
underlying causal DAG GC , and constant bound k.
TASK: Find the completed PAG model that matches
O with node degree ≤ k.

2 Why learning minimal Bayesian
networks is NP-hard

It has long been known that learning a minimal
Bayesian network is an NP-hard problem, even when
an independence oracle is available and each node in
the network has at most k ≥ 3 parents. An elegant
proof is provided in (Chickering et al., 2004) by in-
troducing a polynomial reduction from an established
NP-complete problem known as Degree-Bounded Feed-
back Arc Set (DBFAS) to an instance of learning a
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Figure 2: (a) DBFAS instance over 3 nodes; (b) corresponding Bayesian network reduction with distinct variables
{A, B, C, D, E, F, G, H} for each edge-component (nr. of states per variable in brackets below); (c) BN edge-component
configuration with 16 parameters to specify the distribution over C and F ; (d) idem, with 18 parameters.

minimal Bayesian network (B-LEARN) with maxi-
mum node degree k. Given an arbitrary network of
directed edges the target in DBFAS is to find the small-
est set of arcs (the ‘feedback set’) whose removal elim-
inates all directed cycles from the graph.

The reduction strategy from DBFAS to B-LEARN
is depicted in Figure 2. It replaces the DBFAS
instance with an equivalent Bayesian network, in
which each directed edge Vi → Vj in DBFAS is re-
placed by an edge-component over discrete variables
{A,B,C,D,E, F,G,H}. All DBFAS nodes Vi and all
nodes {A,D,G} in each edge-component get 9 states,
the nodes {B,E, F,H} get 2 states, and only the nodes
C get 3 states. Furthermore, the H nodes in each edge-
component are supposedly hidden, i.e. not in the set
of observed variables in the minimal Bayesian network
from B-LEARN, see Figure 2.

The connection between the instance of DBFAS and
B-LEARN relies on the fact that it is impossible to con-
struct a Bayesian network that can faithfully represent
the independence relations from the underlying causal
DAG when the H variables are not observed. As a re-
sult, each edge component is forced to choose between
configuration (c) or (d) in Figure 2, with a preference
for the smaller (c), unless this introduces a directed
cycle due to the connection via Vi → B → F → Vj .
In that case the cycle can be broken by opting for
(d). The (acyclic) minimal global Bayesian network
will have the fewest edge-components oriented as (d)
needed to break all cycles, and so all these edge com-
ponents together represent a minimal feedback arc set
for the original DBFAS problem.

The transformation from DBFAS to B-LEARN is poly-
nomial, which implies that if there is any method that

can solve B-LEARN in polynomial time, then it can
also solve DBFAS in polynomial time, and with it the
entire class of NP-complete problems. In particular,
it also applies when there is a constant time indepen-
dence oracle for B-LEARN and the max. node degree
in the optimal solution is bounded by any k ≥ 3. It is
exactly this subclass of problems that are the focus of
this paper in the context of learning a causal model.

Causal model reduction

An obvious question would be why the previous re-
sult should not apply to causal models in general, es-
pecially given the importance, explicit or implicit, of
minimality in many structure learning tasks.

The answer to this lies in the fact that the ‘Bayesian
network’ requirement itself imposes the additional re-
striction on the solution that only directed edges are
allowed, which does not come into play when causal
models are concerned. Therefore B-LEARN cannot
opt for the configuration depicted in Figure 3, due to
the edge C ↔ F , whereas C-LEARN has no such prob-
lem. This structure is actually smaller than the corre-
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Figure 3: Minimal edge-component configuration in causal
model, requiring 12 free parameters for variables C and F .



sponding minimal Bayesian network component, as it
requires only 12 free parameters to specify the contri-
bution of each C−F pair in the network: 2×2×2 = 8
for the C node, 2 × 2 × 1 = 4 for F , and 1 for the H
node, giving a total of 13 parameters, one of which can
be marginalized out, see, e.g. (Evans and Richardson,
2010) for details on parameterizing acyclic directed
mixed graphs (ADMGs), allowing for both directed
and bi-directed edges.

As a result, a DBFAS reduction to C-LEARN along
the lines of (Chickering et al., 2004) will fail to solve
the original NP-complete problem, as the causal model
will have all edge components oriented as in Figure 3,
giving no information whatsoever on a minimal feed-
back arc set for the corresponding DBFAS instance.

We now turn to existing methods for causal discovery
to see where they run into exponential trouble.

3 Independence based Causal
Discovery

3.1 Causally sufficient systems

Many methods have been developed that efficiently
learn the correct causal model when there are no un-
observed common causes between the variables, e.g.
IC (Pearl and Verma, 1991), PC (Spirtes et al., 2000),
Grow-Shrink (Margaritis and Thrun, 1999), etc.

As a typical example, a version of PC is depicted in Al-
gorithm 1. From a fully connected undirected graph
G, it consists of two stages: an adjacency search to
remove edges, followed by an orientation phase. In
the first stage, for each pair of nodes X − Y (still)
connected in G it searches for a subset of adjacent
nodes Z that can separate them: X ⊥⊥Y |Z; if found
the edge is removed. By checking all adjacent node-
pairs in G for possible separating sets of increasing size,
the PC algorithm ensures that it finds separating sets
as small as possible. If the node degree in the true
causal model G is bounded by k, then worst case it
needs to check all subsets size 1..k from N nodes, for
N2 nodes on edges, resulting in a polynomial running
time dominated by order O(Nk+2) for the adjacency
search. Afterwards an orientation phase adds all in-
variant edge-marks (tails or arrowheads) by rules that
trigger on the existence of certain path-configurations
in G, which can be checked in order O(N3) (Spirtes
et al., 2000).

3.2 Causal discovery with latent confounders

Unfortunately, the PC algorithm can run into trouble
when applied to causal models where causal sufficiency
is not guaranteed. In that case it can miss certain

Algorithm 1 PC-algorithm
In : independence oracle O for variables V
Out: causal model G over V
Adjacency search

1: G ← fully connected undirected graph over V
2: n = 0
3: repeat
4: repeat
5: select X with |AdjG(X)| > n,
6: select Y ∈ AdjG(X)
7: repeat
8: select subset Z size n from AdjG(X)\Y ,
9: if X⊥⊥Y |Z then

10: Sepset(X,Y ) = Sepset(Y,X) = Z
11: remove edge X − Y from G
12: end if
13: until all subsets size n have been tested
14: until all edges X − Y in G have been checked
15: n = n+ 1
16: until no more nodes with |AdjG(X)| > n

Orientation phase
17: for all unshielded triples X − Z − Y in G do
18: if Z /∈ Sepset(X,Y ) then
19: orient v -structure X → Z ← Y
20: end for
21: run other orientation rules until no more new
22: return causal model G

separating sets that may require nodes not adjacent to
either of the separated nodes. Figure 4(b) depicts the
canonical 5-node example, where the edge X − Y can
be eliminated by the set {U, V, Z}, but this is not found
by the PC algorithm, as at that stage Z is no longer
adjacent to X or Y . As a result, edges may fail to be
eliminated from G, possibly leading to erroneous causal
conclusions in the orientation stage, see e.g. (Colombo
et al., 2012, §3) for more examples.

To tackle this problem, Spirtes et al. (1999) developed
the so-called Fast Causal Inference (FCI) algorithm
that introduces an additional stage to the adjacency
search. It searches for an extended set of nodes: the
D-SEP(A,B) set, roughly corresponding to ancestors
of {A,B} that are adjacent to A and/or reachable via a
bi-directed path, for which it can be shown that (with
observed variables O and selection set S):

Lemma 1. (Spirtes et al., 1999, Lemma 12) If there
is some subset W ⊆ O\{A,B} such that A and B are
d -separated by W ∪ S, then A and B are d -separated
given D-SEP(A,B) ∪ S.

The problem is that at that stage it is not yet known
which nodes exactly belong to An({A,B}). The so-
lution employed by FCI is as follows: after the initial
PC-adjacency search it adds some orientation informa-
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tion to the resulting adjacency graph to obtain a par-
tially oriented graph π0, and from this identifies the
set Possible-D-SEP(A,B, π0) for edge A−B that is
a guaranteed superset of D-SEP(A,B). It then tests
for all subsets of Possible-D-SEP(A,B, π0) until a
separating set is found, or not, in which case the edge
should remain present.

But even for graphs with degree ≤ k, neither the size
of the Possible-D-SEP(A,B, π0) set, nor the size of
the target D-SEP set is bounded by k. As a result,
the worst case is now dominated by a term that could
involve searching through all subsets from N nodes,
which brings it back to exponential order time com-
plexity O(2N ).

In practice, the number of edges removed in the FCI
stage tends to be very small (relative to the PC-stage),
even though it is often the most expensive part of the
algorithm by far. This behaviour is exploited effec-
tively in the RFCI algorithm (Colombo et al., 2012): it
skips the additional FCI stage and ensures the output
is still sound (though no longer necessarily complete)
through a modified orientation phase that avoids some
of the erroneous causal conclusions PC could make
when edges are missed.

In this article we take a different approach by showing
that it is possible to build up an alternative D-SEP
set that is completely determined by nodes adjacent to
{A,B} and already inferred minimal separating sets
from the PC-adjacency search.

4 D-separating sets

First some terminology for the target nodes and edges:

Definition 2. In a MAGM, two nodes X and Y are
D-separated by Z iff they are d -separated by Z, and
all sets that can separate X and Y contain at least
one node Z /∈ Adj({X,Y }). Such a node Z ∈ Z that
cannot be made redundant by nodes adjacent to X or
Y is a D-sep node, and (X,Y ) is a D-sep link,

For example in Figure 4(b), X and Y are D-separated
by {U, V, Z}, including D-sep node Z.

After the PC-adjacency search all D-sep links are still
connected by an edge in the skeleton G. Below we first
discuss how to recognize possible D-sep links, and then
how to find an appropriate D-separating set, including
the elusive D-sep nodes. The third part puts it all
together into a sound and complete search strategy.
Proof details can be found in the Appendix and in
(Claassen et al., 2013).

4.1 Identifying D-sep links

To characterize D-separable nodes, we use a result
from (Spirtes et al., 1999; Claassen and Heskes, 2011):

Lemma 2. For disjoint (subsets of) nodes X,Y, Z,Z
from the observed variables O in a causal graph G with
selection set S,

(1) X⊥⊥�Y |Z ∪ [Z] ⇒ Z /∈ AnG({X,Y } ∪ Z ∪ S).

(2) X⊥⊥Y | [Z ∪ Z] ⇒ Z ∈ AnG({X,Y } ∪ S),

where square brackets indicate a minimal set of nodes.

Rule (1) identifies invariant arrowheads on edges; rule
(2) is used in §4.2 to build up a D-separating set. With
Lemma 2 it is easy to show the following properties:

Lemma 3. In a MAG M, if two nodes X and Y are
D-separated by a minimal set Z, then:

1. X /∈ An({Y } ∪ Z ∪ S)
2. Y /∈ An({X} ∪ Z ∪ S)
3. ∀Z ∈ Z : Z ∈ An({X,Y } ∪ S)

It motivates the following introduction:

Definition 3. The Augmented Skeleton G+ is ob-
tained from the skeleton G by adding all invariant ar-
rowheads that follow from single node minimal depen-
dencies X⊥⊥�Y |Z ∪ [W ] by Lemma 2, rule(1).

By testing for dependence on adding single nodes to
the minimal separating sets from the PC-adjacency
search all invariant arrowheads in G+ are found. Note
that only nodes Z adjacent to {X,Y }∪Z in G need to
be tested, and that all arrowheads from FCI’s partially
oriented graph π0 (see §3.2) are also in G+.

The important implication is that D-sep links take on
a very distinct pattern in G+:

Lemma 4. For a MAG M, let X and Y be D-
separable nodes that are adjacent in the corresponding
augmented skeleton G+. If there are no edges in G+ be-
tween (other) D-separable nodes in An({X,Y }), then
G+ contains the following pattern: U ↔ X ↔ Y ↔ V ,
with U and V not adjacent in G+, and paths V..→ X
and U..→ Y that do not go against an arrowhead.

For example, in the augmented skeleton in Figure 5(b),
D-sep link X−Z occurs in pattern S ↔ X ↔ Z ↔ T .
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Figure 5: (a) Hierarchical D-sep links: X⊥⊥Z | [S, T, W ],
with Z also appearing in X⊥⊥Y | [S, T, U, V, W, Z]; (b) cor-
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There is a hierarchical structure between D-sep links
in the sense that if one pair of D-separated nodes is
part of the D-separating set of another, then not the
other way around.
Lemma 5. In a MAGM, for two pairs of D-separable
nodes X⊥⊥Y | [Z] and X⊥⊥Y | [W], if X ∈W and/or
Y ∈W, then U /∈ Z and/or V /∈ Z.

It implies that we may need to find one D-sep link in
a MAGM before we can find another, but there is no
vicious circle of complex intertwined D-sep links.

Though all this will facilitate (and speed up) identifi-
cation, it is not enough for a polynomial search algo-
rithm, as this is dominated by the number of possible
node-sets to consider for a single D-sep link.

4.2 Capturing the D-sep nodes

In this part we first show that all D-sep nodes needed
to separate (X,Y ) were already found as part of a min-
imal separating set between ancestors of {X,Y }. Then
we show that we can recursively include these to ob-
tain a D-separating set, starting from an appropriate
set of nodes adjacent to X and Y .

Using shorthand AA(X) ≡ (Adj(X) ∩An(X)) \X for
the set of adjacent ancestors of X, we find that:
Lemma 6. In a MAGM, if Z ∈ Z is a D-sep node in
X⊥⊥Y | [Z], then Z is also part of a minimal separating
set between another pair of nodes from {X,Y }∪Z\Z∪
AA({X,Y }), neither of which have selection bias.

As a result, if we know all minimal conditional in-
dependencies between nodes in An({X,Y }), then all
required D-separating nodes for X ⊥⊥ Y | [Z] already
appear in one of these minimal separating sets. We
want to use this information to guide the search for
D-separating sets, but unfortunately we do not know
what the ancestors are, and we do not have all mini-
mal independencies (as the PC search only finds one
minimal separating set for each eliminated edge).

Fortunately we can show that we do not need to know

all minimal separating sets to find the relevant nodes,
as it is sufficient to have just one minimal separating
set for each nonadjacent pair, and recursively include
these in the set. In formal terms:

Definition 4. An independence set I ⊆ I(M) is a
(sub)set of all minimal independence statements con-
sistent with MAGM, which contains at least one sep-
arating set for each pair of nonadjacent nodes in M.

And a recursive definition for a set of separating nodes:

Definition 5. Let I be an independence set, then for
a set X the hierarchy HIE(X, I) is the union of X
and all nodes that appear in a minimal separating set
in I between any pair of nodes in HIE(X, I).

By Lemma 2 all nodes in HIE(X, I) are ancestors of
one or more nodes in X; see also Example 1, below.

With this the key result can be stated as:

Lemma 7. Let X and Y be D-separable nodes in a
MAG M. If independence set I contains at least one
minimal separating set for each pair of nonadjacent
nodes in An({X,Y }) in M (except for {X,Y } itself),
then HIE

(
AA({X,Y }), I

)
\{X,Y } is a D-separating

set for X and Y .

In words: if X and Y are D-separable nodes, then they
are separated by the hierarchy of minimal separating
nodes implied by ancestors adjacent to X and/or Y .

If found, then the edge X ↔ Y is removed from
G+, and a corresponding minimal separating set is ob-
tained by eliminating redundant nodes one by one until
no more can be removed (Tian et al., 1998).
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Figure 6: Hierarchical inclusion of separating sets ensures
inclusion of D-sep node Z3.

Example 1. In Figure 6, X and Y are D-separated by
the set {S, T, U, V, Z1, Z2, Z3}. Lemma 6 states that
we can find D-sep node Z3 from S ⊥⊥ Z1 | [Z3], but
the PC-stage may have found S⊥⊥Z1 | [W ] instead,



which would leave path X ↔ S ↔ W ↔ T ↔ Y
unblocked. However, Lemma 7 ensures that, whatever
the independencies found by PC, node Z3 is included
in HIE({X,Y, S, T, U, V }, I); indeed, we find Z3 from
either S⊥⊥Z1 | [Z3] and/or S⊥⊥W | [Z3].

At this point, for a given suspect D-sep link X ↔ Y
in G+ we do not know exactly which nodes are in
AA({X,Y }) in M. However, given that ∀{X,Y, Z}:

1. AA({X,Y }) ⊆ Adj(X) ∪Adj(Y ),
2. |Adj(X)| ≤ k in M, and
3. Z ∈ Adj(X) in M ⇒ Z ∈ Adj(X) in G+,

we can be sure that the set AA({X,Y }) inM consists
of a combination of at most k nodes from Adj(X) and
k nodes from Adj(Y ) in G+.

For bounded k those can be searched in worst case
polynomial time Nk × Nk = N2k, and so, if X ↔ Y
is indeed a D-sep link, we are guaranteed to find a
separating set within that number of steps.

4.3 Search strategy for D-sep links

There is just one more aspect before we can turn the
previous results into a complete causal discovery algo-
rithm: Lemma 7 assumes that a minimal separating
set is known for each separable pair in the ancestors of
the (possible) D-sep link X ↔ Y . If these in turn also
contain D-sep links, as for example X ↔ Z in Figure
5(b), then we may need to find one before we can find
the other. Therefore, if we find a new D-separating set
we have to check previously tried possible D-sep edges
in case the new set introduces more nodes into the cor-
responding hierarchies, after updating G+. By Lemma
5, as long as there are undiscovered D-sep links (still
corresponding to edges in G+), then there is always at
least one that cannot have undiscovered D-sep links
between its ancestors, and so can be recognized as the
pattern in Lemma 4 in the (updated) augmented skele-
ton G+. As a result, the procedure is guaranteed to
terminate only after all are found. Revisiting possible
D-sep links incurs an additional complexity factor N2.

Finally, in the discussions so far we largely ignored
the impact of possible selection bias, as all proofs re-
main valid with or without selection effects, see de-
tails in (Claassen et al., 2013). From (Richardson and
Spirtes, 2002, §4.2.1) we know that selection on a node
effectively destroys arrowheads on its ancestors, i.e. re-
moves detectable non-ancestor relations. In particular,
adding selection effects can overrule the D-sep pattern
from Lemma 4, and either turn it into a regular sepa-
rable pair (found by PC) or destroy the independence
altogether. As a result, D-sep links are much rarer
when selection bias is present, and the search for D-
sep nodes can often be avoided altogether.

5 Implementing C-LEARN as FCI+

We incorporate the previous results into a modified D-
SEP search of the FCI algorithm to obtain a sound
and complete method for constraint-based causal dis-
covery that is worst-case polynomial in the number of
independence tests between N variables, provided the
model is sparse (bounded by k). It assumes faithful-
ness and an underlying causal DAG, but does allow
for latent variables and selection bias.

Algorithm 2 FCI+ algorithm
In : variables V, oracle O, sparsity k
Out: causal model G over V

1: G, I ← PCAdjSearch(V,O, k)
2: G+ ← AugmentGraph(G, I,O)
3: PosDsepLinks← GetPDseps(G+)

D-SEP search
4: while PosDsepLinks 6= ∅ do
5: X,Y ← Pop(PosDsepLinks)
6: BaseX ← Adj(X)\Y
7: BaseY ← Adj(Y )\X
8: for n = 1..k do
9: for m = 1..k do

10: get subset ZX ⊆ BaseX, size n
11: get subset ZY ⊆ BaseY , size m
12: Z∗ ← HIE({X,Y }∪ZX ∪ZY , I)\{X,Y }
13: if X⊥⊥Y |Z∗ then
14: Z←MinimalDsep(X,Y,Z∗)
15: I ← UpdateSepsets(I, X, Y,Z)
16: G+ ← AugmentGraph(G+, I,O)
17: PosDsepLinks← GetPDseps(G+)
18: (continue while)
19: end if
20: end for
21: end for
22: end while
23: G ← RunOrientationRulesFCI(G, I)
24: return causal model G

The FCI+ algorithm in Algorithm 2 starts in line 1
from the output of the PC adjacency search (line 16
in Algorithm 1), that is the skeleton G and minimal
Sepset in I for each eliminated edge. Line 2 con-
structs the subsequent augmented skeleton G+ by test-
ing for single node additions that destroy the inde-
pendence, which is the basis for identifying the edges
corresponding to possible D-sep links in line 3. This
list is processed (and updated along the way) until no
more unchecked possible D-sep links remain. For a
pair of nodes X ↔ Y on a possible D-sep edge in G+

the ‘Base’ of adjacent nodes (possible ancestors) is de-
termined in lines 6/7. For each combination of max.
k nodes from this base around X and max. k nodes
from the base around Y the corresponding hierarchy



is computed, and tested for independence in line 13. If
found it is turned into a minimal separating set, and
stored in the list of sepsets I. This is used to update
the augmented skeleton G+ (remove edge and check
for single node dependencies), and to update the set of
possible D-sep links, e.g. in case we have to reconsider
previously rejected edges or can now eliminate other
candidates. Finally line 23 runs the standard FCI-
orientation rules on the skeleton to return the target
causal model in the form of a complete PAG.

Complexity analysis

Now to derive a bound on the worst-case complex-
ity of the FCI+ algorithm. As stated, we assume a
causal model in the form of a completed PAG G over
N (observed) variables, with node degree ≤ k, and a
constant-time independence oracle.

Contributions of various stages in Algorithm 2:

- l.1: PCAdjSearch is order O(Nk+2), as it searches
for subsets ≤ k nodes from N −2 variables to separate
N2 nodes on edges (Spirtes et al., 2000)
- l.2: AugmentGraph is order O(N3), given tests for
at most N − 2 nodes for 1/2N2 eliminated edges,
- l.3: GetPDseps could find up to O(N2) possible
edges to process,
- l.10-12: there are O(N2k) different (implied) combi-
nations for possible D-sep sets in the hierarchy from
two subsets of at most k nodes from N − 2 variables,
- l.14: MinimalDsep is at most order O(N2), as nodes
can be removed one-by-one (Tian et al., 1998)
- l.16: AugmentGraph is again order O(N3),
- l.17: GetPDseps might put back previously tried-
but-failed D-sep edges, leading to a factor O(N2),
- l.23: RunOrientationRulesFCI is order O(N4): for
N2 edge marks it checks for certain paths in G which
can be done in O(N2k) by a ‘reachability’ algorithm,
with Nk ∼ nr. of edges, (Zhang, 2008, p.1881)

The dominant terms are O(N2k) possible hierarchies
to test for each of O(N2) possible edges which may
have to be repeated O(N2) times, leading to an overal
worst-case complexity of order O(N2(k+2)). In other
words: worst-case O(FCI+) ∼ O(PC2), but both
with a running time that is polynomial in the num-
ber of variables N given maximum node degree k.

Clearly, these bounds can be tightened, and many
steps can be implemented more efficiently. For exam-
ple the Augmentgraph procedure can be realized using
rules on the available I (instead of additional inde-
pendence tests), and include invariant tails as well.
The number of BaseX/Y combinations to test can be
reduced by eliminating adjacent nodes that cannot be
ancestor of X or Y , and making sure to always include

necessary nodes. The hierarchy can be pre-computed
for each pair of nodes, and only needs a (partial) up-
date when a new D-sep link is found, etc. However, we
are not (yet) looking for an optimal implementation,
just to verify that a polynomial solution is possible.

6 Discussion

We have shown that it is possible to learn a sound
and complete sparse causal model representation that
is polynomial in the number of independence tests,
even when latent variables and selection bias may be
present. We presented an implementation in the from
of the FCI+ algorihtm, which derives from standard
FCI but with a modified D-SEP search stage.

The exponential complexity can be avoided by exploit-
ing the inherent structure in the problem that stems
from the underlying causal network. The problem can
be broken down into a series of smaller steps, in con-
trast to, e.g. finding a minimal Bayesian network or a
travelling salesman problem, where the minimal solu-
tion only applies to the specific network as a whole.
This ‘breaking down into subproblems’ follows natu-
rally in the constraint-based paradigm; an intriguing
question is whether it is also possible to find a poly-
nomial score-based causal discovery method.

Effectively, FCI+ uses independence information from
previous stages to guide the D-SEP search, leading to
a theoretical worst-case running time O(N2(k+2)) in
the number of independence tests. This is significantly
better than exponential, but still unfeasible for large
N . However, in practice the typical performance is
vastly better: very few candidate D-sep links with even
fewer repeats, and in particular much smaller sizes for
the adjacent set An({X,Y }) ∼ O(2k) for BaseX/Y
(line 6/7 in Algorithm 2). This leads to a dramatic re-
duction in actual runtime, as the most expensive term
reduces from O(N2k) to O(22k) base combinations for
the D-sep set candidates.

A drawback for sample versions of FCI+ is that the
conditioning sets may become larger than strictly nec-
essary, leading to a loss of statistical power of the in-
dependence tests. Preliminary investigations in ran-
dom graphs up to 200 variables suggest this effect
is not very prominent (often the largest set remains
smaller than for standard FCI), but it may become
an issue in certain circumstances. An interesting so-
lution is to limit the maximum node sets by taking
the intersection of the hierarchical D-SEP candidate
and FCI’s Possible-D-SEP sets. Furthermore, many
tests in the AugmentGraph procedures (line 2,16) may
be avoided by applying some of FCI’s orientation rules
to the available strucuture. Finally we can try to re-
strict the number of possible D-sep-edges to check even



further, and/or optimize the sequence in which to pro-
cess them. Ultimately our goal is to come as close to
the PC runtime as possible, while still handling hidden
variables correctly.
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Appendix A. Proofs

This section contains proof sketches for the results in
this paper; for details and examples, see (Claassen
et al., 2013).

Lemma 3. (D-separated nodes are non-ancestors)

Proof sketch. In the supplement we show that if X is
not independent of Y for any subset Adj(X), then Y
is not an ancestor of X and has no selection bias. For
a D-sep link (X,Y ) this applies to both; statement for
minimal Z follows immediately from Lemma 2-(2).
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Figure 7: Path configuration for D-sep link X · · ·Y .

Lemma 4. (bi-directed D-sep patterns in G+)

Proof sketch. In the supplement we show that the path
configuration in Figure 7 is always present for a D-sep
edge X − Y , resulting in identifiable independencies
X ⊥⊥ W | [Z′], Y ⊥⊥ T | [Z′′], and U1 ⊥⊥ V1 | [Z′′′] (for
some sets Z′ etc.). Furthermore, the first necessarily
becomes dependent when including either U1 or Y into
the separating set. Idem for the second when including
V1 or X, as for the third when including X or Y . In
combination with Lemma 2-(1) this implies identifiable
invariant arrowheads in G+ on all three edges U1 ↔
X ↔ Y ↔ V1, with U1 not adjacent to V1.

Lemma 5. (D-sep link hierarchy)

Proof sketch. Follows from Lemma 3, otherwise it
would introduce a cycle.
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Lemma 6. (all required D-sep nodes appear in other
minimal separating sets we already found)

Proof sketch. In the supplement we show that each D-
sep node Z blocks a path of the generic form depicted
in Figure 8. From this we construct a necessary non-
adjacency of neighboring node Zk with at least one of
the other {Z1, .., Zi} or X along the path, in which Z
is part of a minimal set that separates them.

Lemma 7. (for D-sep link X ↔ Y in G+ and inde-
pendence set I, the set HIE(AA({X,Y }), I)\{X,Y } is
a D-separating set)

Proof sketch. In the supplement we show that for
a D-sep link the set of nodes in the hierarchy
HIE({X,Y }, I) is independent of the specific (min-
imal) independence found for each pair of nodes that
are not adjacent in G+. We do this by showing that
if a node W is optional in a minimal separating set
between two nodes X and Y , so both X ⊥⊥ Y | [Z]
and X ⊥⊥ Y | [W] exist, with W ∈ (W \ Z), then
there is also an optional node Z ∈ (Z \W), and W
is part of a minimal separating set between Z and
either X or Y . This argument can be repeated un-
til the node is necessary in some minimal separating
set, and will be found in all independence sets I. So
every node that is optional in one minimal separat-
ing set (and so may not be included in the corre-
sponding Sepset from the PC adjacency search) is a
necessary node in a Sepset between some other pair
when ‘zooming in’ on the graph. As these are all
included, it follows that HIE({X,Y }, I) is indepen-
dent of the specific separating sets found in I. By
Lemma 6, all D-sep nodes we need to separate X and
Y als appear in some minimal set between two nodes
from the union of {X,Y } and the corresponding D-
separating set, for which the same applies again, un-
til ultimately an independence between two nodes in
Adj({X,Y })∪{X,Y } is reached. But that means they
are all part of HIE(AA({X,Y }), I)\{X,Y }, and so this
is guaranteed to be a D-separating set for X ↔ Y .
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