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Abstract

We propose a kernel method to identify finite
mixtures of nonparametric product distribu-
tions. It is based on a Hilbert space embed-
ding of the joint distribution. The rank of
the constructed tensor is equal to the num-
ber of mixture components. We present an
algorithm to recover the components by par-
titioning the data points into clusters such
that the variables are jointly conditionally in-
dependent given the cluster. This method
can be used to identify finite confounders.

1 Introduction

Latent variable models are widely used to model het-
erogeneity in populations. In the following (Sections
2-4), we assume that the observed variables are jointly
conditionally independent given the latent class. For
example, given a medical syndrome, different symp-
toms might be conditionally independent. We con-
sider d ≥ 2 continuous observed random variables
X1, X2,. . . ,Xd with domains {Xj}1≤j≤d and assume
that their joint probability distribution P (X1, . . . , Xd)
has a density with respect to the Lebesgue measure.
We introduce a finite (i.e., that takes on values from
a finite set) random variable Z that represents the
latent class with values in {z(1), . . . , z(m)}. Assum-
ing X1, . . . , Xd to be jointly conditionally independent
given Z (denoted by X1 ⊥⊥ X2 ⊥⊥ . . . ⊥⊥ Xd |Z) im-
plies the following decomposition into a finite mixture
of product distributions:

P (X1, . . . , Xd) =

m∑
i=1

P (z(i))

d∏
j=1

P (Xj |z(i)) (1)

where P (z(i)) = P (Z = z(i)) 6= 0.

By parameter identifiability of model (1), we refer to
the question of when P (X1, . . . , Xd) uniquely deter-

mines the following parameters: (a) the number of
mixture components m, and (b) the distribution of
each component P (X1, . . . , Xd|z(i)) and the mixing
weights P (z(i)) up to permutations of z-values. In
this paper, we focus on determining (a) and (b), when
model (1) is identifiable. This can be further used to
infer the existence of a hidden common cause (con-
founder) of a set of observed variables and reconstruct
this confounder. The remainder of the paper is orga-
nized as follows: in Section 2, a method is proposed to
determine (a), i.e., the number of mixture components
m, Section 3 discusses established results on the identi-
fiability of the parameters in (b). Section 4 presents an
algorithm for determining these parameters and Sec-
tion 5 uses the findings of the previous sections for
confounder identification. Finally, the experiments are
provided in Section 6.

2 Identifying the Number of Mixture
Components

Various methods have been proposed in the litera-
ture to select the number of mixture components in
a mixture model (e.g., Feng & McCulloch (1996);
Böhning & Seidel (2003); Rasmussen (2000); Iwata
et al. (2013)). However, they impose different kind
of assumptions than the conditional independence as-
sumption of model (1) (e.g., that the distributions of
the components belong to a certain parametric family).
Assuming model (1), Kasahara & Shimotsu (2010)
proposed a nonparametric method that requires dis-
cretization of the observed variables and provides only
a lower bound on m. In the following, we present a
method to determine m in (1) without making para-
metric assumptions on the component distributions.

2.1 Hilbert Space Embedding of
Distributions

Our method relies on representing P (X1, . . . , Xd) as a
vector in a reproducing kernel Hilbert space (RKHS).



We briefly introduce this framework. For a random
variable X with domain X , an RKHS H on X with
kernel k is a space of functions f : X → R with
dot product 〈·, ·〉, satisfying the reproducing property
(Schölkopf & Smola, 2002): 〈f(·), k(x, ·)〉 = f(x), and
consequently, 〈k(x, ·), k(x′, ·)〉 = k(x, x′). The kernel
thus defines a map x 7→ φ(x) := k(x, .) ∈ H satisfying
k(x, x′) = 〈φ(x), φ(x′)〉, i.e., it corresponds to a dot
product in H.

Let P denote the set of probability distributions on
X , then we use the following mean map (Smola et al.,
2007) to define a Hilbert space embedding of P:

µ : P → H; P (X) 7→ EX [φ(X)] (2)

We will henceforth assume this mapping to be injec-
tive, which is the case if k is characteristic (Fukumizu
et al., 2008), as the widely used Gaussian RBF kernel

k(x, x′) = exp(−‖x− x′‖2 /(2σ2)).

We use the above framework to define Hilbert space
embeddings of distributions of every single Xj . To this
end, we define kernels kj for each Xj , with feature
maps xj 7→ φj(xj) = k(xj , .) ∈ Hj . We thus obtain an
embedding µj of the set Pj into Hj as in (2).

We can apply the same framework to embed the
set of joint distributions P1,...,d on X1 × . . . ×
Xd. We simply define a joint kernel k1,...,d by

k1,...,d((x1, . . . , xd), (x′1, . . . , x
′
d)) =

∏d
j=1 kj(xj , x

′
j),

leading to a feature map into H1,...,d :=
⊗d

j=1Hj with

φ1,...,d(x1, . . . , xd) =
⊗d

j=1 φj(xj) (where
⊗

stands for
the tensor product). We use the following mapping of
the joint distribution:

µ1,...,d : P1,...,d →
d⊗

j=1

Hj (3)

P (X1, . . . , Xd) 7→ EX1,...,Xd
[

d⊗
j=1

φj(Xj)]

2.2 Identifying the Number of Components
from the Rank of the Joint Embedding

By linearity of the maps µ1,...,d and µj , the embedding
of the joint distribution decomposes into

UX1,...,Xd
:=µ1,...,d(P (X1, . . . , Xd))

=

m∑
i=1

P (z(i))

d⊗
j=1

EXj
[φj(Xj)|z(i)] . (4)

Definition 1 (full rank conditional) Let A,B two
random variables with domains A,B, respectively. The
conditional probability distribution P (A|B) is called a

full rank conditional if {P (A|b)}b with b ∈ B is a lin-
early independent set of distributions.

Recalling that the rank of a tensor is the minimum
number of rank 1 tensors needed to express it as a
linear combination of them, we obtain:

Theorem 1 (number of mixture components)
If P (X1, . . . , Xd) is decomposable as in (1) and
P (Xj |Z) is a full rank conditional for all 1 ≤ j ≤ d,
then the tensor rank of UX1,...,Xd

is m.

Proof. From (4), the tensor rank of UX1,...,Xd

is at most m. If the rank is m′ < m, there
exists another decomposition of UX1,...,Xd

(apart

from (4)) as
∑m′

i=1

⊗d
j=1 vi,j , with non-zero vec-

tors vi,j ∈ Hj . Then, there exists a vector
w ∈ H1, s.t. w ⊥ span{v1,1, . . . , vm′,1} and
w 6⊥ span{(EX1

[φ1(X1)|z(i)])1≤i≤m}. The dual vector
, w〉 defines a linear form H1 → R. By overloading
notation, we consider it at the same time as a linear
map H1 ⊗ · · · ⊗ Hd → H2 ⊗ · · · ⊗ Hd , by extend-
ing it with the identity map on H2 ⊗ · · · ⊗ Hd. Then,

〈
∑m′

i=1

⊗d
j=1 vi,j , w〉 =

∑m′

i=1〈vi1, w〉
⊗d

j=2 vi,j = 0 but
〈UX1,...,Xd

, w〉 6= 0. So, m = m′. �

The assumption that P (Xj |Z) is a full rank condi-
tional, i.e., that {P (Xj |z(i))}i≤m is a linearly inde-
pendent set, is also used by Allman et al. (2009) (see
Sec. 3). It does not prevent P (Xj |z(q)) from being it-
self a mixture distribution, however, it implies that,
for all j, q, P (Xj |z(q)) is not a linear combination of
{P (Xj |z(r))}r 6=q. Theorem 1 states that, under this
assumption, the number of mixture components m of
(1) (or equivalently the number of values of Z) is iden-
tifiable and equal to the rank of UX1,...,Xd

. A straight-
forward extension of Theorem 1 reads:

Lemma 1 (infinite Z) If Z takes values from an in-
finite set, then the tensor rank of UX1,...,Xd

is infinite.

2.3 Empirical Estimation of the Tensor Rank
from Finite Data

Given empirical data for every Xj ,

{x(1)j , x
(2)
j , . . . , x

(n)
j }, to estimate the rank of (4),

we replace it with the empirical average

ÛX1,...,Xd
:=

1

n

n∑
i=1

d⊗
j=1

φj(x
(i)
j ) , (5)

which is known to converge to the expectation in
Hilbert space norm (Smola et al., 2007).

The vector (5) still lives in the infinite dimensional
feature space H1,...,d, which is a space of functions



X1 × · · · × Xd → R. To obtain a vector in a finite
dimensional space, we evaluate this function at the

nd data points (x
(q1)
1 , . . . , x

(qd)
d ) with qj ∈ {1, . . . , n}

(the d-tuple of superscripts (q1, . . . , qd) runs over all
elements of {1, . . . , n}d). Due to the reproducing ker-
nel property, this is equivalent to computing the inner
product with the images of these points under φ1,...,d:

Vq1,...,qd :=

〈
ÛX1,...,Xd

,

d⊗
j=1

φj(x
(qj)
j )

〉

=
1

n

n∑
i=1

d∏
j=1

kj(x
(i)
j , x

(qj)
j ) (6)

For d = 2, V is a matrix, so one can easily find low rank
approximations via truncated Singular Value Decom-
position (SVD) by dropping low SVs. For d > 2, find-
ing a low-rank approximation of a tensor is an ill-posed
problem (De Silva & Lim, 2008). By grouping the vari-
ables into two sets, say X1, . . . , Xs and Xs+1, . . . , Xd

without loss of generality, we can formally obtain the
d = 2 case with two vector-valued variables. This
amounts to reducing V in (6) to an n × n matrix by
setting q1 = · · · = qs and qs+1 = · · · = qd. In the-
ory, we expect the rank to be the same for all possible
groupings. In practice, we report the rank estimation
of the majority of all groupings. The computational
complexity of this step is O(2d−1N3).

3 Identifiability of Component
Distributions and Mixing Weights

Once we have determined the number of mixture com-
ponents m, we proceed to step (b) of recovering the
distribution of each component P (X1, . . . , Xd|z(i)) and
the mixing weights P (z(i)). In the following, we de-
scribe results from the literature on when these pa-
rameters are identifiable, for known m. Hall & Zhou
(2003) proved that when m = 2, identifiability of pa-
rameters always holds in d ≥ 3 dimensions. For d = 2
and m = 2 the parameters are generally not identi-
fiable (there is a two-parameter continuum of solu-
tions). In this case, one can obtain identifiability if,
for all j, P (Xj |Z) is pure (a conditional P (X|Y ) is
called pure if for any two values y, y′ of Y , the sum
P (X|y)λ + P (X|y′)(1 − λ) is a probability distribu-
tion only for λ ∈ [0, 1] (Janzing et al., 2011)). Allman
et al. (2009) established identifiability of the param-
eters whenever d ≥ 3 and for all m under weak con-
ditions 1, using a theorem of Kruskal (1977). Finally,
Kasahara & Shimotsu (2010) provided complementary
identifiability results for d ≥ 3 under different condi-
tions with a constructive proof.

1the same assumption used in Theorem 1 that P (Xj |Z)
is a full rank conditional for all j.

4 Identifying Component
Distributions and Mixing Weights

We are given n data points from an identifiable dis-
tribution P (X1, . . . , Xd). Our goal is to cluster the
data points (using m labels) in such a way that the
distribution of points with label i is close to the (un-
observed) empirical distribution of every mixture com-
ponent, Pn(X1, . . . , Xd|z(i)).

4.1 Existing Methods

Probabilistic mixture models or other clustering meth-
ods can be used to identify the mixture components
(clusters) (e.g., Von Luxburg (2007); Böhning & Seidel
(2003); Rasmussen (2000); Iwata et al. (2013)). How-
ever, they impose different kind of assumptions than
the conditional independence assumption of model (1)
(e.g., Gaussian mixture model). Assuming model
(1), Levine et al. (2011) proposed an Expectation-
Maximization (EM) algorithm for nonparametric es-
timation of the parameters in (1), given that m is
known. Their algorithm uses a kernel as smoothing
operator. They choose a common kernel bandwidth
for all the components because otherwise their itera-
tive algorithm is not guaranteed not to increase from
one iteration to another. As stated also by Chauveau
et al. (2010), the fact that they do not use an adaptive
bandwidth (Benaglia et al., 2011) can be problematic
especially when the distributions of the components
differ significantly.

4.2 Proposed Method: Clustering with
Independence Criterion (CLIC)

The proposed method, CLIC, assigns each of the n
observations to one of them (as estimated in Section 2)
mixture components (clusters). We do not claim that
each single data point is assigned correctly (especially
when the clusters are overlapping). Instead, we aim
to yield the variables jointly conditionally independent
given the cluster in order to recover the components.

To measure conditional independence of X1, . . . , Xd

given the cluster we use the Hilbert Schmidt Inde-
pendence Criterion (HSIC) (Gretton et al., 2008). It
measures the Hilbert space distance between the ker-
nel embeddings of the joint distribution of two (pos-
sibly multivariate) random variables and the product
of their marginal distributions. If d > 2, we test for
mutual independence. For that, we perform multi-
ple tests, namely: X1 against (X2, . . . , Xd), then X2

against (X3, . . . , Xd) etc. and use Bonferroni correc-
tion. For each cluster, we consider as test statistic the
HSIC from the test that leads to the smallest p-value
(“highest” dependence).



We regard the negative sum of the logarithms of all p-
values (each one corresponding to one cluster) under
the null hypothesis of independence as our objective
function. The proposed algorithm is iterative. We
first randomly assign every data point to one mixture
component. In every iteration we perform a greedy
search: we randomly divide the data into disjoint sets
of c points. Then, we select one of these sets and
consider all possible assignments of the set’s points to
the m clusters (mc possible assignments). The assign-
ment that optimizes the objective function is accepted
and the points of the set are assigned to their new
clusters (which may coincide with the old ones). We,
eventually, repeat the same procedure for all disjoint
sets and this constitutes one iteration of our algorithm.
After every iteration we test for conditional indepen-
dence given the cluster. The algorithm stops after an
iteration when any of the following happens: we ob-
serve independence in all clusters, no data point has
changed cluster assignment, an upper limit of itera-
tions is reached. It is clear that the objective function
is monotonously decreasing.

The algorithm may not succeed at producing condi-
tionally independent variables for different reasons:
e.g., incorrect estimation of m from the previous step
or convergence to a local optimum. In that case, CLIC
reports that it was unable to find appropriate clusters.

Along the iterations, the kernel test of independence
updates the bandwidth according to the data points
belonging to the current cluster (in every dimension).
Note, however, that this is not the case for the algo-
rithm in Section 2. There, we are obliged to use a
common bandwidth, because we do not have yet any
information about the mixture components.

The parameter c allows for a trade-off between speed
and avoiding local optima: for c = n, CLIC would find
the global optimum after one step, but this would re-
quire checking mn cluster assignments. On the other
hand, c = 1 leads to a faster algorithm that may get
stuck in local optima. In all experiments we used c = 1
since we did not encounter many problems with local
optima. Considering c to be a constant, the computa-
tional complexity of CLIC is O(mcN3) for every iter-
ation. Algorithm 1 includes the pseudocode of CLIC.

5 Causality: Identifying Confounders

Drawing causal conclusions from observed statistical
dependences without being able to intervene on the
system always relies on assumptions that link statis-
tics to causality (Spirtes et al., 2001; Pearl, 2000).
The least disputed one is the Causal Markov Condi-
tion (CMC) stating that every variable is condition-
ally independent of its non-descendant, given its par-

Algorithm 1 CLIC

1: input data matrix X of size n× d, m, c
2: random assignment cluster(i) ∈ {1, . . . ,m}, i =

1, . . . , n of the data into m clusters
3: while conditional dependence given cluster and

clusters change do
4: obj = computeObj(cluster)
5: choose random partition Sj , j = 1, . . . , J of the

data into sets of size c
6: for j = 1 to J do
7: newCluster = cluster
8: for all words w ∈ {1, . . . ,m}c do
9: newCluster(Sj) = w

10: objNew(w) = computeObj(newCluster)
11: end for
12: wOpt = argmin(objNew)
13: cluster(Sj) = wOpt
14: end for
15: end while

16: if conditional independence given cluster then
17: output cluster
18: else
19: output “Unable to find appropriate clusters.”
20: end if

ents (Spirtes et al., 2001; Pearl, 2000) with respect
to a directed acyclic graph (DAG) that formalizes the
causal relations. We focus on causal inference prob-
lems where the set of observed variables may not be
causally sufficient, i.e. statistical dependences can also
be due hidden common causes (confounders) of two or
more observed variables. Under the assumption of lin-
ear relationships between variables and non-Gaussian
distributions, confounders may be identified using In-
dependent Component Analysis (Shimizu et al., 2009).
Other results for the linear case are presented in Silva
et al. (2006) and for the non-linear case with addi-
tive noise in Janzing et al. (2009). Fast Causal Infer-
ence (Silva et al., 2006) can exclude confounding for
some pairs of variables, given that many variables are
observed. Finally, the reconstruction of binary con-
founders under the assumption of pure conditionals is
presented in Janzing et al. (2011).

In this section, we use the results of the previous sec-
tions to infer the existence and identify a finite con-
founder that explains all the dependences between the
observed variables. We assume that latent variables
are not caused by observed variables (the same as-
sumption has been used by Silva et al. (2006)). Unlike
previous methods, we do not make explicit assump-
tions on the distribution of the variables. Instead, we
postulate a different assumption, namely that the con-
ditional of each variable given its parents is full rank:



Assumption 1 (full rank given parents) Let
PAY denote the parents of a continuous variable Y
with respect to the true causal DAG. Then, P (Y |PAY )
is a full rank (f.r.) conditional.

Lemma 2 (full rank given parent) By Assump-
tion 1 it follows that, if A ∈ PAY is one of the parents
of Y , i.e., A → Y , then, since P (Y |PAY ) is a f.r.
conditional, P (Y |A) is also a f.r. conditional (after
marginalization).

Remark: If Assumption 1 holds and A→ B → C, then
P (B|A) and P (C|B) are f.r. conditionals (Lemma 2),
which implies that P (C|A) is also a f.r. conditional,
since it results from their multiplication.

Lemma 3 (shifted copies) Let R be a probability
distribution on R and TtR its copy shifted by t ∈ R
to the right. Then {TtR}t∈R are linearly independent.

Proof. Let
q∑

j=1

αjTtjR = 0 , (7)

for some q and some q-tuple α1, . . . , αq. Let R̂ be the
Fourier transform of R. If we set g(ω) :=

∑q
j=1 αje

iωtj

then (7) implies g(ω)R̂(ω) = 0 for all ω ∈ R, hence g
vanishes for all ω with R̂(ω) 6= 0, which is a set of
non-zero measure. Since g is holomorphic, it therefore
vanishes for all ω ∈ R and thus all coefficients are zero.
�

The following theorem shows that Assumption 1 is typ-
ically satisfied for a class of causal models considered
by Hoyer et al. (2009):

Theorem 2 (additive noise model) Let Y be
given by Y = f(PAY ) + N , where N is a noise
variable that is statistically independent of PAY and
f is an injective function. Then P (Y |PAY ) is a full
rank conditional.

The proof is a straightforward application of Lemma 3.

Theorem 3 (rank of cause-effect pair) Assume
there is a direct causal link A → B between two
observed variables A and B, with {A,B} not neces-
sarily being a causally sufficient set (i.e., there may
be unobserved common causes of A and B). Then,
given Assumption 1, the rank of UA,B is equal to the
number of values that A takes, if A is finite. If A is
infinite, then the rank of UA,B is infinite.

Proof. By Assumption 1, P (B|A) is a f.r. conditional
(Lemma 2). Since A ⊥⊥ B |A, applying Theorem 1 for
finite Z := A we conclude that the rank of UA,B is
equal to the number of values of A. For infinite A, we

similarly apply Lemma 1 and we get infinite rank of
UA,B . �

Theorem 4 (rank of confounded pair) Assume
A ← C → B, and A, B do not have other common
causes apart from C. Then, given Assumption 1, the
rank of UA,B is equal to the number of values of C.

Proof. The proof is straightforward: by Assump-
tion 1, P (A|C) and P (B|C) are f.r. conditionals
(Lemma 2). Additionally, A ⊥⊥ B |C and then, ac-
cording to Theorem 1, the rank of UA,B is equal to the
number of values of Z := C (for infinite C, the rank is
infinite). �

Theorems 3 and 4 state what is the expected rank of
UA,B for various causal structure scenarios. However,
in causal inference we are interested in inferring the
unknown underlying causal DAG. The following Theo-
rem uses Theorem 3 to infer the causal structure based
on the rank of the embedding of the joint distribution.

Theorem 5 (identifying confounders) Let
Y1, . . . , Yd denote all observed variables. Assume
they are continuous, pairwise dependent, and there is
at most one (if any) hidden common cause of two or
more of the observed variables. If Assumption 1 holds
and the rank of UY1,...,Yd

, with d ≥ 3, is finite, then
Fig. 1 depicts the only possible causal DAG with W
being an unobserved variable and P (Y1, . . . , Yd,W ) is
identifiable up to reparameterizations of W .

Proof. Assume there is at least one direct causal
link Yi → Yi′ . Then, according to Theorem 3, the
rank of UYi,Yi′ , and thus the rank of UY1,...,Yd

, would
be infinite. Therefore, direct causal links between
the {Yj} can be excluded and the statistical depen-
dencies between {Yj} can only be explained by hid-
den common causes. Since we assumed that there
is at most one hidden common cause (and the ob-
served variables are pairwise dependent), the only pos-
sible causal graph is depicted in Fig. 1. This implies
Y1 ⊥⊥ Y2 ⊥⊥ . . . ⊥⊥ Yd |W (according to the CMC), so
model (1) holds, with Z := W being the latent vari-
able. According to the previous sections (Theorem 1
and Section 3), this model is identifiable. �

Based on Theorem 1, the number of values of W is
equal to the rank of UY1,...,Yd

and P (Y1, . . . , Yd,W ) can
be identified according to Section 4. Note that the
single common cause W could be the result of merging
many common causes W1, ..,Wk to one vector-valued
variable W . Thus, at first glance, it seems that one
does not lose generality by assuming only one common
cause. However, Assumption 1, then, excludes the case
where W consists of components each of which only
acts on some different subset of the {Yj}. W1, ..,Wk

should all be common causes of all {Yj}.



W

Y1 Y2 Yd

Figure 1: Inferred causal DAG (the dotted circle rep-
resents an unobserved variable).

Note that, when we are given only finite data, the esti-
mated rank of UY1,...,Yd

is always finite, highly depend-
ing on the strength of the causal arrows and the sample
size. Then, we are faced with the issue that, based on
Theorem 5, we would always infer that Fig. 1 depicts
the only possible causal DAG, with the number of val-
ues of W being equal to the estimated rank. However,
the lower the rank, the more confident we get that
this is, indeed, due to the existence of a confounder
that renders the observed variables conditionally inde-
pendent (Fig. 1). On the other hand, high rank can
also be due to direct causal links between the observed
variables or continuous confounders. For that, we con-
sider Theorem 5 to be more appropriate for inferring
the existence of a confounder with a small number of
values which would lead to low rank. However, we ad-
mit that what is considered “high” or “low” is not well
defined. For example, how much “high” rank values
we expect for the DAG Y1 → Y2 highly depends on
the strength of the causal arrow: the lower the depen-
dence between Y1 and Y2 is, the lower is, generally, the
estimated rank. In practice, we could make a vague
suggestion that whenever the estimated rank is below
5 (although the dependence between {Yj} is strong),
it is quite probable that this is due to a confounder
(Fig. 1) but for higher rank it is getting more difficult
to decide on the underlying causal structure.

6 Experiments

We conducted experiments both on simulated and real
data. In all our experiments we use a Gaussian RBF
kernel k(x, x′) = exp

(
−‖x− x′‖2/(2σ2)

)
. Concerning

the first step of determining the number of mixture
components: a common way to select the bandwidth
σj for every kj is to set it to the median distance be-
tween all data points in the jth dimension of the em-
pirical data. However, this approach would usually
result in an overestimation of the bandwidth, espe-
cially in case of many mixture components (see also
Benaglia et al. (2011)). To partially account for this,
we compute the bandwidth for every Xj as the median
distance between points in the neighborhood of every
point in the sample. The neighborhood is found by the
10 nearest neighbors of each point computed using all
other variables apart from Xj . To estimate the rank
of V , we find its SVD and report the estimated rank

as m̂ = argmini(SVi+1/SVi) within the SVs that cover
90-99.999% of the total variance. Finally, concerning
CLIC, we use 7 as the maximum number of iterations,
but usually the algorithm terminated earlier.

6.1 Simulated Data

Simulated data were generated according to the DAG
of Fig. 1 (we henceforth refer to them as the first set
of simulated data), e.i., model (1) holds with Z := W ,
since Y1 ⊥⊥ Y2 ⊥⊥ . . . ⊥⊥ Yd |W . We first generated Z
from a uniform distribution on m values. Then, the
distribution of each mixture component in every di-
mension (P (Xj |z(i))) was chosen randomly between:
(i) a normal distribution with standard deviation 0.7,
1, or 1.3, (ii) a t-distribution with degrees of freedom
3 or 10, (iii) a (stretched) beta distribution with alpha
0.5 or 1 and beta 0.5 or 1, and (iv) a mixture of two
normal distributions with variance 0.7 for each. The
distance between the components in each dimension
was distributed according to a Gaussian with mean
2 and standard deviation 0.3. We chose the distance
and the mixtures such that the experiments cover dif-
ferent levels of overlap between the components, and
at the same time {P (Xj |z(i))}i≤m are generically lin-
early independent. We ran 100 experiments for each
combination of d = 2, 3, 5 and m = 2, 3, 4, 5, with the
sample size being 300×m.

For comparison, we additionally generated data where
the observed variables are connected also with di-
rect causal links and thus are conditionally dependent
given the confounder (we henceforth refer to them as
the second set of simulated data). For that, we first
generated data according to the DAG of Fig. 1, as
above, for d = 2 and m = 1 (which amounts to no
confounder) and for d = 2 and m = 3 (3-state con-
founder). X2 was then shifted by 4X1 to simulate a di-
rect causal link X1 → X2. In this case, X1 ⊥⊥ X2 |X1,
so we have infinite Z := X1.

6.1.1 Identifying the Number of Mixture
Components
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Figure 2: Histograms of the estimated number of mix-
ture components m for the first set of simulated data,
for m = 2 throughout, and d = 2 (left), d = 3 (mid-
dle), d = 5 (right).

We first report results on the first part of identifica-
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Figure 3: As Figure 2 but for m = 3.
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Figure 4: As Figure 2 but for m = 4.
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Figure 5: As Figure 2 but for m = 5.

tion, i.e. identifying the number of mixture compo-
nents m in (1). The empirical rank estimation may
depend on the strength of the causal arrows, the ker-
nel bandwidth selection, the sample size and the way
to estimate the rank by keeping only large eigenvalues.
Figures 2, 3, 4 and 5 illustrate histograms of the es-
timated number of components (equivalently the esti-
mated number of values of the confounder) for the first
set of simulated data form = 2, 3, 4 and 5, respectively.
Each figure contains one histogram for every value of
d = 2, 3 and 5. We can observe that as m increases
the method becomes more sensitive in underestimat-
ing the number of components, a behavior which can
be explained by the common sigma selection for all the
data in each dimension or by high overlap of the distri-
butions (which could violate Assumption 1). On the
other hand, as d increases the method becomes more
robust in estimating m correctly due to the group-
ing of variables that allows multiple rank estimations.
The “low” estimated rank values provide us with some
evidence that the causal DAG of Fig. 1 is true (Theo-
rem 5). Of course, as stated also at the end of Sec. 5,
it is difficult to define what is considered a low rank.

Figure 6 depicts histograms of the estimated number
of components for the second set of simulated data.
According to Theorem 3, the direct causal link X1 →
X2 results in an infinite rank of UX1,X2 . Indeed, we
can observe that in this case the estimated m is much
higher. The “high” estimated rank values provide us
with some evidence that the underlying causal DAG

may include direct causal links between the observed
variables or confounders with a high or infinite number
of values. Note that, depending on the strength of the
causal arrow X1 → X2, we may get higher or lower
rank values. For example, if the strength is very weak
we get lower rank values since the dependence between
X1 and X2 tends to be dominated by the confounder
(that has a small number of values).
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Figure 6: Histograms of the estimatedm for the second
set of simulated data (including a direct causal arrow).
Left: no confounder, right: 3-state confounder.

6.1.2 Full Identification Framework

Next, we performed experiments, using the first set
of simulated data to evaluate the performance of the
proposed method (CLIC) (Section 4.2), the method
of Levine et al. (2011) (Section 4.1) and the EM algo-
rithm using a Gaussian mixture model (EM is repeated
5 times and the solution with the largest likelihood is
reported). In the following, we refer to these meth-
ods as CLIC, Levine, and EM, respectively. For each
data point, the two latter methods output posterior
probabilities for the m clusters, which we sample from
to obtain cluster assignments. Figure 7 illustrates the
cluster assignments of these three methods for one sim-
ulated dataset with m = 3 and d = 2 (this is more
for visualization purposes because for these values of
d and m model (1) is not always identifiable). Note
that permutations of the colors are due to the ambi-
guity of labels in the identification problem. However,
EM incorrectly identifies a single component (having
a mixture of two Gaussians as marginal density in X1

dimension) as two distinct components. It is clear that
this is because it assumes that the data are generated
by a Gaussian mixture model and not by model (1),
as opposed to CLIC and Levine methods.

We compare the distribution of each cluster output
(for each of the three methods) to the empirical distri-
bution, Pn(X1, . . . , Xd|z(i)), of the corresponding mix-
ture component (ground truth). For that we use the
squared maximum mean discrepancy (MMD) (Gret-
ton et al., 2012) that is the distance between Hilbert
space embeddings of distributions. We only use the
MMD and not one of the test statistics described in
Gretton et al. (2012), since they are designed to com-
pare two independent samples, whereas our samples
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Figure 7: From left to right: ground truth, input, CLIC output, Levine output, and EM output for simulated
data generated for m = 3. Each color represents one mixture component.
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Figure 8: Squared MMD between output and ground truth clusters (for each of the three methods) for simulated
data with (a) d = 3,m = 2, (b) d = 3,m = 3 and (c) d = 5,m = 2

(output and ground truth) have overlapping observa-
tions. To account for the permutations, we measure
the MMD for all cluster permutations and select the
one with the minimum sum of MMD for all clusters.
Figures 8(a)-8(c) report the squared MMD results of
the three methods for different combinations of m and
d. Each point corresponds to the squared MMD for
one cluster of one of the 100 experiments. Results are
provided only for the cases that the number of com-
ponents m was correctly identified from the previous
step. The CLIC method was unable to find appropri-
ate clusters in 2 experiments for d = 3 and m = 3 and
in 13 for d = 5 and m = 2. Without claiming that the
comparison is exhaustive, we can infer that both CLIC
and Levine methods perform significantly better than
EM, since they impose conditional independence. For
higher d, EM improves since the clusters are less over-
lapping. However, the computational time of CLIC is
higher compared to the other two methods.

6.2 Real data

Further, we applied our framework to the Breast
Cancer Wisconsin (Diagnostic) Data Set from the
UCI Machine Learning Repository (Frank & Asun-
cion, 2010). The dataset consists of 32 features of
breast masses along with their classification as be-
nign (B) or malignant (M). The sample size of the
dataset is 569 (357 (B), 212 (M)). We selected 3 fea-
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Figure 10: Breast data: features conditionally depen-
dent given the class. Left: estimated m = 62, right:
estimated m = 8.

tures, namely perimeter, compactness and texture,
which are pairwise dependent (the minimum p-value
is pval = 2.43e − 17), but become (close to) mutu-
ally independent when we condition on the class (B or
M) (pvalB = 0.016, pvalM = 0.013). We applied our
method to these three features (assuming the class is
unknown) and we succeeded at correctly inferring that
the number of mixture components is 2. Figure 9 de-
picts the ground truth of the breast data, the input and
the results of CLIC, Levine and EM, and Fig. 12(a) the
corresponding squared MMDs. We can observe that
Levine method performs very poorly for this dataset.

Additionally, we selected different features, namely
perimeter and area, and concavity and area, which are
not conditionally independent given the binary class.
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Figure 9: From left to right: ground truth, input, output CLIC, Levine, and EM for the breast data.
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Figure 11: From left to right: ground truth, input, output CLIC, Levine, and EM for the arrhythmia data.

In this case, we got rank values higher than two, i.e.,
62 and 8, respectively (Fig. 10).

We similarly applied our framework to the Arrhythmia
Data Set (sample size 452) (Frank & Asuncion, 2010).
We selected 3 features, namely height, QRS duration
and QRSTA of channel V1 which are dependent (min-
imum pval = 8.96e − 05), but become independent
when we condition on a fourth feature, the sex of a
person (Male or Female) (pvalM = 0.0607, pvalF =
0.0373). We applied our method to the three fea-
tures and we succeeded at correctly inferring that the
number of mixture components is 2. Figure 11 de-
picts the ground truth, the input and the results of
CLIC, Levine and EM, and Fig. 12(b) the correspond-
ing squared MMDs. We can observe that Levine and
EM methods perform very poorly for this dataset.

Finally, we applied our method to a database with
cause-effect pairs2. It includes pairs of variables with
known causal structure. Since there exists a direct
causal arrow X → Y , we expect the rank of UX,Y

to be infinite given our assumptions (Theorem 3),
even if there exist hidden confounders or not. How-
ever, the estimated rank from finite data is always fi-
nite, its magnitude strongly depending on the strength
of the causal arrow and the sample size, as men-
tioned in Sec. 5. Figure 13 depicts 4 cause-effect
pairs (which were taken from the UCI Machine Learn-
ing Repository (Frank & Asuncion, 2010)) with the
same sample size (1000 data points) but various de-
grees of dependence, specifically: pval = 7.16e − 12,
pval = 9.41e− 63, pval = 1.21e− 317, pval = 0. The
estimated ranks are m = 1, 4, 8 and 63, respectively.
Note that when X and Y are close to independent
(e.g., the first plot of Fig. 13) the assumption of pair-

2http://webdav.tuebingen.mpg.de/cause-effect/

wise dependence of Theorem 5 is almost violated.
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Figure 12: Squared MMD between output and ground
truth clusters for (a) breast and (b) arrhythmia data.
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Figure 13: Four cause-effect pairs. Estimated m from
left to right: m = 1, m = 4, m = 8, and m = 63.

7 Conclusion

In this paper, we introduced a kernel method to iden-
tify finite mixtures of nonparametric product distri-
butions. The method was further used to infer the
existence and identify a hidden common cause of a set
of observed variables. Experiments on simulated and
real data were performed for evaluation of the pro-
posed approach. In practice, our method is more ap-
propriate for the identification of a confounder with a
small number of values.
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