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Abstract

A mixture of Gaussians fit to a single curved
or heavy-tailed cluster will report that the
data contains many clusters. To produce
more appropriate clusterings, we introduce
a model which warps a latent mixture of
Gaussians to produce nonparametric cluster
shapes. The possibly low-dimensional latent
mixture model allows us to summarize the
properties of the high-dimensional clusters
(or density manifolds) describing the data.
The number of manifolds, as well as the shape
and dimension of each manifold is automat-
ically inferred. We derive a simple inference
scheme for this model which analytically inte-
grates out both the mixture parameters and
the warping function. We show that our
model is effective for density estimation, per-
forms better than infinite Gaussian mixture
models at recovering the true number of clus-
ters, and produces interpretable summaries
of high-dimensional datasets.

1 Introduction

Probabilistic mixture models are often used for cluster-
ing. However, if the mixture components are paramet-
ric (e.g. Gaussian), then the clustering obtained can
be heavily dependent on how well each actual clus-
ter can be modeled by a Gaussian. For example, a
heavy tailed or curved cluster may need many compo-
nents to model it. Thus, although mixture models are
widely used for probabilistic clustering, their assump-
tions are generally inappropriate if the primary goal
is to discover clusters in data. Dirichlet process mix-
ture models can alleviate the problem of an unknown
number of clusters, but this does not address the prob-
lem that real clusters may not be well matched by any
parametric density.
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Figure 1: A sample from the iWMM prior. Left:
In the latent space, a mixture distribution is sampled
from a Dirichlet process mixture of Gaussians. Right:
The latent mixture is smoothly warped to produce
non-Gaussian manifolds in the observed space.

In this paper, we propose a nonparametric Bayesian
model that can find nonlinearly separable clusters with
complex shapes. The proposed model assumes that
each observation has coordinates in a latent space, and
is generated by warping the latent coordinates via a
nonlinear function from the latent space to the ob-
served space. By this warping, complex shapes in the
observed space can be modeled by simpler shapes in
the latent space. In the latent space, we assume an
infinite Gaussian mixture model [1], which allows us
to automatically infer the number of clusters. For the
prior on the nonlinear mapping function, we use Gaus-
sian processes [2], which enable us to flexibly infer the
nonlinear warping function from the data. We call
the proposed model the infinite warped mixture model
(iWMM). Figure 1 shows a set of manifolds and data-
points sampled from the prior defined by this model.

To our knowledge this is the first probabilistic gener-
ative model for clustering with flexible nonparametric
component densities. Since the proposed model is gen-
erative, it can be used for density estimation as well as
clustering. It can also be extended to handle missing
data, integrate with other probabilistic models, and



use other families of distributions for the latent com-
ponents.

We derive an inference procedure for the iWMM based
on Markov chain Monte Carlo (MCMC). In partic-
ular, we sample the cluster assignments using Gibbs
sampling, sample the latent coordinates using hybrid
Monte Carlo, and analytically integrate out both the
mixture parameters (weights, means and covariance
matrices), and the nonlinear warping function.

2 Gaussian Process Latent Variable
Model

In this section, we give a brief introduction to the
Gaussian process latent variable model (GPLVM) [3],
which can be viewed as a special case of the iWMM.
The GPLVM is a probabilistic model of nonlinear man-
ifolds. While not typically thought of as a density
model, the GPLVM does in fact define a posterior den-
sity over observations [4]. It does this by smoothly
warping a single, isotropic Gaussian density in the la-
tent space into a more complicated distribution in the
observed space.

Suppose that we have a set of observations Y =
(y1, · · · ,yN )>, where yn ∈ RD, and they are as-
sociated with a set of latent coordinates X =
(x1, · · · ,xN )>, where xn ∈ RQ. The GPLVM assumes
that observations are generated by mapping the latent
coordinates through a set of smooth functions, over
which Gaussian process priors are placed. Under the
GPLVM, the probability of observations given the la-
tent coordinates, integrating out the mapping func-
tions, is

p(Y|X,θ) = (2π)−
DN
2 |K|−D

2 exp

(
−1

2
tr(Y>K−1Y)

)
,

(1)

where K is the N × N covariance matrix defined by
the kernel function k(xn,xm), and θ is the kernel hy-
perparameter vector. In this paper, we use an RBF
kernel with an additive noise term:

k(xn,xm) = α exp

(
− 1

2`2
(xn − xm)>(xn − xm)

)
+ δnmβ−1. (2)

This likelihood is simply the product of D indepen-
dent Gaussian process likelihoods, one for each output
dimension.

Typically, the GPLVM is used for dimensionality re-
duction or visualization, and the latent coordinates are
determined by maximizing the posterior probability of
the latent coordinates, while integrating out the warp-
ing function. In that setting, the Gaussian prior den-
sity on x is essentially a regularizer which keeps the

latent coordinates from spreading arbitrarily far apart.
In contrast, we instead integrate out the latent coor-
dinates as well as the warping function, and place a
more flexible parameterization on p(x) than a single
isotropic Gaussian.

Just as the GPLVM can be viewed as a manifold learn-
ing algorithm, the iWMM can be viewed as learning a
set of manifolds, one for each cluster.

3 Infinite Warped Mixture Model

In this section, we define in detail the infinite warped
mixture model (iWMM). In the same way as the
GPLVM, the iWMM assumes a set of latent coordi-
nates and a smooth, nonlinear mapping from the latent
space to the observed space. In addition, the iWMM
assumes that the latent coordinates are generated from
a Dirichlet process mixture model. In particular, we
use the following infinite Gaussian mixture model,

p(x|{λc,µc,Rc}) =
∞∑
c=1

λcN (x|µc,R
−1
c ), (3)

where λc, µc and Rc is the mixture weight, mean, and
precision matrix of the cth mixture component. We
place Gaussian-Wishart priors on the Gaussian param-
eters {µc,Rc},

p(µc,Rc) = N (µc|u, (rRc)
−1)W(Rc|S−1, ν), (4)

where u is the mean of µc, r is the relative precision
of µc, S−1 is the scale matrix for Rc, and ν is the
number of degrees of freedom for Rc. The Wishart
distribution is defined as follows:

W(R|S−1, ν) =
1

G
|R|

ν−Q−1
2 exp

(
−1

2
tr(SR)

)
, (5)

where G is the normalizing constant. Because we use
conjugate Gaussian-Wishart priors for the parameters
of the Gaussian mixture components, we can analyti-
cally integrate out those parameters, given the assign-
ments of points to components. Let zn be the latent as-
signment of the nth point. The probability of latent co-
ordinatesX given latent assignments Z = (z1, · · · , zN )
is obtained by integrating out the Gaussian parame-
ters {µc,Rc} as follows:

p(X|Z,S, ν, r) =
∞∏
c=1

π−NcQ
2

rQ/2|S|ν/2

r
Q/2
c |Sc|νc/2

×
Q∏

q=1

Γ(νc+1−q
2 )

Γ(ν+1−q
2 )

, (6)

where Nc is the number of data points assigned to the
cth component, Γ(·) is Gamma function, and

rc = r +Nc, νc = ν +Nc,
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ru+

∑
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r +Nc
,

Sc = S+
∑

n:zn=c

xnx
>
n + ruu> − rcucu

>
c , (7)

are the posterior Gaussian-Wishart parameters of the
cth component. We use a Dirichlet process with con-
centration parameter η for infinite mixture model-
ing [5] in the latent space. Then, the probability of
Z is given as follows:

p(Z|η) =
ηC

∏C
c=1(Nc − 1)!

η(η + 1) · · · (η +N − 1)
, (8)

where C is the number of components for which Nc >
0. The joint distribution is given by

p(Y,X,Z|θ,S, ν,u, r, η)
= p(Y|X,θ)p(X|Z,S, ν,u, r)p(Z|η), (9)

where factors in the right hand side can be calculated
by (1), (6) and (8), respectively.

In summary, the infinite warped mixture model gen-
erates observations Y according to the following gen-
erative process:

1. Draw mixture weights λ ∼ GEM(η)

2. For each component c = 1, · · · ,∞

(a) Draw precision Rc ∼ W(S−1, ν)

(b) Draw mean µc ∼ N (u, (rRc)
−1)

3. For each observed dimension d = 1, · · · , D

(a) Draw function fd(x) ∼ GP(m(x), k(x,x′))

4. For each observation n = 1, · · · , N

(a) Draw latent assignment zn ∼ Mult(λ)

(b) Draw latent coordinates xn ∼ N (µzn ,R
−1
zn )

(c) For each observed dimension d = 1, · · · , D
i. Draw feature ynd ∼ N (fd(xn), β

−1)

Here, GEM(η) is the stick-breaking process [6] that
generates mixture weights for a Dirichlet process with
parameter η, Mult(λ) represents a multinomial distri-
bution with parameter λ, m(x) is the mean function
of the Gaussian process, and x,x′ ∈ RQ. Figure 2
shows the graphical model representation of the pro-
posed model. Here, we assume a Gaussian for the
mixture component, although we could in principle use
other distributions such as Student’s t-distribution or
the Laplace distribution.

The iWMM can be seen as a generalization of either
the GPLVM or the infinite Gaussian mixture model

uS

λ

µ

η z x y

R f

kmrυ

∞ D

N

Figure 2: A graphical model representation of the infi-
nite warped mixture model, where the shaded and un-
shaded nodes indicate observed and latent variables,
respectively, and plates indicate repetition.

(iGMM). To be precise, the iWMM with a single fixed
spherical Gaussian density on the latent coordinates
corresponds to the GPLVM, while the iWMM with
fixed direct mapping function fd(x) = xd and Q = D
corresponds to the iGMM.

The iWMM offers attractive properties that do not ex-
ist in other probabilistic models; principally, the abil-
ity to model clusters with nonparametric densities, and
to infer a separate dimension for manifold.

4 Inference

We infer the posterior distribution of the latent co-
ordinates X and cluster assignments Z using Markov
chain Monte Carlo (MCMC). In particular, we alter-
nate collapsed Gibbs sampling of Z, and hybrid Monte
Carlo sampling of X. Given X, we can efficiently sam-
ple Z using collapsed Gibbs sampling, integrating out
the mixture parameters. Given Z, we can calculate the
gradient of the unnormalized posterior distribution of
X, integrating over warping functions. This gradient
allows us to sample X using hybrid Monte Carlo.

First, we explain collapsed Gibbs sampling for Z.
Given a sample of X, p(Z|X,S, ν,u, r, η) does not de-
pend on Y. This lets resample cluster assignments,
integrating out the iGMM likelihood in close form.
Given the current state of all but one latent component
zn, a new value for zn is sampled from the following
probability:

p(zn = c|X,Z\n,S, ν,u, r, η)

∝
{
Nc\n · p(xn|Xc\n,S, ν,u, r) existing components

η · p(xn|S, ν,u, r) a new component

(10)

where Xc = {xn|zn = c} is the set of latent coordi-
nates assigned to the cth component, and \n represents
the value or set when excluding the nth data point. We



can analytically calculate p(xn|Xc\n,S, ν,u, r) as fol-
lows:

p(xn|Xc\n,S, ν,u, r)

= π−
Nc\nQ

2

r
Q/2
c\n |Sc\n|νc\n/2

r
′Q/2
c\n |S′

c\n|
ν′
c\n/2

Q∏
d=1

Γ(
ν′
c\n+1−d

2 )

Γ(
νc\n+1−d

2 )
, (11)

where r′c, ν′c, u′
c and S′

c represent the posterior
Gaussian-Wishart parameters of the cth component
when the nth data point is assigned to the cth com-
ponent. We can efficiently calculate the determinant
by using the rank one Cholesky update. In the same
way, we can analytically calculate the likelihood for a
new component p(xn|S, ν,u, r).

Hybrid Monte Carlo (HMC) sampling of X from pos-
terior p(X|Z,Y,θ,S, ν,u, r) requires computing the
gradient of the log of the unnormalized posterior
log p(Y|X,θ) + log p(X|Z,S, ν,u, r). The first term
of the gradient can be calculated by

∂ log p(Y|X,θ)

∂K
= −1

2
DK−1 +

1

2
K−1YYTK−1,

(12)

and

∂k(xn,xm)

∂xn

= − α

`2
exp

(
− 1

2`2
(xn − xm)>(xn − xm)

)
(xn − xm),

(13)

using the chain rule. The second term can be calcu-
lated as follows:

∂ log p(X|Z,S, ν,u, r)
∂xn

= −νznS
−1
zn (xn − uzn). (14)

We also infer kernel hyperparameters θ = {α, β, `}
via HMC, using the gradient of the log unnormalized
posterior with respect to the kernel hyperparameters.
The complexity of each iteration of HMC is dominated
by the O(N3) computation of K−1 1.

In summary, we obtain samples from the posterior
p(X,Z|Y,θ,S, ν,u, r, η) by iterating the following pro-
cedures:

1. For each observation n = 1, · · · , N , sample the
component assignment zn by collapsed Gibbs
sampling (10).

2. Sample latent coordinates X and kernel parame-
ters θ using hybrid Monte Carlo.

1This complexity could be improved by making use of
an inducing point approximation such as [7, 8]

4.1 Posterior Predictive Density

In the GPLVM, the predictive density of at test point
y? is usually computed by finding the point x? which is
most likely to be mapped to y?, then using the density
of p(x?) and the Jacobian of the warping at that point
to approximately compute the density at y?. When
inference is done by simply optimizing the location
of the latent points, this estimation method simply
requires solving a single optimization for each y?.

For our model, we use approximate integration to esti-
mate p(y?). This is done for two reasons: First, multi-
ple latent points (possibly from different clusters) can
map to the same observed point, meaning the standard
method can underestimate p(y?). Second, because we
do not optimize the latent coordinates but rather sam-
ple them, we would need to perform optimizations for
each p(y?) separately for each sample. Our method
gives estimates for all p(y?) at once, but may not be
accurate in very high dimensions.

The posterior density in the observed space given the
training data is simply:

p(y?|Y)

=

∫∫
p(y?,x?,X|Y)dx?dX

=

∫∫
p(y?|x?,X,Y)p(x?|X,Y)p(X|Y)dx?dX.

(15)

We approximate p(X|Y) using the samples from the
Gibbs and hybrid Monte Carlo samplers. We approx-
imate p(x?|X,Y) by sampling points from the latent
mixture and warping them, using the following proce-
dure:

1. Draw latent assignment
z? ∼ Mult( N1

N+η , · · · ,
NC

N+η ,
η

N+η )

2. Draw precision matrix
R? ∼ W(S−1

z? , νz?)

3. Draw mean
µ? ∼ N (uz? , (rz?R?)−1)

4. Draw latent coordinates
x? ∼ N (µ?,R?−1)

When a new component C + 1 is assigned to z?, the
prior Gaussian-Wishart distribution is used for sam-
pling in steps 2 and 3. The first factor of (15) can be
calculated by

p(y?|x?,X,Y)

= N (k?>K−1Y, k(x?,x?)− k?>K−1k?), (16)



where k? = (k(x?,x1), · · · , k(x?,xN ))>. Each step
of this procedure is exact. Since the observations y?

are conditionally normally distributed, each one adds
a smooth local contribution to the empirical Monte
Carlo estimate of the posterior density, as opposed to
a point mass. This procedure was used to generate the
plots of posterior density in Figures 1, 4, and 6.

5 Related work

Latent Variable Models The GPLVM is effective
as a nonlinear latent variable model in a wide variety
of applications [3, 9, 10]. The latent positionsX in the
GPLVM are typically obtained by maximum a poste-
riori estimation or variational Bayesian inference [11],
placing a single fixed spherical Gaussian prior on x. A
prior which penalizes a high-dimensional latent space
is introduced by [12], in which the latent variables
and their intrinsic dimensionality are simultaneously
optimized. The iWMM can also infer the intrinsic di-
mensionality of each manifolds: inferring the Gaussian
covariance for each latent cluster allows the variance
along irrelevant dimensions to become small. Because
each latent cluster has a different set of parameters,
the effective dimension of each cluster can vary, allow-
ing manifolds of different dimension in the observed
space. This ability is demonstrated in Figure 4 (c).

The iWMM can also be viewed as a generalization of
the mixture of probabilistic principle component ana-
lyzers [13], or mixture of factor analyzers [14], where
the linear mapping of the mixtures is generalized to a
nonlinear mapping by Gaussian processes, and number
of components is infinite.

Clustering Methods There exist non-probabilistic
clustering methods which can find clusters with com-
plex shapes, such as spectral clustering [15] and non-
linear manifold clustering [16, 17]. Spectral clustering
finds clusters by first forming a similarity graph, then
finding a low-dimensional latent representation using
the graph, and finally, clustering the latent coordinates
via k-means. The performance of spectral clustering
depends on parameters which are usually set manu-
ally, such as the number of clusters, the number of
neighbors, and the variance parameter used for con-
structing the similarity graph. In contrast, the iWMM
infers such parameters automatically. One of the main
advantages of the iWMM over these methods is that
there is no need to construct a similarity graph.

The kernel Gaussian mixture model [18] can also find
non-Gaussian shaped clusters. This model estimates
a GMM in the implicit high-dimensional feature space
defined by the kernel mapping of the observed space.
However, the kernel GMM uses a fixed nonlinear map-

Figure 3: A sample from the 2-dimensional latent
space when modeling a series of 32x32 face images.
Our model correctly discovers that the data consists
of two separate manifolds, both approximately one-
dimensional, which share the same head-turning struc-
ture.

ping function, with no guarantee that the latent points
will be well-modeled by a GMM. In contrast, the
iWMM infers the mapping function such that the la-
tent co-ordinates will be well-modeled by a GMM.

For one-dimensional data, [19] introduce a nonpara-
metric model of unimodal clusters, where each clus-
ter’s density function decreases away from its mode.

6 Experimental results

Clustering Faces We first examined our model’s
ability to model images without pre-processing. We
constructed a dataset consisting of 50 greyscale 32x32
pixel images of two individuals from the UMIST faces
dataset [20]. Both series of images capture a per-
son turning his head to the right. Figure 3 shows a
sample from the posterior over the latent coordinates
and density model. The model has recovered three
relevant, interpretable features of the dataset. First,
that there are two distinct faces. Second, that each
set of images lies approximately along a smooth one-
dimensional manifold. Third, that the two manifolds
share roughly the same structure: the front-facing im-
ages of both individuals lie close to one another, as do
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Figure 4: Top row: The observed, unlabeled data points, and the clusters inferred by the iWMM. Bottom row:
Latent coordinates and Gaussian components, shown for a single sample from the posterior. Each point in the
latent space corresponds to a point in the observed space. This figure is best viewed in color.

the side-facing images.

6.1 Synthetic Datasets

Next, we demonstrate the proposed model on the four
synthetic datasets shown in Figure 4. None of these
four datasets can be appropriately clustered by Gaus-
sian mixture models (GMM). For example, consider
the 2-curve data shown in Figure 4 (a), where 100
data points lie in one of two curved lines in a two-
dimensional observed space. A GMM with two com-
ponents cannot separate the two curved lines, while a
GMM with many components could separate the two
lines only by breaking each line into many clusters. In
contrast, in the iWMM, the two non-Gaussian-shaped
clusters in the observed space were represented by two
Gaussian-shaped clusters in the latent space, as shown
at the bottom row of Figure 4 (a). The iWMM sepa-
rated the two curved lines by nonlinearly warping two
Gaussians from the latent space to the observed space.

Figure 4 (c) shows an interesting manifold learning
challenge: a dataset consisting of two circles. The
outer circle is modeled in the latent space by a Gaus-
sian with effectively one degree of freedom. This linear
topology fits the outer circle in the observed space by
bending the two ends until they overlap. In contrast,

the sampler fails to discover the 1D topology of the
inner circle, modeling it with a 2D manifold instead.
This example demonstrates that each cluster manifold
in the iWMM can have a different effective dimension.

6.2 Mixing

An interesting side-effect of learning the number of la-
tent clusters is that this added flexibility can help the
sampler escape local minima, helping the sampler to
mix properly. Figure 5 shows the samples of the latent
coordinates and clusters of the iWMM over time, when
modeling the 2-curve data. 5(a) shows the latent coor-
dinates initialized at the observed coordinates, start-
ing with one latent component. At the 500th iteration
5(b), each curved line is modeled by two components.
At the 1800th iteration 5(c), the left curved line is
modeled by a single component. At the 3000th iter-
ation 5(d), the right curved line is also modeled by
a single component, and the dataset is appropriately
clustered. This configuration was relatively stable, and
a similar state was found at the 5000th iteration.

6.3 Density Estimation

Figure 6 (a) shows the posterior density in the ob-
served space inferred by the iWMM on the 2-curve



(a) 1 (b) 500 (c) 1800 (d) 3000

Figure 5: The inferred infinite GMMs over iterations in the two-dimensional latent space with the iWMM using
the 2-curve data. Labels indicate the number of iterations of the sampler, and the color of each point represents
its ordering in the observed coordinates.

(a) iWMM (b) iWMM (C = 1)

Figure 6: The posterior density in the observed space
with the 2-curve data inferred by the iWMM (a), and
that inferred by the iWMM with one component (b).

data, computed using 1000 samples from the Markov
chain. The two separate manifolds of high density im-
plied by the two curved lines was recovered by the
iWMM. Note also that the density along the manifold
varies with the density of data shown in Figure 4 (a).
This result can be compared to a special case of our
model, which uses only a single Gaussian to model the
latent coordinates instead of an infinite GMM. Fig-
ure 6 (b) shows that the result of the iWMM with
C = 1, where posterior is forced to place significant
density connecting the two clusters. Figure 6 (b) shows
that the single-cluster variant of the iWMM posterior
is forced to place significant density connecting the two
clusters.

6.4 Visualization

Next, we briefly investigate the potential of the iWMM
for visualization. Figure 7 (a) shows the latent coor-
dinates obtained by averaging over 1000 samples from
the posterior of the iWMM. Because rotating the la-
tent coordinates does not change their probability, av-
eraging may not be an adequate way to summarize
the posterior. However, we show this result in order to

show the characteristics of latent coordinates obtained
by the iWMM. The estimated latent coordinates are
clearly separated, and they form two straight lines.
This result indicates that in some cases, the iWMM
can recover the topology of the data before it has been
warped into a manifold. For comparison, Figure 7 (b)
shows the latent coordinates estimated by the iWMM
when forced to use a single cluster: the latent coordi-
nates lie in two sections of a single straight line. Fig-
ures 7 (c) and (d) show the latent coordinates esti-
mated by the GPLVM when optimizing or integrating
out the latent coordinates, respectively. Recall that
the iWMM (C = 1) is a more flexible model than the
GPLVM, since the GPLVM enforces a spherical covari-
ance in the latent space. These methods did not unfold
the two curved lines, since the effective dimension of
their latent representation is fixed beforehand. In con-
trast, the iWMM effectively formed a low-dimensional
representation in the latent space.

Regardless of the dimension of the latent space, the
iWMM will tend to model each cluster with as low-
dimensional a Gaussian as possible. This is because,
if the data in a cluster can be made to lie in a low-
dimensional plane, a narrowly-shaped Gaussian will
assign the latent coordinates much higher likelihood
than a spherical Gaussian.

6.5 Clustering Performance

We more formally evaluated the density estimation
and clustering performance of the proposed model us-
ing four real datasets: iris, glass, wine and vowel, ob-
tained from LIBSVM multi-class datasets [21], in ad-
dition to the four synthetic datasets shown above: 2-
curve, 3-semi, 2-circle and Pinwheel [22]. The statis-
tics of these datasets are summarized in Table 1. In
each experiment, we show the results of 20-fold cross-
validation. Results in bold are not significantly differ-
ent from the best performing method in each column



(a) iWMM (b) iWMM (C = 1) (c) GPLVM (d) BGPLVM

Figure 7: The estimated latent coordinates of the 2-curve data by (a) iWMM, (b) iWMM (C = 1), (c) GPLVM,
and (d) Bayesian GPLVM.

Table 1: The statistics of datasets used for evaluation.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

number of samples: N 100 300 100 250 150 214 178 528
observed dimensionality: D 2 2 2 2 4 9 13 10

number of clusters: C 2 3 2 5 3 7 3 11

Table 2: Average Rand index for evaluating clustering performance.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

iGMM 0.52 0.79 0.83 0.81 0.78 0.60 0.72 0.76
iWMM(Q=2) 0.86 0.99 0.89 0.94 0.81 0.65 0.65 0.50
iWMM(Q=D) 0.86 0.99 0.89 0.94 0.77 0.62 0.77 0.76

according to a paired t-test.

Table 2 compares the clustering performance of the
iWMM with the iGMM, quantified by the Rand in-
dex [23], which measures the correspondence between
inferred clusters and true clusters. The iGMM is an-
other probabilistic generative model commonly used
for clustering, which can be seen as a special case of the
iWMM in which the Gaussian clusters are not warped.
These experiments demonstrate the extent to which
nonparametric cluster shapes allow a mixture model
to recover more meaningful clusters.

Table 3 lists average test log likelihood, compar-
ing the proposed models with kernel density estima-
tion (KDE), and the infinite Gaussian mixture model
(iGMM). In KDE, the kernel width is estimated by
maximizing the leave-one-out log densities. Since the
manifold on which the observed data lies can be at
most D-dimensional, we set the latent dimension Q
equal to the observed dimension D in iWMMs. We
also include the Q = 2 case in an attempt to char-
acterize how much modeling power is lost by forcing
the latent representation to be visualizable. The pro-
posed models achieved high test log likelihoods com-
pared with the KDE and iGMM.

6.6 Source code

Code to reproduce all the above experiments is avail-
able at github.com/duvenaud/warped-mixtures.

7 Future work

The Dirichlet process mixture of Gaussians in the la-
tent space of our model could easily be replaced by
a more sophisticated density model, such as a hier-
archical Dirichlet process [24], or a Dirichlet diffusion
tree [25]. Another straightforward extension of our
model would be making inference more scalable by us-
ing sparse Gaussian processes [7, 8] or more advanced
hybrid Monte Carlo methods [26]. An interesting but
more complex extension of the iWMM would be a
semi-supervised version of the model. The iWMM
could allow label propagation along regions of high
density in the latent space, even if those regions were
stretched along low-dimensional manifolds in the ob-
served space. Another natural extension would be to
allow a separate warping for each cluster, which would
also improve inference speed.



Table 3: Average test log likelihood for evaluating density estimation performance.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

KDE −2.47 −0.38 −1.92 −1.47 −1.87 1.26 −2.73 6.06
iGMM −3.28 −2.26 −2.21 −2.12 −1.91 3.00 −1.87 −0.67
iWMM(Q=2) −0.90 −0.18 −1.02 −0.79 −1.88 5.76 −1.96 5.91
iWMM(Q=D) −0.90 −0.18 −1.02 −0.79 −1.71 5.70 −3.14 −0.35

8 Conclusion

In this paper, we introduced a simple generative model
of non-Gaussian density manifolds which can infer
nonlinearly separable clusters, low-dimensional repre-
sentations of varying dimension per cluster, and den-
sity estimates which smoothly follow data contours.
We then introduced an efficient sampler for this model
which integrates out both the cluster parameters and
the warping function exactly. We further demon-
strated that allowing non-parametric cluster shapes
improves clustering performance over the Dirichlet
process Mixture of Gaussians.

Many methods have been proposed which can per-
form some combination of clustering, manifold learn-
ing, density estimation and visualization. We demon-
strated that a simple but flexible probabilistic genera-
tive model can perform well at all these tasks.
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