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Abstract

We consider the problem of learning by
demonstration from agents acting in un-
known stochastic Markov environments or
games. Our aim is to estimate agent prefer-
ences in order to construct improved policies
for the same task that the agents are trying
to solve. To do so, we extend previous prob-
abilistic approaches for inverse reinforcement
learning in known MDPs to the case of un-
known dynamics or opponents. We do this
by deriving two simplified probabilistic mod-
els of the demonstrator’s policy and utility.
For tractability, we use maximum a posteri-
ori estimation rather than full Bayesian in-
ference. Under a flat prior, this results in a
convex optimisation problem. We find that
the resulting algorithms are highly compet-
itive against a variety of other methods for
inverse reinforcement learning that do have
knowledge of the dynamics.

1 Introduction

We consider the problem of learning by demonstra-
tion from agents acting in stochastic Markov environ-
ments, or in stochastic Markov games [13, 18], when
we do not know the underlying dynamics of the envi-
ronment or the opponent strategy. This type of learn-
ing is very useful, since it can significantly decrease
the time needed to acquire a particular task. Another
possible application are games such as chess, where
large libraries of expert play have been accumulated
over the years. Inverse reinforcement learning offers a
principled method to use this data for imitating ex-
pert play, even when the experts are deviating from
the optimal strategy. In this paper, we learn through
demonstration by estimating the preferences and pol-
icy of the agent giving the demonstration. These can

then be used to estimate improved policies, by com-
bining the inferred agent preferences with policy im-
provement schemes. This is not always trivial, since
the demonstrations may be sub-optimal and the un-
derlying dynamics are unknown to us.

Our main technical contribution is two inverse rein-
forcement learning algorithms for the case of unknown
dynamics. These are inspired by two Bayesian models
for inverse reinforcement learning in known environ-
ments [7, 17]. Our first algorithm extends the original
model to unknown dynamics by coupling probabilistic
preference and policy estimation with approximate dy-
namic programming schemes and maximum a poste-
riori estimation. Thus, we avoid explicitly estimating
a model altogether. Our second algorithm proposes
a simpler model where the policy and value function
are jointly represented by the same set of parameters.
We can thus eliminate both the dynamic programming
step and estimation of the dynamics. Finally, we ex-
perimentally evaluate our schemes against a broad se-
lection of algorithms which do know the dynamics. We
consider both agents acting in unknown environments,
as well agents playing stochastic games, and show that
we can approach and even surpass the performance of
methods that use knowledge of the dynamics.

The remainder of the paper is organised as follows.
Section 2 formally introduces the setting, while Sec-
tion 3 discusses related work and our contribution.
Section 4 describes our models and algorithms. Com-
parisons with other methods are given in Section 5,
and we conclude with a discussion in Section 6.

2 Setting

In our setting, we observe a set of demonstrations D
from an agent acting in an unknown Markov environ-
ment or game ν ∈ N , where N is a set of possible
environments. The k-th demonstration dk ∈ D is a
Tk-long trajectory, consisting of a sequence of envi-
ronment states s ∈ S and agent actions a ∈ A with



dk =
(
(sk1 , a

k
1), . . . , (skTk

, akTk
)
)
. We assume that both

the agent policy π and the environment ν are Marko-
vian. Consequently, the action at only depends on the
current state st and the next state st+1 only depends
on st, at. The agent acts according to some (unknown
to us) reward function ρ : S × A. In particular, any
policy π that the agent chooses, has a value defined in
terms of the expected utility with respect to ρ:

V πν,ρ(s) , Eπ,ν(Uρ | s1 = s), Uρ ,
T∑
t=1

ρ(st, at),

(2.1)

where T may be random.1 We denote the optimal
policy for a reward function by π∗(ν, ρ), with either of
those two arguments omitted if it is clear from context.
The optimal value function is denoted by:

V ∗ν,ρ , sup
π
V πν,ρ. (2.2)

Similarly, we define Qπν,ρ(s, a) , Eπ,ν(Uρ | s1 = s, a1 =
a) to be the expected utility of taking action a at state
s and following π thereafter, while Q∗ν,ρ(s, a) is the
optimalQ-function. We assume that the agent’s policy
is ε-optimal with respect to ρ, that is:

V πν,ρ ≥ V ∗ν,ρ − ε. (2.3)

In our setting, we can observe the sequence of states
and actions taken and we know (the distribution of)
T . However, the policy π, the environment ν and the
reward function ρ, as well as the ε-optimality of the
policy are unknown to us.

3 Related work and contribution

Inverse reinforcement learning [15] is the problem of
estimating the reward function of an agent acting in
a dynamic environment. It is thus closely related to
preference elicitation [3], since the reward function can
be used to calculate the agent preferences, and appren-
ticeship learning [1], since for each reward function one
can calculate the optimal policy.

Much previous work in this setting employs a linear
approximation with feature expectations. The gen-
eral idea is to find a reward function minimising some
loss between the expert features expectations and the
one of the optimal policy for the approximated dy-
namics and reward function. A representative ex-
ample is [8], which uses the quadratic programming
maximum-margin approach proposed in [1] to obtain a
reward function and least squares temporal differences

1For geometrically distributed T , the expected utility
function is identical to that obtained when T → ∞ and
the rewards are exponentially discounted.

(LSTD) [4] for policy evaluation. LSTD is also used
to estimate the feature expectation of the expert. A
similar approach is taken in [14], which used the game-
theoretic algorithm MWAL [20] where a near optimal
policy is found by using LSPIf, a variant of LSPI [11]
for discrete finite horizon Markov decision processes.

Other methods avoid using policy iteration, but nev-
ertheless indirectly employ knowledge of the environ-
ment. The most important work in this category is rel-
ative entropy inverse reinforcement learning [2]. The
main idea is to perform a sub-gradient ascent on an
appropriate loss. The sub-gradient is estimated us-
ing importance sampling on trajectories generated us-
ing a stochastic policy on the real environment. An-
other work in this category is the SCIRL (Structured
Classification for Inverse Reinforcement Learning) al-
gorithm [9]. Using the observation that the reward
and the Q function share the same parameter, then es-
timate it by minimising an appropriately defined loss.
While we use a similar idea, SCIRL uses the real en-
vironment model to calculate feature expectations.

An altogether different approach is taken by [12],
which constructs reward features from a set of compo-
nent features through logical conjunctions. Given a set
of trajectories, and the true environment model, the
algorithm then estimates a reward function by finding
the most effective feature combinations.

Our algorithms are inspired by two recently proposed
probabilistic models for Bayesian inverse reinforce-
ment learning. The first model starts by specifying a
prior on the reward function and a reward-conditional
distribution on policies through a prior on policy ran-
domness [17]. The second model instead specifies a
prior on the policy directly and policy-conditional dis-
tribution on the reward functions through a prior on
policy optimality [7]. These methods have been de-
scribed and evaluated on problems where the dynamics
are known and the authors suggest that handling the
unknown dynamics case would be possible by simply
adding a prior distribution on the dynamics.

3.1 Our contribution

Our own work focuses on the problem of learning from
demonstration in the case where the transition model
of the process is unknown. This is the case when
the agent is either acting in an environment with un-
known dynamics, or playing an alternating Markov
game against an unknown opponent. Unlike most pre-
vious approaches, we do not have prior knowledge of
the dynamics, either in the form of an analytically
available transition kernel, or in the form of a sim-
ulator from which we can take samples.

With respect to the reward-prior model specified



in [17], our main technical novelty is to avoid esti-
mating the dynamics altogether. Instead, we use ap-
proximate dynamic programming (LSTDQ) in combi-
nation with linear parametrisation to obtain policies
and value functions for the reward prior model.

With respect to the policy-optimality-prior specified
in [7], our main technical novelty is that we eliminate
the need for a dynamic programming step altogether.
This significant simplification is achieved by placing a
prior on value functions rather than reward functions.
Then, instead of considering all possible value func-
tions for which a given policy is ε-optimal, we restrict
the space by jointly parametrising the policy and value
function.

Thirdly, our models use features, rather than the raw
state observations. Thus our algorithms are more gen-
erally applicable.

Finally, for computational simplicity, we employ max-
imum a posteriori (MAP) estimation, rather than full
Bayesian inference, as also suggested in [5]. Then infer-
ence can be performed quickly using any appropriate
global or local optimisation algorithm.

Our main experimental contribution is to show that
our proposed algorithms are highly competitive against
six other methods, even if those are using knowledge
of the dynamics. In particular, we investigate the
robustness of our algorithms, by tuning the hyper-
parameters, including the features, on a fixed set of
demonstrations and then testing their performance on
a large sample of demonstrations drawn from some
distribution.

We compare our approaches with the full Bayesian
method RPB in [17], the MAPIRL method in [5],
MWAL [20], the maximum entropy method Max-
Ent [21], the projection method Proj suggested in [1],
MMP [16] and finally the feature-based FIRL [12].
We outperform most of those methods in all of our
experiments, apart from the FIRL which (naturally)
had particularly good performance in a domain with
a high number of features. However, even in this case,
our algorithms, without any knowledge of the dynam-
ics, manage to approach the FIRL solution.

4 Models

The algorithms we provide are inspired by the proba-
bilistic models introduced in [7, 17], whose difference
from our models we describe in this section. Both of
these maintain a joint prior distribution ξ on policies
π ∈ P and reward functions ρ ∈ R. They only differ
on how they model their dependencies. The reward
prior model specifies a prior on reward functions and
a conditional distribution on policies given the reward.

The policy optimality model specifies a prior on poli-
cies and a conditional distribution on reward functions
given the policy. In both cases, the likelihood is simply
the probability p(D | π) of observing the demonstra-
tions under the estimated policy.

Both of our models use features, rather than direct
state observations. Thus, we define a mapping gR :
S × A → XR from the state-action space to a feature
space XR ⊂ RmR for the reward function. Similarly,
we also define a mapping gQ : S × A → XQ from the
state-action space to a feature space XQ ⊂ RmQ for
the state-action value function.

4.1 Reward prior (RP) model

The main difference between the original model
and ours is with respect to the reward function
parametrisation and the value function estimation.
In our model, we maintain a parameter wR ∈ RmR

parametrising the reward function via a linear func-
tion f : XR ×RmR → R, such that:

ρ(s, a) , f(gR(s, a),wR) , gR(s, a)
>
wR. (4.1)

Since the environment dynamics are not known,
we employ least-square temporal differences
(LSTDQ [11]) to obtain a parametrised state-action
value function:

Q̂∗(s, a) = gQ(s, a)
>
wQ. (4.2)

The use of LSTDQ allows us to consider the case where
the demonstration D comes from a suboptimal expert.
Since D is generated by the expert’s policy, we can
use the on-policy LSTDQ. This finds a parameter wQ
such that wQ = A−1b = A−1ZwR = CwR, with C =
A−1Z and :

A =
∑
dk∈D

Tk−1∑
t=1

gQ(skt , a
k
t )
(
gQ(skt , a

k
t )− γgQ(skt+1, a

k
t+1)

)>
(4.3)

b =
∑
dk∈D

Tk−1∑
t=1

gQ(skt , a
k
t )ρ(skt , a

k
t ) (4.4)

=
∑
dk∈D

Tk−1∑
t=1

gQ(skt , a
k
t )gR(skt , a

k
t )>wR (4.5)

=

(∑
dk∈D

Tk−1∑
t=1

gQ(skt , a
k
t )gR(skt , a

k
t )>

)
wR (4.6)

= ZwR. (4.7)

So:

Z =
∑
dk∈D

Tk−1∑
t=1

gQ(skt , a
k
t )gR(skt , a

k
t )>. (4.8)



As the demonstration D is fixed, so are A, Z and C.
Then,

Q̂∗wR
(s, a) = gQ(s, a)

>
CwR. (4.9)

As in the original model, we assume that, the demon-
stration policy π is softmax with respect to the value
function:

πβ,wR
(a | s) , eβQ̂

∗
wR

(s,a)∑
a′ e

βQ̂∗wR
(s,a′)

, (4.10)

Finally, the likelihood is simply:

p(D | β,wR) =
∏
dk∈D

Tk∏
t=1

πβ,wR
(akt | skt ), (4.11)

and the overall posterior can be factorised due to con-
ditional independence:

ξ(β,wR | D) ∝ p(D | β,wR)ξ(wR)ξ(β). (4.12)

The main question is which prior to select. If we as-
sume a uniform prior for the reward parameters wR
and β, taking the logarithm and replacing Q̂∗wR

by its
value results in the following maximisation problem:

max
wR

∑
dk∈D

{ Tk∑
t=1

βgQ(skt , a
k
t )
>
CwR

− ln
∑
a′

eβgQ(skt ,a
′)
>
CwR

}
. (4.13)

Equation 4.13 is a concave function which can be max-
imised efficiently. Note that since wR is not con-
strained and the prior for wR, β is uniform, β is essen-
tially a free parameter which can be set to an arbitrary
positive value. Then, we can get both the preference
of the expert wR, as well as the parameter of the value
function wQ.

An alternative is to use an exponential prior for β and
a Dirichlet prior for ρ. Intuitively, this should induce
a penalty for overfitting, and a sparse reward function.
However, the optimisation is in this case difficult, and
in preliminary experiments we found that it did not
improve upon the uniform prior.

4.2 Policy optimality (PO) model

This model starts with a prior ξ(π) on the policies.
This allows a posterior on the policy ξ(π | D) to be
obtained from the data directly. This type of “imi-
tator” policy is then tempered through use of a prior
on policy optimality. Briefly, if the policy is ε-optimal,
then there is a set of reward functions Rε such that
V πν,ρ ≥ V ∗ν,ρ − ε for any ρ ∈ Rε.

The original model assumed a prior ξ(ε) = e−ε, for
ε-optimality, and so obtained a distribution on reward
functions conditional on the policy and its optimality.
The overall posterior was then factorised as follows:

ξ(ε, π, ρ | D, ν) ∝ p(D | π, ν)ξ(ρ | π, ε)ξ(ε)ξ(π).

(4.14)

The difficulty with this model is that one has to con-
sider all reward functions for which a policy is ε-
optimal. This is not a problem for a finite set reward
functions, but it makes inference hard in the general
case. In addition, since ν is not known, one would have
to integrate (or maximise) over ν explicitly.

Our own model considers value functions directly,
rather than reward functions, thus eliminating the
need for a dynamic programming step. In particular, a
vector (wQ, β) with wQ ∈ RmQ , jointly parametrises
the optimal value function and the demonstrator pol-
icy. Specifically, the optimal state-action value func-
tion is parametrised via a linear function h : XQ ×
RmQ → R, such that:

Q(s, a) = h(gQ(s, a),wQ), (4.15)

while the policy is defined as:

πβ,wQ
(a | s) =

eβQ(s,a)∑
a′∈A e

βQ(s,a′)
. (4.16)

Each parameter β,wQ corresponds to a unique policy-
value function pair. We assume an independent prior
ξ(β,wQ) = ξ(β)ξ(wQ). Our posterior probability is
then:

ξ(β,wQ | D) ∝ p(D | πβ,wQ
)ξ(β)ξ(wQ), (4.17)

since given β,wQ, the policy and value function are
uniquely determined.

Using uniform priors for all parameters, and taking
the logarithm, results in the following maximisation
problem:

max
wQ

∑
dk∈D

{
Tk∑
t=1

βgQ(skt , a
k
t )
>
wQ − ln

∑
a′

eβgQ(skt ,a
′)
>
wQ

}
.

(4.18)

It is easy to see that PO model can also be obtained
by replacing CwR in equation 4.13 by the value wQ.
Although both PO and RP look similar, the PO model
does not require the matrix C. Intuitively we can see
that PO considers value functions directly, rather than
reward functions, thus eliminating the need for a dy-
namic programming step. In particular, a vector wQ
jointly parametrises the optimal value function and the



demonstrator policy defined in equation 4.10. Another
significant difference is that PO starts with a prior ξ(π)
on the policies. This allows a posterior on the policy
ξ(π | D) to be obtained from the data directly.

An alternative model is to use an exponential distribu-
tion, ξ(β−1) = Exp(1) for the scaling parameter, and
a Dirichlet distribution ξ(wQ) = Dirichlet(α) for the
other value function parameters, with α ∈ RmQ

+ such
that αi = 1

2 , so the posterior is:

ξ(β,wQ | D) ∝
∏
t

πβ,wQ
(at | st)

mQ∏
i=1

wαi−1
Qi e−β

−1

.

(4.19)

Taking the logarithm, we now need to solve the fol-
lowing maximisation problem, under the constraint
‖wQ‖1 = 1, and wQi ∈ [0, 1]:

max
β,wQ

∑
t

lnπβ,wQ
(at | st)−

1

2

mQ∑
i=1

lnwQi − β−1.

(4.20)

Now β−1 can be seen as a simple penalty to avoid over-
fitting. Due to the constraints, parameterswQ where a
few components have large values are favoured. Thus,
this model can be seen as a sparse regularised classifier.

5 Experiments

We performed a set of experiments in three domains.
These are either stochastic environments or alternat-
ing Markov games. In all those experiments, our al-
gorithms did not assume knowledge of the underly-
ing process, or opponent. For those cases where it
was possible to obtain an analytic model of the pro-
cess and/or of the opponent, we also compared our
algorithms with methods which assume knowledge of
the underlying dynamics. In all cases, we first tuned
hyper-parameters of the algorithms in a small set of
demonstration trajectories. These algorithms were
then evaluated on multiple runs with varying amounts
of demonstration trajectories, in order to examine the
robustness of algorithms and their performance im-
provement as the amount of data increased.

As mentioned in the previous section, we have a choice
of different priors for the models. The uniform pri-
ors lead to convex problems, which allow us to use
an efficient algorithm (L-BFGS) to find the maximum
a posteriori parameters. In preliminary experiments
with the alternative priors, we had to resort to random
restarts combined with local search. This didn’t led to
better results, possibly due to the difficulty of the op-
timisation problem. Consequently, in the presented

experiments, we only show results with uniform pri-
ors. We use LPO to denote the linear PO model and
LRP for the linear RP model.

All the experiments are performed on discrete environ-
ments, even though inference is performed on a set of
features instead. Consequently, it is possible to com-
pute the optimal policy with respect to a given reward
function on all of these environments. In our exper-
iments, we compare the performance of the policies
found by the inverse RL algorithms to that of the op-
timal policy of the environment. In particular, the loss
of a policy π is:

`(π) ,
∑
s∈S

µ(s)(V ∗(s)− V π(s)), (5.1)

where µ is the starting state distribution of the prob-
lem.

In all these experiments, the features are appropri-
ately scaled for each algorithm. For example, when
using MWAL the features are scaled so that they lie
in [−1, 1], whereas for Proj, they lie in [0, 1]. For all
experiments the features of the reward function gR are
state features.

5.1 Blackjack

The first domain is blackjack, as described in [19]. The
goal is to get cards such that their sum is as close as
possible to 21 without exceeding it. All face cards
count as 10 and the ace can be either 1 or 11 (usable).
At the beginning of the game, two cards are dealt to
both the dealer and the player. One of the card of
the dealer is face up, the other is face down. If the
player has immediately 21 (a face and an ace), then it
is a natural and he wins (+1.5 points). Otherwise, he
can request additional cards one by one (hits) until he
either stops (sticks) or exceeds 21 (goes bust). If he
goes bust, he loses (−1 points); if he sticks, then it is
the dealer’s turn. The dealer sticks when he has 17 or
greater; he hits otherwise. If the dealer goes bust, then
the player wins (+1 points); otherwise the outcome is
determined by who ever is closer to 21.

The state is determined by the sum of the player’s
hand (12-21), the dealer card (ace-10 or 1-10), and
whether or not the player holds a usable ace. We ig-
nore the case where the player sum is less than 12, as
then the player will always hit. This results in 201
states, including the terminal state.

We used 14 features for the reward function gR. They
included the state variables, their higher order (multi-
variate) polynomial terms (up to 2) and a bias (which
is always 1). For the value function features gQ, we
repeated the reward features for each action. In this



domain, the initial state distribution µ is derived from
the uniform distribution on the set of cards.

The demonstrations are obtained from the optimal
policy. We varied the number of episodes (from 10 to
10000) to determine the ability of the different algo-
rithms to handle limited data. We report average per-
formance on 200 runs. This includes both the loss (5.1)
and CPU time.

5.2 Gridworld

The second experiment is on 32× 32 gridworlds. The
agent can move into 5 directions (west, east, north,
south, or be still). But with probability 0.3 it fails and
moves to a random direction. The grids are partitioned
into 3 non overlapping regions (one at the lower left
corner, one at the upper right corner and the third
elsewhere). The initial state is uniformly drawn from
the possible states. The true reward is positive in the
two regions at the corner and negative elsewhere.

We used 64 features for the reward function gR. These
features included the coordinates x and y and 62 bi-
nary features indicating if x or y is lower than some
value. For the value function features gQ, we repeated
the reward features for each action.

The demonstrations are obtained from an optimal
agent. The number of steps for each episode is 8. The
number of episodes is varied from 10 to 10000. We
measured the average performance loss with respect
to the optimal value function, over 10 experimental
runs.

5.3 Tic-Tac-Toe

The final experiment is the game of tic-tac-toe. It
is a 3 × 3 board game where two players (X and O)
take turns alternatively to place their mark on empty
spaces. The player who first places three marks in
a row, horizontally, vertically, or diagonally wins and
obtains a reward of +1. If there is no legal move re-
maining, the game is a draw. The game state can be
described by 9 factors, each indicating the mark at a
board location. Thus the total number of states is at
most 39, symmetry and unreachable states notwith-
standing. There are up to 9 possible actions.

To construct gR, we used the features described in [10]:
the number of singlets (horizontal, diagonal, vertical
lines with exactly one symbol X or O), doublets (hor-
izontal, diagonal, vertical lines with exactly two sym-
bols X or O), triplets (horizontal, diagonal, vertical
lines with exactly three symbols X or O), diversity (the
number of different singlet directions for each player)
and crosspoints (an empty field belonging to at least
two singlets of the same player) for each player; their
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Figure 1: Blackjack results.

higher order (multivariate) polynomial terms (up to 2)
as well as the 9 features for the raw board position.

The features gQ of the value function for a state-action
pair (s, a) are those of the resulting state s′ prior to the
opponents play. We learned the policy for player X.
The demonstrations are obtained from a game between
the optimal player (X) and a uniformly random player
(O). Player X randomly selects one of the available
minimax-optimal actions. We performed the experi-
ments by varying the number of demonstrations (from
10 to 10000) and report results averaged over 200 runs.
We evaluated two cases: one against a random player
and one against an optimal player.

5.4 Results

For clarity of presentation, the figures only compare
our algorithms with the original reward prior model
RPB, the maximum entropy method Max-Ent [21]
and the feature-based FIRL [12]. While results for



MWAL [20], MAPIRL [5], MMP [16] and Proj [1],
are omitted for clarity of presentation, they did not
in general perform better than the methods shown.
Unlike our algorithms, all of the methods we compare
against use knowledge of the environment and conse-
quently enjoy an additional advantage.
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Figure 1(a) shows the expected loss ` for blackjack
for LPO, LRP and prior algorithms. We can see that
most algorithms found a good policy as the amount
of data increases. However, RPB, MMP and MWAL
(not shown) completely failed to find a reward induc-
ing a policy close to the expert’s one (always hits) even
after 104 demonstrations. The performance of Max-
Ent is better but does not improve with more data, in
contrast to the original Bayesian approach2 RPB, and
the maximum a posteriori approach MAPIRL. The
best competing approach is FIRL, but LRP manages
to surpass its performance, even without knowledge
of the dynamics. In addition, both LPO and LRP re-
quire significantly less computation time than all other
approaches, as can be seen in Fig. 1(b).

Figure 2 presents the expected value loss on the grid-
world. The performance of LRP, LPO, and FIRL
increases with more demonstrations. With less data,
we can see that LPO slightly outperforms all other al-
gorithms including FIRL. Again, the performance of
Max-Ent does not improve with more data. Also the
performance of the original Bayesian approach RPB
does not anymore increases with more data.

As a final example, we also present results on tic-tac-
toe in Fig 3. This way, one may obtain an idea of
how well our methods might be applicable to larger
games. Figure 3(a) presents the value difference when

2We also compared our method against the other mod-
els detailed in [7, 17], but RPB gave the best results in the
tested domains.
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Figure 3: Tic-Tac-Toe results

the opponent is random opponent, while Figure 3(b)
shows the results when the opponent is non determin-
istic but optimal. Against an optimal opponent, LPO,
LRP and Max-Ent quickly converge to the optimal
(minimax) policy. Against a random opponent both
LPO and LRP were able to outperform the optimal
(minimax) expert while Max-Ent did not improve
from the expert. This can be explained by the fact
that Max-Ent assumes that the expert is optimal
and then try to find a reward function which makes
the expert optimal. In constrast, LPO and LRP con-
siders a suboptimal expert (ε-optimal expert), then try
to find the true reward of this expert in order to out-
perform it if possible. Intuitively, the policy found by
LPO and LRP takes a little risk in order to beat the
expert against random opponents. At the same time,
the found policy never looses against an optimal (min-
imax) expert. In this experiment, FIRL (not shown)
completely failed to find a good policy. Its curve is
y=1 for both the random or the optimal opponent.



Overall, our algorithms are extremely robust and per-
form near-optimally in all domains. In the blackjack
domain they reach the performance of the optimal pol-
icy and surpass all alternatives, all of which know the
environment model a priori. In the gridworld, they
compete well against FIRL and even outperformed
it with less data in spite of the sophisticated feature
discovery method and the knowledge of the dynamics
by FIRL. Finally, the tic-tac-toe illustration demon-
strates that such methods may also be useful in larger
games.

Finally, it should be noted that our algorithms always
outperform methods using a linear combination of the
features. This could be explained by the fact that our
cost function is convex and thus we are guaranteed
to find the global solution. This is supported by our
results for the fully Bayesian RPB method, as well as
our preliminary results using different priors, which
result in a non-convex problem.

6 Conclusion

We have provided a set of MAP approaches for proba-
bilistic inverse reinforcement learning in unknown en-
vironments. These approaches are inspired by prob-
abilistic models originally presented in [7, 17]. By
avoiding full Bayesian inference, we were able to ex-
tend these methods to the case of unknown dynam-
ics, Markov games and feature observations instead of
actual state-action observations. In addition, we pro-
posed an interesting simplification to the policy op-
timality model presented in [7], such that the set of
all ε-optimal reward functions for a particular policy
does not need to be searched for the policy optimality
algorithm.

Experimentally, both algorithms have a performance
which equals and even surpasses that of algorithms
which assume some knowledge of the underlying dy-
namics. This includes both approaches which use the
dynamics analytically and approaches which only sam-
ple from the dynamics. In addition, the computational
requirements of both methods are modest and signifi-
cantly lower than those of the alternatives we tried.

One question is whether it is possible or useful to ex-
tend these algorithms to the nonlinear case. This can
be done by using some kind of kernel, thus preserving
the linearity in the features. This could be of interest
for applications where the reward is complex with re-
spect to the features. Finally, we would like to apply
these methods to larger problems, and in particular to
learning to play games from databases of expert play.
It would be interesting to do so while extending them
to multiple reward functions, such as for the models
considered in [6, 7].
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