
	  

	  

	  

 
 
  
Proceedings  of  the  Twenty-‐‑Eighth  Conference 
	  

Edited by 

Nando de Freitas 

Kevin Murphy 

Uncertainty in 
	  Artificial 
Intelligence 
 



Uncertainty  in  
Artificial  
Intelligence    
Proceedings  of  the  Twenty-‐‑Eighth  Conference  (2012)  
  
  
August  15–17,  2012  Catalina  Island,  United  States  
  
Edited  by  
Kevin  Murphy,  Google  Research,  United  States  
Nando  de  Freitas,  University  of  British  Columbia,  Canada  
  
Conference  Chair  
Fabio  Gagliardi  Cozman,  Universidade  de  São  Paulo,  Brazil  
  
Local  Arrangements  Chair    
David  Heckerman,  Microsoft  Research,  United  States  
  
Sponsored  by  
Microsoft  Research,  Google,  Artificial  Intelligence  Journal,  Pascal2  
Network,  Charles  River  Analytics,  IBM  Research  
  
  
AUAI  Press  Corvallis,  Oregon  
  
     



The  cover  design  is  used  with  permission  from  Elsevier.    
  
  
  
  
  
  
  
  
  
Published  by  AUAI  Press  for    
Association  for  Uncertainty  in  Artificial  Intelligence    
http://auai.org  
  
Editorial  Office:    
P.O.  Box  866    
Corvallis,  Oregon  97339    
USA  
  
  
Copyright  ©  2012  by  AUAI  Press    
All  rights  reserved    
Printed  in  the  United  States  of  America  
  
  
No  part  of  this  book  may  be  reproduced,  stored  in  a  retrieval  
system,  or  transmitted  in  any  form  or  by  any  means—electronic,  
mechanical,  photocopying,  recording,  or  other-‐‑  wise—without  the  
prior  written  permission  of  the  publisher.  
  
  
ISBN  978-‐‑0-‐‑9749039-‐‑8-‐‑9	  





Contents

Preface vii

Acknowledgements ix

1 Invited talks 1
Babies, brains and Bayes.

Alison Gopnik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Never ending learning.

Tom Mitchell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Quantum computing meets machine learning.

Bill Macready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Graphical models for computer vision.

Pedro Felzenszwalb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Machine Learning on (Astronomically) Large Datasets.

Alexander Gray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Invited and
Not-for-publication papers 3

Keynote Lecture: The Do-Calculus Revisited.
Judea Pearl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

PAC-Bayesian Inequalities for Martingales.
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Preface

This volume contains all papers presented at the 28’th Conference on Uncertainty in Artificial Intelligence (UAI),
held at Catalina Island in California, August 15-17, 2012. Papers appearing in this volume were subjected to a
rigorous review process: 304 papers were submitted, but only 95 were accepted (24 for oral presentation, 18 for
poster spotlight presentation, and 53 for poster presentation). We are confident that the proceedings, like past
UAI Conference Proceedings, will become an important archival reference for the field.

We are pleased to announce that the best paper award was given to T. Claassen and T. Heskes for their paper
entitled “A Bayesian Approach to Constraint Based Causal Inference”. Also, the best student paper award was
given to R. Grosse (co-authored with R. Salakhutdinov, W. Freeman, and J. Tenenbaum) for their paper entitled
“Exploiting compositionality to explore a large space of model structures”.

In addition to the presentation of technical papers, we were very pleased to have the following distinguished
invited speakers: Tom Mitchell (Carnegie Mellon University), Bill Macready (D-Wave systems), Pedro Felzen-
szwalb (Brown University), Alex Gray (Georgia Tech), and Judea Pearl (UCLA). Also, we were happy to have,
as Banquet Speaker, Alison Gopnik (UC Berkeley).

UAI 2012 also hosted a tutorial day (organized by Irina Rish), covering the following topics: “Copulas in
Machine learning” by Gal Elidan, “Determinantal point processes” by Alex Kulesza and Ben Taskar, “Graphical
models for causal inference” by Karthika Mohan and Judea Pearl, and “Continuous-time Markov models” by
Christian Shelton and Gianfranco Ciardo.

This year UAI also hosted a new series of one-day workshops (organized by Ruslan Salakhutdinov) covering
the following topics: “Causal Structure Learning”, “StarAI – Statistical Relational AI”, “Uncertainty in Natural
Intelligence”, and “Bayesian Modeling Applications”.

Nando de Freitas and Kevin Murphy (Program Co-Chairs)
Fabio Cozman (Conference Chair)

David Heckerman (Local Arrangements Chair)
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Helge Langseth The Norwegian University of Science and Technology
Hugo Larochelle Université de Sherbrooke
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Invited talks

Babies, brains and Bayes

Alison Gopnik

How do young children learn so much about the world so quickly and accurately? Many researchers have proposed
that children implicitly formulate structured hypotheses about the world and then use evidence to test and
revise those hypotheses. Ill describe extensive research has shown over the past ten years that even two-year-olds
formulate causal hypotheses and test and evaluate them against the data in a normatively accurate way. But this
work raises several problems. Where do those hypotheses come from? What algorithms could children implicitly
use to approximate ideal Bayesian inference? How can we reconcile childrens striking inferential success with
their apparent variability and irrationality? And are there developmental differences in the ways that children
and adults learn?

I will suggest that all these questions can be illuminated by thinking about childrens hypothesis generation
as a sampling process an idea with a long and successful history in computer science. Preschoolers may use
sampling to generate hypotheses, and this may explain both their successful inferences and the variability in their
behavior. In fact, in recent research we have discovered that childrens causal learning has some of the signatures
of sampling. In particular, the variability in childrens responses reflects the probability of their hypotheses.
Moreover, we have shown that children may use a particular type of sampling algorithm. We also found that
preschoolers were actually more open-minded learners than older children and adults in some tasks. They
seemed more likely to accept a wide range of novel hypotheses. This suggests that they may search at a higher
temperature than adults do. From an evolutionary perspective the transition from childhood to adulthood may
be natures way of performing simulated annealing.

Never ending learning

Tom Mitchell

We will never really understand machine learning until we can build machines that learn many different things,
over years, and become better learners over time.

This talk describes our research to build a Never-Ending Language Learner (NELL) that runs 24 hours per
day, forever, learning to read the web. Each day NELL extracts (reads) more facts from the web, and integrates
these into its growing knowledge base of beliefs. Each day NELL also learns to read better than yesterday,
enabling it to go back to the text it read yesterday, and extract more facts, more accurately. NELL has been
running 24 hours/day for over two years now. The result so far is a collection of 15 million interconnected beliefs
(e.g., servedWtih(coffee, applePie), isA(applePie, bakedGood)), that NELL is considering at different levels
of confidence, along with hundreds of thousands of learned phrasings, morphoogical features, and web page
structures that NELL uses to extract beliefs from the web. Track NELL’s progress at http://rtw.ml.cmu.edu.
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Quantum computing meets machine learning

Bill Macready

Quantum Computing offers the theoretical promise of dramatically faster computation through direct utilization
of the underlying quantum aspects of reality. This idea, first proposed in the early 1980s, exploded in interest in
1994 with Peter Shor’s discovery of a polynomial time integer factoring algorithm. Today the first experimental
platforms realizing small-scale quantum algorithms are becoming commonplace. Interestingly, machine learning
may be the k̈iller app̈for quantum computing. We will introduce quantum algorithms, with focus on a recent
quantum computational model that will be familiar to researchers with a background in graphical models. We
will show how a particular quantum algorithm – quantum annealing – running on current quantum hardware
can be applied to certain optimization problems arising in machine learning. In turn, we will describe a number
of challenges to further progress in quantum computing, and suggest that machine learning researchers may be
well-positioned to drive the first real-world applications of quantum annealing.

Graphical models for computer vision

Pedro Felzenszwalb

Graphical models provide a powerful framework for expressing and solving a variety of inference problems. The
approach has had an enormous impact in computer vision. In this talk I will review some of the developments
that have enabled this impact, focusing on efficient algorithms that exploit the structure of vision problems. I will
discuss several applications including the low-level vision problem of image restoration, the mid-level problem
of segmentation and the high-level problem of model-based recognition. I will also discuss some of the current
challenges in the area.

Machine Learning on (Astronomically) Large Datasets

Alexander Gray

There is much talk of b̈ig dataẗhese days, surrounding a seismic shift currently underway in industry. Much of
what is being discussed today is reminiscent of, and perhaps can be informed by, efforts beginning at least two
decades ago in astronomy – which was forced into that pioneering position by some unique scientific constraints
and motivating problems that we’ll discuss. So what are the best ideas that have been developed over the years
for doing machine learning on massive datasets? Toward scaling up the most popular textbook machine learning
methods across seven basic types of statistical tasks, we’ll first identify seven main types of computational
bottlenecks. Then we’ll consider seven cross-cutting classes of computational techniques which characterize the
current fastest algorithms for these bottlenecks, discussing their strengths and weaknesses. We’ll end with some
exhortations regarding where more foundational research is needed.

2



Invited and
Not-for-publication papers

3



The Do-Calculus Revisited
Judea Pearl

Keynote Lecture, August 17, 2012
UAI-2012 Conference, Catalina, CA

Abstract

The do-calculus was developed in 1995 to facilitate the
identification of causal effects in non-parametric mod-
els. The completeness proofs of [Huang and Valtorta,
2006] and [Shpitser and Pearl, 2006] and the graphi-
cal criteria of [Tian and Shpitser, 2010] have laid this
identification problem to rest. Recent explorations un-
veil the usefulness of the do-calculus in three addi-
tional areas: mediation analysis [Pearl, 2012], trans-
portability [Pearl and Bareinboim, 2011] and meta-
synthesis. Meta-synthesis (freshly coined) is the task
of fusing empirical results from several diverse stud-
ies, conducted on heterogeneous populations and un-
der different conditions, so as to synthesize an esti-
mate of a causal relation in some target environment,
potentially different from those under study. The talk
surveys these results with emphasis on the challenges
posed by meta-synthesis. For background material,
see 〈http://bayes.cs.ucla.edu/csl papers.html〉.

1 Introduction

Assuming readers are familiarwith the basics of graph-
ical models, I will start by reviewing the problem of
nonparametric identification and how it was solved by
the do-calculus and its derivatives. I will then show
how the do-calculus benefits mediation analysis (Sec-
tion 2) , transportability problems (Section 3) and
meta-synthesis (Section 4).

1.1 Causal Models, interventions, and
Identification

Definition 1. (Structural Equation Model) [Pearl,
2000, p. 203].
A structural equation model (SEM) M is defined as
follows:

1. A set U of background or exogenous variables, rep-
resenting factors outside the model, which never-

theless affect relationship within the model.

2. A set V = {V1, . . . , Vn} of observed endogenous
variables, where each Vi is functionally dependent
on a subset PAi of U ∪ V \{Vi}.

3. A set F of functions {f1, . . . , fn} such that each
fi determines the value of Vi ∈ V, vi = fi(pai, u).

4. A joint probability distribution P (u) over U .

When an instantiation U = u is given, together with
F , the model is said to be “completely specified” (at
the unit level) when the pair 〈P (u), F 〉 is given, the
model is “fully specified” (at the population level).
Each fully specified model defines a causal diagram
G in which an arrow is drawn towards Vi from each
member of its parent set PAi.

Interventions and counterfactuals are defined through
a mathematical operator called do(x), which simu-
lates physical interventions by deleting certain func-
tions from the model, replacing them with a constant
X = x, while keeping the rest of the model unchanged.
The resulting model is denoted Mx.

The postintervention distribution resulting from the
action do(X = x) is given by the equation

PM(y|do(x)) = PMx
(y) (1)

In words, in the framework of model M , the postin-
tervention distribution of outcome Y is defined as the
probability that model Mx assigns to each outcome
level Y = y. From this distribution, which is read-
ily computed from any fully specified model M , we
are able to assess treatment efficacy by comparing as-
pects of this distribution at different levels of x. Coun-
terfactuals are defined similarly through the equation
Yx(u) = YMx

(u) (see [Pearl, 2009, Ch. 7]).

The following definition captures the requirement that
a causal query Q be estimable from the data:
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Definition 2. (Identifiability) [Pearl, 2000, p. 77].
A causal query Q(M) is identifiable, given a set of
assumptions A, if for any two (fully specified) models
M1 and M2 that satisfy A, we have

P (M1) = P (M2)⇒ Q(M1) = Q(M2) (2)

In words, the functional details of M1 and M2 do not
matter; what matters is that the assumptions in A
(e.g., those encoded in the diagram) would constrain
the variability of those details in such a way that equal-
ity of P s would entail equality of Qs. When this hap-
pens, Q depends on P only, and should therefore be
expressible in terms of the parameters of P .

1.2 The Rules of do-calculus

When a query Q is given in the form of a do-expression,
for example Q = P (y|do(x), z), its identifiability can
be decided systematically using an algebraic procedure
known as the do-calculus [Pearl, 1995]. It consists of
three inference rules that permit us to map interven-
tional and observational distributions whenever cer-
tain conditions hold in the causal diagram G.

Let X, Y, Z, and W be arbitrary disjoint sets of nodes
in a causal DAG G. We denote by GX the graph
obtained by deleting from G all arrows pointing to
nodes in X. Likewise, we denote by GX the graph
obtained by deleting from G all arrows emerging from
nodes in X. To represent the deletion of both incoming
and outgoing arrows, we use the notation GXZ .

The following three rules are valid for every interven-
tional distribution compatible with G.

Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w)

if (Y ⊥⊥ Z|X, W )G
X

(3)

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w)

if (Y ⊥⊥ Z|X, W )G
XZ

(4)

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w)

if (Y ⊥⊥ Z|X, W )
XZ(W), (5)

where Z(W ) is the set of Z-nodes that are not ances-
tors of any W -node in GX .

To establish identifiability of a query Q, one needs to
repeatedly apply the rules of do-calculus to Q, until the

final expression no longer contains a do-operator1; this
renders it estimable from non-experimental data, and
the final do-free expression can serve as an estimator
of Q. The do-calculus was proven to be complete to
the identifiability of causal effects [Shpitser and Pearl,
2006; Huang and Valtorta, 2006], which means that
if the do-operations cannot be removed by repeated
application of these three rules, Q is not identifiable.

Parallel works by [Tian and Pearl, 2002] and [Shpitser
and Pearl, 2006] have led to graphical criteria for veri-
fying the identifiability of Q as well as polynomial time
algorithms for constructing an estimator of Q. This,
from a mathematical viewpoint, closes the chapter of
nonparametric identification of causal effects.

2 Using do-Calculus for Identifying

Direct and Indirect Effects

Consider the mediation model in Fig. 1(a). (In this
section, M stands for the mediating variable.) The
Controlled Direct Effect (CDE) of X on Y is defined
as

CDE(m) = E(Y |do(X = 1, M = m))−E(Y |do(X = 0, M = m))

and the Natural Direct Effect (NDE) is defined by the
counterfactual expression

NDE = E(YX=1,MX=0
)− E(YX=0)

The natural direct effect represents the effect trans-
mitted from X and Y while keeping some inter-
mediate variable M at whatever level it attained
prior to the transition [Robins and Greenland, 1992;
Pearl, 2001].

Since CDE is a do-expression, its identification is fully
characterized by the do-calculus. The NDE, however,
is counterfactual and requires more intricate condi-
tions, as shown in Pearl (2001). When translated to
graphical language these conditions read:

Assumption-Set A [Pearl, 2001]

There exists a set W of measured covariates such that:

A-1 No member of W is a descendant of X.

A-2 W blocks all back-door paths from M to Y , dis-
regarding the one through X.

A-3 The W -specific effect of X on M is identifiable
using do-calculus.

1Such derivations are illustrated in graphical details in
[Pearl, 2009, p. 87].
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A-4 The W -specific joint effect of {X, M} on Y is iden-
tifiable using do-calculus.

The bulk of the literature on mediation analysis has
chosen to express identification conditions in the lan-
guage of “ignorability” (i.e., independence among
counterfactuals) which is rather opaque and has led
to significant deviation from assumption set A.

A typical example of overly stringent conditions that
can be found in the literature reads as follows:

“Imai, Keele and Yamamoto (2010) showed
that the sequential ignorability assumption
must be satisfied in order to identify the av-
erage mediation effects. This key assump-
tion implies that the treatment assignment
is essentially random after adjusting for ob-
served pretreatment covariates and that the
assignment of mediator values is also essen-
tially random once both observed treatment
and the same set of observed pretreatment
covariates are adjusted for.” [Imai, Jo, and
Stuart, 2011]

When translated to graphical representation, these
conditions read:

Assumption-Set B

There exists a set W of measured covariates such that:

B-1 No member of W is a descendant of X.

B-2 W blocks all back-door paths from X to M .

B-3 W and X block all back-door paths from M to Y .

We see that assumption set A relaxes that in B in two
ways.

First, we need not insist on using “the same set of ob-
serve pretreatment covariates,” two separate sets can
sometimes accomplish what the same set does not.
Second, conditions A-3 and A-4 invoke do-calculus and
thus open the door for identification criteria beyond
back-door adjustment (as in B-2 and B-3).

In the sequel we will show that these two features en-
dow A with greater identification power. (See also
[Shpitser, 2012].)

2.1 Divide and conquer

Fig. 2 demonstrates how the “divide and conquer” flex-
ibility translates into an increase identification power.
Here, the X →M relationship requires an adjustment

X Y
(a)

X Y

W

MM

(b)

Figure 1: (a) The basic unconfounded mediation
model, showing the treatment (X) mediator (M) and
outcome (Y ). (b) The mediator model with an added
covariate (W ) that confounds both the X → M and
the M → Y relationships.

W3X Y

W2
M

Figure 2: A mediation model with two dependent
confounders, permitting the decomposition of Eq. (6).
Hollow circles stand for unmeasured confounders. The
model satisfies condition A but violates condition B.

for W2, and the X → Y relationship requires an ad-
justment for W3. If we make the two adjustments sep-
arately, we can identify NDE by the estimand:

NDE =
∑

m

∑

w2,w3

P (W2 = w2, W3 = w3)

[E(Y | X = 1, M = m, W3 = w3)]

− [E(Y | X = 0, M = m, W3 = w3, )]

P (M = m | X = 0, W2 = w2) (6)

However, if we insist on adjusting for W2 and W3 si-
multaneously, as required by assumption set B, the
X → M relationship would become confounded, by
opening two colliders in tandem along the path X →
W3 ↔W2 ←M . As a result, assumption set B would
deem the NDE to be unidentifiable; there is no covari-
ates set W that simultaneously deconfounds the two
relationships.

2.2 Going beyond back-door adjustment

Figure 3 displays a model for which the natural direct
effect achieves its identifiability through multi-step ad-
justment (in this case using the front-door procedure),
permitted by A, though not through a single-step ad-
justment, as demanded by B. In this model, the null
set W = {0} satisfies conditions B-1 and B-3, but not
condition B-2; there is no set of covariates that would
enable us to deconfound the treatment-mediator re-
lationship. Fortunately, condition A-3 requires only
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X Y

Z

M

Figure 3: Measuring Z permits the identification of the
effect of X on M through the front-door procedure.

that we identify the effect of X on M by some do-
calculus method, not necessarily by rendering X ran-
dom or unconfounded (or ignorable). The presence of
observed variable Z permits us to identify this causal
effect using the front-door condition [Pearl, 1995;
2009].

In Fig. 4, the front-door estimator needs to be applied
to both the X → M and the X → Y relationships.
In addition, conditioning on W is necessary, in order
to satisfy condition A-2. Still, the identification of
P (m|do(x), w) and E(Y |do(m, x), w) presents no spe-
cial problems to students of causal inference [Shpitser
and Pearl, 2006].

X Y

W

Z

M

T

Figure 4: Measuring Z and T permits the identifi-
cation of the effect of X on M and X on Y for each
specific w and leads to the identification of the natural
direct effect.

X Y

M

W

Z

Figure 5: NDE is identified by adjusting for W and
using Z to deconfound the X → Y relationship.

Figure 5, demonstrates the role that an observed co-
variate (Z) on the X → Y pathway can play in the
identification of natural effects. In this model, con-
ditioning on W deconfounds both the M → Y and
Y → M relationships but confounds the X → Y
relationship. However the W -specific joint effect of
{X, M} on Y is identifiable through observations on
Z (using the front-door estimand).

In Fig. 6, a covariate Z situated along the path from M

to Y leads to identifying NDE. Here the mediator→
outcome relationship is unconfounded (once we fix X),
so, we are at liberty to choose W = {0} to satisfy con-
dition A-2. The treatment→ mediator relationship is
confounded, and requires an adjustment for T (so does
the treatment-outcome relationship). However, condi-
tioning on T will confound the {MX} → Y relation-
ship (in violation of condition A-4). Here, the presence
of Z comes to our help, for it permits us to estimate
P (Y | do(x, m), t) thus rendering NDE identifiable.

YX

L2

L1

M

Z

T

Figure 6: The confounding created by adjusting for T
can be removed using measurement of Z.

3 Using do-Calculus to Decide

Transportability

In applications involving identifiability, the role of
the do-calculus is to remove the do-operator from the
query expression. We now discuss a totally differ-
ent application, to decide if experimental findings can
be transported to a new, potentially different envi-
ronment, where only passive observations can be per-
foremed. This problem, labeled “transportability” in
[Pearl and Bareinboim, 2011] can also be reduced to
syntactic operation using the do-calculus but here the
aim will be to separate the do-operator from a set S
of variables, that indicate disparities between the two
environment.

We shall motivate the problem through the following
three examples.

Example 1. We conduct a randomized trial in Los
Angeles (LA) and estimate the causal effect of exposure
X on outcome Y for every age group Z = z as depicted
in Fig. 7(a). We now wish to generalize the results to
the population of New York City (NYC), but data alert
us to the fact that the study distribution P (x, y, z) in
LA is significantly different from the one in NYC (call
the latter P ∗(x, y, z)). In particular, we notice that the
average age in NYC is significantly higher than that in
LA. How are we to estimate the causal effect of X on
Y in NYC, denoted P ∗(y|do(x)).

Example 2. Let the variable Z in Example 1 stand for
subjects language proficiency, and let us assume that
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Z does not affect exposure (X) or outcome (Y ), yet it
correlates with both, being a proxy for age which is not
measured in either study (see Fig. 7(b)). Given the ob-
served disparity P (z) 6= P ∗(z), how are we to estimate
the causal effect P ∗(y|do(x)) for the target population
of NYC from the z-specific causal effect P (y|do(x), z)
estimated at the study population of LA?

Example 3. Examine the case where Z is a X-
dependent variable, say a disease bio-marker, stand-
ing on the causal pathways between X and Y as
shown in Fig. 7(c). Assume further that the disparity
P (z) 6= P ∗(z) is discovered in each level of X and that,
again, both the average and the z-specific causal effect
P (y|do(x), z) are estimated in the LA experiment, for
all levels of X and Z. Can we, based on information
given, estimate the average (or z-specific) causal effect
in the target population of NYC?

To formalize problems of this sort, Pearl and Barein-
boim devised a graphical representation called “selec-
tion diagrams” which encodes knowledge about differ-
ences between populations. It is defined as follows:

Definition 3. (Selection Diagram).
Let 〈M, M∗〉 be a pair of structural causal models (Def-
inition 1) relative to domains 〈Π, Π∗〉, sharing a causal
diagram G. 〈M, M∗〉 is said to induce a selection dia-
gram D if D is constructed as follows:

1. Every edge in G is also an edge in D;

2. D contains an extra edge Si → Vi whenever there
exists a discrepancy fi 6= f∗i or P (Ui) 6= P ∗(Ui)
between M and M∗.

In summary, the S-variables locate the mechanisms
where structural discrepancies between the two popu-
lations are suspected to take place. Alternatively, the
absence of a selection node pointing to a variable repre-
sents the assumption that the mechanism responsible
for assigning value to that variable is the same in the
two populations, as shown in Fig. 7.

Using selection diagrams as the basic representational
language, and harnessing the concepts of intervention,
do-calculus, and identifiability (Section 1), we can now
give the notion of transportability a formal definition.

Definition 4. (Transportability)
Let D be a selection diagram relative to domains
〈Π, Π∗〉. Let 〈P, I〉 be the pair of observational and
interventional distributions of Π, and P ∗ be the ob-
servational distribution of Π∗. The causal relation
R(Π∗) = P ∗(y|do(x), z) is said to be transportable
from Π to Π∗ in D if R(Π∗) is uniquely computable
from P, P ∗, I in any model that induces D.

Theorem 1. Let D be the selection diagram char-
acterizing two populations, Π and Π∗, and S a set

X Y X Y X Y

(c)(b)(a)

S
S

S
Z

Z

Z

Figure 7: Selection diagrams depicting Examples 1–3.
In (a) the two populations differ in age distributions.
In (b) the populations differs in how Z depends on age
(an unmeasured variable, represented by the hollow
circle) and the age distributions are the same. In (c)
the populations differ in how Z depends on X.

of selection variables in D. The relation R =
P ∗(y|do(x), z) is transportable from Π to Π∗ if the ex-
pression P (y|do(x), z, s) is reducible, using the rules of
do-calculus, to an expression in which S appears only
as a conditioning variable in do-free terms.

This criterion was proven to be both sufficient and
necessary for causal effects, namely R = P (y|do(x))
[Bareinboim and Pearl, 2012b]. Theorem 1 does not
specify the sequence of rules leading to the needed
reduction when such a sequence exists. [Bareinboim
and Pearl, 2012b] established a complete and effec-
tive graphical procedure of confirming transportability
which also synthesizes the transport formula whenever
possible. For example, the transport formulae derived
for the three models in Fig. 7 are (respectively):

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z) (7)

P ∗(y|do(x)) = p(y|do(x)) (8)

P ∗(y|do(x)) =
∑

z

P (y|z, x)P ∗(z|x) (9)

Each transport formula determines for the investiga-
tor what information need to be taken from the exper-
imental and observational studies and how they ought
to be combined to yield an unbiased estimate of R.

4 From “Meta-analysis” to

“Meta-synthesis”

“Meta analysis” is a data fusion problem aimed at
combining results from many experimental and obser-
vational studies, each conducted on a different popu-
lation and under a different set of conditions, so as to
synthesize an aggregate measure of effect size that is
“better,” in some sense, than any one study in isola-
tion. This fusion problem has received enormous at-
tention in the health and social sciences, where data
are scarce and experiments are costly.
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Unfortunately, current techniques of meta-analysis do
little more than take weighted averages of the vari-
ous studies, thus averaging apples and oranges to infer
properties of bananas. One should be able to do bet-
ter. Using “selection diagrams” to encode commonal-
ities among studies, we should be able to “synthesize”
an estimator that is guaranteed to provide unbiased
estimate of the desired quantity based on information
that each study share with the target environment.
The basic idea is captured in the following definition
and theorem.

Definition 5. (Meta-identifiability):
A relation R is said to be “meta-identifiable” from a
set of populations (Π1, Π2, . . . , ΠK) to a target popu-
lation Π∗ iff it is identifiable from the information set
I = {I(Π1), I(Π2), . . . , I(ΠK ), I(Π∗)}, where I(Πk)
stands for the information provided by population Πk.

Theorem 2. (Meta-identifiability):
Given a set of studies {Π1, Π2, . . . , ΠK} character-
ized by selection diagrams {D1, D2, . . . , DK} relative
to a target population Π∗, a relation R(Π∗) is “meta-
identifiable” if it can be decomposed into a set of sub-
relations of the form:

Rk = P (Vk|do(Wk), Zk) k = 1, 2, . . . , K

such that each Rk is transportable from some Dk.

Theorem 2 reduces the problem of Meta synthesis to
a set of transportability problems, and calls for a sys-
tematic way of decomposing R to fit the information
provided by I.

Exemplifying meta-synthesis

Consider the diagrams depicted in Fig. 8, each repre-
senting a study conducted on a different population
and under a different set of conditions. Solid circles
represent variables that were measured in the respec-
tive study and hollow circles variables that remained
unmeasured. An arrow �→ represents an external
influence affecting a mechanism by which the study
population is assumed to differ from the target popu-
lation Π∗, shown in Fig. 8(a). For example, Fig. 8(c)
represents an observational study on population Πc in
which variables X, Z and Y were measured, W was not
measured and the prior probability Pc(z) differs from
that of the target population P ∗(z). Diagrams (b)–(f)
represent observational studies while (g)–(j) stand for
experimental studies with X randomized (hence the
missing arrows into X).

Despite differences in populations, measurements and
conditions, each of the studies may provide informa-
tion that bears on the target relation R(Π∗) which, in

X YW

(c)

S

Z

X YW

X YW X YW X YW

X YW

S S

SS

(a)

X YW

(d) (e) (f)

Z Z

Z Z Z

(b)

Z Z Z

(g)

X YW

(h) (i)

X YW

Figure 8: Diagrams representing 8 studies ((b)–(i))
conducted under different conditions on different pop-
ulations, aiming to estimate the causal effect of X on
Y in the target population, shown in 8(a).

this example, we take to be the causal effect of X on
Y , P ∗(y|do(x)) or; given the structure of Fig. 8(a),

R(Π∗) = P ∗(y|do(x)) =
∑

z

P ∗(y|x, z)P ∗(z).

While R(Π∗) can be estimated directly from some of
the studies, (e.g., (g)) or indirectly from others (e.g.,
(b) and (d)), it cannot be estimated from those studies
in which the population differs substantially from Π∗,
(e.g., (c), (e), (f)). The estimates of R provided by the
former studies may differ from each other due to sam-
pling variations and measurement errors, and can be
aggregated in the standard tradition of meta analysis.
The latter studies, however, should not be averaged
with the former, since they do not provide unbiased
estimates of R. Still, they are not totally useless, for
they can provide information that renders the former
estimates more accurate. For example, although we
cannot identify R from study 8(c), since Pc(z) differs
from the unknown P ∗(z), we can nevertheless use the
estimates of Pc(x|z), Pc(y|z, x) that 8(c) provides to
improve the accuracy of P ∗(x|z) and P ∗(y|z, x)2 which
may be needed for estimating R by indirect meth-

2The absence of boxed arrows into X and Y in Fig. 8(c)
implies the equalities

Pc(x|z) = P
∗(x|z) and Pc(y|z,x) = P

∗(y|z, x).
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ods. For example, P ∗(y|z, x) is needed in study 8(b) if
we use the estimator R =

∑
z P ∗(y|x, z)P ∗(z), while

P ∗(x|z) is needed if we use the inverse probability es-
timator R =

∑
z P ∗(x, y, z)/P ∗(x|z).

Similarly, consider the randomized studies depicted in
8(h) and 8(i). None is sufficient for identifying R in
isolation yet, taken together, they permit us to borrow
Pi(w|do(x)) from 8(i) and Ph(y|w, do(x)) from 8(h)
and synthesize a bias-free estimator:

R =
∑

w

P ∗(y|w, do(x))P ∗(w|do(x))

=
∑

w

Ph(y|w, do(x)Pi(w|do(x))

The challenge of meta synthesis is to take a collection
of studies, annotated with their respective selection di-
agrams (as in Fig. 8), and construct an estimator of a
specified relation R(Π∗) that makes maximum use of
the samples available, by exploiting the commonalities
among the populations studied and the target popula-
tion Π∗. As the relation R(Π∗) changes, the synthesis
strategy will change as well.

It is hard not to speculate that data-pooling strate-
gies based on the principles outlined here will one day
replace the blind methods currently used in meta anal-
ysis.

Knowledge-guided Domain Adaptation

It is commonly assumed that causal knowledge is nec-
essary only when interventions are contemplated and
that in purely predictive tasks, probabilistic knowl-
edge suffices. When dealing with generalization across
domains, however, causal knowledge can be valuable,
and in fact necessary even in predictive or classification
tasks.

The idea is simple; causal knowledge is essentially
knowledge about the mechanisms that remain invari-
ant under change. Suppose we learn a probability dis-
tribution P (x, y, z) in one environment and we ask how
this probability would change when we move to a new
environment that differs slightly from the former. If we
have knowledge of the causal mechanism generating P ,
we could then represent where we suspect the change
to occur and channel all our computational resources
to re-learn the local relationship that has changed or
is likely to have changed, while keeping all other rela-
tionships invariant.

For example, assume that P ∗(x, y, z) is the probability
distribution in the target environment and our inter-
est lies in estimating P ∗(x|z) knowing that the causal

diagram behind P is the chain X → Y → Z, and that
the process determining Y , represented by P ∗(y|x),
is the only one that changed. We can simply re-learn
P ∗(y|x) and estimate our target relation P ∗(x|z) with-
out measuring Z in the new environment. (This is
done using P ∗(x, y, z) = P (x)P ∗(y|x)P (z|y) with the
first and third terms transported from the source en-
vironment.)

In complex problems, the savings gained by focusing
on only a small subset of variables in P ∗ can be enor-
mous, because any reduction in the number of mea-
sured variables translates into substantial reduction in
the number of samples needed to achieve a given level
of prediction accuracy.

As can be expected, for a given transported relation,
the subset of variables that can be ignored in the tar-
get environment is not unique, and should therefore
be chosen so as to minimize both measurement costs
and sampling variability. This opens up a host of new
theoretical questions about transportability in causal
graphs. For example, deciding if a relation is trans-
portable when we forbid measurement of a given sub-
set of variables in P ∗ [Pearl and Bareinboim, 2011],
or deciding how to pool studies optimally when sam-
ple size varies drastically from study to study [Pearl,
2012].

Conclusions

The do-calculus, which originated as a syntactic tool
for identification problems, was shown to benefit three
new areas of investigation. Its main power lies in re-
ducing to syntactic manipulations complex problems
concerning the estimability of causal relations under a
variety of conditions.

In Section 2 we demonstrated that going beyond stan-
dard adjustment for covariates, and unleashing the full
power of do-calculus, can lead to improved identifica-
tion power of natural direct and indirect effects. Sec-
tion 3 demonstrated how questions of transportabil-
ity can be reduced to symbolic derivations in the do-
calculus, yielding graph-based procedures for deciding
whether causal effects in the target population can be
inferred from experimental findings in the study popu-
lation. When the answer is affirmative, the procedures
further identify what experimental and observational
findings need be obtained from the two populations,
and how they can be combined to ensure bias-free
transport.

In a related problem, Bareinboim and Pearl (2012b)
show how the do-calculus can be used to decide
whether the effect of X on Y can be estimated from ex-
periments on a different set, Z, that is more accessible
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to manipulations. Here the aim is to transform do-
expressions to sentences that invoke only do(z) sym-
bols.

Finally, in Section 4, we tackled the problem of data
fusion and showed that principled fusion (which we
call meta-synthesis) can be reduced to a sequence of
syntactic operations each involving a local transporta-
bility exercise. This task leaves many questions unset-
tled, because of the multiple ways a give relation can
be decomposed.
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Abstract

We present a set of high-probability in-
equalities that control the concentration of
weighted averages of multiple (possibly un-
countably many) simultaneously evolving
and interdependent martingales. Our results
extend the PAC-Bayesian analysis in learn-
ing theory from the i.i.d. setting to mar-
tingales opening the way for its application
in reinforcement learning and other interac-
tive learning domains, as well as many other
domains in probability theory and statistics,
where martingales are encountered.

We also present a comparison inequality that
bounds the expectation of a convex function
of a martingale difference sequence shifted to
the [0, 1] interval by the expectation of the
same function of independent Bernoulli vari-
ables. This inequality is applied to derive a
tighter analog of Hoeffding-Azuma’s inequal-
ity.

For the complete paper see Seldin et al.
(2012).
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Figure 1: Illustration of an infinite set of simultane-
ously evolving and interdependent martingales. For
a fixed h, the sequence M̄1(h), M̄2(h), . . . , M̄n(h) is a
martingale. H is a set (possibly uncountably infinite)
that indexes the individual martingales. The arrows
represent the dependencies between the values of the
martingales: the value of the h-th martingale at time
i, denoted by M̄i(h), depends on M̄j(h

′) for all j ≤ i
and h′ ∈ H (everything that is “before” and “con-
current” with M̄i(h) in time; some of the arrows are
omitted for clarity). A mean value of the martingales
with respect to a distribution ρ over H (or a prob-
ability density function, if H is uncountably infinite)
is given by 〈M̄n, ρ〉. Our high-probability inequalities
bound |〈M̄n, ρ〉| simultaneously for a large class of ρ.
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Abstract

Directed acyclic graph (DAG) models
may be characterized in four differ-
ent ways: via a factorization, the d-
separation criterion, the moralization
criterion, and the local Markov prop-
erty. As pointed out by Robins [2, 1],
Verma and Pearl [6], and Tian and Pearl
[5], marginals of DAG models also imply
equality constraints that are not condi-
tional independences. The well-known
‘Verma constraint’ is an example. Con-
straints of this type were used for testing
edges [3], and an efficient variable elimi-
nation scheme [4]. Using acyclic directed
mixed graphs (ADMGs) we provide a
graphical characterization of the con-
straints given in [5] via a nested Markov
property that uses a ‘fixing’ transfor-
mation on graphs. We give four char-
acterizations of our nested model that
are analogous to those given for DAGs.
We show that marginal distributions of
DAG models obey this property.
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Abstract

This paper introduces a novel approach for learn-
ing to rank (LETOR) based on the notion of
monotone retargeting. It involves minimizing
a divergence between all monotonic increasing
transformations of the training scores and a pa-
rameterized prediction function. The minimiza-
tion is both over the transformations as well as
over the parameters. It is applied to Bregman di-
vergences, a large class of “distance like” func-
tions that were recently shown to be the unique
class that is statistically consistent with the nor-
malized discounted gain (NDCG) criterion [19].
The algorithm uses alternating projection style
updates, in which one set of simultaneous projec-
tions can be computed independent of the Breg-
man divergence and the other reduces to parame-
ter estimation of a generalized linear model. This
results in easily implemented, efficiently paral-
lelizable algorithm for the LETOR task that en-
joys global optimum guarantees under mild con-
ditions. We present empirical results on bench-
mark datasets showing that this approach can
outperform the state of the art NDCG consistent
techniques.

1 Introduction

Structured output space models [1] have dominated the task
of learning to rank (LETOR). Regression based models
have been justifiably superseded by pairwise models [11],
which in turn are being gradually displaced by list-wise ap-
proaches [6, 17]. This trend has on one hand greatly im-
proved the quality of the predictions obtained but on the
other hand has come at the cost of additional complexity
and computation. The cost functions of structured mod-
els are often defined directly on the combinatorial space

∗* Both authors contributed equally.

of permutations, which significantly increase the difficulty
of learning and optimization compared to regression based
approaches. We propose an approach to the LETOR task
that retains the simplicity of the regression based models,
is simple to implement, is embarrassingly parallelizable,
and yet is a function of ordering alone. Furthermore, MR
enjoys strong guarantees of convergence, statistical con-
sistency under uncertainty and a global minimum under
mild conditions. Our experiments on benchmark datasets
show that the proposed approach outperforms state of the
art models in terms of several common LETOR metrics.

We adapt regression to the LETOR task by using Bregman
divergences and monotone retargeting (MR). MR is a novel
technique that we introduce in the paper and Bregman di-
vergences [5] are a family of “distance like” functions well
studied in optimization [8], statistics and machine learn-
ing [2] due to their one to one connections with modeling
uncertainty using exponential family distributions. Breg-
man divergences are the unique class of strongly statisti-
cally consistent surrogate cost functions for the NDCG cri-
terion [19], a de facto standard of ranking quality. In ad-
dition to these statistical properties, Bregman divergences
have several properties useful for optimization and specif-
ically useful for ranking. The LETOR task decomposes
into subproblems that are equivalent to estimating (uncon-
strained as well as constrained) generalized linear models.
The Bregman divergence machinery provides easy to im-
plement, scalable algorithms for them, with a user chosen
level of granularity of parallelism. We hope the reader will
appreciate the flexibility of choosing an appropriate diver-
gence to encode desirable properties on the rankings while
enjoying the strong guarantees that come with the family.

We introduce MR by first discussing direct regression of
rank scores and highlighting its primary deficiency: its at-
tempt to fit the scores exactly. An exact fit is unnecessary
since any score that induces the correct ordering is suffi-
cient. MR addresses this problem by searching for a order
preserving transformation of the target scores that may be
easier for the regressor to fit: hence the name “retargeting”.

Let us briefly sketch our line of attack. In section 2 we
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present a method to reduce the optimization over the infi-
nite class of all monotonic increasing functions to that of al-
ternating projection over a finite dimensional vector space.
In section 3.2.3 we show when that optimization problem
is jointly convex by resolving the question of joint convex-
ity of the Fenchel-Young gap. This result is important in its
own right. We introduce Bregman divergences in section 3
and discuss properties that make them particularly suited to
the ranking task. We show (i) that one set of the alternating
projections can be computed in a Bregman divergence in-
dependent fashion 3.2.1, and (ii) separable Bregman diver-
gences allow us to use sorting 3.2.2 that would have oth-
erwise required exhaustive combinatorial enumeration or
solving a linear assignment problem repeatedly.

Notation: Vectors are denoted by bold lower case let-
ters, matrices are capitalized. x† denotes the transpose
of the vector x, ||x|| denotes the L2 norm. Diag(x) de-
notes a diagonal matrix with its diagonal set to the vector
x. Adj-Diff(x) denotes a vector obtained by taking ad-
jacent difference of consecutive components of [ x0 ] . Thus
Cum-Sum(Adj-Diff(x)) = x. A vector x is defined to be
in descending order if xi ≥ xj if i > j, the set of such
vectors is denoted by R↓. Vector x is isotonic with y if
xi ≥ xj then yi ≥ yj . The unit simplex is denoted by ∆

and the positive orthant byR+
d. ψ(·) is used to denote the

Legendre dual of the function φ(·). Partitions of sets are
denoted by Π and P.

2 Monotone Retargeting

We introduce our formulation of learning to rank, this con-
sists of a set of queries Q = {q1, qi . . . q|Q|} and a set of
items V that are to be ranked in the context of the queries.
For every query qi, there is a subset Vi ⊂ V whose ele-
ments have been ordered, based on their relevance to the
query. This ordering is customarily expressed via a rank
score vector r̃i ∈ Rdi=|Vi| whose components r̃ij corre-
spond to items in Vi. Beyond establishing an order over the
set Vi, the actual values of r̃ij are of no significance. For
a query qi the index j of r̃ij is local to the set Vi hence r̃ij
and r̃kj need not correspond to the same object. We shall
further assume, with no loss in generality, that the subscript
j is assigned such that r̃ij is in a descending order for any
Vi. Note that r̃i induces a partial order if the number of
unique values ki in the vector is less than di.

For every query-object pair {qi, vij} a feature vectorRn 3
aij = F (qi, vij) is pre-computed. The subset of training
data pertinent to any query qi is the pair {r̃i,Ai} and is
called its qset. Thus, the column vector r̃i consists of the
rank-scores r̃ij andAi is a matrix whose jth row is aij†.

Given a loss function Di : R|Vi| × R|Vi| 7→ R+ we may
define the regression problem min

w

∑
i

D(r̃i, f(Ai,w)) where

f : R|Vi|×n ×Rn 7→ R
|Vi| is some fixed parametric form

with the parameter w. As discussed, this is unnecessarily
stringent for ranking. A better alternative is:

min
w,Υi∈M

∑

i

Di

(
r̃i,Υi ◦ f(Ai,w)

)
,

where Υi : R|Vi| 7→ R
|Vi| transforms the component of

its argument by a fixed monotonic increasing function Υi,
and M is the class of all such functions. Now f(Ai,w)
no longer need to equal r̃i point-wise to incur zero loss.
It is sufficient for some monotonic increasing transform of
f(Ai,w) to do so. With no loss in generality of modeling,
we may apply the monotonic transform to r̃i instead. This
avoids the minimization over the function composition, but
the need for minimizing over the set of all monotone func-
tions remains. One possible way to eliminate the minimiza-
tion over the function space is to restrict our attention to
some parametric family inM at the expense of generality.
Instead, with no loss in generality, the optimization over
the infinite space of functionsM can be converted into one
over finite dimensional vector spaces R|Vj |, provided we
have a finite characterization of the constraint setR↓i:

min
w,r∈R↓i

∑

i

Di(ri, f(Ai,w)) s.t. R↓i = {r| ∃M∈MM(r̃i)=r}.

(1)
The SetR↓i: The convex composition r = αr1+(1−α)r2

of two isotonic vectors r1 and r2 preserves isotonicity, as
does the scaling αr1 for any α ∈ R+. Hence the set R↓i
is a convex cone. This makes the problem computation-
ally tractable because the set can be described entirely by
its extreme rays, or by the extreme rays of its polar. We
claim the set R↓i can be expressed as the image of the set
{R+}|Vi|−1 ×R under a linear transformation by a partic-
ular upper triangular matrix U with positive entries:

R↓i = Ux s.t. x ∈ {R+}|Vi|−1 ×R

The matrix U is not unique and can be generated from any
vector v ∈ R+

|Vi|, but as we shall see, any member from
the allowed class of U is sufficient for a exhaustive repre-
sentation ofR↓i.
Lemma 1. The set of all vectors inRd that are sorted in a
descending order is given by Ux s.t. x ∈ {R+}|Vi|−1 ×
R where U is a triangular matrix generated from a vector
v ∈ R+

d such that the ith row U(i, :) is {0}i−1 × v(i :)

Proof. Consider solving Ux = r̃i for any vector r̃i sorted
in descending order. We have x = (Diag)

−1
(v) ×

Adj-Diff(r̃i) which is in {R+}|Vi|−1 ×R
For regression functions capable of fitting an arbitrary ad-
ditive offset, no generality is lost by constraining the last
component to be non-negative.

In addition to the setR↓i we shall make frequent use of the
set of all discrete probability distributions that are in de-
scending order, i.e. R↓i ∩ ∆i that we represent by ∆i

o.
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We give a similar representation of this set by generat-
ing an upper triangular matrix T from the vector v∆ =
{1, 1

2 , · · · 1
i · · · 1

d} and considering x ∈ ∆.

Lemma 2. The set ∆o of all discrete probability distribu-
tions of dimension d that are in descending order is the
image Tx s.t. x ∈ ∆ where T is an upper triangular
matrix generated from the vector v∆ = {1, 1

2 · · · 1
d} such

that T (i, :) = {0}i−1 × v∆(i :)

Proof. The proof follows Lemma (1). Tx is in the simplex
∆ because it is a convex combination of vectors in ∆.

With appropriate choices of the distance like function
Di(·, ·) and the curve fitting function f(·, ·) we can trans-
form (1) into a bi-convex optimization 1 problem over a
product of convex sets. We chooseDi(·, ·) to be a Bregman
divergence Dφ

(
·
∣∣∣
∣∣∣·
)
, defined in Section 3.1, and f(Ai,w)

to be (∇φ)
−1

(〈Ai,w〉), leading to the formulation:

min
w∈W,r∈R↓i

|Q|∑

i=1

1

|Vi|
Dφ
(
ri

∣∣∣
∣∣∣(∇φ)

−1
(〈Ai,w〉)

)
. (2)

Coordinate-wise updates of (2) are equivalent to learning
canonical GLMs under linear constraints for which scal-
able techniques are known [9]. The LETOR task has addi-
tional structure that allows more efficient solutions.

3 Background

We make heavy use of identities and algorithms associated
with Bregman divergences, some that to the best of our
knowledge are new e.g. Theorem 2, Lemmata 3, 4 and in-
dependent proof of Theorem 1. Theorem 2, and Lemmata
3, and 4 are particularly relevant to ranking. The purpose
of this section is to collect these results in a single place.

3.1 Definitions

Bregman Divergence: Let φ : Θ 7→ R, Θ = domφ ⊆
R
d be a strictly convex, closed function, differentiable on

int Θ. The corresponding Bregman divergence Dφ

(
·
∣∣∣
∣∣∣·
)

:

dom(φ)× int(dom(φ)) 7→ R+ is defined as Dφ

(
x
∣∣∣
∣∣∣y
)
,

φ(x)− φ(y)− 〈x− y,∇φ(y)〉 . From strict convexity it
follows that Dφ

(
x
∣∣∣
∣∣∣y
)
≥ 0 and Dφ

(
x
∣∣∣
∣∣∣y
)

= 0 iff x =

y. Bregman divergences are (strictly) convex in their first
argument, but not necessarily convex in their second.

In this paper we only consider functions of the form φ(·) :
R
n 3 x 7→ ∑

i wiφ(xi) that are weighted sums of
identical scalar convex functions applied to each compo-
nent. We refer to this class as weighted, identically sepa-
rable (WIS) or simply IS if the weights are equal. This

1A biconvex function is a function of two arguments such that
with any one of its argument fixed the function is convex in the
other argument.

φ(x) Dφ
(
x
∣∣∣
∣∣∣y
)

1
2
||x||2W 1

2
||x− y||2W∑

i wixi log xi x ∈ ∆ wKL (x‖y) =
∑
i wixi log(xi

yi
)∑

i wi(xi log xi−xi)
x ∈ R+

d

wGI (x‖y)
=
∑
i wi
(
(xi−1) log(xi−1

yi−1
)−xi+yi

)

Table 1: Examples of WIS Bregman divergences.

class has properties particularly suited to ranking. Ma-
halonobis distance with diagonal W , weighted KL diver-
gence wKL (x‖y) and weighted and shifted generalized
I-divergence wGI (x‖y) are in this family (Table 1).

Bregman Projection: Given a closed convex set S,
the Bregman-projection of q on S is Projφ (q,S) ,
ArgminpDφ

(
p
∣∣∣
∣∣∣q
)
p ∈ S.

A function φ(·) has modulus of strong convexity s if
φ(αx+(1−α)y) ≤ αφ(x)+(1−α)φ(y)− s

2
α(1−α)||x−y||2.

For a twice differentiable φ(x) this means that eigenvalues
of its Hessian are lower bounded by s.

The Legendre conjugate ψ(·) of the function φ(·) is de-
fined as (φ)

∗
(x) , ψ(x) , supλ(〈λ,x〉 − φ(λ)). If

φ(·) is a convex function of Legendre type [21], as will
always be the case in this paper,

(
(φ)
∗)∗

(·) = φ(·) and
(∇φ(·))−1

= ∇ψ(·) is a one to one mapping.

The Fenchel-Young inequality (3) is fundamental to con-
vex analysis and plays an important role in our analysis.

ψ(y) + φ(x)− 〈y,x〉 ≥ 0. (3)

3.2 Properties

The convexity of (2) in r andw (separately) can be proven
by verifying the identity (by evaluating its LHS):

Dψ

(
∇φ(y)

∣∣∣
∣∣∣∇φ(x)

)
= Dφ

(
x
∣∣∣
∣∣∣y
)
. (4)

3.2.1 Universality Of Minimizers

A mean-variance like decomposition (described in the ap-
pendix, Theorem (3) ) holds for all Bregman divergences.
It plays a critical role in Theorem 1 that has significant im-
pact in facilitating the solution of the LETOR problem.

Theorem 1. For R↓ ⊂ R
d the entire set of vectors

with descending ordered components, the minimizer y∗ =

Argmin
y∈R↓

Dφ

(
x
∣∣∣
∣∣∣y
)

is independent of φ(·) if φ(·) is WIS.

Proof: sketched in the appendix.

Following our independent proof of Theorem 1, we have
since come across an older proof [20] in the context of max-
imum likelihood estimators of exponential family models
under conic constraints that were developed prior to the
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popularity of Bregman divergences. Whereas the older
proof uses Moreau’s cone decomposition[21], ours uses
Theorem 3 (in appendix) and yields a much shorter proof.

Corrolary 1. If domψ(·) = R
d where ψ(·)is the Leg-

endre conjugate of the WIS convex function φ(·) then

Argminy∈R↓∩domφDφ

(
y
∣∣∣
∣∣∣(∇φ)

−1
(x)
)

= (∇φ)
−1

(y∗)

where y∗ = Argminy∈R↓ ||x− y||2.
Corollary (1) implies that for choices of convex function
φ(·) indicated, the minimization over ri ∈ R↓ ∩ domφ
can be obtained by transforming the equivalent squared
loss minimizer by (∇φ)

−1
(·). The squared loss minimiza-

tion is not only simpler but its implementation can now be
shared across all different φ(·)s where Corollary 1 applies.
This class of convex functions is the same as “essentially
smooth” [21]. Three such functions are listed in Table 1.

3.2.2 Optimality of Sorting

For any sorted vector x, finding the permutation of y that
minimizesDφ

(
x
∣∣∣
∣∣∣y
)

shows up as a subproblem in our for-
mulation that needs to be solved in an inner loop. Thus
solving it efficiently is critical and this is yet another in-
stance where Bregman divergences are very useful.

For an arbitrary divergence function the search over the op-
timal permutation is a non-linear assignment problem that
can be solved only by exhaustive enumeration. For an ar-
bitrary separable divergence the optimal permutation may
be found by solving a linear assignment problem, which is
an integer linear program and hence also expensive to solve
(especially in an inner loop, as required in our algorithm).

On the other hand, if φ(·) is IS, the solution is remarkably
simple, as shown in Lemma 3 where

[
x1
x2

]
denotes a vector

inR2 with components x1 and x2.

Lemma 3. If x1 ≥ x2 and y1 ≥ y2 and φ(·) is IS, then
Dφ
([x1
x2

]∣∣∣
∣∣∣
[y1
y2

])
≤ Dφ

([x1
x2

]∣∣∣
∣∣∣
[y2
y1

])
and Dφ

([y1
y2

]∣∣∣
∣∣∣
[x1
x2

])
≤

Dφ
([y2
y1

]∣∣∣
∣∣∣
[x1
x2

])

Proof.
Dφ
([x1
x2

]∣∣∣
∣∣∣
[y1
y2

])
−Dφ

([x1
x2

]∣∣∣
∣∣∣
[y2
y1

])
= 〈(∇φ(y2)−∇φ(y1)), x1 − x2〉 .

There exists c ≥ 0 s.t. x1−x2 = c(y1−y2). Proof follows
from monotonicity of ∇φ, ensured by convexity of φ. We
can exchange the order of the arguments using (4).

Using induction over d for y ∈ Rd the optimal permutation
is obtained by sorting. Not only is Lemma 3 extremely
helpful in generating descent updates, it has fundamental
consequences in relation to the local and global optimum
of our formulation (see Lemma 4).

3.2.3 Joint Convexity and Global Minimum

Using Legendre duality one recognizes that equation (2)
quantifies the gap in the Fenchel-Young inequality (3).

Dφ
(
ri

∣∣∣
∣∣∣(∇φ)−1 (Aiw)

)
= ψ(Aiw) + φ(ri)− 〈ri,Aiw〉 .

Although this clarifies the issue of separate convexity inw
and ri, the conditions under which joint convexity is ob-
tained is not obvious. Joint convexity, if ensured, guaran-
tees global minimum even for a coordinate-wise minimiza-
tion because our constraint set is a product of convex sets.
We resolve this important question in Theorem 2.

Theorem 2. The gap in the Fenchel-Young inequality
ψ(y) + φ(x)− 〈x,w〉 for any twice differentiable strictly
convex φ(·) with a differentiable conjugate (φ)

∗
(·) = ψ(·)

is jointly convex if and only if φ(x) = c||x||2 for all c > 0.

Proof: sketched in the appendix.

3.3 Algorithms

Now we discuss Bregman’s algorithm associated with
Bregman divergences. The original motivation for intro-
ducing [5] Bregman divergence was to generalize alternat-
ing orthogonal projection. A significant advantage of the
algorithm is its scalability and suitability for paralleliza-
tion. It solves the following (Bregman projection) problem:

min
x
Dφ

(
x
∣∣∣
∣∣∣y
)

s.t. Ax ≤ b (5)

Bregman’s algorithm:

Initialize: λ0 ∈ R+d and z0 such that

∇φ(z0) =
[
A†|∇φ(y)

][
λ0†, 1

]†

Repeat: Till convergence

Update: Apply Sequential or Parallel Update

Solve: ∇φ(zt+1) =
[
A†|∇φ(y)

][
λt+1†, 1

]†

Sequential Bregman Update:

Select i: LetHi = {z| 〈ai, z〉 ≤ bi}

If in violation: Compute Projφ
(
zt,Hi

)
i.e.

∇φ(Projφ
(
zt,Hi

)
) = ∇φ(zt) + ctiai,

Update: λt+1 = λt + cti1i

Parallel Bregman Update:

For all i in parallel: Compute Projφ
(
zt,Hi

)
, cti

Update: λt+1
i = λt + cti1i

Synchronize: λt+1 = ∇−1φ(
∑
i∇φ(λi

t+1))

4 LETOR with Monotone Retargeting

Our cost function is an instantiation of (2) with a WIS Breg-
man divergence. In addition, we include regularization and
a query specific offset. Note that the cost function (2) is
not invariant to scale. For example squared Euclidean, KL
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divergence and generalized I-divergence are homogeneous
functions of degree 2, 1 and 1 respectively. Thus the cost
can be reduced just by scaling its arguments down, with-
out actually learning the task. To remedy this, we restrict
the ris from shrinking below a pre-prescribed size. This is
accomplished by constraining ris to lie in an appropriate
closed convex set separated from the origin, for example,
an unit simplex or a shifted positive orthant. This yields:

min
βi,w,ri∈R↓i∩Si

|Q|∑

i=1

1

|Vi|
Dφ
(
ri

∣∣∣
∣∣∣(∇φ)

−1
(Aiw + βi1)

)

+
C

2
||w||2, (6)

or equivalently

min
βi,w,ri∈R↓i∩Si

|Q|∑

i=1

1

|Vi|
Dψ
(
Aiw + βi1

∣∣∣
∣∣∣∇φ (ri)

)
+

C

2
||w||2, (7)

where Si are bounded sets excluding 0, chosen to suit the
divergence. The parameter C is the regularization parame-
ter. In non-transductive settings, the query specific offsets
βi will not be available for the test queries. This causes no
difficulty because βi does not affect the relative ranks over
the documents. We update the ri’s and {w, {βi}} alter-
nately. Note that each is a Bregman projection.

If Si = domφ and domψ = R
d, the optimization over

ri reduces to an order constrained least squares problem
(corrolary-1). Examples of such matched pairs are (i)
wKL (·‖·) and ∆i, and (ii) shiftedwGI (·‖·) and 1+R+

d.
A well studied, scalable algorithm for the ordered least
squares problem is pool of adjacent violators (PAV) algo-
rithm [3]. One can verify that PAV, like Bregman’s algo-
rithm (5) is a dual feasible method. One may also use
Lemma 1 to solve it as a non-negative least squares prob-
lem for which several scalable algorithm exists [15].

To be able to use Bregman’s algorithm it is essential that
R↓i be available as an intersection of linear constraints, as
is readily obtained for any prescribed total order, as shown:

R↓i = {ri,j+1 − ri,j ≤ 0}∀j∈Ji ,
∆o
i = R↓i ∩ {

∑

j

rij = 1} ∩ {ri,di > 0}. (8)

Partial orders are discussed in section 4.1.

The advantages of the Bregman updates (3.3), are that they
are easy to implement (more so when Projφ (·, ·) is avail-
able in closed form e.g. squared Euclidean), have minimal
memory requirements, and hence they scale readily and al-
low easy switch from a sequential to a parallel update.

The parallel Bregman updates applied to (2), (8) clearly
exposes massive amounts of fine grained parallelism at the
level of individual inequalities in R↓i or ∆o

i , and is well
suited for implementation on a GPGPU[18]. We note fur-
ther that the optimization for ri is independent for each
query, thus can be embarrassingly parallelized.

For optimizing over w one may use several techniques
available for parallelizing a sum of convex functions, for
example parallelize the gradient computation across the
terms or use more specialized technique such as alternat-
ing direction of multipliers [4]. Further, {w, {βi}} can be
solved jointly simply by augmenting the feature matrix Ai

with 1. We hope the readers will appreciate this flexibil-
ity of being able to exploit parallelism at different levels of
granularity of choice.

4.1 Partial Order

Recall that a partial order is induced if the number of
unique rank scores ki in r̃i is less than di. In this case our
convention of indexing Vi in a descending order is ambigu-
ous. To resolve this, we break ties arbitrarily. Consider a
subset of Vi whose elements have the same training rank-
score. We distinguish between two modeling choices: (a)
the items in that subset are not really equivalent, but the
training set used a resolution that could not make fine dis-
tinctions between the items,2 we call this the “hidden or-
der” case, and (b) the items in the subset are indeed equiv-
alent and the targets are constrained to reflect the same
block structure, we call this case “block equivalent” and
can model it appropriately. Although we have removed the
discussion on the latter in the interest of space, this too can
be modeled efficiently by MR.

4.1.1 Partially Hidden Order

In this model we assume that the items are totally ordered,
though the finer ordering between similar items is not vis-
ible to the ranking algorithm. Let Pi = {Pik}kik=1 be a
partition of the index set of Vi, such that all items in Pik
have the same training rank-score. We denote their sizes
by dik = |Pik|. The sets Vi effectively get partitioned fur-
ther into {Pik}kik=1 by the ki < di unique scores given to
each of its members. Though such a score specifies an or-
der between items from any two different sets Pij and Pil,
the order within any set Pik remains unknown. This is very
common in practice and is usually an artifact of the high
cost of acquiring training data in a totally ordered form.
The optimization problem may be solved using either an
inner or an outer representation of the constraint sets.

Outer representation: Recall that Bregman’s algorithm
3.3 is better suited for the outer representation (8).

Denote the set of rank-score vectors having the same par-
tially ordered structure as r̃i by Ri. For partial order we
may describe Ri by linear inequalities as follows:

{rim > rin}ki−1
j=1 ∀i∈[1,|Q|], m ∈ Pij , n ∈ Pi,j+1,

with each j generating dijdi,j+1 inequalities, which is very
high. The proliferation of inequalities may be reduced by

2or that, we only care to reduce the error of predicting rij >
rik when r̃ij < r̃ik, note the strict inequality.
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x
t+1
i = Argmin

x∈∆
Dφ
(
Tx
∣∣∣
∣∣∣(∇φ)

−1
(
PtiAiw

t
+ β

t
i

))
∀i (10)

Pt+1
i = Argmin

π
Dφ
(
Tx

t+1
i

∣∣∣
∣∣∣(∇φ)

−1
(
πAiw

t
+ β

t
i

))
∀i (11)

w
t+1

, {βt+1
i } = (12)

Argmin
w,{βi}

|Q|∑

i=1

Dφ
(
Tx

ti+1
∣∣∣
∣∣∣(∇φ)

−1
(
Pt+1
i Aiw + β

t
i

))
+
C

2
||w||2

Figure 1: Algorithm for Partially Hidden Order

introducing auxiliary variables {r̄i,l}ki−1
l=1 and the follow-

ing inequalities:

{r̄i,j+1 > riPij > r̄i,j}∀i∈[1,|Q|]. (9)

However, since Bregman’s algorithms are essentially
coordinate-wise ascent methods, their convergence may
slow unless fine grained parallelism can be exploited. For
commodity hardware, an alternative to the exterior point
methods are interior point methods that use an inner repre-
sentation of the convex constraint set.

Inner representation: For our experiments we use the up-
dates in figure 1. In particular, we use the method of D
proximal gradients for (10) where the proximal term is a
Bregman divergence defined by a convex function whose
domain is the required constraint set [13], [22], [16]. This
automatically enforces the required constraints.

To handle partial order we introduce a block-diagonally
restricted permutation matrix Pi that can permute indices
in each Pij independently. Since the items in Pij are not
equivalent they are available for re-ordering as long as that
minimizes the cost (6). Block weighted IS Bregman diver-
gences have the special property that sorting minimizes the
divergence over all permutations (Lemma 3). Thus update
(11) can be accomplished by sorting.

The updates (10), (11) and (12) each reduce the lower
bounded cost (6), and therefore the algorithm described
in figure 1 converges. However, the vital question about
whether the updates converge to a stationary point remains.

Convergence to a Stationary Point If repeated application
of (10) and (11) (sorting) for a fixedwt+1, {βt+1

i } achieves
the minimum then convergence to the stationary point is
guaranteed. Thus we explore the question whether (11) and
(10) together achieves a local minimum.

The tri-factored form riPiUxi is a cause for concern.
Somewhat re-assuring is the fact that the range of PiUxi
is Ri which again is a convex cone and that the tri-
factored representation of any point in that cone is de-
scribed uniquely. This however is not sufficient to en-
sure that a minimum is achieved by (10) and (11) because
though the constraint set is convex, the cost function (6)
is not convex in the tri-factored parameterization. Worse

still, the parameterization is discontinuous because of the
discrete nature of P.

While one may address the discreteness problem via a real-
relaxation of P to doubly stochastic matrices, the local min-
ima attained in such a case will be in the interior of the
Birkhoff polytope and not at the vertices that (11) sort-
ing would have obtained. Therefore such a convex relax-
ation cannot answer the question whether (10) and sorting
achieves the local minimum. Thus it is surprising that sort-
ing followed by the xi updates does achieve the local min-
imum of (6) on the cone Ri, as a consequence of the fol-
lowing Lemma.

Lemma 4. Let vectors
[
x1
x2

]
and

[y1
y2

]
be conformally par-

titioned. Let
[y1
y2

]∗
= Argminy′i∈Π(y1),

y′1≥y′2
Dφ

([y′
1

y′
2

]∣∣∣
∣∣∣
[
x1
x2

])

where Π(yi) is the set of all permutations of the vector yi.

If the Bregman divergence Dφ

(
·
∣∣∣
∣∣∣·
)

is conformally separa-
ble then y∗i is isotonic with xi ∀i = 1, 2

Proof. The proof is by contradiction. Assume y∗i is a mini-
mizer that is not isotonic with xi, then one may permute y∗i
to match the order of xi to obtain a reduced cost, yielding
a contradiction.

The utility of Lemma 4 is that in spite of the caveats men-
tioned it can correctly identify the internal ordering of the
components of the left hand side that achieves the mini-
mum for a fixed wt+1, {βt+1

i }, given a fixed right hand
side. With the knowledge of the order obtained, one may
then compute the actual values with relative ease with (10).

5 Experiments

We evaluated the ranking performance of the proposed
monotone retargeting approach on the benchmark LETOR
4.0 datasets (MQ2007, MQ2008) [23] as well as the
OHSUMED dataset [12]. Each of these datasets is pre-
partitioned into five-fold validation sets for easy compar-
ison across algorithms. For OHSUMED, we used the
QueryLevelNorm partition. Each dataset contains a set of
queries, where each document is assigned a relevance score
from irrelevant (r = 0) to relevant (r = 2).

All algorithms were trained using a regularized linear rank-
ing function, with a regularization parameter chosen from
the set C ∈ {10−50, 10−20, 10−10, 10−5, 100, 101}. The
best model was identified as the model with highest mean
average precision (MAP) on the validation set. All pre-
sented results are of average performance on the test set.
As the baseline, we implemented the NDCG consistent re-
normalization approach in [19] (using the NDCGm normal-
ization) for the squared loss and the I-divergence (gener-
alized KL-divergence). ListNet was implemented [7] as
the KL divergence baseline since their normalization has
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no effect on KL-divergence. MR was implemented using
the partially hidden order monotone retargeting approach
(Section 4.1). We compared the performance of MR (Nor-
malized MR) to the MR method with the normalization 1

|Vi|
removed (Unnormalized MR).

The algorithms were implemented in Python and executed
on a 2.4GHz quad-core Intel Xeon processor without pay-
ing particular attention to writing optimized code. Ample
room for improvement remains. Square loss was the fastest
with respect to average execution times per iteration at 0.58
seconds whereas KL achieved 1.01 seconds per iteration
and I-div 1.14 seconds per iteration. We found that al-
though MQ2007 is more than 4 times larger than MQ2008,
MQ2007 only required about twice the time execution on
average, highlighting the scalability of MR. On average
SQ, KL and I-div took 99, 90 and 65 iterations.

Table 5 compares the algorithms in terms of expected re-
ciprocal return (ERR) [10], Mean average precision (MAP)
and NDCG. Unnormalized KL divergence cost function led
to the best performance across datasets. The most sig-
nificant gains over the baseline were for the I-divergence
cost function. Monotone retargeting showed consistent per-
formance gains over the baseline across metrics (NDCG,
ERR, Precision), suggesting the effectiveness of MR for
improving the overall ranking performance.

Figure 2 shows a subset of performance comparisons us-
ing the NDCG@N and Precision@N metrics. Our exper-
iments show a significant improvement in performance on
the range of datasets and cost functions. Across datasets,
the difference between the baseline and our results were
most significant with the I-divergence (generalized KL di-
vergence) cost function.

There are two things worth taking special note of: (i)
Although the baseline algorithms were proposed specif-
ically for improving NDCG performance, MR improves
the ranking accuracy further, even in terms of NDCG. (ii)
MR seems to be consistently peaking early. This prop-
erty is particularly desirable and is encoded specifically in
the cost functions such as NDCG and ERR. In our initial
formulation we used WIS Bregman divergence so that the
weights could be tuned to obtained the early peaking be-
havior. However that proved unnecessary because even the
unweighted model produced satisfactory performance. The
effect of query length normalization was, however, incon-
sistent. Some of our results were insensitive to it, whereas
other results were adversely affected. We conjecture that it
is an artifact of using the same amount of regularization as
in the un-normalized case.

6 Conclusion and Related Work

One technique that shares our motivation of learning to
rank is ordinal regression [14] which optimizes parameters

MQ 2007 ERR
I-div SQ KL

Unnormalized MR 0.3698 0.3703 0.3737
Normalized MR 0.3702 0.3601 0.3731

Baseline 0.1953 0.3639 0.3643
MQ 2007 MAP

I-div SQ KL
Unnormalized MR 0.5379 0.5361 0.5398
Normalized MR 0.5358 0.5282 0.5399

Baseline 0.3611 0.5330 0.5380
MQ 2007 NDCG

I-div SQ KL
Unnormalized MR 0.6961 0.7398 0.6978
Normalized MR 0.6954 0.6953 0.6981

Baseline 0.5512 0.6927 0.6952
MQ 2008 ERR

I-div SQ KL
Unnormalized MR 0.4137 0.41559 0.4238
Normalized MR 0.4144 0.41392 0.4085

Baseline 0.2724 0.40978 0.4132
MQ 2008 MAP

I-div SQ KL
Unnormalized MR 0.6439 0.6532 0.6571
Normalized MR 0.6449 0.6549 0.6461

Baseline 0.4513 0.6428 0.6530
MQ 2008 NDCG

I-div SQ KL
Unnormalized MR 0.7339 0.7398 0.7451
Normalized MR 0.7346 0.7396 0.7330

Baseline 0.5892 0.7344 0.7399
OHSUMED ERR

I-div SQ KL
Unnormalized MR 0.5657 0.5410 0.5410
Normalized MR 0.5796 0.5093 0.5093

Baseline 0.2255 0.5450 0.5467
OHSUMED MAP

I-div SQ KL
Unnormalized MR 0.4537 0.4417 0.4531
Normalized MR 0.4463 0.4394 0.4506

Baseline 0.3421 0.4465 0.4524
OHSUMED NDCG

I-div SQ KL
Unnormalized MR 0.7000 0.6878 0.6997
Normalized MR 0.6935 0.6798 0.6916

Baseline 0.5805 0.6892 0.6947

Table 2: Test ERR, MAP and NDCG on different datasets.
The best results are in bold.
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Figure 2: MR performance vs. NDCG
consistent baseline measured using
NDCG@N and Precision@N. Datasets:
MQ2007 (left), MQ2008 (middle),
OHSUMED (right).

23



of a regression function as well as thresholds. Unfortu-
nately we do not have space for a full literature survey and
only mention a few key differences. The log-likelihood of
the classic ordinal regression methods are a sum of loga-
rithms of differences of monotonic functions and are much
more cumbersome to optimize over. To our knowledge they
do not share the strong guarantees that MR with Bregman
divergences enjoys. The prevalent technique there seems
to require fixing a finite number of thresholds up-front, an
arbitrary choice that MR does not make. However, it is
not clear if that is a restriction of ordinal regression or is a
prevalent practice.

In this paper we introduced a family of new cost functions
for ranking. The cost function takes into account all possi-
ble monotonic transforms of the target scores, and we show
how such a cost function can be optimized efficiently. Be-
cause the sole objective of learning to rank is to output good
permutations on unseen data, it is desirable that the cost
function be a function of such permutations. Though sev-
eral permutation dependent cost functions have been pro-
posed, they are extremely difficult to optimize over and one
has to resort to surrogates and/or cut other corners. We
show that with monotone retargeting with Bregman diver-
gences such contortions are unnecessary. In addition, the
proposed cost function and algorithms have very favorable
statistical, optimization theoretic, as well as empirically ob-
served properties. Other advantages include extensive par-
allelizability due to simple simultaneous projection updates
that optimize a cost function that is convex not only in each
of the arguments separately but also jointly, with a proper
choice of the cost function from the family.

A Appendix: Proof Sketches

Theorem 1

Proof. Let the components of y∗ take k unique values. Par-
tition the set indexing the components into Π = {Πi}ki=1

s.t. ∀j ∈ Πi y
∗
j = ci ∀i∈[1,k]. Let the scalar mean of

x on Πi be µΠi . By (14), ∑
j∈Πi

Dφ
(
xj

∣∣∣
∣∣∣y∗j
)

=
∑
j∈Πi

Dφ
(
xj

∣∣∣
∣∣∣µΠi

)
+Dφ

(
µΠi

∣∣∣
∣∣∣ci
)
. First, we prove by contra-

diction that y∗j = µΠi ∀j ∈ Πi, otherwise ∃ y′ ∈ Rd s.t.
y′l = y∗l ∀l /∈ Πi, and ∀j ∈ Πi ci+1 ≤ y′j = c′ ≤ ci−1

s.t. Dφ

(
µΠi

∣∣∣
∣∣∣c′
)
< Dφ

(
µΠi

∣∣∣
∣∣∣ci
)
. Thus Dφ

(
x
∣∣∣
∣∣∣y′
)
<

Dφ

(
x
∣∣∣
∣∣∣y∗
)
, clearly a contradiction.

Let Argminy∈R↓Dθ

(
x
∣∣∣
∣∣∣y
)

= z∗ for θ 6= φ. Let z∗ in-
duce the partition P = {Pl}ml=1. If Π = P always, then
y∗j = z∗j completing the proof. Shift the indexing of the
partitions to the first j where Πj , Pj differs. Now with new
index, WLOG 3 assume Π1 ⊂ P1, P1 ⊂ Π1 ∪ Π2. Define
Π̇2 = Π2 ∩ P1, Π̈2 = Π2 \ Π̇2 6= ∅, else P1 can be refined

3We encourage the reader to draw a picture for clarity.

into Π1,Π2 obtaining a lower cost (by Corollary 3). Let the
means of Π̇2, Π̈2 = ẏ2, ÿ2. By definition y∗2 is their convex
combination. Now ẏ2 ≥ ÿ2, else one can reduce the cost
by refining Π2 into Π̇2, Π̈2. Therefore ẏ2 ≥ y∗2 ≥ ÿ2. Note
y∗1 ≥ ẏ2 or else we can refine P1 into Π1, Π̇2. Thus we have
y∗1 ≥ ẏ2 ≥ ÿ2 which is in contradiction with y∗1 < y∗2 .

Theorem 2

Proof. For succinctness we use the abbreviations: x(α) =
αx1 + (1− α)x2, y(α) = αy1 + (1− α)y2, φi =
φ(xi), ψi = ψ(xi), Φ(α) = αφ1 + (1− α)φ2 and
Ψ(α) = αψ1 + (1− α)ψ2. Joint convexity is equivalent
to φ(x(α)) +ψ(y(α))− 〈x(α),y(α)〉 ≤ Φ(α) + Ψ(α)−
α 〈x1,y1〉−(1−α) 〈x2,y2〉 ∀ x1,x2 ∈ domφ, y1,y2 ∈
domψ. Thus we have to show:

φ(x(α))+ψ(y(α)) ≤ Φ(α)+Ψ(α)+

B︷ ︸︸ ︷
α(1− α) 〈x1 − x2,y1 − y2〉

(13)
for all arguments in the domain. Assume with no loss

in generality that φ(·) and ψ(·) are strongly convex with
modulus of strong convexity (1 + s1), (1− s2) with s1 >
−1, s2 < 1, respectively. Reciprocal of the modulus of
strong convexity of the Legendre dual is the Lipschitz con-
stant of the gradient of a convex function [21], therefore
(1 + s1) ≤ 1

1−s2 , being the lower and upper bounds of the
eigenvalues of the Hessian of φ(·) respectively. Simplify-
ing expression (13) using our strong convexity assumptions
and positivity of α(1−α), we obtain that we have to show
(1 + s1)||x1−x2||2 + (1− s2)||y1− y2||2− 2B ≤ 0. Or

||(x1−x2)−(y1−y2)||2+s1||x1−x2||2−s2||(y1−y2)||2 ≤ 0.

Let p = x1−x2 and q = y1−y2. By choosing (1+s)p =
q we obtain s1 > s2 + s1s2, or equivalently (1 + s1) ≥

1
1−s2 . Thus the lower and upper bounds of the eigenvalues
of Hessian of φ(·) must coincide.

B Appendix: Optimality of Means

Theorem 3. [2] Let π be a distribution over x ∈ domφ and
µ = E

x∼π
[x] then the expected divergence about s is

E
x∼π

[
Dφ
(
x
∣∣∣
∣∣∣s
)]

= E
x∼π

[
Dφ
(
x
∣∣∣
∣∣∣µ
)]

+Dφ
(
µ
∣∣∣
∣∣∣s
)
. (14)

From non-negativity of Bregman divergence it follows that

Corrolary 2. [2] E
x∼π

[x] = Argmin
y∈domφ

E
x∼π

[
Dφ
(
x
∣∣∣
∣∣∣y
)]
.

Corrolary 3. If random variable x takes values in X = X1∪X2

with X1 ∩ X2 = ∅ then Argmin
µ∈X

E
x|X

[
Dφ
(
x
∣∣∣
∣∣∣µ
)]
≥

Argmin
µ1∈X1

E
x|X1

[
Dφ
(
x
∣∣∣
∣∣∣µ1

)]
+ Argmin

µ2∈X2

E
x|X2

[
Dφ
(
x
∣∣∣
∣∣∣µ2

)]
.
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Abstract

A determinantal point process (DPP) is a random
process useful for modeling the combinatorial
problem of subset selection. In particular, DPPs
encourage a random subset Y to contain a diverse
set of items selected from a base set Y . For ex-
ample, we might use a DPP to display a set of
news headlines that are relevant to a user’s inter-
ests while covering a variety of topics. Suppose,
however, that we are asked to sequentially se-
lect multiple diverse sets of items, for example,
displaying new headlines day-by-day. We might
want these sets to be diverse not just individually
but also through time, offering headlines today
that are unlike the ones shown yesterday. In this
paper, we construct a Markov DPP (M-DPP) that
models a sequence of random sets {Y t}. The
proposed M-DPP defines a stationary process that
maintains DPP margins. Crucially, the induced
union processZt ≡ Y t∪Y t−1 is also marginally
DPP-distributed. Jointly, these properties imply
that the sequence of random sets are encouraged
to be diverse both at a given time step as well as
across time steps. We describe an exact, efficient
sampling procedure, and a method for incremen-
tally learning a quality measure over items in the
base set Y based on external preferences. We
apply the M-DPP to the task of sequentially dis-
playing diverse and relevant news articles to a
user with topic preferences.

1 INTRODUCTION

Consider the combinatorial problem of subset selection. Bi-
nary Markov random fields are commonly applied in this
setting, and in the case of positive correlations, yield subsets
that favor similar items. However, in many applications
there is naturally a sense of repulsion. For example, re-
pulsive processes arise in nature—trees tend to grow in
the least occupied space (Neeff et al., 2005), and ant hill

locations are likewise over-dispersed relative to uniform
placement (Bernstein and Gobbel, 1979). Likewise, many
practical tasks can be posed in terms of diverse subset selec-
tion. For example, one might want to select a set of frames
from a movie that are representative of its content. Clearly,
diversity is preferable to avoid redundancy; likewise, each
frame should be of high quality. A motivating example we
consider throughout the paper is the task of selecting a di-
verse yet relevant set of news headlines to display to a user.
One could imagine employing binary Markov random fields
with negative correlations, but such models often involve
notoriously intractable inference problems.

Determinantal point processes (DPPs), which arise in ran-
dom matrix theory (Mehta and Gaudin, 1960; Ginibre, 1965)
and quantum physics (Macchi, 1975), are a class of repul-
sive processes and are natural models for subset selection
problems where diversity is preferred. DPPs define the
probability of a subset in terms of the determinant of a
kernel submatrix, and with an appropriate definition of the
kernel matrix they can be interpreted as inherently balanc-
ing quality and diversity. DPPs are appealing in practice
since they offer interpretability and tractable algorithms for
exact inference. For example, one can compute marginal
and conditional probabilities and perform exact sampling.
DPPs have recently been employed for human pose estima-
tion, search diversification, and document summarization
(Kulesza and Taskar, 2010, 2011a,b).

In this paper, our focus is instead on modeling diverse se-
quences of subsets. For example, in displaying news head-
lines from day to day, one aims to select articles that are
relevant and diverse on any given day. Additionally, it is
desirable to select articles that are diverse relative to those
previously shown. We construct a Markov DPP (M-DPP)
for a sequence of random sets {Y t}. The proposed M-DPP
defines a stationary process that maintains DPP margins,
implying that Y t is encouraged to be diverse at time t. Cru-
cially, the induced union process Zt ≡ Y t ∪ Y t−1 is also
marginally DPP-distributed. Since this property implies the
diversity of Zt, in addition to the individual diversity of
Y t and Y t−1, we conclude that Y t is diverse from Y t−1.
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DPP M-DPP

Time Time

Figure 1: A set of points on a line (y axis) drawn from
a DPP independently over time (left) and from a M-DPP
(right). While DPP points are diverse only within time steps
(columns), M-DPP points are also diverse across time steps.

For an illustration of the improved overall diversity when
sampling from a M-DPP rather than independent sequential
sampling from a DPP, see Fig. 1.

Our specific construction of the M-DPP yields an exact
sampling procedure that can be performed in polynomial
time. Additionally, we explore a method for incrementally
learning the quality of each item in the base set Y based
on externally provided preferences. In particular, a decom-
position of the DPP kernel matrix has an interpretation as
defining the quality of each item and pairwise similarities
between items. Our incremental learning procedure assumes
a well-defined similarity metric and aims to learn features
of items that a user deems as preferable. These features are
used to define the quality scores for each item. The M-DPP
aids in the exploration of items of interest to the user by
providing sequentially diverse results.

We study the empirical behavior of the M-DPP on a news
task where the goal is to display diverse and high quality
articles. Compared to choosing articles based on quality
alone or to sampling from an independent DPP at each time
step, we show that the M-DPP produces articles that are
significantly more diverse across time steps without large
sacrifices in quality. Furthermore, within a time step the
M-DPP chooses articles with diversity comparable to that
of the independent DPP; this is a direct result of the fact
that the M-DPP maintains DPP margins. We also consider
learning the quality function over time from the feedback
of a user with topic preferences. In this setting, the M-DPP
returns high quality results that are preferred by the user
while simultaneously exploring the topic space more quickly
than baseline methods, leading to improved coverage.

2 DETERMINANTAL POINT
PROCESSES

A random point process P on a discrete base set Y =
{1, . . . , N} is a probability measure on the set 2Y of all
subsets of Y . Let K be a semidefinite matrix with rows
and columns indexed by the elements of Y . P is called a
determinantal point process (DPP) if there exists K � I
(all eigenvalues less than or equal to 1) such that if Y is a

random set drawn according to P , then for every A ⊆ Y:

P(Y ⊇ A) = det(KA) . (1)

Here, KA ≡ [KA]i,j∈A denotes the submatrix of K in-
dexed by elements in A, and we adopt the convention that
det(K∅) = 1. We will refer to K as the marginal kernel. If
we think of Kij as measuring the similarity between items i
and j, then

P(Y ⊇ {i, j}) = KiiKjj −K2
ij (2)

implies that Y is unlikely to contain both i and j when they
are very similar; that is, a DPP can be seen as modeling a
collection of diverse items from the base set Y .

DPPs can alternatively be constructed via L-ensembles
(Borodin and Rains, 2005). An L-ensemble is a probability
measure on 2Y defined via a positive semidefinite matrix L
indexed by elements of Y:

PL(Y = A) =
det(LA)

det(L+ I)
, (3)

where I is theN×N identity matrix. It can be shown that an
L-ensemble is a DPP with marginal kernelK = L(I+L)−1.
Conversely, a DPP with marginal kernel K has L-ensemble
kernel L = K(I −K)−1 (when the inverse exists).

An intuitive way to think of the L-ensemble kernel L is as a
Gram matrix (Kulesza and Taskar, 2010):

Lij = qiφ
>
i φjqj , (4)

interpreting qi ∈ R+ as representing the intrinsic quality
of an item i, and φi, φj ∈ Rn as unit length feature vec-
tors representing the similarity between items i and j with
φ>i φj ∈ [−1, 1]. Under this framework, we can model qual-
ity and similarity separately to encourage the DPP to choose
high quality items that are dissimilar to each other. This is
very useful in many applications. For example, in response
to a search query we can provide a very relevant (i.e. high
quality) but diverse (i.e. dissimilar) list of results.

Conditional DPPs For any A,B ⊆ Y with A ∩ B = ∅,
it is straightforward to show that

PL(Y = A ∪B|Y ⊇ A) =
det(LA∪B)

det(L+ IY\A)
, (5)

where IY\A is a matrix with ones on the diagonal entries
indexed by the elements of Y \A and zeros elsewhere.

This conditional distribution is itself a DPP over the ele-
ments of Y \ A (Borodin and Rains, 2005). In particular,
suppose Y is DPP-distributed with L-ensemble kernel L,
and condition on the fact that Y ⊇ A. Then the set Y \A
is DPP-distributed with marginal and L-ensemble kernels

KA =
[
I − (L+ IY\A)−1

]
Y\A (6)

LA =
([

(L+ IY\A)−1
]
Y\A

)−1
− I . (7)
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Here, [·]Y\A denotes the submatrix of the argument indexed
by elements in Y \ A. Thus, DPPs as a class are closed
under most natural conditioning operations.

In selecting a diverse collection of elements in Y , a DPP
jointly models both the size of a set and its content. In some
applications, the goal is to select (diverse) sets of a fixed size.
In order to achieve this goal, we can instead consider a fixed-
size determinantal point processes, or kDPP (Kulesza and
Taskar, 2011a), which gives a distribution over all random
subsets Y ⊆ Y with fixed cardinality k. The L-ensemble
construction of a kDPP, denoted PkL, gives probabilities

PkL(Y = A) =
det(LA)∑
|B|=k det(LB)

(8)

for all setsAwith cardinality k and any positive semidefinite
kernel L. Kulesza and Taskar (2011a) developed efficient
algorithms to normalize, sample and marginalize kDPPs
using properties of elementary symmetric polynomials.

3 MARKOV DETERMINANTAL POINT
PROCESSES (M-DPPS)

In certain applications, such as in the task of displaying
news headlines, our goal is not only to generate a diverse
collection of items at one time point, but also to generate
collections of items at subsequent time points that are both
highly relevant and dissimilar to the previous collection. To
address these goals, we introduce the Markov determinantal
point process (M-DPP), which emphasizes both marginal
and conditional diversity of selected items. Harnessing the
quality and similarity interpretation of the DPP in (4), the
M-DPP provides a dynamic way of selecting high quality
and diverse collections of items as a temporal process.

We constructively define a first-order, discrete-time autore-
gressive point process on Y by specifying a Markov transi-
tion distribution (and initial distribution). Throughout, we
use the notation {Y t}, Y t ⊆ Y , to represent a sequence
of sets following a M-DPP. We consider two such construc-
tions: one based on marginal kernels, and the other on
L-ensembles. Both yield equivalent stationary processes
with DPP margins. Additionally, and quite intuitively, the
induced union process {Zt ≡ Y t ∪ Y t−1} has DPP mar-
gins with a closely related kernel. Combining these two
properties, we conclude that the constructed M-DPPs yield
a sequence of sets {Y t} that are diverse at any time t and
across time steps t, t− 1.

Marginal construction. DefineP(Y 1 ⊇ A) = det(KA)
and

P(Y t ⊇ B|Y t−1 ⊇ A) =
det(KA∪B)

det(KA)
, (9)

where K ≺ 1
2I and A ∩ B = ∅. Throughout, we adopt

the implicit constraint that Y t ∩ Y t−1 = ∅. We have

immediately the joint probability

P(Y 2 ⊇ B,Y 1 ⊇ A) = det(KA∪B) , (10)

and therefore

P(Y 2 ⊇ B) = P(Y 2 ⊇ B,Y 1 ⊇ ∅) = det(KB) . (11)

Inductively, the process is stationary and marginally DPP.

Finally, we have the union of consecutive sets:

P(Zt ≡ Y t ∪ Y t−1 ⊇ C)

=
∑

A⊆C
P(Y t ⊇ C \A,Y t−1 ⊇ A) =

∑

A⊆C
det(KC)

= 2|C| det(KC) = det((2K)C) . (12)

That is, Zt is marginally distributed as a DPP with marginal
kernel 2K. Since a randomly sampled subset of a DPP-
distributed set also follows a DPP, marginally we can imag-
ine this process as sampling Zt and then splitting its ele-
ments randomly into two sets, Y t−1 and Y t.

L-ensemble construction. The above is appealingly sim-
ple, but the marginal form of the conditional in (9) is not
particularly conducive to a sequential sampling process. In-
stead, we can rewrite everything as L-ensembles. Assume
that at the first time step P(Y 1 = Y1) =

det(LY1 )

det(L+I) and
define the transition distribution as

P(Y t = Yt|Y t−1 = Yt−1) =
det(MYt∪Yt−1)

det(M + IY\Yt−1
)
, (13)

for M = L(I − L)−1. Note that the transition distribution
is essentially a conditional DPP with L-ensemble kernel M
(Eq. (5)). M is well-defined as long as L ≺ I , which is
equivalent to K ≺ 1

2I , as in the marginal construction.

Now we have the joint probability

P(Y 2 = Y2,Y 1 = Y1) =
det(MY1∪Y2)

det(M + IY\Y1
)

det(LY1)

det(L+ I)
.

(14)

Using the fact that det(M + IY\Y1
)/det(M + I) =

det(LY1),

P(Y 2 = Y2,Y 1 = Y1) =
1

det(L+ I)

det(MY1∪Y2)

det(M + I)
.

(15)

Therefore, marginally,

P(Y 2 = Y2) =
∑

Y1⊆Y

1

det(L+ I)

det(MY1∪Y2)

det(M + I)

=
∑

(Y1∪Y2)⊇Y2

1

det(L+ I)

det(MY1∪Y2
)

det(M + I)

=
det(M + IY\Y2

)

det(L+ I) det(M + I)
=

det(LY2
)

det(L+ I)
.

(16)

28



Here, we used
∑
B⊇A det(MB) = det(M + IY\A), which

is immediately derived from (5). By induction, we conclude

P(Y t = Yt) =
det(LYt)

det(L+ I)
. (17)

Thus, our construction yields a stationary process with Y t

marginally distributed as a DPP with L-ensemble kernel L.

One can likewise analyze the margin of the induced union
process {Zt ≡ Y t ∪ Y t−1}:

P(Zt ≡ Y t ∪ Y t−1 = C)

=
∑

A⊆C
P(Y t = C \A,Y t−1 = A)

=
∑

A⊆C

1

det(L+ I)

det(MC)

det(M + I)

=
2|C|

det(L+ I)

det(MC)

det(M + I)
(18)

=
1

det(L+ I)

det((2M)C)

det(M + I)
. (19)

Noting that

det(M + I) det(L+ I) = det((M + I)(L+ I))

= det((M + I)(I − (M + I)−1 + I))

= det(2M + 2I − I) = det(2M + I) , (20)

we conclude

P(Zt ≡ Y t ∪ Y t−1 = C) =
det((2M)C)

det(2M + I)
. (21)

We have shown that Zt is marginally distributed as a DPP
with L-ensemble kernel 2M . The corresponding marginal
kernel is

2M(2M + I)−1 = 2L(I − L)−1
[
(L+ I)(I − L)−1

]−1

= 2L(L+ I)−1 = 2K . (22)

Thus, we have reproduced the same characterization of Zt
as in (12) for the marginal kernel construction.

To summarize the marginal properties of the M-DPP, using
the notation Y ∼ L,K to denote that Y is from a DPP with
L-ensemble kernel L and marginal kernel K, we have:

Y t ∼ L,K (23)

Zt ∼ 2L(I − L)−1, 2K . (24)

3.1 COMMENTS ON THE M-DPP

While we have shown that the M-DPP subsets are diverse
at subsequent time steps, this does not necessarily imply
diversity at longer intervals. In fact, it is possible for real-
izations to have oscillations, where groups of high-quality
items recur every two (or more) time steps. However, this

is not necessarily a problem in practice for several reasons.
First, the M-DPP construction straightfowardly extends to
higher order models with longer memory, if desired. Sec-
ond, it is possible to show that the M-DPP does not harm
long-term diversity relative to independent sampling from
a DPP. If we make a separate copy of each item at each
time step, then the M-DPP can be seen as a large DPP on
item/time pairs (i, t). Denoting the marginal kernel by K̂,
the Markov property implies that K̂(i,t)(j,u) is only nonzero
when |t−u| ≤ 1. The probability of item i appearing at any
set of time steps, given by the appropriate determinant of K̂,
can only be reduced by the off-diagonal entries compared
to independent DPP samples at each time step. Thus, the
M-DPP can only make global repetition less likely. Finally,
in our experiments (Sec. 5) we report results that suggest
that M-DPP oscillations do not arise in the task we study.

3.2 MARKOV kDPPS

One can also construct a Markov kDPP (M-kDPP). Al-
though we define a stationary process, our construction
does not yield Y t marginally kDPP. Instead, the M-kDPP
simply ensures that Zt ≡ Y t ∪ Y t−1 follows a 2kDPP.
Since Zt is encouraged to be diverse, the subsets Y t and
Y t−1 will likewise be diverse despite not following a kDPP
themselves.

We start by defining the margin and transition distributions:

P(Y t−1 = Yt−1) =

∑
|A|=k det(LYt−1∪A)

(
2k
k

)∑
|B|=2k det(LB)

(25)

P(Y t = Yt|Y t−1 = Yt−1) =
det(LYt−1∪Yt)∑
|A|=k det(LYt−1∪A)

,

(26)

where A and Yt are disjoint from Yt−1. Then, jointly

P(Y t = Yt,Y t−1 = Yt−1) =
det(LYt−1∪Yt)(

2k
k

)∑
|B|=2k det(LB)

,

(27)

from which we confirm the stationarity of the process:

P(Y t = Yt) =

∑
|Yt−1|=k det(LYt∪Yt−1

)
(
2k
k

)∑
|B|=2k det(LB)

. (28)

The implied union process has margins

P(Zt ≡ Y t ∪ Y t−1 = C)

=
∑

A⊆C,|A|=k
P(Y t = C \A,Y t−1 = A)

=
∑

A⊆C,|A|=k

det(LC)(
2k
k

)∑
|B|=2k det(LB)

=
det(LC)∑

|B|=2k det(LB)
, (29)

which is a 2kDPP with L-ensemble kernel L.
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Algorithm 1 Sampling from a DPP
Input: L-ensemble kernel matrix L
{(vn, λn)}Nn=1 ← eigenvector/value pairs of L
J ← ∅
for n = 1, . . . , N do
J ← J ∪ {n} with prob. λn

λn+1
V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select yi from Y with Pr(yi)= 1
|V |
∑
v∈V (v>ei)2

Y ← Y ∪ {yi}
V ← V⊥, an orthonormal basis for the subspace of V
orthogonal to ei

Output: Y

3.3 SAMPLING FROM M-DPPS AND M-kDPPS

In the previous subsections we showed how our construc-
tions of M-(k)DPPs lead to DPP (and DPP-like) marginals
for {Y t} and the union process {Zt}. These connections
to DPPs give us valuable intuition about the diversity in-
duced both within and across time steps. They serve another
purpose as well: since DPPs and kDPPs can be sampled
in polynomial time, we can leverage existing algorithms to
efficiently sample from M-DPPs and M-kDPPs.

Hough et al. (2006) first described the DPP sampling algo-
rithm shown in Algorithm 1. The first step is to compute
an eigendecomposition L =

∑N
n=1 λnvnv

>
n of the kernel

matrix; from this, a random subset V of the eigenvectors is
chosen by using the eigenvalues to bias a sequence of coin
flips. The algorithm then proceeds iteratively, on each itera-
tion selecting a new item yi to add to the sample and then
updating V in a manner that de-emphasizes items similar
to the one just selected. Note that ei is the ith elementary
basis vector whose elements are all zero except for a one in
position i. Algorithm 1 runs in time O(N3 +Nk3), where
N is the number of available items and k is the cardinality
of the returned sample.

To adapt this algorithm for sampling M-DPPs, we will pro-
ceed sequentially, first sampling Y 1 from the initial distri-
bution and then repeatedly selecting Y t from the transition
distribution given Y t−1. The initial distribution is a DPP
with L-ensemble kernel L and can therefore be sampled
directly using Algorithm 1. As shown in Sec. 3, the transi-
tion distribution (13) is a conditional DPP with L-ensemble
kernel M = L(L− I)−1; using (7), the L-ensemble kernel
for Y t given Y t−1 = Yt−1 can be written as

L(t) =
(

(M + IY\Yt−1
)−1Y\Yt−1

)−1
− I . (30)

Thus we can sample simply and efficiently from a M-DPP
using Algorithm 2. The runtime is O(TN3 + TNk3max),
where kmax is the maximum number of items chosen at a
single time step. Note that for constant kmax this is the same

Algorithm 2 Sampling from a Markov DPP
Input: matrix L
M ← L(L− I)−1

Y1 ← DPP-SAMPLE(L)
for t = 2, . . . , T do

L(t) ←
(

(M + IY\Yt−1
)−1Y\Yt−1

)−1
− I

Yt ← DPP-SAMPLE(L(t))
Output: {Yt}

Algorithm 3 Sampling from a kDPP
Input: L-ensemble kernel matrix L, size k
{(vn, λn)}Nn=1 ← eigenvector/value pairs of L
J ← ∅
for n = N, . . . , 1 do

if u ∼ U [0, 1] < λn
en−1
k−1

enk
then

J ← J ∪ {n}
k ← k − 1
if k = 0 then

break
{continue with the rest of Algorithm 1}

runtime as a Kalman filter with a state vector of size N .

Kulesza and Taskar (2011a) proved that a modification to
the first loop in Algorithm 1 allows sampling from a kDPP
with no change in the asymptotic complexity. The result
is Algorithm 3; here enk denotes the elementary symmetric
polynomial enk =

∑
|J|=k

∏
n∈J λn, which can be com-

puted efficiently using recursion.

We can now use Algorithm 3 to perform sequential sampling
for a M-kDPP. At first glance, the initial distribution (which
is not a kDPP) seems difficult to sample; however, from
Sec. 3 we know that it can be obtained by harnessing the
union process form of (29) and first sampling a 2kDPP
with L-ensemble kernel L and then throwing away half of
the resulting items at random. Transitionally, we have a
conditional kDPP whose kernel can be computed as in (30).
Algorithm 4 summarizes the M-kDPP sampling process,
which runs in time O(TN3 + TNk3).

Algorithm 4 Sampling from a Markov kDPP
Input: matrix L, size k
Z1 ← kDPP-SAMPLE(L, 2k)
Y1 ← random half of Z1

for t = 2, . . . , T do

L(t) ←
(

(L+ IY\Yt−1
)−1Y\Yt−1

)−1
− I

Yt ← kDPP-SAMPLE(L(t), k)
Output: {Yt}
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4 LEARNING USER PREFERENCES

A broad class of problems suited to M-(k)DPP modeling are
also applications in which we would like to learn preferences
from a user over time. Recall the news headlines scenario.
Here, the goal is to present articles on a daily basis that are
both relevant to the user’s interests and also non-redundant.
With feedback from a user in the form of click-through
behavior, we can attempt to simultaneously learn features
of the articles that the user regards as preferable. While
the diversity offered by a M-DPP is intrinsically valuable
for this task, e.g., to keep the user from getting bored, in
the context of learning it also has an important secondary
benefit: it promotes exploration of the preference space.

Consider the following simple learning setup. At each time
step t, the algorithm shows the user a set of k items drawn
from some base set Yt, for instance, articles from the day’s
news. The user then provides feedback by identifying each
shown item as either preferred or not preferred, perhaps by
clicking on the preferred ones. The algorithm then incor-
porates this feedback and proceeds to the next round. The
learner has two goals. First, as often as possible at least
some of the items shown to the user should be preferred.
Second, over the long term, many different items preferred
by the user should be shown. In other words, the algorithm
should not focus on a small set of preferred items.

Perhaps the most important consideration in this framework
is balancing showing articles that the user is known to like
(exploitation) against showing a variety of articles so as
to discover new topics in which the user is also interested
(exploration). Neither extreme is likely to be successful.
However, using the L-ensemble kernel decomposition in (4),
a DPP seeks to propose sets of items that are simultaneously
high quality and diverse. The M-DPP takes this a step
further and encourages diversity from step to step while
maintaining DPP margins, exposing the user to an even
greater variety of items without significantly sacrificing
quality. Thus, we might expect that M-(k)DPPs can be used
to enable fast and successful learning in this setting.

The tradeoff between exploration and exploitation is a fun-
damental issue for interactive learning, and has received
extensive treatment in the literature on multi-armed bandits.
However, our setup is relatively unusual for two reasons.
First, we show multiple items per time step, sometimes
called the multiple plays setting (Anantharam et al., 1987).
Second, we use feature vectors to describe the items we
choose, allowing us to generalize to unseen items (e.g., new
articles); this is a special case of contextual bandits (Lang-
ford and Zhang, 2007). Each of these scenarios has received
some attention on its own, but it is only in combination that
a notion of diversity becomes relevant, since we have both
the need to select multiple items as well as a basis for relat-
ing them. This combination has been considered recently
by Yue and Guestrin (2011), who showed an algorithm that

yields bounded regret under the assumption that the reward
function is submodular. Here, on the other hand, our goal
is primarily to illustrate the empirical effects on learning
when the items shown at each time step are sampled from
a M-DPP. To that end, we propose a very simple quality
learning algorithm that appears to work well in practice.
Whether formal regret guarantees can be established for
learning with M-DPPs is an open question for future work.

4.1 SETUP

To naturally accommodate user feedback and transfer knowl-
edge across items, we will consider algorithms that learn a
log-linear quality model assigning item i the score

qi = exp(θ>fi) , (31)

where fi ∈ Rm is a feature vector for item i and θ ∈ Rm
is the parameter vector to be learned. Learning iterates
between two distinct steps: (1) sampling articles according
to the current quality scores and (2) using user feedback to
revise the quality scores via updates to θ.

Let θ(t) denote the parameter vector prior to time step t
and let q(t)i denote the corresponding quality scores for the
items i ∈ Yt. We initialize θ(1) = 0 so that q(1)i = 1 for
all i ∈ Y1. (At this point we are effectively in a purely
exploratory mode.) Denote the items preferred by the user
at iteration t by {a(t)i }Rti=1, and the non-preferred items by
{b(t)i }Sti=1. Inspired by standard online algorithms, we define
the parameter update rule as follows:

θ(t+1) ← θ(t) + η

(
1

Rt

Rt∑

i=1

f
a
(t)
i
− 1

St

St∑

i=1

f
b
(t)
i

)
(32)

That is, we add to θ the average features of the preferred
items, and subtract from θ the average features of non-
preferred items. This increases the quality of the former
and decreases the quality of the latter. η is a learning rate
hyperparameter. We can then proceed to the next time step,
computing the new quality scores q(t+1)

i = exp(θ(t+1)>fi)
for each i ∈ Yt+1.

The updated quality scores are then used to select subse-
quent items to be shown to the user. In order to separate
the challenges of learning the quality scores, which is not
our primary interest, from the benefits of incorporating the
M-DPP, we consider five sampling methods:

• Uniform. We ignore the quality scores and choose k
items uniformly at random without replacement.

• Weighted. We draw k items with probabilities propor-
tional to their quality scores without replacement.

• kDPP. We sample the set of items from a kDPP with
L-ensemble kernel L given by the decomposition in
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Algorithm 5 Interactive learning of quality scores
Input: learning rate η
θ(1) ← 0
for t = 1, 2, . . . do
q
(t)
i ← exp(θ(t)>fi) ∀i ∈ Yt

Select items to display given q(t)i
(using one of the methods described in Sec. 4.1)

Receive user feedback {a(t)i }Rti=1 and {b(t)i }Sti=1

θ(t+1) ← θ(t) + η
(

1
Rt

∑Rt
i=1 fa(t)i

− 1
St

∑St
i=1 fb(t)i

)

(4), where φ is fixed in advance and qi are the current
quality scores.

• kDPP + heuristic (threshold). We sample the set of
items from a kDPP after removing articles whose simi-
larity to the previously selected articles exceeds a pre-
determined threshold. At threshold > 1, the heuristic
is equivalent to the kDPP.

• M-kDPP. We sample the set of items from the M-
kDPP transition distribution given the items selected
at the previous time step. The L-ensemble transition
kernel is as in (30), with L defined as for the kDPP.

The learning algorithm is summarized in Algorithm 5.

4.2 LIKELIHOOD-BASED ALTERNATIVE

Instead of the additive learning rule proposed above, one
could instead take advantage of the probabilistic nature of
the M-DPP and perform likelihood-based learning, which
has associated theoretical guarantees. In particular, based
on a sequence of user feedback, we could solve for the
penalized DPP maximum likelihood estimate of q(t) =

[q
(t)
1 , . . . , q

(t)
N ] as:

arg max
q

t∏

t=1

Pq({a(t)i } ⊆ Y t, {b(t)i } ∩ Y t = ∅) + λ||q||2,

(33)

where Pq is a DPP with L-ensemble kernel defined by qual-
ity scores q and λ is a regularization parameter. We have

Pq({a(t)i } ⊆ Y t, {b(t)i } ∩ Y t = ∅) =
(

1− Pq({b(t)i } ⊆ Y t | {a(t)i } ⊆ Y t)
)

· Pq({a(t)i } ⊆ Y t), (34)

which has computable terms in a DPP given the quality
scores q. The M-DPP has obvious extensions. However,
in both cases the objective function is not convex so com-
putations are intensive and only converge to local maxima.
Due to its simplicity and good performance in practice (see
Sec. 5.2), we use the heuristic algorithm described previ-
ously for illustrating the behavior of the M-DPP.

5 EXPERIMENTS

We study the performance of the M-kDPP for selecting
daily news items from a selection of over 35,000 New York
Times newswire articles obtained between January and June
of 2005 as part of the Gigaword corpus (Graff and Cieri,
2009). On each day of a given week, we display 10 articles
from a base set of the roughly 1400 articles written that
week. This process is repeated for each of the 26 weeks in
our dataset. The goal is to choose a collection of articles
that is high quality but also diverse, both marginally and
between time steps.

To examine performance in the absence of confounding
issues of quality learning, we first consider a scenario in
which the quality scores are fixed. Here, we measure both
the diversity and quality of articles chosen each day by the
different methods. We then turn to quality learning based on
user feedback to examine how the properties of the M-kDPP
influence the discovery of a user’s preferences.

5.1 FIXED QUALITY

Similarity To generate similarity features φi, we first
compute standard normalized tf-idf vectors, where the idf
scores are computed across all 26 weeks worth of articles.
We then compute the cosine similarity between all pairs
of articles. Due to the sparsity of the tf-idf vectors, these
similarity scores tend to be quite low, leading to poor di-
versity if used directly as a kernel matrix. Instead, we let
the similarity features be given by binary vectors where the
jth coordinate of φi is 1 if article j is among the 150 near-
est neighbors of article i in that week based on our cosine
distance metric, and 0 otherwise.

Quality In the fixed scenario, we need a way to assign
quality scores to articles. A natural approach is to score
articles based on their proximity to the other articles; this
way, an article that is close to many others (as measured by
cosine similarity) is considered to be of high quality. In this
data set, for example, we find that there is a large cluster of
articles that talk about politics and articles that fall under
this topic generally have much higher quality than articles
that talk about, say, food. To model this, we compute quality
scores as qi = exp(αdi), where di is the sum of the cosine
similarities between article i and all other articles in our
collection and α is a hyperparameter that determines the
dynamic range. We chose α = 5 for our data set, although
a range of values gave qualitatively similar results.

For each method, we sample sets of articles on a daily basis
for each of the 26 weeks. To measure diversity within a time
step, we compute the average cosine similarity between
articles chosen on a given day. We then subtract the result
from 1 so that larger values correspond to greater diversity.
Diversity between time steps is obtained by measuring the
average cosine similarity between each article at time t and
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Table 1: Average Diversity and Quality of Selected Articles

Method Marginal 1-step 2-step Quality
diversity diversity diversity

M-kDPP 0.899 0.849 0.843 0.654
k-DPP 0.896 0.786 0.779 0.668

k-DPP + heuristic (0.4) 0.904 0.849 0.804 0.651
k-DPP + heuristic (0.2) 0.946 0.891 0.889 0.587

Weighted Rand. 0.750 0.681 0.677 0.756
Uniform Rand. 0.975 0.949 0.947 0.457

the single most similar article at time t+1 (or t+2 for 2-step
diversity), and again subtracting the result from 1. We also
report the average quality score of the articles chosen across
all 182 days. All measures are averaged over 100 random
runs; statistical significance is computed by bootstrapping.

Table 1 displays the results for all methods. The M-kDPP
shows a marked increase in between-step diversity, on aver-
age, compared to the kDPP and weighted random sampling.
All of the differences are significant at 99% confidence. The
average marginal diversities for the M-kDPP and kDPP are
statistically significantly higher than for weighted random
sampling, but are not statistically significantly different from
each other. This is to be expected since, as we have seen in
Sec. 3, the marginal distribution for the M-kDPP does not
greatly differ from the kDPP process. On the other hand,
the uniform sampling shows much higher diversity than the
other methods, which can be attributed to the fact that it is
a purely exploratory method that ignores the quality of the
articles it chooses.

Table 1 also shows the average quality of the selected arti-
cles. The weighted random sampling chooses, on average,
higher quality articles compared to the rest of the methods
since it does not have to balance issues of diversity within
the set. The kDPP on average chooses slightly higher qual-
ity articles than the M-kDPP, perhaps due to the additional
between-step diversity sought by the M-kDPP; however,
the difference is not statistically significant. It is evident
from Table 1 that the M-kDPP achieves a balance between
the diversity of the articles it chooses (both marginally and
across time steps) and their quality.

As for the kDPP + heuristic baseline, our experiments show
that by tuning the threshold carefully we can mimic the
performance of the M-kDPP, but without the associated
probabilistic interpretation and theoretical properties. When
the threshold is too low, quality degrades significantly.

5.2 LEARNING PREFERENCES

We also study the performance of the M-kDPP when learn-
ing from user feedback, as outlined in Sec. 4. For simplicity,
we use only a week’s worth of news articles (1427 articles).
To create feature vectors, we first generate topics by running
LDA on the entire corpus (Blei et al., 2003). We then man-
ually label the most prevalent 10 topics as finance, health,
politics, world news, baseball, football, arts, technology,
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Figure 2: Performance of the methods at recovering the
preselected preferred articles. Solid lines indicate the mean
over 100 random runs, and dashed lines indicate the corre-
sponding confidence intervals, computed by bootstrapping.

entertainment, and justice, and associate each article with its
LDA-inferred mixture of these topics (a 10-dimensional fea-
ture vector fi). We define a synthetic user by a sparse topic
preference vector (0.7 for finance, 0.2 for world news, 0.1
for politics, and 0 for all other topics), and preselect as “pre-
ferred” the 200 articles whose feature vectors fi maximize
the dot product with the user preference vector.

Similar to our previous experiment, we define the similarity
features between articles to be binary vectors based on 50
nearest neighbors using the tf-idf cosine distances. The
quality is defined as in Sec. 4, q(t)i = exp(θ(t)>fi), where
fi is the feature vector of article i (based on the mixture
of topics) normalized to sum to 1. We set the learning rate
η = 2; however, varying η did not change the qualitative
behavior of each method, only the time scale at which these
behaviors became noticeable. We also note that although
we base the similarity on 50 nearest neighbors, the results
were not sensitive to the size of this neighborhood.

The goal of this experiment is to illustrate how the different
methods balance between exploring the space of all arti-
cles to discover the 200 preselected articles (recall) and
exploiting a learned set of features to keep showing pre-
ferred articles (precision). On one end of the spectrum,
uniform sampling simply explores the space of articles with-
out taking advantage of the user feedback, leading to high
recall and low precision. On the other end, the weighted
random sampling fully exploits the learned preference in
selecting articles, but does not have a mechanism to encour-
age exploration. We demonstrate that the M-kDPP balances
these two extremes, taking advantage of the user feedback
while also exploring diverse articles.

Results We use each method to select 10 articles per day
over a period of 100 days, using the current quality scores
q(t) on each day t. We measure recall by keeping track of
the fraction of preselected preferred articles (out of the 200
total) that have been displayed so far. We also compute, out
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Figure 3: Cumulative fraction of preferred articles displayed
to the user.

of the 10 articles shown on a given day, the fraction that
are preferred. This serves as a measure of precision. All
measures are averaged over 100 random runs.

Figure 2 shows the recall performance of the methods we
tested. Uniform sampling discovers the articles at a some-
what linear rate of about 5% per day; given a larger base
set relative to the size of the preferred set, however, we
would expect a slower rate of discovery. The methods that
incorporate user feedback discover a larger set of preferred
articles more rapidly by harnessing learned features of the
user’s interests. The M-kDPP dominates both the kDPP and
weighted random sampling in this metric since it encourages
exploration by introducing both marginal and between-step
diversity of displayed articles. In contrast, the kDPP does
not penalize repeating similar marginally diverse sets and
the weighted random sampling does not have any explicit
mechanism for exploration. It takes uniform random sam-
pling nearly 100 time steps to discover the same number of
unique preferred articles as the M-kDPP. For the sake of
clarity, we omit the results of kDPP + heuristic with thresh-
old 0.4 since they are not statistically significantly different
from the M-kDPP. The supplementary material includes a
randomly selected example of the articles displayed on days
99 and 100 for the various methods.

Figure 3 shows the cumulative fraction of displayed articles
that were preferred, reflecting precision. (The supplement
includes a sample non-cumulative version of Figure 3.) All
methods besides uniform sampling quickly achieve high
precision. Weighted random sampling displays the largest
number of preferred articles per day, almost always having
precision of at least 0.9. However, as we have observed, this
large precision is at the cost of lower recall. In particular,
weighted random sampling quickly homes in on features
related to a small subset of preferred articles, thereby in-
creasing the probability of them being repeatedly selected
with no force to counteract this behavior. As expected,
by only requiring marginal diversity, the kDPP achieves
slightly higher precision than the M-kDPP on average (both
typically above 0.8), but again at the cost of reduced explo-
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Figure 4: Performance measured by a marginally decreasing
utility function.

ration. Overall, the differences in precision between these
methods are not large. In many applications, having 8 out
of 10 results preferred may be more than sufficient.

Finally, to examine the balance between exploration and
exploitation, we compute a metric based on the idea of
marginally decreasing utility. Under this metric, at every
time step, the user experiences a utility of 1 for each pre-
ferred article shown for the first time. If a previously dis-
played preferred article is once again chosen, the user gets a
utility of 1

l+1 where l is the number of times that article has
appeared in the past. The underlying assumption is that a
user benefits from seeing preferred articles, but in decreas-
ing amounts as the same articles are repeatedly displayed.
Figure 4 shows the performance of the methods under this
utility metric; the M-kDPP scores highest.

6 CONCLUSION

We introduced the Markov DPP, a combinatorial process
for modeling diverse sequences of subsets. By establishing
the theoretical properties of this process, such as stationary
DPP margins and a DPP union process, we showed how
our construction yields sets that are diverse at each time
step as well as from one time step to the next, making it
appropriate for interactive tasks like news recommendation.
Additionally, by explicitly connecting with DPPs, further
properties of M-DPPs are straightforwardly derived, such
as the marginal and conditional expected set cardinality.

We showed how to efficiently sample from a M-DPP, and
found empirically that the model achieves an improved bal-
ance between diversity and quality compared to baseline
methods. We also studied the effects of the M-DPP on learn-
ing, finding significant improvements in recall at minimal
cost to precision for a news task with user feedback.
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Abstract

Empty taxi cruising represents a wastage of
resources in the context of urban taxi ser-
vices. In this work, we seek to minimize
such wastage. An analysis of a large trace of
taxi operations reveals that the services’ inef-
ficiency is caused by drivers’ greedy cruising
behavior. We model the existing system as
a continuous time Markov chain. To address
the problem, we propose that each taxi be
equipped with an intelligent agent that will
guide the driver when cruising for passengers.
Then, drawing from AI literature on multi-
agent planning, we explore two possible ways
to compute such guidance. The first formula-
tion assumes fully cooperative drivers. This
allows us, in principle, to compute system-
wide optimal cruising policy. This is modeled
as a Markov decision process. The second
formulation assumes rational drivers, seeking
to maximize their own profit. This is mod-
eled as a stochastic congestion game, a spe-
cialization of stochastic games. Nash equi-
librium policy is proposed as the solution to
the game, where no driver has the incentive
to singly deviate from it. Empirical result
shows that both formulations improve the ef-
ficiency of the service significantly.

1 INTRODUCTION

Taxis are a major mode of transport in every urban
city in the world. In Singapore, as of April 2009, there
were about 24,000 taxis and 87,000 licensed drivers,
providing around 850,000 trips daily. These are op-
erated by a small number of companies. The largest
company, ComfortDelgro, operates over 15,000 taxis,
and captures the majority of the market share in terms
of ridership. Like many congested cities in the world,

commuters in Singapore often view taxis as a more
efficient mode of transport compared to private cars.
Data from the Singapore Land Transport Authority
(the regulatory agency for land transportation) show
that taxis on average chalk up higher mileage than pri-
vate cars, with single-shift taxis traveling some 120,000
km a year. More than a third of this travel is empty
cruising, as shown in the next section, see (Tan et al.,
2009) as well, which represents a significant wastage
of resources.

Taxi services have been studied extensively in the lit-
erature. Research has been conducted to investigate
the services’ demand-supply interaction and the re-
sulting market equilibrium (Cairns and Liston-Heyes,
1996; Yang et al., 2002). These studies aim to pre-
dict the economic consequences of regulatory policies,
such as entry restriction and fare control. At the op-
erational level, quantitative models have been built to
capture, for example, passengers’ and drivers’ bilateral
searching behavior (Wong et al., 2005). While these
models tend to be descriptive, our work is operative
by nature. We seek to provide solutions to a specific
problem, namely, we improve the inefficiency of exist-
ing cruising policy by providing alternative policies de-
rived from multi-agent planning and decision making
models. We believe the public transport arena offers
a rich domain for application of multi-agent concepts
and methodologies.

We start by analyzing a dataset obtained from a ma-
jor taxi operator, which traces the movement of a large
number of taxis in Singapore. Using the data for the
month of July 2009, our analysis shows that the cur-
rent system’s inefficiency, measured in terms of cruis-
ing hours, is due to the inherently greedy behavior of
drivers. This, in turn, is caused by the lack of visibil-
ity in regards to the distribution of cruising taxis on
the network at different time periods. We then model
the existing taxi service by a continuous-time Markov
chain, whose parameters are derived from the dataset.
The result is used as the baseline for empirical com-
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parison with our approach.

We proceed to propose two models: a cooperative and
a non-cooperative model. In our formulations, each
driver is endowed with a guidance agent that provides
suggestions on how to cruise in search of passengers.
In the first formulation, we assume that each driver is
fully cooperative, and therefore willing to follow a cen-
tralized policy (that could be suboptimal for him/her
individually). This allows us, in principle, to compute
the system-wide optimal policy, where the objective is
to maximize overall occupied time. For this purpose,
we model the problem as a Markov decision process. In
the second formulation, we assume that drivers are ra-
tional who seek to maximize their respective occupied
time. Here, there is an implicit competition among
drivers, simply because an increase in the number of
cruising taxis in a zone decreases each driver’s chance
of finding passengers within a given time. This leads
directly to a game theoretic formulation. We model
the problem as a stochastic congestion game (a special-
ization of stochastic games) and seek to find a Nash
equilibrium policy. Given an equilibrium policy, no
driver has the incentive to singly deviate from it. Both
problems are solved for finite horizon using value iter-
ation coupled with a sampling technique.

There has been a surge of interest, in recent years,
among AI and complexity theory communities in com-
putational problems related to game theory. The cen-
tral problem in the area is the computation of Nash
equilibrium in different game settings. Classical algo-
rithms to solve the standard simultaneous games have
relied on homotopy methods, which solve fixpoint (one
instance of which is the Nash equilibrium) problems.
The most well-known of such methods is the Lemke-
Howson algorithm. See (Herings and Peeters, 2009)
for a recent survey, and (Goldberg et al., 2011) for a
discussion on the complexity of such methods. Non-
homotopy attempts in the literature include enumer-
ation of strategy supports (Porter et al., 2004) and
mixed-integer programming (Sandholm et al., 2005).

In the setting of dynamic games, specifically in
stochastic games (Shapley, 1953), the problem of com-
puting Nash equilibrium has been cast in the context
of multiagent reinforcement learning, first introduced
by (Littman, 1994), who shows the convergence of
value iteration in 2-player zero-sum stochastic games.
(Hu and Wellman, 2003) attempts to generalize the
result to n-player general-sum games by extending Q-
learning algorithm. Their algorithm converges to Nash
equilibrium in a restrictive case. Recent attempt by
(Kearns et al., 2000) proposes an algorithm that con-
verges to an equilibrium-like joint policy but not Nash
equilibrium. Finding an algorithm that converges to
Nash equilibrium in n-player general-sum stochastic

games remains an important open problem.

Despite the tremendous interest, many interesting
real-world problems (such as the one presented here)
are so large that even the best algorithms have no hope
of computing an equilibrium directly. Furthermore, it
has been shown that the problem is likely to be in-
tractable even for the case of two-player simultaneous
games (Chen and Deng, 2006), it being complete for
the complexity class PPAD. The standard approach
to overcome this problem is to construct a smaller
game that is similar to the original game, and solve
the smaller game. Then, the solution is mapped to
a strategy profile in the original game (Ganzfried and
Sandholm, 2011).

In this work, we tackle a moderate-size real-world
problem, by solving for finite horizon approximate
equilibrium. Our aim is to extend this solution ap-
proach to cover the full scale problem in the future.
Our experimental results show that the optimal pol-
icy (derived from the cooperative model) manages to
reduce the cruising time of the existing policy by ap-
proximately 30%. This result may be viewed as what
can be achieved theoretically. In real-life implementa-
tion, however, the improvement will be closer to that
of equilibrium policy, which is approximately 20%.

2 ANALYSIS OF CURRENT
SYSTEM

Figure 1 and 2 summarize the taxi operation on week-
days (Mon-Thu) for the month of July 2009. In Figure
1a, we see the comparison of average daily time spent
between delivering passengers, cruising, and picking
up passengers (for booked trips) for different periods
of the day. The average number of operating taxis
is also shown in the figure. To book a taxi, passen-
gers may send their request to the central operator
and specify their current location. The central oper-
ator will then broadcast the request to cruising taxis
around the specified location. Drivers who receive the
request may bid for the job by specifying the time re-
quired to reach the pickup point. The job is given to
the driver with the shortest pickup time. The pro-
portion of street-hail vs. booked trips, for different
periods of the day, is shown in Figure 1b. From Fig-
ure 1a, we observe that taxi cruising time is almost
constant throughout the day, accounting for roughly
half of the total operating hours. On the other hand,
pickup time accounts for only a small percentage of
operating hours. For this reason, in this work, we are
focusing on reducing the cruising time for street-hail
jobs.

Figure 2 describes the cruising behavior of drivers. In
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Figure 1: Summary of weekday data for July 2009
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Figure 2: Inefficiency of existing cruising policy

Figure 2a, we see that cruising time is high for zones
with a high number of available trips. This indicates
that drivers are spending time cruising in high trip-
frequency zones. The same can be observed from Fig-
ure 2b and 2c. Figure 2b shows that taxis are entering
high trip-frequency zones in anticipation for the surge
of passengers. The number of cruising taxis will drop
with the surge, but starts to build up again for the next
surge, and the cycle continues. On the other hand,
in low trip-frequency zones, except for early morning
hours, the number of cruising taxis stays proportional
to trip-frequency. We can conclude that drivers are
employing a greedy cruising policy, spending a large
amount of time cruising in high trip-frequency zone.
This is one of the causes for the system’s inefficiency,
which is verified in the empirical study, when this pol-
icy is substituted for better cruising policies.

2.1 A MODEL FOR THE EXISTING
SYSTEM

In this section, we model the aggregate behavior of a
taxi service as a continuous time Markov chain. In
our model, the taxi service operates on a road net-
work which can be divided into logical cruising zones.
We denote the network of zones by a directed graph
G = (N, E). At any point of time, a taxi is in one of
the following states, which corresponds to the states in
the Markov chain S = {Okl, Ck,Wk|k, l ∈ N}: (1) the
taxi is occupied and is delivering its passenger from
zone k to l, denoted by the state Okl, or (2) the taxi is
empty and cruising in a zone k, denoted by Ck, or (3)
the taxi is in zone k but not in operation, denoted by
Wk. Here, we assume that drivers have uniform cruis-
ing behavior that are independent of each other. As an
example, Figure 3 shows a subset of Singapore’s road
network and the corresponding Markov chain, model-
ing the taxi service operating on the network.

In a continuous time Markov chain, the time spent in
a state before moving to another state is a continu-
ous random variable that is exponentially distributed.
The rates of transition between the states constitute
the generator matrix (or Q-matrix) of the Markov
chain. In our model, the generator matrix consists
of the following four components. The first compo-
nent, {λkl|(k, l) ∈ E}, describes a driver’s cruising
behavior. Since a driver does not have visibility in
regards to the state and location of other drivers, we
can assume that they are approximately independent
of each other. The second component, {πkl|k, l ∈ N},
describes the likelihood of finding passengers in a zone,
where πkl is the rate of finding passengers in zone k
with a destination point in zone l. Assuming indepen-
dence for πkl, the total rate of finding passengers in
zone k is given by

∑
l πkl (a combination of Poisson
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Figure 3: An example of a road network, divided
into its cruising zones, and the corresponding Markov
chain, modeling a taxi operating on the network. The
shaded nodes indicate the states where the taxi is oc-
cupied. Here, we assume that taxis are uniform and
independent of each other.

processes). The third component, {ρkl|k, l ∈ N}, de-
scribes the time needed to deliver passengers to their
destination point. The nondeterminism of these vari-
ables is due to the variability of pickup and drop-off
points within zones and the congestion on the road
network. The forth component, {σk, σ′

k|k ∈ N}, de-
scribes the likelihood of a driver taking a break within
a zone (σk) and the length of the break (σ′

k). Most
taxis are operated by two or more drivers taking turns
continuously. This accounts for the nondeterminism
of the forth component.

We define the system efficiency as the steady state
(stationary) probability of a taxi being in the occupied
state. Let θ(s), for s ∈ S, denote the steady state
probability of being in the state s. This probability
distribution can be obtained by solving the following
system of equations:

∀k ∈ N,
∑

l:(l,k)∈E

λlkθ(Cl) +
∑

l:l∈N

ρlkθ(Olk) + σ′
kθ(Wk)

=


 ∑

l:(k,l)∈E

λkl +
∑

l:l∈N

πkl + σk


 θ(Ck),

∀k, l ∈ N, πklθ(Ck) = ρklθ(Okl),

∀k ∈ N, σkθ(Ck) = σ′
kθ(Wk),

and normalizing the solution such that
∑

s∈S θ(s) = 1.
The steady state probability of a taxi being in the
occupied state is thus given by

∑
k,l∈N θ(Okl).

We estimate the transition rates of the Markov chain
using the dataset. The random variables cruising time
(with rate λkl) and passenger find time (with rate πk)
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Figure 4: The frequency histograms (for one day) for
cruising time in a randomly chosen zone, and delivery
time between two randomly chosen zones, respectively.

can be estimated accurately with exponential distribu-
tions. The other variables, however, are closer to Er-
lang distributions than exponential distributions. Fig-
ure 4 shows, for example, two frequency histograms,
one for each of these cases. In this work, we approx-
imate both cases by exponential distributions using
maximum likelihood estimate. These approximations
are better when the zones are adequately close to each
other, which is the case for Singapore.

One can derive the system efficiency once the param-
eters of the Markov chain are obtained. Since we also
like to compute efficiency under different customer ar-
rival rates and different numbers of operating taxis
(for empirical study), we model the passenger-driver
dynamics in a zone as an M/M/1 queue. Consider
the subset of the Markov chain consisting only the
states {Ck|k ∈ N} and the transitions rate between
them {λkl|(k, l) ∈ E}. Each zone is modeled as a
FIFO queue, where its arrival rate is the arrival rate
of cruising taxis in the zone, and its service rate is the
passengers arrival rate in the zone. Let µk denote the
passengers arrival rate in zone k, then the waiting time
in the queue (queueing time + service time) is expo-
nentially distributed with the following rate, which we
associate with πk:

πk = µk − n


 ∑

l:(l,k)∈E

ϕ(Cl)λlk


 ,

where n is the number of taxis in operation and ϕ(Cl)
the steady state probability of being in the state Cl.
The steady state probabilities ϕ can be obtained, sim-
ilar to θ, by solving the following system of equations:

∀k ∈ N,
∑

l:(l,k)∈E

λl,kϕ(Cl) = ϕ(Ck)
∑

l:(k,l)∈E

λkl ,

subject to
∑

k∈N ϕ(Ck) = 1. Now, given the drivers’
cruising behaviors (in the form of smaller Markov
chain parameterized by {λkl|(k, l) ∈ E}), travel time
information {ρkl|k, l ∈ N}, and nonoperating profile
{σk, σ′

k|k ∈ N}, we can derive the system efficiency as
the function of passenger arrival rates {µk|k ∈ N} and
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the total number of taxis n, by first constructing the
full Markov chain, and then deriving its steady state
probabilities.

3 A COOPERATIVE MODEL

The cooperative model is based on Markov decision
process, which is a special case of stochastic games,
where there is only one player. The player, in this
case, is a central operator whose actions are all pos-
sible joint actions of the drivers, and whose objective
is the overall occupied time of the service. The model
is similar to the noncooperative case. The difference
lies in the formulation of the utility function. In the
noncooperative case, we have a set of utility functions
to be optimized simultaneously, while in the coopera-
tive case, we have a single aggregated utility function.
We choose to present our models under the more gen-
eral setting of stochastic games (next section). We will
highlight the differences for the cooperative case.

4 A NONCOOPERATIVE MODEL

Stochastic games (Shapley, 1953; Littman, 1994) are a
generalization of Markov decision processes to a multi-
agent setting by allowing the state transitions to be
influenced by their joint action. They are also a gen-
eralization of sequential games with perfect informa-
tion, by introducing different states. The state (and
thus the payoff matrix) changes as a result of both na-
ture and the joint action of the agents. In congestion
games, agents share a set of facilities (facilities can be
viewed as resources, such as machines), and the utility
an agent derives from using a facility reduces as the
number of agents using the same facility increases. In
the taxi context, the facilities correspond to the zones
where taxi agents can cruise. Each zone has a fixed
arrival rate of passengers, and therefore, an increase
in the number of cruising taxis in the zone, decreases
the likelihood that each would find passengers within
a certain time period. Stochastic congestion games
therefore are a generalization of congestion games, al-
lowing the games to be played indefinitely. They are
also a specialization of stochastic games, to the case
where the underlying games are congestion games. A
state in a stochastic congestion game defines an assign-
ment of agents to facilities, and transitions to a new
state are dependent on the old state and the agents’
joint action. In this work, we consider only games with
finite horizon.

4.1 STOCHASTIC CONGESTION GAMES

Formally, a finite stochastic congestion game (SCG) Γ
is a tuple (I, J, P,R), where

• I = {1, . . . , n} is the set of agents.

• J = {1, . . . , m} is the set of facilities. An action
of an agent i, denoted by ai where ai ∈ J , is
to choose a facility to which it would like to be
assigned. We denote an agents’ joint action by
a = (a1, . . . , an) and the set of possible joint ac-
tions by A, that is, A = Jn. Next, we denote by
S, the set of possible states, where a state s ∈ S
is an assignment of agents to facilities, and we de-
fine sj as the number of agents assigned to facility
j in the state s.

• P : S×A→△(S) is the state transition function.
For convenience, we will also write P (s, a, s′) for
the probability that the next state is s′ given that
the current state is s and the players’ joint action
is a = (a1, . . . , an) ∈ A,

• R = {rj}j∈J is the reward function, where each
rj : {0, . . . , n} → R is a nonincreasing function
that maps the number of agents assigned to fa-
cility j to the reward that each of the agents in
j receives. We define s(i, j) such that s(i, j) = 1
if agent i is assigned to facility j in the state s,
and s(i, j) = 0 otherwise. The reward received
by agent i in a state s, denoted by Ri(s), is thus
given by

∑
j∈J s(i, j)rj(sj).

The game proceeds in steps, starting from some ini-
tial state sT (the subscript indicates the number of re-
maining steps). In each step, the agents first observe
the current state st, the number of remaining steps t,
and simultaneously choose actions according to their
respective policy. An agent i’s policy is the function
πi : S × {1, . . . , T} → △(J), where πi(st, t) computes
agent i’s mixed strategy, i.e., a probability distribution
over the set of facilities, given the current state st and
the number of remaining steps t. Each agent i’s ac-
tion in this step, denoted by ai

t, is then drawn from the
distribution given by πi(st, t), forming the joint action
at = (ai

t, . . . , a
n
t ). Nature then selects the next state

st−1 according to the probabilities given by P (st, at).
In the new state st−1, each agent i receives Ri(st−1)
as its reward, and the game proceeds to the next step.

Given a possible outcome of the game, agent i’s utility,
denoted by U i, is defined such that

U i
T (sT , aT , sT−1, . . . , s1, a1, s0) =

T−1∑

t=0

Ri(st).

A Nash equilibrium of the game is a joint policy π,
such that, for each agent i, πi maximizes the expected
utility of agent i given that the other players follow
their respective policy specified by π. The expectation
is taken over all possible outcomes of the game. For
the cooperative case, there is only one utility formed
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by summing up individual agent’s utility. Here, we
seek to find a joint policy that maximizes the expected
value of this utility.

4.2 MODELING TAXI SYSTEM AS AN
SCG

The drivers correspond to the set of agents I. The set
of facilities J corresponds to the states of the Markov
chain, S = {Ck,Okl,Wk|k, l ∈ N}, defined previously.
We will refer to them as facilities here. A state of the
game is an assignment of agents to facilities. When an
agent is assigned to facility Ck, it means that the cor-
responding taxi is cruising in zone k. Similarly, when
it is assigned to facility Okl and Wk, it means that
the corresponding taxi is occupied and not in opera-
tion, respectively. One step in the SCG represents the
period of one minute.

Next, we define available actions and the state transi-
tion function. The set of available actions for an agent
depends on the state of the agent. When in facility Ck,
the agent may take one of the following actions: (a1)
continue cruising in the current zone, or (a2) make an
attempt to move to an adjacent zone. In this state,
the agent has the chance of getting a passenger and
be moved to one of the facilities Okl in the next step.
Given that an agent is in facility Ck and takes the ac-
tion a1, the following may happen in a step: (1) The
agent manages to find a passenger with l as the desti-
nation zone. In the next step, the agent will move to
facility Okl. The probability of this event happening
is given by:

µk

n(Ck)
γkl,

where γkl is the probability that a passenger’s desti-
nation zone is l given that its starting zone is k, and
n(Ck) is the number of agents in facility Ck in the cur-
rent state. γkl can be estimated by the following:

γkl ≈
πkl∑

l∈N πkl
.

The expression µk/n(Ck) also defines the reward of the
agent in this state. (2) The agent doesn’t find any pas-
senger and stays in the same facility. The probability
of this event is given by: (1 − µk/n(Ck))e−σk , or (3)
the agent doesn’t find any passenger and moves to fa-
cility Wk with probability (1 − µk/n(Ck))(1 − e−σk).
On the other hand, if the agent chooses a2, one of the
following may occur: (1) a passenger, with destina-
tion l, is found before the agent manages to move to
a new zone. The agent moves to facility Okl in the
next step. The probability of this happening is given
by µkγkl/n(Ck). (2) Otherwise, no passenger is found,
and the agent moves to a new zone.

Algorithm FiniteNashPolicies(Γ, T ):
Initialization phase:

For all s ∈ S, joint action a ∈ A:
π(s, 0)[a]← 1

|A| ;
For all i ∈ I:

Vs,0(a, i)← 0;
Iteration phase:

For t = 1 to T , all s ∈ S:
For all pure strategy profile a ∈ A, i ∈ I:

Vs,t(a, i)←∑
s′ P (s, a, s′)×{

Ri(s′) +
∑

a′ π(s′, t− 1)[a′]Vs′,t−1(a
′, i)

}
;

π(s, t)← FindNash(Vs,t);
Return π;

Figure 5: Value Iteration for Finite-horizon SCGs

When in facility Okl, the agent has only one available
action. It will try to deliver its passengers to their des-
tination point and move to facility Cl. The probability
of this happening in the next step is given by 1−e−ρkl ,
while the probability of staying in the same facility is
e−ρkl . The reward for the agent in this state is one.
Similarly, when in facility Wk, the agent may move
to Ck with probability 1− e−σ′

k , or otherwise stays in
the same zone. The reward for being in this facility
is zero. Note that in our model, the move to facility
Wk is involuntary on the part of the agents. An agent
will never choose to stop its operation because of the
way the reward function is structured. Rather than
being an available action, the move is treated as a re-
quirement instead, for example, when the driver has
to change shift or rest.

4.3 COMPUTING EQUILIBRIUM POLICY

In this section, we describe an algorithm to computing
equilibrium policy in SCGs based on value iteration al-
gorithm, shown in Figure 5. This algorithm takes an
SCG Γ, and a time horizon T as input. It outputs a
vector of policies (πi(s, t))i∈I , where each πi maps any
state s, and the number of remaining steps t ≤ T to
a mixed strategy for player i, which is a probability
distribution over the set of facilities. The algorithm
outputs a vector of policies that is a Nash equilibrium
for the T -step SCG Γ from any start state. This algo-
rithm is a generalization of the classical finite-horizon
value iteration for Markov decision processes (Kael-
bling et al., 1998). Instead of backup values, the al-
gorithm maintains backup matrices, denoted by Vs,t.
Each Vs,t(a, i) is a function that takes a joint action a,
a player i, and returns the expected utility of player
i in the t-step SCG Γ, if the game starts at the state
s and the first joint action of the agents is a. We can
view, therefore, each Vs,t as defining a game in the
usual sense, and associated with each Vs,t is a Nash
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equilibrium π(s, t), where πi(s, t) denotes the mixed
strategy of player i. We denote by π(s, t)[a] the prob-
ability assigned by π(s, t) to the joint strategy a. Both
Vs,t and π(s, t) are constructed iteratively. The algo-
rithm uses the function FindNash that returns a Nash
equilibrium given the game Vs,t. For the cooperative
case, the function FindNash is replaced by FindOpt
which computes social optimum policy instead of Nash
equilibrium.

Computing Nash equilibrium in stochastic games
is a very difficult problem. See, for example,
(Bowling, 2000; Hu and Wellman, 2003; Ganzfried and
Sandholm, 2009) for recent works in this area. And the
value iteration algorithm (for finite horizon stochas-
tic games) is computationally very expensive for large
scale problem. In this work, we employ the sparse
sampling technique proposed by (Kearns et al., 2000).

5 EMPIRICAL RESULT

We run a simulation (on a macro level) to evaluate the
performance of our proposed solutions. We choose, as
the case study, 15 connected zones that represent the
congested central business district of Singapore and
its surrounding areas. We consider only passengers
with origins and destinations within these zones, and
restrict the cruising area of drivers to these zones as
well. The number of operating taxis is 500. From
the dataset we estimate the the passenger arrival rates
{µk|k ∈ N}, delivery time rate {ρkl|k, l ∈ N}, and
taxis nonoperating profile {σk, σ′

k|k ∈ N} for these
zones in different periods. Using this setting we com-
pare existing cruising policy (also derived from the
dataset), the optimal policy (computed from the co-
operative model), and the equilibrium policy (com-
puted from the noncooperative model). The measure
of comparison is cruising time. For both cooperative
and noncooperative model, joint actions are computed
every minute with 2-step look ahead (T = 2).

We simulate one day of operation on a weekday. The
driver-passenger dynamics in each zone is implemented
as a FIFO queue. As a passenger appears in a zone,
it joins the queue associated with the zone. If there
are some taxis cruising in the zone, the passenger at
the head of the queue is removed and assigned to a
randomly chosen taxi. The average time spent in the
queue models the average passengers waiting time.

The experimental results are shown in Figures 6, 7 and
8. Figure 6 compares the average cruising time (over
multiple runs) of the three policies. On average, the
optimal policy and the equilibrium policy reduce the
cruising time of existing policy by approximately 30%
and 20% respectively. Most of the savings are obtained
during the peak periods. This matches our intuition,
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Figure 6: Comparison of cruising time between three
policies. The optimal and equilibrium policies reduce
the cruising time by approximately 30% and 20% re-
spectively.
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that the new policies are able to better distribute cruis-
ing taxis among the zones, while the greedy policy
sends too many cruising taxis to high trip-frequency
zones. This is confirmed when we look at the number
of trips vs. cruising taxis in both high and low trip-
frequency zone (see Figure 7 and 8). The new policies
are able to maintain balance between fulfilling trips
requirement and managing cruising time.

6 Conclusion

We presented in this paper an interesting and useful
application of Markov chains to manage an urban taxi
service. The basic premise is the need to minimize
cruising time (and therefore maximize utilization) of
the taxis. There are several assumptions we made for
this to work. We assume that each taxi has a device
that guides the taxi driver. Using MDPs the system
then generates a policy that optimizes cruising among
all taxis. We showed, with the use of real data from a
taxi operator in Singapore for the study, a cooperative
model where taxis follow instructions and a noncoop-
erative one where drivers compete with one another.
Our study also assumes rational drivers that try to
maximize the time their cars are occupied. For future
works, we would need to incorporate real-world behav-
ior of the passengers as well as relax the independence
assumption of passengers and their destinations.
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Abstract

Congestion games model a wide variety
of real-world resource congestion problems,
such as selfish network routing, traffic route
guidance in congested areas, taxi fleet opti-
mization and crowd movement in busy ar-
eas. However, existing research in congestion
games assumes: (a) deterministic movement
of agents between resources; and (b) per-
fect rationality (i.e. maximizing their own
expected value) of all agents. Such assump-
tions are not reasonable in dynamic domains
where decision support has to be provided
to humans. For instance, in optimizing the
performance of a taxi fleet serving a city,
movement of taxis can be involuntary or non-
deterministic (decided by the specific cus-
tomer who hires the taxi) and more impor-
tantly, taxi drivers may not follow advice pro-
vided by the decision support system (due to
bounded rationality of humans).

To that end, we contribute: (a) a general
framework for representing congestion games
under uncertainty for populations with as-
sorted notions of rationality. (b) a scalable
approach for solving the decision problem for
perfectly rational agents which are in the mix
with boundedly rational agents; and (c) a
detailed evaluation on a synthetic and real-
world data set to illustrate the usefulness of
our new approach with respect to key social
welfare metrics in the context of an assorted
human-agent population.

An interesting result from our experiments on
a real-world taxi fleet optimization problem
is that it is better (in terms of revenue and
operational efficiency) for taxi drivers to fol-
low perfectly rational strategies irrespective
of the percentage of drivers not following the
advice.

1 Introduction

Congestion games [5] and its variants have numer-
ous applications in domains ranging from urban trans-
portation [14] (e.g. movement of vehicles between dif-
ferent regions of an area) to capturing company dy-
namics in a congested industry [12] (e.g., strategiz-
ing on marketing investments by different companies
selling the same product). There are many interest-
ing challenges that exist in these problem domains:
(a) Representing and accounting for implicit interac-
tions between agents. For example, vehicles trying to
get on the same road are implicitly competing (even
though there may not be an actual intention to com-
pete); (b) large-scale nature of problems; (c) involun-
tary movements of agents (in some decision epochs,
agents might need to follow given instructions and
cannot freely choose their own actions); and (d) ac-
counting for humans in the loop, who may not follow
perfectly rational policies.

While existing research in congestion games is exten-
sive, we are unaware of research that addresses the
issues mentioned in points (b), (c) and (d) mentioned
above. To that end, we make three key contributions
in this paper: (1) By extending on the cognitive hierar-
chy model [1] (introduced in behavioral game theory),
we introduce a general model to represent the decision
problem for perfectly rational agents in an agent popu-
lation of assorted rationalities; (2) A scalable approach
called Soft-max based Flow update for Assorted Popu-
lations (SoFA) for solving the decision problem of per-
fectly rational agents in an assorted population; and
(3) Finally, we provide a detailed evaluation on both
real-world and synthetic data sets for the taxi fleet
optimization problem.

This paper is motivated by a real-world problem of im-
proving the performance of a taxi fleet. The decision
making problem faced by a typical taxi driver is inter-
esting both practically and theoretically, since a driver
needs to make both voluntary (driver’s own decision)
and involuntary (when customers board taxis) move-
ments. In such a problem, customers are considered
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as the resources, due to whom an implicit competition
exists between taxis. Since demands are both zone-
dependent and time-dependent, the problem becomes
even more challenging. The goal here is to provide deci-
sion support to taxi drivers such that the operational
efficiency of the fleet and the revenues obtained are
improved. Similar problems exist in analyzing indus-
try dynamics (where different companies strategize to
maintain their competitive advantage) and labor mo-
bility (where individuals reason about their movement
to different geographical regions). Although the con-
cept of user equilibrium [10] is well-adopted in model-
ing either static or dynamic traffic route selection, it
cannot be applied in this class of problems due to the
presence of involuntary movements.

Experimentally, we are able to show that SoFA con-
verges on all our problems (both real-world and syn-
thetic ones) with assorted human-agent populations
(agents with different levels of rationality). It is an
important result since we are able to show that if our
algorithm converges, the solution for perfectly ratio-
nal agents is an equilibrium strategy (i.e., no incentive
w.r.t expected value). Another nice empirical result of
our approach in the taxi fleet optimization problem
is that perfectly rational drivers (i.e. ones who adopt
policies suggested by SoFA) always outperform agents
who do not follow the suggested policies.

2 Motivation: Taxi Fleet Optimization

Our research is motivated by the problem of optimiz-
ing a fleet of self-interested taxis1. For a fleet of taxi
population P, serving a city divided into a set of zones
M , the goal is to provide decision support for taxi
drivers to independently decide a sequence of zones to
roam in.

The demand fulfillment is modeled at zone-level, as-
suming demands are common knowledge among all
taxis. If the number of taxis in a particular zone during
a time period is fewer than the number of customers,
all taxis will be hired (the determination of their desti-
nations is described in the following paragraph). Oth-
erwise, only a fraction of the roaming taxis (up to the
number of customers) will be hired.

The movements of taxis between zones depend on
whether they are hired or not. If a taxi is hired, the
movement is involuntary (decided by the customer on-
board) and is governed by the probability distribution
computed from the outgoing flows of customers to dif-
ferent zones. Therefore, if a taxi is hired by a customer

1In our definition, we assume that each taxi is driven
by an independent driver (thus we use taxi and taxi driver
interchangeably), who pays for all costs (e.g., monthly rent,
fuel, maintenance) and keeps all earned revenue. We also
assume that there will be no communication/collaboration
among taxi drivers.

in zone i, the probability of moving to zone j is com-
puted based on the fraction of customers moving from
zone i to j over all flows out of zone i. Furthermore,
a hired taxi in such a case will receive a revenue of
Ret(i, j) and incur a cost of Cot(i, j). On the other
hand, if the taxi is not hired, the movement will be
voluntary and deterministic, and the taxi will receive
no revenue but incur the same cost of Cot(i, j).

The goal is to provide decision support (in terms of
policies) for drivers who request for decision support
on moving through the island, such that there is no
incentive for them to deviate from their policies.

3 Model: DAAP

We now introduce a general framework for modeling
problems such as taxi fleet optimization called the Dis-
tributed decision model for Assorted Agent Popula-
tions (DAAP). DAAP is an extension of the DDAP
(Distributed Decision model for Agent Populations)
model introduced by Varakantham et al. [7]. DAAP
can be viewed as a framework for representing general-
ized congestion games with movement uncertainty. In
particular, we generalize the notion of resources in con-
gestion games to states and the movement uncertainty
to transition functions (akin to the one in Markov De-
cision Problems, MDPs).

DAAP represents a subset of problems represented by
the generic stochastic game model [2]. In DAAP, the
transition and reward functions for an agent are depen-
dent only on the aggregate distributions of other agent
states, whereas in more general models like stochastic
games the transition and reward function for an agent
are dependent on specific state and action of every
other agent. It should be noted that DAAP represents
problems with selfish agents and hence is different to
cooperative models such as DEC-POMDP.

DAAP is the tuple:

〈
Γ, {Pτ}τ∈Γ,S,A, {φτ}τ∈Γ, {Rτ}τ∈Γ, d

0, {Vτ}τ∈Γ

〉
,

where Γ represents the different agent types and Pτ is
the set of agents of type τ . Two agents belong to dif-
ferent types if they have (a) different transition (φ) or
reward model (R); or (b) different notion of rational-
ity (V). S corresponds to the set of states encountered
by each agent. A is the set of actions executed by each
agent. We define the set of state distributions,
D = {d|d =

〈
d1, d2, · · · , d|S|

〉
,
∑
s∈S ds = |P|}, where

P is the set of all agents and ds represents the number
of agents in state s. d0 represents the starting distribu-
tion of agent states. φτ models the involuntary move-
ments of every agent of type τ and more specifically,
φtτ,d(s, a, s

′) represents the probability that an agent

of type τ in state s(∈ S) after taking action a(∈ A)
would transition to state s′, when the distribution is d
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and time is t. Rtτ,d(s, a, s′) is the reward obtained by
an agent of type τ when in state s, taking action a and
moving to state s′ when the distribution of agents is d
at time t.

Vτ characterizes the rationality concept of interest to
agents of type τ and represents the value function defi-
nition for agents of type τ . This is provided to capture
the notion of bounded rationality (particularly for hu-
mans in the population). In this paper, we refer to the
two extreme cases for bounded rationality, which are:
(a) Perfect rationality: agents compute exact best re-
sponse to opponent policies;
(b) Local rationality: agents assume no other agent is
present (dt = 0,∀t) in the system.
Further details on various rationality concepts are pro-
vided in Section 4.

The objective in solving a DAAP is to compute a
policy,πi for each agent i of type τ , such that there
is no incentive for any agent to deviate from its policy,
in terms of the value (i.e. Vτ (πi, {πk}k∈Pτ ,k 6=i)).

3.1 Taxi Fleet Optimization as DAAP

The number of types in this problem is primarily due
to varying degrees of human rationality. We will de-
scribe this in detail in Section 7.1. In representing the
taxi fleet optimization as a DAAP, the key is using the
transition function to represent the involuntary move-
ment of taxis2. P is the set of taxis in the fleet, S
is all the zones in which a taxi could be present. A
is the set of zones to which a taxi driver wishes to
move. The transition function, φ is computed based on
the customer flow, fl between various zones. D0 is the
distribution of taxis at the starting time. Equation 1
provides the expression for computing the transition
probability between states.

Intuitively, if there are fewer taxis than customers in
a zone, then all taxis are hired and their transition
probability to a specific zone is dependent on flows to
different zones from the current zone (represented by
condition C1). If there are more taxis in a zone than
customers, then transition is dependent on whether
the action (intended zone) is same as the destination
zone (captured by conditions C2 and C3).
C1: if

∑
ŝ flt(s, ŝ) ≥ ds

C2: if a 6= s′,
∑
ŝ flt(s, ŝ) < ds

C3: if a = s′,
∑
ŝ flt(s, ŝ) < ds

φtd(s, a, s
′) =





flt(s,s′)∑
ŝ fl

t(s,ŝ)
C1

flt(s,s′)
ds

C2

1−
∑
ŝ 6=s′ fl

t(s,ŝ)

ds
C3





(1)

2Since the movement of taxis and their revenues (stan-
dardized meters) are identical, we do not index transition
and reward model of DAAP with type.

Similar to the transition, R is the reward obtained
based on the three conditions.

In solving the taxi optimization DAAP, our goal is
to maximize expected revenue for the individual taxi
drivers while reducing starvation. Since the transition
function depends on the number of taxis in the zone,
maximizing expected revenue implies minimizing star-
vation as well. In this problem domain, both the wel-
fare metrics (revenue and starvation) are optimized at
once, however, in other domains there could be mul-
tiple objectives that are not in alignment and multi-
objective reasoning might be required.

4 Characterizing Rationality

A major contribution of the paper is the introduction
of multiple levels of rationality to the uncertain con-
gestion game that mimics bounded rationality of hu-
man decision makers. In the context of DAAP, this im-
plies the computed policy will be followed differently:
perfectly rational agents adopt the policy completely,
while other agents only adopt the policy partially (or
even not at all). To concretely represent bounded ra-
tionality, we extend on the cognitive hierarchy model
developed by Camerer et al. [1]. Therefore, in DAAP,
Vτ will represent the rationality notion of an agent in
terms of the cognitive hierarchy model.

Cognitive hierarchy model assumes there is a bound on
the levels of reasoning agents can do and that agents
differ in their levels of reasoning. Level-0 agents are as-
sumed to be non-strategic and either play randomly or
use a heuristic. Level-1 agents compute best response
strategy by assuming all other agents in the popula-
tion are level-0. In general, level-L agents compute best
response strategy by assuming a distribution f across
levels {0, 1, . . . , L− 1}. Camerer et al present a single-
parameter model, called Poisson cognitive hierarchy
model, where f is assumed to follow Poisson distribu-
tion.

We extend the cognitive hierarchy model in three ways.
Firstly, the opponent distribution f is obtained from
iterative Bayesian inference (details provided in Sec-
tion 7.1). Secondly, the best response is computed us-
ing the quantal best response strategy. The quantal
best response for player i to strategy s−i is given by:

si(ai) =
eλ·ui(ai,s−i)∑
a′i
eλ·ui(a

′
i,s−i)

.

For λ = 0, each action is assigned equal probability
(which can be thought as completely irrational); as
λ increases, quantal best response approaches stan-
dard best response (which is completely rational). Fi-
nally, we introduce the consideration of different deci-
sion horizons (referred to as T ). With the above ex-
tensions, an agent’s behavior can be quantified by a
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three-tuple CH QR(λ, L, T ). To illustrate the flexibil-
ity of our model, we provide two examples below::

Example 1 CH QR(1, 0, 1) corresponds to an algo-
rithm that generates a quantal best response strategy
with λ = 1 that maximizes one-step payoff without con-
sidering other agents. CH QR(∞,∞, H) corresponds
to an algorithm that generates the exact best response
considering full horizon, assuming all levels of reason-
ing from other agents.

This parametric model enables us to evaluate the SoFA
technique on various sets of assorted populations and
demonstrate the utility of having perfectly rational
agents within a human population. The Poisson cogni-
tive hierarchy model has been shown to provide a good
fit for empirical data involving human subjects. We
demonstrate similar findings with the extended model.

5 Soft-max based Flow update for
Assorted populations (SoFA)

In this section, we describe our algorithm for solving
DAAPs. We provide an algorithm (Algorithm 1) that
is general and is applicable to a problem where there
are (a) multiple types of agents with each type hav-
ing a different transition and reward model and (b)
multiple notions of rationality. However, for expository
purposes (and to focus on the theme of the paper), we
consider the case where all agents have the same model
(transition and reward functions) and the difference is
only in their rationality concept.

Algorithm 1 SoFA(daap,Γ,P)

1: for all τ ∈ Γ do
2: πτ ← GetInitialPolicy(τ)
3: end for
4: π̃ ← φ
5: iter ← 0
6: while π̃ 6= π do
7: π̃ ← π
8: for all τ ∈ Γ do
9:

〈
d1..dH

〉
← AgentDist(π−i, d0, φ), i ∈ Pτ

10: {x̃ts,a} ← BestRspnse( τ, daap,
〈
d1 · · · dH

〉
)

11: xtτ (s, a)← (iter·xtτ (s,a)+x̃ts,a)

iter+1 ,∀s, a, t
12: πtτ (s, a)← xtτ (s,a)∑

a x
t
τ (s,a) ,∀s, a, t

13: iter ← iter + 1
14: end for
15: end while

Our goal is to compute the policy for perfectly rational
agents (policy computed using Algorithm 1) in a pop-
ulation that contains other types of agents. It should
be noted that a round-robin best response algorithm
does not converge even if we have just one type of per-
fectly rational agents. Therefore, we introduce our new

algorithm, SoFA that is based on the well known Fic-
titious Play algorithm and has interesting theoretical
properties.

Intuitively, the key idea is that at each iteration,
an agent computes best response against aggregate
policies (over iterations of policy computation) of
other agents. Since, in DAAP, the interactions be-
tween agents are due to the implicit competition for
resources, an agent only has to determine best re-
sponse to distribution of agent states (and not individ-
ual agent states). This observation improves the scal-
ability considerably due to two reasons:
(1) Agents have to plan for state distributions and not
against individual states and actions of other agents;
(2) We can assume same policy for all agents of the
same type (either due to having same model or same
notion of rationality). This allows us to reduce best
response computations. Intuitively, it is a reasonable
assumption when there is a large number of agents, be-
cause such a mixed policy is equivalent to aggregating
(differing) individual agent policies.

It should be noted that the best response computation
varies from agent to agent depending on their rational-
ity criterion as mentioned in Section 4. Furthermore,
best response computation (as mentioned earlier) re-
quires state distribution of other agents. State distri-
butions of other agents can be computed given the
starting distribution, type of agents and their policies.
Formally, we let (a) ptτ (s) be the probability that an
agent of type τ will be in s at time t; (b) dts denote the
number of agents in state s at time t; (c) Pτ denotes
the set of players of type τ .

p0
τ (s) =

d0
s

|P| ,

dts =
∑

τ∈Γ

ptτ (s) · |Pτ |, ∀t (2)

pt+1
τ (s) =

∑

atτ

πtτ (s, atτ )
∑

s′∈S
ptτ (s′)φtdt(s

′, atτ , s) (3)

For a perfectly rational agent, the best response at
each iteration is computed by solving an MDP where
the φ and R are fixed for the state and action sets
because the state distribution of other agents (dt,∀t)
can be computed for each decision epoch using Equa-
tion 3. Solving this best response MDP using tradi-
tional LP based methods or dynamic programming
methods yields a deterministic policy (i.e. one action
for each state). Due to this determinism, the aggre-
gation of policies in fictitious play can take many it-
erations to converge. Therefore, we propose the use
of Soft-Max operator for solving MDPs similar to
the Soft-Max Value Iteration [15]. This implies that
the “max” operator in standard value iteration is re-
placed by a “soft-max” operator. The soft-max op-
erator makes the strategy equivalent to the quantal
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response strategy indicated earlier.

We provide the intuition using the following example.

Example 2 Consider an MDP with two actions, a1

and a2, each of which can be executed from a state s.
V(s, a1) and V(s, a2) are the expected values for exe-
cuting actions a1 and a2 respectively from state s. The
policy at s with a standard MDP solver (policy itera-
tion, value iteration etc.), π1 and SoFA, π2 would be:

π1(s, a1) =

{
1, if a1 = arg max{ai∈{a1,a2}} V(s, ai)
0, otherwise

π2(s, a1) =
eV(s,a1)

eV(s,a1) + eV(s,a2)

Algorithm 1 provides the pseudo code for the SoFA al-
gorithm. Lines 6-13 provide the core of the algorithm.
At each iteration of the algorithm, for each agent there
are three key steps: (a) Firstly we compute the state
distribution of all other agents (using Equation 3) on
line 9; (b) Then, we compute the best response (de-
pends on the agent’s rationality criterion) correspond-
ing to the aggregated policies (across iterations) of
other agents on line 10; and (c) Finally, we calculate
the aggregate state action flows and consequently the
aggregate policy for the current agent on lines 11-12.

6 Theoretical Results

We provide key theoretical properties of our SoFA al-
gorithm. Firstly, we will show that SoFA converges to
equilibrium policies in cases where there are only lo-
cally rational agents (L = 0) in the mix. Secondly, we
show that if SoFA converges on problems with multi-
ple agent types (different transition/reward model or
different notions of rationality), then perfectly rational
agents will converge to equilibrium policies.

Proposition 1 In an assorted population of perfectly
rational agents and locally rational agents (L = 0),
if there exists one type (w.r.t transition and reward
model) of perfectly rational agents, then irrespective
of the proportion of locally rational agents, SoFA algo-
rithm converges to equilibrium policies for the perfectly
rational agents. This is assuming Equation 3 can be
used to compute update of probability.

Proof. Let the population, P be divided into two sets
Pr (perfectly rational agents) and Pl (locally rational
agents), i.e. P = Pl ∪ Pr. If there exists a potential
function for this DAAP, then SoFA would converge
to Nash equilibrium. We now define a function φt()
and then show that it is a potential function for the
DAAP problem. (In the interest of space, we use Πik to
represent the set of {πi}i6=k,i∈P throughout the proof.)

φt({πi}i∈P) =
∑

k

Vti (πk,Πik) (4)

To show that this is a potential function for a given
DAAP, we need to show that for any arbitrary agent
k and two of its policies, π(k,1) and π(k,2):

φt(Πik ∪ π(k,1))− φt(Πik ∪ π(k,2))

= Vtk(π(k,1),Πik)− Vtk(π(k,2),Πik) (5)

We prove this proposition using mathematical induc-
tion over the time horizon t.

Base case for t = 0
For k ∈ Pr, the value function for an agent is given
by:

V0
k(π(k,1),Πik) =

∑

s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0)

For k ∈ Pl, the only difference in value function from
above would be d0 = 0. It is easy to see that for all
agents except k (irrespective of whether k ∈ Pl or
k ∈ Pr), the value remains the same if policy does not
change for t = 0. Due to this Equation 5 holds (the
terms for all other agents will cancel out).

Therefore, let us assume that the φ is a potential func-
tion for horizon t = m, i.e.,

φm(Πik ∪ π(k,1))− φm(Πik ∪ π(k,2))

= Vmk (π(k,1),Πik)− Vmk (π(k,2),Πik) (6)

Now, we will prove that it holds for t = m+ 1

Let us consider the case where k ∈ Pr,

Vm+1
k (π(k,1),Πik) =

∑

s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0)

+
∑

s,a,s′

p0
k(s) · π(k,1)(s, a) · φk(s, a, s′, d0)·

Vmk (s′, π(k,1),Πik)

From Equation 3

=
∑

s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0)+

∑

s′

p1
k(s′) · Vmk (s′, π(k,1),Πik)

=
∑

s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0) + Vmk (π(k,1),Πik)

(7)
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Using Equation 7 and from assumption of Equation 6,
we have

Vm+1
k (π(k,1),Πik)− Vm+1

k (π(k,2),Πik)

=
∑

s,a

p0
k(s) · π(k,1)(s, a) · Rk(s, a, d0)

−
∑

s,a

p0
k(s) · π(k,2)(s, a) · Rk(s, a, d0)

+
∑

{i6=k,i∈P},s,a
p0
i (s) · πi(s, a) · Ri(s, a, d0)

−
∑

{i6=k,i∈P},s,a
p0
i (s) · πi(s, a) · Ri(s, a, d0)

+ φm(Πik ∪ π(k,1))− φm(Πik ∪ π(k,2))

Combining terms using the definition of potential func-
tion (Equation 4), we have

= φm+1(Πik ∪ π(k,1))− φm+1(Πik ∪ π(k,2))

Since k ∈ Pl is a sub-case of k ∈ Pr, where dt = 0, we
can adopt the same steps and prove that Equation 5
holds. Hence the proof. �
While the following proposition is straightforward, it is
important because our algorithm converges on all the
problems provided in the experimental results section.

Proposition 2 For DAAP problems with multiple
types of agents, if SoFA converges, then perfectly ra-
tional agents will not have any incentive (in terms of
expected value) to deviate.

Proof. If SoFA converges, it implies that the agent
policy does not change (line 6) from the previous it-
eration after computing best response (corresponding
to other agent policies). Therefore, perfectly rational
agents will have converged to a policy where there is
no incentive to deviate in terms of expected value. �

7 Experimental Results

In this section, we evaluate policies generated by SoFA
(perfectly rational if SoFA converges) within the con-
text of the taxi fleet optimization problem, where only
a proportion of the taxi drivers follow SoFA strategies
and others follow strategies obtained from the cogni-
tive hierarchy model described in Section 4. Firstly, we
will perform the behavioral analysis of the real-world
taxi data set to obtain the composition of the assorted
human-agent population. Once the distributions for
assorted human-agent populations are obtained, we
will show the performance of SoFA on various syn-
thetic and real-world problem sets.

7.1 Human Behavioral Analysis

We now introduce iterative Bayesian inference to com-
pute the distribution over levels of reasoning for taxi
drivers. Let Prti(L) denote the probability of player
i using level-L reasoning in iteration t. Let f t(L) be
the mean probability of level-L reasoning in the pop-

ulation, and f t(L) =
∑
i Pr

t
i(L)

N . The expected levels
of reasoning after t iterations can be computed by:
meant =

∑
L L ·f t(L). Let gtL(h) denote the perceived

proportion of level − h agents by level − L agents in
iteration t, which can be computed by:

gtL(h) =
f t(L)

∑L−1
l=0 f t(l)

, ∀h < L.

Given λ, T , and {gtL(h)}, we can compute the behav-
ioral strategy of level-L agent in iteration t by con-
sidering actual distribution of taxis. The procedure is
based on Bayesian update and its pseudo-code is listed
in Algorithm 2. In Algorithm 2, the prior distribution
is initialized to be uniform. The movements of free
taxis provide necessary observations to continuously
update the prior distribution.

The data set we use for computing average levels of
reasoning consists of GPS traces from close to 8000
active taxis over 30 working days. Each record in the
data set provides a timestamp, taxi coordinate, and
the status of the taxi (hired or free). When the taxi
is free and moves from one location to another, we
consider it as a valid observation. We set the length
of time period to be 5 minutes and only consider the
morning peak hours from 6 to 9 AM. The data set
is sliced into 10 3-day chunks, and the algorithm is
executed one chunk at a time. On average, this gives
us 90, 000 valid observations across all taxis for each
run. We also set the look ahead T = 1 for behavioral
analysis3.

Lmax λ = 1 λ = 3
4 1.21± 0.04 1.50± 0.05
5 1.35± 0.04 1.58± 0.05

Table 1: Expected levels of reasoning.

Table 1 gives expected value of levels of reasoning for
two different but uniform initial distributions and for
λ = {1, 3}. Lmax = 4 implies maximum levels of rea-
soning is set to 4 and each level {0 · · · 4} is assigned
initial probability of 0.2. It should be pointed out that
although the actual distribution we obtain is not Pois-
son, the mean values we obtained are well within the

3As a sanity check for the Bayesian inference, we com-
pared the average revenue of taxis from the data set and us-
ing the cognitive hierarchy model. The values were within
1% of each other ($283 and $280 per day respectively).
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Algorithm 2 Iterative Bayesian Inference(λ, T )

1: Pr0
i (L) = UniformDistribution(Lmax)

2: it← 0
3: while it ≤ MaxIterations do

4: f it(L) =
∑
i Pr

it
i (L)

N ,∀L
5: gitL (h) = fit(L)∑L−1

l=0 ft(l)
,∀h < L, ∀L

6: for all DataSet do
7:

〈
d1 · · · dT

〉
← GetAgentDist(DataSet)

8: for all L ≤ Lmax do
9: πit(L) =Behavior(λ, T, gitL ,

〈
d1 · · · dT

〉
)

10: end for
11: si =ObservedStartZone(DataSet)
12: ai =ObservedAction(DataSet)

13: Priti (L|a) =
πit(L,si,ai)·Priti (L)∑
l π
it(l,si,ai)·Priti (l)

,∀L
14: end for
15: it← it+ 1
16: end while

range of [1, 2] which, as noted by Camerer et al., can
explain behavior in close to 100 games. The actual dis-
tribution we obtained are skewed towards lower levels
of reasoning. A more rigorous study is needed to cross-
validate this across larger data set and study the effect
of look-ahead, T , on the final distribution.

7.2 Experimental Setup

To demonstrate that perfectly rational policies are use-
ful in an assorted taxi driver population of different
rationalities, we experiment on two different data sets.
One is a synthetic data set that simulates random
scenarios of demand distributions and another a real-
world data set of a taxi company in Singapore. The
synthetic data set was created with an inspiration from
the real-world taxi data set and so we differentiate be-
tween peak hour and normal hours, multiple types of
zones, time dependent flow-in and flow-out from a zone
etc.

The main parameters of interest in the synthetic data
set are (a) the map (defines how zones are connected);
(b) total number of zones; (c) number of neighbors for
each zone; (d) demand for all zones (represents people
going into a zone) characterized by whether it is a
residential zone, entertainment zone, office zone or a
hospital; (e) total number of taxis; (f) total demand for
taxis in a day; (f) length of peak hours. We generate
problem instances considering a range of values for all
these parameters.

Creating such a detailed simulation data set has helped
us in evaluating our algorithm across multiple param-
eters and investigate the specific parameters affect-
ing the final performance. For each map we compute
policies by employing various algorithms and simulate
them multiple times to obtain values for the compari-

son metrics.
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Figure 1: Customer flow at various points and the av-
erage payoff obtained by various approaches.

The real-world data set consists of flows of customers,
revenues and costs for taxis between various zones
across Singapore over a period of six months. We con-
sider a time unit to be 30 minutes long and hence the
time horizon for an entire day is H = 48. Figure 1
(a) depicts the aggregate demand for taxis throughout
the day in this data set. The peak and non-peak hours
are easily distinguishable. There are around 8000 taxis
and 79 zones.

For all the graphs with aggregated results, we com-
puted standard deviation as well. However, standard
deviation is shown in the graphs only if it is greater
than 0.1%. We evaluate the algorithms across the so-
cial welfare parameters highlighted in Section 2: (1)
Average payoff of all taxis. (2) Minimum payoff across
all taxis and (3) Starvation, which represents the lack
of availability of taxis. The first two metrics provide
an intuition for how the payoff distribution for taxi
drivers changes. The third metric ensures an improve-
ment from the system management (or taxi fleet own-
ers) perspective.

We first present the results for the case when all agents
adopt one type of rationality and then we will present
the results for an assorted population. Although, we do
not have theoretical guarantees on convergence when
there are agents following behavioral strategies along
with perfectly rational agents, empirically, we achieved
convergence on all the problem instances. Our algo-
rithm converged on all the problems in the synthetic
and real-world data set within 2 hours4.

7.3 Homogeneous Population

We compare the performance of SoFA algorithm
against the strategies generated by the extended cog-
nitive hierarchy model described in Section 7.1. While
we experimented with a varied set of λ values, we only
show results for λ = {1, 3} because they yield the most

4The most amount of time was taken by the real-world
problem set, where there are 8000 taxis and 79 zones.
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Figure 2: Performance of SoFA and behavioral strategies with T = {1, 4, H} on synthetic and real-world datasets.

diverse set of observations. As for the time horizon, we
considered T = {1, 4, H}. As for the levels of reason-
ing, L, we use the distributions obtained from itera-
tive Bayesian inference corresponding to λ = {1, 3}.
We also set Lmax = 4. Thus, in our result graphs,
CH QR(5) with λ = 3 would imply the population
consists of {17%, 39%, 26%, 13%, 5%} of levels
{0 · · · 4} agents respectively with look-ahead=5. For
λ = 1, it would be {20%, 52%, 17%, 5%, 6%}.
Figure 2 provides the results on the synthetic and real-
world data sets. Graphs (a)-(c) are results for 40 zone
problems and (d)-(f) are for the the taxi data set. Here
are some of the key observations with respect to aver-
age and minimum payoff, starvation:

(i) For both synthetic and real-world problems, SoFA
outperforms all the benchmark algorithms, due to the
Nash equilibrium policies employed by SoFA agents.
(ii) Behavioral strategies with look ahead equal to hori-
zon outperformed strategies with shorter look ahead.
(iii) We observe that for behavioral strategies, λ = 1
performs better than λ = 3. This could be because for
λ = 3, the proportion of higher level reasoning agents
increases and hence overall performance goes down.
On the other hand, for SoFA, due to the randomized
policies, performance increases from λ = 1 to λ = 3.
(iv) For the synthetic data set, when population size is
4k, the behavioral strategy with λ = 1 and look ahead
equals to horizon obtains marginally higher minimum
payoff than all other algorithms. But when the popu-
lation size is increased to 8k and with λ = 3, minimum
payoff is guaranteed to be orders of magnitude higher
under SoFA.
(v) For synthetic and real-world data sets, SoFA out-
performs others for λ = 3 w.r.t. minimum payoff.
(vi) With respect to starvation (lower values are bet-

ter), SoFA outperforms others on all data sets.

Figure 1(b) gives the average payoff for each algo-
rithm at each time step on the real-world data set.
We observe that SoFA performs better than other al-
gorithms. Furthermore, it should be noted that there
is high degree of similarity in the performance of SoFA
over time and the flow values of Figure 1(a). This im-
plies that SoFA is able to adapt quickly to the changes
in demand over time.

7.4 Assorted Population

We now evaluate SoFA with an assorted population of
agents. It should be noted that for a fixed λ and T ,
there are more than one type of agents in the popula-
tion. We use X to denote the ratio of agents that are
following SoFA policies. For instance, X = 20% (along
X-axis in Figure 3) implies 20% agents are perfectly ra-
tional and the rest are following behavioral strategies
for a particular λ.

Figure 3 provides the performance of SoFA within a
varying population of agents: (a)-(c) and (d)-(f) are re-
sults for the synthetic and real-world data sets respec-
tively. We make the following observations regarding
average payoff, minimum payoff, and starvation:

(i) The performance of SoFA improves as the popula-
tion of agents following behavioral strategies increases
from 20% to 80%. The performance of boundedly ra-
tional agents at the same time goes down. It indicates
that irrespective of the population of boundedly ratio-
nal agents, it is always useful to employ a SoFA policy.
SoFA outperforms behavioral strategies even when the
proportion of agents following SoFA increases to 80%.
(ii) On the synthetic data set, SoFA outperforms other
algorithms w.r.t. minimum revenue when the propor-
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Figure 3: SoFA vs behavioral strategies in assorted population with T = H on synthetic and real-world datasets.

tion of agents is 20%.
(iii) On real-world data set the minimum payoffs are
almost equal across both strategy models.
(iv) Starvation values decrease with increase in the
number of perfectly rational agents.

From all these experiments on both synthetic and real-
world problem instances, we conclude that with re-
spect to all welfare metrics (average revenue, mini-
mum revenue and starvation), for any agent, it is use-
ful to pursue the policy computed for perfectly rational
agents in problems such as taxi fleet optimization.

8 Related Work and Conclusions

In this section, we briefly describe research related to
the contributions made in this paper. The first thread
of related research is in the field of transportation. User
equilibrium (UE) is a classical and powerful equilib-
rium concept in transportation explaining individual
route choices in face of competition for road usages
from other users. Originally proposed in static setting
[10], it was later expanded to dynamic cases (where
temporal choices are also important) [3]. In either for-
mat, static or dynamic, the concept of UE provides a
way to infer and to predict the behaviors of individual
drivers; such ability helps not just individual drivers
to identify better routes, but it can also help policy
makers to properly design road network in anticipa-
tion of driver’s responses. While the solution concept
of UE is relevant, it does not account for the presence
of involuntary movements for agents.

The second thread of related research is from behav-
ioral game theory where different models have been
proposed to accommodate experimental results (in-
volving human subjects) and theoretical predictions.

These include cognitive hierarchy model [1] and quan-
tal response equilibrium [4]. More recently, variants
of these models have been evaluated across different
games [13]. As opposed to evaluation on traditional
small benchmark problems, we have studied these
models in the context of a very large scale real-world
setting in this paper.

The next thread of relevant research is due to Wein-
traub et al. [12, 11]. This research introduces the con-
cept of oblivious equilibrium for large scale dynamic
games. They provide a mean field approximation to
solve problems where there is stochasticity in state
transitions. While, the problem is similar to DAAPs,
the assumption of mean field (or a stationary distri-
bution of taxis in our case) is not applicable in the
context of taxi problems. In fact, there is a huge vari-
ance in the set of possible distributions at each decision
epoch and hence oblivious equilibrium is not directly
applicable in our context.

DAAP model represents a subset of problems repre-
sented by the generic Partially Observable Stochastic
Games (POSG) model. However, all the approaches [6,
9, 8] provided in the literature are for solving identi-
cal payoff stochastic games (also referred to as Decen-
tralized POMDPs or DEC-POMDPs) and not generic
POSGs. Furthermore, they do not scale to problems
with 8000 agents.
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Abstract

We consider the budget optimization prob-
lem faced by an advertiser participating in re-
peated sponsored search auctions, seeking to
maximize the number of clicks attained under
that budget. We cast the budget optimiza-
tion problem as a Markov Decision Process
(MDP) with censored observations, and pro-
pose a learning algorithm based on the well-
known Kaplan-Meier or product-limit esti-
mator. We validate the performance of this
algorithm by comparing it to several others
on a large set of search auction data from
Microsoft adCenter, demonstrating fast con-
vergence to optimal performance.

1 Introduction

In this paper we study algorithms for optimized bud-
get expenditure in sponsored search. Given an adver-
tiser’s budget, the goal of such algorithms is to maxi-
mize the number of clicks obtained during each budget-
ing period. We consider a single-slot model in which
our algorithm’s competing bid — representing the rest
of the “market” for clicks — is drawn from a fixed
and unknown probability distribution. While in real-
ity, advertisers (or their proxies) may often bid strate-
gically and not stochastically, we view this assump-
tion as analogous to classical models in finance, where
despite strategic behavior of traders at the individ-
ual level, models of macroscopic price evolution that
are stochastic (such as Brownian motion models) have
been quite effective in developing both models and al-
gorithms. Our empirical results will demonstrate that
algorithms designed for these stochastic assumptions
also perform quite well on the non-stochastic sequence
of bids actually occurring in real search auctions.

The assumption of stochastic bids by the competing
market leads to a Markov Decision Process (MDP)

formulation of the optimal policy, where the states of
the MDP specify the remaining time in the period and
the remaining budget. However, the second-price na-
ture of sponsored search introduces the challenge of
censored observations: only if we win the click do we
observe the actual competing price; otherwise, we only
know our bid was too low.

Our main contributions are the introduction of effi-
cient algorithms that combine the MDP formulation
with the classical Kaplan-Meier [5] or product-limit
estimator for censored observations, and a large-scale
empirical demonstration that these algorithms are ex-
tremely effective in practice — even when our underly-
ing distributional assumptions are badly violated. Our
source of data is auction-level observations on hun-
dreds of high-volume key-phrases from Microsoft ad-
Center. We show that our algorithms rapidly learn
to compete with the strongest possible benchmark —
the performance of an offline-optimal algorithm that
knows the future competing bids, and always selects
the cheapest clicks in each period.

2 Related Work

There is some prior work directly concerning the prob-
lem of optimizing an advertiser’s budget [6, 12], as well
as work concerned with characterizing the dynamics or
equilibria of a market in which advertisers play from a
family of optimizing strategies [2, 3]. All these works
attempt to model the strategic behavior of agents par-
ticipating in a sponsored search auction. We will de-
part from this, modeling the auction market stochas-
tically, as is more common in finance.

The sponsored search budget optimization problem
has also been formulated as an instance of online knap-
sack [12]. For the online knapsack problem, it is known
that no online algorithm can converge to the optimum
in the worst case [8]. The stochastic knapsack problem
has also been studied, and there is an algorithm with
near-optimal average-case performance [7]. One of our
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proposed algorithms is a censored learning version of
such an algorithm. Our main proposed algorithm is
closely modeled on an algorithm from a financial opti-
mization problem [4], which similarly integrates a cen-
sored estimation step with greedy optimization.

Finally, we apply classical techniques from reinforce-
ment learning in a finite state MDP, including Q-
learning (c.f. [11]), as well as classical techniques from
the study of censored observations [5, 9].

3 Preliminaries

The optimization problem we consider occurs over a
series of periods. At the beginning of each period, the
budget optimization algorithm is allocated a fresh bud-
get B. This assumption is meant to reflect the manner
in which advertisers actually specify their budgets in
real sponsored search markets. Broadly speaking, the
algorithm’s goal is to maximize the number of clicks
purchased, in each period, using the budget B.

Each period consists of a number of auctions, or an
opportunity to earn a click. We consider the single-
slot setting, wherein the search engine displays a sin-
gle advertisement for each auction 1. The algorithm
places a bid in each auction. Before the bid is placed,
a price is fixed by the auction mechanism. If the algo-
rithm’s bid exceeds this price, the algorithm wins an
impression. For simplicity, we begin by assuming that
winning an impression automatically guarantees that
the algorithm also wins a click; we will describe later
how to relax this assumption.

Once the algorithm wins a click, it is charged the price
from its budget. Otherwise, the algorithm maintains
its budget, and the next auction occurs. In actual
sponsored search markets, the price is determined by
the bids of arbitrary agents competing for the click in
a modified second-price auction (see e.g. [10]).

The major assumption of this work is to instead model
the prices as i.i.d. draws from an unknown distribu-
tion; we will refer to this price as the market price,
since it represents the aggregate behavior of our al-
gorithm’s competitors. As in other financial applica-
tions, it is often analytically intractable to model the
individual agents in a market strategically, so we in-
stead consider the market stochastically as a whole.
We will demonstrate that our algorithm outperforms
other methods in practice on actual auction data from
Microsoft adCenter, even when the i.i.d. assumption
is badly violated.

We will consider some fixed, unknown, distribution P
1We suspect our methods can be adapted to the multi-

slot case, but leave it to future work.

supported on Z+ with mass function p(·). On each
auction, the market price is an independent random
variable distributed as P. We think of the budget B
and market prices as being expressed in terms of the
smallest unit of currency that can be bid by the algo-
rithm. Modeling the problem in this manner motivates
a natural algorithm.

It is important to note that the market prices are not
observed directly by the algorithm. Rather, the al-
gorithm is only privy to the consequences of its bid
(whether a click or impression is received), and changes
to its budget.

Succinctly, we consider the following protocol:

1: for period u = 1, 2, ... do
2: Bu,T = B
3: for auctions remaining t = T, T − 1, ..., 1 do
4: Algorithm bids bu,t ≤ Bu,t.
5: Nature draws price xu,t ∼ P.
6: if bu,t ≥ xu,t then
7: cu,t ← 1
8: Bu,t−1 ← Bu,t − xu,t
9: else

10: cu,t ← 0
11: Bu,t−1 ← Bu,t
12: end if
13: Algorithm observes cu,t, Bu,t−1
14: end for
15: end for

When an algorithm places a large enough a bid, win-
ning the click, it also observes the true market price,
since its budget it reduced by that amount. However,
should the algorithm fail to win the click, it only knows
that the market bid was higher than the bid placed.
Thus, the algorithm receives what is known in the sta-
tistical literature as partially right-censored observa-
tions of the market prices {xu,t}.
Informally, we always assume that an algorithm has
available to it any information it would have in a real
sponsored search auction (although not always at the
same granularity), and no more. So it may be in-
formed of whether it received a click or impression on
an auction-by-auction basis, but not information re-
garding prices if it did not win the click.

Finally, we assume there is only a single keyword which
the advertiser is bidding on. Our methods generalize
to the setting where there are multiple keywords with
multiple click-through rates and valuations for a click.
However, for simplicity, we do not consider these ex-
tensions in this work.
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3.1 Notation

Given a distribution P, supported on Z+, with
mass function p, we let the tail function Tp(b) =∑∞
b′=b+1 p(b

′) denote the mass to the right of b.

We use [N ] to mean the set {1, ..., N}, and [N ]0 =
[N ] ∪ {0}.

4 MDP Formulation

An algorithm for the optimization problem introduced
in the previous section can be described as an agent in
a Markov Decision Process (MDP). An MDP M can
be written as M = (S, {As}s∈S , µ, r) where S is a set
of states, and As are the set of actions available to the
agent in each state s, and A = ∪s∈SAs. For a ∈ As,
µ(a, s, s′) is the probability of transitioning from state
s to state s′ when taking action a in state s. r(a, s, s′)
is the expected reward received after taking action a
in state s and transitioning to state s′. The goal of
the agent is to maximize the expected reward received
while transitioning through the MDP.

In our case, the state space is given by S = [B]0× [T ]0.
With t auctions remaining in period u, the algorithm is
in state (Bu,t, t) ∈ S. Furthermore, the actions avail-
able to any algorithm in such a state are the set of
bids that are at most Bu,t. So for any (b, t) ∈ S we let
A(b,t) = [b]0.

When t ≥ 1, two types of transitions are possible.
The agent can transition from (b, t) to (b, t − 1) or
from (b, t) to (b′, t−1) where 0 ≤ b′ < b. In the former
case, the agent must place a bid lower than the market
price. Therefore, we have that µ(a, (b, t), (b, t − 1)) =
Tp(a). Furthermore, the agent does not win a click in
this case, and r(a, (b, t), (b, t − 1)) = 0. In the latter
case, let δ = b − b′. The agent must bid at least δ,
and the market price must be exactly δ on auction
t of the period in question. Therefore, we have that
µ(a, (b, t), (b′, t−1)) = p(δ) and r(a, (b, t), (b′, t−1)) =
1 so long as a ≥ δ.
When t = 0, for any action, the agent simply tran-
sitions to (B, T ) with probability 1, with no reward.
The agent’s budget is refreshed, and the next period
begins.

All other choices for (a, s, s′) ∈ As × S × S represent
invalid moves, and hence µ(a, s, s′) = r(a, s, s′) = 0.

Finally, conditioned on an agent’s choice of action a
and current state s, its next state s is independent
of all previous actions and states, since the market
prices {xu,t} are independent. The Markov property
is satisfied, and we indeed have an MDP.

We call this the Sponsored Search MDP (SS-MDP). If

π is a fixed mapping from S to A satisfying π(s) ∈ As,
we say that π is a policy for the MDP.

Note that an agent in the SS-MDP, started in an ar-
bitrary state (b, t), arrives at the state (B, T ) after
exactly t + 1 actions. Therefore, we can define the
random variable Cπ(b, t) to be the total reward (i.e.
number of clicks) attained by policy π before return-
ing to (B, T ). We say that π is an optimal policy for
the SS-MDP if an agent started at (B, T ), playing µ(s)
in each state s encountered, maximizes the expected
number of clicks rewarded before returning to (B, T ).
In other words:

Definition 1. A policy π∗ is an optimal policy for the
SS-MDP if π∗ ∈ arg maxπ E[Cπ(B, T )].

The SS-MDP is determined by the choice of budget B,
time T and distribution p. We will want to make the
optimal policy’s dependence on p explicit, and conse-
quently we will write it a π∗p.

5 The Value Function

MDPs lend themselves to dynamic programming. In-
deed, we can characterize exactly the optimal policy
for the SS-MDP when the probability mass function p
is known.

For a distribution p, let Vp(b, t), the value function for
p, denote the expected number of clicks received by an
optimal policy started at state (b, t). That is, if π∗p is
an optimal policy, then Vp(b, t) = E[Cπ∗(b, t)].

First note that when T = 0, Vp(B, T ) ≡ 0. Con-
sider the policy π∗a,b,t that takes action a in state

(b, t), and plays optimally thereafter. Let Vp(a, b, t) =
E[Cπ∗a,b,t(b, t)] be the clicks received by such a policy

from state (b, t). Observe that Vp(a, b, t) can be writ-
ten in terms of Vp(·, t− 1):

Vp(a, b, t) =

a∑

δ=1

p(δ)[1+Vp(b− δ, t− 1)]+Tp(a)Vp(b, t− 1).

In other words, if the market price is δ ≤ a, which
occurs with probability p(δ), the agent will win a click
at the price of δ and transition to state (b − δ, t −
1). At this point it behaves optimally, earning Vp(b−
δ, t − 1) clicks in expectation. If the market price is
greater than a, which occurs with probability Tp(a),
the agent will retain its budget, transitioning to the
state (b, t−1), earning Vp(b, t−1) clicks in expectation.
Furthermore, we know that:

Vp(b, t) = arg max
a≤b

Vp(a, b, t).

Therefore, if p and Vp(·, T − 1) are known then we
can compute Vp(a, b, t) in O(B) operations, and so
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compute Vp(b, t) in O(B) operations. Recalling that
Vp(b, 0) ≡ 0, we can compute Vp(b, t) for all (b, t) ∈
[B]0 × [T ]0 in O(B2T ) operations.

6 Censored Data

In the previous sections, we described how to compute
the optimal policy π∗p when p is known. A natural algo-
rithm for budget optimization is therefore to maintain
an estimate p̂ of p, and bid greedily according to π∗p̂ .
Before describing such an algorithm, we will discuss
the problem of estimating p.

As introduced in Section 3, the observations received
by a budget-optimization algorithm are partially right-
censored data. We begin with a general discussion of
censoring.

Suppose that P is a distribution with mass func-
tion p and (z1, ..., zn) are i.i.d., P-distributed ran-
dom variables. Fix n integers k1, ..., kn, and define
oi = min(zi, ki). We say that the sample {oi} is par-
tially right-censored data.

If oi < ki, we say that oi is a direct observation. In
other words, oi = zi and we have observed the true
value of zi. Otherwise, oi = ki and we say that oi is a
censored observation. We know only that zi ≥ ki.
Given such partially right-censored data, the Product-
Limit estimator [5] is the non-parametric maximum-
likelihood estimator for p.

Definition 2. Let P be a discrete distribution with
mass function p, and let {zi} be i.i.d. P-distributed
random variables. Given integers K = (k1, ..., kn) and
observations O = (o1, ..., on) where oi = min(zi, ki),
let PL(K,O) be the Product-Limit estimator for p.

Specifically, given integers K, and a set of observations
O generated by a distribution P, let D(s) = |{oi ∈ O |
s = oi < ki}| be the number of direct observations of
value s, and N(s) = |{oi ∈ O | s ≤ oi, s < ki}|. Now

let S(t) =
∏t−1
s=1 1 − D(s)

N(s) . The CDF of PL(K,O) is

given by 1− S(t).

In our setting, we are receiving censored observation
of the random variables {xu,t} where the censoring set
K is given by {bu,t+1}, and ou,t = min{bu,t+1, xu,t}.
When a click is received (i.e. xu,t < bu,t + 1), we
observe xu,t directly since xu,t = Bu,t − Bu,t−1, the
amount which the algorithm is charged for winning
the click. Otherwise, the algorithm is charged nothing,
and we only know that xu,t ≥ bu,t + 1.

Finally, we will eventually consider the setting in which
winning an impression does not necessarily guarantee
winning a click. In such a setting, we will have both
left-censored and right-censored observations of xu,t,

what is known as doubly-censored data.

If the algorithm bids bu,t and does not win the impres-
sion, we know that xu,t ≥ bu,t + 1. Similarly, if the
algorithm wins both the impression and the click, it
gets to observe xu,t directly. However, should the al-
gorithm win the impression but not the click, it is only
informed that it placed a large-enough bid (that it won
the impression), or xu,t < bu,t + 1, without observing
xu,t directly. We give a more detailed discussion of
this setting in Section 9. For doubly-censored data,
there is algorithm giving the non-parametric MLE [9].

7 Greedy Product-Limit Algorithm

The algorithm we propose maintains an estimate p̂ of
p. With budget b remaining, and t auctions remaining,
the algorithm will greedily use its current estimate of p,
and bid πp̂(b, t). The pseudo-code for Greedy Product-
Limit contains a detailed description.

Algorithm 1 Greedy Product-Limit

Input: Budget B
1: Initialize distribution p̂ uniform on [B]
2: Initialize K = []; Initialize O = []
3: for period u = 1, 2, ... do
4: Set Bu,T := B
5: for auctions remaining t=T,T-1,...,1 do
6: Bid π∗p̂(Bu,t, t)
7: Set ku,t ← π∗p̂(Bu,t, t) + 1
8: K ← [K, ku,t]
9: if Click won at price xu,t then

10: O ← [O, xu,t]
11: else
12: O ← [O, ku,t]
13: end if
14: Update p̂ to PL(K,O)
15: end for
16: end for

8 Competing Algorithms

In this section we will describe a few alternative strate-
gies against which we compare Greedy Product-Limit.
The first relies on an observation that, given an ar-
bitrary sequence of market prices, there is a simple
bidding strategy that has a constant competitive ratio
to the offline optimal.

8.1 Offline Optimality

So far we have focused our attention on the notion
of optimality introduced in Section 4. Namely, an
algorithm is optimal if it achieves Vp(B, T ) clicks,
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in expectation, in every period. However, given an
arbitrary (non-stochastic) vector of T market prices
x = (x1, ..., xT ), we can define C∗(x, B) to be the max-
imum number of clicks that could be attained by any
sequence of bids, knowing x a priori. In other words,
if b ∈ {0, 1}T , and ‖b‖0 = |{bi | bi = 1}|, then we
define

Definition 3.

C∗(x, B) , max
b∈{0,1}T

‖b‖0 subject to x · b ≤ B.

We call a sequence of bids for x that attains C(x, B)
clicks an optimal offline policy. Notice that one attains
the optimal offline policy by greedily selecting to win
the clicks with the cheapest prices, until the budget B
is saturated.

8.2 Fixed Price

Competing against the notion of optimality introduced
in Section 8.1 may seem onerous in the online setting.
Indeed, competing against an arbitrary sequence of
prices is a special case of the online knapsack problem,
which is known to be hard. However, we will now show
that for any sequence of prices x, there always exists a
simplistic bidding policy which would have attained a
constant factor of the bids of the optimal offline policy.

Let Fixed(b) be the policy that bids b on every auction
that it has budget to do so, and define C(x, b, B) to
be the number of clicks attained by Fixed(b) against
x with budget B.

Theorem 1. For any sequence of prices x, and bud-
get B, there exists a bid b such that C(x, b, B) ≥
1
2C
∗(x, B).

Proof. Let b∗ be the value of the price for the most
expensive click that the optimal offline policy selects
to win. Suppose that the optimal offline policy wins
M+N clicks, where M clicks were won with a price of
exactly b∗ and the remaining N clicks were won with
a price of b∗ − 1 or less.

If N ≥ 1
2C
∗(x, B), then Fixed(b∗ − 1) would win all

N clicks, giving the desired result.

Otherwise, we know that M ≥ 1
2C
∗(x, B). Consider

the policy Fixed(b∗). In the worst case, the policy
will win only clicks with price b∗ before saturating its
budget. However, we know that Mb∗ ≤ B, and so
C(x, b∗, B) ≥M ≥ 1

2C
∗(x, B), as desired.

8.3 Fixed-Price Search

This motivates a simple algorithm which attempts to
find the best fixed-price, Fixed-Price Search.

Algorithm 2 Fixed-Price Search

1: Select b1 arbitrarily.
2: for period u = 1, 2, ... do
3: Cu := 0
4: for auctions remaining t = T, T − 1, ..., 1 do
5: Bid bu
6: if Click won then
7: Cu ← Cu + 1
8: end if
9: end for

10: bu+1 ← UpdateBid({bu′ , Cu′}uu′=1)
11: end for

The algorithm plays a fixed-price strategy each period.
At the end of the period it uses a subroutine Update-
Bid to select a new fixed-price according to how many
clicks it has received. There are many reasonable ways
to specify the UpdateBid subroutine, including using
additive or multiplicative updates (e.g. treating each
price as an expert and running a bandit algorithm such
as Exp3 [1]). But general, the performance of any
such approach cannot overcome the fixed-price “gap”
of Ex[C∗(x, B)−maxb C(x, b, B)].

8.4 Q-learning

Given the MDP formulation of the problem in Sec-
tion 4, we may hope to solve the problem using tech-
niques from reinforcement learning. Q-learning with
exploration is one of the simplest algorithms for rein-
forcement learning, giving good results in a number of
applications.

In Q-learning, the agent begins with an estimate
Q(a, b, t) of the function Vp(a, b, t), called the Q-value,
for each state (b, t) and action a ∈ [b]. In a state (b, t),
the agent greedily performs the best action a∗ for that
state using the current Q-values receiving some reward
r̂ and arriving at a new state (b′, t− 1). The Q-values
for state (b′, t− 1) and the observed reward r̂ are then
used to update Q(a∗, b, t). This is often combined with
forced exploration. Notice that Q-learning will nec-
essarily ignore the special assumptions placed on the
underlying MDP. In particular, from our discussion
in Section 4, we have that π(a, (b1, t1), (b′1, t1 − 1)) =
π(a, (b2, t2), (b′2, t2 − 1)) when b1 − b′1 = b2 − b′2.

8.5 Knapsack Approaches

As referenced in Section 2, the problem of budget op-
timization in sponsored search is very related to the
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online knapsack problem. In the online knapsack prob-
lem, an optimizer is presented with a sequence of items
with values and weights. At each time step, the opti-
mizer makes an irrevocable decision to take the item
(subtracting its weight from the optimizer’s budget,
and gaining its value). In the worst case, Marchetti-
Spaccamela et al. demonstrate that a constant-factor
competitive ratio with the offline is not possible [8].
Nevertheless, there are many results from the online
knapsack literature that are applicable to our setting.

While in the worst case the online knapsack problem
is hard, Lueker gives an average-case analysis for an
algorithm for the Stochastic Knapsack Problem, which
is related to our setting [7]. In the Stochastic Knap-
sack Problem, items {(ri, xi)} are i.i.d. draws from
some fixed, known, distribution. ri is the profit or re-
ward earned by taking the item, and xi is the price
of the item. In our setting, all clicks are considered
indistinguishable for a fixed keyword, and so ri = 1.

Note that the protocol differs from ours in a few ways.
Firstly, there is no learning. The underlying distri-
bution is assumed to be known. Secondly, there is no
censoring of data, or any notion of an auction. The op-
timizer is presented with each item up-front, at which
point it must make a decision before moving on to the
next. Thirdly, in the language of our setting, there is
only a single period.

Under these assumptions, the algorithm of Lueker
gives a simple algorithm which differs from the true op-
timum by an average of Θ(T ), where T is the length of
the period, assuming that the budget available scales
with T [7].

Nevertheless, the same ideas behind Greedy Product-
Limit give us a natural adaptation of this algorithm
to our setting. Suppose that the prices are presented
up-front and that P is known. With budget B remain-
ing and time T remaining in a period, the algorithm
computes:

v(B/T ) , max
v
{v |

v∑

a=1

a · p(a) ≤ B/T}

and takes the click iff its market price x satisfies x ≤
v(B/T ). Thus, when the prices are not presented up-
front, it is equivalent to simply bidding v(B/T ).

Note that bidding v(B/T ) is natural; it is the bid that,
in expectation, costs B/T , or smooths the remaining
budget over the time remaining. We can now combine
this with an estimation step, using the product-limit
estimator, as we did for Greedy Product-Limit, simply
replacing line 7 with the assignment ku,t := v(B/T ).
We refer to this strategy as LuekerLearn.

Notice, however, that once p̂ has converged to the true
p, we should not expect this algorithm to outperform
Greedy Product-Limit, which would bid optimally. For
a fixed choice of distribution p, budget B, and number
of auctions T , let Lp(B, T ) be the expected number
of clicks earned by running the algorithm of Lueker,
knowing p. Lp(B, T ) ≤ Vp(B, T ), by definition of
Vp(B, T ). We will comment (as established by Lueker)
that the gap Vp(B, T )−Lp(B, T ) is exacerbated by dis-
tributions with large variance relative to B and T , an
issue we will return to in Section 9; see also Figure 1.
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Figure 1: A distribution for which Lp(B, T ) is bounded
away from Vp(B, T ). The red curve plots the perfor-
mance (averaged over auctions) of the algorithm of
Lueker’s algorithm when the distribution p is known.
The distribution is displayed on the right.

8.6 Budget Smoothing

There is also literature in which other budget-
smoothing approaches are considered. Zhou et al. con-
sider the budget optimization problem in sponsored
search as a online knapsack problem directly [12]. In
our setting, their algorithm guarantees a ln(B) + 1
competitive ration with the offline optimum. Their al-
gorithm smooths its budget over time, and operates by
bidding: 1/(1+exp(z(t)−1)) where z(t) is the fraction
of budget remaining at time t.

9 Experimental Results

In this section we will describe experimental results
for the previously described algorithms. We use bids
placed through Microsoft’s adCenter in two sets of ex-
periments. In the first, we assume that our modeling
assumptions from Section 3 are correct, and construct
a distribution P from the empirical data for use in
simulation. In the second set of experiments, we run
the methods on the historical data directly, taken as
an individual sequence and thus violating our stochas-
tic assumptions. We will see that in both cases, our
suggested algorithm outperforms the other methods
discussed. First, however, we discuss an important
generalization to the setting that we have considered
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so far.

9.1 Impressions and Clicks

Until now we have assumed that all ad impressions re-
sult in a click (i.e. winning an auction results in an
automatic click). We will now relax this assumption.
Instead, when an advertiser wins an impression, we
will suppose that whether a click occurs is an inde-
pendent Bernoulli random variable with mean r. We
call r the click-through rate. If a click does indeed oc-
cur, the advertiser is charged the market price. Oth-
erwise, the advertiser is informed that an impression
has occurred, but maintains its budget.

All the methods described generalize to this setting in
a straightforward manner. Nevertheless, it is worth
being explicit about how Greedy Product-Limit must
be modified. First note that the MDP formulation
for the problem differs in the definition of the tran-
sition probability µ. In particular, we now have
µ(a, (b, t), (b − δ, t − 1)) = rp(δ) (when δ ≤ a), and
µ(a, (b, t), (b, t − 1)) = (1 − r∑a

δ=1 p(δ)). π
∗
p can still

be computed using dynamic programming, where:

Vp(a,B, T ) = (1 − r
∑a
δ=1 p(δ))Vp(B, T − 1) +∑a

δ=1 rp(δ)[1 + Vp(B − δ, T − 1)]

and π∗p(B, T ) = arg maxa≤B Vp(a,B, T )

Furthermore, as discussed in Section 6, rather than us-
ing the Product-Limit estimator, this setting requires
that the new algorithm treat doubly-censored data, for
which techniques exist [9].

9.2 Data

The data used for these experiments were generated by
collecting the auction history from advertisers placing
bids through Microsoft’s adCenter over a six month
period. For a given keyword, we let the number of
times that keyword generated an auction be its search
volume, Volk, and take keyword k to be the keyword
with the k-th largest volume.
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Figure 2: Log-log plot of Volk/Vol1 for each k

The distribution of search volume is clearly heavy-
tailed (see Figure 2) and is well approximated by a
power law over several orders of magnitude.

We ran our experiments on the 100 keywords with
largest search volume. As we will discuss further in
the next section, the bidding behavior is quite varied
among the different keywords in the data set.

In actual sponsored search-auctions, each bidder is
given a quality-score for each keyword. Bidders’ actual
bids are multiplied by these quality scores to determine
who wins the auction. For each keyword k, and auc-
tion t, let xk,t be the quality-score-adjusted bid for the
advertiser that historically won the top slot for that
auction, and ck,t indicate whether a click occurred.

We take the perspective of a new advertiser with unit
quality score. xk,t is the amount that such an adver-
tiser would have needed to bid to have instead taken
the top slot (and the amount the advertiser would be
charged should they also receive a click).

Finally, we make the single-slot assumption through-
out, so even if multiple ads were indeed shown histori-
cally, we assume that an algorithm wins an impression
if and only if it wins the top slot. In principle, Greedy
Product-Limit can be modified to operate when mul-
tiple ad slots are available. However, we avoid this
complication in this work.

9.3 Distributional Simulations

The first set of simulations use the historical data
{xk,t}, to construct an empirical distribution pk on
market prices for each keyword k. We also set a fixed
click-through rate rk, for each keyword using the back-
ground click-through rate for that keyword (the empir-
ical average of {ck,t}). While our main results in the
next section eliminate the distribution pk and use the
sequence {xk,t} directly, we first simulate and investi-
gate the case where our modeling assumptions hold.

Figure 3 demonstrates that the types of distributions
generated in this manner are quite varied.

The budget Bk allocated to the advertiser for keyword
k is selected so that, optimally, a constant fraction of
clicks are available. In other words, the simulations
were run with Bk(T ) satisfying Vpk(Bk(T ), T ) = fT ,
where f = 10%. Each experiment was run for 10 peri-
ods containing T = 100 auctions each, and 20 experi-
ments were run for each keyword.

A major observation is that Greedy Product-Limit con-
verges to the optimum policy on the time-scale of auc-
tions, not periods. This is significant since certain
methods considered are doomed to converge on the
time-scale of periods instead. For example, each state
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Figure 3: Each plot represents the empirical distribu-
tion pk for a different keyword k. The x-axis represents
the bid as a fraction of the total budget Bk allocated
to the advertiser for keyword k.

can be visited at most once by Q-learning in a single
period. Furthermore, for a particular time t, the only
state corresponding to that t visited is (Bu,t, t), (i.e.
the state corresponding to the budget held by the al-
gorithm at that time). Similarly, the Fixed-Price algo-
rithm adjusts its bid at the end of every period. Table
1 shows that after just 2 periods, Greedy Product-Limit
(GPL) has come within five percent of optimal across
all keywords. For each algorithm, the results are the
averages of 20 different simulations, and are statisti-
cally significant. An unpaired 2-sample t-test between
the results for GPL and those of any other algorithm
yields p-values that are less than 10−20.

Table 1: Average Competitive Ratio with Vpk(B, T ),
across all keywords and experiments, after two periods.

Algorithm Name Competitive Ratio Std
Greedy Product-Limit 0.9573 0.1704
LuekerLearn 0.8448 0.1842
Fixed-Price Search 0.8352 0.1733
Q-learn 0.7484 0.1786
Budget Smoothing 0.1597 0.2418

9.4 Sequential Experiments

The main result of our work comes from experiments
run on the real sequential data dk = {xk,t, ck,t}t.
Rather than taking {xk,t, ck,t}, and constructing the
distribution pk and a click-through rate, as in the pre-
vious section, we can use the sequence directly. Each of
the previous methods are well-defined if the prices and
clicks are generated in this manner, as opposed to be-
ing generated by the stochastic assumptions that mo-

tivated Greedy Product-Limit. We break the sequence
into 10 periods of length T = 100. In reality, the num-
ber of auctions in a period might vary. However, this
is minor, as an advertiser can attain good estimates of
period-length. We allocate to each algorithm the same
budget Bk used in the stochastic experiments.

Recall the notion of offline optimality defined in sec-
tion 8.1. For each keyword k, we can compute the ex-
act auctions that one should win knowing the sequence
{xk,t, ck,t} a priori. We will demonstrate that Greedy
Product-Limit is competitive with even this strong no-
tion.

We first look at the nature and time-scale of the con-
vergence of Greedy Product-Limit.
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Figure 4: Convergence rates for 6 different keywords.
The x-axis denotes auctions t, and the y-axis plots,
in black, the number of clicks attained by the offline
optimal after t auctions, normalized by t. The blue
plot shows the same for Greedy Product-Limit. Greedy
Product-Limit converges in the auction time-scale, not
the period time-scale.

We will shortly see that LuekerLearn, the modification
of Greedy Product-Limit attains similar performance.
Like Greedy Product-Limit, it converges in the time-
scale of auctions. However, recalling Figure 1, Lueker-
Learn will sometimes converge to something subopti-
mal, especially on keywords where there is a lot of vari-
ance in the bids. Figure 5 demonstrates this behavior
on the sequential data. In fact, let Ak denote the cu-
mulative number of clicks attained by Greedy Product-
Limit and Lk denote the cumulative number of clicks
attained by LuekerLearn after 10 periods for keyword
k, defining Zk = Ak/Lk and Sk = std({xk,t}t). The
observations {Zk} are positively correlated with {Sk},

61



with a correlation coefficient of 0.2103 that is signifi-
cant with a p-value of 0.0357.

Figure 6 demonstrates that, ignoring variance, Greedy
Product-Limit has indeed converged to optimal across
all keywords after just a single period. Let Ok be the
offline optimal number of clicks that can be attained
for keyword k after 10 periods (the entire data set).
Let Ak,p denote the cumulative number of clicks at-
tained by an algorithm on keyword k after p periods.
For an algorithm that is optimal after a single period,
we should expect Ak,p/Ok to be roughly p/10 for each
period p. Indeed, while there are certain keywords for
which this doesn’t happen, we see that this is true on
average.
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Figure 5: On the left the y-axis plots, in black, the
number of clicks attained by the offline policy after
t auctions, normalized by t. The blue plot shows the
same for Greedy Product-Limit and the red for Lueker-
Learn. In all three, LuekerLearn is bounded away from
the offline optimal. The right side displays xk,t/x̄k
where x̄k is the average over xk,t for the correspond-
ing keyword. Note the “bursty” nature of the market
price, with auctions occurring that set a market price
hundreds of times greater than the average.

Figure 7 and Table 2 summarize the performance of
the competing methods.

Table 2: Average Competitive Ratio with OK , across
all keywords.

Algorithm Name Competitive Ratio Std
Greedy Product-Limit 0.9062 0.1166
LuekerLearn 0.8962 0.1152
Fixed-Price Search 0.6253 0.1395
Q-learn 0.5879 0.1558
Budget Smoothing 0.3105 0.3252

Notice that besides Greedy Product-Limit, the only
other algorithm that competes with the offline opti-
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Figure 6: Each scatter point represents Ak,p/Ok for a
different keyword k, at the end of period p displayed
on the x-axis. The line is the mean of Ak,p/Ok across
all k for a fixed period p.
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Figure 7: Average of Ak,p/Ok across all k for each
algorithm.

mal is our modification to the stochastic knapsack al-
gorithm, LuekerLearn. As previously discussed, the
convergence of Q-learn and Fixed-Price Search hap-
pens on the time-scale or periods, not auctions. We
suspect that with more data, both would converge (as
they do in the stochastic setting), albeit Fixed-Price
Search would converge only to the best fixed-price in
hindsight. Finally, as demonstrated in Figure 5, when
there is large variation in bidder behavior, Lueker-
Learn might stay bounded away from the offline opti-
mal.

10 Future Work

We conjecture that Greedy Product-Limit always con-
verges (rapidly) to the optimal policy in the stochastic
setting, and hope to prove so in the future.
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Abstract

In recent years, non-parametric methods uti-
lizing random walks on graphs have been
used to solve a wide range of machine learn-
ing problems, but in their simplest form they
do not scale well due to the quadratic com-
plexity. In this paper, a new dual-tree based
variational approach for approximating the
transition matrix and efficiently performing
the random walk is proposed. The approach
exploits a connection between kernel density
estimation, mixture modeling, and random
walk on graphs in an optimization of the tran-
sition matrix for the data graph that ties to-
gether edge transitions probabilities that are
similar. Compared to the de facto standard
approximation method based on k-nearest-
neighbors, we demonstrate order of magni-
tudes speedup without sacrificing accuracy
for Label Propagation tasks on benchmark
data sets in semi-supervised learning.

1 Introduction

Non-parametric methods utilizing random-walks on
graphs have become very popular in Machine Learn-
ing during the last decade. These methods have been
applied to solve Machine Learning problems as diverse
as clustering (von Luxburg, 2007), dimensionality re-
duction (Lafon and Lee, 2006), semi-supervised learn-
ing (SSL) (Zhu, 2005), supervised learning (Yu et al.,
2005), link analysis (Ng et al., 2001), and others. Un-
fortunately, these methods suffer from one fundamen-
tal and recurring problem: the quadratic dependency
on the number of examples, which subsequently affects
their scalability and applicability to large-scale data
sets. Many different approximation frameworks have
been proposed in the literature to tackle the above
problem. Typically, these methods work by sparsifying
the underlying graph representation by either reduc-
ing the number of nodes representing data points or

reducing the number of edges representing data points
similarities.

The first class of techniques aims to reduce the number
of nodes in the graph from N to M (M � N). The
reduction is carried out in various ways: random sam-
pling (Kumar et al., 2009; Amizadeh et al., 2011), mix-
ture modeling (Zhu and Lafferty, 2005), non-negative
matrix factorization (Yu et al., 2005), sparse griding
(Garcke and Griebel, 2005), Latent Markov Analysis
(Lin, 2003), etc. A common problem with these tech-
niques is that it is not clear how fast one should in-
crease M when N increases. Subsequently, although
the memory and the matrix-vector multiplication com-
plexities are reduced to O(M2), we go back to O(N2)
in effect if M changes with the same rate as N does.

The second class of techniques tries to sparsify the
edges in the graph. k-nearest-neighbor graphs (Zhu,
2005) and b-matching (Jebara et al., 2009) are among
the most famous methods in this group. The main
concern with these methods, however, is the compu-
tational complexity of building these sparse graphs.
Even with the smart speed-up techniques, such as
k-nearest-neighbor graphs (Liaw et al., 2010; Moore,
1991), the actual time for building the full sparse graph
can vary in practice.

A third class of methods goes around the problem
of finding a sparse graph representation by trying to
approximate the quantity of interest in the problem
directly. Manifold regularization techniques (Belkin
et al., 2006; Tsang and Kwok, 2006) directly find a
smooth function on the graph. Fergus et al. (2009);
Nadler et al. (2006); Amizadeh et al. (2012) try to di-
rectly estimate the eigen decomposition of the under-
lying transition matrix in the limit assuming factorized
underlying distribution. Although these methods can
be very effective, they are also task specific and do not
give us an explicit approximation of the graph similar-
ity (transition) structure.

The framework proposed in this paper directly approx-
imates the transition matrix of the data graph. Our
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method is similar to the second group of approxima-
tion techniques in the sense that it does not reduce
the graph nodes. However, instead of zeroing out the
edges (like in the second group), our framework groups
the edges together to share edge transition probabil-
ities that are similar. To do so, we use a recent ad-
vancement from Thiesson and Kim (2012), which for a
very different task (fast mode-seeking) developed a fast
dual-tree based (Gray and Moore, 2000) variational
framework that exploits a mixture modeling view on
kernel density estimation. Mixture modeling and the
random walk on graphs are also closely related (Yu
et al., 2005). Based on this connection between ker-
nel density estimation, mixture modeling, and random
walk on graphs, we extend the framework in Thiesson
and Kim (2012) to a fast and scalable framework for
1) transition matrix approximation and 2) inference
by the random walk.

By further exploiting the connection between mix-
ture modeling and random walk, we also propose a
lower-bound log-likelihood optimization technique to
find the optimal bandwidth for the Gaussian simi-
larity kernel (which is a very popular kernel for con-
structing transition matrices on data graphs). More-
over, using our framework, one can adjust the trade-
off between accuracy and efficiency by refining the
model. As we show in the paper, at its coarsest level
of refinement, our framework achieves complexity or-
der of O(N1.5 logN) for construction, O(N) inference
via matrix-vector multiplication, and memory con-
sumption of O(N), which improves the performance
of graph sparsification methods reviewed earlier. To
demonstrate the speed-up in practice, we experimen-
tally show that without compromising much in terms
of accuracy, our framework can build, represent and
operate on random-walk transition matrices orders of
magnitude faster than the baseline methods.

2 Background

Kernel density estimation plays an important concep-
tual role in this paper. Let M = {m1,m2, . . . ,mN}
denote a set of kernel centers corresponding to ob-
served data D in Rd. The kernel density estimate for
any data point x ∈ Rd is then defined by the following
weighted sum or mixture model:

p(x) =
∑

j

p(mj)p(x|mj) (1)

where p(mj) = 1
N , p(x|mj) = 1

Zσ
k(x,mj ;σ), and

k is a kernel profile with bandwidth σ and normal-
ization constant Zσ. For the commonly used Gaus-
sian kernel, k(x,mj ;σ) = exp(−‖x − mj‖2/2σ2) and

Zσ = (2πσ2)
d
2 .

Now let us assume we want kernel density estimates

for data points D = {x1, x2, . . . , xN} in Rd that also
define the kernel centers. That is, D =M, and we use
the D and M notation to emphasize the two different
roles every example takes - one as a data point, the
other as a kernel center. Let us exclude the kernel
centered at mi = xi from the kernel density estimate
at that data point. In this case, the estimate at xi ∈ D
can be defined as the N−1 component mixture model:

p(xi) =
∑

j 6=i
p(mj)p(xi|mj) =

∑

j 6=i

1

N − 1

1

Zσ
k(xi,mj ;σ),

(2)
where p(mj) = 1/(N − 1).

In the mixture model interpretation for the kernel den-
sity estimate, the posterior kernel membership proba-
bility for a data point can be expressed as

p(mj |xi) =
p(mj)p(xi|mj)

p(xi)
=

k(xi,mj ;σ)
∑N
l=1 k(xi,ml;σ)

(3)

These posteriors form a matrix P = [pij ]N×N where
pij = p(mj |xi) for i 6= j are the true posteriors, and
pij = 0 for i = j are neutral elements added for later
notational convenience. Note that in this represen-
tation, each row in P holds a posterior distribution
pi· , {pij |j = 1, . . . , N}.
The complexity of computing and representing P is
O(N2), which is costly for large-scale data sets with
large N . In this work, we seek ways of alleviating
the problem by taking the advantage of the cluster
structure in data (and kernels) that would let us share
posteriors among groups of data points and kernels
instead of computing them for each individual pair.
More precisely, suppose that the data set D consists
of two well-separated clusters in Rd, denoted by C1 and
C2. In this case, it is likely that the posteriors p(mj |xi)
are roughly similar for all xi ∈ C1 and mj ∈ C2 so that
one can approximate all posteriors for the pairs in be-
tween these two clusters with one value. Notice how
this approximation directly targets the posteriors and
not the expensive intermediate kernel summation in
the denominator of (3). This simple idea can be gen-
eralized recursively if we have nested cluster structure
in the form of a cluster hierarchy. In this case, the
computational savings can be dramatic.

3 Dual-tree Based Variational P

Whilst the approximation idea for P outlined above
may appear simple, it needs careful handcrafting in
order to yield a practical and computationally efficient
framework. We start building our framework by bor-
rowing the ideas from the dual-tree-based variational
approach proposed by Thiesson and Kim (2012).
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3.1 Dual-tree Block Partitioning

The dual-tree-based variational approach in Thiesson
and Kim (2012) maintains two tree structures; the data
partition tree and the kernel partition tree, that hier-
archically partition data points (kernels) into disjoint
subsets, such that an intermediate node in a tree rep-
resents a subset of data points (or kernels) and leaves
correspond into singleton sets. In this work we assume
the structure of the two trees is identical, leading to
the exactly same subsets of data points and kernels
represented by the tree.

The main reason for introducing the partition tree is
to define relations and permit inferences for groups of
related data points and kernels without the need to
treat them individually. More specifically, we use the
partition tree to induce a block partition of the ma-
trix P , where all posteriors within the block are forced
to be equal. We also refer to this partition as block
constraints on P . Formally, a valid block partition B
defines a mutually exclusive and exhaustive partition
of P into blocks (or sub-matrices) (A,B) ∈ B, where
A and B are two non-overlapping subtrees in the par-
tition tree. That is, A ∩ B = ∅, in the sense that
data-leaves in the subtree under A and kernel-leaves
in the subtree under B do not overlap. (To maintain
the convenient matrix representation of P , the single-
ton blocks representing the neutral diagonal elements
in P are added to this partition.) Figure 1a) shows a
small example with a valid block partition for a parti-
tion tree built for six data points (kernels). This block
partition will, for example, enforce the block constraint
p13 = p14 = p23 = p24 for the block (A,B) = (1−2, 3−4)
(where a−b denotes a through b).

To represent the block-constrained P matrix more
compactly, we utilize the so-called marked partition
tree (MPT) that annotates the partition tree by explic-
itly linking data groups to kernel groups in the block
partition: for each block (A,B) ∈ B, the data-node
A is marked with the matching kernel-node B. Each
node A in the MPT will therefore contain a, possibly
empty, list of marked B nodes. We will denote this
list of marks as Amkd , {B|(A,B) ∈ B}. Figure 1b)
shows the MPT corresponding to the partition in Fig-
ure 1a). For example, the mark of kernels B = 3−4 at
the node representing the data A = 1−2 corresponds
to the same block constraint (A,B) = (1−2, 3−4),
as mentioned above. It is the only mark for this data
node, and therefore Amkd = 1−2mkd = {3−4}. As
another example, the list of marks for node A = 5 has
two elements; Amkd = 5mkd = {5, 6}. An important
technical observation, that we will use in the next sec-
tion, is that each path from a leaf to the root in the
MPT corresponds to the row indexed by that leaf in
the block partition matrix for P . By storing the pos-
terior probabilities at the marks in the MPT, we can

therefore extract the entire posterior distribution pi·
by starting at the leaf that represents the data point
xi and follow the path to the root.

Figure 1: a) A block partition (table) for data partition
tree (left) and identical kernel partition tree (top). b)
MPT representation of the block partition.

Clearly, there are more than one valid partitions of
P ; in fact, any further refinement of a valid partition
results in another valid partition with increased num-
ber of blocks. We postpone the discussion of how to
choose an initial valid partition and how to refine it to
Section 4.4. For now, let us assume that we are given
a valid partition B of P with |B| number of blocks.
By insisting on the block constraint of equality for all
posteriors in a given block, the number of parameters
in P is effectively reduced from N2 to |B|.

3.2 Optimization of Block Partitioning

In general, the block partition approach links groups
of data points and kernels together such that any spe-
cific link is no longer able to distinguish its compo-
nents. The key question now is whether we can cast
the block partitioning problem into an optimization
framework that can approximate well the true uncon-
strained P . We address the question by using a vari-
ational approximation approach. In this case, each
block (A,B) ∈ B is assigned a single variational pa-
rameter qAB that approximates the posteriors pij for
all xi ∈ A and mj ∈ B in that block. That is, for
Q = [qij ]N×N

qij = qAB s.t. (A,B) ∈ B, xi ∈ A,mj ∈ B (4)

Recall that in our setup, qij = pij = 0 for i = j.

The trick to solve the problem rests on expressing a
variational lower bound for the log-likelihood of data:

log p(D) =
∑

i

log p(xi) =
∑

i

log
∑

j 6=i
p(mj)p(xi | mj)

=
∑

i

log
∑

j 6=i

qij
qij
p(mj)p(xi | mj)

≥
∑

i

∑

j 6=i
qij log

p(mj)p(xi | mj)

qij
(5)
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= log p(D)−
∑

i

DKL

(
qi·‖pi·

)
, `(D), (6)

where DKL(·||·) is the KL-divergence between two dis-
tributions. Notice that optimizing the lower bound
`(D) with respect to Q corresponds to minimizing the
KL-divergence between the two distributions qi· and
pi· for all i, since this is the only term in (6) that de-
pends on Q. The block-constrained Q matrix is there-
fore a good approximation for the unconstrained P .

Let us now explicitly insert the block constraints from
(4) into the expression for `(D) in (5). With p(mi) =
1/(N − 1) and the Gaussian (normalized) kernel for
p(xi|mj), the optimization reduces to finding the vari-
ational parameters qAB that maximizes

`(D) = c− 1

2σ2

∑

(A,B)∈B
qAB ·D2

AB

−
∑

(A,B)∈B
|A||B| · qAB log qAB , (7)

where

c = −N log
(
(2π)d/2σd(N − 1)

)

D2
AB =

∑

xi∈A

∑

mj∈B
‖xi −mj‖2. (8)

Thiesson and Kim (2012)[Algorithm 3] has developed
a recursive algorithm that solves this optimization for
all qAB , (A,B) ∈ B in O(|B|) time. Specifically, their
solution avoids the quadratic complexity that a di-
rect computation of the Euclidean distances in (8)
would demand by factorizing D2

AB into data-specific
and kernel-specific statistics as follows

D2
AB = |A|S2(B) + |B|S2(A)− 2S1(A)TS1(B), (9)

where S1(A) =
∑
x∈A x and S2(A) =

∑
x∈A x

Tx are
the statistics of subtree A. These statistics can be
incrementally computed and stored while the shared
partition tree is being built; an O(N) computation.
Using these statistics, D2

AB is computed in O(1).

Now, the question is how to efficiently construct the
shared partition tree from data. Well-known, effi-
cient partition-tree construction methods include an-
chor tree (Moore, 2000), kd -tree (Moore, 1991) and
cover tree (Ram et al., 2009; Beygelzimer et al., 2006)
construction. We have used the anchor tree. With a
relatively balanced tree, it takes O(N1.5 logN + |B|)
time and O(|B|) memory in total to build and store the
variational approximation for the posterior matrix P
from data. See the supplementary Appendix for more
details on the anchor tree construction complexity.

4 Application to Random Walk

In this section, we show how the variational mixture
modeling framework can be utilized to tackle large-

scale random walk problems. The random walk here
is defined on the graph G which is an undirected sim-
ilarity graph whose nodes are the data points in D
and the edge between nodes xi and xj is assigned the
similarity weight sij = exp(−‖xi − xj‖2/2σ2).

4.1 Variational Random Walk

As we saw in Section 2, p(mj |xi) models the poste-
rior membership of data point xi to the Gaussian ker-
nel mj . However, p(mj |xi) can be interpreted from a
completely different view as the probability of jump-
ing from data point xi to data point mj in a random
walk on G. In fact, (3) is the same formula that is
used to compute the transition probabilities on data
graphs, when the Gaussian similarity is used (Lafon
and Lee, 2006). As a result, the matrix P from the
previous section can be seen as the transition proba-
bility matrix for a random walk on G. Subsequently,
the corresponding variational approximation of Q is
in fact the approximation of the transition probability
matrix using only |B| number of parameters (blocks);
in other words, qAB approximates the probability of
jumping from a data point in A to a data point in B.
This is, in particular, important because it enables us
to compute and store the transition probability ma-
trix in O(N1.5 logN + |B|) time and O(|B|) memory
for large-scale problems.

In the light of this random walk view on Q, the lower
bound log-likelihood `(D) in (7) will also have a new
interpretation. More precisely, the second term in (7)
can be reformulated as:

− 1

2σ2

∑

(A,B)∈B
qAB ·D2

AB = − 1

2σ2

∑

i,j

qij · d̄ij (10)

where, qij is defined as in (4) and d̄ij = D2
AB/|A||B|

is the block-average distance such that (A,B) ∈ B,
xi ∈ A and mj ∈ B. This is, in fact, a com-
mon optimization term in similarity-graph learning
from mutual distances (Jebara et al., 2009) and can
be more compactly represented as − 1

2σ tr(QD̄), where

Q = [qij ]N×N and D̄ = [d̄ij ]N×N are the similarity
and distance matrices, respectively. However, there is
one problem with a maximization of this term: it will
make each point connect to its closest neighbor with
qij = 1 (and qij = 0 for the rest). In other words, the
similarity graph will be highly disconnected. This is
where the third term in (7) benefits the new interpre-
tation. One can rewrite this term as:

−
∑

(A,B)∈B
|A||B| · qAB log qAB = −

∑

i,j

qij log qij

=
N∑

i=1

H(qi·) (11)
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where H(qi·) is the entropy of the transition proba-
bility distribution from data point xi. As opposed
to (10), the term in (11) is maximized by a uniform
distribution over the outgoing probabilities at each
data point xi; that is, a fully connected graph with
equal transition probabilities. The third term in (7)
therefore acts as the regularizer in the learning of the
similarity-graph, trying to keep it connected. The
trade-off between the second and the third terms is
adjusted by the coefficient 1/2σ2: increasing σ will
leave the graph more connected.

4.2 Learning σ

Finding the transition probabilities for a random walk
by the variational optimization of (7) has a side advan-
tage too: (7) is a quasi-concave function of the band-
width σ, which means that, given qAB ’s fixed, one can
find the optimal bandwidth that maximizes the log-
likelihood lower bound. By taking the derivative and
solving for σ, the closed form solution is:

σ∗ =

√∑
(A,B)∈B qAB ·D2

AB

Nd
(12)

In the special case where each element of matrix P
is a singleton block (i.e. the most refined case), one
can find σ∗ independent of qAB ’s values. To do so,
we first form the following log-likelihood lower bound
using the Jensen inequality:

log p(D) ≥
∑

i

∑

j 6=i
p(mj) log p(xi | mj) (13)

By maximizing the right-hand side w.r.t. σ, we get:

σ∗ =
1

N

√∑
i

∑
j 6=i ‖xi − xj‖2

d
(14)

In general, due to the dependence of σ∗ to qAB ’s, we
alternate the optimization of qAB ’s and σ in our frame-
work. In practice, we have observed that the conver-
gence of this alternate optimization is fast and not
sensitive to the initial value of σ.

4.3 Fast Inference

In the previous subsections, we saw how the variational
dual-tree based framework can be used to efficiently
build and store a variational transition matrix Q of a
random walk. We will now demonstrate that the block
structure of this transition matrix can be very useful
for further inference in similarity-graph based learning
algorithms. In particular, using the MPT representa-
tion of Q, we can efficiently compute the multiplication
with an arbitrary vector Y = (y1, y2, . . . , yn)T of ob-

servations to achieve Ŷ = QY ' PY in O(|B|) rather
than O(N2) computations.

Algorithm 1 Calculate Ŷ = QY

Input: MPT with {qAB : B ∈ Amkd} on each node A, and
(xi, yi) on each leaf.

Output: ŷi on each leaf.

A = Root(MPT)
CollectUp(A)
DistributeDown(A, 0)

function CollectUp(A)
if IsLeaf(A) then
TA = yA //null-vector if yA is not observed

else
CollectUp(Al)
CollectUp(Ar)
TA = TAl + TAr

end if
end function

function DistributeDown(A, py)
for all marks B ∈ Amkd do
py += |B|qABTA

end for
if IsLeaf(A) then
ŷA = py

else
DistributeDown(Al, py)
DistributeDown(Ar, py)

end if

end function

Algorithm 1 describes the O(|B|) computation of Ŷ .
The algorithm assumes that each yi is stored at the
corresponding leaf xi in the MPT–e.g., by association
prior to constructing the MPT. Alternatively, an index
to the leaves can be constructed in O(N) time. The
algorithm starts with a CollectUp phase that tra-
verses the MPT bottom-up and stores incrementally
computed sum-statistics at each node A, as

TA =
∑

xi∈A
yi = TAl + TAr ,

where Al, Ar are the left and right children of A. This
is an O(N) computation. Let B(xi) , {(A,B) ∈ B |
xi ∈ A} denote the set of marked blocks that can
be experienced on the path in the MPT from leaf
xi to the root. For example, in Figure 1, B(3) =
{(3, 3), (3, 4), (3−4, 1−2), (1−4, 5−6)}. With each qAB
stored at the node A marked with B in the MPT, a
DistributeDown phase now conceptually computes

ŷi =
∑

(A,B)∈B(xi)
|B|qABTA '

∑

j

pijyj ,

by following the path from each leaf to the root in
the MPT. The more efficient implementation in Al-
gorithm 1 traverses the MPT top-down, avoiding re-
calculations of the shared terms for the updates by
propagating the value of the shared terms through the
variable py. This traversal has complexity O(|B|). On
completion of the algorithm the leaves in the MPT
will contain Ŷ = {yi}Ni=1. The fast matrix-vector mul-
tiplication is a significant achievement because it al-
lows us to significantly speed up any algorithm with
this computational bottleneck. Two such algorithms
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are Label Propagation (LP) (Zhou et al., 2003) used
for Semi-supervised Learning and Link Analysis (see,
e.g., Ng et al. (2001)), and Arnoldi Iteration (Saad,
1992) used for spectral decomposition. More specifi-
cally, given a similarity graph over the data points xi,
the LP algorithm iteratively updates the label matrix
Y = [yij ]N×C (where C is the number of label classes)
at time t + 1 by propagating the labels at time t one
step forward according to the transition matrix P :

Y (t+1) ← αPY (t) + (1− α)Y 0 (15)

Here, the matrix Y 0 encodes the initial labeling of data
such that y0ij = 1 for label(xi) = yi = j, and y0ij = 0
otherwise. The coefficient α ∈ (0, 1) determines how
fast the label values are updated. The repeated matrix
multiplication in (15) definitely poses a bottleneck for
large-scale problems, and this is where our fast frame-
work comes into play.

4.4 Partitioning and Refinement

So far, we have assumed that a valid partition B of
P with |B| number of blocks is given. In this section,
we illustrate how to construct an initial valid partition
of P and how to further refine it to increase accuracy
of the model. We should note that the methods for
partitioning and refinement in this section are different
from the ones in Thiesson and Kim (2012).

Let Bdiag denote the N neutral singleton blocks that
appear on the diagonal of P . The coarsest (with the
smallest number of blocks) valid partition Bc for P is
achieved when for every block (A,B) ∈ Bc = B\Bdiag,
we have that A and B are sibling subtrees in the par-
tition tree. (Recall that data and kernels are parti-
tioned by the same tree.) Any other partition will ei-
ther not be a valid partition conforming with the par-
tition tree, or it will have a larger number of blocks.
The number of blocks in Bc, therefore equals twice
the number of inner nodes in the anchor tree; i.e.
|Bc| = 2(N − 1). Figure 1 is an example of a coarsest
valid block partition. On the other hand, the most
refined partition is achieved when Br = B \ Bdiag con-
tains N2 −N singleton blocks. Hence, the number of
blocks in a valid partition |B| can vary between O(N)
and O(N2). As we saw in the previous sections, |B|
plays a crucial role in the computational performance
of the whole framework and we therefore want to keep
it as small as possible. On the other hand, keeping
|B| too small may excessively compromise the accu-
racy of the model. Therefore, the rational approach
would be to start with the coarsest partition Bc and
split the blocks in Bc into smaller ones only if needed.
This process is called refinement. As we refine more
blocks, the accuracy of the model effectively increases
while its computational performance degrades. Note
that a block (A,B) can be refined in two ways: either

vertically into {(Al, B), (Ar, B)} or horizontally into
{(A,Bl), (A,Br)}. Here the subscript r (l) denotes
the right (left) child node.

After any refinement, we can re-optimize (7) to find
the new variational approximation Q for P . Impor-
tantly, any refinement loosens the constraints imposed
on Q, implying that the KL-divergence from P cannot
increase. From (6) we can therefore easily see that a
refinement is likely to increase the log-likelihood lower
bound `(D), and can never decrease it. Intuitively,
we want to refine those blocks which increase `(D)
the most. To find such blocks, one need to refine each
block in each direction (i.e. horizonal and vertical) one
at a time, re-optimize Q, find the difference between
the new `(D) and the old one (aka log-likelihood gain),
and finally pick the refinements with maximum differ-
ence. However, this is an expensive process since we
need to perform re-optimization per each possible re-
finement. Now the question is, whether we can obtain
an estimate of the log-likelihood gain for each pos-
sible refinement without performing re-optimization.
The answer is positive for horizontal refinements, and
rests on the fact that each row in Q defines a (poste-
rior) probability distribution and therefore must sum
to one. In particular, this sum-to-one constraint can
for B(xi) , {(A,B) ∈ B | xi ∈ A} be expressed as

∑
(A,B)∈B(xi) |B| · qAB = 1 for all xi ∈ D. (16)

Consider the horizontal refinement of (A,B) into
{(A,Bl), (A,Br)}. By this refinement, in essence, we
allow a random walk, where the probability of jumping
from points in A to the ones in Bl (i.e. qABl) is differ-
ent from that of jumping from A to Br (i.e. qABr ). If
we keep the q values for other blocks fixed, we can still
locally change qABl and qABr to increase `(D). Since
the sum of the outgoing probabilities from each point
is 1 (see (16)) and the other q’s are unchanged, the
sum of the outgoing probabilities from A to Bl and Br
must be equal to that of the old one from A to B:

|Bl|qABl + |Br|qABr = |B|qAB . (17)

Under this local constraint, we can find qABl and qABr
in closed form such that `(D) is maximized:

qABc =
|B| exp(GABc)qAB∑
t∈{l,r} |Bt| exp(GABt)

, c ∈ {l, r} (18)

where GAB = −D2
AB/(2σ

2|A||B|). By inserting (18)
in (7), we can compute the maximum log-likelihood
gain for the horizontal refinement of (A,B) as

∆h
AB = `′(D)− `(D)

= |A||B|qAB · log

(∑
t∈{l,r} |Bt| exp(GABt)

|B| exp(GAB)

)
, (19)

where `′(D) denotes the log-likelihood lower bound af-
ter the refinement. Note that the actual gain can be
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greater than ∆h
AB because after a refinement, all q

values are re-optimized. In other words, ∆h
AB is a

lower bound for the actual gain and is only used to
pick blocks for refinements. Unfortunately, for verti-
cal refinements such a bound is not easily obtainable.
The reason is that the constraints in (16) will not al-
low qAlB and qArB to change if we fix the remaining
q values. The local optimization that we applied for
the horizontal refinement can therefore not be applied
to estimate a vertical refinement. Whenever we pick a
block (A,B) for vertical refinement, we therefore incor-
porate vertical refinements by applying the horizontal
refinement to its symmetric counterpart (B,A) if it
also belongs to B. We call this symmetric refinement.

Now by computing ∆h
AB for all blocks, we greedily

pick the block with the maximum gain and apply sym-
metric refinement. The newly created blocks are then
added to the pool of blocks and the process is repeated
until the number of blocks reaches the maximum al-
lowable block number |B|max, which is an input argu-
ment to the algorithm. This greedy algorithm can be
efficiently implemented using a priority queue.

5 Experiments

In this section, we present the experimental evaluation
of our framework. In particular, we have evaluated
how well our method performs for semi-supervised
learning (SSL) using Label Propagation (LP) (Zhou
et al., 2003). The LP algorithm starts with a partial
vector of labels and iteratively propagates those la-
bels over the underlying similarity graph to unlabeled
nodes (see (15)). After T iterations of propagation,
the inferred labels at unlabeled nodes are compared
against the true labels (which were held out) to com-
pute Correct Classification Rate (CCR). We also mea-
sure the time (in ms) taken to build each model, propa-
gate labels and refine each model. In our experiments,
we set T = 500 and α = 0.01. It should be noted that,
here the goal is not to achieve a state-of-the-art SSL
algorithm, but to relatively compare our framework to
baselines in terms of efficiency and accuracy under the
same conditions. This means that we have not tuned
the SSL parameters to improve SSL; however, we use
the same parameters for all competitor methods.

5.1 The Baselines

We have compared our method, VariationalDT, with
two other methods for building and representing P .
The first method is the straightforward computation
of P using (3). We refer to this representation as the
exact model. In terms of computational complexity, it
takes O(N2) to build, store, and multiply a vector to
P using the exact method. The second method is the
k-nearest-neighbor (kNN) algorithm where each data

point is connected only to its k closest neighbors. In
other words, the rows of matrix P will contain only
k non-zero entries such that P can be represented as
a sparse matrix for small k’s. In that way, kNN ze-
ros out many of these parameters to make P sparse,
as opposed to our VariationalDT method that groups
and shares parameters in P . Note that we still assign
weights to the k edges for each data point using (3).
This means that as we increase k toward N , the model
converges to the exact model. Therefore, k acts as a
tuning parameter to trade off between computational
efficiency and accuracy (the same role that |B| plays
in VariationalDT). We call k and |B| the trade-off pa-
rameters.

Using the kNN representation, P can be stored and
multiplied by an arbitrary vector in O(kN). For con-
structing a kNN graph directly, the computational
complexity is O(rN2) where r = min{k, logN}. A
smarter approach is to use a metric tree in order
to avoid unnecessary distance computations. Moore
(1991) proposed a speedup of the kNN graph construc-
tion that utilizes a kd-tree. In our implementation of
kNN, we have used the same algorithm with the kd-
tree replaced by the anchor tree, introduced in Section
3. We call this algorithm fast kNN. The computational
analysis of fast kNN greatly depends on the distribu-
tion of data points in the space. In the best case,
it takes O

(
N(N0.5 logN + k log k)

)
to build the kNN

graph using fast kNN. However, in the worst case, the
computational order is O

(
N(N0.5 logN + N log k)

)
.

Table 1 summarizes the computational complexity or-
ders for the models compared in the experiments. Note
that for |B| = kN for some integer k, the Variation-
alDT and kNN will have the same memory and mul-
tiplication complexity. To increase k (or equivalently
|B|), one needs to refine the respective model. The last
column in Table 1 contains the complexity of refining
k to k + 1 (or equivalently |B| from kN to (k + 1)N)
for kNN (or VariationalDT).

5.2 Experimental Setup

We have performed three experiments to evaluate the
computational efficiency and accuracy of the models
described above. It should be noted that for all meth-
ods, we have used the log-likelihood lower-bound tech-
nique in Section 4.2 to tune the bandwidth σ.

In the first experiment, we have run the LP algorithm
for semi-supervised learning on the SecStr data set,
one of the benchmark data sets for SSL (Chapelle
et al., 2006). The data set consists of 83,679 different
amino acids each of which is represented by 315 binary
features. The task is to predict the secondary struc-
ture of the amino acids (2 classes). The goal in this
experiment, as we increase the problem size N , is to
study (a) the time needed to build the exact model, the
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Models Construction Memory Multiplication Refinement
Exact O(N2) O(N2) O(N2) N/A

Fast kNN O
`
N(N0.5 logN + h log k)

´∗
O(kN) O(kN) O

`
N(logN +N log k)

´
Variational DT O(N1.5 logN + |B|) O(|B|) O(|B|) O(|B| log |B|)

Table 1: Theoretical complexity analysis results. (*) h is equal to k in the best case and N in the worst case.
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Figure 2: The experimental results for Variational DT, kNN and exact methods

coarsest Variational DT model (i.e. |B| = 2(N − 1)),
and the coarsest kNN model (i.e. k = 2), (b) the
time needed for multiplication in these models, and (c)
CCR after label propagation given 10% labeled data.
In particular, we draw samples of size s from the data
set and use each sample to construct a model. Once a
model is built, we choose 10% of the sample randomly
to be fed to the LP algorithm as the labeled parti-
tion. We repeat this process 5 times for each problem
size s and report the average result. Figure 2A) shows
the construction time (in ms) for the three models as
the problem size increases. As the plot shows, our
method is orders of magnitude faster than the other
two baselines (note that it is the log-log scale). In
terms of the time needed for one multiplication, Fig-
ure 2B) shows that our method and kNN have similar
complexity while both are order of magnitudes faster

than the exact method. Note that Figure 2B) also
shows the proportional memory usage for these meth-
ods because according to Table 1 multiplication and
memory usage have the same complexity in all three
methods. Finally, Figure 2C) depicts the CCR for the
three models with different problem sizes. Although
the exact model as expected is slightly more accurate
than kNN and our method, the difference is not that
big. In other words, by using VariationalDT we save
orders of magnitudes in memory and CPU (i.e. both
the construction and multiplication times) while com-
promising a little on accuracy.

In the second experiment, we study the efficiency
and the effectiveness of the refinement process for the
kNN and variationalDT models. To this end, first we
build the coarsest kNN (k = 2) and VariationalDT
(|B| = 2(N −1)) models and then refine each model to

71



higher levels of refinement. At each refinement level,
we make sure both methods have the same number
of parameters; that is, |B| = kN . We stop refining
both models when the number of parameters reaches
O(N logN). The data sets used for this experiment
are Digit1 and USPS from the set of SLL benchmark
data sets (Chapelle et al., 2006). Both data sets consist
of digit images; while Digit1 is an artificially generated
data set, USPS contains images of handwritten digits.
Each data set has 1500 examples, 241 features and
2 classes. The second (third) row in Figure 2 shows
the results for Digit1 (USPS) data set. Figures 2D,H)
show the construction times for initial coarse models.
Again our method is much faster than the baselines
in terms of construction time. In Figures 2E,I), we
have measured the time needed to refine each model
to the next level of refinement. As the figure illus-
trates, VariationalDT needs an order of magnitude less
time for refinement than kNN. Moreover, at each re-
finement level, we measure the CCR for LP when the
size of the labeled set is 10 (Figure 2F,J) and 100 (Fig-
ure 2G,K). The red flat line in both plots depicts the
CCR for the exact model. As the plots show, kNN and
VariationalDT behave differently for different data sets
and different sizes of labeled data. While refinement
improves the kNN’s performance significantly in Fig-
ure 2G, it degrades the kNN’s performance in Figure
2F,K. We attribute this abrupt behavior to the uni-
form refinement of kNN graph. More precisely, when
the kNN graph is refined, the degrees of all nodes are
uniformly increased by 1 regardless of how much the
log-likelihood lower bound is improved. Our method,
on the other hand, explicitly aims to increase the log-
likelihood lower bound resulting in a non-uniform re-
finement of P as well as more consistent behavior in
terms of accuracy.

In the third experiment, we explore the applicability
and the scalability of the proposed framework for very
large data sets. The two data sets used in this exper-
iment are taken from the Pascal Large-scale Learn-
ing Challenge.1 The first data set, alpha, consists
of 500,000 records with 500 dimensions. The second
data set, ocr, is even larger with 3,500,000 records of
1156 features. Both data sets consist of 2 balanced
classes. Table 2 shows the construction and propaga-
tions times as well as the number of model parameters
when the Variational DT algorithm is applied. We
could not apply other baseline methods for these data
sets due to their infeasible construction times. Nev-
ertheless, by extrapolating the graphs in Figure 2A,
we guess the baselines would be roughly 3-4 orders of
magnitude (103 − 104 times) slower. It should also be
stressed that this experiment is specifically designed
for showing the applicability of our framework for gi-
gantic data sets and not necessarily showing its accu-

1http://largescale.ml.tu-berlin.de/

racy. However, even though we have not tuned the
SSL parameters (like the labeling threshold), we still
got CCR = 0.56 ± 0.01 which is better than the ran-
dom classifier. In conclusion, as a serial algorithm, our
framework takes a reasonable time to construct and
operate on these gigantic data sets. Furthermore, due
to its tree-based structure, the Variational DT frame-
work has the great potential to be parallelized which
will make the algorithm even faster.

Data set N Param# Const. Prop.
alpha 0.5 M 1 M 4.5 hrs 11.7 min
ocr 3.5 M 7 M 46.2 hrs 93.3 min

Table 2: Very large-scale results

6 Conclusions

In this paper, we proposed a very efficient approx-
imation framework based on a variational dual-tree
method to estimate, store and perform inference with
the transition matrix for random walk on large-scale
data graphs. We also developed an unsupervised op-
timization technique to find the bandwidth for the
Gaussian similarity kernel used in building the transi-
tion matrix. Algorithmically, we extended the varia-
tional dual-tree framework with a fast multiplication
algorithm used for random walk inference with ap-
plications in large-scale label propagation and eigen-
decomposition. We also provided a complexity com-
parison between our framework and the popular k-
nearest-neighbor method designed to tackle the same
large-scale problems. In experiments, we demon-
strated that while both the kNN based method and
our method do not compromise much in terms of ac-
curacy compared to the exact method, our method
outperforms the kNN based method in terms of con-
struction time with order of magnitudes difference. We
also showed that our framework scales to gigantic data
sets with millions of records.

Our future directions for this work include adding an
inductive feature to our framework to deal with new
examples as well as exploring the theoretical aspects
of the approximation made by the algorithm.
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Abstract

The MPE (Most Probable Explanation) query
plays an important role in probabilistic inference.
MPE solution algorithms for probabilistic rela-
tional models essentially adapt existing belief
assessment method, replacing summation with
maximization. But the rich structure and symme-
tries captured by relational models together with
the properties of the maximization operator of-
fer an opportunity for additional simplification
with potentially significant computational rami-
fications. Specifically, these models often have
groups of variables that define symmetric distri-
butions over some population of formulas. The
maximizing choice for different elements of this
group is thesame. If we can realize this ahead
of time, we can significantly reduce the size of
the model by eliminating a potentially significant
portion of random variables. This paper defines
the notion ofuniformly assignedand partially
uniformly assignedsets of variables, shows how
one can recognize these sets efficiently, and how
the model can be greatly simplified once we rec-
ognize them, with little computational effort. We
demonstrate the effectiveness of these ideas em-
pirically on a number of models.

1 Introduction

Probabilistic relational models (PRM)[5] such as the
Markov Logic Network(MLN) [13] and theParfactor
model [11] encapsulate a large number of random vari-
ables and potential functions using first-order predicate
logic. Using exact lifted inference methods[2; 9; 12; 6;
4], one can perform inference tasks directly on the rela-
tional model, solving many tasks which were previously
considered intractable.

To date, the first-order MPE query is perceived as a deriva-
tive of these methods, since its computational structure is

similar to computing the partition function of a first-order
model, with the exception of maxing-out random variables
instead of summing-out, as laid out by Braz et al.[3].

In this paper we introduce a method that simplifies many
first-order MPE tasks by utilizing properties specific to
the maximization operator, allowing us to solve models in
which computing the partition function is complicated, or
even intractable.

The MPE property which we capitalize on is called auni-
form assignment(UA). Briefly, it is the existence of a group
of random variables that are assigned identically in some
MPE solution. In relational models, these groups cor-
respond to sets of ground atoms derived from the same
atomic formula. Once a group is recognized as uniformly
assigned, it can be replaced by a single representative, sub-
stantially simplifying the model. In relational models, this
replacement corresponds to an arity reduction – the re-
moval of some logical variable(s) from the relevant atomic
formula. With suitable care, the MPE probability in the
new model is the same as that of the original model, and
the MPE for the original model is easily derived from the
MPE of the new model.

The key contribution of this paper is a computationally effi-
cient procedure for finding a set of uniform assignments in
a given model. For this purpose, we define a set of purely
symbolic operators (anchoring, model alignment, andsym-
bolic fusion), which are all based on standard lifted infer-
ence tools,fusion [2] andpropositionalization[9]. When
applied repeatedly, the three symbolic operators serve as a
structure analysis tool, and result in a compact representa-
tion of the UA property, expressing which logical variables
can be removed from which atomic formulas.

Once uniform assignments are detected, we proceed to sim-
plify our model by applying a reduction procedure called
uniform assignment reduction(UAR). The procedure re-
duces the arity of relevant atomic formulas, and suitably
modifies table entries in the model, ensuring that the MPE
probability of the modified model remains equal to that of
the original.
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Both steps, UA detection and UA reduction, are prepro-
cessing steps that often result in a much smaller model.
Both incur low computational overhead that is independent
of domain sizes, and are totally agnostic to the MPE algo-
rithm later applied. As we demonstrate, the effort of UAR
reduction is small w.r.t. to the complexity of the underlying
inference task, and incurs virtually no overhead even when
no simplification is achieved. Finally, the smaller, simpli-
fied, model is passed to your favorite MPE engine, and
from the computed MPE, the MPE of the original model
is easily extracted.

Our UA detection method is general, and can be applied
both on MLNs and parfactor models. However, UA de-
tection is most naturally formulated on parfactors, since it
utilizes the (symbolic) fusion operator, which is not com-
monly applied to MLNs. We therefore start with a back-
ground of the parfactor model, before introducing the con-
cepts of our method in a Walk-through section. Formal def-
initions and complete algorithm formulation are presented
next, followed by an extension of UA to recursive condi-
tioning, a presentation of the experimental results, and a
conclusion section.

2 Background

We review the properties of the parfactor model, as intro-
duced by Poole[11], and later extended by Braz et al.[2]
and Milch et al.[9]. Readers familiar with this model can
safely skip to the following Walk-through section.

2.1 Model Representation

The parfactor model is a first-order representation of a fac-
tor network, such as a Bayesian[10] or a Markov [13]
network. Random variables in the model correspond to
ground atomic formulas (akaground atoms) of the form
p(c1, . . . , cn), wherep is a predicate with an assignment
rangerange(p), andc1, . . . , cn are constant symbols. Un-
der a set of assignmentsv to random variables, the notation
α|v is used to depict the values assigned toα, whetherα
is a ground atom or a set of ground atoms. Afactor f
is a pair(A, φ), consisting of a set of ground atomsA =⋃m
i=1{αi} and a potential functionφ :

∏m
i=1 range(αi)→

R+
0 . Under the set of assignmentsv, the weight of fac-

tor f is wf (v) = φ
(
α1|v, . . . , αm|v

)
. The abbreviation

φ : αi, . . . , αm is used to denote a factor with a potential
tableφ and a respective set of ground atoms.

Example 2.1. Let factor f consist of the following,
φ : smokes(Alice), drinks(Bob), friends(Alice,Bob).
Hence, the table entries inφ represent the various chances
of Alice andBob being friends, depending on whether
Alice andBob are drinkers/smokers.

Whereas factor networks are modeled by a set of factors,
the core representation unit of our model is the parameter-

ized factor (akaparfactor), a first-order extension of a fac-
tor. Before reviewing its properties, we define the notions
of atoms, logical variables, substitutionsandconstraints.

An atomic formula (akaatom) is a formula of the form
p(t1, . . . , tn), whereti is a constant or alogical variable.
Each logical variableX has a domaindom(X) with car-
dinality |X|. For instance,smokes(X) denotes an atomic
formula over logical variableX, where, in our running ex-
ample, the domain ofX containsAlice andBob. LV (α)
is the set of logical variables referred byα, whereα is a
formula or a set of formulas.

A substitutionθ over a set of logical variablesLmaps each
variable inL to a constant symbol or some other logical
variable, andαθ is the result of applyingθ to α. A ground
substitutionis the substitution of all logical variables inα
with constants. For instance, a substitutionY/X applied to
friends(X,Y ) results infriends(X,X), and a ground
substitutionX/Alice applied to atomsmokes(X) results
in the ground atomsmokes(Alice). The range of atomα,
denoted byrange(α), is defined as the range of any ground
atomαθ obtained by the ground substitutionθ.

A constraintC is a set of formulas over a set of logical
variablesL, defining the set of legal substitutions applica-
ble toL. For instance, the constraintX 6= Y defines any
substitution under which the substitutions ofX andY are
identical, as illegal. We userv(α : C) to depict the set of
random variables that can be obtained by any legal substi-
tution onα, as defined byC.

gr(L : C) is the set of legal ground substitutions which
can be applied onL under constraintC, where|L : C| is
used to depict the size of the set. We useC↓

L to depict the
projection of a set of logical variablesL on a constraintC.
Similarly to [9], we require the constraints in our model to
be in some normal form, where for each logical variableX,
|X : C| has a fixed value regardless of the binding of other
logical variables inC.

Lastly, aparfactor is a tuple(L,C,A, φ), comprised of a
set of logical variablesL, a constraintC on L, a set of
atomsA and a potential functionφ :

∏
α∈A range(α) →

R+
0 . Applying substitutionθ on parfactorg = (L,C,A, φ)

results ingθ = (L′, Cθ,Aθ, φ), whereL′ is obtained by
applying a substitution on its logical variables, and drop-
ping those who are mapped to constants. Parfactors com-
pactly model a set of factors upon theirgrounding, namely
– upon applying all legal ground substitutions, as defined
byC. The operatorgr(g) depicts the set of all legal ground
substitutions . The abbreviationφ : α1, . . . , αm | Cψ is
used to describe a parfactor with the set of atoms

⋃
i{αi},

a constraint with formulaψ, and an explicit set of logical
variables.

Example 2.2. Let parfactorg consist of the following,
φ : smokes(X), drinks(Y ), friends(X,Y ) | CX 6=Y .
In a world where the domain ofX and Y equals
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{Alice,Bob}, the grounding ofg entails two factors:
φ : smokes(Alice), drinks(Bob), friends(Alice,Bob)
φ : smokes(Bob), drinks(Alice), friends(Bob,Alice)

The weight ofg is defined aswg(v) =
∏
f∈gr(g) wf (v),

wherev is an assignment to all the ground atoms (random
variables) entailed by the the grounding ofg. This set of
random variables is conveniently denoted byrv(g).

2.2 Shattering, Fusion and Propositionalization

Let modelG be a set of parfactors, letαi denote an atom,
andCi denote its parfactor constraint. We say thatG is
completely shattered, if for any i, j, the sets of random
variables denoted byrv(αi : Ci) andrv(αj : Cj) are ei-
ther disjoint or equal. Hence,shattering[2] is a procedure
which takes modelG, and produces a completely shattered
modelG′, s.t. the set of all ground factors entailed byG
andG′ is equal. To eliminate some possible ambiguity, we
refer to all atoms in a completely shattered model as each
having a unique predicate symbol.

Example 2.3. Let modelG consist of two parfactors,
φ1 : p(X,Y ), q(Y ) and φ2 : p(X,X).
The shattering ofG replaces the first parfactor with two
new parfactors, consisting of the same potential, as follows
φ1 : p(X,X), q(X) and φ1 : p(X,Y ), q(Y ) | CX 6=Y .

Fusion [2] is the procedure of merging two or more
parfactors by unifying logical variables, while maintain-
ing the same model weight under any given assign-
ment. Since there are several ways to unify logical
variables, inference engines apply fusion according to
some strategy. For instance, consider the fusion of
φ1 : p(X,Y ), q(Z) andφ2 : p(X,Y ), q(Y ). Two possible
fusions (out of many) areφf1 : p(X,Y ), q(Z), q(Y ) and
φf2 : p(X,Y ), p(X,Z), q(Y ), and so the inference engine
must choose which one to apply. In this paper, fusion is
used only symbolically (akasymbolic fusion), as a means
of structure analysis. As a result, table entries are never
examined, and the fusion procedure never ”blows up”.

Propositionalization [9] is the operation of partially
grounding a parfactor over a set of logical variables,
thereby eliminating these variables from the resulting set.
For example, the propositionalization ofZ in parfactor
φ : p(Y,Z), q(X,Y ), wheredom(Z) = {z1, z2}, re-
sults in the two parfactors,φ : p(Y, z1), q(X,Y ) and
φ : p(Y, z2), q(X,Y ).

2.3 First-Order MPE

We now define the MPE task. Given a set of parfactorsG,
the combined weight of an assignmentv is

wG(v) =
∏

g∈G
wg(v) =

∏

g∈G

∏

f∈gr(g)
wf (v) (1)

The Most Probable Explanation of a first-order model is
the pair(v, 1

ZwG(v)), s.t.v = argmaxv′ wG(v′), andZ is
a normalization factor. In this paper, as in[3], we address
the task of obtaining the unnormalized MPE.

3 Walk-through: Simplifying the MPE Task

3.1 Motivation

Consider the following single-parfactor model:

φ : friends(Y,X), friends(Z,X), knows(Y,Z)

In this model, the chance of two people knowing each
other depends on having mutual friends. Although a sim-
ple model, all existing methods fail to lift the task of
computing its partition function. More specifically, in-
version elimination[2] fails since no atom contains all
the logical variables. Counting conversion[2] and par-
tial inversion[3] fail since all logical variables are occu-
pied by at least two atoms, but never by all three. Re-
cursive conditioning (splitting on atoms)[6] fails, since all
atoms contain more than a single logical variable. Finally,
additional elimination and model restructuring rules[7;
1] fail to assist as well.

However, obtaining the MPE of this same model, as we will
demonstrate, is polynomial in the population size. This,
of course, cannot be achieved by a simple modification
of the lifted methods, but rather – by exploiting a prop-
erty which is unique to MPE:uniform assignments. To
understand this property and the derived framework, we
shall study three model prototypes:single-parfactor with
no recurring formulas(namely, each atomic formula ap-
pears only once),single-parfactor with recurring formulas
andmultiple-parfactors.

3.1.1 Single Parfactor, No Recurring Formulas

Consider modelφ : a(X), b(Y ), c(Z). Computing the
partition function of this model is polynomial in the do-
main size, but finding the MPE is even easier: let entry
φ(ρa, ρb, ρc) be the maximum entry in tableφ. An assign-
ment with maximal potential is obtained by assigning all
grounds of atoms ofa(X), b(Y ) andc(Z) uniformly, with
ρa, ρb and ρc, respectively. We refer toa(X), b(Y ) and
c(Z) asuniformly assigned formulas.

We wish to exploit the UA property in a way that may seem
redundant at the moment, by applying a procedure called
uniform assignment reduction(UAR). UAR modifies the
model while preserving the MPE probability, producing a
simpler MPE task. In our exampleφ : a(X), b(Y ), c(Z)
is modified toφ′ : a′, b′, c′, where the arity-reduced atoms
a′, b′, c′ have the same assignment range as their original
counterparts, andφ′ = φ|{X,Y,Z}|. This exponentiation
compensates for the reduced number of ground factors post
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modification. Once the MPE of the modified model is ob-
tained (by a simple table lookup), the MPE assignments for
a(X), b(Y ) andc(Z) are immediately derived.

3.1.2 Single Parfactor, Recurring Formulas

We return to the friends/knows example discussed earlier,
φ : fr(Y, X), fr(Z, X), k(Y, Z) ( where fr ≡
friends, k ≡ knows). Unlike the previous case, a sim-
ple table lookup cannot resolve this model’s MPE, since
any assignment to one ground offr inevitably affects ta-
ble entries in two table positions:fr(Y,X) andfr(Z,X).
As a first step, we identify{Y,Z} as theoverlap setof the
model, asY andZ are different logical variables occupying
the same position in predicatefr. Intuitively, the overlap
set is the ”obstruction” under which the MPE task cannot
be solved by a simple table lookup. Hence, the next logical
step would be to eliminate this obstacle.

Assume now that we propositionalize bothY andZ, where
the domain of both is

⋃
i{oi}. The result of this opera-

tion is a set of parfactors, residing over the set of atoms
A =

⋃
i,j{fr(oi, X), k(oi, oj)}. If we fuse all these par-

factors together without applying a ”name change” to any
of the logical variables, we obtain a single parfactor over
A with no recurring formulas. Thus, the previous case ap-
plies and each offr(o1, X), . . . , fr(on, X) is detected as
uniformly assigned. That is, foro1 and foreverypossible
value ofX, fr(o1, X) will have the same value assigned
in an MPE. Similarly, foro2 and foreverypossible value
of X, fr(o2, X) will have the same value assigned in an
MPE, etc. Of course, this maximizing value forfr(oi, X)
andfr(oj , X) may be different, ifi 6= j. Interestingly, we
did not refer to any of the table entries in our procedure. In
other words, the UA property can be detected by a set of
purely symbolic operations.

We encapsulate the above sequence of operations within
a new operator calledanchoring, denoted by⊛, which ap-
plies a set of symbolic propositionalizations and fusions.In
our example,φ : fr(Y,X), fr(Z,X), k(Y,Z)⊛{Y,Z} =
φf : fr(∗, X), k(∗, ∗), wherefr(∗, X) and k(∗, ∗) are
calledanchored formulas: fr(∗, X) ≡ ⋃

i{fr(oi, X)} and
k(∗, ∗) ≡ ⋃

i,j{k(oi, oj)}. We emphasize that anchor-
ing is a symbolic operation that does not require actually
carrying out explicit propositionalization and fusion butis
equivalent semantically. Thus, anchoring allows us to an-
alyze the model’s structure regardless of domain size, and
to simplify the depiction of uniform assignments. Namely,
the anchored formulafr(∗, X) carries the information that
fr(o1, X), . . . , fr(on, X) are uniformly assigned. Essen-
tially, this says that in the MPE, for everyoj , fr(oj , X)
will have the same value for every possible substitution of
X. Thus, it depends onoj alone, and we can usefr′(oj)
to denote it, instead offr(oj , X).

To sum up thus far, we identified an overlap set, applied

anchoring and obtained a set of anchored formulas. As
a last step, we wish to exploit the UA property implied
by the anchored formulas. We return to the UAR pro-
cedure which was introduced previously. However, now
arity reductions are applied discriminately, as only non-
anchored logical variables (those remaining in the an-
chored formulas) can be removed from the model. Hence,
only X is eliminated by the UAR procedure, producing
φ′ : fr′(Y ), fr′(Z), k(Y,Z), whereφ′ = φ|X|. From
here, the MPE is resolved by any existing inference engine.

3.1.3 Multiple Parfactors

Here, we study a model consisting of two parfactors
φ1 : p(X), p(Y ), q(Z) andφ2 : p(X), r(X), q(Z).
As before, we wish to detect UAs and apply a UAR pro-
cedure. However, the UA detection in this case is some-
what more complicated, and involves a sequence of opera-
tions: anchoring,alignmentand symbolic fusion. We start
by identifying{X,Y } as an overlap set in the first parfac-
tor, followed by its anchoring toφf1 : p(∗), q(Z). At this
stage, the form ofp is not consistent among different par-
factors in the model, since the second parfactor contains a
non-anchoredp(X). To address this inconsistent form, we
mustalign the model by anchoring theX logical variable
in the second parfactor. Once completed, the second par-
factor is replaced withφf2 : p(∗), r(∗), q(Z).

The next step invokes a (symbolic) fusion of the two an-
chored parfactors (those consisting ofφf1 andφf2 ), pro-
ducingφf : p(∗), r(∗), q(Z). In general, symbolic fusions
may produce additional overlaps, but in this simple case
no overlaps are introduced. Hence, the anchored formulas
now carry the UA property. Finally, UAR is applied in-
dependently on each of the original parfactors, producing
φ1

|Z| : p(X), p(Y ), q′ andφ2
|Z| : p(X), r(X), q′. Hav-

ing introduced the core concepts of our algorithm, we move
to a formal representation.

4 Formal Definitions

4.1 Overlap Set, Anchoring and Alignment

A positionof logical variableX in formulaα is the loca-
tion of X in the formula’s predicate under argument list
ordering. Inp(X,Y ), the positions ofX andY are1 and2
respectively.

An overlap setLo in parfactorg is the set of all logical vari-
ables ing which do not occupy the same positions under all
instances of the same formulas.

Example 4.1. : In parfactor
φ : p(X,Z, Y ), p(Z,U, Y ), q(S,W ), q(S, T ), r(S) ,
the overlap set isLo = {X,Z,U,W, T}.

Theeffect scopeof a set of logical variablesLo in parfac-
tor g = (L,C,A, φ), denoted byLeff , is the set of logical
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variables ing whose set of substitutions is dependent on
any binding ofLo. Formally,Leff is defined as the mini-
mal set of logical variables ing under whichLo ⊆ Leff ,
and∀θ1, θ2 ∈ gr(Leff : C) : gr(L \ Leff : Cθ1) =
gr(L \ Leff : Cθ2). In constraint-less parfactors, it is
always the case thatLeff = Lo.

Example 4.2. The effect scope of{X,W} in parfactor
φ : p(X), q(Y,Z), r(W ) is {X,W}.

Example 4.3. The effect scope of{X} in parfactor
φ : p(X), q(Y ), r(Z), s(W )|CX 6=Y ∧Y 6=Z is {X,Y, Z}.

Anchoringof parfactorg = (L,C,A, φ) over the set of
logical variablesLo, denoted byg ⊛ Lo, is a two step
procedure: propositionalization ofLeff , which is the ef-
fect scope ofLo, followed by a symbolic fusion of the
result set of parfactors. The final result, parfactorg′ =
(L′, C ′, A′, φ′), contains the following properties:

• L′ = L \ Leff
• C ′ = C↓

L′

• A′ = {αθ | α ∈ A, θ ∈ gr(Leff : C)}
And someφ′, which we refrain from actually computing in
this context. The positions of the propositionalized logical
variables under anchoring are calledanchored positions.
We use the substitutionθ =

⋃
X∈Leff

{X/∗} on the set
of logical variables ing to depict the result of anchoring.

Alignmentof parfactorg according to parfactorg∗, denoted
by align(g, g∗), is the anchoring ofg overL, whereL con-
sists of all logical variables ing that occupy positions which
are anchored ing∗, under predicates which are mutual tog
andg∗. For instance, aligningφ : p(X,Y ), q(Z) accord-
ing to φ∗ : r(∗), p(W, ∗), yieldsφ′ : p(X, ∗), q(Z). We
definealign(G, g∗) as applyingalign(g, g∗) to all g ∈ G,
and then repeatedly re-aligning the new content, until all
instances of each predicate are anchored consistently.

4.2 Uniform Assignments and Arity Reduction

A uniform assignmentover formulaα is the assignment of
a constantρ to every ground ofα, whereρ ∈ range(α). A
partially uniform assignmentover formulaα with relation
to a set of logical variablesL is a uniform assignment over
each ground substitution ofL. Namely, a partially uniform
assignment overt(X,Y, Z) w.r.t. {Y,Z} implies that∀y ∈
dom(Y ), ∀z ∈ dom(Z) : t(X, y, z) is uniformly assigned.

To enable the application of uniform assignments on our
model, we define thearity reductionoperatorα ↓ α∗ on
atomic formulas. Ifα and α∗ have the same predicate
symbol,α ↓ α∗ is a new predicate obtained by remov-
ing all positions inα not anchored inα∗. For instance,
p(X,Y, Z) ↓ p(W, ∗, T ) = p′(Y ). If both formulas differ
in the predicate symbol,α ↓ α∗ = α.

4.3 Uniform Assignment Reduction

A Uniform Assignment Reduction(UAR) applied to parfac-
tor g = (L,C,A, φ) by formulaα∗, denoted byg ↓ α∗, is
the operation of applyingα ↓ α∗ to eachα ∈ A, followed
by exponentiating the potential by the combined domain
size of the removed logical variables. More formally, the
operationg ↓ α∗ yieldsg′ = (L′, C ′, A′, φ′) with the fol-
lowing properties:

• A′ = {α ↓ α∗ | α ∈ A} • C ′ = C↓
L′

• L′ = LV (A′) • φ′ = φ|(L\L′):Cθ′|

Whereθ′ is some ground substitution overL′ under con-
straintC.

Example 4.4. Let g = φ : p(X), q(Y,Z).
Let α∗ = q(W, ∗). Hence,g ↓ α∗ = φ|Y | : p(X), q′(Z).

Example 4.5. Let g = φ : p(X), q(Y ) | CX 6=Y .
Let α∗ = p(Z). Hence,g ↓ α∗ = φ|X|−1 : p′, q(Y ) ,
since|X : CX 6=Y | = |X| − 1 under any binding ofY .

Example 4.6. When the set of the logical variables re-
mains the same, as inφ : p(Y ), q(Y,Z) ↓ q(W, ∗) =
φ : p(Y ), q′(Z), no exponentiation is required.

5 Simplified First-Order MPE

The model simplification algorithm is comprised of two
phases – detecting uniform assignments, and applying a
uniform assignment reduction, as follows.

Algorithm 1: DETECT-UNIFORM-ASSIGNMENTS
input : Ginput – a completely shattered model
output: A set of anchored formulas

G← Ginput
while ∃g ∈ G, ∃Lo 6= ∅ s.t.Lo is an overlap set ing
do

g∗ ← g ⊛ Lo // anchoring
G← align(G, g∗) // alignment

if ∃g1 6= g2 ∈ G s.t.rv(g1) ∩ rv(g2) 6= ∅ then
G← G ∪ SymbolicFusion(g1, g2) \ {g1, g2}
return
DETECT-UNIFORM-ASSIGNMENTS(G)

else
return all formulas inG

5.1 Detecting Uniform Assignments

The detection procedure (Algorithm 1) is purely symbolic,
hence only the set of formulas is examined, whereas ta-
ble entries are completely ignored. The detection starts by
identifying all overlap sets in the model, accommodated by
anchoring. The result is a set of parfactors with no recur-
ring formulas. The entire model is then aligned accord-
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Algorithm 2: SIMPLIFY-FOMPE
input : G – a completely shattered model
output: Simplified Model

A∗ ← DETECT-UNIFORM-ASSIGNMENTS(G)
foreachα∗ ∈ A∗ do

foreachg ∈ G do G← G ∪ {g ↓ α∗} \ {g}
return G

ingly, making sure that following manipulations operate
on a completely shattered model. Next, two parfactors are
chosen for a symbolic fusion. This, in turn, may generate a
new overlap set. The cycle of overlap set detection, anchor-
ing, and symbolic fusion is repeated until no two parfactors
which share a formula are left. The procedure returns a set
of anchored formulas, depicting the set of detected UAs.

One issue which remains unsolved is how to reapply the
symbolic fusion procedure in order to produce as many ar-
ity reductions as possible. We use a greedy fusion scheme,
where the logical variables of formulas with maximum ar-
ity are matched first. This, of course, does not guarantee
an optimal sequence of fusions, and we leave the study of
better fusion selection strategies for future work.

Proposition 1. Given a completely shattered modelG, Al-
gorithm 1 produces a set of anchored formulasA∗, where
there exists an MPE solution under which all formulas
α∗ ∈ A∗ are partially uniformly assigned w.r.t. the logi-
cal variables in the anchored positions.

Proof outline. The algorithm applies (symbolically) stan-
dard lifted inference tools, where each fusion is followed
by anchoring, namely – the elimination of overlapping log-
ical variables. Once all parfactors are merged into a single
parfactor with no overlap sets, an MPE solution can be triv-
ially obtained by assigning the atomic formulas uniformly,
according to remaining logical variables.

5.2 UAR Algorithm

After invoking DETECT-UNIFORM-ASSIGNMENTS,
which detects uniform assignments in modelG, a uniform
assignment reduction is applied to each parfactor inG, pro-
ducing a simplified modelG′.

Proposition 2. Algorithm 2 produces a simplified model
G′ with the same MPE probability asG.

Proof outline. The formal proof is found in the Appendix.
The idea is to pair each original parfactorg ∈ G with its
UAR resultg′ ∈ G′, and show the following: (i) for each
assignmentv′ in modelG′ there exists an assignmentv
in modelG, where the probabilistic weights of all pairsg
andg′ are equal; and (ii) for each optimal assignmentv in
G, under which formulas are uniformly assigned according
to A∗, there exists an assignmentv′ s.t. the probabilistic
weights of all pairsg andg′ are equal.A∗ here denotes the
set of anchored formulas which yieldedG′.

Original model
φ1 : p(X, Y ), q(Y, Z), r(Z, X), s(X, Z)

φ2 : s(X, V︸︷︷︸
overlap

), s(X, W︸︷︷︸
overlap

), p(X, Y )

Anchoring
φ1 : p(X, Y ), q(Y, Z), r(Z, X), s(X, Z)

φ′
2 : s(X, ∗), p(X, Y )

Model alignment
φ′

1 : p(X, Y ), q(Y, ∗), r(∗, X), s(X, ∗)

φ′
2 : s(X, ∗), p(X, Y )

Symbolic fusion φf : p(X, Y ), q(Y, ∗), r(∗, X), s(X, ∗)

UA reduction
φ1

|X|·|Y | : p′, q′(Z), r′(Z), s′(Z)

φ2
|X|·|Y | : s′(V ), s′(W ), p′

Figure 1: Example – model simplification

5.2.1 UAR Example

We now cover the example in Figure 1. Let modelG
consist ofφ1 : p(X,Y ), q(Y,Z), r(Z,X), s(X,Z) and
φ2 : s(X,V ), s(X,W ), p(X,Y ). We start by detecting
the overlap set{V,W} in φ2, followed by a subsequent an-
choring ofφ2 to φ′

2 : s(X, ∗), p(X,Y ), and the align-
ment of φ1 to φ′

1 : p(X,Y ), q(Y, ∗), r(∗, X), s(X, ∗).
Next, a symbolic fusion is applied toφ′

1 andφ′
2, result-

ing in φf : p(X,Y ), q(Y, ∗), r(∗, X), s(X, ∗). The re-
maining formulas inφf are then passed to the SIMPLIFY-
FOMPE procedure, where consecutive uniform assignment
reductions yieldφ1

|X|·|Y | : p′, q′(Z), r′(Z), s′(Z) and
φ2

|X|·|Y | : s′(V ), s′(W ), p′.

5.3 Complexity Analysis

Let t, n, a andp denote the properties of the original model
G, wheret is the number of table entries,n is the number
of atoms,a is the maximum arity of any predicate andp is
the number of parfactors. The complexity of SIMPLIFY-
FOMPE is simplyO(t). As for DETECT-UNIFORM-
ASSIGNMENTS, each position in any atom ofG is aligned
no more than once, thusO(n ·a) is the upper bound for the
number of anchored positions.p − 1 is the maximal num-
ber of symbolic fusions. Combined, the total complexity is
O(t) +O(n · a) +O(p ·Of ), whereOf is the upper bound
of a symbolic fusion and depends on the fusion strategy.
For example, a greedy fusion strategy takesO(n · a) time.
Other polynomial time strategies are possible. In typical
models,n and t are the dominating elements, and so we
get a complexity that is linear int and polynomial inn. All
in all, the complexity is independent of domain sizes.

6 UA under Recursive Conditioning

As demonstrated, the UA property is heavily dependent on
the structure of the model. One interesting aspect of recur-
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sive conditioning is the structure modification induced by
the conditioning operator (splitting on a singleton atom).
This allows non UA formulas to be split into uniformly as-
signed groups, a property which is referred to as acondi-
tional UA. Consequently, the scope of uniform assignments
is extended beyond the role of preprocessing, as presented
so far, since various conditioning contexts introduce further
opportunities for exploiting the UA property.

Consider modelφ1 : p(X), q(X) andφ2 : p(X), q(Y ),
wherep andq are boolean, and the domain size ofX and
Y is n. Since all possible fusions ofφ1 andφ2 result in
an overlap (e.g.φf : p(X), q(X), q(Y ) ), this model con-
tains no uniform assignments. However, when condition-
ing on atomp(X), the ground atoms ofq(X) split into two
uniformly assigned groups. We demonstrate this as fol-
lows: letk ∈ {0, ..., n} depict the number ofp(X) ground
atoms assigned0. Hence, under each binding ofk, the do-
main is split into two parts, and a set of four logical vari-
ables is introduced:Xk

0 , X
k
1 , Y

k
0 andY k1 , where|Xk

0 | = k,
|Xk

1 | = n − k anddom(Xk
i ) = dom(Y ki ). By definition,

each ground ofp(Xk
i ) is assignedi, thus all random vari-

ables of predicatep are eliminated from the expression.

Formally:

max
rv(p(X),q(X))

∏

X

φ1(p(X), q(X)) ·
∏

X,Y

φ2(p(X), q(Y )) =

max
k

max
rv(q(X))

∏

i

∏

Xk
i

φ1(i, q(X
k
i ))︸ ︷︷ ︸

≡φX
i (q(Xk

i ))

·

∏

i

∏

Y k
i

φ2(0, q(Y
k
i ))

k
φ2(1, q(Y

k
i ))

n−k
︸ ︷︷ ︸

≡φY
i (q(Y k

i ))

The result is a set of four parfactors, as follows:
(i) φX0 : q(Xk

0 ) (ii) φX1 : q(Xk
1 )

(iii) φY0 : q(Y k0 ) (iv) φY1 : q(Y k1 )

In this formation, it is easy to detect that bothq(Xk
0 ) and

q(Xk
1 ) are uniformly assigned. Namely, the set of parfac-

tors can be simplified into

(i) (φX0 )
k

: q′
0 (ii) (φX1 )

n−k
: q′

1

(iii) (φY0 )
k

: q′
0 (iv) (φY1 )

n−k
: q′

1

We note that in this basic example, MPE can be efficiently
solved without resorting to UAR. However, the same con-
ditional UA principle applies to any model, thus the sym-
bolic simplification becomes quite efficient when consider-
ing that the same computation is repeated for eachk. Em-
bedding UAR in a recursive conditioning inference engine,
may indeed accelerate many of the lifted MPE tasks.

7 Experimental Evaluation

We present six sets of experiments. To highlight the fact
that the method is independent of the inference engine
used, and effective with different engines, we used two

lifted inference engines, C-FOVE[9] and WFOMC[4],
with and without the uniform assignment reduction.
The engines were obtained fromhttp://people.
csail.mit.edu/milch/blog/index.html and
dtai.cs.kuleuven.be/ml/systems/wfomc
respectively, and were both modified to support max-
product queries, by replacing Sum operators with Max,
and ignoring the number of counting permutations. In
WFOMC, specifically, the modification corresponds to
changing the code in each of the NNF node subclasses.
Times are shown in log scale, and the computation time of
UAR was added to the overall time results.

Since WFOMC accepts weighted first-order formulas as in-
put, each parfactorφ : p1(X1), . . . , pn(Xn) was passed
to WFOMC as a weighted first-order formula of the form
p1(X1)∧. . .∧pn−1(Xn−1) =⇒ pn(Xn). Unlike variants
of belief propagation[14; 8], where table entries affect the
runtime of the algorithm, the runtime of both WFOMC and
C-FOVE in models which exclusively consist of non-zero
and non-one entries is agnostic to the actual numerical val-
ues. Hence, all table entries in the models presented here
were arbitrarily set to non-zero, non-one.

Figures 2 & 3 show the results of two models that were pre-
viously discussed in this paper, demonstrating how UAR
extends the scope of known tractable models. In these two
figures, we see that both C-FOVE and WFOMC quickly
fail to lift the inference task, as they resort to propositional
inference. Once UAR is applied, both solve the MPE query
efficiently. Figure 4 introduces a model which is solvable in
polynomial time, and again, becomes much easier to solve
with UAR. The↓ symbol denotes a logical variable which
was eliminated by the UAR.

In all three figures, UAR computation never exceeds 40
milliseconds. This result is, of course, consistent with the
complexity analysis, demonstrating that UA detection has
a negligible effect on the overall performance. Given that
MPE is computationally demanding, and exponential in the
worst-case, one could hardly lose from attempting to run
UAR in every MPE task.

Figure 5 presents the results of running WFOMC with and
without UAR, on random models with varying number of
parfactors. Each parfactor, in ann-parfactor randomized
model, consists of 3 atoms. Each atom is obtained ran-
domly from a uniformly distributed pool of2n unary pred-
icates, and a set of (maximum)3 logical variables per par-
factor. This randomization guarantees a (polynomially)
tractable model, that can evaluate the effectiveness of UAR.
However, even with small domain sizes, solving MPE is
still computationally demanding. We tested these random
models under three domain sizes: 5, 10 and 50. The results
are an average over 10 randomized sets.

Figure 6 shows an unsuccessful attempt by UAR to sim-
plify the Friends & Smokers model[14]. Since UAR com-
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Figure 2:φ : friends(X↓, Y ),
friends(X↓, Z), knows(Y, Z)
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Figure 3:φ1 : p(X↓, Y↓), q(Y↓, Z),
r(Z, X↓), s(X↓, Z)
φ2 : s(X↓, V ), s(X↓, W ), p(X↓, Y↓)
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Figure 4:φ1 : p(X), q(X), r(Z↓)
φ2 : p(X), q(Y ), r(Z↓)
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Figure 5:WFOMC on random models
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Figure 6:Friends & Smokers[14]
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Figure 7:Students & Professors[6]

putation incurs very little overhead (48 milliseconds in this
case), its effect on the result is negligible. In Figure 7, how-
ever, UAR is able to simplify the Students & Professors
link prediction model[6], s.t. the computation becomes
domain-size independent.

8 Conclusion

We introduced a model simplification method which nar-
rows the assignment space of first-order MPE queries by
batching together sets of random variables, while refrain-
ing from table lookups. The suggested method can be in-
tegrated into existing lifted inference engines or serve asa
preprocessing algorithm, adding a low computational over-
head compared to non-simplified queries. And thus, even
in cases where UAR fails, the penalty for running this pro-
cedure is negligible.

We note that the UA property is not restricted to the spe-
cific detection method presented in this paper. For exam-
ple, although we refrained from analyzing the content of
the potential tables when detecting uniform assignments,
one can leverage specific maximizing assignments to ob-
tain farther reductions. Consider, for example, an atomp
contained exclusively by parfactorφ : p(Y ), p(Z). The
overlap set of the two instances ofp is not empty, and

in general requires anchoring and alignment. However, if
maximal entries inφ assign both instances ofp the same
value (e.g., they are(0, 0) or (1, 1), etc.) thenp can be
treated as uniformly assigned. Namely, the parfactor is
simplified intoφ|Y |·|Z| : p′, by applying UAR. This idea
can be further adapted by approximation algorithms, which
may force uniform assignments in cases where they are not
guaranteed. Finally, third parties may also wish to assert
uniform assignments as part of user constraints. For all
these purposes, the UAR serves as a valid reduction.
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Appendix – UAR Proof

Let G be a completely shattered model, and letG′ =⋃
g∈G{g ↓ α∗} be the set of post-UAR parfactors, for some

anchored formulaα∗. WLOG, properties of each parfactor
g in G are(L,C,A, φ), whereA = {α1, . . . , αn, β}, and
∀i : rv(αi) = rv(α∗) ∧ rv(αi) ∩ rv(β) = ∅.
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Properties of eachg′ = g ↓ α∗ = (L′, C ′, A′, φ′) are

• A′ = {α′
1, . . . , α

′
n, β}, where∀i : α′

i = αi ↓ α∗
• L′ = LV (A′)
• C ′ = C↓

L′

• φ′ = φ|(L\L′):Cθ′|

Where θ′ is some ground substitution overL′ under
constraintC.

In the context of parfactorg, letL∗
i denote the set of logical

variables inαi that occupy positions which are anchored in
α∗, and letLβ depict the set of logical variables inβ. We
defineL+ = L′ = L∗

1 ∪ . . . ∪ L∗
n ∪ Lβ , followed by

L− = L \ L+ which is the set of logical variables which
occupy positions that are unanchored inα∗ and contained
exclusively by someαi instances. Note thatgr(L+ : C) =

gr(L′ : C ′), sinceL+ = L′ andC ′ = C↓
L′ .

Weights of eachg andg′, under assignmentsv andv′, are:

wg(v) =
∏

θ+

∏

θ−

φ(α1θ
+θ−

|v, . . . , αnθ
+θ−

|v, βθ
+θ−

|v)

wg′(v′) =
∏

θ′

φ(α′
1θ

′
|v′ , . . . , α

′
nθ

′
|v′ , βθ

′
|v′)|L\L′:Cθ′|

Where
∏
θ+ ,

∏
θ− and

∏
θ′ are abbreviations for∏

θ+∈gr(L+:C),
∏
θ−∈gr(L−:Cθ+) and

∏
θ′∈gr(L′:C′).

Proposition 3. For each v′ there existsv such that
wG(v) = wG′(v′)

Proof. We pick one of theαi instances in some parfactor
g, and constructv out ofv′ as follows:

1. ∀θ∗ ∈ gr(L∗
i : C), ∀θ ∈ gr(LV (αi) \ L∗

i : Cθ∗) :
αiθ

∗θ|v = α′
iθ

∗
|v′

2. ψ ∈ rv(G) ∧ ψ ∈ rv(G′) =⇒ ψ|v = ψ|v′

Meaning, the assignment to variables which are mu-
tual toG′ andG is copied fromv′ to v.

The weights of eachg and counterpartg′ are then expressed
as follows

wg(v) =
∏

θ+

∏

θ−

φ(α1θ
+θ−

|v, . . . , αnθ
+θ−

|v, βθ
+θ−

|v)

=
∏

θ+

∏

θ−

φ(α1θ
+θ−

|v′ , . . . , αnθ
+θ−

|v′ , βθ+θ−
|v′)

=
∏

θ+

∏

θ−

φ(α′
1θ

+
|v′ , . . . , α

′
nθ

+
|v′ , βθ

+
|v′)

=
∏

θ′

φ(α′
1θ

′
|v′ , . . . , α

′
nθ

′
|v′ , βθ

′
|v′)|L\L′:Cθ′|

= wg′(v′)

Since the full weights are a product over all parfactor
weights, it follows thatwG(v) = wG′(v′).

Proposition 4. Given optimal assignmentv =
argmaxv wG(v), under whichα∗ is uniformly assigned,
there existsv′ for whichwG′(v′) = wG(v).

Proof. First, we pick one of theα′
i instances in some par-

factorg′. From the uniform assignment property depicted
by α∗, it follows that ∀θ∗ ∈ gr(L∗

i : C), ∀θ1, θ2 ∈
gr(LV (αi) \ L∗

i : Cθ∗) : αiθ
∗θ1(v) = αiθ

∗θ2(v). Next,
we constructv′ out ofv as follows:

1. ∀θ∗ ∈ gr(L∗
i : C), ∀θ ∈ gr(LV (αi) \ L∗

i : Cθ∗) :
α′
iθ

∗
|v′ = αiθ

∗θ|v
Enabled by the uniform assignment property.

2. ψ ∈ rv(G) ∧ ψ ∈ rv(G′) =⇒ ψ|v′ = ψ|v

As previously, weights of eachg′ andg are expressed as a
function of ground substitutions, wherewg′(v′) = wg′(v),
and consequentlywG′(v′) = wG(v) = maxv wG(v).

From propositions 3 & 4 it follows thatmaxv′wG′(v′) =
maxvwG(v), hence the correctness of UAR.
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Abstract

Multinomial logistic regression is one of the
most popular models for modelling the ef-
fect of explanatory variables on a subject
choice between a set of specified options.
This model has found numerous applications
in machine learning, psychology or economy.
Bayesian inference in this model is non trivial
and requires, either to resort to a Metropolis-
Hastings algorithm, or rejection sampling
within a Gibbs sampler. In this paper, we
propose an alternative model to multinomial
logistic regression. The model builds on the
Plackett-Luce model, a popular model for
multiple comparisons. We show that the in-
troduction of a suitable set of auxiliary vari-
ables leads to an Expectation-Maximization
algorithm to find Maximum A Posteriori es-
timates of the parameters. We further pro-
vide a full Bayesian treatment by deriving a
Gibbs sampler, which only requires to sample
from highly standard distributions. We also
propose a variational approximate inference
scheme. All are very simple to implement.
One property of our Plackett-Luce regression
model is that it learns a sparse set of feature
weights. We compare our method to sparse
Bayesian multinomial logistic regression and
show that it is competitive, especially in pres-
ence of polychotomous data.

1 Introduction

The multinomial logistic regression (or multinomial
logit) model is one of the most popular models for
modelling the effect of explanatory variables Xi =
(Xi1, . . . , Xid) ∈ X on a subject choice Yi between
a set of prespecified options {1, . . . ,K}. The model,
which belongs to the class of generalized linear mod-

els (McCullagh & Nelder, 1989), takes the following
form:

Pr(Yi = k|Xi, β) =
eX
>
i βk

1 +
∑K−1
`=1 eX

>
i β`

(1)

for k = 1, . . . ,K − 1 and Pr(Yi = K|Xi) =
1

1+
∑K−1
`=1 exp(X>i β`)

. The monograph of Agresti (1990)

gives details on the foundations of this model and re-
lated ones such as conditional logit (McFadden, 1973).
The parameters βk = (βk1, . . . , βkd), k = 1, . . . ,K − 1
are unknown and have to be estimated from the data.
Bayesian inference in multinomial logit is complicated
by the fact that no conjugate prior exists for the re-
gression parameters. Various algorithms have been
proposed in the literature, see e.g. (Dey et al., 2000).
In particular, similarly to Bayesian inference in pro-
bit models (Albert & Chib, 1993; Talhouk et al., 2012;
Holmes & Held, 2006) proposed an auxiliary variable
model for block Gibbs sampling. Alternative Markov
Chain Monte Carlo (MCMC) algorithms have been
compared by Girolami & Calderhead (2011). How-
ever, although some algorithms show excellent mixing
properties, they lack simplicity of implementation.

When only some of the predictors are assumed to
be relevant, sparse multinomial logistic regression
has been proposed using Laplace priors.Krishnapuram
et al. (2005) obtained Maximum A Posteriori (MAP)
estimates via Minorization-Maximization-based algo-
rithms, while fully Bayesian inference is conducted
in (Cawley et al., 2007) and (Genkin et al., 2007).

In this article, we propose an alternative model to
multinomial logit for multi-class classification and dis-
crete choice modelling. We show that the use of a care-
fully chosen set of latent variables leads to an Expecta-
tion Maximization (EM) algorithm to find MAP esti-
mates, a Gibbs sampler or a variational EM algorithm
to approximate the full posterior. Importantly, the
Gibbs sampler only requires to sample from standard
distributions, which makes it computationally highly
amenable. Moreover, for some values of the hyperpa-
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rameter, we show that the model induces sparsity over
the parameters. In particular, the MAP estimates are
exactly sparse. We also provide detailed comparaisons
with Bayesian sparse multinomial logit in terms of
computational efficiency and prediction performances.
The Bayesian treatment of sparse multinomial logis-
tic regression is discussed in Appendix A. The model
builds on the data augmentation model proposed by
Holmes & Held (2006) and the Bayesian lasso of Park
& Casella (2008). To the best of our knowledge is has
not been proposed before.

2 Statistical model

We propose an alternative model for categorical data
analysis. The model is defined as follows:

Pr(Yi = k|Xi, λ) =
W>i λk∑K
`=1W

>
i λ`

(2)

for k = 1, . . . ,K, where Wi = (Wi1, . . . ,Wip) and
Wij = Kj(X). Kj is a known function from X to
[0,+∞[. In practice, there is a lot of flexibility on
the choice of the transformations Kj of the explana-
tory variables. In the remaining of this paper, we will
consider Kj(X) = exp(Xij), Kd+j(X) = exp(−Xij) to
account for negative effects and K2d+1(X) = exp(0)
for the offset. The non-negative parameters λkj , k =
1, . . . ,K, j = 1, . . . , p are unknown and have to be
estimated from the data.

The model shares strong similarities with the Plackett-
Luce model for multiple comparisons (Luce, 1959;
Plackett, 1975), for which efficient Bayesian inference
can be carried out (Guiver & Snelson, 2009; Caron &
Doucet, 2012). Similarly to this model, it also admits
a Thurstonian interpretation (Diaconis, 1988) that we
describe now. For k = 1, . . . ,K and j = 1, . . . , p, let

Vikj ∼ Exp(Wijλkj) ,

where Exp(b) denotes the exponential distribution
with rate parameter b. As an analogy, let consider
a race between K different teams, each team having p
competitors. Each individual j in a team k has an ar-
rival time Vikj for competition i. Then Yi denotes the
winning team, i.e. the team k which has the individ-
ual with the lowest arrival time. Following properties
of the exponential distribution, it is straightforward to
show that

Pr(arg min
κ

(min
j
Viκj) = k|Xi, λ) =

W>i λk∑K
`=1W

>
i λ`

.

The decision boundaries between two classes k and `
are given by

W>(λk − λ`) = 0 ,

i.e. they are linear in the transformed domain W . As
the multinomial logit model, the model (2) satisfies
Luce’s axiom of choice (Luce, 1977) a.k.a. indepen-
dence from irrelevant alternatives.

3 MAP estimation and Bayesian
Inference

3.1 Data Augmentation

The likelihood defined by (2) does not admit a conju-
gate prior. We can nonetheless consider a data aug-
mentation scheme as indicated by Caron & Doucet
(2012). Assume that we have observed data Y =
{Yi}ni=1. We introduce auxiliary latent variables C =
{Ci}ni=1 and Z = {Zi}ni=1 such that, for i = 1, . . . , n

Yi|Ci, λ ∼ Disc

(
λ1Ci∑
` λ`Ci

, . . . ,
λKCi∑
` λ`Ci

)
, (3)

Ci|λ ∼ Disc

(
Wi1

∑
k λk1

W>i
∑
` λ`

, . . . ,
Wip

∑
k λkp

W>i
∑
` λ`

)
, (4)

Zi|λ ∼ Exp

(
W>i

∑

`

λ`

)
, (5)

where Disc(π1, . . . , πp) denotes the discrete distribu-
tion of parameters (π1, . . . , πp) where πi ≥ 0 and∑
i πi = 1. Pursuing the analogy with team com-

petition introduced in the previous section, the la-
tent variables Zi and Ci have the following interpre-
tation. Zi = mink,j(Vijk) corresponds to the arrival
time of the winner of the competition. As the vari-
ables Vijk are exponentially distributed and the min-
imum of two exponential variable of rates w1 and w2

is an exponential variables of rate w1 +w2, we recover
(5). Ci ∈ {1, . . . , p} corresponds to the index of the
individual in the winning team who arrives first.

The model (3–4) corresponds to an ad-mixture of Dis-
crete distributions. Indeed, the class probabilities de-
fined by the Plackett-Luce model (2) can be rewritten
in the form of a mixture model by integrating out the
latent indicator variables {Ci}ni=1:

Pr(Yi = k|Xi, λ) =
∑

j

πij Disc

(
λ1j∑
` λ`j

, . . . ,
λKj∑
` λ`j

)
,

where the mixture weight πij =
Wij

∑
k λkj

W>i
∑
` λ`

depends

on the data through {Wij}pj=1. Note that there is one
mixture component per feature. Hence, each compo-
nent characterises the classes by assigning a different
importance weight to their associated feature.
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λ

Z C

Y

Figure 1: Graphical Model. Parameter of interest λ is
in blue, latent variables Z and C in green and mea-
surements Y in orange.

The resulting log-complete likelihood is given by

ln p(Y, C,Z|λ) =

K∑

k=1

p∑

j=1

{
nkj lnλkj − λkj

n∑

i=1

ZiWij

}

+
n∑

i=1

p∑

j=1

δCij lnWij , (6)

where nkj =
∑
i δYikδCij and δij is the Kronecker

delta. We further assign a conjugate Gamma prior
to the parameters λ:

λ ∼
K∏

k=1

p∏

j=1

Gam(λkj ; a, b) . (7)

where a > 0 is the shape parameter and b > 0 is
the rate parameter. The graphical model is shown in
Figure 1.

3.2 EM algorithm

The log-posterior can be maximized using the EM
algorithm by iteratively maximizing a lower bound,
called the negative variational free energy (Neal &
Hinton, 1998), or a penalized version as below:

ln p(λ|Y) ≥ 〈ln p(Y, C,Z|λ)〉q + H (q(C,Z)) + ln p(λ)

≡ −F(q, λ) + ln p(λ) , (8)

where 〈·〉q denotes the expectation with respect to
q(C,Z) and H(·) is the (differential) entropy. When the
posterior p(C,Z|Y, λ) is analytically tractable, then we
set q(C,Z) = p(C,Z|Y, λ) so that the bound is exact
and we recover the EM algorithm.

Given the augmented model (3-5), the posterior fac-
torizes: p(C,Z|Y, λ) =

∏
i p(Ci|Yi, λ)p(Zi|Y, λ). The

E-step consists in computing the posterior of the latent
indicator variables for fixed λ.1 This leads to

Ci|Yi, λ ∼ Disc

(
Wi1λYi1
W>i λYi

, . . . ,
WipλYip
W>i λYi

)
. (9)

1Note that p(Zi|Y, λ) is given by (5)

The M-step updates the parameter set λ for fixed pos-
teriors:

λ← arg max
λ
〈ln p(Y, C|λ)〉p(C|Y,λ) + ln p(λ) .

It follows that

λkj =

{
a−1+〈nkj〉
b+

∑
i〈zi〉Wij

if a > 1− 〈nkj〉 ,
0 otherwise.

(10)

where 〈nkj〉 =
∑
i
Wijλkj
W>i λk

and 〈zi〉 =
(
W>i

∑
l λl
)−1

.

For a = 1 and b = 0, the maximum a posteriori es-
timate coincides with the maximum likelihood esti-
mate. If a < 1, one may obtain sparse estimates of
the weights, as the numerator of (10) may become
negative. By changing the value of the hyperparam-
eter a, one may obtain different levels of sparsity. It
could for example be set by cross-validation. Next,
we propose a Bayesian treatment of λ. We first show
that it is straightforward to derive a Gibbs sampler
for (2) given our data augmentation. Subsequently,
we derive a deterministic approximate Bayesian infer-
ence scheme, closely related to the Gibbs sampler.

3.3 Gibbs sampler

Using the same data augmentation, we can define a
Gibbs sampler for sampling from the posterior dis-
tribution p(C,Z, λ|Y). The conditional distribution
p(C|Y, λ) factorizes, such that each Ci can be updated
conditioned on (Yi, λ) using (9). Likewise, the condi-
tional p(Z|Y, λ) factorizes, such that each Zi can be
updated conditioned on λ as the posterior reverts to
the prior (5). Finally, the conditional for each λkj is
of the form p(λkj |Y, C,Z) ∝ p(λkj)eln p(Y,C,Z|λ). Since
the Gamma prior is conjugate to the complete likeli-
hood, the conditional for λkj still follows a Gamma
distribution.

To summarize, the Gibbs sampler is given by

Ci|Yi, λ ∼ Disc

(
Wi1λYi1
W>i λYi

, . . . ,
WipλYip
W>i λYi

)
, (11)

Zi|λ ∼ Exp

(
W>i

K∑

`=1

λ`

)
, (12)

λkj |Y, C,Z ∼ Gam

(
a+ nkj , b+

n∑

i=1

ZiWij

)
. (13)

3.4 Variational approximation

Next, we turn our attention to a deterministic approx-
imation instead of sampling. Variational EM max-
imizes the variational lower bound (Neal & Hinton,
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1998), which can be re-written in the form

ln p(Y) ≥ −F(q) = 〈ln p(Y, C,Z, λ)〉q(C)q(Z)q(λ) (14)

+ KL [q(C)q(Z)q(λ)‖p(C,Z, λ|Y))] .

The approximation assumes that the latent variables
and the parameters are independent a posteriori given
the data. The approximate posteriors are given by

q(C) ∝ p(C)e〈ln p(Y,Z,λ|C)〉q(Z)q(λ) , (15)

q(Z) ∝ e〈ln p(Y,C,Z,λ)〉q(C)q(λ) , (16)

q(λ) ∝ p(λ)e〈ln p(Y,C,Z|λ)〉q(C)q(Z) , (17)

In practice, this boils down to cycling through the fol-
lowing updates

ρkji ∝ δYikWije
〈lnλkj〉, 〈zi〉 =

1

W>i
∑
`〈λ`〉

, (18)

akj = a+ 〈nkj〉 , bkj = b+
∑

i

〈zi〉Wij ,(19)

where 〈λkj〉 =
akj
bkj

, 〈lnλkj〉 = ψ(akj) − ln bkj , and

〈nkj〉 =
∑
i ρkji.

The similarity between the variational posteriors
and the Gibbs sampler is striking. For example,
p(λ|Y, C,Z) and q(λ) have the same form, except that
the counts nkj and the latent auxiliary variables Zi are
respectively replaced by their expected values, namely
〈nkj〉 and 〈Zi〉. However, unlike Gibbs sampling, the
convergence of variational inference and the correct-
ness of the algorithm are easy to check by monitoring
the variational lower bound, which monotonically in-
creases at each iteration. Hence, considering both ap-
proaches in parallel is convenient when debugging the
Gibbs sampling code.

3.5 Identifiability and hyperparameters
estimation

The likelihood (2) is invariant to a rescaling of the
λkj ’s. As a consequence, the scaling hyperparameter
b does not have any effect on the prediction, It can be
set to an arbitrary value, e.g. b = 1. Let

Λ =
∑

k

∑

j

λkj , λkj =
λkj
Λ

.

Because of the invariance w.r.t. rescaling, Λ is not
likelihood identifiable and

p(Λ, λ|Y) = p(Λ)p(λ|Y) ,

with p(Λ) = Gam(Λ;Kp, b). It follows that

ΛMAP =
Kp− 1

b
.

To improve the mixing of the Markov chain, an ad-
ditional sampling step can be added by sampling the
total mass Λ from the prior then rescale the parame-
ters λ adequately. While it would improve the mixing
of the Markov chain, this is useless here as we are typ-
ically interested in the prediction with the normalized
weights.

The parameter a can be estimated by cross-validation
in the EM algorithm. For full Bayesian inference, we
assume the following flat improper prior:

p(a) ∝ 1

a

and we add a Metropolis-Hastings sampling step in the
Gibbs sampler. In the variational EM algorithm, a is
estimated by type II Maximum Likelihood:

a← arg max
a

{−F(q, λ) + ln p(a)} .

While this does not lead to a closed form update for a,
the maximization can be performed by a line search.

4 Experiments

In this section we investigate the performances of the
Plackett-Luce regression model, which we will denote
PL-EM, PL-Gibbs or PL-Var depending on the train-
ing algorithm we used (see Section 3).

4.1 Sparsity and regularization paths

First, we compare the sparsity properties of PL-EM,
PL-Gibbs and PL-Var. We consider the iris dataset,
which is available from the UCI repository. As with
`1-penalization in generalized linear regression models,
varying the value of the regularization coefficient a will
enforce the amount of sparsity over the estimated λ of
our model.

Figure 2 shows the regularization path for the coef-
ficients as a function of a, using the MAP estimate
obtained with EM, the posterior mean and median ob-
tained with Gibbs sampling, and the posterior mean
obtained with the variational approximation. Regular-
ization paths report the values of the weights obtained
when training the models with decreasing values of the
hyperparameter a. When considering MAP, we obtain
exactly sparse estimates for sufficiently small values of
a. Similarly to what is observed with the Bayesian
lasso (Park & Casella, 2008) the posterior mean es-
timates obtained by Gibbs sampling are not sparse
but more concentrated around zero as the value of a
decreases. The posterior median leads to sparser esti-
mates, similarly to what is observed with the Bayesian
lasso. Interestingly, the variational approximation
shows similar sparsity as the posterior median, but
converges faster.
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(a) Posterior mean PL-Gibbs.
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(b) Posterior median PL-Gibbs.
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(c) Posterior mean PL-Var.
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(d) MAP PL-EM.

Figure 2: Regularization paths for the iris dataset. The paths are the values of the weight parameters as a
function of a. They are obtained by training the models for decreasing values of a. Each colour corresponds to
a different λkj . The coefficient values are normalized to make the scales comparable.

4.2 Toy datasets

Next, we investigate the predictive and computational
performances of the proposed PL models. We compare
to Bayesian multinomial logistic regression (or logit).
More specifically, we consider the Gibbs sampler de-
scribed by Holmes & Held (2006), as the authors pro-
vide detailed pseudo-code on the algorithm, and the
algorithm has no tuning parameter as in the case of
our Gibbs sampler (as opposed to hybrid Monte Carlo,
for example).2 However, we will consider a sparse
extension inspired by the Bayesian lasso of Park &
Casella (2008). The Gibbs sampler is detailed in the
Appendix.

We compare both models/algorithms in terms of com-
putational efficiency and predictive performance on
five datasets from the UCI repository: three poly-
chotomous (Lenses, Wine and Iris) and three binary
(Heart, German and Pima). Summaries of the differ-
ent datasets are given in Table 1.

2To be precise we used the corrected version by van der
Lans (2011); Holmes & Held (2011).

Name d K n
Lenses 4 3 24
Wine 13 3 178
Iris 4 3 150
Heart 13 2 270
German 24 2 1000
Pima 8 2 768

Table 1: Dataset characteristics: covariates (d), cate-
gories (K), and data points (n).

As Holmes & Held (2006), we first conduct 5000 burn
in iterations then the next 5000 iterations are used
to collect posterior samples. Each method was imple-
mented in Matlab on a standard computer. We com-
pare the predictive performance by computing the av-
erage number of misclassifications over 20 replications
(i.e. random splits of the data in training and test set).
Predictions are based on Bayesian averaging over 5000
samples. The results are reported in Table 2. It can be
observed that the proposed Plackett-Luce models are
competitive with sparse Bayesian multinomial logit.
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This is confirmed when computing the area under the
receiver operating curve (Figure 3). Gibbs sampling is
in general beneficial compared to the variational ap-
proximation. This can be explained by the fact the
PL-Var tends to provide sparser solutions, hence loos-
ing predictive power.

We used the same experimental setup to investigate
the relative efficiency of PL-Gibbs and sparse Bayesian
multinomial logit. The two methods are compared by
calculating the effective sample size using the posterior
samples for each covariate

ESS =
N

1 + 2
∑
k γ(k)

,

where N = 5000 and
∑
k γ(k) is the sum of the K

monotone sample auto-correlations as estimated by
the initial monotone sequence estimator(Geyer, 1992;
Girolami & Calderhead, 2011). We report the mini-
mum ESS over the set of whole set of covariates. Ta-
ble 3 shows the results for the different datasets, based
on 20 replications. It can be observed that ESS is bet-
ter (higher) for sparse multinomial logit in the binary
cases. However, the running time is also higher, lead-
ing to a relative speed (ratio of time to ESS) of 2 to 3
in favour of sparse logit. However, when the number of
classes increases this trend is drastically changed with
a relative speed of approximately 30 in favour of PL-
Gibbs. As discussed in Section 5, we attribute this to
the fact that, in multinomial logit, the coefficients of
one class are sampled conditioned on the coefficients
of the other classes. Unfortunately, these coefficients
are strongly correlated, resulting in a poor mixing. By
contrast, the PL regression models jointly sample (or
update) the coefficients associated to all the classes.

4.3 Real data examples

First, we consider the colon cancer data3. This is a bi-
nary classification problem consisting of 62 data points
and 2001 features. In general, 50 data points are used
for training and 12 for testing. The average number
of misclassifications is 0.36 ± 0.11 for PL-Gibbs and
0.33± 0.15 for sparse binary logit. Hence, both model
perform similarly. However, sparse binary logit based
on the sampler of Holmes & Held (2006) runs about
500 times slower.

Second, we consider the sushi data (Kamishima, 2003).
Individuals were asked which out of 10 sushis they pre-
ferred. The number of training data points is 4000
and the number of test data points is 1000. The num-
ber of features is 11. We repeated the experiment 5
times. Here, the average number of misclassifications

3http://perso.telecom-paristech.fr/~gfort/GLM/
Programs.html

Dataset Sparse Logit PL-Gibbs PL-Var
Pima .240 (.024) .238 (.015) .239 (.017)
Iris .086 (0.086) .186 (.055) .181 (.057)
Heart .215 (.046) .170 (.023) .223 (.056)
German .262 (.021) .260 (.017) .298 (.015)
Lenses .700 (0.087) .825 (.071) .821 (.073)
Wine .080 (0.038) .048 (.019) .093 (.048)

Table 2: Average number of misclassifications (and
standard deviations) for the different dataset.

Dataset Method Time ESS Time
ESS

Relat.

Speed

Lenses Sp. Logit 26.0 304 0.086 1
PL-Gibbs 8.6 2916 0.003 29

Wine Sp. Logit 184.9 8 22.960 1
PL-Gibbs 15.1 23 0.655 35

Iris Sp. Logit 139.9 8 17.996 1
PL-Gibbs 10.8 14 0.747 24

Heart Sp. Logit 128.8 270 0.477 2
PL-Gibbs 16.0 14 1.185 1

German Sp. Logit 561.1 418 1.342 3
PL-Gibbs 58.0 17 3.426 1

Pima Sp. Logit 409.6 675 0.607 2
PL-Gibbs 23.2 23 1.028 1

Table 3: Efficiency of Sparse multinomial logit and
Plackett-Luce regression on the different datasets.

for Plackett-Luce and sparse multinomial logit were
respectively 656 and 672. While the performances are
poor in both cases, PL-Gibbs performs slightly better
and is much faster to run. Generating 5000 samples
with PL-Gibbs takes a couple of minutes on a stan-
dard quad-core laptop, while it takes approximately 6
hours with the sampler of Holmes & Held (2006).

5 Discussion and extensions

The Gibbs sampler of the Plackett-Luce regression
model only requires to sample from highly standard
distributions (Exponential, Gamma and Discrete) for
which very efficient generators exist. This is to be
compared to Bayesian (multinomial) logistic regres-
sion, where it is required to sample from the truncated
logistic and from other distributions without standard
form, like for example the Kolmogorov-Smirnov, with
rejection sampling (Holmes & Held, 2006). An impor-
tant drawback of recent treatments of multinomial lo-
gistic regression like the one of Holmes & Held (2006)
is that the multinomial outcomes are expressed as a
sequence of binary outcomes. In other words, each
vector of coefficient βk is sampled conditional on the
others.This explains why we observed experimentally
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(a) Sparse Logit
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(b) PL-Gibbs
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(c) PL-Var

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (1 − Specificity)

T
ru

e 
P

os
iti

ve
 R

at
e 

(S
en

si
tiv

ity
)

 

 

ROC Curve
AUC = 0.796
Conv Hull
AUC = 0.808
Acc(0) = 0.331
Max Acc 0.768

(d) Sparse Logit
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(e) PL-Gibbs
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Figure 3: ROC for heart (first row) and pima (second row) datasets.

the relatively poor mixing properties of multinomial
logit when the number of classes is more than 2. In-
ference in multinomial probit models often suffer from
the same weakness (e.g., Albert & Chib, 1993). In the
Gibbs sampler associated to the model we propose, the
parameters λkj are updated jointly and independently
given the latent variables.

Throughout the paper, we arbitrarily used an expo-
nential transformation of the covariates. Additional
flexibility could be introduced into the model by allow-
ing other transformations, which would better charac-
terize the classes. Indeed, one of the limitations of the
proposed generative model is that for each observation
Xi, it is assumed first a feature Ci is selected, and
then its class Yi is drawn given Ci. When features do
not uniquely characterize the classes, it becomes diffi-
cult to distinguish them. Figure 4 shows the decision
boundaries for the iris data set (when only consider-
ing the petal length and width). It could be argued
that these decision boundaries are counter-intuitive,
especially in contrast to the decision boundaries of the
sparse multinomial logit. This is confirmed by the poor
performance of PL regression on the iris data set (see
Table 2). However, by introducing additional transfor-
mation, more natural boundaries can be obtained. For
example, to obtain Figure 4) we considered the addi-
tional features exp(Xi1 + Xi2) and exp(−Xi1 − Xi2).

In general, devicing features of this kind would require
prior knowledge of the problem at hand, which is rarely
the case.

In this paper, we have focused on a Gamma prior for
the weights parameters λkj . Now assume that a =
α/p. When the number of covariates p and hence p?

becomes very large, we have

Λ =
∞∑

j=1

λkj ∼ Gam(α, b) .

Hence, the sequence of normalized ordered weights
λkσ(1)

Λ >
λkσ(2)

Λ > . . . is drawn from the Poisson Dirich-
let distribution of parameter α(Pitman, 1996), which
is the distribution of the ordered weights in a draw
from a Dirichlet process (Teh, 2010). The limit may
give useful hints on the behavior of the model with a
large number of covariates.

The model could also be directly extended by replac-
ing the Gamma prior by the larger family of general-
ized inverse Gaussian distributions, which admits the
Gamma distribution as a special case, and is also a
conjugate prior for the complete-likelihood. Hence,
the full conditional distribution of λkj follows a gen-
eralized inverse Gaussian distribution. The use of this
distribution may offer more flexibility in the modelling
of the tails of the prior for the parameters λkj .
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Figure 4: Decision boundaries for iris dataset (feature 3 and 4).

Finally, it should be noted that the model studied in
this paper has been suggested by Caron & Doucet
(2012). However, no discussion of the algorithms, nor
any study on the fit of this model to data were dis-
cussed there.

A Bayesian sparse multinomial
logistic regression

In this Appendix, we provide a Gibbs sampler for
sparse multinomial logistic regression. The likelihood
is given by (1) and a sparsity-promoting prior is im-
posed on the regression weights βkj , k = 1, . . . ,K − 1
and j = 1, . . . , p. More specifically, we consider the
following hierarchical prior:

βkj |τkj ∼ N (0, τkj) , τkj ∼ Exp

(
θ

2

)
.

This model ensures that marginally βkj follows a
double-exponential (a.k.a. Laplace) distribution of pa-
rameter θ. It is routinely used in Bayesian generalized
linear mode to induce sparsity Genkin et al. (2007);
Park & Casella (2008); Griffin & Brown (2010).We fur-
ther assume a Gamma prior for the hyperparameter θ
for conjugacy reasons (see below (20)):

θ ∼ Gam(c, d) .

As noted by Park & Casella (2008), the improper prior
p(θ) ∝ 1

θ should be avoided in this model as it leads
to an improper posterior for θ.

We can define a Gibbs sampler for the above model
by using auxiliary variables uk, k = 1, . . . ,K − 1 as
defined in (Holmes & Held, 2006). We therefore can
define a Gibbs sampler to sample from the full poste-
rior distribution p(β, u, τ, θ|y). The sampler is defined
as follows at each iteration:

• For k = 1, . . . ,K − 1:

– Sample uk, βk|β−k, u−k, {τkj} as described
in (Holmes & Held, 2006; van der Lans, 2011;
Holmes & Held, 2011)

– For j = 1, . . . , J , sample

1

τkj
∼ iGauss

(√
θ2

β2
kj

, θ2

)
.

• Sample θ as follows:

θ|{τkj} ∼ Gam


Kp+ c,

∑

k

∑

j

τkj
2

+ d


 . (20)

The notation iGauss (a, b) denotes the inverse-
Gaussian distribution with density given by

p(x) =

√
b

2π
x−3/2 exp

(
−b(x− a)2

2a2x

)
.
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Abstract

We consider a Markov decision process with
deterministic state transition dynamics, ad-
versarially generated rewards that change ar-
bitrarily from round to round, and a ban-
dit feedback model in which the decision
maker only observes the rewards it receives.
In this setting, we present a novel and
efficient online decision making algorithm
named MarcoPolo. Under mild assumptions
on the structure of the transition dynamics,
we prove that MarcoPolo enjoys a regret of
O(T 3/4

√
log T ) against the best deterministic

policy in hindsight. Specifically, our analysis
does not rely on the stringent unichain as-
sumption, which dominates much of the pre-
vious work on this topic.

1 INTRODUCTION

Sequential decision making problems come in a variety
of different flavors. In some cases it is natural to model
the environment as a stochastic process, while in other
cases we require the more robust assumption that the
environment behaves adversarially. In both cases, we
can either assume that the environment is stationary
or that it evolves over time. For some problems it suf-
fices to assume that the decision-making agent is state-
less, while for other problems we may need to assume
that the agent has a state that depends on its past ac-
tions. We must also specify what level of feedback the
agent observes after making each decision. Finally, if
we assume that the agent indeed has a state, we must
decide whether the state transition dynamics are de-
terministic or stochastic, and whether they are known
or unknown to the agent.

In this paper, we consider sequential decision mak-
ing in an adversarial and nonstationary environment
where the agent has a state. That is, on each round

of the sequential decision-making problem, the agent
is in one of finitely many states S and performs an ac-
tion from a finite action set A. The rewards received
by the agent depend both on its action and its state,
and the mapping from state-action pairs to rewards
is controlled by an adversary and changes arbitrarily
over time. We assume that the only feedback that the
agent observes is the value of the rewards that it re-
ceives, and specifically, that it does not get to see the
rewards that it could have received if it had acted dif-
ferently or if it were in a different state. This limited
type of feedback is commonly known as bandit feed-
back. In fact, this feedback model is so natural that
a typical researcher in reinforcement learning may not
even add the qualifier “bandit” to it. However, we pre-
fer to explicitly mention it to distinguish our setting
from early work (Even-Dar et al., 2009) on adversarial
MDPs that assumed more extensive feedback.

We also assume that the state transition dynamics are
deterministic and fully known to the agent. However,
we note that, in the case of deterministic dynamics, it
is easy to relax the assumption that the dynamics are
known. Following ideas of Ortner (2010), the agent can
spend poly(|S|, |A|) time figuring out the dynamics.
Therefore, we assume that the agent knows its current
state and knows which state it will transition to as
a result of each action. This type of state transition
model is often called a deterministic Markov decision
process (DMDP).

Our adversarial reward setting makes sense when the
agent faces other agents with conflicting interests.
This happens, for instance, when robots interact with
other robots, when bidding agents compete against
each other in auctions, when trading agents compete
to make money, or when the agent is a character in
a video game. In these strategic and adversarial set-
tings, the environment is likely to change in unpre-
dictable and arbitrary ways. In all of the aforemen-
tioned decision problems, bandit feedback seems to
be the most realistic feedback model. Although we
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make pessimistic assumptions about the world, we em-
phasize that our assumptions are strictly more general
than the alternative: if the agent is lucky enough to
find itself in a stochastic or stationary environment, or
if richer feedback is available, our setting still applies.

The harsh assumptions about the rewards and the lim-
ited feedback are contrasted by the optimistic assump-
tion that the state transition dynamics form a DMDP.
In some cases, deterministic state transitions are a re-
alistic assumption while in other cases this assumption
may be overly simplistic. A stochastic system is often
well approximated by a deterministic system (Bert-
sekas, 2005, Chapter 2). For instance, consider the
motivating example in Even-Dar et al. (2009), where
the goal is to drive along the shortest path from point
a to point b. Although driving a car involves stochastic
uncertainties, it is usually reasonable to assume that
we have deterministic control over which streets our
car takes along the path to our destination. Addition-
ally, many of the uncertainties of driving a car can be
modeled as part of the adversarial rewards. Another
situation that leads to modeling using DMDPs is when
the adversary is a finite state machine whose transi-
tions depend on (equivalence classes of) the history of
the agent’s actions (Maillard and Munos, 2011).

Modeling the state transitions as a DMDP enables us
to handle the adversarial bandit-feedback setting in a
principled and rigorous fashion. Obtaining a similar
result in the general weakly communicating MDP set-
ting (where state transitions are stochastic) remains an
elusive open problem. We hope that the techniques de-
veloped in this paper will prove useful toward solving
that problem.

Another important design choice is how to evaluate the
agent’s actions. For simplicity, we assume that every
action is available at each state, and we note that this
assumption can be easily relaxed. Since the rewards
are controlled by an adversary, they only become se-
mantically meaningful when we compare the agent’s
cumulative reward with a suitable benchmark. We let
Π be the set of all deterministic policies, where each
π ∈ Π is a mapping from S to A, and we choose our
benchmark to be the maximal reward obtained by any
policy in Π. In other words, we compare the agent’s
rewards to those of the best deterministic policy in
hindsight. Letting r1, r2, . . . denote the adversarial se-
quence of reward functions (chosen in advance by the
adversary before the agent begins its moves), letting
(sπt , a

π
t )∞t=1 denote the trajectory of state-action pairs

generated by policy π, and letting (st, at)
∞
t=1 denote

the trajectory of state-action pairs generated by the
agent, we define the agent’s undiscounted regret after

T rounds as

max
π∈Π

T∑

t=1

rt(s
π
t , a

π
t )− E

[
T∑

t=1

rt(st, at)

]
.

The agent’s rewards appear in expectation because we
allow randomized decisions. We say that the agent
is learning if its regret can be upper-bounded by a
sub-linear function of T , uniformly for all sequences of
reward functions.

As mentioned above, we allow the adversary to mod-
ify the rewards for any state-action pair without any
restrictions. Therefore, the same sequence of state-
action pairs may have high rewards at one time and
low rewards at another time. It could very well be that
a given action sequence (starting from a given state s)
may produce different rewards depending on whether
we start performing the sequence on an odd or even
time step. Therefore, it is insufficient to merely dis-
cover high-reward paths through the state space; we
must also consider timing issues.

The main contribution of this paper is MarcoPolo,
an efficient algorithm that enjoys a regret bound of
O(T 3/4

√
log T ) against the best deterministic policy

in hindsight (Theorem 2). The name MarcoPolo is
an approximate acronym for MDP with Adversarial
Rewards, weakly COmmunicating structure, Partial
feedback, by reduction to Online Linear Optimization.
Anecdotally, Marco Polo was a famous Venetian mer-
chant traveler who explored the world in search of high
rewards, just as our algorithm explores the DMDP
state space in search of rewards. Moreover, Marco
Polo is the name of a well-known children’s game that
is played in a swimming pool, where one swimmer has
to capture the other swimmers using only bandit feed-
back.

The basic idea behind MarcoPolo is quite simple. We
observe that a deterministic policy repeats the same
cycle of actions again and again. We then realize that
if an oracle were to tell us the cycle length of the best
deterministic policy and some additional information
about its trajectory, then we could do as well as the
best action cycle via a reduction to the bandit linear
optimization (BLO) setting. Such an oracle is unavail-
able to us, but we can do almost as well as the oracle
using a multi-armed bandit (MAB) algorithm. The
MAB algorithm explores different cycle lengths and
trajectories by invoking the BLO algorithm multiple
times. To the best of our knowledge, this two-tier
hierarchy involving a MAB algorithm that invokes a
BLO algorithm is a novel conceptual contribution to
the design space of regret minimization algorithms.
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1.1 RELATED WORK

Our setting has much in common with a line of re-
search initiated by Even-Dar et al. (2009) and further
developed by Yu et al. (2009) and Neu et al. (2010),
which deals with MDPs with adversarial rewards.
Even-Dar et al. (2009) assumes a full-information feed-
back model while Yu et al. (2009) and Neu et al. (2010)
only require bandit feedback. While these papers as-
sume that the state transition dynamics are stochastic,
they also assume that these dynamics have a unichain
structure. This means that every policy must lead to a
Markov chain with a single recurrent class (plus some
possibly empty set of transient states). This is a very
restrictive assumption, as we discuss in Sec. 2.1. In
our setting, we assume that the state transition dy-
namics are deterministic and weakly communicating,
i.e. it is possible to move from any state to any other
state under some policy. Although deterministic tran-
sition dynamics are less general than stochastic ones,
our analysis requires a much weaker assumption on the
connectivity between states.

The work in Yu and Mannor (2009) also deals with
MDPs with adversarial rewards, bandit feedback, and
stochastic state transition dynamics. Moreover, it al-
lows the stochastic transition dynamics to change over
time in an adversarial way. The analysis in Yu and
Mannor (2009) relies on the strong assumption that
the MDP has a finite mixing time. Again, our analysis
has the advantage that it relies on a weaker assump-
tion on state connectivity.

Ties between the reinforcement learning literature and
the area of individual sequence prediction and com-
pression in information theory are further developed
in Farias et al. (2010).

There is a well developed regret minimization and
PAC-MDP literature that deals with a similar prob-
lem, except that the rewards are stochastic and not
adversarial. We cannot do justice to that extensive
literature but merely refer the reader to the survey by
Szepesvari (2010) and the references therein. Our work
bears some similarities to the work of Ortner (2010),
which considers sequential decision making in DMDPs
with bandit feedback. However, the rewards in that
paper are stochastic and not adversarial, hence, the
motivation and techniques used are rather different.

The importance of developing machine learning al-
gorithms that work in reactive environments (where
agent’s actions impact the future evolution of re-
wards) has caught the attention of many researchers.
de Farias and Megiddo (2006) propose algorithms
that combine expert advice in a reactive environment.
Ryabko and Hutter (2008) consider the problem of
learnability in a very general reactive setting and show

that environments that allow a rapid recovery from
mistakes are asymptotically learnable. Arora et al.
(2012) introduce the notion of policy regret as a more
meaningful alternative to regret for measuring an on-
line algorithm’s performance against adaptive adver-
saries. Arora et al. (2012) also presents a general re-
duction that converts any bandit algorithm with a sub-
linear regret into an algorithm with a sublinear policy
regret.

2 PRELIMINARIES

Let S be a set of n states and let A be a finite set of ac-
tions. An adversarial-reward deterministic Markov de-
cision process (DMDP) is a tuple (S,A, f, r1:T ) where
S is a finite set of states, A is a finite set of actions,
f : S × A → S is a deterministic state transition
function, which maps a state-action pair to the next
state, and r1:T is a sequence (rt)

T
t=1 of reward functions

rt : S ×A → [0, 1].

We slightly overload our notation and allow the second
argument of the state transition function to be a se-
quence of actions, rather than a single action. Namely,
f
(
s, (a1, . . . , ak)

)
is the state we reach if we start from

s and perform the action sequence a1, . . . , ak. More
formally, the extended definition of f is given by the
recursion

f
(
s, (a1, . . . , ak)

)
= f

(
f
(
s, (a1, . . . , ak−1)

)
, ak

)
.

We also find it useful to denote the set of state-action
pairs that lead to a given state s by I(s). That is,

I(s) = {(s′, a′) : f(s′, a′) = s} .

A deterministic policy is a mapping π : S → A. To-
gether with an initial state s1, each policy defines a
sequence of actions and states. Since S is finite, a
state will eventually repeat, and from then onwards
the policy will keep repeating the same cycle of ac-
tions. We categorize a policy π by the length of this
cycle and we let Πk denote the set of deterministic
policies that induce cycles of length k. We prove a
regret bound that compares the algorithm’s cumula-
tive reward with the reward of the best deterministic
policy in Π≤L =

⋃
k≤L Πk, where L is a user-defined

constant. Since the cycle length is bounded by n, set-
ting L = n gives a regret bound that compares the
algorithm to all deterministic policies. The benefit of
proving a regret bound for L < n is to demonstrate
how the bound degrades gracefully with the complex-
ity of the competitor class.

Our analysis deals with weakly communicating
DMDPs (see Section 2.1 for definitions of weakly com-
municating MDP and the associated closed set of
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states) and requires the following additional assump-
tion.

Assumption 1. For any pair of states s 6= s′ in
the closed set, there exists an action sequence a =
(a1, . . . , ad) (of length exactly d) such that f(s, a) = s′.

Note that the assumption only talks about existence
of an action sequence. We note that finding the ac-
tion sequence can be done efficiently, e.g. using dy-
namic programming. This assumption is a very mild
one and it may well be possible to dispense with it
entirely. A simple sufficient condition that implies
this assumption is the existence of at least one self-
loop in the DMDP. Another sufficient condition is that
the transition graph is symmetric (i.e. if f(s, a) = s′

then there exists an opposite action a′ ∈ A such that
f(s′, a′) = s) and there exists an odd length cycle in
the graph.

2.1 THE UNICHAIN CONDITION IS TOO
STRINGENT

The difference between a DMDP and a general MDP is
that, in the latter, the transition dynamics are stochas-
tic, i.e. f maps an (s, a) pair to a distribution over
states. Two well known subclasses of MDPs are re-
current (or ergodic) and communicating MDPs. In
a recurrent MDP, every policy π induces a Markov
chain with a single recurrent class. The more general
notion of a communicating MDP only requires that it
be possible to move (with non-zero probability) from
any state to any other state using some policy. Note
the difference in quantifiers — “every” versus “some”
— in the definitions of recurrent and communicating
MDPs. Thus, the recurrent condition is much more
stringent than the communicating condition.

Both notions can be generalized a little bit to allow for
some transient states. Thus, we arrive at the classes
of unichain and weakly communicating MDPs. In
unichain MDPs, every policy induces a Markov chain
with a single recurrent class plus a possibly empty set
of transient states. In weakly communicating MDPs,
there is a closed set of states such that each state is
accessible, under some policy, from any other state in
the closed set (with non-zero probability under some
policy) plus a possibly empty set of states that are
transient under every policy. In the same way as re-
current is a much stronger condition compared to com-
municating, the unichain condition is much stronger
compared to weakly communicating.

We have the (strict) inclusions:

recurrent ⊂ unichain ⊂ weakly communicating ,

recurrent ⊂ communicating ⊂ weakly communicating .

The graph associated with a DMDP is a directed graph
with S as the set of vertices and the set of edges given
by

{(s, s′) : ∃a ∈ A s.t. f(s, a) = s′} .
For DMDPs, the unichain condition can be equiv-
alently stated in terms of its graph. A DMDP is
unichain iff any two cycles in its graph have a com-
mon vertex (Feinberg and Yang, 2008). A DMDP is
weakly communicating if, after removing a possibly
empty set of states that are transient under all poli-
cies, we get a graph that is strongly connected. Thus,
any learning algorithm will, after at most n steps, end
up in the strongly connected component. Therefore,
in our regret analysis, we will assume that the DMDP
is communicating.

The “no vertex-disjoint cycles” characterization of the
unichain condition for DMDPs shows again why the
unichain condition is so stringent. Two self-loops
on two distinct states will violate it. It is also not
preserved under very simple operations of building
larger MDPs from smaller ones. For instance, suppose
we start from two unichain DMDPs on disjoint state
spaces S1, S2 and join them by introducing two ac-
tions a1, a2 such that f(s1, a1) = s2 and f(s2, a2) = s1

for some s1 ∈ S1, s2 ∈ S2, then the resulting DMDP
will not, in general, be unichain (but will be weakly
communicating).

3 SOLUTION FOR FIXED LENGTH
AND STATE

As a warm-up, we consider a toy version of our prob-
lem, where the competitor class is restricted to a
smaller subset of Π≤L. Assume that we are told to
focus on a specific cycle length k and a specific initial
state s̄. Let Πk,s̄ denote the subset of policies in Πk

that start in state s̄ at time 1 and return to s̄ at time
k + 1. Assume that we are only required to compete
with policies in Πk,s̄.

Next, we characterize the action sequences induced by
policies in Πk,s̄. Define the set

Ck,s̄ = {c ∈ Ak : f(s̄, c) = s̄} .

Ck,s̄ is the set of k-length action sequences such that
starting from state s̄ and performing an action se-
quence in Ck,s̄ brings us back to state s̄. We say that
Ck,s̄ is the set of length k action cycles with respect to
a starting state s̄. Note that this set contains all of
the simple cycles of length k, but may also contain cy-
cles that pass through s̄. In this section, we present a
randomized online algorithm that competes with any
action sequence that consists of recurrences of some
cycle in Ck,s̄. Note that this set of competitors may
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also contain action sequences that are not induced by
any policy in Πk,s̄, for example, due to the fact that
Ck,s̄ is not restricted to simple cycles.

First, we present a general outline of our algorithm.
There is an initial “lock-in” part in the algorithm to
take care of the fact that the algorithm will eventually
be called as a subroutine when the global time clock
reads t1 units and the agent is in some arbitrary state
s1 ∈ S. Thus, there is a “phase lock-in” problem:
the competitors in Ck,s̄ start from s̄ at global time 1
and return to it at times k + 1, 2k + 1, . . .. The agent
needs to move from s1 and get “locked into” one of
the cycles so that it is not out of phase. Here is where
Assumption 1 comes in handy. The algorithm picks an
arbitrary cycle (c1, . . . , ck) ∈ Ck,s̄. At time t1 + d, this
competitor will be at state ck′ where k′ = (t1 + d− 1)
mod k + 1. The algorithm performs a sequence of d
actions that bring it to ck′ at time t1 + d. Then we
waste k′′ = (k − k′ + 1) mod k more time steps to
come back to s̄ and the agent is now “in phase” with
Ck,s̄.
The algorithm then splits the remaining rounds into
epochs of length k, where epoch j starts on round
d+ k′′ + (j − 1)k + 1 and ends on round d+ k′′ + jk.
At the beginning of epoch j, the algorithm defines a
distribution θj over the set Ck,s and samples an action
sequence from this distribution. The algorithm then
spends the next k rounds executing the actions in the
sequence that it has chosen. The algorithm sticks to
the chosen sequence for the duration of the epoch, dis-
regarding the rewards it observes along the way. Only
at the end of the epoch does the algorithm look back
on its rewards and defines a new distribution θj+1 for
the next epoch. In fact, our algorithm will only use
the sum of the k rewards, rather than the k individual
reward values.

It remains to specify how the algorithm sets the dis-
tribution θj . It does so via a reduction of our problem
to a bandit linear optimization (BLO) problem1. We
briefly describe the BLO problem setting and the in-
terested reader is referred to (Flaxman et al., 2005;
Abernethy et al., 2008) for details. A BLO problem is
a repeated game between a randomized algorithm and
an adversary, which takes place over a predefined poly-
hedral set X ⊂ Rn. Before the game begins, the ad-
versary secretly picks a sequence of vectors ρ1, ρ2, . . .,
each in Rn. On round i of the game, the algorithm be-
gins by choosing a distribution over X and sampling
a point xi from that distribution. Next, the adversary

1A similar approach is used in (Flaxman et al., 2005;
Abernethy et al., 2008) to solve the bandit shortest path
problem. For more information on the bandit shortest path
problem, see (McMahan and Blum, 2004; Awerbuch and
Kleinberg, 2004; György et al., 2007)

Algorithm 1: Fixed length k and state s̄

input: initial state s1, global time t1, length k, state
s̄, iterations T
initialize: BLO with n = nk|A| and X as defined in
Eqs. (2 – 5)
Pick an arbitrary cycle (c1 = s̄, . . . , ck) ∈ Ck,s̄
Set k′ ← (t1 + d− 1) mod k + 1
(a1, . . . , ad)← get action sequence from s1 to ck′
for t = 1, . . . , d

perform action at: st+1 ← f(st, at)
observe (bandit) reward rt(st, at)
accumulate R← R+ rt(st, at)

Set k′′ ← (k − k′ + 1) mod k
Spend k′′ time steps visiting the states ck′+1, . . . , ck
Accumulate the k′′ rewards in R
for j = 1, 2, . . .

xj ← get vector from BLO

θj ← decompose
(
xj
)

sample action cycle (c1 = s̄, . . . , ck) ∼ θj
for i = 1, . . . , k

t← d+ k′′ + (j − 1)k + i
if t > T then

return (R, st)

perform action at = ci: st+1 ← f(st, ci)
observe (bandit) reward rt(st, ci)
accumulate Rj ← Rj + rt(st, ci)

provide Rj as feedback to BLO

R← R+Rj

computes ρi ·xi and reveals the result to the algorithm,
while still hiding the vector ρi. The value ρi · xi is the
algorithm’s reward on round i, and cumulative reward
over a sequence of m rounds equals

∑m
i=1 ρi · xi. The

goal is to accumulate a large reward over time. In this
setting, the BLO algorithm presented in Abernethy
et al. (2008) guarantees that the algorithm’s expected
regret after m iterations is bounded as

max
x∈X

m∑

i=1

ρi · x− E

[
m∑

i=1

ρi · xi
]
≤ 4Un3/2

√
m log(m) ,

(1)
where U is an upper bound on ρi · xi for all i.

A useful extension to the BLO setting is the double
randomization technique, which involves adding an
additional layer of randomization to the algorithm’s
strategy. The algorithm chooses the point xi normally,
but then replaces xi with an unbiased estimator of xi.
In other words, the algorithm can choose any distri-
bution θi over X such that EX∼θi [X] = xi. The al-
gorithm then samples a point Xi according to θi and
plays Xi instead of xi. Due to linearity, the expected
reward E[ρi · Xi|xi] still equals ρi · xi, and the regret
bound stated above remains valid. We use this exten-
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sion in our reduction below. For more details, please
see Abernethy et al. (2008, Section 7).

We are now ready to define the reduction from our
problem to the BLO problem. The BLO problem takes
place in the space Rn, where n = n|A|k. In this space,
each coordinate corresponds to a triplet (s, a, i), where
s is a state in S, a is an action in A, and i is a phase in-
dex in [k]. For any vector v ∈ Rn, we use the notation
v(s,a,i) to refer to the element of v that corresponds to
the triplet (s, a, i).

We begin by embedding the sequence of reward func-
tions that occur during epoch j in Rn. The relevant
reward functions are rd+k′′+jk−k+i, . . . , rd+k′′+jk. We
represent their values by a vector ρj ∈ Rn defined as

∀ s ∈ S, a ∈ A, i ∈ [k] ρj,(s,a,i) = rd+k′′+jk−k+i(s, a) .

Next, we represent each cycle c ∈ Cs,k by a binary
vector x(c) ∈ Rn defined as

x(c)s,a,i =

{
1 if a = ci and s = f

(
s̄, (a1, . . . , ai−1)

)

0 otherwise
,

for all s ∈ S, a ∈ A, and i ∈ [k]. Note that x(c) has ex-
actly k non-zero entries that indicate the state-action
pairs encountered along the cycle c. Moreover, note
that the cumulative reward collected while performing
the action sequence c on epoch j simply equals the dot
product ρj · x(c).

Let x
(
Ck,s̄

)
= {x(c)}c∈Ck,s̄ denote the set of vectors

induced by all of the action cycles in Ck,s̄. Select-
ing a sequence of cycles c1, c2, . . . from the set Ck,s̄
so as to maximize the reward defined by the adversar-
ial sequence r1, r2, . . . is equivalent to the problem of
selecting a sequence of points x1, x2, . . . from the set
x
(
Ck,s̄

)
⊂ Rn so as to maximize the linear rewards de-

fined by the adversarial sequence ρ1, ρ2, . . .. However,
the latter is not quite a BLO problem yet, since the
set of actions x

(
Ck,s̄

)
is not a polyhedral set.

To resolve this problem, we define the set of actions
for the BLO algorithm to be X = conv

(
x
(
Ck,s̄

))
, the

convex hull of the set x
(
Ck,s̄

)
. Since x

(
Ck,s̄

)
is a finite

set, its convex hull is polyhedral. Now, we can use a
BLO algorithm to generate a sequence of points in X .
The set X can be defined more concisely using network
flow constraints (Bazaraa et al., 2010). In our case, X
can be written as

x ≥ 0 ,
∑
a∈A x(s̄,a,1) = 1 , (2)

∀s 6∈ S \ {s̄}, a ∈ A, x(s,a,1) = 0 , (3)

∀(s′, a′) 6∈ I(s̄) x(s′,a′,k) = 0 , (4)

∀s ∈ S, 2 ≤ i ≤ k,

∑
(s′,a′)∈I(s) x(s′,a′,i−1) −

∑
a∈A x(s,a,i) = 0 . (5)

Equation (2) ensures convexity: all paths have non-
negative weight and the total weight of all paths equals
one. The remaining constraints ensure that every vec-
tor in the set is indeed a combination of valid cycles
that start and end at s̄. Specifically, Eqs. (3) and (4)
require all paths to begin and end at s̄, whereas (5) is
the classic flow conservation constraint, which requires
that the total weight of paths that enter each state be
equal to the total weight that exits that state, at each
phase i. This concise representation enables us to run
the BLO algorithm efficiently.

However, now the BLO algorithm picks points in X
that do not directly correspond to individual cycles in
Ck,s̄. Instead, these points are convex combinations of
points that correspond to individual cycles. This prob-
lem is easily resolved using the double randomization
technique described above. Namely, we can find an
unbiased estimator of the point chosen by the BLO al-
gorithm that always chooses a vector in the discrete set
x
(
Ck,s̄

)
. We apply the classic theorem of Carathéodory

(1911), which states that any point in the polyhedral
set X ⊂ Rn can be represented as a convex combi-
nation of at most n + 1 extreme points (vertices) of
that set. The extreme points of X are points in the
set x

(
Ck,s̄

)
and correspond to individual cycles. More-

over, the decomposition of a point in X as a convex
combination of n+1 points in x

(
Ck,s̄

)
can be efficiently

computed using a greedy augmenting-path-style algo-
rithm (Bazaraa et al., 2010, Thm. 2.1). In summary,
we use the BLO algorithm to choose a point in X , we
represent this point as a convex combination of points
in x

(
Ck,s̄

)
, we interpret this convex combination as a

distribution over the respective action cycles in Ck,s̄,
and we sample a concrete cycle from this distribution.

The pseudo-code of our algorithm is given in Algo-
rithm 1. As mentioned above, the pseudo-code refer-
ences three external procedures: the procedure that
finds a path of length d from s1 to s̄, the BLO al-
gorithm, and the decomposition procedure that repre-
sents any point in X as a distribution over n+1 points
in x

(
Ck,s̄

)
.

Next, we state a regret bound for our algorithm.

Theorem 1. Let r1, r2, . . . be an arbitrary sequence
of reward functions, perhaps adversarially generated.
Assume that we run Algorithm 1 for T rounds with
this sequence, with parameters k ≤ L and s̄ ∈ S, and
let (st, at)

T
t=1 be the resulting sequence of state-action

pairs (see Alg. 1). On the other hand, let π? be any
deterministic policy in Πk,s̄ and let (s?t , a

?
t )
T
t=1 be the

sequence of state-action pairs defined by this policy.
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Then the regret is upper bounded by

∑T
t=1 rt(s

?
t , a

?
t )− E

[∑T
t=1 rt(st, at)

]

≤ 4L2(n|A|)3/2
√
T log(T ) + (2L+ d) .

Proof. Since the rewards on each round are bounded
in [0, 1], the regret on the first d rounds is bounded by
d. Then k′′ = (k − k′ + 1) mod k < k more rounds
are wasted before coming back to s̄. The regret on the
remaining T − d − k′′ rounds is bounded by applying
the bound for BLO in Eq. (1). Specifically, in our
case, we use Hölder’s inequality to bound

ρi · xi ≤ ‖ρi‖∞‖xi‖1 ≤ k ,

and therefore we can set U in Eq. (1) to k. The di-
mensionality is n|A|k. Finally, the number of BLO it-
erations equals the number of epochs of our algorithm,
which is m = b(T − d− k′′)/kc ≤ T/k. Plugging these
values into Eq. (1) gives the bound

4k(nk|A|)3/2
√
T/k log(T/k) ,

which is upper bounded by

4L2(n|A|)3/2
√
T log(T ) .

Finally, if T − d − k′′ does not divide by k, we have
a suffix of at most k actions that incur an additional
regret of at most L.

4 SOLUTION TO THE GENERAL
PROBLEM

The result obtained in the previous section can be in-
terpreted as follows. Let π? be the optimal fixed policy
in Π≤L, let k? be the length of its cycle. Assume, for
simplicity, that π? enters its cycle straightaway and let
s? be its state at time t = 1. If an oracle were to reveal
k? and s? to us, Algorithm 1 would solve the problem
with a regret of O(L2(n|A|)3/2

√
T log(T )). Although

we do not have access to such an oracle, we can exploit
the fact that there are only Ln possible values of (k, s)
that we need to explore.

In this section, we present the MarcoPolo algorithm,
which solves the general problem defined in Sec. 1.
It does so by splitting the online rounds into episodes
of length τ (τ is specified later on) and running an
instance of Alg. 1 on each episode. At the beginning
of episode j, the algorithm chooses values (kj , sj) and
runs Alg. 1 with these parameters for τ rounds. Note
that Alg. 1 starts from scratch on each episode, and
does not retain information from previous episodes.
Also note that Alg. 1 starts from the state that we
happen to be in due to the previous episodes. However,

Algorithm 2: MarcoPolo

input: episode length τ
initialize: ŝ1 = s1, t = 1
for j = 1, 2, . . .

(kj , sj)← get length/state from MAB

(Rj , ŝj+1)← Alg. 1 with input (ŝj , t, kj , sj , τ)
provide Rj as feedback to MAB

R← R+Rj
t← t+ τ

the initial “lock-in” part in Alg. 1 makes sure we get
locked in phase with policies in Πkj ,sj .

It remains to specify how our algorithm chooses
(kj , sj) on each episode. Again, we resort to a re-
duction, this time to the multi-armed bandit prob-
lem (MAB). The MAB setting is very similar to the
BLO setting described above, except that the algo-
rithm’s action set is the set of standard unit vec-
tors X = {e1, . . . , en}, rather than a polyhedral set.
Namely, the adversary chooses a sequence of reward
vectors ρ1, ρ2, . . . before the game begins. On itera-
tion i, the algorithm chooses a standard unit vector
xi, which has a single non-zero coordinate, and its re-
ward ρi ·xi is simply the value of ρi at that coordinate.
The algorithm never sees the full reward vector ρj .

The EXP3 algorithm (Auer et al., 2002) solves the
MAB problem, and comes with the following regret
bound: For any number of iterations m, the expected
regret after m iterations is bounded by

max
x∈X

m∑

i=1

ρi ·x−E
[
m∑

i=1

ρi · xi
]
≤ U

√
7mn log(n) , (6)

where U is an upper bound on ρi · xi for all i.

To simplify the presentation and analysis of the reduc-
tion to the MAB problem, we slightly modify the al-
gorithm described above. Instead of choosing a single
setting (kj , sj) on episode j and running Alg. 1 only
on that setting, imagine that we run nL copies of Alg.
1 in parallel, one for each choice of (s, k), and then
disregard all but the one that corresponds to the cho-
sen setting (kj , sj). Clearly, this modified algorithm is
equivalent to our original algorithm, albeit its inferior
computational complexity. The advantage of think-
ing of our algorithm in this way is that it makes the
reduction to the MAB setting very straightforward.

The MAB problem takes place in the space Rn, with
n = nL. In this space, each coordinate corresponds
to a pair (k, s), where k is a cycle length between 1
and L, and s is a state in S. For any vector v ∈ Rn,
we use the notation v(k,s) to refer to the element of v
that corresponds to the pair (k, s). Let ρj,(k,s) be the
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total reward collected by the copy of Alg. 1 that runs
with parameters (k, s) on episode j. Note that ρj,(k,s)
takes a random value, since Alg. 1 is a randomized
algorithm, but this does not invalidate the reduction.
The MAB algorithm chooses a pair (kj , sj) on each
episode, and this is the pair we use in our algorithm.

Next, we prove a regret bound for our algorithm.

Theorem 2. Let r1, r2, . . . be an arbitrary sequence
of reward functions, perhaps adversarially generated.
Assume that we run MarcoPolo with this sequence for
T rounds and with an episode length of τ =

√
T , and

let (st, at)
T
t=1 be the resulting sequence of state-action

pairs. On the other hand, let π? be any deterministic
policy in Π≤L and let (s?t , a

?
t )
T
t=1 be the sequence of

state-action pairs defined by π?. Then the regret is
upper bounded by

∑T
t=1 rt(s

?
t , a

?
t )− E

[∑T
t=1 rt(st, at)

]

≤ CT 3/4
√

log(T ) + o(T 3/4) .

where C = 4L2(n|A|)3/2 +
√

7nL log(nL).

Proof. Let T̄ be the last round on the last full episode
performed by the algorithm. The regret suffered on
rounds (T̄ + 1), . . . , T is trivially bounded by T − T̄ ≤
τ , and we focus on bounding the regret on rounds
1, . . . , T̄ .

Recall that we assumed, for the purpose of our analy-
sis, that we run nL parallel instances of Alg. 1 on each
episode. Also recall that Alg. 1 starts from scratch
when a new episode begins. Let k? be the length of
the action cycle induced by the policy π? and let s̃?

be the first state that gets repeated under π? after an
initial non-repeating sequence of states of length t?.
Let s? be the state that is t? time units behind s̃? on
the cycle induced by π?. The rewards accumulated by
π? and those by the cycle corresponding to the pair
(k?, s?) differ by at most t? ≤ n. Thus, we compute
regret relative to (k?, s?).

Let (s′t, a
′
t)
T̄
t=1 be the sequence of state-action pairs

generated by the copy of Alg. 1 that runs with pa-
rameters (k?, s?). On epoch j we apply Thm. 1 and
get

E




jτ∑

t=jτ−τ+1

rt(s
?
t , a

?
t )− rt(s′t, a′t)




≤ 4L2(n|A|)3/2
√
τ log(τ) + (2L+ d) .

We sum both sides above for j = 1, . . . , T̄ /τ and get

E




T̄∑

t=1

rt(s
?
t , a

?
t )− rt(s′t, a′t)




≤ 4L2(n|A|)3/2T 3/4
√

log(T )/2 + o(T 3/4) . (7)

Next, we use the regret bound for the EXP3 algorithm,
given in Eq. (6), to upper-bound

E




T̄∑

t=1

rt(s
′
t, a
′
t)− rt(st, at)




= E



T̄ /τ∑

j=1

ρj,(k?,s?) − ρj,(kj ,sj)


 .

We face a minor technical difficulty due to the fact
that the EXP3 bound holds for deterministic rewards,
whereas the rewards ρ1, ρ2, . . . in our problem are ran-
dom. However, it is rather straightforward to see that
if a bound holds for any individual sequence of reward
functions, then it also holds for the expected reward
sequence (the skeptical reader is referred to Appendix
A in the supplementary material for a rigorous proof).

Since ρj,(k,s) represents the cumulative reward from τ
rounds, and the reward on each round is bounded in
[0, 1], then ‖ρj‖∞ ≤ τ ≤

√
T . Therefore, we can set

U =
√
T in Eq. (6). Additionally, we have that the

number of arms is nL. Finally, the number of MAB
iterations is m ≤ T/τ =

√
T . Plugging these values

into the bound, we get that

E




T̄∑

t=1

rt(s
′
t, a
′
t)− rt(st, at)


 ≤ T 3/4

√
7nL log(nL) .

Summing the above inequality with Eq. (7) proves the
theorem.

5 DISCUSSION

We focused on the sequential decision making setting
where the environment changes with time adversari-
ally, state transitions are deterministic, and the algo-
rithm receives bandit feedback. In this setting, we pre-
sented the MarcoPolo algorithm, with an undiscounted
regret bound of O(T 3/4

√
log(T )) against the best de-

terministic policy in hindsight. In contrast to previ-
ous work, we did not rely on the stringent unichain
assumption.

Many interesting open questions remain unanswered:
Can we derive a similar result with stochastic tran-
sition dynamics; with adversarially changing transi-
tion dynamics; when the state is only partially ob-
servable? Even in our specific setting, can we prove
a lower bound of O(T 3/4) on regret, or alternatively,
can we obtain a better upper bound with a different
algorithm?
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We also have more general questions regarding the true
power of the adversarial DMDP model compared to
the classic (fully stochastic) MDP model. The adver-
sarial DMDP model makes a more general assumption
on the rewards and a less general assumption on the
state transition dynamics. Are the two things some-
how interchangeable? In other words, can we identify
situations where we can use the power and flexibility
of the adversarial reward assumption to capture un-
certainty in the state transition dynamics?

These questions are left for future research.
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Abstract

We present a system that produces sentential
descriptions of video: who did what to whom,
and where and how they did it. Action class
is rendered as a verb, participant objects as
noun phrases, properties of those objects as
adjectival modifiers in those noun phrases,
spatial relations between those participants
as prepositional phrases, and characteristics
of the event as prepositional-phrase adjuncts
and adverbial modifiers. Extracting the in-
formation needed to render these linguistic
entities requires an approach to event recog-
nition that recovers object tracks, the track-
to-role assignments, and changing body pos-
ture.

1 INTRODUCTION

We present a system that produces sentential descrip-
tions of short video clips. These sentences describe
who did what to whom, and where and how they did
it. This system not only describes the observed action
as a verb, it also describes the participant objects as
noun phrases, properties of those objects as adjectival
modifiers in those noun phrases, the spatial relations
between those participants as prepositional phrases,
and characteristics of the event as prepositional-phrase
adjuncts and adverbial modifiers. It incorporates a
vocabulary of 118 words: 1 coordination, 48 verbs,
24 nouns, 20 adjectives, 8 prepositions, 4 lexical prepo-
sitional phrases, 4 determiners, 3 particles, 3 pronouns,
2 adverbs, and 1 auxiliary, as illustrated in Table 1.

∗Corresponding author. Email: andrei@0xab.com.
Additional images and videos as well as all code and

datasets are available at
http://engineering.purdue.edu/~qobi/uai2012.

coordination: and
verbs: approached, arrived, attached, bounced, buried,

carried, caught, chased, closed, collided, digging,
dropped, entered, exchanged, exited, fell, fled,
flew, followed, gave, got, had, handed, hauled,
held, hit, jumped, kicked, left, lifted, moved,
opened, passed, picked, pushed, put, raised, ran,
received, replaced, snatched, stopped, threw, took,
touched, turned, walked, went

nouns: bag, ball, bench, bicycle, box, cage, car, cart, chair,
dog, door, ladder, left, mailbox, microwave,
motorcycle, object, person, right, skateboard, SUV,
table, tripod, truck

adjectives: big, black, blue, cardboard, crouched, green, narrow,
other, pink, prone, red, short, small, tall, teal, toy,
upright, white, wide, yellow

prepositions: above, because, below, from, of, over, to, with
lexical PPs: downward, leftward, rightward, upward
determiners: an, some, that, the
particles: away, down, up
pronouns: itself, something, themselves
adverbs: quickly, slowly
auxiliary: was

Table 1: The vocabulary used to generate sentential
descriptions of video.

Production of sentential descriptions requires recog-
nizing the primary action being performed, because
such actions are rendered as verbs and verbs serve as
the central scaffolding for sentences. However, event
recognition alone is insufficient to generate the remain-
ing sentential components. One must recognize ob-
ject classes in order to render nouns. But even object
recognition alone is insufficient to generate meaning-
ful sentences. One must determine the roles that such
objects play in the event. The agent, i.e. the doer
of the action, is typically rendered as the sentential
subject while the patient, i.e. the affected object, is
typically rendered as the direct object. Detected ob-
jects that do not play a role in the observed event,
no matter how prominent, should not be incorporated
into the description. This means that one cannot use
common approaches to event recognition, such as spa-
tiotemporal bags of words [Laptev et al., 2007, Niebles
et al., 2008, Scovanner et al., 2007], spatiotemporal
volumes [Blank et al., 2005, Laptev et al., 2008, Ro-
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driguez et al., 2008], and tracked feature points [Liu
et al., 2009, Schuldt et al., 2004, Wang and Mori, 2009]
that do not determine the class of participant objects
and the roles that they play. Even combining such
approaches with an object detector would likely de-
tect objects that don’t participate in the event and
wouldn’t be able to determine the roles that any de-
tected objects play.

Producing elaborate sentential descriptions requires
more than just event recognition and object detec-
tion. Generating a noun phrase with an embedded
prepositional phrase, such as the person to the left of
the bicycle, requires determining spatial relations be-
tween detected objects, as well as knowing which of
the two detected objects plays a role in the overall
event and which serves just to aid generation of a refer-
ring expression to help identify the event participant.
Generating a noun phrase with adjectival modifiers,
such as the red ball, not only requires determining the
properties, such as color, shape, and size, of the ob-
served objects, but also requires determining whether
such descriptions are necessary to help disambiguate
the referent of a noun phrase. It would be awkward to
generate a noun phrase such as the big tall wide red toy
cardboard trash can when the trash can would suffice.
Moreover, one must track the participants to deter-
mine the speed and direction of their motion to gener-
ate adverbs such as slowly and prepositional phrases
such as leftward. Further, one must track the identity
of multiple instances of the same object class to appro-
priately generate the distinction between Some person
hit some other person and The person hit themselves.

A common assumption in Linguistics [Jackendoff,
1983, Pinker, 1989] is that verbs typically characterize
the interaction between event participants in terms of
the gross changing motion of these participants. Ob-
ject class and image characteristics of the participants
are believed to be largely irrelevant to determining the
appropriate verb label for an action class. Participants
simply fill roles in the spatiotemporal structure of the
action class described by a verb. For example, an event
where one participant (the agent) picks up another
participant (the patient) consists of a sequence of two
sub-events, where during the first sub-event the agent
moves towards the patient while the patient is at rest
and during the second sub-event the agent moves to-
gether with the patient away from the original location
of the patient. While determining whether the agent
is a person or a cat, and whether the patient is a ball
or a cup, is necessary to generate the noun phrases
incorporated into the sentential description, such in-
formation is largely irrelevant to determining the verb
describing the action. Similarly, while determining the
shapes, sizes, colors, textures, etc. of the participants

is necessary to generate adjectival modifiers, such in-
formation is also largely irrelevant to determining the
verb. Common approaches to event recognition, such
as spatiotemporal bags of words, spatiotemporal vol-
umes, and tracked feature points, often achieve high
accuracy because of correlation with image or video
properties exhibited by a particular corpus. These are
often artefactual, not defining properties of the verb
meaning (e.g. recognizing diving by correlation with
blue since it ‘happens in a pool’ [Liu et al., 2009, p.
2002] or confusing basketball and volleyball ‘because
most of the time the [. . .] sports use very similar courts’
[Ikizler-Cinibis and Sclaroff, 2010, p. 506]).

2 THE MIND’S EYE CORPUS

Many existing video corpora used to evaluate event
recognition are ill-suited for evaluating sentential de-
scriptions. For example, the Weizmann dataset
[Blank et al., 2005] and the kth dataset [Schuldt et al.,
2004] depict events with a single human participant,
not ones where people interact with other people or
objects. For these datasets, the sentential descriptions
would contain no information other than the verb, e.g.
The person jumped. Moreover, such datasets, as well
as the Sports Actions dataset [Rodriguez et al.,
2008] and the Youtube dataset [Liu et al., 2009], of-
ten make action-class distinctions that are irrelevant
to the choice of verb, e.g. wave1 vs. wave2, jump vs.
pjump, Golf-Swing-Back vs. Golf-Swing-Front vs.
Golf-Swing-Side, Kicking-Front vs. Kicking-Side,
Swing-Bench vs. Swing-SideAngle, and golf swing

vs. tennis swing vs. swing. Other datasets,
such as the Ballet dataset [Wang and Mori,
2009] and the ucf50 dataset [Liu et al., 2009],
depict larger-scale activities that bear activity-
class names that are not well suited to sen-
tential description, e.g. Basketball, Billiards,
BreastStroke, CleanAndJerk, HorseRace, HulaHoop,
MilitaryParade, TaiChi, and YoYo.

The year-one (Y1) corpus produced by DARPA for
the Mind’s Eye program, however, was specifically de-
signed to evaluate sentential description. This corpus
contains two parts: the development corpus, C-D1,
which we use solely for training, and the evaluation
corpus, C-E1, which we use solely for testing. Each
of the above is further divided into four sections to
support the four task goals of the Mind’s Eye pro-
gram, namely recognition, description, gap filling, and
anomaly detection. In this paper, we use only the
recognition and description portions and apply our en-
tire sentential-description pipeline to the combination
of these portions. While portions of C-E1 overlap with
C-D1, in this paper we train our methods solely
on C-D1 and test our methods solely on the
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portion of C-E1 that does not overlap with C-
D1 .

Moreover, a portion of the corpus was synthetically
generated by a variety of means: computer graph-
ics driven by motion capture, pasting foregrounds
extracted from green screening onto different back-
grounds, and intensity variation introduced by post-
processing. In this paper, we exclude all such
synthetic video from our test corpus. Our train-
ing set contains 3480 videos and our test set 749 videos.
These videos are provided at 720p@30fps and range
from 42 to 1727 frames in length, with an average of
435 frames.

The videos nominally depict 48 distinct verbs as listed
in Table 1. However, the mapping from videos to verbs
is not one-to-one. Due to polysemy, a verb may de-
scribe more than one action class, e.g. leaving an object
on the table vs. leaving the scene. Due to synonymy,
an action class may be described by more than one
verb, e.g. lift vs. raise. An event described by one
verb may contain a component action described by a
different verb, e.g. picking up an object vs. touching an
object. Many of the events are described by the com-
bination of a verb with other constituents, e.g. have
a conversation vs. have a heart attack. And many of
the videos depict metaphoric extensions of verbs, e.g.
take a puff on a cigarette. Because the mapping from
videos to verbs is subjective, the corpus comes labeled
with DARPA-collected human judgments in the form
of a single present/absent label associated with each
video paired with each of the 48 verbs, gathered us-
ing Amazon Mechanical Turk. We use these labels for
both training and testing as described later.

3 OVERALL SYSTEM
ARCHITECTURE

The overall architecture of our system is depicted in
Fig. 1. We first apply detectors [Felzenszwalb et al.,
2010a,b] for each object class on each frame of each
video. These detectors are biased to yield many false
positives but few false negatives. The Kanade-Lucas-
Tomasi (KLT) [Shi and Tomasi, 1994, Tomasi and
Kanade, 1991] feature tracker is then used to project
each detection five frames forward to augment the
set of detections and further compensate for false
negatives in the raw detector output. A dynamic-
programming algorithm [Viterbi, 1971] is then used
to select an optimal set of detections that is tempo-
rally coherent with optical flow, yielding a set of object
tracks for each video. These tracks are then smoothed
and used to compute a time-series of feature vectors
for each video to describe the relative and absolute
motion of event participants. The person detections

Figure 1: The overall architecture of our system for
producing sentential descriptions of video.

are then clustered based on part displacements to de-
rive a coarse measure of human body posture in the
form of a body-posture codebook. The codebook in-
dices of person detections are then added to the feature
vector. Hidden Markov Models (HMMs) are then em-
ployed as time-series classifiers to yield verb labels for
each video [Siskind and Morris, 1996, Starner et al.,
1998, Wang and Mori, 2009, Xu et al., 2002, 2005],
together with the object tracks of the participants in
the action described by that verb along with the roles
they play. These tracks are then processed to pro-
duce nouns from object classes, adjectives from ob-
ject properties, prepositional phrases from spatial re-
lations, and adverbs and prepositional-phrase adjuncts
from track properties. Together with the verbs, these
are then woven into grammatical sentences. We de-
scribe each of the components of this system in de-
tail below: the object detector and tracker in Sec-
tion 3.1, the body-posture clustering and codebook in
Section 3.2, the event classifier in Section 3.3, and the
sentential-description component in Section 3.4.

3.1 OBJECT DETECTION AND
TRACKING

In detection-based tracking an object detector is ap-
plied to each frame of a video to yield a set of candidate
detections which are composed into tracks by selecting
a single candidate detection from each frame that max-
imizes temporal coherency of the track. Felzenszwalb
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et al. detectors are used for this purpose. Detection-
based tracking requires biasing the detector to have
high recall at the expense of low precision to allow
the tracker to select boxes to yield a temporally co-
herent track. This is done by depressing the accep-
tance thresholds. To prevent massive over-generation
of false positives, which would severely impact run
time, we limit the number of detections produced per-
frame to 12.

Two practical issues arise when depressing acceptance
thresholds. First, it is necessary to reduce the degree of
non-maximal suppression incorporated in the Felzen-
szwalb et al. detectors. Second, with the star detector
[Felzenszwalb et al., 2010b], one can simply decrease
the single trained acceptance threshold to yield more
detections with no increase in computational complex-
ity. However, we prefer to use the star cascade detec-
tor [Felzenszwalb et al., 2010a] as it is far faster. With
the star cascade detector, though, one must also de-
crease the trained root- and part-filter thresholds to
get more detections. Doing so, however, defeats the
computational advantage of the cascade and signifi-
cantly increases detection time. We thus train a model
for the star detector using the standard procedure on
human-annotated training data, sample the top detec-
tions produced by this model with a decreased accep-
tance threshold, and train a model for the star cascade
detector on these samples. This yields a model that
is almost as fast as one trained by the star cascade
detector on the original training samples but with the
desired bias in acceptance threshold.

The Y1 corpus contains approximately 70 different ob-
ject classes that play a role in the depicted events.
Many of these, however, cannot be reliably detected
with the Felzenszwalb et al. detectors that we use. We
trained models for 25 object classes that can be reli-
ably detected, as listed in Table 2. These object classes
account for over 90% of the event participants. Person
models were trained with approximately 2000 human-
annotated positive samples from C-D1 while nonper-
son models were trained with approximately 1000 such
samples. For each positive training sample, two neg-
ative training samples were randomly generated from
the same frame constrained to not overlap substan-
tially with the positive samples. We trained three dis-
tinct person models to account for body-posture vari-
ation and pool these when constructing person tracks.
The detection scores were normalized for such pooled
detections by a per-model offset computed as follows:
A (50 bin) histogram was computed of the scores of the
top detection in each frame of a video. The offset is
then taken to be the minimum of the value that max-
imizes the between-class variance [Otsu, 1979] when
bipartitioning this histogram and the trained accep-

tance threshold offset by a fixed, but small, amount
(0.4).

We employed detection-based tracking for all 25 ob-
ject models on all 749 videos in our test set. To prune
the large number of tracks thus produced, we discard
all tracks corresponding to certain object models on
a per-video basis: those that exhibit high detection-
score variance over the frames in that video as well
as those whose detection-score distributions are nei-
ther unimodal nor bimodal. The parameters govern-
ing such pruning were determined solely on the train-
ing set. The tracks that remain after this pruning still
account for over 90% of the event participants.

3.2 BODY-POSTURE CODEBOOK

We recognize events using a combination of the mo-
tion of the event participants and the changing body
posture of the human participants. Body-posture in-
formation is derived using the part structure produced
as a by-product of the Felzenszwalb et al. detectors.
While such information is far noisier and less accu-
rate than fitting precise articulated models [Andriluka
et al., 2008, Bregler, 1997, Gavrila and Davis, 1995,
Sigal et al., 2010, Yang and Ramanan, 2011] and ap-
pears unintelligible to the human eye, as shown in Sec-
tion 3.3, it suffices to improve event-recognition accu-
racy. Such information can be extracted from a large
unannotated corpus far more robustly than possible
with precise articulated models.

Body-posture information is derived from part struc-
ture in two ways. First, we compute a vector of part
displacements, each displacement as a vector from the
detection center to the part center, normalizing these
vectors to unit detection-box area. The time-series
of feature vectors is augmented to include these part
displacements and a finite-difference approximation of
their temporal derivatives as continuous features for
person detections. Second, we vector-quantize the
part-displacement vector and include the codebook in-
dex as a discrete feature for person detections. Such
pose features are included in the time-series on a per-
frame basis. The codebook is trained by running each
pose-specific person detector on the positive human-
annotated samples used to train that detector and
extract the resulting part-displacement vectors. We
then pool the part-displacement vectors from the three
pose-specific person models and employ hierarchical k-
means clustering using Euclidean distance to derive a
codebook of 49 clusters. Fig. 2 shows sample clus-
ters from our codebook. Codebook indices are derived
using Euclidean distance from the means of these clus-
ters.
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(a)

bag7→bag car7→car door 7→door person7→person suv7→SUV
bench 7→bench cardboard-box 7→box ladder7→ladder person-crouch7→person table 7→table
bicycle7→bicycle cart7→cart mailbox7→mailbox person-down7→person toy-truck7→truck
big-ball 7→ball chair7→chair microwave7→microwave skateboard7→skateboard tripod7→tripod
cage7→cage dog7→dog motorcycle7→motorcycle small-ball7→ball truck 7→truck

(b) cardboard-box7→cardboard person7→upright person-crouch 7→crouched person-down7→prone toy-truck7→toy

(c) big-ball 7→big small-ball7→small

Table 2: Trained models for object classes and their mappings to (a) nouns, (b) restrictive adjectives, and (c) size
adjectives.

Figure 2: Sample clusters from our body-posture codebook.

3.3 EVENT CLASSIFICATION

Our tracker produces one or more tracks per object
class for each video. We convert such tracks into a
time-series of feature vectors. For each video, one
track is taken to designate the agent and another track
(if present) is taken to designate the patient. During
training, we manually specify the track-to-role map-
ping. During testing, we automatically determine the
track-to-role mapping by examining all possible such
mappings and selecting the one with the highest like-
lihood [Siskind and Morris, 1996].

The feature vector encodes both the motion of the
event participants and the changing body posture of
the human participants. For each event participant
in isolation we incorporate the following single-track
features:

1. x and y coordinates of the detection-box center
2. detection-box aspect ratio and its temporal

derivative
3. magnitude and direction of the velocity of the

detection-box center
4. magnitude and direction of the acceleration of the

detection-box center
5. normalized part displacements and their temporal

derivatives
6. object class (the object detector yielding the de-

tection)
7. root-filter index
8. body-posture codebook index

The last three features are discrete; the remainder are
continuous. For each pair of event participants we in-
corporate the following track-pair features:

1. distance between the agent and patient detection-

box centers and its temporal derivative
2. orientation of the vector from agent detection-box

center to patient detection-box center

Our HMMs assume independent output distributions
for each feature. Discrete features are modeled with
discrete output distributions. Continuous features de-
noting linear quantities are modeled with univariate
Gaussian output distributions, while those denoting
angular quantities are modeled with von Mises output
distributions.

For each of the 48 action classes, we train two HMMs
on two different sets of time-series of feature vectors,
one containing only single-track features for a single
participant and the other containing single-track fea-
tures for two participants along with the track-pair
features. A training set of between 16 and 200 videos
was selected manually from C-D1 for each of these 96
HMMs as positive examples depicting each of the 48
action classes. A given video could potentially be in-
cluded in the training sets for both the one-track and
two-track HMMs for the same action class and even
for HMMs for different action classes, if the video was
deemed to depict both action classes.

During testing, we generate present/absent judgments
for each video in the test set paired with each of the
48 action classes. We do this by thresholding the like-
lihoods produced by the HMMs. By varying these
thresholds, we can produce an ROC curve for each ac-
tion class, comparing the resulting machine-generated
present/absent judgments with the Amazon Mechani-
cal Turk judgments. When doing so, we test videos for
which our tracker produces two or more tracks against
only the two-track HMMs while we test ones for which
our tracker produces a single track against only the
one-track HMMs.
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We performed three experiments, training 96 different
200-state HMMs for each. Experiment I omitted all
discrete features and all body-posture related features.
Experiment II omitted only the discrete features. Ex-
periment III omitted only the continuous body-posture
related features. ROC curves for each experiment are
shown in Fig. 3. Note that the incorporation of body-
posture information, either in the form of continuous
normalized part displacements or discrete codebook
indices, improves event-recognition accuracy, despite
the fact that the part displacements produced by the
Felzenszwalb et al. detectors are noisy and appear un-
intelligible to the human eye.

3.4 GENERATING SENTENCES

We produce a sentence from a detected action class to-
gether with the associated tracks using the templates
from Table 3. In these templates, words in italics de-
note fixed strings, words in bold indicate the action
class, X and Y denote subject and object noun phrases,
and the categories Adv, PPendo, and PPexo denote
adverbs and prepositional-phrase adjuncts to describe
the subject motion. The processes for generating these
noun phrases, adverbs, and prepositional-phrase ad-
juncts are described below. One-track HMMs take
that track to be the agent and thus the subject. For
two-track HMMs we choose the mapping from tracks
to roles that yields the higher likelihood and take the
agent track to be the subject and the patient track to
be the object except when the action class is either
approached or fled, the agent is (mostly) stationary,
and the patient moves more than the agent.

Brackets in the templates denote optional entities. Op-
tional entities containing Y are generated only for two-
track HMMs. The criteria for generating optional ad-
verbs and prepositional phrases are described below.
The optional entity for received is generated when
there is a patient track whose category is mailbox,
person, person-crouch, or person-down.

We use adverbs to describe the velocity of the subject.
For some verbs, a velocity adverb would be awkward:

∗X slowly had Y ∗X had slowly Y

Furthermore, stylistic considerations dictate the syn-
tactic position of an optional adverb:

X jumped slowly over Y X slowly jumped over Y
X slowly approached Y ∗X approached slowly Y
?X slowly fell X fell slowly

The verb-phrase templates thus indicate whether an
adverb is allowed, and if so whether it occurs, prefer-
entially, preverbally or postverbally. Adverbs are cho-
sen subject to three thresholds vaction class

1 , vaction class
2 ,

and vaction class
3 determined empirically on a per-

action-class basis: We select those frames from the

subject track where the magnitude of the velocity of
the box-detection center is above vaction class

1 . An op-
tional adverb is generated by comparing the magni-
tude of the average velocity v of the subject track
box-detection centers in these frames to the per-action-
class thresholds:

quickly v > vaction class
2

slowly vaction class
1 ≤ v ≤ vaction class

3

We use prepositional-phrase adjuncts to describe the
motion direction of the subject. Again, for some verbs,
such adjuncts would be awkward:

∗X had Y leftward ∗X had Y from the left

Moreover, for some verbs it is natural to describe the
motion direction endogenously, from the perspective
of the subject, while for others it is more natural to
describe the motion direction exogenously, from the
perspective of the viewer:

X fell leftward X fell from the left

X chased Y leftward
∗X chased Y from the
left

∗X arrived leftward X arrived from the left

The verb-phrase templates thus indicate whether an
adjunct is allowed, and if so whether it is preferen-
tially endogenous or exogenous. The choice of adjunct
is determined from the orientation of v, as computed
above and depicted in Fig. 4(a,b). We omit the ad-
junct when v < vaction class

1 .

We generate noun phrases X and Y to refer to event
participants according to the following grammar:

NP → themselves | itself | something | D A∗ N [PP]
D → the | that | some

When instantiating a sentential template that has a
required object noun-phrase Y for a one-track HMM,
we generate a pronoun. A pronoun is also generated
when the action class is entered or exited and the
patient class is not car, door, suv, or truck. The
anaphor themselves is generated if the action class is
attached or raised, the anaphor itself if the action
class is moved, and something otherwise.

As described below, we generate an optional preposi-
tional phrase for the subject noun phrase to describe
the spatial relation between the subject and the object.
We choose the determiner to handle coreference, gen-
erating the when a noun phrase unambiguously refers
to the agent or the patient due to the combination of
head noun and any adjectives,

The person jumped over the ball.
The red ball collided with the blue ball.

that for an object noun phrase that corefers to a track
referred to in a prepositional phrase for the subject,

107



(a) (b) (c)

Figure 3: ROC curves for each of the 48 action classes for (a) Experiment I, omitting all discrete and body-
posture-related features, (b) Experiment II, omitting only the discrete features, and (c) Experiment III, omitting
only the continuous body-posture-related features.

X [Adv] approached Y [PPexo] X [Adv] entered Y [PPendo] X had Y X put Y down
X arrived [Adv] [PPexo] X [Adv] exchanged an object with Y X hit [something with] Y X raised Y
X [Adv] attached an object to Y X [Adv] exited Y [PPendo] X held Y X received [an object from]Y
X bounced [Adv] [PPendo] X fell [Adv] [because of Y] [PPendo] X jumped [Adv] [over Y] [PPendo] X [Adv] replaced Y
X buried Y X fled [Adv] [from Y] [PPendo] X [Adv] kicked Y [PPendo] X ran [Adv] [to Y] [PPendo]
X [Adv] carried Y [PPendo] X flew [Adv] [PPendo] X left [Adv] [PPendo] X [Adv] snatched an object from Y
X caught Y [PPexo] X [Adv] followed Y [PPendo] X [Adv] lifted Y X [Adv] stopped [Y]
X [Adv] chased Y [PPendo] X got an object from Y X [Adv] moved Y [PPendo] X [Adv] took an object from Y
X closed Y X gave an object to Y X opened Y X [Adv] threw Y [PPendo]
X [Adv] collided with Y [PPexo] X went [Adv] away [PPendo] X [Adv] passed Y [PPexo] X touched Y
X was digging [with Y] X handed Y an object X picked Y up X turned [PPendo]
X dropped Y X [Adv] hauled Y [PPendo] X [Adv] pushed Y [PPendo] X walked [Adv] [to Y] [PPendo]

Table 3: Sentential templates for the action classes indicated in bold.

The person to the right of the car approached
that car.
Some person to the right of some other person
approached that other person.

and some otherwise:

Some car approached some other car.

We generate the head noun of a noun phrase from the
object class using the mapping in Table 2(a). Four dif-
ferent kinds of adjectives are generated: color, shape,
size, and restrictive modifiers. An optional color ad-
jective is generated based on the average HSV values
in the eroded detection boxes for a track: black when
V ≤ 0.2, white when V ≥ 0.8, one of red, blue, green,
yellow, teal, or pink based on H, when S ≥ 0.7. An
optional size adjective is generated in two ways, one
from the object class using the mapping in Table 2(c),
the other based on per-object-class image statistics.
For each object class, a mean object size āobject class is
determined by averaging the detected-box areas over
all tracks for that object class in the training set used
to train HMMs. An optional size adjective for a track
is generated by comparing the average detected-box
area a for that track to āobject class:

big a ≥ βobject classāobject class

small a ≤ αobject classāobject class

The per-object-class cutoff ratios αobject class and
βobject class are computed to equally tripartition the
distribution of per-object-class mean object sizes on
the training set. Optional shape adjectives are gener-
ated in a similar fashion. Per-object-class mean aspect
ratios r̄object class are determined in addition to the per-
object-class mean object sizes āobject class. Optional
shape adjectives for a track are generated by compar-
ing the average detected-box aspect ratio r and area a
for that track to these means:

tall r ≤ 0.7r̄object class ∧ a ≥ βobject classāobject class

short r ≥ 1.3r̄object class ∧ a ≤ αobject classāobject class

narrow r ≤ 0.7r̄object class ∧ a ≤ αobject classāobject class

wide r ≥ 1.3r̄object class ∧ a ≥ βobject classāobject class

To avoid generating shape and size adjectives for
unstable tracks, they are only generated when the
detection-score variance and the detected aspect-ratio
variance for the track are below specified thresholds.
Optional restrictive modifiers are generated from the
object class using the mapping in Table 2(b). Person-
pose adjectives are generated from aggregate body-
posture information for the track: object class, nor-
malized part displacements, and body-posture code-
book indices. We generate all applicable adjectives ex-
cept for color and person pose. Following the Gricean
Maxim of Quantity [Grice, 1975], we only generate
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Figure 4: (a) Endogenous and (b) exogenous prepositional-phrase adjuncts to describe subject motion direction.
(c) Prepositional phrases incorporated into subject noun phrases describing viewer-relative 2D spatial relations
between the subject X and the reference object Y.

color and person-pose adjectives if needed to prevent
coreference of nonhuman event participants. Finally,
we generate an initial adjective other, as needed to
prevent coreference. Generating other does not allow
generation of the determiner the in place of that or
some. We order any adjectives generated so that other
comes first, followed by size, shape, color, and restric-
tive modifiers, in that order.

For two-track HMMs where neither participant moves,
a prepositional phrase is generated for subject noun
phrases to describe the static 2D spatial relation be-
tween the subject X and the reference object Y from
the perspective of the viewer, as shown in Fig. 4(c).

4 EXPERIMENTAL RESULTS

We used the HMMs generated for Experiment III to
compute likelihoods for each video in our test set
paired with each of the 48 action classes. For each
video, we generated sentences corresponding to the
three most-likely action classes. Fig. 5 shows key
frames from four videos in our test set along with
the sentence generated for the most-likely action class.
Human judges rated each video-sentence pair to as-
sess whether the sentence was true of the video and
whether it described a salient event depicted in that
video. 26.7% (601/2247) of the video-sentence pairs
were deemed to be true and 7.9% (178/2247) of the
video-sentence pairs were deemed to be salient. When
restricting consideration to only the sentence corre-
sponding to the single most-likely action class for each
video, 25.5% (191/749) of the video-sentence pairs
were deemed to be true and 8.4% (63/749) of the
video-sentence pairs were deemed to be salient. Fi-
nally, for 49.4% (370/749) of the videos at least one
of the three generated sentences was deemed true and
for 18.4% (138/749) of the videos at least one of the
three generated sentences was deemed salient.

5 CONCLUSION

Integration of Language and Vision [Aloimonos et al.,
2011, Barzialy et al., 2003, Darrell et al., 2011, McK-

evitt, 1994, 1995–1996] and recognition of action in
video [Blank et al., 2005, Laptev et al., 2008, Liu
et al., 2009, Rodriguez et al., 2008, Schuldt et al.,
2004, Siskind and Morris, 1996, Starner et al., 1998,
Wang and Mori, 2009, Xu et al., 2002, 2005] have
been of considerable interest for a long time. There
has also been work on generating sentential descrip-
tions of static images [Farhadi et al., 2009, Kulkarni
et al., 2011, Yao et al., 2010]. Yet we are unaware of
any prior work that generates as rich sentential video
descriptions as we describe here. Producing such rich
descriptions requires determining event participants,
the mapping of such participants to roles in the event,
and their motion and properties. This is incompatible
with common approaches to event recognition, such
as spatiotemporal bags of words, spatiotemporal vol-
umes, and tracked feature points that cannot deter-
mine such information. The approach presented here
recovers the information needed to generate rich sen-
tential descriptions by using detection-based tracking
and a body-posture codebook. We demonstrated the
efficacy of this approach on a corpus of 749 videos.
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The upright person to the right of the motorcycle went away leftward.

The person walked slowly to something rightward.

The narrow person snatched an object from something.

The upright person hit the big ball.

Figure 5: Key frames from four videos in our test set along with the sentence generated for the most-likely action
class.
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Abstract

We address the problem of estimating the effect of in-
tervening on a set of variables X from experiments on
a different set, Z, that is more accessible to manipu-
lation. This problem, which we call z-identifiability,
reduces to ordinary identifiability when Z = ∅ and,
like the latter, can be given syntactic characterization
using the do-calculus [Pearl, 1995; 2000]. We provide
a graphical necessary and sufficient condition for z-
identifiability for arbitrary sets X,Z, and Y (the out-
comes). We further develop a complete algorithm for
computing the causal effect of X on Y using informa-
tion provided by experiments on Z. Finally, we use
our results to prove completeness of do-calculus rela-
tive to z-identifiability, a result that does not follow
from completeness relative to ordinary identifiability.

1 Introduction

The relation between passive and experimental obser-
vations, and how they can aid the estimation of causal
effects, is of central interest in the empirical sciences.

In this line of research, the identification problem (ID,
for short) asks whether causal effects can be computed
from the joint distribution P over the observed vari-
ables, and theoretical knowledge encoded in the form
of a causal diagram G.

This problem has been extensively studied in the lit-
erature, and [Pearl, 1995; 2000] gave it rigorous math-
ematical treatment based on the structural semantics,
and introduced several graphical conditions such as the
“back-door” and “front-door” criteria, which was later
generalized by his do-calculus. In the last decades, a
number of conditions had emerged for non-parametric
identifiability such as the ones given by [Spirtes, Gly-
mour, and Scheines, 1993; Galles and Pearl, 1995;
Pearl and Robins, 1995; Halpern, 1998; Kuroki and
Miyakawa, 1999]. In a series of breakthrough results
starting with the development of the concept of C-

component [Tian and Pearl, 2002], the do-calculus was
finally shown to be complete [Huang and Valtorta,
2006; Shpitser and Pearl, 2006]. This result implies
that there exists a finite sequence of applications of
the rules of do-calculus that derives the target causal
effect Q in terms of the observational distribution P
if (and only if) Q is identifiable. The same work also
provided algorithms that return a mapping from P to
Q whenever Q is identifiable.

In real world applications, it is not uncommon that
the quantity Q is unidentifiable, i.e., the distribution
P together with the graph G are not able to unambigu-
ously determine Q. A natural question arises whether
the investigator could perform some auxiliary experi-
ments (not necessary spelled out in Q), which would
enable him/her to estimate the desired causal effects.

For instance, consider the causal diagram G in Fig.
1(a). Suppose one is interested in assessing the ef-
fect Q of cholesterol levels (X) on heart disease (Y ),
and data about subjects’ diet (Z) is also collected.
It is clear that Q is unidentifiable from the assump-
tions embodied in G, but it is infeasible in reality to
control subjects’ cholesterol level by intervention. As-
sume that an experiment can be conducted in which
the subjects’ diet (Z) is randomized; a natural ques-
tion emerges whether Q is computable given this ad-
ditional piece of experimental information?

Surprisingly, this ubiquitous problem has not received
a thorough formal treatment. We introduce a variation
of the ID problem to fill in this gap. Consider a set-
ting in which, in addition to the information available
in an ordinary ID instance (distribution P and graph
G), further experiments can be performed over a set
of variables Z; decide whether the target causal ef-
fects can be computed from the available information
at hand. This extension generalizes the ID problem
(when Z = ∅ the two problems coincide) and is called
here the z-identification problem (zID, for short). The
Z is called surrogate experiments, for obvious reasons.
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Syntactically, the zID problem amounts to trans-
forming P (y|x̂)1 into an equivalent expressions in do-
calculus such that only members of Z may contain the
hat symbol. Applying this rationale for the example
given above (Fig. 1(a)) entails the following reduction
in the do-calculus. First apply Rule 3 to add ẑ,

P (y|x̂) = P (y|x̂, ẑ) since (Y ⊥⊥ Z|X)GXZ

Then apply Rule 2 to exchange x̂ with x:

P (y|x̂, ẑ) = P (y|x, ẑ) since (Y ⊥⊥ X|Z)GXZ

This last expression can be rewritten as,

P (y|x, ẑ) =
P (y, x|ẑ)
P (x|ẑ) (1)

This expression shows that performing an experiment
on Z suffices to yield “identifiability” of the causal
effect of X on Y without experimenting over X. 2

The subtlety of this problem can be illustrated by not-
ing that in the graph in Fig. 1(a) the effect is z-
identifiable from P (V ) and P (X,Y |Ẑ) in G, whereas
in the graph in Fig. 1(b) it is not (to be shown later).
The only difference between these two graphs is the
bidirected edge between the pairs (X,Z) and (X,Y ).

One might surmise that zID can be represented by
a mutilated graph in which the edges incoming to
Z are cut, and the problem would then be solved
as ordinary identifiability. Unfortunately, this is not
the case as shown in the graph in Fig. 1(c) where
Q = P (y|x̂). The option of manipulating Z does not
enable us to compute the Z-specific causal effect of X
on Y , P (y|x̂, z) which , if available, would allow us to
compute the overall causal effect by averaging over Z.
Although Q′ = P (y|x̂, ẑ) can be established from the
mutilated graph, it does not help in establishing the
Z-specific causal effect, or Q.

The first formal treatment of this problem [Pearl, 1995]

led to the following sufficient condition for admitting
a surrogate variable Z for the causal effect P (y|x̂):

(i) X intercepts all directed paths from Z to Y , and

(ii) P (y|x̂) is identifiable in GZ .

These conditions are satisfied indeed in the model of
Fig. 1(a) but not in 1(b) or 1(c). Pearl’s criterion is
sufficient but was not shown to be necessary. Addi-
tionally, it was not extended to the case where Z and
X are sets of variables. At the same time, the syntac-
tic condition above, which requires the existence of a

1We will use P (y|x̂) interchangeably with Px(y) or
P (y|do(x)). We also will call the interventional operator
do() as the “hat” operator.

Y

Z
X

(b)
Y

Z
X

(a) (c)
Y

Z
X

Figure 1: Causal diagrams illustrating z-identifiability
of the causal effect Q = P (y|x̂). Q can be identified by
experiments on Z in model (a), but not in (b) and (c).

do-calculus transformation expression containing only
do(z) terms is declarative, but is not computationally
effective, since it does not specify the sequence of rules
leading to the needed transformation, nor does it tell
us if such a sequence exists. Even though do-calculus
is complete for identifying causal effects, it is not im-
mediately clear whether it is complete for zID.

This paper provides a systematic study of z-
identifiability building on Pearl’s condition and the
previous results from the identifiability literature; our
contributions are as follows:

• We provide a necessary and sufficient graphical
condition for the problem of z-identification when
Z is a set of variables.

• We then construct a complete algorithm for de-
ciding z-identification of joint causal effects and
returning the correct formula whenever those ef-
fects are z-identifiable.

• We further show that do-calculus is complete for
the task of z-identification.

2 Notation and Definitions

The basic semantical framework in our analysis rests
on probabilistic causal models as defined in [Pearl,
2000, pp. 205], which are also called structural causal
models or data-generating models. In the structural
causal framework [Pearl, 2000, Ch. 7], actions are mod-
ifications of functional relationships, and each action
do(X = x) on a causal model M produces a new model

2The expression also shows that only one level of Z suf-
fices for the identification of P (y|x̂) for any value of y and
x. In other words, Z need not be varied at all; it can simply
be held constant by external means and, if the assumptions
embodied in G are valid, the r.h.s. of eq. (1) should attain
the same value regardless of the (constant) level at which
Z is being held constant. In practice, however, several lev-
els of Z will be needed to ensure that enough samples are
obtained for each desired value of X.
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Mx = 〈U,V,Fx, P (U)〉, where Fx is obtained after re-
placing fX ∈ F for every X ∈ X with a new function
that outputs a constant value x given by do(X = x).

We follow the conventions given in [Pearl, 2000]. We
will denote variables by capital letters and their val-
ues by small letters. Similarly, sets of variables will be
denoted by bold capital letters, sets of values by bold
letters. We will use the typical graph-theoretic termi-
nology with the corresponding abbreviations Pa(Y)G,
An(Y)G, and De(Y)G, which will denote respectively
the set of observable parents, ancestors, and descen-
dants of the node set Y in G. By convention, these sets
will include the arguments as well, for instance, the
ancestral set An(Y)G will include Y. We will usually
omit the graph subscript whenever the graph in ques-
tion is assumed or obvious. A graph GY will denote
the induced subgraph G containing nodes in Y and all
arrows between such nodes. Finally, GXZ stands for
the edge subgraph of G where all incoming arrows into
X and all outgoing arrows from Z are removed.

We build on the problem of identifiability, defined be-
low, which expresses the requirement that causal ef-
fects must be computable from a combination of pas-
sive data P and the assumptions embodied in a causal
graph G (without assuming any availability of addi-
tional experimental information).

Definition 1 (Causal Effects Identifiability (Pearl)).
Let X,Y be two sets of disjoint variables, and let G
be the causal diagram. The causal effect of an action
do(X = x) on a set of variables Y is said to be iden-
tifiable from P in G if Px(y) is (uniquely) computable
from P (V ) in any model that induces G.

The following Lemma is the operational way to prove
that a causal quantity is not identifiable given the as-
sumptions embedded in G.

Lemma 1. Let X,Y be two sets of disjoint variables,
and let G be the causal diagram. Px(y) is not iden-
tifiable in G if there exist two causal models M1 and
M2 compatible with G such that P1(V) = P2(V), and
P1(y|do(x)) 6= P2(y|do(x)).

Proof. The latter inequality rules out the existence of
a function from P to Px(y).

Next, we formally introduce the problem of z-
identifiability that generalizes the problem of identifia-
bility whereas it is no longer assumed that experimen-
tal information is not available at all, but there exists a
set of variable Z in which experiments were performed
and now is available for use. In other words, the ex-
plicit acknowledgement of the existence of the set Z
adds a degree of freedom for the researcher, making
the analysis more flexible and perhaps realistic.

Definition 2 (Causal Effects z-Identifiability). Let
X,Y,Z be disjoint sets of variables, and let G be
the causal diagram. The causal effect of an action
do(X = x) on a set of variables Y is said to be z-
identifiable from P in G, if Px(y) is (uniquely) com-
putable from P (V) together with the interventional
distributions P (V \ Z′|do(Z′)), for all Z′ ⊆ Z, in any
model that induces G.

Armed with this new definition, we state next the suf-
ficiency of the do-calculus for zID that is analogous to
[Pearl, 2000, Corol. 3.4.2] in respect to identification.

Theorem 1. Let X,Y,Z be disjoint sets of variables,
let G be the causal diagram, and Q = P (y|do(x)). Q
is zID from P in G if the expression P (y|do(x)) is re-
ducible, using the rules of do-calculus, to an expression
in which only elements of Z may appear as interven-
tional variables.

Proof. The result follows from soundness of do-
calculus and the definition of z-identifiability.

It is clear that if we have an efficient procedure to es-
tablish zID, we can immediately decide ID by setting
Z = ∅. On the other hand, to be able to establish
the converse of Theorem 1, we need to understand the
conditions for non-zID, and so, we state next the anal-
ogous of Lemma 1 in this context.

Lemma 2. Let X,Y,Z be disjoint sets of variables,
and let G be the causal diagram. Px(y) is not z-
identifiable in G if there exist two causal models M1

and M2 compatible with G such that P 1(V) = P 2(V),
P 1(V\Z′|do(Z′)) = P 2(V\Z′|do(Z′)), for all Z′ ⊆ Z,
and P 1

x(y) 6= P 2
x (y).

Proof. Let I be the set of interventional distributions
P (V\Z′|do(Z′)), for any Z′ ⊆ Z. The latter inequality
rules out the existence of a function from P, I to Px(y).

While Lemma 2 might appear convoluted, it is nothing
more than a formalization of the statement “Q cannot
be computed from information set S alone.” Natu-
rally, when S has two components, 〈P, I〉 , the Lemma
becomes lengthy. Even though the problems of ID and
zID are related, Lemma 2 indicates that proofs of non-
zID are at least as hard as the ones for non-ID, given
that to prove the former requires the construction of
two models to agree on 〈P, I〉, while to prove the latter
it is only required for the two models to agree on the
distribution P .

3 Characterizing zID Relations

The concept of confounded component (or C-
component) was introduced in [Tian and Pearl, 2002]
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to represent clusters of variables connected through
bidirected edges, and was instrumental in establish-
ing a number of conditions for ordinary identification
(Def. 1). If G is not a C-component itself, it can be
uniquely partitioned into a set C(G) of C-components.
We state below this definition that will also play a key
role in the problem of zID. 3

Definition 3 (C-component). Let G be a causal di-
agram such that a subset of its bidirected arcs forms
a spanning tree over all vertices in G. Then G is a
C-component (confounded component).

A special subset of C-components that embraces the
ancestral set of Y was noted by [Shpitser and Pearl,
2006] to play an important role in deciding identifi-
ability – this observation can also be applied to z-
identifiability, as formulated next.

Definition 4 (C-forest). Let G be a causal diagram,
where Y is the maximal root set. Then G is a Y-
rooted C-forest if G is a C-component and all observ-
able nodes have at most one child.

We next introduce a structure based on C-forests that
witnesses unidentifiability characterized by a pair of
C-forests. ID was shown by [Shpitser and Pearl, 2006]

infeasible if and only if such structure exists as an edge
subgraph of the given causal diagram.

Definition 5 (hedge). Let X,Y be set of variables in
G. Let F, F ′ be R-rooted C-forests such that F ∩X 6=
0, F ′ ∩X = 0, F ′ ⊆ F , R ⊂ An(Y)GX

. Then F and
F ′ form a hedge for Px(Y) in G.

The presence of this structure will prove to be an ob-
stacle to z-identifiability of causal effects in various
scenarios. For instance, the p-graph in Fig. 1(b) is a
Y -rooted C-forest in which Px(y) will show not to be
z-identifiable. However, different than in the ID case,
there is no sharp boundary here, since Fig. 1(a) also
contains a Y -rooted C-forest but Px(y) was already
shown to be zID.

We formally show next that there is a variation of this
structure that is able to capture non-zID for a broad
set of cases.

Theorem 2. Let X, Y, Z be disjoint sets of variables
and let G be the causal diagram. Then, the causal
effects Q = Px(y) is not zID if there exists a hedge
F = 〈F, F ′〉 for Q in GZ .

Proof. The result is immediate. The existence of the
hedge F for Q in GZ implies that Z cannot help in the
(ordinary) identification of Q. Let us assume that Q

3The advent of C-components complements the notion
of inducing path, which was introduced earlier in [Verma
and Pearl, 1990].

Y
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(b)
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Y

Z

X

(a)
Y

X
Z

(c)

Figure 2: Graphs in which P (y|x̂) is non-zID from
do(Z) and there is no hedge in GZ .

is zID. Note that Z does not participate in the hedge
F since there is no bidirected edge going towards any
of its elements in GZ, which is required by the defini-
tion of C-forest. Further, consider a parametrization
such that all elements of Z are simply fair coins and
disconnected from V \ Z in G.

We can now use the same proof of non-ID based on F
to prove non-zID in G. The inequality of Q between
the two models is obvious, and the agreement of the in-
terventional distributions do(Z) follows since Z is dis-
connected from V \ Z by the chosen parametrization.
This is a contradiction since zID has to be valid for
any parametrization compatible with G, which suffices
to prove the result.

Consider the next Corollary in regard to the p-graph,
which is the smallest example in which Z could aid in
the z-identification of Q but Q is still not z-identifiable
from do(Z). This and similar structures that prevent
zID will be one of the base cases for our proof of com-
pleteness, which requires a demonstration that when-
ever the algorithm fails to z-identify a causal relation,
the relation is indeed non-zID.

Corollary 1. Px(y) is not zID in the p-graph.

Proof. This follows directly from Theorem 2 since
there exists a hedge in GZ .

The result of Theorem 2 still does not characterize the
zID class, which suggests that the machinery used to
prove completeness in the ID class is not immediately
applicable to the zID class.

For instance, consider the graph in Fig. 2(a) (called
here bv-graph), which does not have a hedge for Q in
GZ but is still non-zID . The bv-graph coincides as
an edge subgraph with Fig. 1(a) (note C-component
induced over {X,Y, Z}), which turns out to be zID.

This is an interesting case, since up to this point, in or-
dinary identification, it was enough to locate a hedge
for Q as an edge subgraph of the inputted diagram,
and all graphs sharing this substructure were equally
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Figure 3: P (y|x̂) is zID from 〈P, do(Z)〉 in the graphs in the first row (a–d), but not in the the second row (e–h).

unidentifiable (see Thm. 4 in [Shpitser and Pearl,
2006]) – this is no longer true here since Z needs to
be taken into account. Mainly, note that the directed
edges outside a C-component play a very critical role
for the zID problem as the bv-graph demonstrates.

Finally, we expand Pearl’s condition [Pearl, 2000, pp.
87] in the following directions. We extend, in the in-
tuitive way, his condition to consider when Z is a set
of variables and, in turn, we supplement the sufficient
part with its necessary counterpart. We finally have a
complete characterization for the zID class as shown
below.

Theorem 3. Let X, Y, Z be disjoint sets of variables
and let G be the causal diagram. The causal effect
Q = P (y|do(x)) is zID in G if and only if one of the
following conditions hold:

a. Q is identifiable in G; or,

b. There exists Z′ ⊆ Z such that the following condi-
tions hold,

(i) X intercepts all directed paths from Z′ to Y,
and

(ii) Q is identifiable in GZ′ .4

Proof. See Appendix.

Let Q = P (y|x̂) be the effect of interest and assume
that experiments were performed over {Z}. Q is zID
from P and do(Z) in the graphs in Fig. 3(a-d), while
they are non-zID in the graphs in Fig. 3(e-h). Ex-
cept for the trivial case, Theorem 3 is existentially

quantified and it is not immediately obvious how to
efficiently select the covariates simultaneously satisfy-
ing both conditions of the Theorem. Clearly, a naive
approach could lead to an exponential number of tests.

For example, consider the graph in Fig. 3(a) that is
a variation of the bv-graph. In this graph, Q is zID
using experiments from {Z}. In turn, consider the
graph in Fig. 3(e), which is the same as 3(a) but with
the bidirected edge W ←→ X added. Now, Q is no
longer zID for {Z} nor {Z,W}. If we further consider
the graph in Fig. 3(b) with the bidirected edgeW ←→
X removed from 3(e), not only Q becomes zID for
{Z} but also for {Z,W}. This is a border case, note
that if we input {Z,W} as the surrogate variables for
Pearl’s criterion, it will not be able to recognize Q as
zID given the existence of the directed path W → Y .
Finally, if we consider the graph in Fig. 3(f) in which
the directed edge W → Z is flipped from 3(b), Q is no
longer zID for neither {Z,W} nor {Z}.
This example can be extended indefinitely but it is
clear that finding a set that satisfies both conditions
of the Theorem, in structures more intricate than the
given 4-node example, does not follow immediately.
The subject of the next section is about finding an ef-
ficient (and complete) algorithm to solve this problem.

But for now, consider the following Lemma that con-
firms our intuition that surrogate experiments should
not disturb the causal paths (non-descendents) of the
variables that are being analyzed.

4This condition can be rephrased graphically as “There
exists no hedge for Q as an edge subgraph in GZ′ .”

117



Corollary 2. Let G be the causal diagram, X, Y ⊂ V
be disjoint sets of variables, and Z ⊆ De(X)GAn(Y)

.
The causal effect Q = P (y|do(x)) is not zID from P
and do(Z) in G, if Q is not ID from P in G.

Proof. The result follows directly from Theorem 3.

4 A Complete Algorithm for zID

In this section, we propose a simple extension of the
ordinary identification algorithms to solve the problem
of z-identifiability, which we call IDz (see Fig. 4).

We build on previous analysis of identifiability given
in [Pearl, 1995; Kuroki and Miyakawa, 1999; Tian and
Pearl, 2002; Shpitser and Pearl, 2006; Huang and Val-
torta, 2006], and we choose to start with the version
provided by Shpitser (called ID) since the hedge struc-
ture is explicitly employed, which will show to be in-
strumental to prove completeness.

Before considering the technical results, we explain our
strategy and how our version of the algorithm relates
to the existent ones for ordinary identifiability.

(i) z-identifiability (sufficiency): Causal relations
can be solved in our context through ordinary iden-
tifiability or identifiability relying on the experiments
performed over Z. The current algorithms already op-
erate on the first part, and they proceed exploring a
sequence of equalities in do-calculus based on the C-
component decomposition. (The idea is to apply a
divide-and-conquer strategy breaking the problem into
smaller, more manageable pieces, and then to assemble
them back when it is possible.) It turns out that the
equalities used by the algorithm are all in the inter-
ventional space (between interventional distributions
except for the base cases), which is attractive for the
zID problem since certain interventional distributions
Z are already available to use.

For instance, when steps 3 or 4 succeed in their tests
and, at the same time, have non-empty intersection
with Z, we exploit the common variables, updating
the graph and respective data structures accordingly.
We then continue solving an ordinary ID instance but
no longer have to identify these variables and they pos-
sibly can help in the identifiability of others.

(ii) Non-z-identifiability (necessity): The algo-
rithm proceeds until it is not able to resolve a certain
subproblem, which implies the existence of a certain
hedge. Note that the given hedge can be different than
the one used for ID in the same graph since the experi-
ments over Z possibly destroyed the original ones. Fur-
ther, note that to use the given hedge to prove non-zID
is not immediate since, in the light of Lemma 2, more
constraints need to be satisfied in order to support

function IDz(y,x,Z, I,J , P,G)
INPUT: x,y: value assignments; Z: variables with
interventions available; I,J : see caption; P : current
probability distribution do(I,J , x) (observational
when I = J = ∅); G: causal graph.
OUTPUT: Expression for Px(y) in terms of P, Pz or
FAIL(F, F ′).

1 if x = ∅, return
∑

v\y P (v).

2 if V \An(Y)G 6= ∅,
return IDz(y,x ∩An(Y)G,Z,

I,J ,∑v\An(Y)G
P,An(Y)G).

3 Set Zw = ((V \ (X ∪ I ∪ J )) \An(Y)GX∪I∪J ) ∩ Z.

Set W = ((V \ (X ∪ I ∪ J )) \An(Y)GX∪I∪J ) \ Z.

if (Zw ∪W) 6= ∅,
return IDz(y,x ∪w,Z \ Zw, I ∪ zw,J , P,G).

4 if C(G \ (X ∪ I ∪ J )) = {S0, S1, ..., Sk},
return

∑
v\{y,x,I}

∏
i ID

z(si, (v \ si) \ Z,

Z \ (V \ Si), I,J ∪ (Z ∩ (v \ si)), P,G).
if C(G \ (X ∪ I ∪ J )) = {S},

5 if C(G) = {G}, FAIL(G,S).
6 if S ∈ C(G),

return
∑
s\y
∏
i|Vi∈S P (vi|v(i−1)G \ (I ∪ J )).

7 if (∃S′)S ⊂ S′ ∈ C(G),
return IDz(y,x ∩ S′, Z, I, J ,∏

i|Vi∈C′ P (Vi|V (i−1)
G ∩ S′, v(i−1)G \ (S′ ∪ I ∪ J )), S′).

Figure 4: IDz: Modified version of ID algorithm ca-
pable of recognizing zID ; The variables I,J represent
indices for currently active Z-interventions introduced
respectively by steps 3 or 4. Note that P is sensitive
to current instantiations of I,J .

such claim. Still, it is clear that if Z is not involved
in the hedge, it can be shown that the two problems
coincide. The other cases in which Z has non-empty
intersection with the hedge have to be handled more
carefully.

Note that the key difference between IDz and the orig-
inal ID implementation is in steps 3 and 4 in which
possibly some Z′ ⊆ Z is added as an interventional
set, and kept as so until the end of the execution. It
is clear that these additions just can represent a bene-
fit in computing the target Q since is always easier to
identify a quantity in a subgraph of the original input.

We prove next soundness and completeness of IDz.

Theorem 4 (soundness). Whenever IDz returns an
expression for Px(y), it is correct.

Proof. The result is immediate since the soundness of
ID was already established [Shpitser and Pearl, 2006,
Thm. 5], which is inherited by IDz by construction.
Note that adding Z′ ⊆ Z as an interventional set and
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not trying to “identify” it later does not represent a
problem, in the zID sense, since by assumption we can
use the interventional distributions do(Z) in the final
expression returned by the procedure.

Theorem 5. Assume IDz fails to z-identify Px(y)
from P and do(Z) in G (executes line 5). Then there
exists X′ ⊆ X, Y′ ⊆ Y, Z′,Z′′ ⊆ Z such that the
graph pair G,S returned by the fail condition of IDz

contain as edge subgraphs C-forests F , F ′ that form a
hedge for Px′,z′(y′, z′′).

Proof. This property is just partly inherited from the
original ID since we can add Z′ ⊆ Z as interventional
nodes along the execution of IDz; we also keep track of
Z′′ ⊆ Z that are related toAn(Y) during the execution
of the procedure (to be specified below).

Consider G, Yf , I and J local to the call in which
IDz exited with failure (line 5). It is true that the
set Yf is such that Z′′ = Yf ∩ Z and Y′ = Yf ∩Y.
Let Z′ ⊆ Z be the active part of Z in the faulty call,
which we kept track through I∪J . The condition that
triggered failure is that the whole graph was a single
C-component. Let R be the root set of G. We can
remove a set of directed arrows while keeping the root
R such that the resulting F is an R-rooted C-forest.

Similarly to ID, note that since F ′ = F ∩ S is closed
under descendent and only single directed arrows were
removed from S to obtain F ′, F ′ is also a C-forest.
Now, F ′ ∩ (X ∪ Z′) = ∅ and F ′ ∩ (X ∪ Z′) 6= ∅, by
construction. Also, R ⊆ An(Y′,Z′′)G

X,Z′ and Z′′ ⊆
An(Y)G

X,Z′ , by line 2 and 3 of the algorithm.

Theorem 6 (completeness). IDz is complete.

Proof. By Theorem 5, IDz failure implies the exis-
tence of X′ ⊆ X, Y′ ⊆ Y, Z′,Z′′ ⊆ Z, and C-forests
F , F ′ that form a hedge for Px′,z′(y′, z′′). Let us pro-
ceed our analysis by cases:

Case Z′ = ∅,Z′′ = ∅. The construction provided by
[Shpitser and Pearl, 2006, Corollary 2] can be used
here since this case reduces to ordinary identifiability.

Case Z′ = ∅,Z′′ 6= ∅. Even though Z′′ is in the root
set of the hedge, and not related to the interventional
part (F \F ′) where the asymmetry in the construction
usually resides (to generate inequality in Q), the previ-
ous construction have to be used with certain caution,
as given by case 1 of Thm. 3.

There is an interesting border subcase when Y′ =
∅. We need to keep track of {I,J } since if the Z-
interventions are added in step 3, we should not be
concerned with summing over the assignments of the
variables added, but if the Z-interventions are added in

step 4, we do have to take care of this case. Note that
we would have some hedge in a do-equality in the form
Q =

∑
z′′ Px′(z′′)f(x,y, ...), in which if f(.) is iden-

tifiable and uniformly distributed, Q would equate in
both models and spoil the counter-example. The prob-
lem is not difficult to fix, and we just have to create a
map for f() that is non-uniform. (See Thm. 3.)

Case Z′ 6= ∅,Z′′ = ∅. The construction provided in
cases 2 and 3 of Thm. 3 were more involved since
it was not know a priori which C-factor yielded the
“faulty” call. In the IDz case, we already located the
hedge based on the trace of the algorithm, then we can
essentially use the same construction of these cases to
provide a counterexample.

Case Z′ 6= ∅,Z′′ 6= ∅. The construction provided in
the two previous cases are not incompatible, and they
can be combined to provide a counter-example to this
scenario.

Moreover, the previous constructions were given over
the subgraph H of G, and how to extend the counter-
example to G is discussed in Theorem 3.

Corollary 3. The rules of do-calculus, together with
standard probability manipulations are complete for
determining z-identifiability of Px(y).

Proof. It was already shown [Shpitser and Pearl, 2006,
Thm. 7] that the operations of ID correspond to se-
quences of standard probability manipulations and ap-
plication of the rules of do-calculus, which is also true
by construction for IDz, and so the result follows.

Conclusion

This paper was concerned with a variation of the iden-
tifiability problem in which experiments can be con-
ducted over a subset of the variables Z in addition to
the assumptions embodied in a causal digram G and
the statistical knowledge given as a probability dis-
tribution. (If Z is an empty set, the two problems
coincide.)

We provide a graphical necessary and sufficient condi-
tion for the cases when the causal effect of an arbitrary
set of variables on another arbitrary set can be deter-
mined uniquely from the available information. We
further provide a complete algorithm for computing
the resulting mapping, that is, a formula fusing avail-
able observational and experimental data to synthesize
an estimate of the desired causal effects. Furthermore,
we use our results to prove completeness of do-calculus
in respect to the z-identifiability class.

Our results were developed in a non-parametric set-
ting in the tradition of the do-calculus. For a future
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research direction, it would be interesting to explore
how experimental data can aid the identification in the
linear case. This is a harder problem, since a complete
characterization of ordinary identifiability (i.e., Z = ∅)
in the linear case is still an open problem.

This paper complements two recent works on gener-
alizability of causal and statistical knowledge. The
first, dubbed “transportability” [Pearl and Barein-
boim, 2011; Bareinboim and Pearl, 2012b] , deals with
transferring causal information from an experimental
to an observational environment, potentially different
from the first. The second, called “selection bias”
[Bareinboim and Pearl, 2012c], deals with extrapo-
lation between an environment in which samples are
selected preferentially and one in which no preferen-
tial sampling takes place. The extrapolation involved
in z-Identification problems takes place between two
different regimes; one in which experiments are per-
formed over Z, and one in which future experiments
are anticipated over X. Extensions to “meta syn-
thesis” tasks, where information from multiple het-
erogeneous sources are combined to increase the ef-
fective sample size, are considered in [Pearl, 2012b;
2012a].
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Abstract

Much effort has been directed at algorithms
for obtaining the highest probability configu-
ration in a probabilistic random field model –
known as the maximum a posteriori (MAP)
inference problem. In many situations, one
could benefit from having not just a single
solution, but the top M most probable solu-
tions – known as the M-Best MAP problem.

In this paper, we propose an efficient
message-passing based algorithm for solving
the M-Best MAP problem. Specifically, our
algorithm solves the recently proposed Lin-
ear Programming (LP) formulation of M-
Best MAP [7], while being orders of magni-
tude faster than a generic LP-solver. Our ap-
proach relies on studying a particular partial
Lagrangian relaxation of the M-Best MAP
LP which exposes a natural combinatorial
structure of the problem that we exploit.

1 Introduction
A large number of problems in computer vision, nat-
ural language processing and computational biology
can be formulated as the search for the most probable
state under a discrete probabilistic graphical model –
known the MAP inference problem.

In a number of such applications, one can benefit from
having not just a single best solution, rather a list
of M-best hypotheses. For example, sentences are of-
ten ambiguous and machine translation systems ben-
efit from working with multiple plausible parses of a
sentence. In computational biology, practitioners are
often interested in computing the top M most stable
configurations of a protein structure. Moreover, com-
puting such a set of M-best hypotheses is useful for
assessing the sensitivity of the model w.r.t. variations
in the input and/or the parameters of the model.

In the graphical models literature, this problem is

known as the M-Best MAP problem [7, 18, 28]. Inter-
estingly (and perhaps understandably), algorithms for
the M-Best MAP problem have closely followed the de-
velopment of the algorithms for solving the MAP prob-
lem. Similar to MAP, the first family of algorithms for
M-Best MAP [18,20] were junction-tree based exact al-
gorithms, feasible only for low-treewidth graphs. For
high-treewidth models, where Belief Propagation (BP)
is typically used to perform approximate MAP infer-
ence, Yanover and Weiss [28] showed how the pseudo-
max-marginals produced by BP may be used to com-
pute approximate M-Best MAPs.

However, with the development of Linear Program-
ming (LP) relaxations for MAP, this concurrence be-
tween MAP and M-Best MAP is no longer true. While
message-passing algorithms for solving the MAP LP
were available as soon as the LPs were studied [8,
13, 19, 24, 26], no such algorithm is known for solv-
ing the M-Best MAP LP [7]. This discrepancy is
not merely a theoretical concern – large-scale empiri-
cal comparisons [27] have found that message-passing
algorithms for MAP significantly outperform com-
mercial LP solvers (like CPLEX). More importantly,
message-passing algorithms can be applied to large-
scale problems where solvers like CPLEX simply would
not scale. Thus, if we are to apply M-Best MAP
to real instances appearing in computational biology,
computer vision and NLP, we must develop scalable
distributed message-passing algorithms.

Overview. The principal contribution of this paper
is to develop an efficient message-passing algorithm
for the M-Best MAP problem in discrete undirected
graphical models, specifically Markov Random Fields
(MRFs). Our approach studies a particular partial La-
grangian relaxation of the M-Best MAP LP [7] which
exposes the natural modular structure in the problem.
For graphs with cycles, this Lagrangian relaxation in-
volves an exponentially large set of dual variables, and
we use a dynamic subgradient method (DSM) [4] for
solving this Lagrangian dual. DSMs are a recently for-
malized class of methods that interleave a separation
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oracle procedure (that selects a subset of active dual
variables), with the dual update procedure (that takes
a step in the direction of the subgradient).

At a high-level, our algorithm brings MAP and M-Best
MAP to an equal footing vis-a-vis a message-passing
algorithm for solving the corresponding LP-relaxation.
Importantly, our algorithm retains all the guarantees
of the LP formulation of Fromer and Globerson [7],
while being orders of magnitude faster. Similar to the
observations in [27] for MAP, we find that our algo-
rithm enables solving M-Best MAP on large instances
that were unsolvable with generic LP solvers.

Outline. We begin with a brief history of the M-Best
MAP problem in Section 2; present preliminaries and
background in Section 3; revisit the M-Best MAP LP
formulation of Fromer and Globerson [7] in Section 4;
study the Lagrangian dual of this LP and present a
message-passing dual ascent algorithm for tree-MRF
in Section 5 and for general MRFs in Section 6.

2 Previous Work on M-Best MAP

The problem of finding the top M solutions to a general
combinatorial optimization problem (not just inference
in MRFs) has typically been studied in the context of
k-shortest paths [6] in a search graph. Lawler [16]
proposed a general algorithm to compute the top M
solutions for a large family of discrete optimization
problems, and the ideas used in Lawler’s algorithm
form the basis of most algorithms for the M-Best MAP
problem. If the complexity of finding the best solution
is T (n), where n is the number of variables, Lawler’s
algorithm solves n new problems. The best solution
among these n problems is the second best solution to
the original problem. Thus at an O(nM) multiplica-
tive overhead, the top M solutions can be iteratively
found. Hamacher and Queyranne [10] reduced this
overhead to O(M) by assuming access to an algorithm
that can compute the first and the second best solu-
tions.

Dechter and colleagues [5, 17] have recently provided
dynamic-programming algorithms for M-Best MAP,
but these are exponential in treewidth. Yanover
and Weiss [28] proposed an algorithm that requires
access only to max-marginals. Thus, for certain
classes of MRFs that allow efficient exact computation
of max-marginals, e.g . binary pairwise supermodular
MRFs [11], M-Best solutions can be found for arbi-
trary treewidth graphs. Moreover, approximate M-
Best solutions may be found by approximating the
max-marginal computation, e.g . via loopy BP.

More recently, Fromer and Globerson [7] provided a
LP view of the M-Best MAP problem. They proposed
an algorithm (STRIPES) that repeatedly partitions
the space of solutions and solves a 2nd-Best MAP LP
within each partition (with a generic LP-solver). We

revisit [7] in detail in Section 4, and describe a sig-
nificantly more efficient message-passing algorithm for
solving the LP in the remainder of the paper.

3 Preliminaries: MAP-MRF Inference

Notation. For any positive integer n, let [n] be short-
hand for the set {1, 2, . . . , n}. We consider a set of dis-
crete random variables x = {xi | i ∈ [n]}, each taking
value in a finite label set, xi ∈ Xi. For a set A ⊆ [n],
we use xA to denote the tuple {xi | i ∈ A}, and XA to
be the cartesian product of the individual label spaces
×i∈AXi. For ease of notation, we use xij as a short-
hand for x{i,j}. For two vector a, b ∈ Rd, we use a · b
to denote the inner product.

MAP. Let G = (V, E) be a graph defined over these

variables, i.e. V = [n], E ⊆
(V

2

)
, and let θA : XA →

R, (∀A ∈ V ∪ E) be functions defining the energy
at each node and edge for the labeling of variables
in scope. The goal of MAP inference is to find the
labeling x of the variables that minimizes this real-
valued energy function:

min
x∈XV

∑

A∈V∪E
θA(xA) (1a)

= min
x∈XV

∑

i∈V
θi(xi) +

∑

(i,j)∈E
θij(xi, xj). (1b)

The techniques developed in this paper are naturally
applicable to higher-order MRFs as well. However, to
simplify the exposition we restrict ourselves to pairwise
energy functions.

MAP Integer Program. MAP inference is typi-
cally set up as an integer programming problem over
boolean variables. For each node and edge A ∈ V ∪ E ,
let µA = {µA(s) | s ∈ XA, µA(s) ∈ {0, 1}}, be a
vector of indicator variables encoding all possible con-
figurations of xA. If µA(s) is set to 1, this implies that
xA takes label s. Moreover, let θA = {θA(s) | s ∈ XA}
be a vector holding energies for all possible configura-
tions of xA, and µ = {µA | A ∈ V ∪ E} be a vector
holding the entire configuration. Using this notation,
the MAP inference integer program can be written as:

min
µi,µij

∑

i∈V
θi · µi +

∑

(i,j)∈E
θij · µij (2a)

s.t.
∑

s∈Xi

µi(s) = 1 ∀i ∈ V (2b)

∑

s∈Xi

µij(s, t) = µj(t) ∀{i, j} ∈ E (2c)

∑

t∈Xj

µij(s, t) = µi(s) ∀{i, j} ∈ E (2d)

µi(s), µij(s, t) ∈ {0, 1} ∀i ∈ V , ∀{i, j} ∈ E (2e)

Here (2b) enforces that exactly one label is as-
signed to a variable, and (2c),(2d) that assign-
ments are consistent across edges. To be con-
cise, we will use P(G) to denote the set of µ that
satisfy the three constraints (2b),(2c),(2d). Thus,
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the above problem (2) can be written concisely as:

min
µ∈P(G), µA(s)∈{0,1}

∑

A∈V∪E
θA · µA.

MAP LP. Problem (2) is known to be NP-hard in
general [21]. A number of techniques [8, 13, 19, 24, 26]
solve a Linear Programming (LP) relaxation of this
problem, which is given by relaxing the boolean con-
straints (2e) to the unit interval, i.e. µi(s), µij(s, t) ≥
0. Thus, the MAP LP minimizes the energy over the
following polytope: L(G) =

{
µA(·) ≥ 0, | µ ∈ P(G)

}
,

also known as the local polytope. The LP relaxation of
MAP is known to be tight for special cases like tree-
graphs and binary submodular energies [25], meaning
that the optimal vertex of the local polytope is an in-
teger µA ∈ {0, 1}, for these special cases.

4 M-Best MAP Linear Program

Let us now revisit the M-Best MAP LP formulation [7].

Let µm denote the mth-best MAP. Thus µ1 is the
MAP, µ2 is the second-best MAP and so on. The
M-Best MAP integer program is given by

µM = argmin
µ∈P(G), µA(s)∈{0,1}

∑

A∈V∪E
θA · µA (3a)

s.t. µ 6= µm ∀m ∈ [M − 1] (3b)

While the MAP integer program suggested a natu-
ral LP relaxation, that is not the case with the M-
Best MAP integer program due to the exclusion con-
straints (3b), which are not linear constraints. Fromer
and Globerson [7] introduced a concise representation
of a polytope called assignment-excluding local poly-
tope L(G, {µm}M−1

1 ) that excludes previous solutions
{µm | m ∈ [M − 1]} with the help of additional linear
inequalities, called the spanning-tree inequalities.

Spanning Tree Inequalities. Let T ⊆ E
be a spanning tree of G, and T (G) be the
set of all such spanning trees in G. Let dTi
be the degree of node i in T . Let us define

IT (µ,µm) ,
∑

i∈V
(1− dTi )µi · µmi +

∑

(i,j)∈T
µij · µmij .

Now, a spanning tree inequality is defined as:
IT (µ,µm) ≤ 0.

Notice that IT (µm,µm) = 1. Moreover, it can be
shown [7] that IT (µ,µm) ≤ 0, ∀µ 6= µm. Thus, the
spanning tree inequality separates the vertex µm from
other vertices in the polytope.

Assignment-Excluding Local Polytope (AELP)
is defined as:

L(G, {µm}M−1
1 ) =

{
µ

∣∣∣∣ µ ∈ L(G), IT (µ,µm) ≤ 0,

∀T ∈ T (G), ∀m ∈ [M − 1]

}
. (4)

Thus, we can see that the AELP excludes each of the
previous solutions {µm | m ∈ [M − 1]} with the help
of spanning tree inequalities.

Recall that the LP relaxation over the local polytope
for a tree-structured MRFs is tight. It can also be
shown [7] that the LP relaxation over AELP for tree
MRFs is tight for m = 2. However, for m ≥ 3 in tree
MRFs and any for any m ≥ 1 in loopy MRFs, the
AELP is not guaranteed to be a tight relaxation.

Efficient Separation Oracle. Note that for tree
MRFs, there is a single spanning tree inequality for
each previous solution since |T (G)| = 1, while for gen-
eral graphs there may be an exponentially large col-
lection of spanning trees, e.g . |T (G)| = nn−2 for com-
plete graphs. However, not all such inequalities need
to be explicitly included. We can use a cutting-plane
algorithm that maintains a working set of spanning
trees T ′ and incrementally adds the most violated in-
equality: T ′ ←− T ′ ∪ argmaxT∈T (G) I

T (µ,µm). For
a given µ, Fromer and Globerson [7] showed that this
separation oracle can be efficiently implemented with
a maximum-weight spanning tree algorithm with the
edge weights given by wij = µij ·µmij−µi ·µmi −µj ·µmj .

Notice that this algorithm requires solving a linear pro-
gram over the AELP in each iteration. For large prob-
lems arising in computer vision and computational bi-
ology, solving this LP with a standard LP-solver even
once may be infeasible. In the next section, we present
our proposed message-passing algorithm for solving
the M-Best MAP LP.

5 M-Best MAP Lagrangian
Relaxation: Tree-MRF

Let us first restrict our attention to tree-structured
MRFs. This is simple enough a scenario to describe
the main elements of our approach; we then discuss
the general case in Section 6. For tree MRFs, there is
a single spanning tree inequality (for each m), and to
simplify notation we will refer to IT (µ,µm) simply as
I(µ,µm). Then M-Best MAP LP can be written as:

min
µ∈L(G)

∑

A∈V∪E
θA · µA (5a)

s.t. I(µ,µm) ≤ 0 ∀m ∈ [M − 1] (5b)

Now instead of solving the above problem in the pri-
mal with an LP-solver as Fromer and Globerson [7]
did, we will study the Lagrangian relaxation of this
LP, formed by dualizing the spanning tree constraints:

f(λ) = min
µ∈L(G)

∑

A∈V∪E
θA · µA +

M−1∑

m=1

λmI(µ,µm), (6)

where λ = {λm | m ∈ [M − 1]} is the set of Lagrange
multipliers, that determine the weight of the penalty
imposed for violating the spanning tree constraints.
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Note that this is a partial Lagrangian because we have
only dualized the spanning tree constraints (5b), and
have not dualized the constraints hidden inside the
local polytope L(G).

Key Idea: Exploiting Structure. The partial
Lagrangian immediately exposes a structure in the
problem that the primal formulation was obfuscating,
namely that the spanning tree inequality distributes
according to a tree structure, i.e.

f(λ) = min
µ∈L(G)

{∑

i∈V

(
θi +

M−1∑

m=1

λm(1− di)µmi
)
· µi

+
∑

(i,j)∈E

(
θij +

M−1∑

m=1

λmµmij

)
· µij

}
. (7)

Also recall that for a tree the local polytope L(G)
has integral vertices. Thus the minimization above
can be efficiently performed by running a combina-
torial optimization algorithm (the standard two-pass
max-product BP) on this perturbed MRF, and does
not need to be solved with a generic LP solver. As
we will see next, being able to efficiently evaluate the
Lagrangian is all we need to be able to optimize the
Lagrangian dual.

5.1 Projected Supergradient Ascent on the
Lagrangian Dual

From the theory of Lagrangian duality, we know that
for all values of λ ≥ 0, f(λ) is a lower-bound on the
value of the primal problem (5). The tightest lower-
bound is obtained by solving the Lagrangian dual
problem: maxλ≥0 f(λ). Since f is a non-smooth con-
cave function, this can be achieved by the supergradi-
ent ascent algorithm, analogous to the subgradient de-
scent for minimizing non-smooth convex functions [22].
Since λ is a constrained variable, we follow the pro-
jected supergradient ascent algorithm: iteratively up-
dating the Lagrange multipliers according to the fol-
lowing update rule: λ(t+1) ←−

[
λ(t) + αt∇f(λ(t))

]
+

,

where ∇f(λ(t)) is the supergradient of f at λ(t), αt
is the step-size and [·]+ is the projection operator
that projects a vector onto the positive orthant. If
the sequence of multipliers {αt} satisfies αt ≥ 0,
limt→∞ αt = 0,

∑∞
t=0 αt = ∞, then projected su-

pergradient ascent converges to the optimum of the
Lagrangian dual [22].

To find the supergradient of f(λ), consider the follow-
ing lemma (proved in [14]):

Lemma 1 If g(λ) is a point-wise minimum of linear
functions: i.e. g(λ) = minµ aµ · λ + bµ, then one
supergradient of g is given by ∇g(λ) = aµ̂(λ), where
µ̂(λ) ∈ argminµ aµ · λ+ bµ.

Notice that f is indeed a point-wise minimum of linear
functions. Mapping this lemma to (5), we can see that

the supergradient of f for our formulation is given by:

∇f(λ) =
[
I(µ̂(λ),µ1), . . . , I(µ̂(λ),µM−1)

]T
(8)

where µ̂(λ) is an optimal primal solution of (5) for
the current setting of λ. Thus the computation of the
supergradient can be done with the same dynamic pro-
gramming algorithm as for evaluating the Lagrangian.

This supergradient (and the update procedure) has an
intuitive interpretation. Recall that the Lagrangian re-
laxation minimizes a linear combination of the energy
and the value of the spanning tree inequality, with the
weighting given by λ. If µ̂(λ(t)) violates one of the
spanning tree constraints, i.e. is not different from a
previous solution µm, then the supergradient w.r.t.

λ
(t)
m will be positive and the cost for violating the con-

straint will increase after the update, thus encouraging
the next solution µ̂(λ(t+1)) to satisfy the spanning tree
constraints. Conversely, if the constraints are (strictly)
satisfied, the supergradient is negative indicating that

λ
(t)
m may be over-penalizing for violations and may be

reduced to allow lower energy solutions.

Tightness of the Lagrangian Relaxation. The
primal problem (5) is an LP, and strong duality holds.
Thus, the projected supergradient algorithm described
above exactly solves the M-Best MAP LP of Fromer
and Globerson [7]. The total complexity of the al-
gorithm is O(knL2), where k is the number of dual
ascent iterations, n is the number of nodes and L is
the largest label space, i.e. L = maxi |Xi|.

6 M-Best MAP Lagrangian
Relaxation: General MRFs

In this section, we build on the basic ideas from the
previous section to develop an algorithm for general
graphs, which may contain exponentially many span-
ning trees. Recall that the M-Best MAP LP for general
graphs is given by:

min
µ∈L(G)

∑

A∈V∪E
θA · µA (9a)

s.t. IT (µ,µm) ≤ 0, ∀T ∈ T (G),∀m ∈ [M − 1] (9b)

where T (G) is the set of all spanning trees in G. As
before, the Lagrangian formed by dualizing the span-
ning tree constraints is given by:

f(λ) = min
µ∈L(G)

∑

A∈V∪E
θA · µA +

M−1∑

m=1

∑

T∈T (G)

λmT I
T (µ,µm)

(10)

There are two main concerns that prevent us from
directly solving this Lagrangian relaxation as before.
First, the set of Lagrange multipliers λ = {λmT | m ∈
[M−1], T ∈ T (G)} is exponentially large. And second,
the graph is no longer a tree, so the supergradient
can no longer be computed by max-product BP. We
address both these concerns in the next subsections.
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Figure 1: Overview of a Dynamic Supergradient
Method. Figure adapted from [4].

6.1 Optimizing over Exponentially Many
Dual Variables with a Dynamic
Supergradient Method

In order to optimize over the exponentially large set
of dual variables, we follow a dynamic supergradient
method (DSM) (see [4] for an overview). Intuitively,
DSMs can be thought of as the dual-procedure to the
cutting-plane algorithm.

A DSM maintains an index set of active dual variables
(J = ∪mJm, where Jm ⊂ {1, . . . , |T (G)|}), and all
inactive dual variables are fixed to zero, i.e. λmj =
0, ∀j /∈ Jm. As visualized in Fig. 1, DSMs consist of
three kinds of operations:

1. Primal Block: Given the current dual vari-
able λ(t), the primal block evaluates the La-
grangian (10) to find a new primal point µ̂(λ(t)).

2. Constraint Management Block: Given the
current primal point µ̂(λ(t)), the constraint man-
agement block augments the index set of active
dual variables to get the new index set J (t). Op-
tionally, this block may also choose to drop some
dual variables from the index set. This block is
described in detail below.

3. Dual Block: Given the current index J (t), the
dual block constructs the dual update direction
(the supergradient) and stepsize to produce a new

dual variable λ(t+1) with λ
(t+1)
mj = 0, ∀j /∈ Jm(t).

The primal and dual blocks will be discussed in the
next subsection, where we describe how the supergra-
dient may be efficiently computed for general graphs.

We now describe the constraint management block in
detail. To develop an intuition for this step, recall that
the complementary slackness condition [2] tells us that
given a pair of optimal primal dual variables (µ∗ and
λ∗): IT (µ∗,µm) < 0 =⇒ λ∗mT = 0. Thus, intuitively

the active set J (t) must focus on the dual variables
corresponding to the violated inequalities. We use a
maximum violated oracle that adds to the active set

Jm(t), the index of the dual variable corresponding to
the most violated inequality, i.e.

Jm(t+1) ←− Jm(t) ∪ index(T̂ ) (11)

where,
T̂ = argmax

T∈T (G)

∑

(i,j)∈T
wij , [Max-Wt Span-Tree] (12a)

wij = µ̂ij(λ
(t)) · µmij

− µ̂i(λ
(t)) · µmi − µ̂j(λ

(t)) · µmj . (12b)

We note that this process is the dualized version of
the cutting-plane method of Fromer and Globerson [7],
where instead of adding the most violated spanning
tree inequality to the LP, we include the index of its
dual variable to the working set.

It can be shown that a dynamic supergradient method
with such a maximum-violation-oracle constraint man-
agement block is guaranteed to converge to the op-
timum of the Lagrangian relaxation with the same
choice of stepsize rules as standard supergradient
methods. A rigorous proof can be found here [4].
DSMs actually allow for dual variables to be removed
from the active set as well, under certain conditions.
However, to keep the exposition simple and to match
our implementation, we do not discuss that here, and
refer the reader to [4].

The theory allows for several iterations of primal and
dual blocks to be performed for each constraint man-
agement step. We found this to be crucial in practice.

6.2 Computing the Supergradient for
General Graphs

Now let us address the problem of computing the su-
pergradient, and implementing the primal and dual
blocks. Given the current index set of active dual vari-
ables J = ∪mJm, the supergradient w.r.t. the active
dual variables λJ is given by:

∇λmjf(λ) = Ij(µ̂(λ),µm) ∀j ∈ Jm (13)

where µ̂(λ) is an optimal primal solution of (10) for
the current setting of λ. For the case of tree-MRFs
we could compute the optimal solution via dynamic
programming. For general MRFs, the supergradient
computation involves solving:

f(λ) = min
µ∈L(G)

{∑

i∈V

(
θi +

M−1∑

m=1

∑

j∈Jm
λmj(1− dTji )µmi

)
· µi

+
∑

(i,j)∈E

(
θij +

M−1∑

m=1

∑

j∈Jm
λmjµ

m
ij

)
· µij

}
, (14)

where G is now a graph with loops. Evaluating
the above Lagrangian involves solving a MAP in-
ference LP (with modified potentials) and thus any
message-passing algorithm for MAP (MPLP [8], Dual-
Decomposition [13], or Max-Sum Diffusion [26]) may
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be used to solve this problem. However, unlike the
two-pass max-product BP used for tree-MRFs, these
message-passing algorithms typically require many
hundreds of iterations to converge. Running these it-
erations for each step of supergradient ascent can (and
in practice does) become prohibitively slow.

The key to speeding up this process is to realize that
f(λ) is a partial Lagrangian, and if evaluating it is
difficult, then this suggests that some more constraints
should be dualized till the partial Lagrangian becomes
tractable. This is precisely what we do, using ideas
from the dual-decomposition literature [9, 13].

Expanding the Partial Lagrangian. In order to
expand the partial Lagrangian, we will first try to iden-
tify tractable (tree-structured) subcomponents. The
spanning-tree inequalities are already tree structured.
G is not, but we can convert it into a collection of
tree-structured factors.

Let TC(G) = {T1, . . . , Tp} be a spanning-tree cover of
G, i.e. a collection of spanning trees such that each
edge of G appears in at least one tree in TC(G). Our
approach doesn’t really need the trees to be spanning,
but we describe the following with a spanning-tree
cover to keep the notation simple. With a slight abuse
of notation, we use TC(i, j) to denote the subset of
trees that contain edge (i, j) ∈ E . Moreover, we de-
compose the original energy function θ into a collec-
tion of energy functions {θT | T ∈ TC(G)}, one for
each tree in the tree cover, such that:
∑

T∈TC(G)

θTi = θi ∀i ∈ V &
∑

T∈TC(i,j)

θTij = θij ∀(i, j) ∈ E

(15a)

=⇒
∑

T∈TC(G)

θT · µ = θ · µ (15b)

This can be easily satisfied by distributing the node
and edge energies “evenly”, i.e. θTi = 1

|T (G)|θi, θ
T
i,j =

1
|T (i,j)|θij . Thus, these energies specify a tree decom-

position [24] of θ.

Let us now assign to each tree in TC(G), its own copy
of the primal variables µT , ∀T ∈ TC(G)}. Also assign
to each spanning tree inequality in the active set Jm,
its own copy of the primal variables µmj , ∀j ∈ Jm.
Finally, we use θmji , λmj(1 − di)µmi to denote the
node energy of the spanning tree factor j ∈ Jm, and
θmji = λmjµ

m
ij to denote the edge energy.

With these new variables, we can now write the exist-
ing partial Lagrangian as:

f(λ) = min
µ∈L(G),µ̃

{ ∑

T∈TC(G)

θT · µT +

M−1∑

m=1

∑

j∈Jm
θmj · µmj

}

(16a)

s.t. µτ
i = µ̃i ∀τ ∈ TC(G) ∪ J, ∀i ∈ V (16b)

This formulation of the partial Lagrangian uses a
global variable µ̃ to force all tree-structured subprob-
lems to agree on the labellings at the nodes, and thus

is equivalent to the earlier formulation (14). However,
we can now expand this partial Lagrangian by further
dualizing these constraints (16b):

f(λ, δ) = min
µτ∈L(τ),µ̃

{ ∑

T∈TC(G)

θT · µT +

M−1∑

m=1

∑

j∈Jm
θmj · µmj

+
∑

τ∈TC(G)∪J

∑

i∈V
δτi ·

(
µτ
i − µ̃i

)}
(17)

where δ = {δτi | ∀τ ∈ TC(G) ∪ J, ∀i ∈ V} is the
set of Lagrangian multipliers for the dualized equality
constraints, and L(τ) is now the local polytope of each
of the tree-structured subproblems.

Notice that this expanded partial Lagrangian com-
pletely decouples into independent minimizations over
tree-structured subproblems:

f(λ, δ) =
∑

τ∈TC(G)∪J
min

µτ∈L(τ)

{∑

i∈V

(
θτ
i + δτi

)
· µτ

i

+
∑

(i,j)∈E
θτ
ij · µτ

ij

}

−min
µ̃

( ∑

τ∈TC(G)∪J

∑

i∈V
δτi

)
· µ̃i (18)

We can see that the unconstrained minimization over
µ̃ forces a constraint on the Lagrangian variables,
i.e.

∑
τ∈TC(G)∪J

∑
i∈V δτi = 0; otherwise the La-

grangian will not have finite value. We denote by
∆ , {δ | ∑τ∈TC(G)∪J

∑
i∈V δτi = 0}, the set of all

feasible Lagrangian multipliers δ.

Note that the expanded partial Lagrangian can be ef-
ficiently evaluated by running two-pass max-product
BP on each of the tree-structured subproblems. The
number of such tree-structured subproblems is equal
to |TC(G)|+|J |, i.e. the size of the spanning-tree cover
(upper bounded by n, and typically a small constant)
and the number of active spanning tree inequalities.

Optimizing the Expanded Partial Lagrangian.
The dual problem for the expanded partial Lagrangian
is given by maxλ≥0,δ∈∆ f(λ, δ). In the previous sec-
tion, we described how the dual of the partial La-
grangian f(λ) can be optimized with a dynamic super-
gradient method. Optimizing the dual of the expanded
Lagrangian is very similar to the described procedure,
with the minor modification that the dual variable δ
always stays in the active set J .

The supergradient w.r.t. δ is given by:

∇δτif(λ, δ) = µ̂τ
i (λ, δ) ∀τ ∈ TC(G) ∪ J ∀i ∈ V, (19)

where µ̂τ
i (λ, δ) is an optimal primal solution of the

tree suproblem τ for the current setting of λ and δ.

The projection step onto ∆ is fairly simple – it in-
volves satisfying the zero-sum constraint, which can
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be enforced by subtracting the mean of the dual vari-
ables. Overall, the dual update w.r.t. δ is given by
δ(t+1) =

[
δ(t) + αt∇δf(λ(t), δ(t))

]
0
, where αt is the

stepsize and [·]0 is the zero-projection operator i.e.

[δ(t)]0 = {δ(t)
τi − s | ∀τ ∈ TC(G) ∪ J, ∀i ∈ V}, where

s = 1
|δ|
∑

τ′∈TC(G)∪J
∑
j∈V δ

(t)
τ′j .

The entire algorithm is summarized in Algorithm 1.
We call our algorithm STEELARS for Spanning TrEe
inEquality LAgrangian Relaxation Scheme.

Algorithm 1 STEELARS

1: (µ∗, {λ∗, δ∗}) = STEELARS(G, θ, {µm})
2: Input: G = (V, E), graph instance,
3: θ = {θA | A ∈ V ∪ E} energy vector
4: {µm | m ∈ [M − 1]}, M − 1 previous solutions

5: Output: µ∗A ∈ [0, 1]XA , optimum solution vector
to M-Best MAP LP

6: {λ∗, δ∗}, optimum dual variables
7: Algorithm:
8: Construct a tree-decomposition of G: TC(G), {θT |

T ∈ TC(G)}
9: λ(0) ←− 0; δ(0) ←− 0; µ̂←− 0

10: Jm(0) ←− ∅, ∀m ∈ [M − 1]
11: t←− 0
12: while Not Converged do
13: {Constraint Management Block}
14: for m = 1, . . . ,M − 1 do
15: wij = µ̂ij · µmij − µ̂i · µmi − µ̂j · µmj
16: T̂ = argmaxT∈T (G)

∑
(i,j)∈T wij {Max-weight

Spanning Tree.}
17: Jm(t+1) ←− Jm(t) ∪ index(T̂ )
18: end for
19: J(t) ←− ∪m∈[M−1]J

m(t)

20: {Multiple Iteration of Primal & Dual Blocks}
21: for t′ = 1, . . . , 20 do

22: θmji ←− λ
(t)
mj(1 − di)µ

m
i

θmjij ←− λ
(t)
mjµ

m
ij ∀m ∈ [M − 1], ∀j ∈ Jm

23: {Primal Block}
24: for τ ∈ TC(G) ∪ J do

25: θτ
i ←− θτ

i + δ
(t)
τi ; θτ

ij ←− θτ
ij

26: µ̂τ(λ(t), δ(t)) = argminµτ∈L(τ) θτ · µτ {Two-

pass max-product BP.}
27: end for
28: {Dual Block}
29: ∇λmjf(λ(t), δ(t))←− Ij(µ̂mj(λ(t), δ(t)),µm)

30: ∇δτif(λ(t), δ(t))←− µ̂τ
i (λ

(t), δ(t))

31: λ(t+1) ←−
[
λ(t) + αt∇λf(λ(t), δ(t))

]
+

32: δ(t+1) ←−
[
δ(t) + αt∇δf(λ(t), δ(t))

]
0

33: t←− t+ 1
34: end for
35: µ̂←− Best Feasible Primal So Far.
36: µ̂∗ ←− Running Average of µ̂τ

37: end while

Tightness of STEELARS. At first glance, it may
seem like the expanded partial Lagrangian (18) solves
a weaker relaxation than our original partial La-

grangian (10). However, similar to our argument in
the tree-MRF case, problem (9) is an LP. Thus, strong
duality holds and all partial Lagrangians achieve the
same optimum. This implies that even for non-tree
MRFs, STEELARS exactly solves the M-Best MAP
LP of Fromer and Globerson [7] and does not introduce
any new approximation gap to the integer program.
Moreover, this guarantee this does not depend on the
choice of the spanning-tree cover TC(G); in fact, any
tree cover (even non-spanning) may be used.

Finally, note that we described the expanded partial
Lagrangian in terms of tree-structured subproblems.
However, any efficient subproblem may be used, e.g .
submodular subproblems solved with graph-cuts [12].

7 Experiments

Setup. We tested our algorithm in three scenarios:

1. Tree MRFs with M = 2. This is the simplest
case, where the M-Best MAP LP is guaranteed to
be tight. Moreover, there is a single spanning tree
inequality and the constraint management block
plays no role.

2. 2-label Submodular MRFs with M = 5. For such
problems the MAP LP is guaranteed to be tight,
but not the M-Best MAP LP. Moreover, a tree
decomposition is not required because the 2-label
submodular factor may be efficiently minimized
via graph-cuts [12].

3. General 4-label loopy MRFs with M = 5. This is
the most general case described in Section 6.

Baselines. We compared our algorithm with the
STRIPES algorithm of Fromer and Globerson [7], the
Lawler-Nilsson algorithm [16,18], and the BMMF algo-
rithm of Yanover and Weiss [28]. Recall that STRIPES
does not directly solve the M-Best MAP LP, but
rather solves a sequence of 2nd-Best MAP LPs en-
capsulated in the Lawler-Nilsson [16, 18] partitioning
scheme. This is a tradeoff between efficiency and accu-
racy – it would be more efficient to directly solve the
M-Best MAP LP, but the LP is fractional and thus
the partitioning scheme performs better. Note that
STEELARS could also be encapsulated in the Lawler-
Nilsson [16, 18] partitioning scheme in a straightfor-
ward manner. However, we wish to study the per-
formance of the Lagrangian relaxation for the M-Best
MAP LP directly, and leave this partitioning scheme
extension for future work.

Implementation details. The implementations for
STRIPES and Lawler-Nilsson were provided by the
authors of [7], while BMMF is provided by the au-
thors of [28]. For STRIPES, the LPs in each iteration
were solved using the GNU LPK library. STEELARS
is implemented in MATLAB, but max-product BP is
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written in C++ for efficiency. All experiments are
performed on a 64-bit 8-Core Intel i7 machine with
12GB RAM and the timing reported is cputime. Fol-
lowing [15], we chose the stepsize at iteration t to be
αt = 1

ηt+1 , where ηt is the number of times the ob-

jective value f(λ(t), δ(t)) has decreased from one iter-
ation to the next. This rule has the same convergence
guarantees as the standard αt = 1

t decaying rule, but
empirically performs much better.

Integer Primal Extraction. STEELARS is a dual-
ascent algorithm and thus always maintains a feasible
dual solution, but not necessarily an (integer) primal
feasible solution, which is what we are interested in.
However, since the primal block is repeatedly called for
computing the supergradient, we simply keep track of
the best (integer) primal feasible solution produced so
far, and output that at the end of the algorithm.

Evaluation. We compare different algorithms on two
metrics – run-time and accuracy of solutions returned.
For tree-MRFs with M = 2 all methods are guaran-
teed to return exact solutions, and thus we can simply
compare the run-times. For general MRFs, we follow
the protocol of [7] and measure relative accuracy of
different methods. Specifically, we pool all solutions
returned by all methods, note the top M solutions in
this pool, and then for each method report the fraction
of these solutions that it contributed.

Our results will demonstrate the effectiveness of
STEELARS primarily in terms of efficiency. We will
show that since STEELARS is a message-passing al-
gorithm it is significantly faster than a generic LP
solver (GLPK), sometimes by orders of magnitude even
though it is guaranteed to converge to the same solu-
tion. STEELARS naturally scales to large instances
that were previously unsolvable using LP solvers.

Tree MRFs with M = 2. We generated synthetic
problems by sampling random spanning trees on n
nodes. Each variable could take 4 labels. Node and
edge potentials were sampled from standard Gaus-
sians. For M = 2 the M-Best MAP LP is guaranteed
to be tight, and thus both STRIPES and STEELARS
produces precisely the same answers. Fig. 2a shows
the time taken by both algorithms as a function of the
size of the tree n, averaged over 5 samplings of the
parameters. Note that the x-axis is in log-scale. As n
increase, STRIPES very quickly becomes intractable,
with GPLK ultimately running out of memory. How-
ever, STEELARS shows a much better behaviour in
runtime. Fig. 2 also shows the value of the dual and
best feasible integer primal produced by STEELARS
as a function of the number of iterations. Recall that
for STEELARS each iteration corresponds to running
max-product BP on a single tree. Fig. 2d shows that
generally the number of such iterations is pretty low
∼ 12. Note that since this is a tree MRF, BMMF

would only require 2 call to BP to compute max-
marginals under its partitioning scheme (assuming it
was carefully implemented to recognize a tree-graph
and not run asynchronous BP). Thus STEELARS is
not too much slower than the optimal thing to do for
a tree. Of course, BMMF would also require multiple
iterations of synchronous BP on loopy graphs, which
is what we checked next.

2-label Submodular MRFs. For this scenario, we
constructed

√
n×√n grids. Each variable could take

2 labels. We again sampled node and edge energies
from Gaussians, but ensured that edge energies were
submodular. This allows for the use of graph-cuts [12]
for optimizing the submodular factor. Fig. 3 shows
the value of the dual and best feasible integer primal
as a function of the number of iterations. The sharp
falls in the dual correspond to the constraint manage-
ment block calling the separation oracle to increment
the working set. Each iteration now involves one call
to graph-cuts and |J (t)| calls to two-pass max-product
BP. Notice that the number of iterations are much
larger than for the tree MRF (∼150 as opposed to
12). However, max-flow algorithms in general and the
implementation of [12] in particular, are highly effi-
cient. Fig. 3a shows the run-time of all algorithms
as a function of n. We can see that STEELARS is
by far the fastest, with other algorithms becoming in-
tractable very quickly. Unfortunately, as Fig. 3d shows
it is also the least accurate, validating the choice of
Fromer and Globerson [7] to not solve the LP directly,
and use a partitioning scheme instead. We plan to
follow up on this direction.

Interestingly, Fig. 3a seems to suggest that BMMF
performs worse than STRIPES, even though BMMF
simply involves M calls to loopy BP. We believe this
an artifact caused by the fact that the BMMF im-
plementation of [28] is written in MATLAB, and not
particularly optimized. Moreover, in this specific ex-
periment, it could be made faster by computing max-
marginals via the approach of [11] instead of loopy
BP. At a high-level, the key difference between BMMF
and STEELARS is analogous to the difference between
loopy BP and MPLP – both are message-passing al-
gorithms, but only one solves the LP relaxation and
provides improving lower-bounds.

General MRFs. For this scenario, we constructed√
n×√n grid graphs as well, but each variable could

take 4-labels and edge energies were not restricted to
be “attractive”. We used a standard two-tree decom-
position of the grid graph. Thus, each iteration of
supergradient ascent involved 2 + |J (t)| calls to max-
product BP. We observed trends similar to the sub-
modular MRFs case, both in terms of number of iter-
ations required for STEELARS to converge, and in
the relative standing w.r.t. the baselines. This case is
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Figure 2: Tree MRF with M = 2.
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Figure 3: 2-label Submodular MRFs with M = 5.

specially interesting because for small values of |J (t)|,
the work done by STEELARS (i.e. ∼150 iteration of
two-pass BP) for solving M-Best MAP is comparable
to running TRW [13,24] for MAP. Moreover, we could
run STEELARS on a 300×500 image labelling prob-
lem, but similar to the observation of [27], could not
even solve the MAP LP with GLPK.

8 Conclusions

In conclusion, we presented the first message-passing
algorithm for solving the LP relaxation of the M-Best
MAP problem in discrete undirected graphical mod-
els. Our approach used a particular Lagrangian relax-
ation to construct a partial Lagrangian that allowed
the use of combinatorial optimization algorithms. To
handle the exponentially large set of constraints, we
used a dynamic supergradient scheme that is essen-
tially a dual procedure to the cutting-plane algorithm.
Our message-passing algorithm retains all the guar-
antees of the LP formulation of Fromer and Glober-
son [7], while being orders of magnitude faster.

Extracting Diverse M-Best Solutions. In a num-
ber of applications, especially computer vision, the M-
Best MAP solutions are essentially minor perturba-
tions of each other. In concurrent work [1], we have
also presented a solution to the Diverse M-Best MAP
problem, where given a measure of ‘distance’ between
two solutions, we block all solutions within some k-
distance-ball of the previous solutions.

We hope that both these algorithms will be useful for
practitioners where the problem size prohibits the use
of generic LP-solvers.

Future Work. There are a number of interesting di-
rections in front of us. In the short-term, we are inter-
ested in encapsulating STEELARS inside the Lawler-
Nilsson partitioning scheme, similar to STRIPES to
further increase the accuracy of the method. Since
the M-Best MAP LP is so often fractional, another
direction is to tighten the LP, e.g . using techniques
proposed by Sontag et al . [23]. It would also be
interesting to compare LP-relaxation based methods
like STRIPES and STEELARS with heurisitic-search
methods [3].

Acknowledgements. We thank Sebastian Nowozin
for being the human encyclopedia of optimization and
pointing us to the literature of Dynamic Subgradient
Methods; Amir Globerson for sharing the STRIPES
implementation and useful discussions; Danny Tarlow
for discussions that helped formalize the formulation.
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Abstract

We propose an approach to lifted approx-
imate inference for first-order probabilistic
models, such as Markov logic networks. It is
based on performing exact lifted inference in
a simplified first-order model, which is found
by relaxing first-order constraints, and then
compensating for the relaxation. These sim-
plified models can be incrementally improved
by carefully recovering constraints that have
been relaxed, also at the first-order level.
This leads to a spectrum of approximations,
with lifted belief propagation on one end, and
exact lifted inference on the other. We dis-
cuss how relaxation, compensation, and re-
covery can be performed, all at the first-
order level, and show empirically that our ap-
proach substantially improves on the approx-
imations of both propositional solvers and
lifted belief propagation.

1 INTRODUCTION

Probabilistic logic models combine aspects of first-
order logic and probabilistic graphical models, en-
abling them to model complex logical and probabilistic
interactions between large numbers of objects (Getoor
and Taskar, 2007; De Raedt et al., 2008). This level of
expressivity comes at the cost of increased complexity
of inference, motivating a new line of research in lifted
inference algorithms (Poole, 2003). These algorithms
exploit logical structure and symmetries in probabilis-
tic logics to perform efficient inference in these models.

For exact inference, lifted variants of variable elimina-
tion (Poole, 2003; de Salvo Braz et al., 2005; Milch
et al., 2008; Taghipour et al., 2012) and weighted

�Part of this research was conducted while the author
was a visiting student at UCLA.

model counting (Gogate and Domingos, 2011; Van den
Broeck et al., 2011) have been proposed. With some
exceptions, lifted approximate inference has focused on
lifting iterative belief propagation (Singla and Domin-
gos, 2008; Kersting et al., 2009).

In this paper, we propose an approach to approximate
lifted inference that is based on performing exact lifted
inference in a simplified first-order model. Namely, we
simplify the structure of a first-order model until it is
amenable to exact lifted inference, by relaxing first-
order equivalence constraints in the model. Relaxing
equivalence constraints ignores (many) dependencies
between random variables, so we compensate for this
relaxation by restoring a weaker notion of equivalence,
in a lifted way. We then incrementally improve this ap-
proximation by recovering first-order equivalence con-
straints back into the model.

In fact our proposal corresponds to an approach to
approximate inference, called Relax, Compensate and
then Recover (RCR) for (ground) probabilistic graph-
ical models.1 For such models, the RCR framework
gives rise to a spectrum of approximations, with iter-
ative belief propagation on one end (when we use the
coarsest possible model), and exact inference on the
other (when we use the original model). In this paper,
we show how relaxations, compensations and recov-
ery can all be performed at the first-order level, giving
rise to a spectrum of first-order approximations, with
lifted first-order belief propagation on one end, and
exact lifted inference in the other.

We evaluate our approach on benchmarks from the
lifted inference literature. Experiments indicate that
recovering a small number of first-order equivalences
can improve on the approximations of lifted belief
propagation by several orders of magnitude. We show
that, compared to Ground RCR, Lifted RCR can re-

1A solver based on the RCR framework won first place
in two categories evaluated at the UAI’10 approximate in-
ference challenge (Elidan and Globerson, 2010).
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cover many more equivalences in the same amount of
time, leading to better approximations.

2 RCR FOR GROUND MLNs

While our main objective is to present a lifted version
of the RCR framework, we start by adapting RCR to
ground Markov logic networks (MLNs). This is meant
to both motivate the specifics of Lifted RCR and to
provide a basis for its semantics (i.e., the correctness
of Lifted RCR will be against Ground RCR). RCR
can be understood in terms of three steps: Relaxation
(R), Compensation (C), and Recovery (R). Next, we
introduce MLNs and examine each of these steps.

2.1 MARKOV LOGIC NETWORKS

We first introduce some standard concepts from
function-free first-order logic. An atom ppt1, . . . , tnq
consists of a predicate p {n of arity n followed by
n arguments, which are either (lowercase) constants
or (uppercase) logical variables. A formula combines
atoms with logical connectives (e.g., ^, ô). A formula
is ground if it does not contain any logical variables.
The groundings of a formula are the formulas obtained
by substituting all variables for constants.

Many probabilistic logical languages have been pro-
posed in recent years. We will work with one such lan-
guage: Markov logic networks (MLN) (Richardson and
Domingos, 2006). An MLN is a set of tuples pw, fq,
where w is a real number representing a weight and
f is a formula in function-free first-order logic. First-
order logic formulas without a weight are called hard
formulas and correspond to formulas with an infinite
weight. We will assume that all logical variables in f
are universally quantified.2 Consider the MLN

1.3 smokespXq ñ cancerpXq (1)

1.5 smokespXq ^ friendspX,Y q ñ smokespY q (2)

which states that (1) smokers are more likely to get
cancer and (2) smokers are more likely to be friends
with other smokers (Singla and Domingos, 2008). This
MLN will be a running example throughout this paper.

The grounding of an MLN ∆ is the MLN which re-
sults from replacing each formula in ∆ with all its
groundings (using the same weight). For the domain
ta, bu, the above first-order MLN represents the fol-
lowing ground MLN:

1.3 smokespaq ñ cancerpaq (3)

1.3 smokespbq ñ cancerpbq

1.5 smokespaq ^ friendspa, aq ñ smokespaq

2We transform existential quantifiers into disjunctions.

1.5 smokespaq ^ friendspa, bq ñ smokespbq

1.5 smokespbq ^ friendspb, aq ñ smokespaq

1.5 smokespbq ^ friendspb, bq ñ smokespbq

This ground MLN contains eight different random
variables, which correspond to all groundings of atoms
smokespXq, cancerpXq and friendspX,Y q. This leads
to a distribution over 28 possible worlds. The weight
of each world is simply the product of all weights ew,
where pw, fq is a ground MLN formula and f is sat-
isfied by the world. The weights of worlds that do
not satisfy a hard formula are set to zero. The prob-
abilities of worlds are obtained by normalizing their
weights. The ground distribution of ∆ is the distribu-
tion induced by the grounding of ∆.

2.2 GROUND RELAXATION

Relaxation is the process of ignoring interactions be-
tween the formulas of a ground MLN. An interaction
takes place when the same ground atom ag appears in
more than one ground formula in an MLN. We can ig-
nore this interaction via a two step process. First, we
rename one occurrence of ag into, say, a1g, through a
process that we call cloning. We then assert an equiv-
alence constraint between the original ground atom
ag and its clone, ag ô a1g. At this point, we can
ignore the interaction by simply dropping the equiv-
alence constraint, through a process that we call re-
laxation. Bringing back the equivalence is known as
recovery and will be discussed in more detail later.

The smokespaq atom in Formula 3 leads to an inter-
action between this formula and some of the other
five formulas in the ground MLN. To ignore this in-
teraction, we first rename this atom occurrence into
smokes1paq leading to the modified formula

1.3 smokes1paq ñ cancerpaq (4)

which replaces Formula 3 in the MLN. The correspond-
ing equivalence constraint is

smokes1paq ô smokespaq (5)

Dropping this constraint amounts to removing the in-
teraction between Formula 4 and the rest of the MLN.

2.3 GROUND COMPENSATION

When relaxing a constraint ag ô a1g, we ignore a con-
nection between the ground atoms ag and a1g. We can
compensate for this loss by adding two weighted atoms

w : ag and w1 : a1g

If the weights w and w1 are chosen carefully, one can
reestablish a weaker connection between the ground
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atoms. For example, one can choose these weights to
ensure that the ground atoms have the same probabil-
ity, establishing a weaker notion of equivalence.

We will now suggest a specific compensation scheme
based on a key result from Choi and Darwiche (2006).
Suppose that we relax a single equivalence constraint,
ag ô a1g, which splits the MLN into two disconnected
components, one containing atom ag and another con-
taining atom a1g. Suppose further that we choose the
compensations w and w1 such that

Prpagq � Prpa1gq �
ew�w

1

1� ew�w1
. (6)

We now have a number of guarantees. First, the re-
sulting MLN will yield exact results when computing
the probability of any ground atom. Second, the com-
pensations w and w1 can be identified by finding a fixed
point for the following equations:

wi�1 � log
�
Pr ipa

1
gq
�
� log

�
Pr ip a

1
gq
�
� w1i

w1i�1 � log pPr ipagqq � log pPr ip agqq � wi. (7)

Following Choi and Darwiche (2006), we will seek com-
pensations using these update equations even when
the relaxed equivalence constraint does not disconnect
the MLN, and even when relaxing multiple equivalence
constraints. In this more general case, a fixed-point
to the above equations will still guarantee the weak
equivalence given in (6). However, when computing
the probabilities of ground atoms, we will only get ap-
proximations instead of exact results.3

Searching for compensations using Equations 7 will
lead to the generation of a sequence of MLNs that
differ only on the weights of atoms added during the
compensation process. The first MLN in this sequence
is obtained by using zero weights for all compensating
atoms, leading to an initial ground distribution Pr0.
Each application of Equations 7 will then lead to a
new MLN (with new compensations) and, hence, a new
ground distribution, Pri�1. Upon convergence, the re-
sulting MLN and its ground distribution will then be
used for answering queries. This is typically done us-
ing an exact inference algorithm as one usually relaxes
enough equivalence constraints to make the ground
MLN amenable to exact inference. Note that applying
Equations 7 also requires exact inference, as one must
compute the probabilities Pripagq and Pripa

1
gq.

2.4 GROUND RECOVERY

Now that we can relax equivalences and compensate
for their loss, the remaining question is which equiv-

3In this more general case, there is no longer a guarantee
that Equations 7 will converge to a fixed point. Conver-
gence can be improved by using damping in Equations 7.

alences to relax. In general, deciding which equiva-
lences to relax is hard, because it requires inference in
the original model, which is intractable. Instead, Choi
and Darwiche (2006) take the approach of relaxing ev-
ery equivalence constraint and then incrementally re-
covering them as time and exact inference allow.

It follows from their results that when (i) relaxing all
equivalence constraints, (ii) using the above compen-
sation scheme and (iii) doing exact inference in the
approximate model, the approximate marginals found
correspond to the approximations found by iterative
belief propagation (IBP) (Pearl, 1988). The connec-
tion to IBP is even stronger: the compensating weights
computed in each iteration of Equations 7 exactly cor-
respond to the messages passed by IBP.

Several heuristics have been proposed to decide which
equivalences to recover, by doing inference in the re-
laxed model. We will work with the residual recovery
heuristic (Choi and Darwiche, 2011). It is based on the
practical observation that when IBP converges easily,
the quality of its approximation is high. The heuristic
tries to recover those constraints that have the most
difficulty converging throughout the iterative process,
i.e., those that least satisfy Equation 6. We measure
this by keeping track of the three-way symmetric KL
divergence between the three terms of Equation 6.

3 LIFTED RCR

We now introduce a lifted version of the relax, compen-
sate and recover framework, which is meant to operate
directly on first-order MLNs without necessarily hav-
ing to ground them. Lifted RCR is based on first-order
relaxation, compensation and recovery.

3.1 FIRST-ORDER RELAXATION

We will now discuss a first-order notion of relaxation
where the goal is to ignore interactions between ground
MLN formulas, yet without necessarily having to fully
ground the MLN. This requires a first-order version of
atom cloning and first-order equivalences.

Definition 1 (First-Order Cloning). Cloning an atom
occurrence in an MLN formula amounts to renaming
the atom by concatenating its predicate with (i) an
identifier of the formula, (ii) an identifier of the oc-
currence of the atom within the formula, and (iii) the
logical variables appearing in the atom’s formula.

For example, the first-order cloning of the atom occur-
rence smokespY q in Formula 2 gives

1.5 smokespXq ^ friendspX,Y q

ñ smokes2b X,Y¡pY q (8)
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Here, 2 is an identifier of the formula, b is an identifier
of the atom occurrence in the formula, and  X,Y¡
are the logical variables appearing in the formula.

As in the ground case, each first-order cloning is asso-
ciated with a corresponding equivalence between the
original atom and its clone, except that the equiva-
lence is first-order in this case. The first-order cloning
of atom occurrence smokespY q into smokes2b X,Y¡pY q
in the example above leads to introducing the follow-
ing first-order equivalence:

smokespY q ô smokes2b X,Y¡pY q (9)

Let us now consider the groundings of Formulas 8
and 9, assuming a domain of ta, bu:

1.5 smokespaq ^ friendspa, aq ñ smokes2b a,a¡paq

1.5 smokespaq ^ friendspa, bq ñ smokes2b a,b¡pbq

1.5 smokespbq ^ friendspb, aq ñ smokes2b b,a¡paq

1.5 smokespbq ^ friendspb, bq ñ smokes2b b,b¡pbq

smokespaq ô smokes2b a,a¡paq

smokespbq ô smokes2b a,b¡pbq

smokespaq ô smokes2b b,a¡paq

smokespbq ô smokes2b b,b¡pbq

We have a few observations on the proposed cloning
and relaxation techniques. First, the four ground-
ings of (8) contain distinct groundings of the clone
smokes2b X,Y¡pY q. Second, if we relax the equiva-
lence in (9), the ground formulas of (8) will no longer
interact through the clone smokes2b X,Y¡pY q. Third,
if we did not append the logical variables  X,Y¡
during the cloning process, the previous statement
would no longer hold. In particular, without append-
ing logical variables, the four groundings of (8) would
have contained only the two distinct clone groundings,
smokes2bpaq and smokes2bpbq. This will lead to contin-
ued interactions between the four groundings of (8).4

The proposed cloning technique leads to MLNs in
which one quantifies over predicate names (as in
second-order logic). This can be avoided, but it
leads to less transparent semantics. In particular, we
can avoid quantifying over predicate names by using
ground predicate names with increased arity. For ex-
ample, smokes2b X,Y¡pY q could have been written as
smokes2bpX,Y q where we pushed  X,Y¡ into the
predicate arguments. The disadvantage of this, how-
ever, is that the semantics of the individual arguments
is lost as the arguments become overloaded.

4We need to remove all interactions among ground-
ings of the same formula because otherwise the formula
might not even be tractable for exact inference. For exam-
ple, there is currently no exact lifted inference algorithm
that can handle the formula w : papX,Y q ^ pbpY,Zq ñ
pcpX,Zq without grounding it first (Van den Broeck, 2011).

We now have the following key theorem.

Theorem 1. Let ∆r be the MLN resulting from
cloning all atom occurrences in MLN ∆ and then relax-
ing all introduced equivalences. Let ∆g be the ground-
ing of ∆r. The formulas of ∆g are then fully discon-
nected (i.e., they share no atoms).

With this theorem, the proposed first-order cloning
and relaxation technique allows one to fully disconnect
the grounding of an MLN by simply relaxing first-order
equivalences in the first-order MLN.

3.2 FIRST-ORDER COMPENSATION

In principle, one can just clone atom occurrences, re-
lax some equivalence constraints, and then use the
resulting MLN as an approximation of the original
MLN. By relaxing enough equivalences, the approx-
imate MLN can be made arbitrarily easy for exact in-
ference. Our goal in this section, however, is to im-
prove the quality of approximations by compensating
for the relaxed equivalences, yet without making the
relaxed MLN any harder for exact inference. This will
be done through a notion of first-order compensation.

3.2.1 Equiprobable Equivalences

The proposed technique is similar to the one for ground
MLNs, that is, using weighted atoms whose weights
will allow for compensation. The key, however, is to
use first-order weighted atoms instead of ground ones.
For this, we need to define the following notions.

Definition 2 (Equiprobable Set). A set of random
variables V is called equiprobable w.r.t. distribution
Pr iff for all v1, v2 P V : Prpv1q � Prpv2q.

Definition 3 (Equiprobable Equivalence). Let ∆ be
an MLN from which a first-order equivalence a ô a1

was relaxed. Let a1 ô a11, . . . , an ô a1n be all ground-
ings of a ô a1. The equivalence a ô a1 is equiproba-
ble iff the sets ta1, . . . , anu and ta11, . . . , a

1
nu are both

equiprobable w.r.t the ground distribution of MLN ∆.

The basic idea of first-order compensation is that when
relaxing an equiprobable equivalence a ô a1, under
certain conditions, one can compensate for its loss us-
ing only two weighted first-order atoms of the form:

w : a and w1 : a1

This follows because if we were to fully ground the
equivalence into a1 ô a11, . . . , an ô a1n and then apply
ground compensation, the relevant ground atoms will
attain the same weights. That is, by the end of ground
compensation, the weighted ground atoms,

wi : ai and w1i : a1i

will have wi � wj and w1i � w1j for all i and j.
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3.2.2 Partitioning Equivalences

To realize first-order compensation, one must address
two issues. First, a relaxed first-order equivalence
may not be equiprobable to start with. Second, even
when the equivalence is equiprobable, it may cease
to be equiprobable as we adjust the weights during
the compensation process. Recall that equiprobabil-
ity is defined with respect to the ground distribution
of an MLN. Yet, this distribution changes during the
compensation process, which iteratively changes the
weights of compensating atoms and, hence, also itera-
tively changes the ground distribution.

Consider for example the following relaxed equiva-
lences: ppXq ô qpXq and qpXq ô rpXq. Sup-
pose the domain is ta, bu and the current ground dis-
tribution, Pri, is such that Pripppaqq � Pripppbqq,
Pripqpaqq � Pripqpbqq, and Priprpaqq � Priprpbqq. In
this case, the equivalence ppXq ô qpXq is equiproba-
ble, but qpXq ô rpXq is not equiprobable.

If an equivalence constraint is not equiprobable, one
can always partition it into a set of equiprobable equiv-
alences — in the worst case, the partition will include
all groundings of the equivalence. In the above exam-
ple, one can partition the equivalence qpXq ô rpXq
into the equivalences qpaq ô rpaq and qpbq ô rpbq,
which are trivially equiprobable.

Given this partitioning, the compensation algorithm
will add distinct weights for the compensating atoms
qpaq and qpbq. Therefore, the set tqpaq, qpbqu will no
longer be equiprobable in the next ground distribution,
Pri�1. As a result, the equivalence ppXq ô qpXq will
no longer be equiprobable w.r.t. the ground distri-
bution Pri�1, even though it was equiprobable with
respect to the previous ground distribution Pri.

3.2.3 Strongly Equiprobable Equivalences

To attain the highest degree of lifting during compen-
sation, one needs to dynamically partition equivalences
after each iteration of the compensation algorithm, to
ensure equiprobability. We defer the discussion on dy-
namic partitioning to Appendix A, focusing here on
a strong version of equiprobability that allows one to
circumvent the need for dynamic partitioning.

The mentioned technique is employed by our cur-
rent implementation of Lifted RCR, which starts with
equivalences that are strongly equiprobable. An equiva-
lence is strongly equiprobable if it is equiprobable w.r.t
all ground distributions induced by the compensation
algorithm (i.e., ground distributions that result from
only modifying the weights of compensating atoms).

Consider again Formula 2 where we cloned the atom
occurrence smokespY q and relaxed its equivalence,

leading to the MLN:

1.5 smokespXq ^ friendspX,Y q ñ smokes2b X,Y¡pY q

and relaxed equivalence

smokespY q ô smokes2b X,Y¡pY q (10)

Suppose we partition this equivalence as follows:5

X � Y, smokespY q ô smokes2b X,Y¡pY q

X � Y, smokespY q ô smokes2b X,Y¡pY q

These equivalences are not only equiprobable w.r.t.
the relaxed MLN, but also strongly equiprobable.
That is, suppose we add to the relaxed model the com-
pensating atoms

w1 : smokespXq

w11 : X � Y, smokes2b X,Y¡pY q

w2 : smokespXq

w12 : X � Y, smokes2b X,Y¡pY q

The two equivalences will be equiprobable w.r.t. any
ground distribution that results from adjusting the
weights of these compensating atoms. We will present
an equivalence partitioning algorithm in Section 4 that
guarantees strong equiprobability of the partitioned
equivalences. This algorithm is employed by our cur-
rent implementation of Lifted RCR and will be used
when reporting experimental results later.

3.3 COUNT-NORMALIZATION

We are one step away from presenting our first-order
compensation scheme. What is still missing is a discus-
sion of count-normalized equivalences, which are also
required by our compensation scheme.

Consider Equivalence 10, which has four groundings

smokespaq ô smokes2b a,a¡paq

smokespbq ô smokes2b a,b¡pbq

smokespaq ô smokes2b b,a¡paq

smokespbq ô smokes2b b,b¡pbq

for the domain ta, bu. There are two distinct ground-
ings of the original atom smokespY q in this case and
each of them appears in two groundings. When each
grounding of the original atom appears in exactly the

5We are using an extension of MLNs that allows con-
straints, such as X � Y . Our implementation is in terms of
parfactor graphs, which are more expressive than standard
MLNs and do allow for the representation of such con-
straints. In extended MLNs, we will write C, f to mean
that C is a constraint that applies to formula f .
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same number of ground equivalences, we say that the
first-order equivalence is count-normalized.

Consider now a constrained version of Equivalence 10

X � b_ Y � b, smokespY q ô smokes2b X,Y¡pY q

which has the following groundings

smokespaq ô smokes2b a,a¡paq

smokespbq ô smokes2b a,b¡pbq

smokespaq ô smokes2b b,a¡paq

This constrained equivalence is not count-normalized
since the atom smokespaq appears in two ground equiv-
alences while the atom smokespbq appears in only one.
More generally, we have the following definition.

Definition 4. Let C, a ô a1 be a first-order equiv-
alence. Let α be an instantiation of the variables in
original atom a and assume that α satisfies constraint
C. The equivalence is count-normalized iff C ^ α has
the same number of solutions for each instantiation α.
Moreover, the number of groundings for C, a is called
the original count and the number of groundings for
C, a1 is called the clone count.

Count-normalization can only be violated by con-
strained equivalences. Moreover, for a certain class of
constraints, count-normalization is always preserved.
The algorithm we shall present in Section 4 for par-
titioning equivalences takes advantage of this obser-
vation. In particular, the algorithm generates con-
strained equivalences whose constraint structure guar-
antees count-normalization.

3.4 THE COMPENSATION SCHEME

We now have the following theorem.

Theorem 2. Let ∆i be an MLN with relaxed equiva-
lences C, a ô a1 and, hence, corresponding compen-
sating atoms:

wi : C, a and w1i : C, a1

Suppose that the equivalences are count-normalized
and strongly equiprobable. Let ag ô a1g be one ground-
ing of equivalence C, aô a1, let n be its original count
and n1 be its clone count. Consider now the MLN ∆i�1

obtained using the following updates:

wi�1 �
n1

n

�
log
�
Pr ipa

1
gq
�
� log

�
Pr ip a

1
gq
�
� w1i

�
w1i�1 � log pPr ipagqq � log pPr ip agqq � wi (11)

The ground distribution of MLN ∆i�1 equals the one
obtained by applying Ground RCR to MLN ∆i.

Note that first-order compensation requires exact in-
ference on the MLN ∆i, which is needed for computing
Pripagq and Pripa

1
gq. Moreover, these computations

will need to be repeated until one obtains a fixed point
of the update equations given by Theorem 2.

3.5 FIRST-ORDER RECOVERY

Recovering a first-order equivalence C, a ô a1

amounts to removing its compensating atoms

wi : C, a and w1i : C, a1

and then adding the equivalence back to the MLN.

Adapting the ground recovery heuristic suggested ear-
lier, one recovers the first-order equivalence that max-
imizes the symmetric pairwise KL-divergence

n1 �KLD

�
Prpagq,Prpa1gq,

ewi�w
1

i

1� ewi�w
1

i

�
,

where n1 is the clone count of the equivalence. Note
here that n1 is also the number of equivalence ground-
ings since, by definition, the clone atom contains all
logical variables that appear in the equivalence.

Note that recovering first-order equivalences may vi-
olate the equiprobability of equivalences that remain
relaxed, which in turn may require re-partitioning.

4 PARTITIONING EQUIVALENCES

We will now discuss a method for partition-
ing first-order equivalences, which guarantees both
strong equiprobability and count-normalization. This
method is used by our current implementation of
Lifted RCR that we describe in Section 6.

Our method is based on the procedure of preemptive
shattering given by Poole et al. (2011), which is a con-
ceptually simpler version of the influential shattering
algorithm proposed by Poole (2003) and de Salvo Braz
et al. (2005) in the context of exact lifted inference.
We will first describe this shattering procedure, which
partitions atoms. We will then use it to partition all
atoms in a relaxed MLN. We will finally show how
these atom partitions can be used to partition first-
order equivalences.

4.1 PREEMPTIVE SHATTERING

Preemptive shattering takes as input an atom
ppX1, . . . , Xnq and a set of constants K �
tk1, . . . , kmu. It then returns a set of constrained
atoms of the form C, ppX1, . . . , Xnq which represent
a partitioning of the input atom. That is, the ground-
ings of constrained atoms are guaranteed to be disjoint
and cover all groundings of the input atom.
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We start with an intuitive description of preemptive
shattering. The set of constants K are the ones explic-
itly mentioned in the MLN of interest. If an argument
Xi of the input atom ppX1, . . . , Xnq can take on one
of the constants kj P K, preemptive shattering splits
the atom into two constrained atoms: one where Xi

is substituted by constant ki and one where the con-
stant kj is excluded from the domain of Xi. Moreover,
when two arguments Xi and Xj of the input atom can
take on the same value, preemptive shattering splits
the atom into two constrained atoms: one with the
constraint Xi � Xj and another with Xi � Xj .

We will next describe the shattering procedure and its
complexity more formally. We need some definitions
first. For each argument Xi of the input atom, let

Ci �tpXi � k1q, . . . , pXi � kmq,

pXi � k1, . . . , Xi � kmqu.

Preemptive shattering generates all possible combina-
tions of the above constraints:

CA � tc1 ^ � � � ^ cn | pc1, . . . , cnq P
�n

i�1 Ciu,

where
�n

i�1 Ci is the cartesian product of C1, . . . , Cn.

Consider now a subset X � tX1, . . . , Xnu of the input
atom arguments and let

CpX q �
©

Xi,XjPX
pXi � Xjq ^

n©
i�1

©
XjRX

pXi � Xjq

CB � tCpX q | X � tX1, . . . , Xnuu

Preemptive shattering will then create the following
partition of the input atom ppX1, . . . , Xnq:

A � tca ^ cb, ppX1, . . . , Xnq | ca P CA, cb P CBu

Many of the generated constraints ca^ cb will have no
solutions and can be dropped. What remains is a set
of constrained atoms whose groundings form a parti-
tion of the groundings for the input atom. Preemptive
shattering can be implemented in time that is expo-
nential in the arity n of input atom and polynomial in
the number of input constants m.

For an example, consider the formula smokespXq ô
smokes X,Y¡pXq and assume we have evidence
smokespaq and therefore K � tau. Preemptive shat-
tering of the input atom smokespXq returns back

X � a, smokespXq

X � a, smokespXq

Preemptive shattering of the input atom

smokes X,Y¡pXq returns back

X � a, Y � a, smokes X,Y¡pXq

X � a, Y � a, smokes X,Y¡pXq

X � a, Y � a, smokes X,Y¡pXq

X � a, Y � a,X � Y, smokes X,Y¡pXq

X � a, Y � a,X � Y, smokes X,Y¡pXq

We will next show how this shattering procedure forms
the basis of a method for partitioning equivalence
constraints, with the aim of ensuring both strong
equiprobability and count-normalization.

4.2 PARTITIONING EQUIVALENCES BY
PREEMPTIVE SHATTERING

Consider an MLN which results from cloning some
atom occurrences and then adding corresponding
equivalence constraints. Let K be all the constants
appearing explicitly in the MLN.

To partition a first-order equivalence a ô a1, our
method will first apply preemptive shattering to the
original atom a and clone atom a1, yielding a partition
for each. Suppose that C1, a1, . . . , Cn, an is the parti-
tion returned for original atom a. Suppose further that
C 11, a

1
1, . . . , C

1
m, a

1
m is the partition returned for clone

atom a1. By definition of cloning, all variables that
appear in original atom a must also appear in clone
atom a1. This implies the following property. For every
(original) constraint Ci, there is a corresponding set of
(clone) constraints C 1j that partition Ci. Each pair of
constraints Ci and C 1j will then generate a member of
the equivalence partition: Ci^C

1
j , ai ô a1j . Note that

Ci ^ C
1
j � C 1j since C 1j implies Ci.

Let us consider an example. Suppose we are partition-
ing the equivalence smokespXq ô smokes X,Y¡pXq.
Section 4.1 showed the preemptive shattering of the
atoms smokespXq and smokes X,Y¡pXq. These give
rise to the following equivalence partition:

X � a, Y � a, smokespXq ô smokes X,Y¡pXq

X � a, Y � a, smokespXq ô smokes X,Y¡pXq

X � a, Y � a, smokespXq ô smokes X,Y¡pXq

X � a, Y � a,X � Y, smokespXq ô smokes X,Y¡pXq

X � a, Y � a,X � Y, smokespXq ô smokes X,Y¡pXq

The following result is proven in Appendix B.

Theorem 3. Partitioning by preemptive shattering re-
turns count-normalized, strongly equiprobable equiva-
lences.

When K is small, preemptive shattering will find par-
titions that are close to minimal. When K is large,
however, it will create large partitions, defeating the
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purpose of lifted inference. In the next section, we will
mention some alternative partitioning algorithms that
work on a fully relaxed model. However, preemptive
shattering is the only partitioning algorithm to our
knowledge that works for any level of relaxation. We
believe our work can motivate future work on finding
more efficient general partitioning algorithms and even
approximate partitioning algorithms.

5 RELATED WORK

The RCR framework has previously been used to
characterize iterative belief propagation (IBP) and
some of its generalizations. In the case where the
simplified model is fully disconnected, the approxi-
mate marginals of RCR correspond to the approximate
marginals given by IBP (Pearl, 1988; Choi and Dar-
wiche, 2006). The approximation to the partition func-
tion further corresponds to the Bethe free energy ap-
proximation (Yedidia et al., 2003; Choi and Darwiche,
2008). When equivalence constraints have been re-
covered, RCR corresponds to a class of generalized be-
lief propagation (GBP) approximations (Yedidia et al.,
2003), and in particular iterative joingraph propaga-
tion (Aji and McEliece, 2001; Dechter et al., 2002).
RCR also inspired a system that was successfully em-
ployed in a recent approximate inference competi-
tion (Elidan and Globerson, 2010; Choi and Darwiche,
2011). Mini-buckets can also be viewed as an instance
of RCR where no compensations are used (Kask and
Dechter, 2001; Dechter and Rish, 2003; Choi et al.,
2007), which leads to upper bounds on the partition
function (for example). Any approximate MLN found
by Lifted RCR corresponds to one found by Ground
RCR on the ground MLN, thus all of the above results
carry over to the lifted setting.

The motivation for calling our approach lifted is three-
fold. First, in the compensation phase, we are com-
pensating for many ground equivalences at the same
time. Computing compensating weights for all of these
requires inferring only a single pair of marginal prob-
abilities. Second, computing marginal probabilities is
done by an exact lifted inference algorithm. Third, we
relax and recover first-order equivalence constraints,
which correspond to sets of ground equivalences.

The work on lifted approximate inference has mainly
focused on lifting the IBP algorithm. The correspon-
dence between IBP and RCR carries over to their
lifted counterparts: Lifted RCR compensations on a
fully relaxed model correspond to lifted belief propa-
gation (Singla and Domingos, 2008). Starting from
a first-order model, Singla and Domingos (2008) pro-
posed lifted network construction (LNC), which par-
titions atoms into so-called supernodes. The ground

atoms represented by these supernodes send and re-
ceive the same messages when running IBP. This
means that they partition the atoms into equiprob-
able sets and that LNC can be used for equivalence
partitioning in Lifted RCR for the fully relaxed model.
Kersting et al. (2009) proposed a color-passing (CP)
algorithm that achieves similar results as LNC, only
starting from a ground model, where the first-order
structure is not apparent. Two other approximate
lifted inference algorithms are probabilistic theorem
proving (Gogate and Domingos, 2011), which contains
a Monte-Carlo method and bisimulation-based lifted
inference (Sen et al., 2009), which uses a mini-bucket
approximation on a model that was compressed by de-
tecting symmetries. Because of the correspondence
between Ground RCR and mini-buckets mentioned
above, this approach can also be seen as an instance
of Lifted RCR with the compensation phase removed.

6 EXPERIMENTS

In this section, we evaluate the Lifted RCR algorithm
on common benchmarks from the lifted inference lit-
erature. The experiments were set up to answer the
questions: (Q1) To which extent does recovering first-
order equivalences improve the approximations found
by Lifted RCR? (Q2) Can IBP be improved consider-
ably through the recovery of a small number of equiva-
lences? (Q3) Is there a significant advantage to using
Lifted RCR over Ground RCR?

We implemented Lifted RCR and released it as open
source software.6 To compute exact marginal proba-
bilities in Equations 11, we use first-order knowledge
compilation (Van den Broeck et al., 2011). It com-
piles the MLN into a logical circuit where probabilis-
tic inference is performed by weighted model counting,
which exploits context-specific independencies and de-
terminism in the MLN. It is arguably the state of the
art in exact lifted inference (Van den Broeck, 2011;
Van den Broeck and Davis, 2012). In combination
with preemptive shattering, we compile a first-order
circuit once and re-evaluate it in each iteration of the
compensation algorithm. This is possible because the
structure of the compensated MLNs do not change be-
tween iterations, only their parameters change. An al-
ready compiled first-order circuit can re-evaluated very
efficiently. See Appendix C for further details.

To answer (Q1-2) we ran Lifted RCR on MLNs from
the exact lifted inference literature, where computing
exact marginals is tractable. This allows us to evalu-
ate the approximation quality of Lifted RCR for dif-
ferent degrees of relaxation. We used the models p-
r and sick-death (de Salvo Braz et al., 2005), work-

6http://dtai.cs.kuleuven.be/ml/systems/wfomc
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Figure 1: Normalized approximation error of Lifted RCR for different levels of approximation on the models
(a) p-r, (b) sick-death, (c) workshop attributes, (d) smokers, (e) smokers and drinkers and (f) symmetric smokers.

shop attributes (Milch et al., 2008), smokers (Singla
and Domingos, 2008), smokers and drinkers (Van den
Broeck et al., 2011) and symmetric smokers (Van den
Broeck, 2011). Each of these models represents a new
advance in exact lifted inference. They are incremen-
tally more complex and challenging for lifted inference.
The results are shown in Figure 1, where we ran Lifted
RCR on the above models for two sets of domain sizes:
a small and a large set, where the number of random
variables is on the order of 100 and 10,000 respectively.
We plot the symmetric KL divergence between the ex-
act marginals and the approximations found by Lifted
RCR, as a percentage of the KL divergence of the fully
relaxed approximation. The horizontal axis shows the
level of relaxation in terms of the percentage of recov-
ered ground equivalences. The 0% point corresponds
to the approximations found by (lifted) IBP. The 100%
point corresponds to exact inference.7

We see that each recovered first-order equivalence
tends to improve the approximation quality signifi-
cantly, often by more than one order of magnitude,
answering (Q1). In the case of smokers with a large
domain size, recovering a single equivalence more than
the IBP approximation reduced the KL divergence by
10 orders of magnitude, giving a positive answer to
(Q2). The sick-death model is the only negative case
for (Q2), where recovering equivalences does not lead
to approximations that are better than IBP.8

To answer (Q3), first note that as argued in Section 5,
the 0% recovery point of Lifted RCR using LNC or
CP to partition equivalences corresponds to lifted IBP.
For this case, the work of Singla and Domingos (2008)
and Kersting et al. (2009) has extensively shown that
Lifted IBP/RCR methods can significantly outperform

7All experiments ran up to the 100% point, which is not
shown in the plot because it has a KL divergence of 0.

8Interestingly, it is also the only example where some
compensations failed to converge without using damping.

Ground IBP/RCR. Similarly, computational gains for
the 100% recovery point were shown in the exact lifted
inference literature. For intermediate levels of relax-
ation, we ran Ground RCR on the above models with
large domain sizes. On these, Ground RCR could
never recover more than 5% of the relaxed equivalences
before exact inference in the relaxed model becomes
intractable. This answers (Q3) positively.

For the above experiments, Appendix D further re-
ports on the quality of the approximations and the
convergence of the compensation algorithm, both as a
function of runtime and the number of iterations.

7 CONCLUSIONS

We presented Lifted RCR, a lifted approximate infer-
ence algorithm that performs exact inference in a sim-
plified model. We showed how to obtain a simplified
model by relaxing first-order equivalences, compensat-
ing for their loss, and recovering them as long as ex-
act inference remains tractable. The algorithm can
traverse an entire spectrum of approximations, from
lifted iterative belief propagation to exact lifted infer-
ence. Inside this spectrum is a family of lifted join-
graph propagation (and GBP) approximations. We
empirically showed that recovering first-order equiv-
alences in a relaxed model can substantially improve
the quality of an approximation. We also remark that
Lifted RCR relies on an exact lifted inference engine
as a black box, and that any future advances in ex-
act lifted inference have immediate impact in lifted
approximate inference.
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Abstract

This paper considers stochastic bandits with
side observations, a model that accounts for
both the exploration/exploitation dilemma
and relationships between arms. In this set-
ting, after pulling an arm i, the decision
maker also observes the rewards for some
other actions related to i. We will see that
this model is suited to content recommen-
dation in social networks, where users’ reac-
tions may be endorsed or not by their friends.
We provide efficient algorithms based on up-
per confidence bounds (UCBs) to leverage
this additional information and derive new
bounds improving on standard regret guar-
antees. We also evaluate these policies in
the context of movie recommendation in so-
cial networks: experiments on real datasets
show substantial learning rate speedups rang-
ing from 2.2× to 14× on dense networks.

1 INTRODUCTION

In the classical stochastic multi-armed bandit problem
[4, 6], a decision maker repeatedly chooses among a fi-
nite set of K actions. At each time step t, the action i
chosen yields a random rewardXi,t drawn from a prob-
ability distribution proper to action i and unknown to
the decision maker. Her goal is to maximize her cu-
mulative expected reward over the sequence of chosen
actions. This problem has received well-deserved at-
tention from the online learning community for the
simple model it provides of a tradeoff between explo-
ration (trying out all actions) and exploitation (select-
ing the best action so far). It has several applications,
including content recommendation, Internet advertis-
ing and clinical trials.

The decision maker’s performance after n steps is typ-
ically measured in terms of the regret R(n), defined

as the difference between the reward of her strategy
and that of an optimal strategy (one that would al-
ways choose actions with maximum expected reward).
One of the most prominent algorithms in the stochastic
bandit literature, UCB1 from Auer et al. [6], achieves
a logarithmic (expected) regret

E [R(n)] ≤ AUCB1 lnn+BUCB1, (1)

where AUCB1 and BUCB1 are two constants specific to
the policy. This upper bound implies fast convergence
to an optimal policy: the mean loss per decision after n
rounds is only E [R(n)/n] = O(lnn/n) in expectation
(which scaling is known to be optimal).

This paper considers the stochastic bandit problem
with side observations (a setting that has been con-
sidered in [16] but for adversarial bandits, see Section
2), a generalization of the standard multi-armed ban-
dit where playing an action i at step t not only results
in the reward Xi,t, but also yields information on some
related actions {Xj,t}. We also present a direct appli-
cation of this scenario is advertising in social networks:
a content provider may target users with promotions
(e.g., “20% off if you buy this movie and post it on
your wall”), get a reward if the user reacts positively,
but also observe her connections’ feelings toward the
content (e.g., friends reacting by “Liking” it or not).

Our contributions are as follows. First, we con-
sider a generalization UCB-N of UCB1 taking side
observations into account. We show that its re-
gret can be upper bounded as in (1) with a smaller
AUCB-N < AUCB1. Then, we provide a better al-
gorithm UCB-MaxN achieving an improved constant
term BUCB-MaxN < BUCB-N. We show that both im-
provements are significant for bandits with a large
number of arms and a dense reward structure, as is
for example the case of advertising in social networks.
We finally evaluate our policies on real social net-
work datasets and observe substantial learning rate
speedups (from 2.2× to 14×, see Section 5).
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2 RELATED WORK

Multi-armed bandit problems became popular with
the seminal paper of Robbins [19] in 1952. Thirty
years later, Lai and Robbins [13] provided one of the
key results in this literature when they showed that,
asymptotically, the expected regret for the stochastic
problem has to grow at least logarithmically in the
number of steps, i.e.,

E [R(n)] = Ω(lnn).

They also introduced an algorithm that follows the
“optimism in the face of uncertainty” principle and
decides which arm to play based on upper confi-
dence bounds (UCBs). Their solution asymptotically
matches the logarithmic lower bound.

More recently, Auer et al. [6] considered the case of
bandits with bounded rewards and introduced the well-
known UCB1 policy, a concise strategy achieving the
optimal logarithmic bound uniformly over time in-
stead of asymptotically. Further work improved the
constants AUCB1 and BUCB1 in their upper bound (1)
using additional statistical assumptions [3].

One of the major limitations of standard bandit al-
gorithms appears in situations where the number of
arms K is large or potentially infinite; note for in-
stance that the upper bound (1) scales linearly with
K. One approach to overcome this difficulty is to add
structure to the rewards distributions by embedding
arms in a metric space and assuming that close arms
share a similar reward process. This is for example the
case in dependent bandits [18], where arms with close
expected rewards are clustered.

X -armed bandits [7] allow for an infinite number of
arms x living in a measurable space X . They assume
that the mean reward function µ : x 7→ E [Xx] satis-
fies some Lipschitz assumptions and extend the bias
term in UCBs accordingly. Bubeck et al. [7] provide
a tree-based optimization algorithm that achieves, un-
der proper assumptions, a regret independent of the
dimension of the space.

Linear bandits [8, 20] are another example of struc-
tured bandit problems with infinitely many arms.
In this setting, arms x live in a finite-dimensional
vector space and mean rewards are modeled as lin-
ear functions of a system-wide parameter Z ∈ Rr,
i.e., E [Xx] = Z · x. Near-optimal policies typically
extend the notion of confidence intervals to confidence
ellipsoids, estimated through empirical covariance ma-
trices, and use the radius of these confidence regions
as the bias term in their UCBs.

This last framework allows for contextual bandits and
has been used as such in advertisement and content

recommendation settings: [14] applied it to personal-
ized news article recommendation, while [9] extended
it to generalized linear models1 and applied it to Inter-
net advertisement. The approach in both these works
is to reduce a large number of arms to a small set of
numerical features, and then apply a linear bandit pol-
icy in the reduced space. Constructing good features
is thus a crucial and challenging part of this process.
In this paper, we do not make any assumption on the
structure of the reward space. We handle the large
number of arms in multi-armed bandits leveraging a
phenomenon known as side observations which occurs
in a variety of problems. This phenomenon has already
been studied by Mannor et al. [16] in the case of adver-
sarial bandits, i.e., where the reward sequence {Xi,t}
is arbitrary and no statistical assumptions are made.
They proposed two algorithms: ExpBan, a mix of ex-
perts and bandits algorithms based on a clique decom-
position of the side observations graph, and ELP, an
extension of the well-known EXP3 algorithm [5] taking
the side observation structure into account. While the
clique decomposition in ExpBan inspired our present
work, our setting is that of stochastic bandits: statis-
tical assumptions on the reward process allow us to
derive O(lnn) regret bounds, while the best achiev-

able bounds in the adversarial problem are Õ(
√
n). It

is indeed much harder to learn in an adversarial envi-
ronment, and the methodology to address this family
of problems is quite different from the techniques we
use in our work.

Note that our side observations differ from contextual
side information, another generalization of the stan-
dard bandit problems where some additional informa-
tion is given to the decision maker before pulling an
arm. Asymptotically optimal policies have been pro-
vided for this setting [22] in the case of two-armed
bandits.

3 SIDE OBSERVATIONS

Formally, a K-armed bandit problem is defined by K
distributions P1, . . . ,PK , one for each “arm” of the
bandit, with respective means µ1, . . . , µK . When the
decision maker pulls arm i at time t, she receives a
reward Xi,t ∼ Pi. All rewards {Xi,t, i ∈ J1,KK, t ≥ 1}
are assumed to be independent. We will also assume
that all {Pi} have support in [0, 1]. The mean es-
timate for E [Xi,·] after m observations is Xi,m :=
1
m

∑m
s=1Xi,s. The (cumulative) regret after n steps

is defined by

R(n) :=
n∑

t=1

Xi∗,t −
n∑

t=1

XIt,t,

1in which E [Xx] = f(Z · x) for some regular function f
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K # of arms
Xi,t reward of arm i at time t
µi mean reward of arm i
∆i expected loss for playing arm i
i∗ index of an optimal arm
µ∗ mean reward of arm i∗

It index of the arm played at time t
Ti(n) # pulls to arm i after n steps
N(i) neighborhood of arm i (includes i)
Oi(n) # observations for arm i after n steps
O∗(n) same for arm i∗

Table 1: Notations Summary

where i∗ = arg max{µi} and It is the index of the arm
played at time t. The gambler’s goal is to minimize the
expected regret of the policy, which one can rewrite as

E [R(n)] =
K∑

i=1

∆iE [Ti(n)]

where Ti(n) :=
∑n
t=1 1 {It = i} denotes the number of

times arm i has been pulled up to time n, and ∆i :=
µ∗ − µi is the expected loss incurred by playing arm i
instead of an optimal arm.

In the standard multi-armed bandit problem, the
only information available at time t is the sequence
(XIs,s)s≤t. We now present our setting with side ob-
servations. The side observation (SO) graph G =
(V,E) is an undirected graph over the set of arms
V = J1,KK, where an edge i ↔ j means that pulling
arm i (resp. j) at time t yields a side observation of
Xj,t (resp. Xi,t). Let N(i) denote the observation set
of arm i consisting of i and its neighbors in G. Con-
trary to previous work on UCB algorithms [13, 6], in
our setting the number of observations made so far for
arm i at time n is not Ti(n) but

Oi(n) :=
n∑

t=1

1 {It ∈ N(i)} ,

which accounts for the fact that observations come
from pulling either the arm or one of its neighbors.
Note that Oi(n) ≥ Ti(n).

A clique in G is a subset of vertices C ⊂ V such that
all arms in C are neighbors with each other. A clique
covering C of G is a set of cliques such that

⋃
C∈C C =

V . Table 1 summarizes our notations.

3.1 LOWER BOUND

Before we analyze our policies, let us note that the
problem we study is at least as difficult as the standard
multi-armed bandit problem in the sense that, even

with additional observations, the expected regret for
any strategy has to grow at least logarithmically in the
number of rounds. The only exception to this would be
a graph where every node is neighbor with an optimal
arm, a particular and easier setting that we do not
study here. This observation is stated by the following
Theorem:

Theorem 1. Let B∗ := arg max{µi | i ∈ V } and sup-
pose

⋃
i∈B∗ N(i) 6= V . Then, for any uniformly good

allocation rule,2 E [R(n)] = Ω(lnn).

Proof. For a set of arms S, we denote N(S) :=
∪j∈SN(j). Let i∗ ∈ B∗ and v := arg max{µj | j ∈
V \N(B∗)}, i.e., the best arm which can not be ob-
served by pulling an optimal arm.

First assume that N(v) ∩ N(B∗) = ∅. The proof fol-
lows by comparing the initial bandit problem with side
observations denoted A with the two-armed bandit B
without side observations where the reward distribu-
tions are P∗ for the optimal arm 1 and Pv for the
non-optimal arm 2. To any strategy for A, we asso-
ciate the following strategy for B: if arm i is played in
A at time t, play in B: arm 1 if i ∈ N(B∗) and get
reward Xi∗,t; arm 2 if i ∈ N(v) and get reward Xv,t;
no arm otherwise.

Let n′ denote the number of arms pulled in B after n
steps in A. It is clear that n′ ≤ n and a valid strategy
for A gives a valid strategy for B. The expected regret
incurred by arm 1 in B is 0, and each time arm 2 is
pulled in B, a sub-optimal arm is pulled in A with
larger expected loss. As a consequence, E [RA(n)] ≥
E [RB(n′)], where RA (resp. RB) denotes the regret in
A (resp. B). By the classical result of Lai and Robbins
[13], E [RB(n′)] = Ω(lnn′). Hence, if n′ = Ω(n) the
claim follows. If n′ = o(n), then sub-optimal arms are
played in A at least n− n′ times so that E [RA(n)] =
Ω(n− n′) = Ω(n) and the claim follows as well.

Now assume that N(v)∩N(B∗) 6= ∅. A valid strategy
for A does not give a valid strategy for B any more,
since pulling an arm in N(v)∩N(B∗) gives information
on both an optimal arm and v, i.e., both arms in B.
We need to modify slightly the two-armed bandit as
follows. First, we define u := arg max{µi | i ∈ N(v) ∩
N(B∗)} and w := v if µv ≥ µu and u otherwise. The
reward distribution for arm 2 in B is now Pw. To any
strategy for A, we associate a strategy for B as follows:
when arm i is played in A at time t, play in B:

• i ∈ N(B∗)\N(v)⇒ pull arm 1, get reward Xi∗,t;

• i ∈ N(v)\N(B∗)⇒ pull arm 2, get reward Xw,t;

2i.e., not depending on the labels of the arms, see [13]
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• i ∈ N(v) ∩ N(B∗) ⇒ pull arms 1 and 2 in two
consecutive steps, getting rewards Xi∗,t and Xw,t;

• otherwise, do not pull any arm.

Let n′ denote the number of arms pulled in B after n
steps in A. We now see that any valid strategy for A
gives a valid strategy for B. As in previous setting,
the expected regret incurred by arm 1 in B is 0, and
each time arm 2 is pulled in B, a sub-optimal arm is
pulled in A with larger expected loss. As a conse-
quence, E [RA(n)] ≥ E [RB(n′)], and we can conclude
as above.

3.2 UPPER CONFIDENCE BOUNDS

The UCB1 policy constructs an Upper Confidence
Bound for each arm i at time t by adding a bias term√

2 ln t/Ti(t− 1) to its sample mean. Hence, the UCB
for arm i at time t is

UCBi(t) := Xi,Ti(t−1) +

√
2 ln t

Ti(t− 1)
.

Auer et al. [6] have proven that the policy which picks
arg maxi UCBi(t) at every step t achieves the following
upper bound after n steps:

E [R(n)] ≤ 8

(
K∑

i=1

1

∆i

)
lnn+

(
1 +

π2

3

) K∑

i=1

∆i. (2)

In the setting with side observations, we will show in
Section 3.3 that a generalization of this policy yields
the (improved) upper bound

E [R(n)] ≤ 8

(
inf
C

∑

C∈C

maxi∈C ∆i

mini∈C ∆2
i

)
lnn+O(K),

where the O(K) term is the same as in (2), and the
infimum is over all possible clique coverings of the SO
graph. We will detail in Section 3.3 how this bound
improves on the original

∑
i 1/∆i.

We will then introduce in Section 4 an algorithm im-
proving on the constant O(K) term (remember that
the number of arms K is assumed � 1). By proac-
tively using the underlying structure of the SO graph,
we will reduce it to the following finite-time upper
bound: (

1 +
π2

3

)∑

C∈C
∆C + on→∞(1),

where ∆C is the best individual regret in clique C ∈
C. Note that, while both constant terms were linear
in K in Equation (2), our improved factors are both
O(|C|) where |C| is the number of cliques used to cover
the SO graph. We will show that this improvement is
significant for dense reward structures, as is the case
with advertising in social networks (see Section 5).

3.3 UCB-N POLICY

In the multi-armed bandit problem with side observa-
tions, when the decision maker pulls an arm i after t
rounds of the game, he/she gets the reward Xi,t and
observes {Xj,t | j ∈ N(i)}. We consider in this sec-
tion the policy UCB-N where one always plays the arm
with maximum UCB, and updates all mean estimates
{Xj,t | j ∈ N(i)} in the observation set of the pulled
arm i.

Algorithm 1 UCB-N

X,O← 0,0
for t ≥ 1 do

i← arg maxi

{
Xi +

√
2 ln t
Oi

}

pull arm i
for k ∈ N(i) do
Ok ← Ok + 1
Xk ← Xk,t/Ok + (1− 1/Ok)Xk

end for
end for

We take the convention
√

1/0 = +∞ so that all arms
get observed at least once. This strategy takes all the
side information into account to improve the learning
rate. The following Theorem quantifies this improve-
ment as a reduction in the logarithmic factor from
Equation (2).

Theorem 2. The expected regret of policy UCB-N af-
ter n steps is upper bounded by

E [R(n)] ≤ inf
C

{
8

(∑

C∈C

maxi∈C ∆i

∆2
C

)
lnn

}

+

(
1 +

π2

3

) K∑

i=1

∆i,

where ∆C = mini∈C ∆i.

Proof. Consider a clique covering C of G = (V,E),
i.e., a set of subgraphs such that each C ∈ C is a
clique and V = ∪C∈CC. One can define the intra-
clique regret RC(n) for any C ∈ C by

RC(n) :=
∑

t<n

∑

i∈C
∆i1 {It = i} .

Since the set of cliques covers the whole graph, we
have R(n) ≤ ∑

C∈C RC(n). From now on, we will
focus on upper bounding the intra-clique regret for a
given clique C ∈ C.
Let TC(t) :=

∑
i∈C Ti(t) denote the number of times

(any arm in) clique C has been played up to time t.
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Then, for any positive integer `C ,

RC(n) ≤ `C max
i∈C

∆i+
∑

i∈C
t≤n

∆i1 {It = i;TC(t− 1) ≥ `C}

Considering that the event {It = i} implies

{Xi,Oi(t−1) + ct−1,Oi(t−1) ≥ X
∗
O∗(t−1) + ct−1,O∗(t−1)},

we can upper bound this last summation by:

∑

i∈C
t<n

∆i1

{
Xi,Oi(t) + ct,Oi(t) ≥ X

∗
O∗(t) + ct,O∗(t)

TC(t) ≥ `C

}

≤
∑

i∈C
t<n

∆i1

{
max

`C≤si≤t
Xi,si + ct,si ≥ min

0≤s≤t
X
∗
s + ct,s

}

≤
∑

i∈C
t<n

t∑

s=0

t∑

si=`C

∆i1
{
Xi,si + ct,si ≥ X

∗
s + ct,s

}

Now, choosing

`C ≥ max
i∈C

8 lnn

∆2
i

=
8 lnn

mini∈C ∆2
i

=
8 lnn

∆2
C

will ensure that P
(
Xi,si + ct,si ≥ X

∗
s + ct,s

)
≤ 2t−4

for any i ∈ C as a consequence of the Chernoff-
Hoeffding bound, and following the same argument as
in [6]. Hence, the overall clique regret is bounded by:

RC(n) ≤ `C max
i∈C

∆i +
∑

i∈C

∞∑

t=1

2∆it
−2

≤ 8
maxi∈C ∆i

∆2
C

lnn+

(
1 +

π2

3

)∑

i∈C
∆i.

Summing over all cliques in C and taking the infimum
over all possible coverings C yields the aforementioned
upper bound.

Remark. When C is the trivial covering {{i}, i ∈ V },
this upper bound reduces exactly to Equation (2).
Therefore, taking side observations into account sys-
tematically improves on the baseline UCB1 policy.

4 UCB-MaxN POLICY

The second term in the upper bound from Theorem
2 is still linear in the number of arms and may be
large when K � 1. In this section, we introduce a
new policy that makes further use of the underlying
reward observations to improve performances.

Consider the two extreme scenarii that can make an
arm i played at time t: it has the highest UCB, so

• either its average estimate Xi,t is very high, which
means it is empirically the best arm to play,

• or its bias term
√

2 ln t/Oi(t− 1) is very high,
which means one wants more information on it.

In the second case, one wants to observe a sample Xi,t

to reduce the uncertainty on arm i. But in the side
observation setting, we don’t have to pull this arm di-
rectly to get an observation: we may as well pull any
of its neighbors, especially one with higher empirical
rewards, and reduce the bias term all the same. Mean-
while, in the first case, arm i will already be the best
empirical arm in its observation set.

This reasoning motivates the following policy, called
UCB-MaxN, where we first pick the arm we want to
observe according to UCBs, and then pick in its obser-
vation set the arm we want to pull, this time according
to its empirical mean only.

Algorithm 2 UCB-MaxN

X,n← 0,0
for t ≥ 1 do

i← arg maxi

{
Xi +

√
2 ln t
Oi

}

j ← arg maxj∈N(i)Xj

pull arm j
for k ∈ N(j) do
Ok ← Ok + 1
Xk ← Xk,t/Ok + (1− 1/Ok)Xk

end for
end for

Asymptotically, UCB-MaxN reduces the second factor
in the regret upper bound (2) from O(K) to O(|C|),
where C is an optimal clique covering of the side ob-
servation graph G.

Theorem 3. The expected regret of strategy UCB-
MaxN after n steps is upper bounded by

E [R(n)] ≤ inf
C

{
8

(∑

C∈C

maxi∈C ∆i

∆2
C

)
lnn

+

(
1 +

π2

3

)∑

C∈C
∆C

}

+ on→∞(1)

We will make use of the following lemma to prove this
theorem:

Lemma 1. Let X1, . . . , Xn and Y1, . . . , Ym denote two
sets of i.i.d. random variables of respective means µ
and ν such that µ < ν. Let ∆ := µ− ν. Then,

P
(
Xn > Y m

)
≤ 2e−min(n,m)∆2/2.
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Proof. Note that either Xn <
1
2 (µ + ν) < Y m or one

of the two events Xn >
1
2 (µ+ν) or Y m < 1

2 (µ+ν) oc-

curs. As a consequence, the probability P
(
Xn > Y m

)

is lower than

P
(
Xn >

µ+ ν

2

)
+ P

(
Y m <

µ+ ν

2

)

≤ P
(
Xn − µ > −

∆

2

)
+ P

(
Y m − ν <

∆

2

)

≤ e−n∆2/2 + e−m∆2/2

≤ 2e−min(n,m)∆2/2.

Proof of Theorem 3. Let kC := arg mini∈C ∆i denote
the best arm in clique C, and define δi := ∆i−∆C for
each arm i ∈ C. As in the beginning of our proof for
Theorem 2, we can upper bound:

RC(n) ≤ `C max
i∈C

∆i+
∑

i∈C
t<n

∆i1 {It = i;TC(t− 1) ≥ `C}

(3)
where this last summation is upper bounded by

∑

i∈C
t<n

(∆C + δi)1 {It = i;TC(t− 1) ≥ `C}

≤
∑

t<n

∆C1 {It = kC ;TC(t− 1) ≥ `C}+

∑

i∈C
t<n

∆i1 {It = i;TC(t− 1) ≥ `C}

The first summation can be bounded using the
Chernoff-Hoeffding inequality as before:

∑

t<n

1 {It = kC ;TC(t− 1) ≥ `C}

≤
∑

t<n

∑

s≤t
`C≤sk≤t

1
{
XkC ,sk + ct,sk > X

∗
s + ct,s

}

≤ 2
∑

t<n

t−2 ≤ 1 +
π2

3

with an appropriate choice of `C ≥ 8 lnn
∆2
C

. As

to the second summation, the fact that Algorithm
2 picks i instead of kC at step t implies that
Xi,Oi(t) > XkC ,OkC (t), so

R′C(n) :=
∑

i∈C
t<n

∆i1 {It = i;TC(t− 1) ≥ `C}

≤
∑

i∈C
t<n

∆i1

{
Xi,Oi(t−1) > XkC ,OkC (t−1)

TC(t− 1) ≥ `C

}

Consider the times `C ≤ τ1 ≤ · · · ≤ τTC(n) when the
clique C was played (after the first `C steps). Then,
one can rewrite R′C(n) as follows:

R′C(n) ≤
TC(n)∑

u=`C

∑

i∈C
∆i1

{
Xi,Oi(τu) > XkC ,OkC (τu)

}

E [R′C(n)] ≤
TC(n)∑

u=`C

∑

i∈C
∆iP

(
Xi,Oi(τu) > XkC ,OkC (τu)

)

After the clique C has been played u times, all arms
in C being neighbors in the side observation graph,
we know that each estimate Xi, i ∈ C has at least u
samples, i.e., Oi(τu) ≥ u. Therefore, using Lemma 1
with “n = Oi(τu)” and “m = OkC (τu)” in the previous
expression yields

E [R′C(n)] ≤
∑

i∈C

TC(n)∑

u=`C

2∆ie
−uδ2i /2

≤ 2
∑

i∈C
δi>0

∆i
1− e−nδ2i /2
1− e−δ2i /2

e−`Cδ
2
i /2,

where δi = µi −minj∈C µj . Combining all these sepa-
rate upper bounds in Equation (3) leads us to

E [RC(n)] ≤ 8
maxi∈C ∆i

∆2
C

lnn+

(
1 +

π2

3

)
∆C

+ 2
∑

i∈C
δi>0

∆i
1− e−nδ2i /2
1− e−δ2i /2

·
(

1

n

)4δ2i /∆
2
C

where this last term is on→∞(1).

Remark. UCB-MaxN is asymptotically better than
UCB-N: again, its upper bound expression boils down
to Equation (2) when applied to the trivial covering
C = {{i}, i ∈ V }.
Note that our bound is achieved uniformly over time
and not only asymptotically; we only used the o(1)
notation in Theorem 3 to highlight that the last term
vanishes when n → ∞. This term may actually be
large for small values of n and pathological regret dis-
tributions, e.g., if some δi are such that δi � ∆C .
However, with distributions drawn from real datasets
we observed a fast decrease: in the Flixster experiment
for instance (see Section 5.3), this term was below the
(1+π2/3)∆C constant for more than 80% of the cliques
after T ∼ 20K steps.

5 EXPERIMENTS

We have seen so far that our policies improve regret
bounds compared to standard UCB strategies. Let us
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evaluate how these algorithms perform on real social
network datasets. In this section, we perform three
experiments. First, we evaluate the UCB-N and UCB-
MaxN policies on a movie recommendation problem
using a dataset from Flixster [2]. The policies are
compared to three baseline solutions: two UCB vari-
ants with no side observations, and an ε-greedy with
side observations. Second, we investigate the impact
of extending side observations to friends-of-friends, a
setting inspired from average user preferences on so-
cial networks that densifies the reward structure and
speeds up learning. Finally, we apply the UCB-N and
UCB-MaxN algorithms in a bigger social network setup
with a dataset from Facebook [1].

5.1 DATASETS

We perform empirical evaluation of our algorithms on
datasets from two social networks: Flixster and Face-
book. Flixster is a social networking service in which
users can rate movies. This social network was crawled
by Jamali et al. [10], yielding a dataset with 1M users,
14M friendship relations, and 8.2M movie ratings that
range from 0.5 to 5 stars. We clustered the graph using
Graclus [17] and obtained a strongly connected sub-
graph. Furthermore, we eliminated users that rated
less than 30 movies and movies rated by less than 30
users. This preprocessing step helps us to learn more
stable movie-rating profiles (Section 5.2). The result-
ing dataset involves 5K users, 5K movies, and 1.7M
ratings. The subgraph from Facebook we used was
collected by Viswanath et al. [21] from the New Or-
leans region. It contains 60K users and 1.5M friend-
ship relationships. Again, we clustered the graph using
Graclus and obtained a strongly connected subgraph
of 14K users and 500K edges.

5.2 EXPERIMENTAL SETUP

We evaluate our policies in the context of movie rec-
ommendation in social networks. The problem is set
up as a repetitive game. At each turn, a new movie
is sampled from a homogeneous movie database and
the policy offers it at a promotional price to one user
in the social network.3 If the user rates the movie
higher than 3.5 stars, we assume that he/she accepts
the promotion and our reward is 1, otherwise the re-
ward is 0. The promotion is then posted on the user’s
wall and we assume that all friends of that user ex-
press their opinion, i.e., whether they would accept
a similar offer (e.g., on Facebook by “Liking” or not
the promotional message). The goal is to learn a pol-
icy that gives promotions to people who are likely to

3In accordance with the bandit framework, we further
assume that the same movie is never sampled twice.

accept them.

We use standard matrix factorization techniques [12]
to predict users ratings from the Flixster dataset.
Since the Facebook dataset does not contain movie
ratings, we generated rating profiles by matching users
between the Flixster and Facebook social networks.
This matching is based on structural features only,
such as vertex degree, the aim of this experiment be-
ing to evaluate the performances of our policies in a
bigger network with similar rating distributions across
vertices.

The upper bounds we derived in the analysis of UCB-
N and UCB-MaxN (Theorems 2 and 3) involve the
number of cliques used to cover the side observation
graph; meanwhile, bigger cliques imply more observa-
tions per step, and thus a faster convergence of esti-
mators. These observations suggest that the minimum
number of cliques required to cover the graph impacts
the performances of our allocation schemes, which is
why we took this factor into account in our evaluation.

Unfortunately, finding a cover with the minimum num-
ber of cliques is an NP-hard problem. We addressed it
suboptimally as follows. First, for each vertex i in the
graph, we computed a maximal clique Ci involving i.
Second, a covering using {Ci} is found using a greedy
algorithm for the set cover problem [11].

For each experiment, we evaluate our policies on 3
subgraphs of the social network obtained by termi-
nating the greedy algorithm after 3%, 15%, and 100%
of the graph have been covered. This choice is mo-
tivated by the following observation: the degree dis-
tribution in social networks is heavy-tailed, and the
number of cliques needed to cover the whole graph
tends to be on the same scale of order as the number
of vertices; meanwhile, the most active regions of the
network (which are of practical interest in our content
recommendation scenario) are densest and thus easier
to cover with cliques. Since the greedy algorithm fol-
lows a biggest-cliques-first heuristic, looking at these
3% and 15% covers allows us to focus on these densest
regions.

The quality of all policies is evaluated by the per-step
regret r(n) := 1

nE [R(n)]. We also computed for each
plot the improvement of each policy against UCB1 af-
ter the last round T (a k× improvement means that
r(T ) ≈ rUCB1(T )/k). This number can be viewed as
a speedup in the convergence to the optimal arm. Fi-
nally, all plots include a vertical line indicating the
number of cliques in the cover, which is also the num-
ber of steps needed by any policy to pull every arm
at least once. Before that line, all policies perform
approximately the same.
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Figure 1: Per-step regret of four bandit policies on the Flixster graph.
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Figure 2: Per-step regret of four bandit policies on the Flixster graph with friend-of-friend side observations.

5.3 FLIXSTER

In this first experiment, we evaluate UCB-N and UCB-
MaxN in the Flixster social network. These policies are
compared to three baselines: UCB1 with no side obser-
vation, UCB1-on-cliques and ε-greedy. Our ε-greedy
is the same as εn-greedy in [6] with c = 5, d = 1
and K = |C|, which turned out to be the best empir-
ical parametrization within our experiments. UCB1-
on-cliques is similar to UCB-N, except that it updates
the estimators {Xk | k ∈ N(i)} with the reward Xi,t of
the pulled arm i. This is a simple approach to make
use of the network structure without access to side ob-
servations. As illustrated in Figure 1, we observe the
following trends.

The regret of UCB-N and UCB-MaxN is significantly
smaller than the regret of UCB1 and UCB1-on-cliques,
which suggests these strategies successfully benefit
from side observations to improve their learning rate.
ε-greedy shows improvement as well, but its perfor-
mances decrease rapidly as the size of the cover grows
(i.e., adding smaller cliques) compared to our strate-
gies. Overall, the performance of all policies deterio-
rates with more coverage, which is consistent with the
O(K) and O(|C|) upper bounds on their regrets.

UCB-MaxN does not perform significantly better than
UCB-N when the size of the cover |C| is small. This can
be explained based on the amount of overlap between
the cliques in the cover. In practice, we observed that
UCB-MaxN performs better when individual arms be-
long to many cliques on average. For our 3%, 15%, and
100% graph cover simulations, the average number of
cliques covering an arm were 1.18, 1.09, 1.76; mean-
while, the regrets of UCB-MaxN were 9%, 3%, and 33%
smaller than the regrets of UCB-N, respectively.

5.3.1 FRIENDS OF FRIENDS

In the second experiment we use a denser graph where
side observations come from friends and friends of
friends. This setting is motivated by the observation
that a majority of social network users do not restrict
content sharing to their friends. For instance, more
than 50% of Facebook users share all their content
items with friends of friends [15].

Figure 2 shows that the gap between the baselines and
our policies is even wider in this new setting. This
phenomenon can be explained by larger cliques; for
instance, only 8 cliques are needed to cover 15% of the
graph in this instance, which is 20 times less than in
Section 5.3.
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Figure 3: Per-step regret of four bandit policies on the Facebook graph.
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Figure 4: Per-step regret of four bandit policies on the Facebook graph with friend-of-friend side observations.

5.4 FACEBOOK

In the next experiment, we evaluate UCB-N and UCB-
MaxN on a subset of the Facebook social network. This
graph has three times as many vertices and twice as
many edges as the Flixster graph. We experiment with
both friends and friends-of-friends side observations.

As shown in Figures 3 and 4, compared to Figures 1
and 2, we observe much smaller regrets in this setting,
essentially because the Facebook graph is denser. For
instance, only 5 friend-of-friend cliques are needed to
cover 15% of the graph. For this cover, the regret
of UCB-MaxN is 10 times smaller than the regret of
UCB1-on-cliques and UCB-N, respectively.

6 CONCLUSION AND FUTURE
WORK

In this paper, we considered the stochastic multi-
armed bandit problem with side observations. This
problem generalizes the standard, independent multi-
armed bandit, and has a broad set of applications in-
cluding Internet advertisement and content recommen-
dation systems. Our contribution consists in two new
strategies, UCB-N and UCB-MaxN, that leverage this

additional information into substantial learning rate
speed-ups.

We showed that our policies reduce regret bounds from
O(K) to O(|C|), which is a significant improvement for
dense reward-dependency structures. We also evalu-
ated their performances on real datasets in the con-
text of movie recommendation in social networks. Our
experiments suggest that these strategies significantly
improve the learning rate when the side observation
graph is a dense social network.

So far we have focused on cliques as a convenient way
to analyze our policies, but none of our two strategies
explicitly relies on cliques (they only use the notion of
neighborhood). Characterizing the most appropriate
subgraph structure for this problem is still an open
question that could lead to better regret bounds and
inspire more efficient policies.
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Abstract

We propose interdependent defense (IDD)
games, a computational game-theoretic
framework to study aspects of the interde-
pendence of risk and security in multi-agent
systems under deliberate external attacks.
Our model builds upon interdependent secu-
rity (IDS) games, a model due to Heal and
Kunreuther that considers the source of the
risk to be the result of a fixed randomized-
strategy. We adapt IDS games to model
the attacker’s deliberate behavior. We de-
fine the attacker’s pure-strategy space and
utility function and derive appropriate cost
functions for the defenders. We provide a
complete characterization of mixed-strategy
Nash equilibria (MSNE), and design a simple
polynomial-time algorithm for computing all
of them, for an important subclass of IDD
games. In addition, we propose a random-
instance generator of (general) IDD games
based on a version of the real-world Internet-
derived Autonomous Systems (AS) graph
(with around 27K nodes and 100K edges),
and present promising empirical results us-
ing a simple learning heuristics to compute
(approximate) MSNE in such games.

1 INTRODUCTION

Attacks carried out by hackers and terrorists over the
last few years have led to increased efforts by both
government and the private sector to create and adopt
mechanisms to prevent future attacks. This effort has
yielded a more focused research attention to models,
computational and otherwise, that facilitate and help
to improve (homeland) security for both physical in-
frastructure and cyberspace. In particular, there has
been quite a bit of recent research activity in the gen-

eral area of game-theoretic models for terrorism set-
tings (see, e.g., Bier and Azaiez [2009] and Cárceles-
Poveda and Tauman [2011]).

Interdependent security (IDS) games are one of the
earliest models resulting from a game-theoretic ap-
proach to model security in non-cooperative environ-
ments composed of free-will self-interested individual
decision-makers. Originally introduced and studied by
economists Kunreuther and Heal [2003], IDS games
model general abstract security problems in which an
individual within a population considers whether to
voluntarily invest in some protection mechanisms or
security against a risk they may face, knowing that
the cost-effectiveness of the decision depends on the in-
vestment decisions of others in the population because
of transfer risks (i.e., the “bad event” may be trans-
ferable from a compromised individual to another).

In their work, Kunreuther and Heal [2003] provided
several examples based on their economics, finance
and risk management expertise. (We refer the reader
to their paper for more detailed descriptions.) As a
canonical example of the real-world relevance of IDS
settings and the applicability of IDS games, Heal and
Kunreuther [2005] used this model to describe prob-
lems such as airline baggage security. In their set-
ting, individual airlines may choose to invest in addi-
tional complementary equipment to screen passengers’
bags and check for hazards such as bombs that could
cause damage to their passengers, planes, buildings,
or even reputations. However, mainly due to the large
amount of traffic volume, it is impractical for an airline
to go beyond applying security checks to bags incom-
ing from passengers and include checks to baggage or
cargo transferred from other airlines. On the other
hand, if an airline invests in security, they can still ex-
perience a bad event if the bag was transferred from
an airline that does not screen incoming bags, render-
ing their investment useless. 1 Thus, we can see how

1Note that even if full screening were performed, the
Christmas Day 2009 episode in Detroit [O’Connor and

152



the cost-effectiveness of an investment can be highly
dependent on others’ investment decisions. Another
recent application of the IDS model is on container
shipping transportation [Gkonis and Psaraftis, 2010].
They use the IDS model to study the effect of invest-
ment decision on container screening of ports have on
their neighboring ports.

In this work, we build on the literature in IDS games.
In particular, we adapt the model to situations in
which the abstract “bad event” results from the de-
liberate action of an attacker. The “internal agents”
(e.g., airlines and computer network users), whom we
also often refer to as “defenders” or “sites,” have the
voluntary choice to individually invest in security to
defend themselves against a direct or indirect offensive
attack, modulo, of course, the cost-effectiveness to do
so. A side benefit of explicitly modeling the attacker,
as we do in our model, is that the probability of an
attack results directly from the equilibrium analysis.
Building IDS games can be hard because it requires a
priori knowledge of the likelihood of an attack. At-
tacks of this kind are considered rare events and thus
notoriously difficult to statistically estimate in general.

Related Work. Johnson et al. [2010] and Fultz
and Grossklags [2009] independently developed non-
cooperative game models similar to ours. Johnson
et al. [2010] extend IDS games by modeling uncer-
tainty about the source of the risk (i.e., the attacker)
using a Bayesian game over risk parameters. Fultz and
Grossklags [2009] propose and study a non-graphical
game-theoretic model for the interactions between at-
tackers and nodes in a network. In their model, each
node in the network can decide on whether to con-
tribute (by investment) to the overall safety of the
network and/or to individual safety. The attackers
can attack any number of nodes, but with each at-
tack there is an increased probability that the attacker
might get caught and suffer penalties or fines. Hence,
while their game has IDS characteristics, it is tech-
nically not within the standard IDS game framework
introduced by Heal and Kunreuther.

Most of the previous related work explore the realm
of information security and are application/network
specific (see Roy et al. [2010] for a survey on game
theory application to network security). Past litera-
ture has largely focused on two-person (an attacker
and a defender) games where the nodes in the net-
work are regarded as a single entity (or a central de-
fender). For example, Lye and Wing [2002] look at
the interactions between an attacker and the (system)
administrator using a two-player stochastic game. Re-
cent work uses a Stackelberg game model in which the

Schmitt, 2009] serves as a reminder that transfer risk still
exists.

defender (or leader) commits to a mixed strategy to
allocate resources to defend a set of nodes in the net-
work, and the follower (or attacker) optimally allocates
resources to attack a set of ”targets” in the network
given the leader’s commitment [Jain et al., 2011, Kiek-
intveld et al., 2009, Korzhyk et al., 2010, 2011a,b].

Other recent work strive to understand the motiva-
tion of the attackers. For example, Liu [2003] focus
on understanding the attacker’s intent, objectives, and
strategies and derive a (two-player) game-theoretical
model based on these, while Cremonini and Nizovtsev
[2006] use cost-benefit analysis (of attackers) to ad-
dress the issue of the optimal amount of security (of
the nodes in the network).
Our Contribution. We adapt the standard non-
cooperative framework of IDS games to settings in
which the source of the risk is the result of a deliber-
ate, strategic decision by an external attacker. In par-
ticular, we design and propose interdependent defense
(IDD) games, a new class of games that, in contrast
to standard IDS games, model the attacker explicitly,
while maintaining a core component of IDS systems:
the potential transferability of the risk resulting from
an attack. We note that the explicit modeling of risk
transfer is an aspect of our model that has not been
a focus of previous game-theoretic attacker-defender
models of security discussed earlier.

We formally define and study IDD games in depth in
Section 3. We present several results that fully char-
acterize their NE. 2 We also provide a polynomial-time
algorithm to compute all MSNE for the important
subclass of IDD games in which there is only one at-
tack, the defender nodes are fully transfer-vulnerable
(i.e., investing in security does nothing to reduce their
external/transfer risk) and transfers are one-hop. 3

We note that considering a single attacker is a typical
assumption in security settings (see previous work dis-
cussed earlier). It is also reasonable: We can view
many attackers as a single attacker. Allowing at
most one attack prevents immediate representational
and computational intractability problems because the
number of the attacker’s (pure) strategies grows expo-
nentially with the number of attacks. Finally, because
the attacker has no fixed target, it is ineffective for
the attacker to consider or go beyond plans of attacks
involving multiple (> 2) transfers: such plans are com-
plex, time consuming and costly.

Our computational results are significant and surpris-
ing because computing all NE in general IDS games is

2Due to space limitation, we omit proofs of our main
technical results and instead refer the reader to the sup-
plementary document for details [Chan et al., 2012].

3We note that the original IDS games were also fully
transfer-vulnerable and assume one-hop transfers.
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hard (i.e., the Nash-extension problem in general IDS
games is NP-complete [Kearns and Ortiz, 2003]). 4 We
do not know of any other non-trivial game for which
there exists a polynomial-time algorithm to compute
all NE except ours and the algorithm for uniform-
transfer IDS games of Kearns and Ortiz [2003].

In Section 4, we provide experimental results from
applying learning-in-games heuristics to compute ap-
proximate NE to both fixed and randomly-generated
instances of IDD games, with at most one simulta-
neous attack and one-hop transfers, on a very large
Internet AS graph (≈ 27K nodes and ≈ 100K edges).

2 IDS GAMES

Each player i in an IDS game has a choice to invest
(ai = 1) or not invest (ai = 0). For each player i,
Ci and Li are the cost of investment and loss induce
by the bad event, respectively. We define the ratio
of the two parameters, the player’s “cost-to-loss” ra-
tio, as ρi ≡ Ci/Li. Bad events can occur through
both direct and indirect means. Direct risk, or inter-
nal risk, pi is the probability that player i will ex-
perience a bad event because of direct contamination.
The standard IDS model assumes that investing will
completely protect the player from direct contamina-
tion; hence, internal risk is only possible when ai = 0.
Indirect risk qji is the probability that player j is di-
rectly “contaminated,” does not experience the bad
event but transfers it to player i who ends up expe-
riencing the bad event. There is an implicit global
constraint on these parameters, by the axioms of prob-
ability: pi +

∑n
j=1 qij ≤ 1 for all i.

We now formally define a (directed) graphical games
[Kearns, 2007, Kearns et al., 2001] version of IDS
games, as first introduced by Kearns and Ortiz [2003].
Denote by [n] ≡ {1, . . . , n} the set of n players. Note
that the parameters qij ’s induce a directed graph
G = ([n], E) such that E ≡ {(i, j)|qij > 0}. Let
Pa(i) ≡ {j | qji > 0} be the set of players that are par-
ents of player i inG (i.e., the set of players that player i
is exposed to via transfers), and by PF(i) ≡ Pa(i)∪{i}
the parent family of player i, which includes i. Denote
by ki ≡ |PF(i)| the size of the parent family of player i.
Similarly, let Ch(i) ≡ {j | qij > 0} be the set of play-
ers that are children of player i (i.e., the set of players
to whom player i can present a risk via transfer) and

4To put our computational contributions in context,
note that deciding whether a game has a PSNE is in general
NP-complete (see, e.g., Gilboa and Zemel [1989], Gottlob
et al. [2005]), and computing an MSNE is PPAD-complete,
even in two-player games (see, e.g., Chen et al. [2009] and
Daskalakis et al. [2009]). Also, computing all MSNE is
rarely achieved and counting-related problems are often
#P-complete (see, e.g., [Conitzer and Sandholm, 2008]).

CF(i) ≡ Ch(i) ∪ {i} the (children) family of player i,
which includes i. The probability that player i is safe
from player j, as a function of player j’s decision, is

eij(aj) ≡ aj + (1− aj)(1− qji) = (1− qji)1−aj ,

because if j invests, then it is impossible for j to trans-
fer the bad event, while if j does not invest, then j
either experiences the bad event or transfers it to an-
other player, but never both.

Denote by a ≡ (a1, . . . , an) ∈ {0, 1}n the joint action
of all n players. Also denote by a−i the joint-action of
all players except i and for any subset I ⊂ [n] of play-
ers, denote by aI the sub-component of the joint action
corresponding to those players in I only. We define i’s
overall safety from all other players as si(aPa(i)) ≡∏
j∈Pa(i) eij(aj) and equivalently his overall risk from

some other players is ri(aPa(i)) ≡ 1− si(aPa(i)). Note
that each players’ external safety (and risk) is a direct
function of its parents only, not all other players. From
these definitions, we obtain player i’s overall cost, the
cost of joint action a ∈ {0, 1}n, corresponding to the
(binary) investment decision of all players, is

Mi(ai,aPa(i)) ≡ai[Ci + ri(aPa(i))Li]+

(1− ai)[pi + (1− pi)ri(aPa(i))]Li .

3 IDD GAMES

In the standard IDS game model, investment in secu-
rity does not reduce transfer risks. However, in some
IDS settings (e.g., vaccination and cyber-security), it is
reasonable to expect that security investments would
include mechanisms to reduce transfer risks. This mo-
tivates our first modification to the traditional IDS
games: allowing the investment in protection to not
only makes us safe from direct attack but also partially
reduce (or even eliminate) the transfer risk. We incor-
porate this factor by introducing a new real-valued pa-
rameter αi ∈ [0, 1] representing the probability that a
transfer of a potentially bad event will go unblocked by
i’s security, assuming i has invested. Thus, we redefine
player i’s overall cost as 5

Mi(ai,aPa(i)) ≡ai[Ci + αiri(aPa(i))Li]+

(1− ai)[pi + (1− pi)ri(aPa(i))]Li .

Next, we introduce an additional player, the attacker,
who deliberately initiates bad events. (So that now
bad events are no longer “chance occurrences” with-
out any strategic deliberation.) The attacker has a
target decision for each player - a choice of attack
(bi = 1) or not attack (bi = 0) player i. Hence,

5A similar extension was also proposed independently
by Heal and Kunreuther [2007].
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the attacker’s pure strategy is denoted by the vector
b ∈ {0, 1}n. The game parameter pi implicitly “en-
codes” bi because bi = 0 implies pi = 0. Thus, we
redefine pi ≡ pi(bi) ≡ bip̂i so that player i has in-
trinsic risk p̂i, and only has internal risk if targeted
(i.e, bi = 1). The new parameter p̂i represents the
(conditional) probability that an attack is successful
at player i given that player i was directly targeted
and did not invest in protection. The game parameter
qij “encodes” bi = 1, because a prerequisite is that i is
targeted before it can transfer the bad event to j. We
redefine qij ≡ qij(bi) ≡ biq̂ij so that q̂ij is the intrinsic
transfer probability from player i to player j, inde-
pendent of bi. The new parameter q̂ij represents the
(conditional) probability that an attack is successful
at player j given that it originated at player i, did not
occur at i but was transferred undetected to j. Note
that just as it was the case with traditional IDS games,
there is an implicit constraint on the risk-related pa-
rameters: p̂i +

∑
j∈Ch(i) q̂ij ≤ 1, for all i. Because

the pi’s and qij ’s depend on the attacker’s action b, so
does the safety and risk functions. In particular, we
now have

eij(aj , bj) ≡ aj + (1−aj)(1− bj q̂ji) = (1− q̂ji)bj(1−aj),

si(aPa(i),bPa(i)) ≡ ∏
j∈Pa(i) eij(aj , bj) ≡ 1 −

ri(aPa(i),bPa(i)). Hence, for each player i, the cost
function becomes

Mi(ai,aPa(i), bi,bPa(i)) ≡ ai[Ci + αiri(aPa(i),bPa(i))Li]

+(1− ai)[bip̂i + (1− bip̂i)ri(aPa(i),bPa(i))]Li.

We assume the attacker wants to cause as much dam-
age as possible. One possible utility/payoff function
U quantifying the objective of the attacker is

U(a,b) ≡∑n
i=1Mi(aPF(i),bPF(i))− aiCi − biC0

i .

which adds the expected players costs (for targeted
and transferred bad events) over all players, minus C0

i ,
the attacker’s own “cost” to target player i.

3.1 MIXED STRATEGIES IN IDD GAMES

For all player i, denote by xi the mixed strategy of
player i: the probability that player i invests. Sim-
ilarly, y denotes the joint probability mass function
(PMF) corresponding to the attacker’s mixed strategy
so that for all b ∈ {0, 1}n, y(b) is the probability that
the attacker executes joint-attack vector b.

Denote the marginal PMF over a subset I ⊂ [n] of the
internal players by yI such that for all bI , yI(bI) ≡∑

b−I
y(bI ,b−I) is the (marginal) probability that the

attacker chooses a joint-attack vector in which the sub-
component decisions corresponding to players in I are
as in bI . Denote simply by yi ≡ y{i}(1) the marginal

probability that the attacker chooses an attack vector
in which player i is directly targeted. Slightly abusing
notation, we redefine the function eij (i.e., how safe
i is from j), si and ri (i.e., the overall transfer safety
and risk, respectively) as eij(xj , bj) ≡ xj+(1−xj)(1−
bj q̂ji), si(xPa(i),bPa(i)) ≡

∏
j∈Pa(i) eij(xj , bj),

si(xPa(i), yPa(i)) ≡
∑

bPa(i)

yPa(i)(bPa(i))si(xPa(i),bPa(i)) ,

and ri(xPa(i), yPa(i)) ≡ 1− si(xPa(i), yPa(i)).

In general, the expected cost of protection to site i,
with respect to a joint mixed-strategy (x, y), can be
expressed as

Mi(xi,xPa(i), yPF(i)) ≡ xi[Ci + αiri(xPa(i), yPa(i))Li]+

(1− xi)[p̂ifi(xPa(i), yPF(i)) + ri(xPa(i), yPa(i))]Li ,

where fi(xPa(i), yPF(i)) ≡
∑

bPF(i)
yPF(i)(bPF(i)) bisi(xPa(i),bPa(i)) .

The expected payoff of the attacker is

U(x, y) ≡∑n
i=1Mi(xPF(i), yPF(i))− xiCi − yiC0

i .

Let ∆̂i ≡ ρi/p̂i ≡ Ci
Libpi and ŝi(xPa(i), yPF(i)) ≡

fi(xPa(i), yPF(i)) + 1−αibpi ri(xPa(i), yPa(i)). The best-
response correspondence of defender i is then

BRi(xPa(i), yPF(i)) ≡





{1}, if ŝi(xPa(i), yPF(i)) > ∆̂i,

{0}, if ŝi(xPa(i), yPF(i)) < ∆̂i,

[0, 1], if ŝi(xPa(i), yPF(i)) = ∆̂i.

The best-response correspondence for the attacker is
simply BR0(x) ≡ arg maxy U(x, y).

Definition 1 A joint mixed-strategy (x∗, y∗) is a
mixed-strategy Nash equilibrium (MSNE) of an IDD
game if (1) for all i ∈ [n], x∗i ∈ BRi(x∗Pa(i), y

∗
PF(i))

and (2) y∗ ∈ BR0(x∗). If (x∗, y∗) corresponds to a
(deterministic) joint action then we call the MSNE a
pure-strategy Nash equilibrium (PSNE).

3.2 MODEL ASSUMPTIONS

Note that the attacker has in principle an exponential
number of pure strategies! This affords the attacker
unrealistic amount of power. Hence, we need restric-
tion on the attacker’s power. The simplest way is to
allow at most a single simultaneous attack. We can
weaken this assumption to allow the attacker at most
K simultaneous attacks. Even then, the number of
pure strategies will grow exponentially in the number
of potential attacks, which still renders the attacker’s
pure-strategy space unrealistic, especially on a very
large network with twenty-thousand nodes. Worst-
case, we need to consider up to 2n number of pure
strategies for K attacks as K goes to n.
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Assumption 1 The set of pure strategies of the at-
tacker is B = {b ∈ {0, 1}n |∑n

i=1 bi ≤ 1} .

The following assumptions are on the game parame-
ters. The next assumption states that every site’s in-
vestment cost is positive and (strictly) smaller than the
conditional expected direct loss if the site were to be
attacked directly (bi = 1); that is, if a site knows that
an attack is directed against it, the site will prefer to
invest in security, unless the external risk is too high.
This assumption is reasonable because otherwise the
player will never invest regardless of what other players
do (i.e., not investing would be a dominant strategy).

Assumption 2 For all sites i ∈ [n], 0 < Ci < p̂iLi.

The next assumption states that, for all sites i, the
attacker’s cost to attack i is positive and (strictly)
smaller than the expected loss (i.e., gains from the
perspective of the attacker) achieved if an attack initi-
ated at site i is successful, either directly at i or at one
of its children (after transfer); that is, if an attacker
knows that an attack is rewarding (or able to obtain a
positive utility), it will prefer to attack some nodes in
the network. This assumption is reasonable; otherwise
the attacker will never attack regardless of what other
players do (i.e., not attacking would be a dominant
strategy, leading to an easy problem to solve).

Assumption 3 For all sites i ∈ [n], 0 < C0
i < p̂iLi +∑

j∈Ch(i) q̂ijαjLj.

PSNE of IDD Games. It turns out that under
these three assumptions, there is no PSNE in IDD
games. This is typical of attacker-defender settings.
The following proposition eliminates PSNE as a uni-
versal solution concept for natural IDD games in which
at most one attack is possible. The main significance of
this result is that it allows us to concentrate our efforts
on the much harder problem of computing MSNE.

Proposition 1 No IDD game in which Assump-
tions 1, 2 and 3 hold has a PSNE.

3.3 MSNE OF IDD GAMES

We first consider the IDD games under the assumption
that no protection from transfer risk, which is used in
the original IDS games. Note that, throughout this
subsection, we will be using the assumptions we made
earlier (in additional to the following assumption).

Assumption 4 For all internal players i ∈ N , the
probability that player i’s investment in security does
not protect the player from transfers, αi, is 1.

Definition 2 We say an IDD game is transfer-
vulnerable if Assumption 4 holds. We say an IDD

game is a single simultaneous attack game if Assump-
tion 1 holds (i.e., at most one attack is possible).

Assumption 1, in the context of mixed strategies,
implies the probability of no attack y0 ≡ 1 −∑n
i yi. Assumptions 1 and 4 greatly simplify the best-

response condition of the internal players because now
ŝi(xPa(i), yPF(i)) = yi. Let L0

i (xi) ≡ (1 − xi)(p̂iLi +∑
j∈Ch(i) q̂ijLj). It will also be convenient to denote

by L
0

i ≡ L0
i (0) = p̂iLi+

∑
j∈Ch(i) q̂ijLj , so that we can

express L0
i (xi) = (1− xi)L

0

i , to highlight that L0
i is a

linear function of xi. Similarly, it will also be conve-

nient to let M0
i (xi) ≡ L0

i (xi)− C0
i , and denote M

0

i ≡
M0
i (0) = L

0

i−C0
i . Let η0i ≡ C0

i /L
0

i . The best-response
condition of the attacker also simplifies under the same
assumptions because now U(x, y) =

∑n
i=1 yiM

0
i (xi).

Assumption 3 is reasonable in our new context be-
cause, under Assumption 4, if there were a player i
with η0i > 1, the attacker would never attack i, and as
a result player i would never invest. In that case, we
can safely remove j from the game, without any loss
of generality.

We now characterize the space of MSNE in IDD games,
which will immediately lead to a polynomial-time al-
gorithm for computing all MSNE.
Characterization. The characterization starts by
partitioning the space of games into three, based on
whether

∑n
i=1 ∆̂i is (1) <, (2) =, or (3) > than 1.

The rationale behind this is that now the players are
indifferent between investing or not investing when
yi = ∆̂i, by the best-response correspondence the at-
tacker’s mixed strategy is restricted. The following
result fully characterizes the set of MSNE in single
simultaneous attack transfer-vulnerable IDD games.

Proposition 2 The joint mixed-strategy (x∗, y∗) is
an MSNE of a single simultaneous attack transfer-
vulnerable IDD game in which

1.
∑n
i=1 ∆̂i < 1 if and only if (1) 1 > y∗0 = 1 −∑n
i=1 ∆̂i > 0, and (2) for all i, y∗i = ∆̂i > 0 and

0 < x∗i = 1− η0i < 1.

2.
∑n
i=1 ∆̂i = 1 if and only if (1) y∗0 = 0, and (2)

for all i, y∗i = ∆̂i > 0 and x∗i = 1 − v+C0
i

L
0
i

with

0 ≤ v ≤ mini∈[n]M
0

i .

3.
∑n
i=1 ∆̂i > 1 if and only if (1) y∗0 = 0, and

(2) there exists a non-singleton, non-empty sub-

set I ⊂ [n], such that mini∈IM
0

i ≥ maxk/∈IM
0

k

if I 6= [n], and the following holds: (a) for all
k /∈ I, x∗k = 0 and y∗k = 0, (b) for all i ∈
J ≡ arg min

i∈I
M

0

i , x
∗
i = 0 and 0 ≤ y∗i ≤ ∆̂i,
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and in addition,
∑
i∈J y

∗
i = 1 −∑t∈I−J ∆̂i; and

(c) for all i ∈ I − J , y∗i = ∆̂i and 0 < x∗i =

1− mint∈IM
0
t+C

0
i

L
0
i

< 1.

As proof sketch, we briefly state that the proposition
follows from the restrictions imposed by the model
parameters and their implication to indifference and
monotonicity conditions. We also mention that the

third case in the proposition implies that if the M
0

l ’s
form a complete order, then the last condition stated
in that case allows us to search for a MSNE by explor-
ing only n− 2 sets, vs. 2n−2 if done naively. 6

We now discuss properties of the characterization.

Security investment characteristics of MSNE.
At equilibrium x∗, if x∗i > 0, the probability of not
investing is proportional to C0

i and inversely propor-
tional to p̂iL +

∑
j∈Ch(i) q̂ijLj . It is kind of reassur-

ing the at equilibrium, which is the (almost-surely)
unique stable outcome of the system, the probability
of investing increases with the potential loss a player’s
non-investment decision could cause to the system.
Hence, behavior in a stable system implicitly “forces”
all players to indirectly account for or take care of
their own children. This may sound a bit paradoxical
at first given that we are working within “noncooper-
ative” setting and each player’s cost function is only
dependent on the investment decision of the player’s
parents. Interestingly, the existence of the attacker in
the system is inducing an (almost-surely) unique sta-
ble outcome in which an implicit form of “cooperation”
occurs. A defenders’s best response is independent of
their parents, the source of transfer risk, if investment
in security does nothing to protect that player from
transfers (i.e., αi = 1). This makes sense because the
player cannot control the transfer risk.

Relation to network structure. How does the
network structure and the equilibrium relate? As seen
above, the values of the equilibrium strategy of each
player depend on information from the attacker, the
player and the player’s children. From the discussion
in the last paragraph, a player’s probability of invest-
ing at the equilibrium increases with the expected loss
sustained from a “bad event” occurring as a result of
a transfer from a player to the player’s children.

Let us explore this last point further by considering
the case of uniform-transfer probabilities (also studied
by Kunreuther and Heal [2003] and Kearns and Ortiz
[2003]). In that case, transfer probabilities are only a

function of the source, not the destination: q̂ij ≡ δ̂i.

6In fact, it turns out a complete order is not actually
necessary because we can safely move all defenders with the

same value of M
0
i in a group as a whole inside or outside

the set I referred to in that case of the proposition.

The expression for the equilibrium probabilities of
those players who have a positive probability of in-

vesting would simplify to x∗i = 1− v+C0
ibpiLi+δi P
j∈Ch(i) Lj

,

for some constant v. The last expression suggests that∑
j∈Ch(i) Lj differentiates the probability of investing

between players. That would suggests the larger the
number of children the larger the probability of invest-
ing. A scenario that seems to further lead us to that
conclusion is when we make further assumptions (ho-
mogeneous system: first studied in the original IDS
paper): Li ≡ L, p̂i ≡ p̂, δi ≡ δ, and C0

i ≡ C0 7 for all

players. Then, we would get x∗i = 1 − v+C0

L(bp+δ|Ch(i)|) .
So the probability of not investing is inversely propor-
tional to the number of children the player has.

On the attacker’s equilibrium strategy. The
support of the attacker, I∗ ≡ {i | y∗i > 0}, at equi-
librium has the following properties: (1) players for
which the attacker’s cost-to-expected-loss is higher are
“selected” first in the algorithm; (2) if the size of that

set is t, and there is a lower bound on ∆̂i > ∆̂, and∑n
i=1 ∆̂i > 1, then t < 1/∆̂ is an upper-bound on the

number of players that could potentially be attacked;
(3) if we have a game with homogeneous parameters,
then the probability of an attack will be uniform over
that set I∗; and (4) all but one of the players in that
set I∗ invest in security with some non-zero probability
(almost surely).

3.4 COMPUTING MSNE EFFICIENTLY

We now describe an algorithm to compute all MSNE
in single simultaneous attack transfer-vulnerable IDD
games that falls off the Proposition 2. We begin
by noting that the equilibrium in the case of IDD
games with

∑n
i=1 ∆̂i ≤ 1, corresponding to cases 1

and 2 of the proposition, has essentially an analytic
closed-form. Hence, we concentrate on the remain-
ing and most realistic case in large-population games
of
∑n
i=1 ∆̂i > 1. We start by sorting the indices of

the internal players in descending order based on the

M
0

i ’s. Let Val(l) and Idx(l) be the lth value and
index in the resulting sorted list, respectively. Find
t such that 1 − ∆̂Idx(t) ≤

∑t−1
l=1 ∆̂Idx(l) < 1. Let

k = arg max{l ≥ t | Val(l) = Val(t)} (i.e., con-
tinue down the sorted list of values until a change
occurs). For i = 1, . . . , t − 1, let l = Idx(i) and set

x∗l = 1− Val(t)+C0
l

L
0
l

and y∗l = ∆̂l. For i = k + 1, . . . , n,

let l = Idx(i) and set x∗l = 0 and y∗l = 0. For
i = t, . . . , k, let l = Idx(i) and set x∗l = 0. Finally, rep-
resent the simplex defined by the following constraints:
for i = t, . . . , k, let l = Idx(i) and 0 ≤ y∗l ≤ ∆̂l;

7Note that this does not mean that the expected loss
caused by a player that does not invest but is attacked,
L (bp+ δ|Ch(i)|), is the same for all players.
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∑k
i=t y

∗
Idx(i) = 1 −∑t−1

i=1 ∆̂Idx(i). The running time of

the algorithm is O(n log n) (because of sorting). As
mentioned earlier, the theorem is significant because
we do not know of any other non-trivial class of games
that have algorithms to compute all Nash equilibria
in polynomial time, except ours and the uniform IDS
games [Kearns and Ortiz, 2003].

Theorem 1 There exists a polynomial-time algorithm
to compute all MSNE of a single simultaneous attack
transfer-vulnerable IDD game.

Note that the case in which
∑n
i=1 ∆̂i = 1 has (Borel)

measure zero and is quite brittle (i.e., adding or re-
moving a player breaks the equality). For the case

in which
∑n
i=1 ∆̂i > 1, if the value of the M

0

i ’s are
distinct, 8 then there is a unique MSNE!

4 EXPERIMENTS

In the previous section, we established the theoret-
ical characteristics and computational tractability of
single simultaneous attack IDD games with the high-
est transfer vulnerability parameter: αi = 1. In
this section, partly motivated by security problems
in cyberspace, we concentrate instead on empirically
evaluating the other extreme of transfer vulnerability:
games with low αi values (i.e., near 0), so that invest-
ing in security considerably reduces the transfer risk.

Our main objectives for the experiments presented
here are (1) to demonstrate that a simple heuristic,
best-response-gradient dynamics (BRGD), is practi-
cally effective in computing an (approximate) MSNE
in a very large class of IDD games with realistic
Internet-scale network graphs in a reasonable amount
of time for cases in which the transfer vulnerabilities
αi’s are low; and (2) to explore the general struc-
tural and computational characteristics of (approxi-
mate) MSNE in such IDD games, including their de-
pendence on the underlying network structure of the
game (and approximation quality).

BRGD is a well-known technique from the work on
learning in games [Fudenberg and Levine, 1999, Singh
et al., 2000, Kearns and Ortiz, 2003, Heal and Kun-
reuther, 2005, Kearns, 2005]. Here, we use BRGD
as a tool to compute an ε-approximate MSNE, which
is a joint mixed strategy with the property that the
gain in utility (or reduction in cost) of any individ-
ual from unilaterally deviating from their prescribed
mixed-strategy is no larger than ε; a 0-approximate
MSNE is an exact MSNE.

8Distinct M
0
i ’s for the set of defenders at which the sum

goes over one is sufficient to guarantee unique MSNE.

Table 1: Internet Games’ Model Parameters

Model Fixed: U = 0.5
Parameters Random: U ∼ Uniform([0,1])

αi U/20
Li 108 + (109) ∗ U
Ci 105 + (106) ∗ Ubpi 0.9 ∗ epiepi+P

k∈Ch(i) eqikbqij 0.9 ∗ eqijepi+P
k∈Ch(i) eqik

zi 0.2 + U/5epi 0.8 + U/10eqij zi
|Ch(j)|+|Pa(j)|P

k∈Ch(i) |Ch(k)|+|Pa(k)|
C0
i 106

We obtained the latest version (March 2010 at the
time) of the real structure and topology of the Au-
tonomous Systems (AS) in the Internet from DIMES
(netdimes.org) [Shavitt and Shir, 2005]. The AS-level
network has 27, 106 nodes (683 isolated) and 100, 402
directed edges; the graph length (diameter) is 6, 253,
the density (number of edges divided by number of
possible edges) is 1.9920 × 10−5, and the average (in
and out) degree is 3.70, with ≈ 76.93% and 2.59% of
the nodes having zero indegree and outdegree, respec-
tively. All the IDD games in the experiments presented
in this section have this network structure.

For simplicity, we call Internet games the class of IDD
games with the AS-level network graph and low αi val-
ues. We considered various settings for model param-
eters of Internet games: a single instance with specific
fixed values; and several instances generated at ran-
dom (see Table 1 for details). The attacker’s cost-
to-attack parameter for each node i is always held
constant: C0

i = 106. For each run of each experi-
ment, we ran BRGD with randomly-generated initial
conditions (i.e., random initializations of the players’
mixed strategies): xi ∼ Uniform([0, 1]), i.i.d. for all i,
and y is a probability distribution generated uniformly
at random, and independent of x, from the set of all
probability mass functions over n + 1 events. 9 The
initialization of the transfer-probability parameters of
a node essentially gives higher transfer probability to
children with high (total) degree (because they are po-
tentially ”more popular”). The initialization also en-
forces p̂i+

∑
j∈Ch(i) q̂ij = 0.9. Other initializations are

possible but we did not explore then here.

4.1 COMPUTING ε-MSNE USING BRGD

Given the lack of theoretical guarantees on the conver-
gence rate of BRGD, we began our empirical study by
evaluating the convergence and computation/running-
time behavior of BRGD on Internet games. We ran

9Recall the probability of no attack y0 = 1−Pn
i=1 yi.
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Figure 1: Convergence Rate of Learning Dynamics:
The plots above present the number of iterations of BRGD
as a function of ε under the two experimental conditions:
Internet games with fixed (top) and randomly-generated
parameters (bottom). Applying MSE regression to the
top and bottom graphs, we obtain a functional expres-
sion for the number of iterations NF (ε) = 0.00003ε−2.547 (
R2 = 0.90415) and NR(ε) = 0.0291ε−1.589 (R2 = 0.9395),
respectively (i.e., low-degree polynomials of 1/ε).

ten simulations for each ε value and recorded the num-
ber of iterations until convergence (up to 2, 000 iter-
ations). Figure 1 presents the number of iterations
taken by BRGD to compute an ε-MSNE as a function
of ε. All simulations in this experiment converged (ex-
cept for ε = 0.001: 2 and all of the runs for single
and randomly-generated instances, respectively, did
not). Each iteration took roughly 1-2 sec. (wall
clock). Hence, we can use BRGD to consistently com-
pute an ε-MSNE of a 27K-players Internet game in a
few seconds!

4.2 CHARACTERISTICS OF THE ε-MSNE

We now concentrate on the empirical study of the
structural characteristics of the ε-MSNE found by
BRGD. We experimented on both the single and
randomly-generated Internet game instances. We dis-
cuss the typical behavior of the attacker and the sites
in an ε-MSNE, and the typical relationship between
ε-MSNE and network structure.

4.2.1 A Single Internet Game

We first studied the characteristics of the ε-MSNE of
a single Internet game instance. The only source of
randomness in these experiments comes from BRGD’s
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Fixed Internet Game: Attacker’s Equilibrium Strategy

Strategy A
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Figure 2: Attacker’s Equilibrium Strategy on an In-
ternet Game Instance (Fixed): The graph shows the
values of y∗i > 0 for each node i, sorted in decreasing order
(in log-log scale), for attacker’s Strategy A (blue/denser-
dots line) and Strategy B (red/sparser-dots line) at an
MSNE of the single instance of the Internet game.

initial conditions (i.e., the initialization of the mixed
strategies x and y). BRGD consistently found exact
MSNE (i.e., ε = 0) in all runs.

Players’ equilibrium behavior. In fact, we con-
sistently found that the attacker always displays only
two types of “extreme” equilibrium behavior, corre-
sponding to the two kinds of MSNE BRGD found for
the single Internet game: place positive probability
of a direct attack to either almost all nodes (Strat-
egy A) or a small subset (Strategy B). Figure 2 shows
a plot of the typical probability of direct attack for
those two equilibrium strategies for the attacker when
BRGD stops. In both strategies, a relatively small
number of nodes (about 1K out of 27K) have a rea-
sonably high (and near uniform) probability of direct
attack. In Strategy A, however, every node has a pos-
itive probability of being the target of a direct attack,
albeit relatively very low for most; this is contrast to
Strategy B where most nodes are fully immune from a
direct attack. Interestingly, none of the nodes invest
in either MSNE: x∗i = 0 for all nodes i. Thus, in this
particular Internet game instance, all site nodes are
willing to risk an attack!

Relation to network structure. We found that
the nodes with (relatively) high probability of direct
attack are at the “fringe” of the graph (i.e., have low or
no degree). In Strategy A, fringe nodes (with mostly
0 or 1 outdegree) have relatively higher probability of
direct attack than nodes with higher outdegree. Sim-
ilarly, in Strategy B, the small subset of nodes that
are potential target of a direct attack have relatively
low outdegree (mostly 0, and 0.0067 on average; this
is in contrast to the average outdegree of 3.9639 for
the nodes immune from direct attack). In short, we
consistently found that the nodes with low outdegree
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Figure 3: Attacker’s and Site’s ε-MSNE Strate-
gies for Randomly-Generated Internet Games: The
graphs show the empirical distributions of the probability
of attack (top) and histograms of the probability of invest-
ment (bottom), for different ε-value conditions encoded in
the right-hand side of the plots (i.e., from 0.001 to 0.009).
In both graphs, the distributions and histograms found for
each ε value considered are drawn in the same correspond-
ing graph superimposed. The top graph plots the distribu-
tion of yi where the nodes are ordered decreasingly based
on the yi value. The bottom bar graph shows histograms
of the probability of investing in defense/security measures
based on the following sequence of 10 ranges partitioning
the unit interval: ([0, 0.1], (0.1, 0.2], ..., (0.9, 1]).

are more likely to get attacked directly in the single
Internet game instance.

4.2.2 Randomly-Generated Internet Games

We now present results from experiments on
randomly-generated instances of the Internet game, a
single instance for each ε ∈ {0.001, 0.002, . . . , 0.009}.
For simplicity, we present the result of a single BRGD
run on each instance. 10

Behavior of the players. Figure 3 shows plots
of the attacker’s probability of direct attack and his-
tograms of the nodes’s probability of investment in a
typical run of BRDG on each Internet game instance

10While the results presented here are for a single in-
stance of the Internet game for each ε, the results are typ-
ical of multiple instances. Our observations are robust to
the experimental randomness in both the Internet game
parameters and the initialization of BRGD. For the sake
of simplicity of presentation, we discuss results based on
a single instance of the Internet game, and in some cases
based on a single BRGD run. Note that, for each ε value we
considered, the Internet game parameters remain constant
within different BRGD runs. BRGD always converged
within 2, 000 iterations (except 6 runs for ε = 0.001).

Figure 4: Attacker’s ε-MSNE Strategy vs. Node
Degree: Average indegree (top) and outdegree (bottom)
of nodes potentially attacked in terms of the ε-MSNE.

randomly-generated for each ε value. The plots sug-
gest that approximate MSNE found by BRGD is quite
sensitive to the ε value: as ε decreases, the attacker
tends to “spread the risk” by selecting a larger set of
nodes as potential targets for a direct attack, thus low-
ering the probability of a direct attack on any individ-
ual node; the nodes, on the other hand, tend to deviate
from (almost) fully investing and (almost) not invest-
ing to a more uniform mixed strategy (i.e., investing
or not investing with roughly equal probability). A
possible reason for this is that as more nodes become
potential targets of a direct attack, more nodes with
initial mixed strategies close to the “extreme” (i.e.,
very high or very low probabilities of investing) will
move closer to a more uniform (and thus less “pre-
dictable”) investment distribution.

Relation to network structure. Figure 4
presents some experimental results on the relationship
between network structure and the attacker’s equilib-
rium behavior. The graphs show, for each ε value, the
average indegree and outdegree, across the ten BRGD
runs, of those nodes that are potential targets of a
direct attack at an ε-MSNE. In general, both the av-
erage indegree and outdegree of the nodes that are
potential targets of a direct attack tend to increase as
ε decreases. One possible reason for this finding could
be the fact that the values of αi generated for each
player are relatively low (i.e., uniformly distributed
over

[
0, 1

40

]
); yet, interestingly, such behavior and pat-

tern, is exact opposite of the theory for the case αi = 1.
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Abstract
The problem of modeling and predicting spa-
tiotemporal traffic phenomena over an urban road
network is important to many traffic applica-
tions such as detecting and forecasting conges-
tion hotspots. This paper presents a decentral-
ized data fusion and active sensing (D2FAS) al-
gorithm for mobile sensors to actively explore
the road network to gather and assimilate the
most informative data for predicting the traffic
phenomenon. We analyze the time and commu-
nication complexity of D2FAS and demonstrate
that it can scale well with a large number of ob-
servations and sensors. We provide a theoret-
ical guarantee on its predictive performance to
be equivalent to that of a sophisticated central-
ized sparse approximation for the Gaussian pro-
cess (GP) model: The computation of such a
sparse approximate GP model can thus be par-
allelized and distributed among the mobile sen-
sors (in a Google-like MapReduce paradigm),
thereby achieving efficient and scalable predic-
tion. We also theoretically guarantee its active
sensing performance that improves under various
practical environmental conditions. Empirical
evaluation on real-world urban road network data
shows that our D2FAS algorithm is significantly
more time-efficient and scalable than state-of-
the-art centralized algorithms while achieving
comparable predictive performance.

1 Introduction
Knowing and understanding the traffic conditions and
phenomena over road networks has become increas-
ingly important to the goal of achieving smooth-flowing,
congestion-free traffic, especially in densely-populated ur-
ban cities. According to a 2011 urban mobility report
(Schrank et al., 2011), traffic congestion in the USA has
caused 1.9 billion gallons of extra fuel, 4.8 billion hours of
travel delay, and $101 billion of delay and fuel cost. Such
huge resource wastage can potentially be mitigated if the

spatiotemporally varying traffic phenomena (e.g., speeds
and travel times along road segments) are predicted accu-
rately enough in real time to detect and forecast the con-
gestion hotspots; network-level (e.g., ramp metering, road
pricing) and user-level (e.g., route replanning) measures
can then be taken to relieve this congestion, so as to im-
prove the overall efficiency of road networks.

In practice, it is non-trivial to achieve real-time, accu-
rate prediction of a spatiotemporally varying traffic phe-
nomenon because the quantity of sensors that can be
deployed to observe an entire road network is cost-
constrained. Traditionally, static sensors such as loop de-
tectors (Krause et al., 2008a; Wang and Papageorgiou,
2005) are placed at designated locations in a road network
to collect data for predicting the traffic phenomenon. How-
ever, they provide sparse coverage (i.e., many road seg-
ments are not observed, thus leading to data sparsity), incur
high installation and maintenance costs, and cannot repo-
sition by themselves in response to changes in the traffic
phenomenon. Low-cost GPS technology allows the col-
lection of traffic data using passive mobile probes (Work
et al., 2010) (e.g., taxis/cabs). Unlike static sensors, they
can directly measure the travel times along road segments.
But, they provide fairly sparse coverage due to low GPS
sampling frequency (i.e., often imposed by taxi/cab com-
panies) and no control over their routes, incur high ini-
tial implementation cost, pose privacy issues, and produce
highly-varying speeds and travel times while traversing the
same road segment due to inconsistent driving behaviors.
A critical mass of probes is needed on each road segment
to ease the severity of the last drawback (Srinivasan and
Jovanis, 1996) but is often hard to achieve on non-highway
segments due to sparse coverage. In contrast, we propose
the use of active mobile probes (Turner et al., 1998) to over-
come the limitations of static and passive mobile probes. In
particular, they can be directed to explore any segments of
a road network to gather traffic data at a desired GPS sam-
pling rate while enforcing consistent driving behavior.

How then do the mobile probes/sensors actively explore a
road network to gather and assimilate the most informative
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observations for predicting the traffic phenomenon? There
are three key issues surrounding this problem, which will
be discussed together with the related works:

Models for predicting spatiotemporal traffic phenom-
ena. The spatiotemporal correlation structure of a traffic
phenomenon can be exploited to predict the traffic condi-
tions of any unobserved road segment at any time using
the observations taken along the sensors’ paths. To achieve
this, existing Bayesian filtering frameworks (Chen et al.,
2011; Wang and Papageorgiou, 2005; Work et al., 2010)
utilize various handcrafted parametric models predicting
traffic flow along a highway stretch that only correlate ad-
jacent segments of the highway. So, their predictive perfor-
mance will be compromised when the current observations
are sparse and/or the actual spatial correlation spans multi-
ple segments. Their strong Markov assumption further ex-
acerbates this problem. It is also not shown how these mod-
els can be generalized to work for arbitrary road network
topologies and more complex correlation structure. Exist-
ing multivariate parametric traffic prediction models (Ka-
marianakis and Prastacos, 2003; Min and Wynter, 2011) do
not quantify uncertainty estimates of the predictions and
impose rigid spatial locality assumptions that do not adapt
to the true underlying correlation structure.

In contrast, we assume the traffic phenomenon over an ur-
ban road network (i.e., comprising the full range of road
types like highways, arterials, slip roads) to be realized
from a rich class of Bayesian non-parametric models called
the Gaussian process (GP) (Section 2) that can formally
characterize its spatiotemporal correlation structure and be
refined with growing number of observations. More im-
portantly, GP can provide formal measures of predictive
uncertainty (e.g., based on variance or entropy criterion)
for directing the sensors to explore highly uncertain areas
of the road network. Krause et al. (2008a) used GP to rep-
resent the traffic phenomenon over a network of only high-
ways and defined the correlation of speeds between high-
way segments to depend only on the geodesic (i.e., shortest
path) distance of these segments with respect to the net-
work topology; their features are not considered. Neu-
mann et al. (2009) maintained a mixture of two indepen-
dent GPs for flow prediction such that the correlation struc-
ture of one GP utilized road segment features while that
of the other GP depended on manually specified relations
(instead of geodesic distance) between segments with re-
spect to an undirected network topology. Different from the
above works, we propose a relational GP whose correlation
structure exploits the geodesic distance between segments
based on the topology of a directed road network with ver-
tices denoting road segments and edges indicating adjacent
segments weighted by dissimilarity of their features, hence
tightly integrating the features and relational information.

Data fusion. The observations are gathered distributedly
by each sensor along its path in the road network and have

to be assimilated in order to predict the traffic phenomenon.
Since a large number of observations are expected to be
collected, a centralized approach to GP prediction cannot
be performed in real time due to its cubic time complexity.

To resolve this, we propose a decentralized data fusion ap-
proach to efficient and scalable approximate GP predic-
tion (Section 3). Existing decentralized and distributed
Bayesian filtering frameworks for addressing non-traffic re-
lated problems (Chung et al., 2004; Coates, 2004; Olfati-
Saber, 2005; Rosencrantz et al., 2003; Sukkarieh et al.,
2003) will face the same difficulties as their centralized
counterparts described above if applied to predicting traf-
fic phenomena, thus resulting in loss of predictive perfor-
mance. Distributed regression algorithms (Guestrin et al.,
2004; Paskin and Guestrin, 2004) for static sensor networks
gain efficiency from spatial locality assumptions, which
cannot be exploited by mobile sensors whose paths are
not constrained by locality. Cortes (2009) proposed a dis-
tributed data fusion approach to approximate GP predic-
tion based on an iterative Jacobi overrelaxation algorithm,
which incurs some critical limitations: (a) the past obser-
vations taken along the sensors’ paths are assumed to be
uncorrelated, which greatly undermines its predictive per-
formance when they are in fact correlated and/or the cur-
rent observations are sparse; (b) when the number of sen-
sors grows large, it converges very slowly; (c) it assumes
that the range of positive correlation has to be bounded by
some factor of the communication range. Our proposed de-
centralized algorithm does not suffer from these limitations
and can be computed exactly with efficient time bounds.

Active sensing. The sensors have to coordinate to ac-
tively gather the most informative observations for mini-
mizing the uncertainty of modeling and predicting the traf-
fic phenomenon. Existing centralized (Low et al., 2008,
2009a, 2011) and decentralized (Low et al., 2012; Stran-
ders et al., 2009) active sensing algorithms scale poorly
with a large number of observations and sensors. We pro-
pose a partially decentralized active sensing algorithm that
overcomes these issues of scalability (Section 4).

This paper presents a novel Decentralized Data Fusion and
Active Sensing (D2FAS) algorithm (Sections 3 and 4) for
sampling spatiotemporally varying environmental phenom-
ena with mobile sensors. Note that the decentralized data
fusion component of D2FAS can also be used for static
and passive mobile sensors. The practical applicability of
D2FAS is not restricted to traffic monitoring; it can be used
in other environmental sensing applications such as mineral
prospecting (Low et al., 2007), monitoring of ocean and
freshwater phenomena (Dolan et al., 2009; Podnar et al.,
2010; Low et al., 2009b, 2011, 2012) (e.g., plankton bloom,
anoxic zones), forest ecosystems, pollution (e.g., oil spill),
or contamination (e.g., radiation leak). The specific contri-
butions of this paper include:

• Analyzing the time and communication overheads of
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D2FAS (Section 5): We prove that D2FAS can scale bet-
ter than existing state-of-the-art centralized algorithms
with a large number of observations and sensors;

• Theoretically guaranteeing the predictive performance
of the decentralized data fusion component of D2FAS to
be equivalent to that of a sophisticated centralized sparse
approximation for the GP model (Section 3): The com-
putation of such a sparse approximate GP model can thus
be parallelized and distributed among the mobile sen-
sors (in a Google-like MapReduce paradigm), thereby
achieving efficient and scalable prediction;

• Theoretically guaranteeing the performance of the par-
tially decentralized active sensing component of D2FAS,
from which various practical environmental conditions
can be established to improve its performance;

• Developing a relational GP model whose correlation
structure can exploit both the road segment features and
road network topology information (Section 2.1);

• Empirically evaluating the predictive performance, time
efficiency, and scalability of the D2FAS algorithm on a
real-world traffic phenomenon (i.e., speeds of road seg-
ments) dataset over an urban road network (Section 6):
D2FAS is more time-efficient and scales significantly
better with increasing number of observations and sen-
sors while achieving predictive performance close to that
of existing state-of-the-art centralized algorithms.

2 Relational Gaussian Process Regression
The Gaussian process (GP) can be used to model a spa-
tiotemporal traffic phenomenon over a road network as fol-
lows: The traffic phenomenon is defined to vary as a real-
ization of a GP. Let V be a set of road segments represent-
ing the domain of the road network such that each road seg-
ment s ∈ V is specified by a p-dimensional vector of fea-
tures and is associated with a realized (random) measure-
ment zs (Zs) of the traffic condition such as speed if s is
observed (unobserved). Let {Zs}s∈V denote a GP, that is,
every finite subset of {Zs}s∈V follows a multivariate Gaus-
sian distribution (Rasmussen and Williams, 2006). Then,
the GP is fully specified by its prior mean µs , E[Zs] and
covariance σss′ , cov[Zs, Zs′ ] for all s, s′ ∈ V . In par-
ticular, we will describe in Section 2.1 how the covariance
σss′ for modeling the correlation of measurements between
all pairs of segments s, s′ ∈ V can be designed to exploit
the road segment features and the road network topology.

A chief capability of the GP model is that of performing
probabilistic regression: Given a set D ⊂ V of observed
road segments and a column vector zD of corresponding
measurements, the joint distribution of the measurements
at any set Y ⊆ V \ D of unobserved road segments re-
mains Gaussian with the following posterior mean vector
and covariance matrix

µY |D , µY + ΣY DΣ−1
DD(zD − µD) (1)

ΣY Y |D , ΣY Y − ΣY DΣ−1
DDΣDY (2)

where µY (µD) is a column vector with mean components
µs for all s ∈ Y (s ∈ D), ΣY D (ΣDD) is a covariance ma-
trix with covariance components σss′ for all s ∈ Y, s′ ∈ D
(s, s′ ∈ D), and ΣDY is the transpose of ΣY D. The poste-
rior mean vector µY |D (1) is used to predict the measure-
ments at any set Y of unobserved road segments. The pos-
terior covariance matrix ΣY Y |D (2), which is independent
of the measurements zD, can be processed in two ways to
quantify the uncertainty of these predictions: (a) the trace
of ΣY Y |D yields the sum of posterior variances Σss|D over
all s ∈ Y ; (b) the determinant of ΣY Y |D is used in calcu-
lating the Gaussian posterior joint entropy

H[ZY |ZD] , 1

2
log(2πe)

|Y | ∣∣ΣY Y |D
∣∣ . (3)

In contrast to the first measure of uncertainty that assumes
conditional independence between measurements in the set
Y of unobserved road segments, the entropy-based mea-
sure (3) accounts for their correlation, thereby not overesti-
mating their uncertainty. Hence, we will focus on using the
entropy-based measure of uncertainty in this paper.

2.1 Graph-Based Kernel
If the observations are noisy (i.e., by assuming additive in-
dependent identically distributed Gaussian noise with vari-
ance σ2

n), then their prior covariance σss′ can be expressed
as σss′ = k(s, s′) + σ2

nδss′ where δss′ is a Kronecker delta
that is 1 if s = s′ and 0 otherwise, and k is a kernel function
measuring the pairwise “similarity” of road segments. For
a traffic phenomenon (e.g., road speeds), the correlation of
measurements between pairs of road segments depends not
only on their features (e.g., length, number of lanes, speed
limit, direction) but also the road network topology. So, the
kernel function is defined to exploit both the features and
topology information, which will be described next.

Definition 1 (Road Network) Let the road network be
represented as a weighted directed graph G , (V,E,m)
that consists of

• a set V of vertices denoting the domain of all possible
road segments,

• a set E ⊆ V × V of edges where there is an edge (s, s′)
from s ∈ V to s′ ∈ V iff the end of segment s connects
to the start of segment s′ in the road network, and

• a weight function m : E → R+ measuring the stan-
dardized Manhattan distance (Borg and Groenen, 2005)
m((s, s′)) ,

∑p
i=1 |[s]i − [s′]i|/ri of each edge (s, s′)

where [s]i ([s′]i) is the i-th component of the feature vec-
tor specifying road segment s (s′), and ri is the range
of the i-th feature. The weight function m serves as a
dissimilarity measure between adjacent road segments.

The next step is to compute the shortest path distance
d(s, s′) between all pairs of road segments s, s′ ∈ V (i.e.,
using Floyd-Warshall or Johnson’s algorithm) with respect
to the topology of the weighted directed graph G. Such a
distance function is again a measure of dissimilarity, rather
than one of similarity, as required by a kernel function. Fur-
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thermore, a valid GP kernel needs to be positive semidef-
inite and symmetric (Schölkopf and Smola, 2002), which
are clearly violated by d.

To construct a valid GP kernel from d, multi-dimensional
scaling (Borg and Groenen, 2005) is applied to embed
the domain of road segments into the p′-dimensional Eu-
clidean space Rp′ . Specifically, a mapping g : V →
Rp′ is determined by minimizing the squared loss g∗ =
arg ming

∑
s,s′∈V (d(s, s′)−‖g(s)−g(s′)‖)2. With a small

squared loss, the Euclidean distance ‖g∗(s) − g∗(s′)‖ be-
tween g∗(s) and g∗(s′) is expected to closely approximate
the shortest path distance d(s, s′) between any pair of road
segments s and s′. After embedding into Euclidean space,
a conventional kernel function such as the squared expo-
nential one (Rasmussen and Williams, 2006) can be used:

k(s, s′) = σ2
s exp


−1

2

p′∑

i=1

(
[g∗(s)]i − [g∗(s′)]i

`i

)2



where [g∗(s)]i ([g∗(s′)]i) is the i-th component of the p′-
dimensional vector g∗(s) (g∗(s′)), and the hyperparameters
σs, `1, . . . , `p′ are, respectively, signal variance and length-
scales that can be learned using maximum likelihood es-
timation (Rasmussen and Williams, 2006). The resulting
kernel function k1 is guaranteed to be valid.

2.2 Subset of Data Approximation
Although the GP is an effective predictive model, it faces a
practical limitation of cubic time complexity in the number
|D| of observations; this can be observed from computing
the posterior distribution (i.e., (1) and (2)), which requires
inverting covariance matrix ΣDD and incursO(|D|3) time.
If |D| is expected to be large, GP prediction cannot be per-
formed in real time. For practical usage, we have to resort
to computationally cheaper approximate GP prediction.

A simple method of approximation is to select only a sub-
set U of the entire set D of observed road segments (i.e.,
U ⊂ D) to compute the posterior distribution of the mea-
surements at any set Y ⊆ V \ D of unobserved road seg-
ments. Such a subset of data (SoD) approximation method
produces the following predictive Gaussian distribution,
which closely resembles that of the full GP model (i.e., by
simply replacing D in (1) and (2) with U ):

µY |U = µY + ΣY UΣ−1
UU (zU − µU ) (4)

ΣY Y |U = ΣY Y − ΣY UΣ−1
UUΣUY . (5)

Notice that the covariance matrix ΣUU to be inverted only
incurs O(|U |3) time, which is independent of |D|.
The predictive performance of SoD approximation is sensi-
tive to the selection of subset U . In practice, random subset
selection often yields poor performance. This issue can be
resolved by actively selecting an informative subset U in
an iterative greedy manner: Firstly, U is initialized to be

1For spatiotemporal traffic modeling, the kernel function k can
be extended to account for the temporal dimension.

an empty set. Then, all road segments in D \ U are scored
based on a criterion that can be chosen from, for example,
the works of (Krause et al., 2008b; Lawrence et al., 2003;
Seeger and Williams, 2003). The highest-scored segment
is selected for inclusion in U and removed from D. This
greedy selection procedure is iterated until U reaches a pre-
defined size. Among the various criteria introduced earlier,
the differential entropy score (Lawrence et al., 2003) is re-
ported to perform well (Oh et al., 2010); it is a monotonic
function of the posterior variance Σss|U (5), thus resulting
in the greedy selection of a segment s ∈ D \ U with the
largest variance in each iteration.

3 Decentralized Data Fusion
In the previous section, two centralized data fusion ap-
proaches to exact (i.e., (1) and (2)) and approximate (i.e.,
(4) and (5)) GP prediction are introduced. In this section,
we will discuss the decentralized data fusion component
of our D2FAS algorithm, which distributes the computa-
tional load among the mobile sensors to achieve efficient
and scalable approximate GP prediction.

The intuition of our decentralized data fusion algorithm is
as follows: Each of theK mobile sensors constructs a local
summary of the observations taken along its own path in the
road network and communicates its local summary to ev-
ery other sensor. Then, it assimilates the local summaries
received from the other sensors into a globally consistent
summary, which is exploited for predicting the traffic phe-
nomenon as well as active sensing. This intuition will be
formally realized and described in the paragraphs below.

While exploring the road network, each mobile sensor sum-
marizes its local observations taken along its path based on
a common support set U ⊂ V known to all the other sen-
sors. Its local summary is defined as follows:

Definition 2 (Local Summary) Given a common support
set U ⊂ V known to all K mobile sensors, a set Dk ⊂
V of observed road segments and a column vector zDk of
corresponding measurements local to mobile sensor k, its
local summary is defined as a tuple (żkU , Σ̇

k
UU ) where

żkU , ΣUDkΣ−1
DkDk|U (zDk − µDk) (6)

Σ̇kUU , ΣUDkΣ−1
DkDk|UΣDkU (7)

such that ΣDkDk|U is defined in a similar manner to (5).

Remark. Unlike SoD (Section 2.2), the support set U of
road segments does not have to be observed, since the lo-
cal summary (i.e., (6) and (7)) is independent of the cor-
responding measurements zU . So, U does not need to be
a subset of D =

⋃K
k=1Dk. To select an informative sup-

port set U from the set V of all possible segments in the
road network, an offline active selection procedure similar
to that in the last paragraph of Section 2.2 can be performed
just once prior to observing data to determine U . In con-
trast, SoD has to perform online active selection every time
new road segments are being observed.
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By communicating its local summary to every other sensor,
each mobile sensor can then construct a globally consistent
summary from the received local summaries:

Definition 3 (Global Summary) Given a common sup-
port set U ⊂ V known to all K mobile sensors and
the local summary (żkU , Σ̇

k
UU ) of every mobile sensor

k = 1, . . . ,K, the global summary is defined as a tuple
(z̈U , Σ̈UU ) where

z̈U ,
K∑

k=1

żkU (8)

Σ̈UU , ΣUU +
K∑

k=1

Σ̇kUU . (9)

Remark. In this paper, we assume all-to-all communica-
tion between the K mobile sensors. Supposing this is not
possible and each sensor can only communicate locally
with its neighbors, the summation structure of the global
summary (specifically, (8) and (9)) makes it amenable to
be constructed using distributed consensus filters (Olfati-
Saber, 2005). We omit these details since they are beyond
the scope of this paper.

Finally, the global summary is exploited by each mobile
sensor to compute a globally consistent predictive Gaussian
distribution, as detailed in Theorem 1A below, as well as to
perform decentralized active sensing (Section 4):

Theorem 1 Let a common support set U ⊂ V be known to
all K mobile sensors.
A. Given the global summary (z̈U , Σ̈UU ), each mo-

bile sensor computes a globally consistent predictive
Gaussian distribution N (µY ,ΣY Y ) of the measure-
ments at any set Y of unobserved road segments where

µY , µY + ΣY U Σ̈−1
UU z̈U (10)

ΣY Y , ΣY Y − ΣY U (Σ−1
UU − Σ̈−1

UU )ΣUY . (11)

B. Let N (µPITC
Y |D,Σ

PITC
Y Y |D) be the predictive Gaussian dis-

tribution computed by the centralized sparse par-
tially independent training conditional (PITC) ap-
proximation of GP model (Quiñonero-Candela and
Rasmussen, 2005) where

µPITC
Y |D , µY + ΓY D (ΓDD + Λ)

−1
(zD − µD) (12)

ΣPITC
Y Y |D , ΣY Y − ΓY D (ΓDD + Λ)

−1
ΓDY (13)

such that
ΓBB′ , ΣBUΣ−1

UUΣUB′ (14)

and Λ is a block-diagonal matrix constructed from
the K diagonal blocks of ΣDD|U , each of which is
a matrix ΣDkDk|U for k = 1, . . . ,K where D =⋃K
k=1Dk. Then, µY =µPITC

Y |D and ΣY Y =ΣPITC
Y Y |D.

Its proof is given in (Chen et al., 2012). The equivalence
result of Theorem 1B bears two implications:

Remark 1. The computation of PITC can be parallelized
and distributed among the mobile sensors in a Google-like

MapReduce paradigm (Chu et al., 2007), thereby improv-
ing the time efficiency of prediction: Each of the K map-
pers (sensors) is tasked to compute its local summary while
the reducer (any sensor) sums these local summaries into a
global summary, which is then used to compute the pre-
dictive Gaussian distribution. Supposing |Y | ≤ |U | for
simplicity, theO

(
|D|((|D|/K)2 + |U |2)

)
time incurred by

PITC can be reduced to O
(
(|D|/K)3 + |U |3 + |U |2K

)

time of running our decentralized algorithm on each of the
K sensors, the latter of which scales better with increasing
number |D| of observations.

Remark 2. We can draw insights from PITC to elucidate an
underlying property of our decentralized algorithm: It is as-
sumed that ZD1

, . . . , ZDK , ZY are conditionally indepen-
dent given the measurements at the support set U of road
segments. To potentially reduce the degree of violation of
this assumption, an informative support set U is actively
selected, as described earlier in this section. Furthermore,
the experimental results on real-world urban road network
data2 (Section 6) show that D2FAS can achieve predic-
tive performance comparable to that of the full GP model
while enjoying significantly lower computational cost, thus
demonstrating the practicality of such an assumption for
predicting traffic phenomena. The predictive performance
of D2FAS can be improved by increasing the size of U at
the expense of greater time and communication overhead.

4 Decentralized Active Sensing
The problem of active sensing with K mobile sensors is
formulated as follows: Given the set Dk ⊂ V of observed
road segments and the currently traversed road segment
sk ∈ V of every mobile sensor k = 1, . . . ,K, the mo-
bile sensors have to coordinate to select the most informa-
tive walks w∗1 , . . . , w

∗
K of length (i.e., number of road seg-

ments) L each and with respective origins s1, . . . , sK in the
road network G:

(w∗1 , . . . , w
∗
K)= arg max

(w1,...,wK)

H
[
Z⋃K

k=1 Ywk

∣∣∣Z⋃K
k=1Dk

]
(15)

where Ywk denotes the set of unobserved road segments
induced by the walk wk. To simplify notation, let a joint
walk be denoted by w , (w1, . . . , wK) (similarly, for w∗)
and its induced set of unobserved road segments be Yw ,⋃K
k=1 Ywk from now on. Interestingly, it can be shown

using the chain rule for entropy that these maximum-
entropy walksw∗ minimize the posterior joint entropy (i.e.,
H[ZV \(D⋃

Yw∗ )|ZD⋃
Yw∗ ]) of the measurements at the re-

maining unobserved segments (i.e., V \ (D
⋃
Yw∗)) in the

road network. After executing the walk w∗k, each mobile
sensor k observes the set Yw∗k of road segments and updates
its local information:

Dk ← Dk

⋃
Yw∗k , zDk ← zDk

⋃
Yw∗

k
, sk ← terminus ofw∗k .

(16)
2Quiñonero-Candela and Rasmussen (2005) only illustrated

the predictive performance of PITC on a simulated toy example.
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Evaluating the Gaussian posterior entropy term in (15) in-
volves computing a posterior covariance matrix (3) using
one of the data fusion methods described earlier: If (2) of
full GP model (Section 2) or (5) of SoD (Section 2.2) is to
be used, then the observations that are gathered distribut-
edly by the sensors have to be fully communicated to a
central data fusion center. In contrast, our decentralized
data fusion algorithm (Section 3) only requires communi-
cating local summaries (Definition 2) to compute (11) for
solving the active sensing problem (15):

w∗ = arg max
w

H[ZYw ] , (17)

H[ZYw ] , 1

2
log(2πe)

|Yw| ∣∣ΣYwYw
∣∣ . (18)

Without imposing any structural assumption, solving the
active sensing problem (17) will be prohibitively expensive
due to the space of possible joint walks w that grows expo-
nentially in the number K of mobile sensors. To overcome
this scalability issue for D2FAS, our key idea is to construct
a block-diagonal matrix whose log-determinant closely ap-
proximates that of ΣYwYw (11) and exploit the property that
the log-determinant of such a block-diagonal matrix can be
decomposed into a sum of log-determinants of its diagonal
blocks, each of which depends only on the walks of a dis-
joint subset of theK mobile sensors. Consequently, the ac-
tive sensing problem can be partially decentralized, leading
to a reduced space of possible joint walks to be searched,
as detailed in the rest of this section.

Firstly, we extend an earlier assumption in Section 3:
ZD1 , . . . , ZDK , ZYw1

, . . . , ZYwK are conditionally inde-
pendent given the measurements at the support set U of
road segments. Then, it can be shown via the equiva-
lence to PITC (Theorem 1B) that ΣYwYw (11) comprises
diagonal blocks of the form ΣYwkYwk for k = 1, . . . ,K

and off-diagonal blocks of the form ΣYwkU Σ̈−1
UUΣUYw

k′

for k, k′ = 1, . . . ,K and k 6= k′. In particular, each off-
diagonal block of ΣYwYw represents the correlation of mea-
surements between the unobserved road segments Ywk and
Ywk′ along the respective walks wk of sensor k and wk′
of sensor k′. If the correlation between some pair of their
possible walks is high enough, then their walks have to be
coordinated. This is formally realized by the following co-
ordination graph over the K sensors:

Definition 4 (Coordination Graph) Define the coordina-
tion graph to be an undirected graph G , (V, E) that com-
prises
• a set V of vertices denoting the K mobile sensors, and
• a set E of edges denoting coordination dependencies be-

tween sensors such that there exists an edge {k, k′} in-
cident with sensors k ∈ V and k′ ∈ V \ {k} iff

max
s∈YWk ,s′∈YWk′

∣∣∣ΣsU Σ̈−1
UUΣUs′

∣∣∣ > ε (19)

for a predefined constant ε > 0 whereWk denotes the set
of possible walks of lengthL of mobile sensor k from ori-
gin sk in the road network G and YWk

,
⋃
wk∈Wk

Ywk .

Remark. The construction of G can be decentralized
as follows: Since Σ̈UU is symmetric and positive def-
inite, it can be decomposed by Cholesky factorization
into Σ̈UU = ΨΨ> where Ψ is a lower triangular matrix
and Ψ> is the transpose of Ψ. Then, ΣsU Σ̈−1

UUΣUs′ =
(Ψ\ΣUs)>Ψ\ΣUs′ where Ψ\B denotes the column vec-
tor φ solving Ψφ = B. That is, ΣsU Σ̈−1

UUΣUs′ (19) can
be expressed as a dot product of two vectors Ψ\ΣUs and
Ψ\ΣUs′ ; this property is exploited to determine adjacency
between sensors in a decentralized manner:

Definition 5 (Adjacency) Let
Φk , {Ψ\ΣUs}s∈YWk (20)

for k = 1, . . . ,K. A sensor k ∈ V is adjacent to sensor
k′ ∈ V \ {k} in coordination graph G iff

max
φ∈Φk,φ′∈Φk′

∣∣φ>φ′
∣∣ > ε . (21)

It follows from the above definition that if each sensor k
constructs Φk and exchanges it with every other sensor,
then it can determine its adjacency to all the other sensors
and store this information in a column vector ak of length
K with its k′-th component being defined as follows:

[ak]k′ =

{
1 if sensor k is adjacent to sensor k′,
0 otherwise.

(22)

By exchanging its adjacency vector ak with every other
sensor, each sensor can construct a globally consistent ad-
jacency matrix AG , (a1 . . . aK) to represent coordination
graph G.

Next, by computing the connected components (say, K of
them) of coordination graph G, their resulting vertex sets
partition the set V of K sensors into K disjoint subsets
V1, . . . ,VK such that the sensors within each subset have
to coordinate their walks. Each sensor can determine its
residing connected component in a decentralized way by
performing a depth-first search in G starting from it as root.

Finally, construct a block-diagonal matrix Σ̂YwYw to
comprise diagonal blocks of the form ΣYwVn YwVn

for

n = 1, . . . ,K where wVn , (wk)k∈Vn and YwVn ,⋃
k∈Vn Ywk . The active sensing problem (17) is then ap-

proximated by

max
w

1

2
log(2πe)

|Yw|
∣∣∣Σ̂YwYw

∣∣∣

≡ max
(wV1 ,...,wVK )

K∑

n=1

log(2πe)|YwVn |
∣∣∣ΣYwVn YwVn

∣∣∣

=
K∑

n=1

max
wVn

log(2πe)|YwVn |
∣∣∣ΣYwVn YwVn

∣∣∣ ,

(23)

which can be solved in a partially decentralized manner by
each disjoint subset Vn of mobile sensors:

ŵVn = arg max
wVn

log(2πe)|YwVn |
∣∣∣ΣYwVn YwVn

∣∣∣ . (24)

Our active sensing algorithm becomes fully decentralized
if ε is set to be sufficiently large: more sensors become iso-
lated in G, consequently decreasing the size κ , max

n
|Vn|
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of its largest connected component to 1. As shown in Sec-
tion 5.1, decreasing κ improves its time efficiency. On the
other hand, it tends to a centralized behavior (17) by set-
ting ε → 0+: G becomes near-complete, thus resulting in
κ→ K.
Let

ξ , max
n,wVn ,i,i

′

∣∣∣∣
[(

ΣYwVn YwVn

)−1
]

ii′

∣∣∣∣ (25)

and ε , 0.5 log 1
/(

1−
(
K1.5L2.5κξε

)2)
. In the result be-

low, we prove that the joint walk ŵ , (ŵV1 , . . . , ŵVK) is
guaranteed to achieve an entropy H[ZYŵ ] (i.e., by plugging
ŵ into (18)) that is not more than ε from the maximum en-
tropy H[ZYw∗ ] achieved by joint walk w∗ (17):

Theorem 2 (Performance Guarantee) IfK1.5L2.5κξε <
1, then H[ZYw∗ ]−H[ZYŵ ] ≤ ε.
Its proof is given in (Chen et al., 2012). The implication of
Theorem 2 is that our partially decentralized active sens-
ing algorithm can perform comparatively well (i.e., small
ε) under the following favorable environmental conditions:
(a) the network of K sensors is not large, (b) length L
of each sensor’s walk to be optimized is not long, (c) the
largest subset of κ sensors being formed to coordinate their
walks (i.e., largest connected component in G) is reason-
ably small, and (d) the minimum required correlation ε be-
tween walks of adjacent sensors is kept low.

Algorithm 1 below outlines the key operations of our
D2FAS algorithm to be run on each mobile sensor k, as
detailed previously in Sections 3 and 4:

Algorithm 1: D2FAS(U,K,L, k,Dk, zDk , sk)

while true do
/* Data fusion (Section 3) */
Construct local summary by (6) & (7)
Exchange local summary with every sensor i 6= k
Construct global summary by (8) & (9)
Predict measurements at unobserved road segments by (10) & (11)
/* Active Sensing (Section 4) */
Construct Φk by (20)
Exchange Φk with every sensor i 6= k
Compute adjacency vector ak by (21) & (22)
Exchange adjacency vector with every sensor i 6= k
Construct adjacency matrix of coordination graph
Find vertex set Vn of its residing connected component
Compute maximum-entropy joint walk ŵVn by (24)
Execute walk ŵk and observe its road segments Yŵk
Update local informationDk , zDk , and sk by (16)

5 Time and Communication Overheads
In this section, the time and communication overheads of
our D2FAS algorithm are analyzed and compared to that of
centralized active sensing (17) coupled with the data fusion
methods: Full GP (FGP) and SoD (Section 2).

5.1 Time Complexity
The data fusion component of D2FAS involves com-
puting the local and global summaries and the predic-
tive Gaussian distribution. To construct the local sum-
mary using (6) and (7), each sensor has to evaluate

ΣDkDk|U in O
(
|U |3 + |U |(|D|/K)2

)
time and invert it in

O
(
(|D|/K)3

)
time, after which the local summary is ob-

tained in O
(
|U |2|D|/K + |U |(|D|/K)2

)
time. The global

summary is computed in O
(
|U |2K

)
by (8) and (9). Fi-

nally, the predictive Gaussian distribution is derived in
O
(
|U |3 + |U ||Y |2

)
time using (10) and (11). Supposing

|Y | ≤ |U | for simplicity, the time complexity of data fu-
sion is then O

(
(|D|/K)3 + |U |3 + |U |2K

)
.

Let the maximum out-degree of G be denoted by δ.
Then, each sensor has to consider ∆ , δL possible
walks of length L. The active sensing component of
D2FAS involves computing Φk in O

(
∆L|U |2

)
time, ak

in O
(
∆2L2|U |K

)
time, its residing connected compo-

nent in O
(
κ2
)

time, and the maximum-entropy joint walk
by (11) and (24) with the following incurred time: The
largest connected component of κ sensors in G has to con-
sider ∆κ possible joint walks. Note that ΣYwVn YwVn

=

diag
(

(ΣYwkYwk |U )k∈Vn
)

+ ΣYwVnU
Σ̈−1
UUΣUYwVn

where
diag(B) constructs a diagonal matrix by placing vector
B on its diagonal. By exploiting Φk, the diagonal and
latter matrix terms for all possible joint walks can be
computed inO

(
κ∆(L|U |2 + L2|U |)

)
andO

(
κ2∆2L2|U |

)

time, respectively. For each joint walk wVn , evalu-
ating the determinant of ΣYwVn YwVn

incurs O
(
(κL)3

)

time. Therefore, the time complexity of active sensing is
O
(
κ∆L|U |2 + ∆2L2|U |(K + κ2) + ∆κ(κL)3

)
.

Hence, the time complexity of our D2FAS algorithm is
O((|D|/K)3 + |U |2(|U | + K + κ∆L) + ∆2L2|U |(K +
κ2) + ∆κ(κL)3). In contrast, the time incurred by
centralized active sensing coupled with FGP and SoD
are, respectively, O

(
|D|3 + ∆KKL(|D|2 + (KL)2)

)
and

O
(
|U |3|D|+ ∆KKL(|U |2 + (KL)2)

)
. It can be ob-

served that D2FAS can scale better with large |D| (i.e.,
number of observations) and K (i.e., number of sensors).
The scalability of D2FAS vs. FGP and SoD will be further
evaluated empirically in Section 6.

5.2 Communication Complexity

Let the communication overhead be defined as the size of
each broadcast message. Recall from the data fusion com-
ponent of D2FAS in Algorithm 1 that, in each iteration,
each sensor broadcasts aO

(
|U |2

)
-sized summary encapsu-

lating its local observations, which is robust against com-
munication failure. In contrast, FGP and SoD require each
sensor to broadcast, in each iteration, a O(|D|/K)-sized
message comprising exactly its local observations to han-
dle communication failure. If the number of local obser-
vations grows to be larger in size than a local summary of
predefined size, then the data fusion component of D2FAS
is more scalable than FGP and SoD in terms of communica-
tion overhead. For the partially decentralized active sensing
component of D2FAS, each sensor broadcasts O(∆L|U |)-
sized Φk and O(K)-sized ak messages.
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6 Experiments and Discussion
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This section evaluates
the predictive perfor-
mance, time efficiency,
and scalability of our
D2FAS algorithm on a
real-world traffic phe-
nomenon (i.e., speeds
(km/h) of road seg-
ments) over an urban

road network (top figure) in Tampines area, Singapore
during evening peak hours on April 20, 2011. It comprises
775 road segments including highways, arterials, slip
roads, etc. The mean speed is 48.8 km/h and the standard
deviation is 20.5 km/h.

The performance of D2FAS is compared to that of central-
ized active sensing (17) coupled with the state-of-the-art
data fusion methods: full GP (FGP) and SoD (Section 2). A
network of K mobile sensors is tasked to explore the road
network to gather a total of up to 960 observations. To re-
duce computational time, each sensor repeatedly computes
and executes maximum-entropy walks of length L = 2
(instead of computing a very long walk), unless otherwise
stated. For D2FAS and SoD, |U | is set to 64 . For the active
sensing component of D2FAS, ε is set to 0.1, unless other-
wise stated. The experiments are run on a Linux PC with
Intelr CoreTM2 Quad CPU Q9550 at 2.83 GHz.

6.1 Performance Metrics
The first metric evaluates the predictive performance of a
tested algorithm: It measures the root mean squared er-

ror (RMSE)
√
|V |−1

∑
s∈V (zs − µ̂s)2 over the entire do-

main V of the road network that is incurred by the predic-
tive mean µ̂s of the tested algorithm, specifically, using (1)
of FGP, (4) of SoD, or (10) of D2FAS. The second met-
ric evaluates the time efficiency and scalability of a tested
algorithm by measuring its incurred time; for D2FAS, the
maximum of the time incurred by all subsets V1, . . . ,VK of
sensors is recorded.

6.2 Results and Analysis
Predictive performance and time efficiency. Fig. 1 shows
results of the performance of the tested algorithms averaged
over 40 randomly generated starting sensor locations with
varying number K = 4, 6, 8 of sensors. It can be observed
that D2FAS is significantly more time-efficient and scales
better with increasing number |D| of observations (Figs. 1d
to 1f) while achieving predictive performance close to that
of centralized active sensing coupled with FGP and SoD
(Figs. 1a to 1c). Specifically, D2FAS is about 1, 2, 4 orders
of magnitude faster than centralized active sensing coupled
with FGP and SoD for K = 4, 6, 8 sensors, respectively.

Scalability of D2FAS. Using the same results as that in
Fig. 1, Fig. 2 plots them differently to reveal the scalability
of the tested algorithms with increasing number K of sen-
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Figure 1: Graphs of (a-c) predictive performance and (d-f)
time efficiency vs. total no. |D| of observations gathered
by varying number K of mobile sensors.
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Figure 2: Graphs of (a-c) predictive performance and (d-f)
time efficiency vs. total no. |D| of observations gathered
by varying number K of mobile sensors.

sors. Additionally, we provide results of the performance
of D2FAS for K = 10, 20, 30 sensors; such results are not
available for centralized active sensing coupled with FGP
and SoD due to extremely long incurred time. It can be ob-
served from Figs. 2a to 2c that the predictive performance
of all tested algorithms improve with a larger number of
sensors because each sensor needs to execute fewer walks
and its performance is therefore less adversely affected by
its myopic selection (i.e., L = 2) of maximum-entropy
walks. As a result, more informative unobserved road seg-
ments are explored.

As shown in Fig. 2d, when the randomly placed sensors
gather their initial observations (i.e., |D| < 400), the time
incurred by D2FAS is higher for greater K due to larger
subsets of sensors being formed to coordinate their walks
(i.e., larger κ). As more observations are gathered (i.e.,
|D| ≥ 400), its partially decentralized active sensing com-
ponent directs the sensors to explore further apart from
each other in order to maximize the entropy of their walks.
This consequently decreases κ, leading to a reduction in
incurred time. Furthermore, as K increases from 4 to 20,
the incurred time decreases due to its decentralized data fu-
sion component that can distribute the computational load

170



0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Total no. |D| of observations

In
c
u

rr
e
d

 t
im

e
 (

s)

 

 

K=4

K=6

K=8

K=10

K=20

K=30

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Total no. |D| of observations

In
c
u

rr
e
d

 t
im

e
 (

s)

 

 

K=4

K=6

K=8

K=10

K=20

K=30

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Total no. |D| of observations

In
c
u

rr
e
d

 t
im

e
 (

s)

 

 

K=4

K=6

K=8

K=10

K=20

K=30

(a) D2FAS (b) FGP (c) SoD
Figure 3: Graphs of time efficiency vs. total no. |D| of
observations gathered by varying number K of sensors.

among a greater number of sensors. When the road net-
work becomes more crowded from K = 20 to K = 30
sensors, the incurred time increases slightly due to slightly
larger κ. In contrast, Figs. 2e and 2f show that the time
taken by FGP and SoD increases significantly primarily
due to their centralized active sensing incurring exponential
time in K. Hence, the scalability of our D2FAS algorithm
in the number of sensors allows the deployment of a larger-
scale mobile sensor network (i.e.,K ≥ 10) to achieve more
accurate traffic modeling and prediction (Figs. 2a to 2c).

Scalability of data fusion. Fig. 3 shows results of the
scalability of the tested data fusion methods with increas-
ing number K of sensors. In order to produce meaning-
ful results for fair comparison, the same active sensing
component has to be coupled with the data fusion meth-
ods and its incurred time kept to a minimum. As such,
we impose the use of a fully decentralized active sens-
ing component to be performed by each mobile sensor k:
w∗k = arg maxwk H[ZYwk |ZD]. For D2FAS, this corre-
sponds exactly to (24) by setting a large enough ε (in our
experiments, ε = 2) to yield κ = 1; consequently, compu-
tational and communicational operations pertaining to the
coordination graph can be omitted.

It can be seen from Fig. 3a that the time incurred by the
decentralized data fusion component of D2FAS decreases
with increasingK, as explained previously. In contrast, the
time incurred by FGP and SoD increases (Fig. 3b and 3c):
As discussed above, a larger number of sensors results in
a greater quantity of more informative unique observations
to be gathered (i.e., fewer repeated observations), which
increases the time needed for data fusion. When K ≥ 10,
D2FAS is at least 1 order of magnitude faster than FGP
and SoD. It can also be observed that D2FAS scales better
with increasing number of observations. So, the real-time
performance and scalability of D2FAS’s decentralized data
fusion enable it to be used for persistent large-scale traffic
modeling and prediction where a large number of obser-
vations and sensors (including static and passive ones) are
expected to be available.

Varying length L of walk. Fig. 4 shows results of the
performance of the tested algorithms with varying length
L = 2, 4, 6, 8 of maximum-entropy joint walks; we choose
to experiment with just 2 sensors since Figs. 2 and 3 reveal
that a smaller number of sensors produce poorer predictive
performance and higher incurred time with large number of
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Figure 4: Graphs of (a-c) predictive performance and (d-f)
time efficiency vs. total no. |D| of observations gathered
by 2 mobile sensors with varying length L of maximum-
entropy joint walks.

observations for D2FAS. It can be observed that the predic-
tive performance of all tested algorithms improve with in-
creasing walk length L because the selection of maximum-
entropy joint walks is less myopic. The time incurred by
D2FAS increases due to larger κ but grows more slowly
and is lower than that incurred by centralized active sens-
ing coupled with FGP and SoD. Specifically, when L = 8,
D2FAS is at least 1 order of magnitude faster (i.e., aver-
age of 60 s) than centralized active sensing coupled with
SoD (i.e., average of > 732 s) and FGP (i.e., not available
due to excessive incurred time). Also, notice from Figs. 2a
and 2d that if a large number of sensors (i.e., K = 30)
is available, D2FAS can select shorter walks of L = 2 to
be significantly more time-efficient (i.e., average of > 3
orders of magnitude faster) while achieving predictive per-
formance comparable to that of SoD with L = 8 and FGP
with L = 6.

7 Conclusion
This paper describes a decentralized data fusion and active
sensing algorithm for modeling and predicting spatiotem-
poral traffic phenomena with mobile sensors. Analytical
and empirical results have shown that our D2FAS algo-
rithm is significantly more time-efficient and scales better
with increasing number of observations and sensors while
achieving predictive performance close to that of state-of-
the-art centralized active sensing coupled with FGP and
SoD. Hence, D2FAS is practical for deployment in a large-
scale mobile sensor network to achieve persistent and ac-
curate traffic modeling and prediction. For our future work,
we will assume that each sensor can only communicate lo-
cally with its neighbors (instead of assuming all-to-all com-
munication) and develop a distributed data fusion approach
to efficient and scalable approximate GP prediction based
on D2FAS and consensus filters (Olfati-Saber, 2005).
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Abstract

In recent years a number of methods have
been developed for automatically learning the
(sparse) connectivity structure of Markov Ran-
dom Fields. These methods are mostly based on
L1-regularized optimization which has a num-
ber of disadvantages such as the inability to
assess model uncertainty and expensive cross-
validation to find the optimal regularization pa-
rameter. Moreover, the model’s predictive per-
formance may degrade dramatically with a sub-
optimal value of the regularization parameter
(which is sometimes desirable to induce sparse-
ness). We propose a fully Bayesian approach
based on a “spike and slab” prior (similar to
L0 regularization) that does not suffer from
these shortcomings. We develop an approxi-
mate MCMC method combining Langevin dy-
namics and reversible jump MCMC to conduct
inference in this model. Experiments show that
the proposed model learns a good combination
of the structure and parameter values without
the need for separate hyper-parameter tuning.
Moreover, the model’s predictive performance
is much more robust than L1-based methods
with hyper-parameter settings that induce highly
sparse model structures.

1 Introduction

Undirected probabilistic graphical models, also known as
Markov Random Fields (MRFs), have been widely used
in a large variety of domains including computer vision
(Li, 2009), natural language processing (Sha and Pereira,
2003), and social networks (Robins et al., 2007). The struc-
ture of the model is defined through a set of features defined
on subsets of random variables. Automated methods to se-
lect relevant features are becoming increasingly important
in a time where the proliferation of sensors make it possi-

ble to measure a multitude of data-attributes. There is also
an increasing interest in sparse model structures because
they help against overfitting and are computationally more
tractable than dense model structures.

In this paper we focus on a particular type of MRF, called
a log-linear model, where structure learning or feature se-
lection is integrated with parameter estimation. Although
structure learning has been extensively studied for directed
graphical models, it is typically more difficult for undi-
rected models due to the intractable normalization term of
the probability distribution, known as the partition func-
tion. Traditional algorithms apply only to restricted types
of structures with low tree-width (Andrew and Gao, 2007;
Tsuruoka et al., 2009; Hu et al., 2009) or special models
such as Gaussian graphical models (Jones et al., 2005) so
that accurate inference can be conducted efficiently.

For an arbitrary structure, various methods have been pro-
posed in the literature, generally categorized into two ap-
proaches. One approach is based on separate tests on an
edge or the neighbourhood of a node so that there is no need
to compute the joint distribution (Wainwright et al., 2007;
Bresler et al., 2008; Ravikumar et al., 2010). The other ap-
proach is based on maximum likelihood estimation (MLE)
with a sparsity inducing criterion. These methods require
approximate inference algorithms in order to estimate the
log-likelihood such as Gibbs sampling (Della Pietra et al.,
1997), loopy belief propagation (Lee et al., 2006; Zhu
et al., 2010), or pseudo-likelihood (Höfling and Tibshirani,
2009). A popular choice of such a criterion is L1 regular-
ization (Riezler and Vasserman, 2004; Dudik et al., 2004)
which enjoys several good properties such as a convex ob-
jective function and a consistency guarantee. However, L1-
regularized MLE is usually sensitive to the choice the reg-
ularization strength, and these optimization-based methods
cannot provide a credible interval for the learned structure.
Also, in order to learn a sparse structure, a strong penalty
has to be imposed on all the edges which usually results in
suboptimal parameter values.

We will follow a third approach to MRF structure learn-
ing in a fully Bayesian framework which has not been ex-
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plored yet. The Bayesian approach considers the structure
of a graphical model as random. Inference in a Bayesian
model provides inherent regularization, and offers a fully
probabilistic characterization of the underlying structure.
It was shown in Park and Casella (2008) that Bayesian
models with a Gaussian or Laplace prior distribution (cor-
responding to L2 or L1 regularization) do not exhibit
sparse structure. Mohamed et al. (2011) proposes to use a
“spike and slab” prior for learning directed graphical mod-
els which corresponds to the ideal L0 regularization. This
model exhibits better robustness against over-fitting than
the related L1 approaches. Unlike the Laplace/Gaussian
prior, the posterior distribution over parameters for a “spike
and slab” prior is no longer guaranteed to be unimodal.
However, approximate inference methods have been suc-
cessfully applied in the context of directed models using
MCMC (Mohamed et al., 2011) and expectation propaga-
tion (Hernández-Lobato et al., 2010).

Unfortunately, Bayesian inference for MRFs is much
harder than for directed networks due to the partition
function. This feature renders even MCMC sampling in-
tractable which caused some people to dub these prob-
lems “double intractability” (Murray et al., 2006). Nev-
ertheless, variational methods (Parise and Welling, 2006;
Qi et al., 2005) and MCMC methods (Murray and Ghahra-
mani, 2004) have been successfully explored for approxi-
mate inference when the model structure is fixed.

We propose a Bayesian structure learning method with a
spike and slab prior for MRFs and devise an approximate
MCMC method to draw samples of both the model struc-
ture and the model parameters by combining a modified
Langevin sampler with a reversible jump MCMC method.
Experiments show that the posterior distribution estimated
by our inference method matches the actual distribution
very well. Moreover, our method offers better robustness
to both under-fitting and over-fitting than L1-regularized
methods. A related but different application of the spike
and slab distribution in MRFs is shown in Courville et al.
(2011) for modelling hidden random variables.

This paper is organized as follows: we first introduce a hi-
erarchical Bayesian model for MRF structure learning in
section 2 and then describe an approximate MCMC method
in section 3, 4, and 5 to draw samples for the model param-
eters, structure, and other hyper-parameters respectively.
Experiments are conducted in section 6 on two simulated
data sets and a real-world dataset, followed by a discussion
section.

2 Learning the Structure of MRFs as
Bayesian Inference

The probability distribution of a MRF is defined by a set
of potential functions. Consider a widely used family of

MRFs with log-linear parametrization:

P (x|θ) =
1

Z(θ)
exp

(∑

α

θαfα(xα)

)
(1)

where each potential function is defined as the exponential
of the product between a feature function fα of a set of
variables xα and an associated parameter θα. Z is called
the partition function. All the variables in the scope of a
potential function form a clique in their graphical represen-
tation. When a parameter θα has a value of zero, we could
equivalently remove feature fα and all the edges between
variables in xα (if these variables are not also in the scope
of other features) without changing the distribution of x.
Therefore, by learning the parameters of this MRF model
we can simultaneously learn the structure of a model if we
allow some parameters to go to zero.

The Bayesian learning approach to graphical models con-
siders parameters as a random variable subject to a prior.
Given observed data, we can infer the posterior distribu-
tion of the parameters and their connectivity structure. Two
commonly used priors, the Laplace and the Gaussian distri-
bution, correspond to the L1 and L2 penalties respectively
in the associated optimization-based approach. Although
a model learned by L1-penalized MLE is able to obtain a
sparse structure, the full Bayesian treatment usually results
in a fully connected model with many weak edges as ob-
served in Park and Casella (2008), without special approx-
imate assumptions like the ones in Lin and Lee (2006). We
propose to use the “spike and slab” prior to learn a sparse
structure for MRFs in a fully Bayesian approach. The spike
and slab prior (Mitchell and Beauchamp, 1988; Ishwaran
and Rao, 2005) is a mixture distribution which consists of
a point mass at zero (spike) and a widely spread distribution
(slab):

P (θα) = (1− p0)δ(θα) + p0N (θα; 0, σ2
0) (2)

where p0 ∈ [0, 1], δ is the Dirac delta function, and σ0 is
usually large enough to be uninformative. The spike com-
ponent controls the sparsity of the structure in the poste-
rior distribution while the slab component usually applies
a mild shrinkage effect on the parameters of the existing
edges even in a highly sparse model. This type of selective
shrinkage is different from the global shrinkage imposed
by L1/L2 regularization, and enjoys benefits in parameter
estimation as demonstrated in the experiment section.

The Bayesian MRF with the spike and slab prior is formu-
lated as follows:

P (x|θ) =
1

Z(θ)
exp

(∑

α

θαfα(xα)

)

θα = YαAα

Yα ∼ Bern(p0) p0 ∼ Beta(a, b)

Aα ∼ N (0, σ2
0) σ−20 ∼ Γ(c, d) (3)
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Figure 1: Illustration of the MCMC for Aα and Yα.

where x is a set of state variables and a, b, c, and d are
hyper-parameters. In the experiments we will use pairwise
features in which case α = (i, j) plus bias terms given by∑
i θifi(xi) in the expression for the log-probability. We

will use a normal prior θi ∼ N (0, σ2
b ) for these bias terms.

σb is chosen to be large enough to act as an uninforma-
tive prior. Yα is a binary random variable representing the
existence of the edges in the clique xα, and Aα is the ac-
tual value of the parameter θα when the edges are instan-
tiated. It is easy to observe that given p0 and σ0, θα has
the same distribution as in equation 2. We use a hierarchi-
cal model for θ so that the inference will be insensitive to
the choice of the hyper-parameters. In fact, experiments
show that with a simple setting of the hyper-parameters,
proper values of the sparsity parameter p0 and the variance
σ0 are learned automatically by our model for all the data
sets without the necessity of cross-validation.

Unlike the optimization-based methods which estimate a
single structure, the Bayesian approach expresses uncer-
tainty about the existence of edges through its posterior
distribution, P (Y|D). We have applied a simple thresh-
olding on P (Yα|D) for edge detection in the experiments
although more sophisticated methods can conceivably give
better results.

Standard approaches to posterior inference do not work for
Bayesian MRFs because it is intractable to compute the
probability of a state x (due to the intractability of the par-
tition function). We devised an approximate MCMC algo-
rithm for inference, where we draw samples of the contin-
uous variable Aα by a modified Langevin dynamics algo-
rithm, and samples of the discrete variable Yα jointly with
Aα by a reversible jump MCMC method, as illustrated in
Figure 1 and explained in the following sections.

3 Sampling Parameter Values by Langevin
Dynamics

Given Y, p0, σ0, and an observed data set D =
{x(m)},m = 1 . . . N , the conditional distribution of pa-
rameters {Aα : Yα = 1} is the posterior distribution of an
MRF with a fixed edge set induced by {α : Yα = 1} and an
independent Gaussian prior N (0, σ2

0). We consider draw-

ing samples of Aα with fixed Y in this section and will use
θα andAα interchangeably to refer to a nonzero parameter.
Even for an MRF model with a fixed structure, MCMC is
still intractable. Approximate MCMC methods have been
discussed in Murray and Ghahramani (2004) among which
Langevin Monte Carlo (LMC) with “brief sampling” to
compute the required expectations in the gradients, shows
good performance. (Welling and Teh, 2011) further shows
that LMC with a noisy gradient can draw samples from the
exact posterior distribution when the step size approaches
zero.

Langevin dynamics is described as the hybrid Monte Carlo
(HMC) method with one leapfrog step in section 5.5.2 of
Neal (2010):

pt+ε/2 =pt +
εC

2
g(θt)

θt+ε =θt + εCpt+ε/2

pt+ε =pt+ε/2 +
εC

2
g(θt+ε) (4)

where p is the auxiliary momentum, ε is the step size, C
is a positive definite preconditioning matrix, and g is the
gradient of the log-posterior probability logP (θ|D) 1. A
new value of p is drawn at every iteration from an isotropic
Gaussian distribution N (0, I) and then discarded after θ
is updated. The leapfrog step is usually followed by a
Metropolis-Hastings accept/reject step to ensure detailed
balance. But since the rejection rate decays as ε3, that step
can be skipped for small step sizes without incurring much
error.

In a MRF, the gradient term g involves computing an ex-
pectation over exponentially many states as

gα(θ) =
N∑

m=1

fα(x(m)
α )−NEP (x|θ)fα(xα)− θα

σ2
0

(5)

The expectation is estimated by a set of state samples
{x̃(s)} in the “brief Langevin” algorithm of Murray and
Ghahramani (2004), where these samples are drawn by run-
ning a few steps of Gibbs sampling initialized from a subset
of the training data. We adopt the “brief Langevin” algo-
rithm with three modifications for faster mixing.

3.1 Persistent Gibbs Sampling

We maintain a set of persistent Markov chains for the state
samples {x̃(s)} by initializing Gibbs sampling at the last
states of the previous iteration instead of the data. This
is motivated by the persistent contrastive divergence algo-
rithm of Tieleman (2008). When θ changes slowly enough,
the Gibbs sampler will approximately sample from the sta-
tionary distribution, even when allowed a few steps at every
iteration.

1We omit all the other random variables that θ is conditioned
on in this section for ease of notation.
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3.2 Preconditioning

When the posterior distribution of {θα} has different scales
along different variables, the original LMC with a com-
mon step size for all θα’s will traverse the parameter space
slowly. We adopt a preconditioning matrix C to speed up
the mixing, where C satisfies CCT = H with H is the
Hessian matrix of logP (θMAP|D), computed as:

H(θMAP) = CovP (x|θMAP)f(x) + σ−20 (6)

This is reminiscent of the observed Fisher information ma-
trix in Girolami and Calderhead (2011) except that we
use the MAP estimate with the prior. We approximate
H(θMAP) by averaging over H(θt) during a burn-in pe-
riod and estimate CovP (x|θt)f with the set of state samples
from the persistent Markov chains. The adoption of a pre-
conditioning matrix also helps us pick a common step size
parameter ε suitable for different training sets.

3.3 Partial Momentum Refreshment

The momentum term p in the leapfrog step represents the
update direction of the parameter. Langevin dynamics is
known to explore the parameter space through inefficient
random walk behavior because it draws an independent
sample for p at every iteration. We can achieve a bet-
ter mixing rate with the partial momentum refreshment
method proposed in Horowitz (1991). When p is updated
at every step by:

pt ← αpt + βnt (7)

where nt ∼ N (0, I), and α, β satisfy α2 + β2 = 1, the
momentum is partially preserved from the previous itera-
tion and thereby suppresses the random-walk behavior in a
similar fashion as HMC with multiple leapfrog steps.

α controls how much momentum to be carried over from
the previous iteration. With a large value of α, LMC re-
duces the auto-correlation between samples significantly
relative to LMC without partial momentum refreshment.
The improved mixing rate is illustrated in Figure 2. We also
show that the mean and standard deviation of the posterior
distribution does not change. However, caution should be
exercised especially when the step size η is large because a
value of α that is too large would increase the error in the
update equation which we do not correct with a Metropolis-
Hastings step because that is intractable.

4 Sampling Edges by Reversible Jump
MCMC

Langevin dynamics handles the continuous change in
the parameter value Aα. As for discrete changes in
the model structure, Yα, we propose an approximate re-
versible jump MCMC (RJMCMC) step (Green, 1995) to
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Figure 2: Comparison of Langevin dynamics on the block model
in section 6.1 with partial momentum refreshment α = 0.9
against α = 0. Step size η = 10−3. Top: the auto-correlation
of two typical parameters. Bottom: the posterior mean and stan-
dard deviation of all parameters estimated with 10K samples.

sample Yα and Aα jointly from the conditional distri-
bution P (A,Y|p0, σ0,D). The proposed Markov chain
adds/deletes one clique (or simply one edge when α =
(i, j)) at a time. When an edge does not exist, i.e., Yα = 0,
the variable Aα can be excluded from the model, and
therefore we consider the jump between a full model with
Yα 6= 0, Aα = a and a degenerate model with Yα = 0.

The proposed RJMCMC is as follows: when Yα = 0,
propose adding an edge with probability Padd and sample
Aα = a from a proposal distribution q(A) with support on
[−∆α,∆α]; when Yα = 1 and |Aα| ≤ ∆α, propose delet-
ing an edge with Pdel. The reason of restricting the pro-
posed move within [−∆α,∆α] will be explained later. It is
easy to see that the Jacobian is 1. The jump is then accepted
by the Metropolis-Hastings algorithm with a probability:

Qadd = min{1, Q∗(a)}, Qdel = min{1, 1/Q∗(a)}

Q∗(a) = exp(a
∑

m

fα(x(m)
α ))

(
Z(Yα = 0)

Z(Yα = 1, Aα = a)

)N

p0N (Aα = a|0, σ2
0)

(1− p0)

Pdel
Paddq(Aα = a)

(8)

The factors in the first line of Q∗ represent the ratio of the
model likelihoods while the other two are respectively the
ratio of the prior distributions and the ratio of the proposal
distributions.

4.1 Unbiased Estimate to Q∗ and 1/Q∗

Computing the partition functions in equation 8 is gener-
ally intractable. However, noticing that Z(Yα = 1, Aα =
a)→ Z(Yα = 0), as a→ 0, the log-ratio of the two parti-
tion functions should be well approximated by a quadratic
approximation at the origin when a is small. In this way
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we reduce the problem of estimating the partition function
to computing the first and second order derivatives of the
log-partition function. We employ a second order Taylor
expansion for the ratio of partition functions in Q∗ as fol-
lows:

(
Z(Yα = 0)

Z(Yα = 1, Aα = a)

)N
def
= Radd

≈ exp

(
−Na∂ log(Z)

∂Aα
|Aα=0 −

Na2

2

∂2 log(Z)

∂A2
α

|Aα=0

)

(9)

We know that the kth order derivatives of the log-partition
function of an MRF correspond to the kth order centralized
moments (or cumulants) of the features, that is,

∂ log(Z)

∂Aα
= Efα,

∂2 log(Z)

∂A2
α

= Varfα (10)

Given a set of n state samples x̃(s) ∼ P (x|Yα = 0) from
the persistent Markov chains, we can compute an unbiased
estimate of the mean and variance of fα as the sample mean
f̄α and sample variance S2

α =
∑
s(fα(x̃(s))−f̄α)2/(n−1)

respectively. Consequently we obtain an estimate of Radd
by plugging f̄α and S2

α into equation 9, which is unbiased
in the logarithmic domain, denoted as R̂add.

An unbiased estimate in the logarithmic domain, unfortu-
nately, is no longer unbiased once transformed to the linear
domain. To correct the bias induced by the transformation,
we take another Taylor expansion of R̂add/Radd around
a = 0. After some derivation, we obtain an unbiased esti-
mate of Radd upto the second order of a given by

R̃add(a) = exp

(
−Naf̄α −

Na2

2
S2
α

)(
1 +

N2a2

2n
S2
α

)−1

with variance:

Var(R̃add/Radd) =
N2a2

n
Var(fα) + o(a3) (11)

Similarly, we can also obtain an unbiased estimate, R̃del,
in 1/Q∗ when considering deleting an edge, with the same
formula as R̃add except that a is replaced by −a and the
sample mean and variance are now estimated with respect
to P (x|Yα = 1, Aα = a). If we plug in R̃add (or R̃del)
into Qadd (or Qdel) we get an unbiased estimate of the ac-
ceptance probability except when Q∗ (or 1/Q∗) is close to
1 in which case the min operation causes extra bias. Since
the variance can be computed as a function of a in equa-
tion 11, we can estimate how large a jump range ∆ can be
used in order to keep the error in the acceptance probability
negligible. A larger data set requires a smaller jump range
or alternatively a larger sample set that grows quadratically
with the size of the data set.

4.2 Optimal Proposal Distribution q

After plugging equations 9, 10 and 5 into equation 8, we
obtain the acceptance probability as a function of a:

Qadd = min

{
1,

h(a)

q(Aα = a)
const

}

h(a) = exp

(
−a

2

2

(
1

σ2
0

+ Varfα

)
+ aNgα

)
(12)

where gα and Varfα are defined at θα = 0. Clearly, the
optimal proposal distribution in terms of minimal variance
is given by the following truncated Gaussian distribution

qopt(Aα = a|θ) ∝ h(a), a ∈ [−∆α,∆α] (13)

When adding an edge, we have state samples x̃(s) ∼
P (x|Yα = 0). The expectation Efα in gα can be estimated
by f̄α({x̃(s)}) and Varfα by S2

α({x̃(s)}). When deleting
an edge, the samples are from P (x|Yα = 1, Aα = a). We
apply a quadratic approximation for logZ(θα), use equa-
tion 10, and estimate Varfα ≈ S2

α and Efα ≈ f̄α − aS2
α.

4.3 Parallel Proposals

Since the most computationally demanding step is to obtain
a set of state samples {x̃(s)}, we want to reuse the samples
whenever possible. Given that ∆α is small enough, the pa-
rameter value does not change much when we accept an
“add or delete edge” move. We can thus assume that the
distribution of Aα on an edge is not affected much by an
accepted move on other edges. As a result we do not have
to rerun the Gibbs sampler after every edge operation, and
we can propose jumps for all {α : |Aα| < ∆α} in parallel,
using the same set of samples. This reduces the computa-
tion time significantly.

5 Sampling for Hyper-parameters

Given A and Y, the hyper-parameters are easy to sample
when using conjugate priors:

p0|Y ∼ Beta(a+
∑

α

I(Yα = 1), b+
∑

α

I(Yα = 0))

σ−20 |Y,A ∼ Γ(c+
1

2

∑

α

I(Yα = 1), d+
1

2

∑

α:Yα=1

A2
α)

(14)

where I is the indicator function.

The whole inference algorithm is summarized in Alg 1.

6 Experiments

6.1 Datasets

We assess the performance of our proposed method on two
simulated data sets and one real-world data set. For the
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Algorithm 1 MCMC for Bayesian MRFs with Langevin
Dynamics and RJMCMC

(Parameters: number of iterations ITER, number of
Gibbs sampling steps NGibbs, sample size n, step size
ε, partial momentum refreshment α, RJMCMC proposal
width ∆α.)
Initialize A, Y, and momentum p randomly
for iter = 1→ ITER do

Sample p0 and σ0 given A and Y
Run Gibbs sampling for NGibbs steps to draw
{x(s)}ns=1.
Run LMC to draw {Aα : Yα 6= 0}.
Run RJMCMC to propose adding an edge for {α :
Yα = 0}, and deleting an edge for {α : Yα =
1, |Aα| < ∆α}

end for

simulated data, we randomly generate sparse Ising models
with binary ±1 states and with parameters sampled from a
Gaussian distribution N (0, σ2) where σ = 0.5 for edges
and 0.1 for node biases. These models are then converted
to their equivalent Boltzmann machines with binary {0, 1}
states from which we draw exact samples. Two structures
are considered: (1) a block model with 12 nodes equally
divided into 3 groups. Edges are added randomly within
a group with a probability of 0.8, and across groups with
0.1. Edges within a group are strong and positively cou-
pled. There are 66 candidate edges with 20 edges in the
ground truth model. (2) a 10× 10 lattice with 4950 candi-
date edges and with 180 edges in the ground truth model.

For the real data, we use the MNIST digits image data.
We convert the gray scale pixel values to binary values by
thresholding at a value of 50, resize the images to a 14×14
scale, and then pick a 9 × 12 patch centered in each im-
age where the average value of each pixel is in the range
of [10−4, 1− 10−4]. The last step is necessary because the
other competing models do not have regularization on their
biases, which will result in divergent parameter estimates
for pixels that are always 0 or 1.

6.2 Model Specification

We compare our Bayesian structure learning algorithm
with two other approaches. One is proposed in Wainwright
et al. (2007) which recovers the neighbourhood of nodes
by training separate L1-regularized logistic regressions on
each variable. While its goal is edge detection, we can
also use it as a parameter estimation method with two out-
put models, “Wain Max” and “Wain Min”, as defined in
Höfling and Tibshirani (2009). We implement the “Wain
Max/Min” methods with the Lasso regularized generalized
linear model package of Friedman et al. (2010) 2. The other

2Code provided at http://www-stat.stanford.edu/ tibs/glmnet-
matlab

approach is one of the several variants of L1-regularized
MLE methods which use a pseudo-likelihood approxima-
tion (Höfling and Tibshirani, 2009), denoted as “MLE” 3.

For our Bayesian model, we consider two schemes to spec-
ify a model for prediction. One is the fully Bayesian ap-
proach, referred as “Bayes”, in which we random pick 100
model samples in the Markov chain and approximate the
Bayesian model by a mixture model of these 100 compo-
nents. The other one is to obtain a single model by applying
a threshold of 0.5 to P (Yi,j |D) and estimate the posterior
mean of the included edges, referred to as “Bayes PM”.

The performance of the Bayesian model is insensitive to
the choice of hyper-parameters. We simply set a = b =
c = d = 5 for p0 and σ0, and σb = 10 across all experi-
ments. For the parameters of the MCMC method, we also
use a common setting. We use a diagonal approximation
to the feature covariance Covf and thereby the precondi-
tioning matrix C. We set the sample size n = 100, num-
ber of Gibbs sampling steps NGibbs = 1, LMC step size
ε = 10−3, and momentum refreshment rate α = 0.9. The
RJMCMC proposal width is set as ∆α = 0.01/

√
NVarf

to achieve a small estimation error as in equation 11. For
each experiment, we run the MCMC algorithm to collect
10K samples with a subsampling interval of 1000. Since
the exact partition function can be computed on the small
block model, we also run an exact MCMC, “Bayes Exact”,
with an exact gradient and accept/reject decision as well as
larger values in ε, α, and ∆ than the approximate MCMC.

Different levels of sparsity have to be considered in L1-
based methods for an optimal regularization strength. For
the Bayesian method, we learn a single sparsity level. How-
ever, for the sake of comparison, we also consider a method
with p0 as a parameter and vary it between (0, 1) to induce
different sparsity, referred to with a suffix “p0”.

6.3 Accuracy of Inference

We first evaluate the validity of the proposed MCMC
method on the block data where exact inference can be car-
ried out. The marginal posterior distribution of an edge
parameter, θi,j , is a mixture of a point mass at zero and a
continuous component with a single mode. Figure 3 shows
the histogram of samples in the continuous component of
four randomly picked θi,j’s. The title above each plot is
the posterior probability of the edge (i, j) being present
in the model, i.e. θi,j 6= 0 or Yi,j = 1. In this figure,
the marginal distribution estimated from the approximate
MCMC method matches the distribution from “Bayes Ex-
act” very well. For a more comprehensive comparison, we
run “Bayes p0” and “Bayes Exact p0” methods, and vary
the value of p0 from 10−4 to 0.99 to achieve different lev-
els of sparsity. We estimate and collect across different p0

3Code provided at http://holgerhoefling.com
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Figure 3: Histogram of the parameter samples of four randomly
picked edges from “Bayes” and “Bayes Exact” when Yi,j = 1.
The training data is from the block model with N = 100.

Figure 4: Comparison of “Bayes p0” and “Bayes Exact p0” on
posterior probability of Yi,j = 1, and the posterior mean and
standard deviation of θi,j when Yi,j = 1. The training data is
from the block model with N = 100.

values the posterior probability of θi,j 6= 0, posterior mean
and standard deviation of θi,j in the continuous component,
as shown in Figure 4. Each point represents a parameter
under some value of p0. We find the approximate MCMC
procedure produces about the same values for these three
statistics as the exact MCMC method.

6.4 Simulated Data

We then compare the performance of various methods on
simulated data sets for two tasks: structure recovery and
model estimation. The accuracy of recovering the true
structure is measured by the precision and recall of the true
edges. The quality of the estimated models is evaluated
by the predictive performance on a held-out validation set.
Since computing the log-likelihood of a MRF is in general
intractable, we use the conditional log-likelihood (CLL) on
a group of variables instead, which is a generalization of
the conditional marginal log-likelihood in Lee et al. (2006).
For each data case in the validation set, we randomly
choose a group of variables, which is all the variables in
the block model and a 3× 3 grid in the lattice and MNIST
models, and compute logP ({xi}i∈group|{xj}j 6∈group).

We train models on the simulated data ranging between 50
and 1000 items. For the Bayesian models, we remove an
edge if the posterior probability P (Yi,j = 1|D) < 0.5.
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Figure 5: Precision-Recall Curves for the lattice data with 100
data cases.

Figure 5 shows typical precision-recall curves for different
methods. It turns out that all the models with a sparsity
tuning parameter perform similarly across all the training
sets. The “Bayes” model tends to find a structure with high
precision.

We then consider the average CLL as a function of the edge
density of a model. The edge density is defined as the per-
centage of edges present in a model, i.e., 1−sparsity. For
the fully Bayesian model, we measure the average density
in the Markov chain. In fact, the variance of the edge den-
sity is usually small, suggesting that most model samples
have about the same number of edges. We show the av-
erage CLL of different models trained with 100 data cases
in Figure 6. The results on other data sizes are omitted
because they have the same tendency. All the Bayesian
models give robust prediction performance in the sparse
and dense model ranges and “Bayes p0” outperforms all
the other methods with a tunable sparsity parameter for al-
most all settings of p0. Moreover, the curve of “Bayes p0”
peaks at the true density level. In contrast, L1 methods
would underfit to the data for sparse models or overfit for
dense models. “MLE” performs better than “Wain” mod-
els. This makes sense as the “Wain” models were not de-
signed for MRF parameter estimation. Figure 7 compares
the Bayesian models with exact and approximate inference.
Again, the approximate MCMC method generates about
the same posterior distribution as the “exact” method.

The difference between Bayesian models and L1-based
models could be partially explained by the different
prior/regularization. As shown in Figure 8, to achieve a
sparse structure, we have to use strong regularization in
the L1 models which causes global shrinkage for all pa-
rameters, resulting in under-fitting. On the other hand, to
obtain a dense structure, weak regularization must be ap-
plied globally which leads to over-fitting. In contrast, with
a spike and slab prior, the parameter value of existing edges
is not affected directly by p0. Instead, their variance is con-
trolled by another random variable σ0 which fits the data
automatically with a weak hierarchical prior. The behavior
of selective shrinkage in the spike and slab prior is also dis-
cussed in Mohamed et al. (2011); Ishwaran and Rao (2005).
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Figure 6: Mean and standard deviation of average CLL at different density levels for block
(left) and lattice (right) model with 100 training data cases. “Wain Min” is not plotted as it
is always inferior to “Wain Max”. Vertical line: true edge density.
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Figure 7: Average CLL at differ-
ent density levels for the block model
with 100 training cases.
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Figure 8: Absolute value of edge parameters in the true model,
“Wain Max”, and “Bayes PM” for lattice data with 100 samples.
Parameters are plotted only if they are not zero in at least one
model and sorted along the x-axis by the absolute value in the
true model. The parameters in “Wain Max” are too small in sparse
models (top, edge density ≈ 3%) and too large in dense models
(bottom, 65%). Inset: zoom-in at the right-hand side. “Wain Min”
and “MLE” are similar to “Wain Max”.

The Bayesian models, “Bayes p0” and “Bayes PM p0” do
however show an interesting “under-fitting” phenomenon
at a large density levels. This is due to a misspecified value
for p0. Since the standard deviation σ0 is shared by all the
Ai,j’s whose Yi,j = 1, when we fix p0 at an improperly
large value, it forces a lot of non-existing edges to be in-
cluded in the model, which consequently brings down the
posterior distribution of σ0. This results in too small values
on real edges as shown in the inset of Figure 8 and thereby
a decrease in the model predictive accuracy.

However, this “misbehavior” in return just suggests the
ability of our Bayesian model to learn the true structure.
Once we release p0 through a hierarchical prior, the model
will abandon these improper values in p0 and automati-
cally find a good structure and parameters. The vertical line
in Figure 6 indicates the sparsity of the true model. Both
“Bayes” and “Bayes PM” find sparsity levels very close to
the true value, while L1-based methods are under-fitted at
that same level as shown in the upper panel of Figure 8. We
show the joint performance of edge detection and parame-
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Figure 9: CLL vs F1 score for block and lattice model with 100
data cases. A good model is at the upper right corner.

ter learning in Figure 9 where the performance of edge de-
tection is summarized by the F1 score (the harmonic mean
of the precision and recall). The Bayesian models with a hi-
erarchical p0 prior achieve both a high F-1 score and CLL
value near the upper right corner.

6.5 MNIST Data

Since there does not exist ground truth in the model struc-
ture of the MIST data set, we evaluate how well we can
learn a sparse model for prediction. Figure 10 shows the
average CLL on 10K test images with a model trained on

181



0 0.2 0.4 0.6
−4

−3.5

−3

−2.5
MNIST, N=100

Edge Density

C
L
L

 

 

Wain min

Wain max

MLE
Bayes p

0

Bayes PM p
0

Bayes

Bayes PM

0 0.2 0.4 0.6 0.8 1

−2.2

−2.1

−2

−1.9

MNIST, N=1000

Edge Density

C
L
L

 

 

Wain min

Wain max

MLE
Bayes p

0

Bayes PM p
0

Bayes

Bayes PM

Figure 10: Mean and standard deviation of average CLL versus
edge density on MNIST with 100 and 1000 data cases.

100 and 1000 images respectively. In the sparse and dense
model ranges, we observe again a better performance of
“Bayes” than L1-based methods. “Bayes PM” also shows
robustness to under/over-fitting although it seems that sim-
ply computing the posterior mean does not provide suffi-
ciently good model parameters in the median density range.

To get a more intuitive comparison about the quality of
learned sparse models, we train models on 1000 images by
different methods with a density of 0.2 and then run Gibbs
sampling to draw 36 samples from each model. The im-
ages are shown in Figure 11. While it is hard to get good
reconstruction using a model without hidden variables, the
Bayesian methods produce qualitatively better images than
competing methods, even though “Bayes PM” does not
have higher CLL than “MLE” at this level.

A common limitation of learning Bayesian models with the
MCMC inference method is that it is much slower than
training a model with a point estimate. However, as shown
in the experiments, the Bayesian methods are able to learn
a good combination of parameters and a structure without
the need to tune hyper-parameters through cross validation.
Also, the Bayesian methods learn sparser models than L1-
based methods without sacrificing predictive performance
significantly. Because the computational complexity of
inference grows exponentially with the maximum clique
size of MRFs, L1-based models at their optimal (not so
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Figure 11: Samples from learned models at an edge density level
of 0.2.

sparse) regularization level can in fact become significantly
more computationally expensive than their Bayesian coun-
terparts at prediction time. Turning up the regularization
will result in sparser models but at the cost of under-fitting
the data and thus sacrificing predictive accuracy.

7 Discussion

We propose Bayesian structure learning for MRFs with a
spike and slab prior. An approximate MCMC method is
proposed to achieve effective inference based on Langevin
dynamics and reversible jump MCMC. As far as we known
this is the first attempt to learn MRF structures in the
fully Bayesian approach using spike and slab priors. Re-
lated work was presented in Parise and Welling (2006)
with a variational method for Bayesian MRF model selec-
tion. However this method can only compare a given list of
candidate models instead of searching in the exponentially
large structure space.

The proposed MCMC method is shown to provide accu-
rate posterior distributions at small step sizes. The selective
shrinkage property of the spike and slab prior enables us to
learn an MRF at different sparsity levels without noticeably
suffering from under-fitting or over-fitting even for a small
data set. Experiments with simulated data and real-world
data show that the Bayesian method can learn both an ac-
curate structure and a set of parameter values with strong
predictive performance. In contrast the L1-based methods
could fail to accomplish both tasks with a single choice
of the regularization strength. Also, the performance of
our Bayesian model is largely insensitive to the choice of
hyper-parameters. It provides an automated way to choose
a proper sparsity level, while L1 methods usually rely on
cross-validation to find their optimal regularization setting.
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Abstract

We create a formal framework for the design
of informative securities in prediction mar-
kets. These securities allow a market orga-
nizer to infer the likelihood of events of in-
terest as well as if he knew all of the traders’
private signals. We consider the design of
markets that are always informative, markets
that are informative for a particular signal
structure of the participants, and informative
markets constructed from a restricted selec-
tion of securities. We find that to achieve
informativeness, it can be necessary to allow
participants to express information that may
not be directly of interest to the market or-
ganizer, and that understanding the partic-
ipants’ signal structure is important for de-
signing informative prediction markets.

1 INTRODUCTION

Prediction markets are often used to better understand
the likelihood of future events. Consider, for example,
a market that predicts whether a particular candidate
will become the U.S. President. Traders in the market
may have diverse private information, like whether the
candidate will win a particular state or receive millions
of dollars in donations. Pooling this information could
lead to an accurate forecast of the likelihood that the
candidate will be elected, but may or may not be pos-
sible depending on how well the market is designed.

A typical prediction market offers securities with pay-
offs associated with future events. For example, a pre-
diction market might offer a security worth $1 if the

∗This research was partially supported by the National
Science Foundation under grants IIS-1054911 and CCF-
0953516. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the au-
thors alone.

candidate is elected and $0 otherwise. A risk neutral
trader who believes that the probability of election is
p would be willing to buy this security at any price less
than $p, and (short) sell the security at any price above
$p. For this reason, the market price of a security of
this form is frequently interpreted as the traders’ col-
lective belief about the likelihood of election.

Prediction markets have been shown to produce fore-
casts at least as accurate as other alternatives in a
wide variety of settings, including politics [6], busi-
ness [11, 42], disease surveillance [38], and entertain-
ment [34]. The New York Times has cited prices from
the popular Dublin-based market Intrade in discus-
sions of upcoming elections,1 and the North Ameri-
can Derivatives Exchange has proposed running real-
money prediction markets for political events.2 Ex-
tensive prior work has studied markets’ abilities to ag-
gregate information relevant to the value of a given
security in both lab and field experiments [35–37]
and at theoretical equilibria such as rational expec-
tations equilibria [39], competitive equilibria [32, 43],
and game-theoretic equilibria [10, 24, 31]. However,
there has been little research studying the problem of
designing securities to aggregate information relevant
to externally specified events.

We develop a formal framework in which to study
the design of informative securities for predicting the
likelihood of events of interest. Loosely speaking, we
consider a set of securities informative if, given their
prices, it is possible to calculate the posterior proba-
bilities of the events as if we were given the traders’
private information. This suggests two requirements:

1. The price of each security offered should converge
to the expected value of the security conditioned
on the traders’ pooled information.

1http://thecaucus.blogs.nytimes.com/2012/01/20/
gingrich-gets-a-boost-on-intrade/

2http://www.freakonomics.com/2012/02/02/
the-politics-of-political-prediction-markets/
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2. It should be possible to uniquely map the final
security prices to estimates of the likelihood of
each event of interest.

Prior work [31] has described when a given security
meets the first condition in perfect Bayesian equilibria.
We focus on the design of securities that meet both
conditions with respect to a specified set of events.
This theoretical investigation offers insight on how to
design prediction markets in practice to produce more
accurate forecasts.

Poor security design can stop participants from aggre-
gating their information, as the following example de-
rived from Geanakoplos and Polemarchakis [18] shows.

Example 1. Consider a market offering a single secu-
rity worth $1 if a particular candidate wins the presi-
dential election and $0 otherwise. The market has two
participants: a political analyst in Washington and an
Iowa caucus-goer who is well-informed on local poli-
tics. The analyst understands the importance of Iowa
on the campaign and knows whether a win or loss there
will mean the candidate is elected. The caucus-goer, on
the other hand, knows whether the candidate will win
or lose the caucus, but not its broader effect.

This situation can be described by defining four states
of the world, ω1, ω2, ω3, and ω4:

Iowa
Wins Loses

General Election
Wins ω1 ω2

Loses ω3 ω4

The analyst knows if the true state of the world is on
the diagonal or not (the effect of the caucus) and the
caucus-goer knows which column the true state is in
(the results of the caucus). If they could reveal their
private information they would learn the true state of
the world, ω∗. But with a uniform prior over the
state space, both think the likelihood of election is 1/2
and value the security at $0.50 no matter what their
private information is, since every signal contains a
state where the candidate wins the election and an-
other where the candidate loses. This prevents either
from inferring the other’s signal, and no aggregation
occurs.

The traders in Example 1 are unable to effectively ex-
press their private information and determine the cor-
rect value for the security, even though they have be-
tween them the knowledge to do so. But even when a
market determines the correct value for its securities
nothing may be learned. A constant-valued security
worth $1 regardless of the outcome is, for example, al-
ways priced correctly, but tells us nothing about the
likelihood of future events.

In practice many prediction markets offer multiple se-
curities, like a security that pays $1 if and only if a can-
didate wins Iowa and another that pays $1 if and only
if the candidate wins the general election. These two
securities together would allow the analyst and caucus-
goer to aggregate their information. The caucus-goer
could first participate in the Iowa market. Then, hav-
ing observed the price change in the Iowa market, the
analyst would have the information he needs to partic-
ipate in the general election market, revealing his own
private information. Furthermore, the market orga-
nizer would be able to infer the probability of election
by observing their trades. In short, these securities
together are what we call informative on the candi-
date’s election. We show that multiple securities are
necessary for informativeness in some cases. Using too
many securities, however, is bad design.

The design questions we examine are also relevant for
combinatorial prediction markets over exponentially
large outcome spaces, like the . quintillion outcomes
for the NCAA tournament [44], the over 250 ways for
states to vote in the U.S. presidential election, and the
n! rankings for a competition with n candidates. Of-
fering a security for each state would be technically
informative but practically unmanageable. Prior work
has frequently considered markets with securities that
correspond to natural events of interest, such as horse
A beating horse B in a race [3, 9], but these securities
may or may not be informative.

This paper considers the design of informative markets
in three settings:

• In Section 5.2, we characterize securities that are
always informative, revealing traders’ information
regardless of their signal structure. Complete
markets, which offer one Arrow-Debreu security
associated with each state of the world, are always
informative for any set of events because they re-
veal traders’ posterior distribution over the state
space, but are typically too large to run in prac-
tice. We show that even if only one event is of
interest, prohibitively large numbers of securities
may be required to guarantee informativeness.

• Offering a large number of securities is undesirable
from a practical point of view. In Section 5.3,
we show that if the market designer knows the
traders’ signal structure, a single informative se-
curity can be constructed to reveal the traders’
posterior distribution.

• Real markets have multiple securities, and a sin-
gle security acting as a summary statistic for a
complex market is unlikely to be considered nat-
ural. In Section 5.4 we consider design as an op-
timization problem where a designer attempts to
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find the fewest securities that are informative for
some given events of interest but is constrained
to select its securities from a predefined set. This
predefined set of securities could be interpreted as
the set of securities that are natural. Solving this
optimization problem perfectly is np-hard, even
when the set of securities is restricted to those
paying $0 or $1 in each state of the world (like
the securities in the above examples).

These results suggest, unsurprisingly, that deployed
prediction markets are likely not revealing all their
participants’ information and that better design may
improve upon their observed efficacy. The idea of par-
tial informativeness, which may better describe pre-
diction markets in practice, is discussed further in the
conclusion. However, only by understanding the lim-
its and opportunities of total informativeness, as dis-
cussed in this paper, can we understand the value and
interest of partial informativeness.

2 RELATED WORK

There is a rich literature on the informational effi-
ciency of markets, including theoretical work on the
existence and characteristics of rational expectations
equilibria [4, 21, 39] and empirical studies of experi-
mental markets [35, 36]. Here we review only the most
relevant theoretical work that either focuses on the dy-
namic process of information aggregation or takes a
security design perspective.

The early theoretical foundations of information aggre-
gation were laid by Aumann [5], who initiated a line
of research on common knowledge, establishing a solid
foundation to the understanding of the phenomenon of
consensus. An event E is said to be common knowl-
edge among a set of agents if every agent knows E,
and every agent knows that every other agent knows
E, ad infinitum. Aumann proved that if two rational
agents have the same prior and their posterior prob-
abilities for some event are common knowledge, then
their posterior probabilities must be equal. This result
was repeatedly refined and extended [18, 28, 29], and
Nielsen et al. [30] showed that if n agents with the same
prior but possibly different information announce their
beliefs about the expectation of some random variable,
their conditional expectations eventually are equal.

This line of work suggests that agents will reach con-
sensus, but says nothing about whether such a consen-
sus fully reveals agents’ information. Feigenbaum et al.
[14] studied a particular model of prediction markets
(a Shapley-Shubik market game [41]) in which traders’
information determines the value of a security. They
characterized the conditions under which the market

price of the security converges to its true value un-
der the assumption that traders are non-strategic and
honestly report their expectations.

The assumption that traders are non-strategic is ar-
guably unrealistic. Ostrovsky [31] examined informa-
tion aggregation in markets with strategic, risk-neutral
traders. He considered two market models, market
scoring rules [22, 23] and Kyle’s model [25]. For both,
he showed that a separability condition is necessary for
the market price of a security to always converge to the
expected value of the security conditioned on all infor-
mation in every perfect Bayesian equilibrium. This
condition is discussed extensively in Section 4. Iyer
et al. [24] extended this model to risk-averse agents
and identified a smoothness condition on the price in
the market that ensures full information aggregation.

The work of Feigenbaum et al. [14], Ostrovsky [31], and
Iyer et al. [24] focuses on understanding the aggrega-
tion of information relevant to the value of a given,
fixed security. In contrast, this paper studies how to
design securities to infer the likelihood of some events
of interest. There have been other papers on security
design. Pennock and Wellman [33], for example, exam-
ine the conditions under which an incomplete market
with a compact set of securities allows traders to hedge
any risk they have (and hence is “operationally com-
plete”). Their work considers competitive equilibria,
while our work focuses on information aggregation at
game-theoretic equilibria of the market.

3 THE MODEL

In this section, we describe our model of traders’ infor-
mation and the market mechanism. Our model closely
follows Ostrovsky [31], but is generalized to handle a
vector of securities (often simply referred to as a set
of securities) instead of a single security.

3.1 Modeling Traders’ Information

We consider n traders, 1, · · · , n, and a finite set Ω of
mutually exclusive and exhaustive states of the world.
Traders share a common knowledge prior distribution
P0 over Ω. Before the market opens Nature draws
a state ω∗ from Ω according to P0 and traders learn
some information about ω∗ that, following Aumann
[5], is based on partitions of Ω. A partition of a set
Ω is a set of nonempty subsets of Ω such that every
element of Ω is contained in exactly one subset. For ex-
ample, {{A,B}, {C}, {D}} and {{A,D}, {B,C}} are
both partitions of {A,B,C,D}. We assume that every
trader i receives Πi(ω

∗) as their private signal, where
Πi(ω) denotes the element of the partition Πi that con-
tains ω. In other words, trader i learns that the true
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state of the world lies in the set Πi(ω
∗).

We refer to the vector Π = (Π1, · · · ,Πn) as the
traders’ signal structure, which is assumed to be com-
mon knowledge for all traders. The join of the signal
structure, denoted join(Π), is the coarsest common re-
finement of Π, that is, the partition with the smallest
number of elements satisfying the property that for
any ω1 and ω2 in the same element of the partition,
Πi(ω1) = Πi(ω2) for all i. For example, the join of the
partitions {{A,D}, {B,C}} and {{A,C,D}, {B}} is
{{A,D}, {B}, {C}}. The join is unique. We use Π(ω)
to denote the element of the join containing ω. Note
that if two states appear in the same element of the
join, no trader can distinguish between these states.

3.2 Market Scoring Rules

The market mechanism that we consider is a market
scoring rule [22, 23]. We will describe a market scor-
ing rule as a mechanism that allows traders to sequen-
tially report their probability distributions or expec-
tations. While focusing on market scoring rules may
seem restrictive, market scoring rules are surprisingly
general. In particular, any market scoring rule that al-
lows traders to report probability distributions over Ω
has an equivalent implementation as a cost-function-
based market where the mechanism acts as an auto-
mated market maker who sets prices for |Ω| Arrow-
Debreu securities, one for each state and taking value
1 in that state and 0 otherwise, and is willing to buy
and sell securities at the set prices [8, 22]. This result
can easily be extended to general scoring rules by ap-
plying the results of Abernethy and Frongillo [1, 2]. In
particular, their results imply that any market scoring
rule that allows traders to report their expectations
has an equivalent implementation as a cost-function-
based market that allows traders to trade securities
with the market maker. Thus, without loss of gener-
ality, our model and analysis are presented for market
scoring rules.

Before describing the market scoring rule mechanism,
we first review the idea of a strictly proper scoring
rule. Scoring rules are most frequently used to evalu-
ate and incentivize probabilistic forecasts [16, 19], but
can also be used to elicit the mean or other statis-
tics of a random variable [26]. The scoring rules that
we consider will be used to elicit the mean of a vec-
tor of random variables [40]. Let X = (x1, · · · , xm)
be a vector of bounded real-valued random variables.
A scoring rule s maps a forecast ~y in some convex
region K ⊆ Rm (e.g., the probability simplex in the
case of probabilistic forecasts) and a realization of X
to a score s(~y,X(ω)) in R.3 A scoring rule for elic-

3Technically, the region K should include the convex

iting an expectation is said to be proper if a risk
neutral forecaster who believes that the true distri-
bution over states Ω is P maximizes his expected
score by reporting ~y = EP [X], that is, if EP [X] ∈
arg max~y∈K

∑
ω∈Ω P (ω)s(~y,X(ω)). (For random vec-

tors X, we use EP [X] to denote the expected value
Σω∈ΩP (ω)X(ω).) A scoring rule is strictly proper if
EP [X] is the unique maximizer.

One common example of a strictly proper scoring rule
is the Brier scoring rule [7], which is based on Eu-
clidean distance and can be written, for any b > 0, as
s(~y,X(ω)) = −b∑m

j=1(yj−xj(ω))2 = −b||~y−X(ω)||2.

Strictly proper scoring rules incentivize myopic traders
to report truthfully, but do not provide a mecha-
nism for aggregating predictions from multiple traders.
Hanson [22, 23] introduced market scoring rules to ad-
dress this problem. A market scoring rule is a sequen-
tially shared strictly proper scoring rule.

Formally, let X be a vector of random variables.4 The
market operator specifies a strictly proper scoring rule
s and chooses an initial prediction ~y0 for the expected
value of X; when there is a known common prior P0,
it is most natural to set ~y0 = EP0

[X]. The market
opens with initial prediction ~y0, and traders take turns
submitting predictions. The order in which traders
make predictions is common knowledge. Without loss
of generality, we assume that traders 1, 2, · · · , n take
turns, in order, submitting predictions ~y1, ~y2, · · · , ~yn,
then the process repeats and the traders, in the same
order, submit predictions ~yn+1, ~yn+2, · · · , ~y2n. Traders
repeat this process an infinite number of times before
the market closes and Nature reveals ω∗. Each trader
then receives a score s(~yt,X(ω∗)) for each prediction
made at some time t, but must pay s(~yt−1,X(ω∗)),
the score of the previous trader. The total pay-
ment to trader i (which may be negative) is then∑∞
t=0 s(~ytn+i,X(ω∗))− s(~ytn+i−1,X(ω∗)).

3.3 Modeling Traders’ Behavior

Together, the traders, state space, signal structure,
security vector, and market scoring rule mechanism
define an extensive form game with incomplete infor-
mation. We consider Bayesian traders either acting
in perfect Bayesian equilibrium or behaving myopi-
cally in this game. A perfect Bayesian equilibrium is a
subgame perfect Bayesian Nash equilibrium. Loosely
speaking, at a perfect Bayesian equilibrium, it must

hull of the possible realizations of X, a set equivalent to
the possible expected values of X. A full discussion of this
and other properties of scoring rules is beyond the scope
of this paper, but interested readers can see Savage [40].

4Typically market scoring rules are used for probabilis-
tic forecasts in which case X would be a vector of indicator
random variables, but this need not be the case.
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be the case that each player’s strategy is optimal (i.e.,
maximizes expected utility) given the player’s beliefs
and the strategies of other players at any stage of
the game, and that players’ beliefs are derived from
strategies using Bayes’ rule whenever possible. See
Gonzálex-Dı́az and Meléndez-Jiménez [20] for a more
formal description.

Perfect Bayesian equilibria can be difficult to compute
and it is an open question whether they always exist
in prediction markets, although in some special cases
they do [10]. An alternative is to consider myopic
Bayesian traders who simply maximize their expected
payoff for the current round. Since strictly proper scor-
ing rules myopically incentivize honest reports, these
traders report their current posteriors each time they
make a prediction.

4 AGGREGATION

Separability is used to characterize the conditions un-
der which securities aggregate information about their
own values. Building on ideas from DeMarzo and Ski-
adas [12, 13], Ostrovsky [31] characterized separability
for a single security. He showed that in every perfect
Bayesian equilibrium market prices will, in the limit,
reflect the value of the security as if traders had re-
vealed their private signals if and only if the security
is separable. If a security is not separable, then there
always exist priors and equilibrium strategies where no
information aggregation occurs.

In this section, we generalize these prior definitions
to multiple securities and arbitrary signal structures.
Ostrovsky assumed a restricted class of signal struc-
tures without loss of generality, and these generaliza-
tions are uninteresting when only considering aggre-
gation. They will be necessary to discuss informative-
ness, however, as the results of the next section demon-
strate. We then restate Ostrovsky’s equilibrium aggre-
gation result in this setting. As previously discussed,
perfect Bayesian equilibrium may or may not exist in
prediction markets, and we also adapt and formalize
prior work on information aggregation to show separa-
bility is also the necessary and sufficient condition for
myopic traders to always aggregate their information.

Informative markets require separable securities. If a
market uses separable securities then both traders in
perfect Bayesian equilibrium and Bayesian traders act-
ing myopically will, in the limit, value the security as
if their private signals were revealed, and this allows a
market designer to directly infer the likelihood of his
events of interest from the securities’ value. If a set of
non-separable securities were used then the market de-
signer could be required instead to perform additional
inference and know the prior and traders’ strategies.

As mentioned, we say a market aggregates information
if, in the limit as time goes to infinity, the value of the
securities approaches their value conditional on all the
traders’ private signals. Since each trader i receives
the signal Πi(ω

∗), their pooled signal is
⋂
i Πi(ω

∗) =
Π(ω∗).

Definition 1 (Aggregation). Information is aggre-
gated with respect to a set of securities X, signal struc-
ture Π, and common prior P0, if the sequence of pre-
dictions ~y0, ~y1, ~y2, · · · converges in probability to the
random vector EP0

[X|Π(ω∗)].

A set of securities is separable if and only if the traders
only agree on their value when it reflects their pooled
information. That is, for any prior distribution there
must be at least one trader whose private information
causes them to dissent from a consensus, unless that
consensus is the traders’ collective best estimate.

Definition 2 (Separability). A set of securities X is
non-separable under partition structure Π if there ex-
ists a distribution P over Ω and vector ~v such that
P (ω) > 0 on at least one state ω ∈ Ω in which
EP [X|Π(ω)] 6= ~v, and for every trader i and state
ω, P (ω) > 0,

EP [X|Πi(ω)] =

∑
ω′∈Πi(ω) P (ω′)X(ω′)
∑
ω′∈Πi(ω) P (ω′)

= ~v. (1)

If a security is not non-separable then it is separable.

Here the vector ~v represents a possible consensus, only
agreed upon if there is no alternative when the secu-
rities are separable. Separability is a property of the
entire set of securities, as Example 2 demonstrates.

Example 2. Let Ω = {ω′1, ω∗2 , ω3, ω
′
4, ω

∗
5 , ω6}. Two

traders have partitions as follows:

Π1 = {{ω′1, ω∗2 , ω3}, {ω′4, ω∗5 , ω6}}
Π2 = {{ω′1, ω∗5}, {ω3, ω

′
4}, {ω∗2 , ω6}}

and there are two securities: x∗ with value one when
ω∗2 or ω∗5 occurs and zero otherwise, and x′ with value
one when ω′1 or ω′4 occurs and zero otherwise.

Both securities are individually non-separable with re-
spect to Π. If the prior P is uniform over ω′1, ω∗2 , ω∗5 ,
and ω6, then EP [x∗|Πi(ω)] = 1/2 for i ∈ {1, 2} and
all ω such that P (ω) > 0. Similarly, if P is uniform
over ω′1, ω3, ω′4, and ω∗5 , then EP [x′|Πi(ω)] = 1/2 for
i ∈ {1, 2} and all ω such that P (ω) > 0. The join
of traders’ partitions, however, consists of singletons.
Hence, both EP [x∗|Π(ω)] and EP [x′|Π(ω)] have value
0 or 1, not 1/2, for all ω.

But taken together the set of securities is separable
with respect to Π. Given any prior distribution P
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and a state ω, trader 2 either identifies ω with cer-
tain, which happens when P assigns 0 probability to
the other state in its signal Π2(ω), or assigns posi-
tive probability to both states in Π2(ω). In the for-
mer case, EP [X|Π2(ω)] = EP [X|Π(ω)]. In the lat-
ter case, trader 2’s expected value for the securities is
positive for both when ω ∈ (ω′1, ω

∗
5), positive for only

x′ when ω ∈ (ω3, ω
′
4), and positive for only x∗ when

ω ∈ (ω′2, ω6). If the set of securities is non-separable
there must exist a distribution P̃ and a vector ~v such
that ~v 6= EP̃ [X|Π(ω̃)] for some state ω̃ ∈ {ω|P (ω) > 0}
and EP̃ [X|Π2(ω)] = ~v for any state ω ∈ {ω|P (ω) > 0}.
This is possible only when P̃ assigns positive probabil-
ity to the two states in Π2(ω̃) and 0 probability for all
other states because each signal of player 2 has a dis-
tinct expectation of the securities. Given such a P̃ ,
however, trader 1 always uniquely identifies the true
state and has the correct expectation of the securities.
Hence, the set of securities is separable with respect to
Π.

4.1 Aggregation

Separability is a necessary and sufficient property for
aggregation in two natural cases.

Theorem 1 (Equilibrium Aggregation, Ostrovsky
[31]). Consider a market with securities X and traders
with signal structure Π. Information is aggregated in
every perfect Bayesian equilibrium of this market if
and only if the securities X are separable under Π.

Theorem 2 (Myopic Aggregation). Consider a mar-
ket with securities X and myopic traders with signal
structure Π. Information is aggregated in finite rounds
if and only if the securities X are separable under Π.

Ostrovsky [31] proved a special case of Theorem 1 for
markets with one security. Theorem 1 stated above ac-
commodates any finite set of securities and is proved
using a simple extension of Ostrovsky’s proof. Specifi-
cally, the proof shows that traders’ sequences of predic-
tions at any perfect Bayesian equilibrium are bounded
martingales and must converge. Separability implies
that if information is not aggregated in the limit, there
exists an agent who can make an arbitrarily large profit
by deviating from his equilibrium strategy, a contra-
diction to traders being in equilibrium.

The proof of Theorem 2 makes use of prior work
on convergence to common knowledge (particularly
Geanakoplos [17]) and shows not only that myopic
traders’ sequences of predictions are bounded martin-
gales but also that they must converge to the same
random vector in a finite number of periods. Then, by
separability, it is shown that this consensus prediction
must equal E[X|Π(ω∗)], implying aggregation. A full
proof appears in the appendix of the long version of

this paper, available on the authors’ websites.

If the securities are not separable then there exists a
distribution P satisfying (1) in the definition of separa-
bility. Letting this distribution be the prior, a perfect
Bayesian equilibrium is simply for traders to report
the common consensus value, not allowing any mean-
ingful Bayesian updating and preventing aggregation
from occurring. Myopic traders are constrained to re-
port this same value.

5 SECURITY DESIGN

In this section we discuss the design of informative
markets. While separability is a sufficient and neces-
sary condition for aggregation in two natural settings,
it only implies the value of the securities reflects all
the traders’ private information, not that the market
designer can use this value to infer that private infor-
mation or the likelihood of the events of interests. We
define informative securities as securities that are both
separable and allow for the likelihood of the events of
interest to be inferred directly from their value.

As we will show, complete markets are always informa-
tive, but deployed prediction markets are rarely com-
plete. These markets require too many securities to
be practical, and their securities present challenges for
traders. A prediction market for the U.S. presidential
election, for example, may need one state per outcome
in the electoral college. This is over 250 states and
requires traders to bid on securities like “The Presi-
dent wins Ohio, not Florida, Illinois, not Indiana . . . ”
Even if alternative bidding methods were developed,
traders would still be required to review the value of
each security for aggregation to be formally implied.
This is impractical, and so we consider good designs as
those using a few natural securities. We first discuss
the design requirements of markets that are always
informative, and markets that are informative for a
particular signal structure. The latter market allows a
single security to be informative on any set of events,
but arguably appears “unnatural.” To describe the
challenges of designing using only natural securities
we then consider a constrained design process instead,
where the market designer is restricted to an arbitrary
subset of (possibly natural) securities.

5.1 Informative Securities

Informally, we would like to say that a market’s secu-
rities are informative on a set of events with respect
to a signal structure if the market organizer learns the
likelihood of the events as if it knew all the traders’
private signals. Assuming the values of the securities
reflect traders’ pooled information, if the likelihood of
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the events is unambiguously implied from these values
then functionally all the private signals are revealed.
We call this latter property distinguishability.

Definition 3 (Distinguishability). Let Π be a sig-
nal structure over states Ω and Pjoin(Π) be the set of
all probability distributions over Ω that assign posi-
tive probability only to a subset of states in one el-
ement of join(Π) (i.e., a trader’s possible posteriors
after aggregation). A set of securities X on Ω distin-
guishes a set of events E with respect to Π if and only
if for any P, P ′ ∈ Pjoin(Π),EP [X] = EP ′ [X] implies
P (E) = P ′(E),∀E ∈ E.

Equivalently a set of securities distinguishes a set of
events if there exists a function from the securities’
values to the likelihood of the events. When a set
of securities is both separable and distinguishable we
describe it as informative.

Definition 4 (Informativeness). A set of securities X
is informative on a set of events E with respect to a
signal structure Π if and only if X both distinguishes
E and is separable with respect to Π.

Informativeness is a strong condition. Even if secu-
rities are not informative it might be possible for a
market designer to infer some information from the
market, or for the market to be described as partially
informative. Generalizing our framework to account
for partial aggregation would be an interesting line of
future work.

5.2 Always Informative Securities

We first address the problem of designing a set of secu-
rities that is informative on a set of events with respect
to any signal structure. We call such securities always
informative. These securities may be of practical in-
terest if the market designer is unsure of the traders’
signal structure; using a set of always informative se-
curities implies aggregation will occur no matter what
the true signal structure is.

A market is said to be complete if by trading securi-
ties, agents can freely transfer wealth across states [27].
Rigorously, consider the set of securities that contains
a constant payoff security plus all of the securities of-
fered by a market. The market is complete if and only
if this set includes |Ω| linearly independent securities.
The most common is a market with |Ω| Arrow-Debreu
securities, each associated with a different state of the
world, taking value 1 on that state and 0 everywhere
else. For an overview of complete markets, see Flood
[15] or Mas-Colell et al. [27].

Complete markets are theoretically appealing because
they allow traders to express any information about

their beliefs. We formalize this well-known idea in our
framework in the following proposition.

Proposition 1. A market over state space Ω with se-
curities X is complete if and only if for all distinct
probability distributions P and P ′ over Ω, EP [X] 6=
EP ′ [X].

Proof. Let M be a matrix containing the payoffs of X,
with one row for each outcome and one column for each
security. The element at row i and column j of M takes
value xj(ωi). Consider a probability distribution P
represented as a row vector so, PM = EP [X]. The
system of linear equations

P ′M = EP [X]
∑

ω∈Ω

P ′(ω) = 1

has a unique solution P ′ = P if and only if the ma-
trix M ′, which is M augmented by a column of 1s to
represent the summation constraint, has rank |Ω|.
If the market is complete, M ′ has this rank so any dis-
tinct probability distribution has distinct expectation.

Now assume EP [X] 6= EP ′ [X],∀P 6= P ′, and, for a
contradiction, that the market is not complete. Then
the system of equations has at least two solutions, one
of which is the probability distribution P and a distinct
solution Q, such that PM = QM = EP [X]. Let U be
the uniform distribution over Ω. Then there exists c >
0 such that (1− c)U + cQ is a probability distribution
(since Q satisfies

∑
ω∈ΩQ(ω) = 1). Moreover, (1 −

c)U + cP is also a probability distribution and
(
(1− c)U + cP

)
M =

(
(1− c)U + cQ

)
M,

contradicting EP [X] 6= EP ′ [X],∀P 6= P ′. Thus, the
market must be complete.

This expressiveness is a necessary and sufficient con-
dition for the likelihood of every event to be inferred,
and suggests an alternative characterization of com-
plete markets as those markets that are always infor-
mative on every event.

Theorem 3. A market is always informative on every
event E with respect to every signal structure Π if and
only if it is complete.

Proof. Distinguishing every event E is equivalent to
distinguishing each state of the world ω ∈ Ω; the lat-
ter are also events and so must be distinguished, and if
each is distinguished then the likelihood of any event
can be inferred. Proposition 1 shows that complete-
ness is a necessary and sufficient condition for distin-
guishing each state of the world.

It remains to show that complete markets are also sep-
arable with respect to any signal structure Π. Assume,
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for a contradiction, there exists a signal structure Π
and a complete market with securities X such that X
is non-separable with respect to Π. Since X is non-
separable there must exist distinct probability distri-
butions P and P ′ over Ω such that EP [X] = EP ′ [X];
but by Proposition 1, in a complete market this equal-
ity only holds if P = P ′, a contradiction. So complete
markets are separable with respect to any signal struc-
ture and always distinguish every event, implying they
are always informative on every event.

Complete markets are often impractical, but rarely is
every event of interest. Even if a single event is of
interest, however, as many securities as almost half
the states in the market may be required to create
an always informative market. We let Ē denote the
complement of E.

Theorem 4. Any market that is always informative
on an event E must have at least min(|E|, |Ē|) − 1
linearly independent securities.

Proof. Let X be a set of securities, fewer than
min(|E|, |Ē|)) − 1 of which are linearly independent,
and assume, for a contradiction, that X is always in-
formative on E. Restricting attention to states in E,
the argument from Proposition 1 implies this market
has too few securities to distinguish every probabil-
ity distribution over E and there exist probability dis-
tributions PE and P ′E such that EPE [X] = EP ′E [X].
Let the difference between these distributions be the
vector ∆E = PE − P ′E , and define vectors ∆+

E and
∆−E such that ∆+

E(ω) = max(0,∆E(ω)) and ∆−E(ω) =
min(0,∆E(ω)). Since ∆E is the difference of two prob-
ability distributions with the same expected value,

∑

ω∈E

∆+
E(ω)

||∆+
E ||1

X(ω) =
∑

ω∈E

−∆−E(ω)

||∆−E ||1
X(ω). (2)

That is,
∆+
E(ω)

||∆+
E ||1

and
−∆−E(ω)

||∆−E ||1
are disjoint probability

distributions over states in E with the same expected
value, and the same argument can be made, mutatis
mutandi for two such probability distributions over
states in Ē. Let these distributions over E be QE and
Q′E , and the ones over Ē be QĒ and Q′

Ē
. Although

we have been referring to these as distributions over
E and Ē we consider them to be distributions over
Ω that assign zero probability to all states not pre-
viously included in the distributions, and we will use
these names to stand for both these distributions and
the states they assign positive probability to to reduce
notation.

Now suppose there are two traders with signal struc-

ture

Π1 = {{QE , QĒ}, {Q′E , Q′Ē}}
Π2 = {{QE , Q′Ē}, {Q′E , QĒ}}

and prior

P0 =
QE +Q′E +QĒ +Q′

Ē

4
.

Each trader’s expectation conditional on any signal
is the same since EQE [X] = EQ′E [X] and EQĒ [X] =
EQ′

Ē
[X] and each signal contains one distribution over

states in E and another over states in Ē. But the join
of the signal structure is {{QE}, {Q′E}, {QĒ}, {Q′Ē}},
and if X is separable with respect to Π the expecta-
tion conditional on any such element must also, then,
be the same. This implies EQE [X] = EQĒ [X], but
by construction QE(E) 6= QĒ(E), so if X is separable
with respect to Π it does not distinguish E, contra-
dicting our assumption that X is always informative
on E.

This result demonstrates the need for a market de-
signer to allow traders to express information it finds
uninteresting. It also suggests that, in practice, few
markets are acquiring all of their participants’ infor-
mation. This is unsurprising, but we think better
designs will extract more information, and that this
result shows knowledge of or assumptions about the
traders’ signal structure may be necessary to inform
those designs.

5.3 Fixed Signal Structures

If the join of the traders’ signal structure is known and
has singleton sets for its elements, then there exists a
single security that is informative on every event.

Theorem 5. For any signal structure Π such that
join(Π) consists only of singleton sets there exists a
security x that is informative on every event E with
respect to Π.

The proof uses a result from Ostrovsky [31].

Theorem 6 (Ostrovsky [31]). Let Π be a signal struc-
ture such that join(Π) consists of singleton sets of
states, and let x be a security that can be expressed as
x(ω) = Σif(Πi(ω)) for an arbitrary function f map-
ping signals to reals. Then x is separable under Π.

Proof of Theorem 5. To construct the security, first
assign a unique identifier s0, s1, s2, . . . to every signal
of every trader, and define f(sj) = 10j for all j. Let
Sω denote the set of indices of the identifiers corre-
sponding to the signals of each trader for state ω, i.e,
corresponding to Πi(ω) for each trader i. The security
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x(ω) = Σj∈Sωf(sj) is separable by Theorem 6. Addi-
tionally, the sum Σj∈Jf(sj) for any J ⊂ {0, 1, 2, . . .} is
unique, and each state ω has a unique associated set of
signals since we assumed the join consists of singletons.
This implies the value of the security for each element
of the join is unique, so the security also distinguishes
every event.

The assumption that the join of traders’ signal struc-
ture consists only of singleton sets is not without loss
of generality. If the signal structure is known, however,
the market designer can treat elements of the join as
states of the world, identify the correct element of the
join by running the market with a single security, then
apply the prior to that element to learn the likelihood
of each state as if he knew all the traders’ private sig-
nals. If the prior is unknown this distribution can also
be solicited from any single trader using a scoring rule.

5.4 Constrained Design

A single security acting as a summary statistic for an
entire market is unlikely to be considered natural by
any criterion. Real markets, like those on Intrade, use
multiple securities. Instead of imposing our own def-
inition of natural, in this section we consider adding
a design constraint that the market’s securities must
be picked from a predefined set. The market designer
is then challenged to find the fewest securities from
this set that are informative on the events of interest
with respect to the given signal structure. We call this
the informative set optimization problem. If the
set of predefined securities is empty or has no infor-
mative subset then the problem is simply infeasible,
so we assume there exists at least one such subset.

Demonstrating informative set is hard would not
be very interesting if exotic and unnatural securities
were required for the proof. One commonly used class
of securities are event securities which pay $1 if an
event occurs and $0 otherwise. The corresponding op-
timization problem is informative event set, a re-
striction of informative set, and even solving this
restricted version of the problem is np-hard.

Theorem 7. informative event set is np-hard.

This immediately implies that the more general in-
formative set problem is also hard.

Corollary 1. informative set is np-hard.

The proof appears in the appendix and demonstrates a
one-to-one correspondence between set cover instances
and a minimal informative set of securities for a single
fully informed trader.

The complexity of these problems suggests that while
knowledge of the traders’ signal structure allows for

better designs, a perfect design will be intractable to
compute or require additional assumptions about the
relationship between traders’ signal structure and the
set of possible securities. Practically we can only ever
hope to offer better (but not perfect) designs that ex-
tract more information from traders than current mar-
kets do. These results confirm we will always have to
settle for some degree of error in our designs even if the
traders’ signal structure could be perfectly observed.

6 CONCLUSION

We developed a formal framework for the design of
informative prediction markets. These markets reveal
the posterior probabilities of a set of events of inter-
est as accurately as if the traders had directly revealed
their information, a commonly cited goal of prediction
markets. These markets require that traders have an
incentive to be accurate, that they can aggregate their
information, and that the market designer can use this
information to infer the likelihood of the events of in-
terest.

Ideally informative markets would use a few natural
securities. Complete markets, usually too large to be
used in practice, are, however, the only markets to al-
ways be informative, regardless of the traders’ signal
structure. When the signal structure is known, a sin-
gle security can be informative, but this security may
appear strange and unintuitive to traders. Finding the
smallest informative set of natural securities is compu-
tationally hard in general.

Real-world prediction markets do typically offer small
numbers of simple and natural securities, and have
been shown to aggregate information effectively in
practice. This is not in contrast to our results, which
only consider whether a market reveals all of the
traders’ private information. Our results demonstrate,
however, the importance of security design and suggest
that better designs that extract more of the traders’
information are possible.

We hope this paper will allow future research on par-
tial aggregation, like that which occurs in practice.
Future work might also consider the effect of alterna-
tive communication channels outside the market’s se-
curities, like comments on Intrade, that allow traders
to explain the reasoning behind their predictions. The
development of this line of research is crucial to un-
derstanding why prediction markets work and how to
make them work better.
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Abstract

Hybrid continuous-discrete models natu-
rally represent many real-world applications
in robotics, finance, and environmental en-
gineering. Inference with large-scale mod-
els is challenging because relational struc-
tures deteriorate rapidly during inference
with observations. The main contribution
of this paper is an efficient relational varia-
tional inference algorithm that factors large-
scale probability models into simpler varia-
tional models, composed of mixtures of iid
(Bernoulli) random variables. The algorithm
takes probability relational models of large-
scale hybrid systems and converts them to
a close-to-optimal variational models. Then,
it efficiently calculates marginal probabili-
ties on the variational models by using a la-
tent (or lifted) variable elimination or a lifted
stochastic sampling. This inference is unique
because it maintains the relational structure
upon individual observations and during in-
ference steps.

1 Introduction

Many real-world systems can be described using con-
tinuous and discrete variables with relations among
them. Such examples include measurements in envi-
ronmental sensor networks, localizations in robotics,
and economic forecasting in finance. In such large sys-
tems, efficient and precise inference is essential. As an
example from environmental engineering, an infer-
ence algorithm can predict a posterior of unobserved
groundwater levels and contamination levels at differ-
ent locations, and making such an inference precisely
is critical to decision makers.

Real-world systems have large numbers of variables
including both discrete and continuous. Probabilistic

first order languages, e.g. [3; 15; 24; 25; 14; 26; 28],
describe probability distributions at a relational level
with the purpose of capturing the structure of larger
models. A key challenge of inference procedures with
the languages is that they often result in intermediate
density functions involving many random variables
and complex relationship among them.

Lifted inference presently can address discrete mod-
els and continuous models, but not hybrid ones. For
(d-valued) discrete variables, lifted inference can take
an advantage of the insight which groups equivalent
models into histogram representations with an order
of poly(d) entries [12; 22; 17] (instead of exp(d) entries
in traditional ground models). For Gaussian potentials,
lifted inference can use an insight which enables main-
taining compact covariance matrices during (and af-
ter) inference, e.g. [5; 7; 1].

Nonparametric variational models, e.g. NP-BLOG [4]
and Latent Tree Models [32; 8], handle inference prob-
lems for discrete models and continuous Gaussian
models. Here, our model and algorithms provide a
solution for general (non-Gaussian) hybrid models.

In this paper, we first define Relational Hybrid Mod-
els (Section 2) and variational models (Section 3).
We presents pragmatic algorithms (Section 4, 5 and
6) based on a new insight, relational variational-
inference lemmas (Section 7), which accurately fac-
tors densities of relational models into mixtures of iid
random variables. These lemmas enable us to build
a variational approximation algorithm, which takes
large-scale graphical models with hybrid variables
and finds close to optimal relational variational mod-
els. Then, our inference algorithms, a variable elim-
ination and a stochastic sampling, efficiently solve
marginal inference problems on the variational mod-
els. We review the literature of statistical relational
models and variational inference (Section 8). We show
that the algorithm gives a better solution than solu-
tions with existing methods (Section 9).
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2 Relational Hybrid Models (RHMs)1

A factor f = (A f , φ f ) is a pair, composed of a tuple of
random variables (rvs) A f and a potential functionφ f .
Here, φ f is an unnormalized probability density from
the range of A f to the nonnegative real numbers. The
range of a rv can be discrete or continuous, i.e., hybrid
domains. Given a valuation v of rvs, the potential of
f on v is φ f (v).

We define parameterized (indexed) rvs by using pred-
icates those are functions mapping parameter values
to rvs. A relational atom (or just atom) denotes a
parametrized rv with free parameter variable(s). For
example, an atom X(a) can be mapped to one of n rvs
{X(a1), · · ·,X(an)}when the free parameter variable a is
substituted by a value ai.

A parfactor g = [L,Ag, φg] is a tuple composed of a
set of parameters L, a tuple of relational atoms Ag
and a potential function φg. A substitution θ is an
assignment to L, and Agθ the relational atom (possibly
ground) resulting from replacing the logical variables
by their values in θ. gr(g) is a set of factors derived
from the parfactor g by substitutions.

Following example is a parfactor:

[ (a,b),
︸︷︷︸

Parameter
variables

(X(a),Y(b)),
︸        ︷︷        ︸
Relational

atoms

fN (X(a)−Y(b);µ, σ2)
︸                    ︷︷                    ︸

A potential
(linear Gaussian)

]. (1)

The domains of the parameter variables (a and b) are
{a1, . . . , an} and {b1, . . . , bm}. Thus, any substitution (e.g.
a = ai,b = b j) let two rvs (e.g. X(ai), Y(bj)) hold the
linear Gaussian relationship fN .

A Relational Hybrid Model (RHM) is a compact rep-
resentation of graphical models with discrete and con-
tinuous rvs. An RHM is composed of a domain, the set
of possible parameter values, and a set of parfactors
G. The joint probability of an RHM G on a valuation
v of rvs is as follows:

1
z

∏

g∈G

∏

f∈gr(g)

φ f (v)

where z is the normalizing constant.

This representation is rather straightforward. How-
ever, inference procedures often result in complex
models. For example, eliminating X(a1) in Equation
(1) makes all other rvs fully connected. To address
this problem, we focus on an important property of
RHMs such that ground rvs mapped from a relational
atom are exchangeable, defined as follows:

1Parts of our model representations in this section are
based on the previous works ([26; 12; 23; 6]).

Definition (Exchangeable Random Variables). A se-
quence of rvs X(a1), · · ·,X(an) is exchangeable, when
for any finite permutation π() of the indices the
joint probability of the permuted sequence X(aπ(1)),
· · ·,X(aπ(n)) is the same as the joint probability of the
original sequence.

Note that RHMs may include atoms with non-
exchangeable rvs.2 In this case, our variational al-
gorithm grounds, or shatters, any atom including
non-exchangeable rvs. That is, the atom degener-
ates into a set of propositional rvs. The detail con-
ditions to determine exchangeable rvs, see [26; 21; 4;
12].

For convenience, we use Xn to refer to the set of
n rvs, which are mapped from a relational atom
X(a) by substitutions, i.e., Xn = {X(a1), · · · ,X(an)}. The
joint probability of the rvs mapped from two atoms
X(a) Y(b) can be represented as follows: P(Xn,Ym) =
P (X(a1), · · ·,X(an),Y(b1), · · ·,Y(bm)).

Potentials with a large number of rvs in RHMs in-
troduce several difficulties in representation, learn-
ing and inference. To address these difficulties, we
propose a model-factorization based on a variational
method and de Finetti’s theorem [11].

3 Background: Variational Inference

Variational methods are used to convert a complex
problem into a simpler problem, where the simpler
problem is charaterized by a decoupling of the degrees
of freedom in the original problem [19]. As an example
of ground models, one variational representation of
model P(x1, · · · , xn) can be as follows:

P(x1, · · · , xn) ≈
∑

θ

∏

i

P(xi, |θ)P(θ)

where θ is a latent random variable. Inference is a pro-
cedure which computes marginal probabilities, say
P(X′) (X′ ∈ {x1, · · · , xn}). This can be done by elimi-
nating (or summing out) all variables except ones in
X′. The variational representation (right-hand side)
allows efficient inference procedures because all ran-
dom variables are factorized.

De Finetti-Hewitt-Savage’s Theorem: For exchange-
able rvs, de Finetti’s theorem [11] showed that any
probability distribution P(Xn) of an infinite number
n of binary exchangeable rvs can be represented by
a mixture of independent and identically distributed

2Lifted inference for RHMs with non-exchangeable rvs
is out of scope of this paper. There are recent developments
to handle some of such cases, e.g. [17; 2].
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Figure 1: An illustration of factoring a potential φXY(Xn,Ym). Our algorithm converts an RHM (left) into a
variational (or factored) RHM (right) where the probability is represented by two latent variables LX and LY.

(iid) Bernoulli rvs PMiid(Xn) with a parameter θ:

lim
n→∞P(Xn) =

∫ 1

0
θtn (1 − θ)n−tnΦX(θ) dθ = PMiid(Xn),

where tn =
∑

i X(ai), and 0≤θ≤1 is a latent variable.
This observation is extended to multi-valued and con-
tinuous rvs by [16].

lim
n→∞P(Xn)=

∫ n∏

i=1

φX(X(ai)|LX)ΦX( dLX)=PMiid(Xn), (2)

where LX is a latent variable which chooses a distri-
bution φX(X(a)|LX) of the iid rvs.3 We represent the
variational form as PMiid(Xn) (or φMiid(Xn) for unnor-
malized potentials).4 Compared to the input distri-
bution P(Xn), the number of parameters of the varia-
tional form, e.g. entries of conditional density tables
in PMiid(Xn), can be substantially reduced by this fac-
torization. As shown in Figure 1, when the variational
models are applied to two sets of exchangeable rvs, the
variational model (the right hand side) requires pa-
rameters of φX(X(ai)|LX), φY(Y(b j)|LY) and ΦXY(LX,LY)
not parameters of φXY(X(ai), · · · ,Y(bm)).

We present variational representations for multiple
sets of finite, exchangeable rvs, and new error anaysis
(Section 7). Beforehand, we introduce our variational
learning and inference algorithms.

4 Algorithms: Lifted Variational Inference

This section outlines our pragmatic variational in-
ference algorithm, Lifted Relational Variational In-
ference (LRVI). LRVI is composed of two main sub-
routines: learning a variational approximation, Find-
Variational-RHM; and eliminating latent variables
(inference) Latent-Variable-Elimination which can be
replaced by Lifted-MCMC (Section 6.3).

3Here, we consider ΦX with a density. Thus ΦX( dLX) in
Equation (2) can be replaced by Φ(LX) dLX.

4Here, Miid stands for a mixture of iid rvs.

Input: G an RHM (a set of parfactors), Q a query (a set of
relational atoms), O observations

Output: P(Q) a (posterior) distribution of Q
begin
// (One-time) Variational Learning
if G < {Variational RHMs} then

G← Find-Variational-RHM(G);
// Main Inference Routine
P(Q)← Latent-Variable-Elimination (G, Q, O);
return P(Q);

Algorithm Lifted Relational Variational Inference: It
receives an RHM, a query and observations, then re-
turns a posterior of the query.

LRVI receives an RHM G, a query Q and observations
O as inputs. It outputs the conditional probability,
P(Q|O). In the routine, it examines that each poten-
tial in G is the variational form, a mixture of prod-
uct of iid rvs. If not, it calls Find-Variational-RHM(G)
and receives a variational RHM GMiid. The varia-
tional RHM is calculated once, and reused next time.
With the GMiid, Latent-Variable-Elimination(GMiid,Q,O)
solves the inference problem P(Q|O). This is done by
the variable elimination which iteratively eliminates
non-query atoms.

Input: G, an RHM
Output: GMiid, a variational RHM
begin

for g = (L,A, φ) ∈ G do
if A has no continuous atom then

φMiid ← Lifting-Discrete(φ) (Section 5.1);
else

φMiid ← Lifting-Continuous(φ) (Section 5.2);
GMiid ← GMiid

⋃ {(L,A, φMiid)};
return GMiid;

Algorithm Find-Variational-RHM: It finds a varia-
tional approximation for an input RHM (Section 5).

Find-Variational-RHM(G) converts the potential φ in
each parfactor into a variational potentialφMiid, a mix-
ture of iid rvs as shown in Equation (2). For potentials
with only discrete atoms, it calls Lifting-Discrete(φ) and
receives a variational potentialφMiid. For potentials in-
cluding at least one continuous atom, it calls Lifting-
Continuous(φ). After iterating and converting all par-
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factors in G, a variational RHM GMiid is returned. Sec-
tion 5 explains the procedures in detail.

Input: GMiid a variational RHM, Q a query, O observations
Output: P(Q) a (posterior) distribution of Q
begin

GMiid ← Update-Obs(GMiid, O) ; // For observations
A← a set of atoms in GMiid;Φ← {φg|g ∈ GMiid};
for X ∈ A \Q do

ΦX ← {φ ∈Φ|X is argument of φ};
if X is discrete then
φ′ ← Inference-Discrete(ΦX) (Section 6.1);

else
φ′ ← Inference-Continuous(ΦX) (Section 6.2);

Φ← (Φ \ φX)
⋃{φ′} ;

returnΦ;

Algorithm Latent-Variable-Elimination: It sums out
non-query latent variables, and returns a posterior of
the query (Section 6).

Latent-Variable-Elimination(GMiid,Q,O) call Update-
Obs(GMiid,O) to update the potentials of latent vari-
ables based on observations O. The intuition of Update-
Obs is that each rv is conditionally independent given
latent variables like the Naive Bayes models [18]. Vari-
ational RHMs allows a simple update algorithm to
maintain the relational structure upon individual ob-
servations.5 It iteratively eliminates all latent variables
except the query without referring to ground vari-
ables. Section 6 includes detail procedures.

5 Variational Learning for RHMs

This section elaborates a learning algorithm which
converts each potential in an RHM into a variational
potential. Here, the key procedure is to extract the
potential on latent variables (e.g. ΦX(LX)).

The potential on latent variables can be derived an-
alytically and exactly, when an input potential sat-
isfies some conditions such as ∞-extendible (ex-
plained in Section 7). It is also known that dis-
crete potentials6 and some Gaussian potentials (e.g.
pairwise Gaussian [5] and Gaussian processes [9;
31]) allow such derivations.

Unfortunately, it is hard to use such derivations in
general hybrid models because many real-world po-
tentials are neither ∞-extendible nor Gaussian. Here,
we present our solutions for (more intuitive) discrete
models first, and then for continuous models.

5.1 Lifting Discrete Potentials

For discrete potentials, we need to find the probabil-
ity density ΦX(LX) over the iid (Bernoulli) rvs where

5Existing lifted inference methods degenerate relational
models upon observations. See Split [26] or Shatter [12].

6Section 8 includes an empirical comparison with exist-
ing lifted inference for discrete models

LX is the Bernoulli parameter. To represent an input
potential φ(Xn) compactly, we group equivalent value
assignments according to the value-histogram repre-
sentation [12; 23], φ(Xn) = φh(hX).7 Learning varia-
tional parameters of Equation (2) with discrete rvs is
formulated as follows:

arg max
ΦX(p)

∥∥∥∥∥∥∥
φ(Xn) −

∫
ΦX(p)

n∏

i=1

φX(X(ai)|p) dp

∥∥∥∥∥∥∥

= arg max
ΦX(p)

∥∥∥∥∥φh(hX) −
∫

ΦX(p) · fB/M(hX; n, p) dp
∥∥∥∥∥

≈ arg max
w,pX

∥∥∥∥∥∥∥
φh(hX) −

k∑

l=1

wl · fB/M(hX; n, pXl )

∥∥∥∥∥∥∥
, (3)

where ‖P−Q‖ (or dTV(P,Q)) is the total variation dis-
tance8; fB/M(hX; n, p) is a binomial (or multinomial)
pdf; w = (w1, · · · ,wk) is a k-dimensional weight vec-
tor such that wl=ΦX(pXl ),

∑k
l=1 wl=1; and pX = (pX1 ,

· · · , pXk ) is a vector of k values chosen from [0, 1], the
domain of the latent variable p.

For binary exchangeable rvs, the iid potential
φX(X(ai)|p) is the Bernoulli distribution with a pa-
rameter p (i.e. P(X(ai)) = p). When equivalent models
in Xn are grouped into the histogram hX, the vari-
ational terms can be represented as a binomial dis-
tribution (the second line in Equation (3)) because( n

hX

)∏
i φX(X(ai)|p) = fB(hX; n, p). That is, the problem is

reduced to learn a mixture of k binomial distributions
where wl is a weight for each binomial fB(hX; n, pXl ).

For multi-valued exchangeable rvs, the iid potential
φX(X(ai)|p) is the Categorical distribution, i.e. multi-
valued Bernoulli. Thus, this problem is reduced to
learn a mixture of multinomial distributions fM:

arg max
w,pX

∥∥∥∥∥∥∥
φh(hX) −

k∑

l=1

wl · fM(hX; n, pXl )

∥∥∥∥∥∥∥
. (4)

For potentials with two or more atoms, it can be for-
mulated as follows:

arg max
w,pX ,pY

∥∥∥∥∥∥∥
φh(hX, hY) −

k∑

l=1

wl fB/M(hX; n, pXl ) fB/M(hY; m, pYl )

∥∥∥∥∥∥∥
,

where pY is a k-dimensional vector, (pY1 , · · · , pYk ); and
f is either the binomial or the multinomial depending
on the domain of rvs.

We learn a mixture of binomials (or multinomials),
e.g. (w, pX) in Equation (3), from the original potential
φ(Xn) using an incremental EM algorithm.9 Because
the k is not known or given, the incremental EM al-
gorithm increases k up to n until the variational error

7hX is a vector with hXv = |{i : X(ai) = v}|.
8‖P−Q‖ = sup

A∈B
(P(A)−Q(A)) whenB is a class of Borel sets.

9EM algorithms are common to learn parameters for mix-
ture models [30; 10; 27].
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converges. Assuming that the EM algorithm interates
up to a constant times given a fixed k, the compu-
tational complexity of the incremental EM algorithm
for n binary, exchangeable rvs is bounded by O(n3)(=∑n

k=1 c · O(kn)). Note that, the algorithm increases k
from 1 to n. In each EM step, k components visit n
histogram entries O(kn).

5.2 Lifting Continuous and Hybrid Potentials

For a potential φ(Xn) with continuous rvs, we use a
mixture of non-parametric densities to represent vari-
ational potentials. Here, we generate samples from the
input potential, then learn parameters for the mixture
of non-parametric densities.

Equation (2) is used to formulate the learning problem
as follows:

arg max
ΦX(LX)

∥∥∥∥∥∥∥
φ(Xn)−

∫
ΦX(LX) ·

n∏

i=1

f̂LX (X(ai)) dLX

∥∥∥∥∥∥∥
(5)

≈ arg max
w, f̂X

∥∥∥∥∥∥∥
φ(Xn) −

k∑

u=1

wu ·
n∏

i=1

f̂Xl (X(ai))

∥∥∥∥∥∥∥
, (6)

where f̂LX and f̂Xl refer to (non-parametric) probability
distributions. To solve the optimization problem, we
generate N samples v1, · · ·,vN from the input poten-
tial φ(Xn) where vt = (vt1 , · · ·, vtn ) is a n-dimensional
vector, value assignments for n rvs. Then, we solve
the following maximum likelihood estimation (MLE)
problem: arg maxw, f̂X

∑N
t=1 log

(∑k
l=1 wl ·∏n

i=1 f̂Xl (vti )
)
,

where we denote the kernel density estimator by
f̂Xl (x)= 1

Sσ2

∑S
i=1 K

( x−µi

σ2

)
where (µ1, · · ·, µS) are S data

points that underlie the density, and σ2 is a pa-
rameter. For simplicity, we use the Gaussian Kernel,
K(x) = 1√

2π
e−x2/2.

It is interesting to note that the kernel density estima-
tor is analogous to the value-histogram for discrete
rvs [12; 23] in a sense that frequently observed regions
(or bins) have the higher probability. This new insight
enables us to represent continuous models compactly.

For potentials with two or more atoms, the approach
can be formulated as follows:

arg max
w, f̂X, f̂Y

N∑

t=1

log




k∑

l=1

wl ·
n∏

i=1

f̂Xl (v
X
ti

) ·
m∏

j=1

f̂Yl (v
Y
t j

)


 ,

where vX
t and vY

t are respectively the tth samples of Xn

and Ym.

This MLE problem is also solved by an EM algorithm.
N samples are used to build k densities in the maxi-
mization (M) step, and the likelihood of each sample
is calculated in the expectation (E) step. variation error
converges.

6 Lifted Inference with RHMs

In this section we build on the result of previous sec-
tions and present lifted inference algorithms that uti-
lize the learned variational models to speed up rela-
tional inference. The lifted inference algorithms find
solutions without referring to ground rvs.

Latent-Variable-Elimination marginalizes relational
atoms with the following steps: (i) choosing an atom;
(ii) finding all potentials including the atom and mak-
ing the product of them; (iii) summing out the atom;
and (iv) repeating the steps until only query atoms
are left. We demonstrate the key step (iii) with two
variational potentials, φMiid(Xn,Ym) and φ′Miid(Ym).

6.1 Inference with Discrete Variables

The key intuition is that the variational form is main-
tained after eliminating an atom. We demonstrate the
intuition by an example. The marginal probability of
the latent variable LX is calculated by eliminating (or
summing) Ym out:

∑
hy
φh(hx, hy) · φ′h(hy)

≈
∑

hy

k∑

l=1

wl fB(hx; n, pXl ) fB(hy; m, pYl )
k′∑

l′=1

wl′ fB(hy; m, pYl′ )

=

k∑

l=1

k′∑

l′=1

wlwl′



∑

hy

fB(hy; m, pYl ) fB(hy; m, pYl′ )


 fB(hx; n, pXl )

≈
k∑

l=1

k′∑

l′=1

wlwl′

(∫
fN (hy;µl, σ

2
l ) fN (hy;µl′ , σ

2
l′ ) dhy

)
fB(hx; n, pXl )

=

k∑

l=1

wY,l· fB(hx; n, pXl ) = φ′′(Xn) (7)

when
∑k

l=1 wY,l=1 and fN (hy;µl, σ2
l ) is the Normal

approximation to binomial such that µl(=m·pYl ) and
σ2

l (=m·pYl ·(1−pYl )). It is important to note that bino-
mial pdfs are not closed under the product operation.
That is, a product of two binomial pdfs are not a bi-
nomial pdf unless the binomial parameters pXl pXl are
identical. For large n and m, the Normal approxima-
tion to Binomial is an important step to maintain the
variational structure during the inference procedure.
In this way, after eliminating Ym, the marginal po-
tential φ′′Miid(Xn) is still represented as the variational
form. The same principle is applied for potentials with
more than two atoms.

Now, we will show that the product of variational
forms in Step (iii) can also be represented as a vari-
ational form. Consider the following two variational
potentials φMiid(Xn) φ′Miid(Xn). The product operation
is common during the elimination step as shown in
Equation (7). The product of the two potentials is rep-
resented as follows:




k∑

l=1

wl· fB(hx; n, pXl )


 ·




k′∑

l′=1

w′l′ · f ′B(hx; n, pXl′ )




200



≈
k∑

l=1

k′∑

l′=1

wl·w′l′
∫

fN (hx;µl, σ
2
l )· f ′N (hx;µl′ , σ

2
l′ ) dhx

=

k∑

l=1

k′∑

l′=1

wl·w′l′ ·zl,l′ fN (hx;µnew, σ
2
new) = φ′′′Miid(Xn), (8)

zl,l′ is the inverse of the normalizing constant. This
derivation shows that a product of variational poten-
tials results in a variational potential as φ′′′Miid(Xn).10

6.2 Inference with Continuous Variables

For continuous variables, we also demonstrate
the intuition by an example with two potentials
φMiid(Xn,Ym) φ′Miid(Ym) where Xn and Ym are two sets
of continuous rvs. Each potential is represented as
shown in Section 5.2. When we eliminate Ym, it can be
formulated as follows:

∫ 


k∑

l=1

wl

n∏

i=1

f̂Xl (X(ai))
m∏

j=1

f̂Yl (Y(b j))


φ
′
Miid(Ym) dY

=

k∑

l=1

k′∑

l′=1

wlwl′
n∏

i=1

f̂Xl (X(ai))
m∏

j=1

(∫
f̂Yl (Y(b j)) f̂Yl′ (Y(b j)) dY(b j)

)

=

k∑

l=1

k′∑

l′=1

wlwl′
1

zl,l′m

n∏

i=1

f̂Xl (X(ai)) = φ′′Miid(Xn), (9)

zl,l′ is the normalizing constant calculated from the
product of two mixtures of Normals: f̂Yl (Y(b j)); and
f̂Yl′ (Y(b j)).

Finally, we show that the product of two vari-
ational potentials becomes a variational form:(∑k

l=1 wl·∏n
i=1 f̂Xl (X(ai))

)
·
(∑k′

l′=1 w′l′ ·
∏n

i=1 f̂Xl′ (X(ai))
)

=

k∑

l=1

k′∑

l′=1

wlw′l′
n∏

i=1

f̂Xl (X(ai)) f̂Xl′ (X(ai))

=

k∑

l=1

k′∑

l′=1

wlw′l′
1

zl,l′n
·

n∏

i=1

f̂ new
Xl,l′ (X(ai)) = φ′′′Miid(Xn). (10)

6.3 Lifted Markov chain Monte Carlo (MCMC)

When variational RHMs include a large number of
mixture compoments. The latent variable elimination
may take long time. In this case, we use a lifted MCMC
algorithm: (i) choosing a latent variable (e.g LX) ran-
domly; (ii) calculating the conditional probability of
the latent variable (e.g. ΦX(LX)) using assignment of
neighboring latent variables; (iii) choosing an assign-
ment from the probability (e.g. LX=pXl (1≤l≤k)); and
(iv) repeating until convergence.

10φ′′′Miid(Xn) is a mixture of |k · k′| Normals. When |k · k′| is
large, it is possible to collapse the mixture into a mixture of
fewer components.

Here, the steps (ii) and (iii) are main steps. Step (ii)
is a subset of the procedure in Equations (7) and (9),
because the values of neighboring latent variables (e.g.
LY=pYl′ (1≤l′≤k′)) can be simply assigned. Step (iii) is
a straightforward sampling procedure which chooses
one compoment based on its weight. For example,
wl·w′l′ ·zl,l′ in Equation (8) is a weight for one of |k| · |k′|
Normal distributions in φ′′′Miid(Xn).

7 Relational-Variational Lemmas

This section provides error analysis of our variational
approximations for a single atom, multiple atoms and
the general case (RHMs). Beforehand, we define a
term, n-extendible:

Definition (n-extendible). P(Xn), a probability with
n exchangeable rvs, is n-extendible when the follow-
ings hold: (1) there is P(Xn), a probability with n ex-
changeable rvs (n > n); and (2) P(Xn) is the marginal
distribution of P(Xn), i.e., eliminating (n − n) rvs.

Figure 2 explains the intuition of n-extendible po-
tentials for discrete models. If a potential is not ex-
tendible, it has rugged bars, e.g. a single peak. If a
potential is extendible to a large number n, the po-
tential has a smoothed histogram. If a potential is ∞-
extendible, it is represented by a mixture of binomials
exactly.

Lemma 1. [13] If P(Xn), a probability with n exchange-
able rvs, is n-extendible, then the total variation dis-
tance dTV(P(Xn),PMiid(Xn)) of the input probability P(Xn)
and the variational form PMiid(Xn) in Equation (2) is
bounded as follows: (i) when X(ai) are d-valued discrete
rvs, dTV(P(Xn),PMiid(Xn)) ≤ 2dn

n ; and (ii) when X(ai) are
continuous rvs, dTV(P(Xn),PMiid(Xn)) ≤ n(n−1)

n .

7.1 Our Results: Variational RHMs

Factoring Potentials with Multiple Atoms: De
Finetti-Heweitt-Savage’s theorem (Section 3) is ap-
plicable only to potentials with a single atom. Here,
we present our new theoretical results on variational
RHMs.

Lemma 2. [Existence of a Variational Form] For
P(Xn,Ym), a probability with two atoms in an RHM,
there are two new latent variables, LX and LY, and a
new potential ΦXY(LX,LY) such that the following holds,
limn,m→∞ P(Xn,Ym)

=

∫
Φ(LX,LY)

n∏

i=1

φX(X(ai)|LX)
m∏

j=1

φY(Y(b j)|LY) dLXLY

= PMiid(Xn,Ym).
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Figure 2: Illustrations of three different value-histograms of 10 exchangeable binary rvs. Dotted lines with
markers represent the best possible variational approximation, i.e., a mixture of binomials. (a), (b) and (c)
respectively present potentials extendible up to 10, 20 and 100 rvs. For the potential in (1), the variational
approximation has a high error, total variation, and thus is a poor approximation. When a potential is extendible
to the larger number, the variational approximation is smaller as shown in (2) and (3).

Sketch of proof. Assigning values to one atom is
fixed (e.g. Ym=v) results in a new potential with
one atom, φ(Xn), which can be factored into∫

Φ(LX|v)
∏

i φX(X(ai)|LX)dLX. Because Φ(LX|v) is con-
ditioned on v, Φ(LX|Ym) can be factored into∫

Φ(LX,LY)
∏

j φY(Y(b j)|LY)dLY. �

To analyze variational error of potentials with mul-
tiple atoms, we introduce another term (n,m)-
extendible.

Definition ((n,m)-extendible). P(Xn,Ym) is (n,m)-
extendible when (1) there is P(Xn,Ym), a probability
with two sets of exchangeable rvs (n>n,m>m); and (2)
P(Xn,Ym) is the marginal distribution of P(Xn,Ym).

Lemma 3 (Error of the Variational Parfactor). If
P(Xn,Ym), a probability with two exchangeable rvs in
an RHM, is (n,m)-extendible, then the total variation
dTV(P(Xn,Ym),PMiid(Xn,Ym)) is bounded as follows: (i)
when Xn and Ym are respectively dx-valued and dy-valued

discrete rvs, dTV(P,PMiid) ≤ 2dxn
n +

2dym
m ; (ii) when Xn are

dx-valued discrete and Ym are continuous, dTV(P,PMiid)
≤ 2dxn

n +
m(m−1)

m ; (iii) when Xn and Ym are continuous,
dTV(P,PMiid) ≤ n(n−1)

n +
m(m−1)

m .

proof. The intuition is that the error of a variational
model is additive with an additional atom. We used
the principle in [13] such that a n̄-extendible pdf,
P(Xn), can be represented by a mixture of extreme
pdfs (e.g. P(Xn) =

∑
e wepe). Here, an extreme pdf pe

is a probability of n draws made at random without
replacement from an urn, U, which contains n̄ balls
marked by one of c colors. Let e a unique marking in
U. The variation distance of each extreme point pe and
its variational form PMiid(Xn|e) is bounded ≤ 2cn

n̄ for
discrete rvs.

For a distribution with the multiple atoms, each ex-
treme point corresponds to the joint distribution of
n draws from UX of n̄ balls, and m draws from UY
of m̄ balls. Because the draws can be done indepen-
dently for each urn, an extreme pdf (e.g. pex,ey ) can be
represented as the product of independent extreme

pdfs (e.g. pex · pey ). From the Lemma 1, the variation
distances of variational forms of pex and pey are respec-
tively bounded. WLOG, we can represent the errors
with εx and εy,

dTV(pex , φiidx) ≤ εx, dTV(pey , φiidy) ≤ εy.

Note that,

dTV(pex pey , φiidxφiidy)
≤ dTV(pex pey , pexφiidy) + dTV(φiidypex , φiidyφiidx) ∗
≤ dTV(pey , φiidy) + dTV(pex , φiidx) ∗ ∗ = εx + εy.

The second step (marked as ∗) is derived from the
following equations (Here, A is pexφiidy):

pex pey − φiidxφiidy = pex pey − φiidxφiidy − A + A
= (pex pey − A) + (A − φiidxφiidy).

The third step (marked as ∗∗) is derived from the fact
that pex and φiidy are pdfs, e.g.

∑
Xn pex (Xn) = 1. That is,

dTV(pex pey , pexφiidy) ≤ dTV(pey , φiidy). The derivation can
be applied to φiidy and continuous cases.

Thus, the total variation distance between two proba-
bilities, P(Xn,Ym) and PMiid(Xn,Ym) is bounded by the
sum of two error bounds. �

Now, we present error analsys for RHMs with more
than two atoms, e.g. P(Xn,Ym,Zu).

Theorem 4 (Error of Variational RHMs). Let Xg
and XG is respectively the set of all rvs in a parfac-
tor g and an RHM G. Let P(Xg)(= 1

zg

∏
f∈gr(g) w f (X f ));

and P(XG)(= 1
z
∏

g∈G P(Xg)). The total variation
dTV (P(XG) − PMiid(XG)) is bounded by 1

z
∑

g∈G εg where εg
= dTV(P(Xg)−PMiid(Xg)) and z is the normalizing constant.

Sketch of proof. We can build a fully joint probability of
all relational atoms with the RHM. Then, Lemma 3 can
be used to prove the total variation of the variational
RHM. �
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8 Related Work

Nonparametric Bayesian Logic (NP-BLOG) [4]
presents a new variational representation for rela-
tional discrete models using the Dirichlet Process. In
principle, the NP-BLOG and the variational RHMs
have in common: compact representations for ex-
changeable rvs. The difference is that NP-BLOG han-
dles ∞-extendible exchangeable, discrete rvs. Here,
we investigated further for several new directions:
model learning, continuous domains, and approxi-
mation errors. Our error bounds provide an in-depth
understanding for models with finite exchangeable
discrete rvs.

For discrete models, the value-histogram [12; 23] rep-
resents potentials with polynomial numbers of his-
togram entries. When aggregate operators are given,
[6] shows that the histgram representations can be ap-
proximately replaced by a Normal with linear con-
straints. We generalize and expand the concept to
compress general-purpose histogram representations.

For continuous potentials, unfortunately, the his-
togram representation is not applicable because it is
not clear how to discretize continuous domains to
build up such histograms. Thus, most existing lifted
inference for continuous models are limited to Gaus-
sian potentials [5; 7; 1]. Thus, our representation is a
unique lifted inference for non-Gaussian continuous
potentials.

Lifted Belief Propagation (LBP) [29] solves inference
problems in many practial models by grouping rvs.
Here, rvs in an atom send the same messages to neigh-
boring rvs, and are not constrained among rvs in an
atom. Instead, our lifted MCMC sends a distribution,
has more expressive power, and requires fewer sam-
ples until the convergence. The advance promises that
our variational models and the lifted MCMC method
can be a good complement to existing sampling meth-
ods such as LBP.

9 Experimental Results

We provide experimental results regarding the varia-
tional approximations and the efficiency and the accu-
racy of our LRVI in a real-world groundwater model.

First, we analyze variational approximations on the
competing workshops models C-FOVE [23] which
includes two parfactors, φ1(attends(X), hot(W)) and
φ2(attends(X), series). We can exactly represent φ2 with
a Binomial:

φ2(#X[attends(X)], series)
= w(series) fB(#X[attends(X)]; n, p(series)),

Here, n is the number of people; w and l are func-
tions: {>,⊥} → R; and #X[attends(X)] is a histogram
representation in [23] such that |{i|attends(Xi) = >}|.
φ1 is also represented by a mixture of |W|. φ1
is the bivariate multiplicative binomial [20] and
conditionally binomial. E.g., when #W[hot(W)] is
fixed to 5, φ1(#X[attends(X)], #W[hot(W)] = 5) = w5
fB(#X[attends(X)]; n, l5) .

When using the same parameters in [23],
φ1(attends(X), hot(W)) is represented by a single
binomial distribution accurately because weights
of other |W − 1| binomials are small with -9 orders
of magnitude. We make similar observations with
different parameters. When we randomly choose
parameters (50 times), a single binomial was enough
to represent φ1 with a small total variation (< 0.001)
for more than 90% (46 times). For other parameters,
at most three binomials can represent φ1 with a very
small error (<0.0001).

Second, we apply our variational learning algorithm
to a real-world groundwater dataset shown in Fig-
ure 3 (a) Republican River Compact Administration
(RRCA). The dataset is composed of measurements
(water levels) at over 10,000 wells and baseflow ob-
servations at 65 gages from 1918 until 2007.11 Af-
ter calibration, the training dataset is a set of partial
observations in a 480 (months) by 3420 (wells) ma-
trix. First, we cluster the 3420 wells by k-means into
10 groups based on means and variances (approxi-
mately exchangeable).12 From the dataset, the EM al-
gorithm directly learns a variational model until the
log-likelihood converges. As a result, from 6 to 14 mix-
tures of Gaussians (MoGs) are learned for each cluster.
Figure 3 (b) shows some learned empirical distribu-
tions, cdfs of MoGs, with high weights from two clus-
tered area, A and B. To represent the joint distribution
over the clusters, we convert the 480X3240 input ma-
trix into a 480 (months) by 92 (MoGs) matrix.

For each test month, we compute the empirical dis-
tribution of the query variables given the partial ob-
servations. Our lifted VE returns queries in average
0.3 secs and a ground VE inference returns in average
37.9 secs. In fact, ground and variational inference al-
gorithms use different sizes of matrices 480X3420 and
480X92, respectively. That explains the reason why
the variational inference is efficient. The average to-
tal variations are 0.35 (ground) and 0.29 (variational),
where smaller is more accurate.

Third, we compare the accuracy and the efficiency of

11Head predictions are available via the RRCA official
website, http://www.republicanrivercompact.org.

12Although the means and variances do not guarantee the
exchangeability in the clusters, here we focus on measuring
the computational efficiency of our variational method.
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Figure 3: (a) locations of two clustered wells in the RRCA map; (b) learned empirical distributions, cdfs (F̂Al ()
and F̂Bl (x)) for two regions A and B.
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Figure 4: (a) The accuracy of the lifted MCMC and the ground MCMC with various numbers of houses. Here,
() indicates the number of houses, e.g., Ground(16) is the ground MCMC with 16 houses. (b) The average time
to generate samples in each MCMC step.

our lifted MCMC algorithm with a vanilla (ground)
MCMC algorithm on an already factored variational
model. The model is composed of two relational
atoms: a binary atom Jobn, saying whether each in-
dividual has a job, and a continuous atom HPm, say-
ing the price change of each house. pJob is a latent
variable, which represents the Bernoulli parameters
of φMiid(Jobn). pD is a latent variable (probability of
market down), which represents the mixture of two
Gaussians, φMiid(HPm) =

pD

m∏

j=1

fN (HP(h j);−0.3, σ2
D)+(1−pD)

m∏

j=1

fN (HP(h j); 0.1, σ2
UP).

Here, we assume that the two latent variables follows
a linear Gaussian: Φ(pJob, pD) = fN (pJob−pD; 0, σ2

JobHouse).
Figure 4 (a) shows the accuracy of the two algo-
rithms after generating the same number of sam-
ples. That is, it measure the ratio of error to estimate
a probability of a randomly chosen variable HP(h j),
|pexact(HP(h j))−pMCMC(HP(h j))|/pexact(HP(h j)). It shows
that our lifted MCMC converges to the true density
much faster than the ground MCMC.13 Figure 4 (b)

13The lifted Belief Propagation (LBP) [29] is not directly
applicable because the target distribution is a mixture of
two iid Gaussians. The LBP assumes that each house sends
the same message, i.e. price estimation. However, here, the
messages among houses should be constrained. That is, the
prices of some houses go down, and then prices of the other
houses should go up.

shows the average sampling time (per step) with dif-
ferent number of rvs, i.e. the number of houses.

10 Conclusions

We propose new lifted relational variational inference
algorithms for relational hybrid models. Our main
contributions are two folds: (1) in theory, we show
that a relational model, which can represent large-
scale systems, is accurately represented by a varia-
tional relational model; (2) our lifted algorithms are
the first to solve inference problems without referring
ground rvs for non-Gaussian continuous models. Ex-
periments show that our method outperforms the ex-
isting possible methods in various cases including a
real-world environmental problem.
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Abstract

We target the problem of accuracy and ro-
bustness in causal inference from finite data
sets. Some state-of-the-art algorithms pro-
duce clear output complete with solid the-
oretical guarantees but are susceptible to
propagating erroneous decisions, while oth-
ers are very adept at handling and repre-
senting uncertainty, but need to rely on un-
desirable assumptions. Our aim is to com-
bine the inherent robustness of the Bayesian
approach with the theoretical strength and
clarity of constraint-based methods. We use
a Bayesian score to obtain probability es-
timates on the input statements used in a
constraint-based procedure. These are subse-
quently processed in decreasing order of re-
liability, letting more reliable decisions take
precedence in case of conflicts, until a sin-
gle output model is obtained. Tests show
that a basic implementation of the resulting
Bayesian Constraint-based Causal Discovery
(BCCD) algorithm already outperforms es-
tablished procedures such as FCI and Conser-
vative PC. It can also indicate which causal
decisions in the output have high reliability
and which do not.

1 Introduction: Robust Causal
Discovery

In many real-world systems the relations and interac-
tions between variables can be modeled in the form of
a causal directed acyclic graph (DAG) GC over a set
of variables V. A directed path from A to B in such
a graph indicates a causal relation A⇒ B in the sys-
tem, where cause A influences the value of its effect B,
but not the other way around. An edge A→ B in GC
indicates a direct causal link. In data from a system

with a causal relation A⇒ B (direct or indirect), the
values of A and B have a tendency to vary together,
i.e. they become probabilistically dependent.
Two assumptions are usually employed to link the un-
derlying, asymmetric causal relations to observable,
symmetric probabilistic dependencies:

The Causal Markov Condition states that each
variable in a causal DAG GC is (probabilistically) in-
dependent of its non-descendants, given its parents.
The Causal Faithfulness Condition states that
there are no independencies between variables that are
not entailed by the Causal Markov Condition.

The first makes it possible to go from causal graph
to observed probabilistic independencies; the second
completes the way back. Together, they imply that
the causal DAG GC is also minimal, in the sense that
no proper subgraph can satisfy both assumptions and
produce the same probability distribution (Zhang and
Spirtes, 2008).

Before we continue with causal discovery methods,
first a quick recap of some standard concepts and ter-
minology. The joint probability distribution induced
by a causal DAG GC factors according to a Bayesian
network (BN): a pair B = (G,Θ), where G = (V,A)
is DAG over random variables V, and the parameters
θV ⊂ Θ represent the conditional probability of vari-
able V ∈ V given its parents Pa(V ) in the graph G.
Probabilistic independencies can be read from the
graph G via the well-known d-separation criterion: X
is conditionally independent of Y given Z, denoted
X ⊥⊥ Y |Z, iff there is no unblocked path between X
and Y in G conditional on the nodes in Z; see e.g.
(Pearl, 1988; Neapolitan, 2004).

If some of the variables in the causal DAG are hidden
then the independence relations between the observed
variables may be represented in the form of a (maxi-
mal) ancestral graph (MAG) (Richardson and Spirtes,
2002). MAGs form an extension of the class of DAGs
that is closed under marginalization and selection. In
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addition to directed arcs, MAGs can also contain bi-
directed arcs X ↔ Y (indicative of marginalization)
and undirected edges X−−Y (indicative of selection).
The causal sufficiency assumption states that there are
no hidden common causes of the observed variables in
G, which implies that the distribution over the ob-
served variables still conforms to a Bayesian network.
In this article we ignore selection bias (= no undirected
edges), but do not rely on causal sufficiency.

The equivalence class [G] of a graph G is the set of all
graphs that are indistinguishable in terms of (Markov)
implied independencies.1 For a DAG or MAG G, the
corresponding equivalence class [G] can be represented
as a partial ancestral graph (PAG) P, which keeps the
skeleton (adjacencies) and all invariant edge marks, i.e.
tails (−) and arrowheads (>) that appear in all mem-
bers of the equivalence class, and turns the remain-
ing non-invariant edge marks into circles (◦) (Zhang,
2008). The invariant arrowhead at an edge A ∗→B in
P signifies that B is not a cause of A. An edge A→ B
implies a causal link A⇒ B that is also direct.

With this in mind, the task of a causal discovery al-
gorithm is to find as many invariant features of the
equivalence class corresponding to a given data set as
possible. From this, all identifiable, present or absent
causal relations can be read.

Causal discovery procedures

A large class of constraint-based causal discovery al-
gorithms is based directly on the faithfulness assump-
tion: if a conditional independence X ⊥⊥ Y |Z can be
found for any set of variables Z, then there is no di-
rect causal relation between X and Y in the underlying
causal graph GC , and hence no edge between X and Y
in the equivalence class P. In this way, an exhaustive
search over all pairs of variables can uncover the en-
tire skeleton of P. In the subsequent stage a number of
orientation rules are executed that find the invariant
tails and arrowheads.

Members of this group include the IC-algorithm (Pearl
and Verma, 1991), PC/FCI (Spirtes et al., 2000),
Grow-Shrink (Margaritis and Thrun, 1999), TC (Pel-
let and Elisseef, 2008), and many others. All involve
repeated independence tests in the adjacency search
phase, and employ orientation rules as described in
Meek (1995). The differences lie mainly in the search
strategy employed, size of the conditioning sets, and
additional assumptions imposed. Of these, the FCI al-
gorithm in conjunction with the additional orientation
rules in (Zhang, 2008) is the only one that is sound and
complete in the large-sample limit when hidden com-

1We follow the standard assumption that Markov equiv-
alence implies statistical equivalence (Spirtes, 2010).

mon causes and/or selection bias may be present.

Constraint-based procedures tend to output a single,
reasonably clear graph, representing the class of all
possible causal DAGs. The downside is that for fi-
nite data they give little indication of which parts
of the network are stable (reliable), and which are
not: if unchecked, even one erroneous, borderline in-
dependence decision may be propagated through the
network, leading to multiple incorrect orientations
(Spirtes, 2010).

To tackle the perceived lack of robustness of PC, Ram-
sey et al. (2006) proposed a conservative approach
for the orientation phase. The standard rules draw
on the implicit assumption that, after the initial adja-
cency search, a single X⊥⊥Y |Z should suffice to orient
an unshielded triple 〈X,Z, Y 〉, as Z should be either
part of all or part of no sets that separate X and Y .
The Conservative PC (CPC) algorithm tests explicitly
whether this assumption holds, and only orients the
triple into a noncollider resp. v -structure X → Z ← Y
if found true. If not, then it is marked as unfaithful.
Tests show that CPC significantly outperforms stan-
dard PC in terms of overall accuracy, albeit often with
less informative output, for only a marginal increase
in run-time.

This idea can be extended to FCI: the set of poten-
tial separating nodes is now conform FCI’s adjacency
search, and any of Zhang’s orientation rules that re-
lies on a particular unshielded (non-)collider does not
fire on an unfaithful triple. See (Glymour et al., 2004;
Kalisch et al., 2011) for an implementation of Conser-
vative FCI (CFCI) and many related algorithms.

The score-based approach is an alternative paradigm
that builds on the implied minimality of the causal
graph: define a scoring criterion S(G,D) that mea-
sures how well a Bayesian network with structure G
fits the observed data D, while preferring simpler net-
works, with fewer free parameters, over more complex
ones. If the causal relations between the variables in
D form a causal DAG GC , then in the large sample
limit the highest scoring structure G must be part of
the equivalence class of [GC ].

An example is the (Bayesian) likelihood score: given
a Bayesian network B = (G,Θ), the likelihood of ob-
serving a particular data set D can be computed recur-
sively from the network. Integrating out the param-
eters Θ in the conditional probability tables (CPTs)
then results in:

p(D|G) =

∫

Θ

p(D|G,Θ)f(Θ|G) dΘ, (1)

where f is a conditional probability density function
over the parameters Θ given structure G.
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A closed form solution to eq.(1) is used in algorithms
such as K2 (Cooper and Herskovits, 1992) and the
Greedy Equivalence Search (GES) (Chickering, 2002)
to find an optimal structure by repeatedly comparing
scores for slightly modified alternatives until no more
improvement can be found. See also Bouckaert (1995)
for an evaluation of different strategies using these and
other measures such as the BIC-score and minimum
description length.

Score-based procedures can output a set of high-
scoring alternatives. This ambiguity makes the result
arguably less straightforward to read, but does allow
for a measured interpretation of the reliability of in-
ferred causal relations, and is not susceptible to in-
correct categorical decisions (Heckerman et al., 1999).
The main drawback is the need to rely on the causal
sufficiency assumption.

2 The Best of Both Worlds

The strength of a constraint-based algorithm like FCI
is its ability to handle data from arbitrary faithful
underlying causal DAGs and turn it into sound and
clear, unambiguous causal output. The strength of
the Bayesian score-based approach lies in the robust-
ness and implicit confidence measure that a likelihood
weighted combination of multiple models can bring.

I Our idea is to improve on conservative FCI by us-
ing a Bayesian approach to estimate the reliability of
different constraints, and use this to decide if, when,
and how that information should be used.

Instead of classifying pieces of information as reliable
or not, we want to rank and process constraints accord-
ing to a confidence measure. This should allow to avoid
propagating unreliable decisions while retaining more
confident ones. It also provides a principled means for
conflict resolution. The end-result is hopefully a more
informative output model than CFCI, while obtaining
a higher accuracy than standard FCI can deliver.

To obtain a confidence measure that can be compared
across different estimates we want to compute the
probability that a given independence statement holds
from a given data set D. In an ideal Bayesian ap-
proach we could compute a likelihood p(D|M) for each
M∈M (see section 3 on how to approximate this). If
we know that the set M contains the ‘true’ structure,
then the probability of an independence hypothesis I
follows from normalized summation as:

p(I|D) ∝
∑

M∈M(I)

p(D|M)p(M), (2)

(Heckerman et al., 1999), where M(I) denotes the sub-

set of structures that entail independence statement
I, and p(M) represents a prior distribution over the
structures (see §3.4).

Two remarks. Firstly, it is well known that the number
of possible graphs grows very quickly with the number
of nodes V. But eq.(2) equally applies when we limit
data and structures to subsets of variables X ⊂ V.
For sparse graphs we can choose to consider only sub-
sets of size K � |V|. We opt to go one step further
and follow a search strategy similar to PC/FCI, us-
ing structures of increasing size. Secondly, it would
be very inefficient to compute eq.(2) for each indepen-
dence statement we want to evaluate. From a single
likelihood distribution over structures over X we can
immediately compute the probability of all possible
independence statements between variables in X, in-
cluding complex combinations such as those implied
by v -structures, just by summing the appropriate con-
tributions for each statement.

Having obtained probability estimates for a list of
in/dependence statements I, we can rank these in de-
creasing order of reliability, and keep the ones based
on a decision threshold p(I|D) > θ, with θ = 0.5
as intuitive default. In case of remaining conflicting
statements, the ones with higher confidence take prece-
dence. The resulting algorithm is outlined below:

Algorithm 1 Outline

Start : database D over variables V
Stage 1 - Adjacency search

1: fully connected graph P, empty list I, K = 0
2: repeat
3: for all X − Y still connected in P do
4: for all adjacent sets Z of K nodes in P do
5: estimate p(M|D) over {X,Y,Z}
6: sum to p(I|D) for independencies I
7: update I and P for each p(I|D) > θ
8: end for
9: end for

10: K = K + 1
11: until all relevant found

Stage 2 - Orientation rules
12: rank and filter I in decreasing order of reliability
13: orient unshielded triples in P
14: run remaining orientation rules
15: return causal model P

In this form, the Bayesian estimates are only used to
guide the adjacency search (update skeleton G, l.7),
and to filter the list of independencies I (l.12). Ideally,
we would like the probabilities to guide the orientation
phase as well. This implies processing the indepen-
dence statements sequentially, in decreasing order of
reliability. For that we can use a recently developed
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variant of the FCI algorithm (Claassen and Heskes,
2011), that breaks up the inference into a series of
modular steps that can be executed in arbitrary or-
der. It works by translating observed independence
constraints into logical statements about the pres-
ence or absence of certain causal relations.

Using square brackets to indicate minimal sets of
nodes: if a variable Z either makes or breaks an in-
dependence relation between {X,Y }, then

1. X⊥⊥Y | [W ∪ Z] ` (Z ⇒ X) ∨ (Z ⇒ Y ),

2. X⊥⊥�Y |W ∪ [Z] ` Z ; ({X,Y } ∪W).

In words: from a minimal independence we infer the
presence of at least one from two causal relations,
whereas a dependence identifies the absence of causal
relations. Subsequent causal statements follow from
deduction on the properties transitivity (X ⇒ Y ) +
(Y ⇒ Z) ` (X ⇒ Z), and irreflexivity (X ; X).

3 Sequential Causal Inference

This section discusses the steps needed to turn the
previous idea into a working algorithm in the next
section. Main issues are: probability estimates for
logical causal statements from substructures, Bayesian
likelihood computation, and inference from unfaithful
DAGs. Proofs are detailed in (Claassen and Heskes,
2012).

A word on notation: we use D to denote a data set over
variables V from a distribution that is faithful to some
(larger) causal DAG GC .  L denotes the set of logical
causal statements L over two or three variables in V,
of the form given in the r.h.s. of rules 1 and 2, above.
We use MX to represent the set of MAGs over X,
and MX(L) to denote the subset that entails logical
statement L. We also use G to explicitly indicate a
DAG, M for a MAG, and P for a PAG.

3.1 A Modular Approach

In order to process available information in (decreas-
ing) order of reliability we need to obtain probabil-
ity estimates for logical statements on causal relations
from data. Similar to eq.(2), this follows from sum-
ming the normalized posterior likelihoods of all MAGs
that entail that statement through m-separation:

Lemma 1. The probability of a logical causal state-
ment L given a data set D is given by

p(L|D) =

∑
M∈M(L) p(D|M)p(M)
∑
M∈M p(D|M)p(M)

, (3)

using the notational conventions introduced above.

As stated, in many cases considering only a small sub-
set of the variables in V is already sufficient to infer
L. But that also implies that there are multiple sub-
sets that imply L, each with different probability es-
timates. As these relate to different sets of variables,
they should not be combined as in standard multiple
hypothesis tests, but instead we want to look for the
maximum value that can be found.

Lemma 2. Let D be a data set over variables V.
Then ∀X ⊆ V : p(L|D) ≥∑M∈MX(L) p(M|D).

Proof. Let p(M|D) be the posterior probability of
MAG M given data D. Let M(X) denote the MAG
M marginalized to variables X, then:

p(L|D) =
∑

M∈MV(L)

p(M|D)

≥
∑

M∈MV(L):M(X)∈MX(L)

p(M|D)

=
∑

M∈MX(L)

p(M|D)

The inequality follows from the fact that, by defini-
tion, no marginal MAGM(X) entails a statement not
entailed by M, whereas the converse can (and does)
occur.

As a result: p(L|D) ≥ maxX⊂V

∑
M∈MX(L) p(M|D).

It means that while searching for logical causal state-
ments  L, it makes sense to keep track of the maximum
probabilities obtained so far.

However, computing p(M|D) for M ∈ MX still in-
volves computing likelihoods over all structures over
V, which is precisely what we want to avoid. A rea-
sonable approximation is provided by p(M|DX), i.e.
the estimates obtained by only including data in D
from the variables X. It means that the lower bound
is no longer guaranteed to hold universally, but should
still be adequate in practice.

3.2 Obtaining likelihood estimates

If we know that the ‘true’ structure over a subset
X ⊆ V takes the form of a DAG, then comput-
ing the required likelihood estimates p(DX|G) is rela-
tively straightforward. Cooper and Herskovits (1992)
showed that, under some reasonable assumptions, for
discrete random variables the integral (1) has a closed-
form solution. In the form presented in (Heckerman
et al., 1995) this score is known as the Bayesian Dirich-
let (BD) metric:

p(D|G) =
n∏

i=1

qi∏

j=1

Γ(N ′ij)

Γ(Nij +N ′ij)

ri∏

k=1

Γ(Nijk +N ′ijk)

Γ(N ′ijk)
,

(4)
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with n the number of variables, ri the multiplicity of
variable Xi, qi the number of possible instantiations
of the parents of Xi in G, Nijk the number of cases
in data set D in which variable Xi has the value ri(k)
while its parents are instantiated as qi(j), and with
Nij =

∑ri
k=1Nijk. TheN ′ij =

∑ri
k=1N

′
ijk represent the

pseudocounts for a Dirichlet prior over the parameters
in the corresponding CPTs.

Different strategies for choosing the prior exist: for
example, choosing N ′ijk = 1 (uniform prior) leads to
the original K2-metric, see (Cooper and Herskovits,
1992). Setting N ′ijk = N ′/(riqi) gives the popular
BDeu-metric, which is score equivalent in the sense
that structures from the same equivalence class [G] re-
ceive the same likelihood score, cf. (Buntine, 1991).
In this article, we opt for the K2-metric, as it seems
more appropriate in causal settings (Heckerman et al.,
1995). But having to consider only one instance of ev-
ery equivalence class may prove a decisive advantage
of the BDe(u)-metric in future extensions.

However, eq.(4) only applies to DAGs. We know that,
even when assuming causal sufficiency applies for the
variables V, considering arbitrary subsets size |X| ≥ 4
in general will require MAG representations to ac-
count for common causes that are not in X. Ex-
tending the derivation of eq.(4) requires additional as-
sumptions on multiplicity and number of the hidden
variables, and turns the nice closed-form solution into
an intractable problem that requires approximation,
e.g. through sampling (Heckerman et al., 1999). This
would make each step in our approach much more
expensive. Recently, Evans and Richardson (2010)
showed a maximum likelihood approach to fit acyclic
directed mixed graphs (a superset of MAGs) directly
on binary data. Unfortunately, this method cannot
provide the likelihood estimates per model we need
for our purposes. Silva and Ghahramani (2009) do
present a Bayesian approach, but need to put addi-
tional constraints on the distribution in the form of
(cumulative) Gaussian models.

In short, even though we would like to use MAGs to
compute p(DX|M) directly in eq.(3), at the moment
we have to rely on DAGs to obtain approximations
to the ‘true’ value. This will result in less accurate
reliability estimates for p(L|D), but also means that
we may miss certain pieces of information, or, even
worse, that the inference may become invalid.

3.3 Unfaithful inference: DAGs vs. MAGs

Fortunately we can show that, even when the true in-
dependence structure over a subset X ⊂ V is a MAG,
we can still do valid inference via p(L|DX) from like-
lihood scores over an exhaustive set of DAGs over X,

provided we account for unfaithful DAG representa-
tions. This part discusses unfaithful inference, and
how the mapping from structures to logical causal
statements can be modified. Much of what we show
builds on (Bouckaert, 1995).

In the large-sample limit, the Bayesian likelihood score
picks the smallest DAG structure(s) that can capture
the observed probability distribution exactly.

Definition 1 (Optimal uDAG). A DAG G is an
(unfaithful) uDAG approximation to a MAGM over
a set of nodes X, iff for any probability distribution
p(X), generated by an underlying causal graph faith-
ful toM, there is a set of parameters Θ such that the
Bayesian network B = (G,Θ) encodes the same distri-
bution p(X). The uDAG is optimal if there exists no
uDAG to M with fewer free parameters.

A uDAG is just a DAG for which we do not know if
it is faithful or not. Reading in/dependence relations
from a uDAG goes as follows:

Lemma 3. Let B = (G,Θ) be a Bayesian network
over a set of nodes X, with G a uDAG for some MAG
that is faithful to a distribution p(X). Let GX‖Y be the
graph obtained by eliminating the edge X −Y from G
(if present). Then, if X ⊥⊥GX‖Y Y |Z then:

(X ⊥⊥G Y |Z)⇔ (X ⊥⊥pY |Z).

Proof sketch. The independence rule (X ⊥⊥G Y |Z)⇒
(X ⊥⊥p Y |Z) follows (Pearl, 1988). The dependence
rule (X ⊥⊥GX‖Y Y |Z) ∧ (X ⊥⊥�G Y |Z)⇒ (X ⊥⊥�p Y |Z)
is similar to the ‘coupling’ theorem (3.11) in (Bouck-
aert, 1995), but stronger. As we assume a faithful
MAG, a dependence X ⊥⊥�p Y |Z cannot be destroyed
by in/excluding a node U that has no unblocked path
in the underlying MAG to X and/or Y given Z. This
eliminates one of the preconditions in the coupling the-
orem. See (Claassen and Heskes, 2012) for details.

So, in a uDAG all independencies from d -separation
are still valid, but the identifiable dependencies are
restricted.

Example 1. Treating the uDAG in Figure 1(b) as a
faithful DAG would suggest X ⊥⊥p T | [Z], and hence
(Z ⇒ X) ∨ (Z ⇒ T ). This is wrong: Figure 1(a)
shows that Z is ancestor of neither X nor T . Lemma
3 would not make this mistake, as it allows to deduce
X ⊥⊥pT |Z, but not the erroneous X ⊥⊥�p T .

We can generalize Lemma 3 to indirect dependencies.

Lemma 4. Let G be a uDAG for a faithful MAG
M. Let X, Y , and Z be disjoint (sets of) nodes. If
π = 〈X, .., Y 〉 is the only unblocked path from X to Y
given Z in G, then X ⊥⊥�p Y |Z.

211



X

W

Z

Y

Two minimal uDAGs for a node W that destroys X ][ Y | [Z]

X

Z

Y

W

X

Z

Y

W

X

Z

Y

W

(b) (c)(a)

Q

X

W

V

Z

Y

W

X
V

Z

Y

(b)(a)

(a) (b)

X

W Z

Y

V T

U

X

W Z

Y

V T

U

Figure 1: (a) causal DAG with hidden variables, (b)
uDAG with unfaithful X ⊥⊥G T | [Z]

Example 2. With Lemma 4 we infer from Figure 1(b)
that X ⊥⊥�p T | {V,W}. We also find that Y ⊥⊥�p V ,
from which, in combination with Y ⊥⊥p V | [Z], we
(rightly) conclude that (Z ⇒ Y ) ∨ (Z ⇒ V ), see (a).

In general, Lemmas 3 and 4 assert different dependen-
cies for different uDAG members of the same equiv-
alence class. If the uDAG G is optimal, then all
in/dependence statements from any uDAG member
of the corresponding equivalence class [G] are valid.
In that case we can do the inference based on the
PAG representation P of [G]. This provides additional
information, but also simplifies some inference steps.
Again, see (Claassen and Heskes, 2012) for details.

For example, identifying an absent causal relation (ar-
rowhead) X ⇒� Y from an optimal uDAG becomes
identical to the inference from a faithful MAG. Let a
potentially directed path (p.d.p.) be a path in a PAG
that could be oriented into a directed path by changing
circle marks into appropriate tails/arrowheads, then

Lemma 5. Let G be an optimal uDAG to a faithful
MAGM, then the absence of a causal relation X ⇒� Y
can be identified, iff there is no potentially directed
path from X to Y in the PAG P of [G].

Proof sketch. The optimal uDAG G is obtained by
(only) adding edges between variables in the MAGM
to eliminate invariant bi-directed edges, until no more
are left. At that point the uDAG is a representative of
the corresponding equivalence class P (Theorem 2 in
Zhang (2008)). For any faithful MAG all and only the
nodes not connected by a p.d.p. in the corresponding
PAG have a definite non-ancestor relation in the un-
derlying causal graph. At least one uDAG instance in
the equivalence class of an optimal uDAG over a given
skeleton leaves the ancestral relations of the original
MAG intact.Therefore, any remaining invariant arrow-
head in the PAG P matches a non-ancestor relation in
the original MAG.

For the presence of causal relations (tails) a similar,
but more complicated criterion can be found; see Sup-
plement. Ultimately, the impact of having to use
uDAGs boils down to a modified mapping of struc-
tures to logical causal statements, based on the infer-
ence rules above.

Finally, it is worth mentioning that in the large-sample
limit, matching uDAGs over increasing sets of nodes
we are guaranteed to find all independencies needed to
obtain the skeleton, as well as all invariant arrowheads
and many invariant tails. However, as the primary
goal remains to improve accuracy/robustness when the
large-sample limit does not apply, we do not pursue
this matter further here.

3.4 Consistent prior over structures

The computation of p(L|DX) requires a prior distribu-
tion p(M) over the set of MAGs over X. A straightfor-
ward solution is to use a uniform prior, assigning equal
probability to each M ∈ M. Alternatively, we can
use a predefined function that penalizes complexity or
deviation w.r.t. some reference structure (Chickering,
2002; Heckerman et al., 1995). If we want to exploit
score-equivalence with the BDe(u) metric in eq.(4), we
can weight DAG representatives according to the size
of their equivalence class.

If we have background information on expected (or de-
sired) properties of the structure, such as max. node
degree, average connectivity, or small-world/scale-free
networks, we can use this to construct a prior p(M)
through sampling : generate random graphs over all
variables in accordance with the specified character-
istics, sample one or more random subsets of vari-
ables size K, and compute the marginal structure over
that subset. Averaging over structures that are PAG-
isomorphs (equivalence classes identical under relabel-
ing) improves both consistency and convergence.

Irrespective of the method, it is essential to ensure
the prior is also consistent over structures of differ-
ent size. Perhaps surprisingly, this is not obtained by
applying the same strategy at different levels: a uni-
form distribution over DAGs over {X,Y, Z} implies
p(“X ⊥⊥ Y ”) = 6/25, whereas a uniform distribution
over two-node DAGs implies p(“X ⊥⊥ Y ”) = 1/3. We
obtain a consistent multi-level prior by starting from a
preselected level K, and then extend to different sized
structures through marginalization.

4 The BCCD algorithm

We can now turn the results from the previous section
into a working algorithm. The implementation largely
follows the outline in Algorithm 1, except that now
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uDAGs (instead of MAGs) are used to obtain a list of
logical causal statements (instead of independencies),
and that logical inference takes the place of the orienta-
tion rules, resulting in the Bayesian Constraint-based
Causal Discovery (BCCD) algorithm.

A crucial step in the algorithm is the mapping G ×  L
from optimal uDAG structures to causal statements in
line 9. This mapping is the same for each run, so it can
be precomputed from the rules in section 3.3 and the
Supplement, and stored for use afterwards (l.1) The
uDAGs G are represented as adjacency matrices. For
speed and efficiency purposes, we choose to limit the
structures to size K ≤ 5, which gives a list of 29,281
uDAGs at the highest level. For details about repre-
sentation and rules, see (Claassen and Heskes, 2012).

Algorithm 2 Bayesian Constr. Causal Discovery

In : database D over variables V, backgr.info I
Out: causal relations matrix MC , causal PAG P
Stage 0 - Mapping

1: G ×  L← Get uDAG Mapping(V,Kmax = 5)
2: p(G)← Get Prior(I)

Stage 1 - Search
3: fully connected P, empty list  L, K = 0, θ = 0.5
4: while K ≤ Kmax do
5: for all X ∈ V, Y ∈ Adj(X) in P do
6: for all Z ⊆ Adj(X)\Y , |Z| = K do
7: W← Check Unprocessed(X,Y,Z)
8: ∀G ∈ GW : compute p(G|DW)
9: ∀L : p(LW|DW)←∑

G→LW
p(G|DW)

10: ∀L : p(L)← max(p(L), p(LW|DW))
11: P ← p(“Wi−��−Wj”|DW) > θ
12: end for
13: end for
14: K = K + 1
15: end while

Stage 2 - Inference
16: LC = empty 3D-matrix size |V|3, i = 1
17:  L← Sort Descending ( L, p(L))
18: while p(Li) > θ do
19: LC ← Run Causal Logic(LC , Li)
20: i← i+ 1
21: end while
22: MC ← Get Causal Matrix(LC)
23: P ←Map To PAG(P,MC)

We verified the resulting mapping from uDAG rules to
logical statements against a brute-force approach that
checks the intersection of all logical causal statements
implied by all MAGs that can have a particular uDAG
as an optimal approximation. We found that at least
for uDAG structures up to five nodes our rules are still
sound and complete. Interestingly enough, for uDAGs
up to four nodes all implied statements are identical to
those that would be obtained if we just treated uDAGs

as faithful DAGs. Only at five+ nodes do we have to
take into account that uDAGs are unfaithful.

The adjacency search (l.3-15), loops over subsets from
neigbouring nodes for identifiable causal information,
while keeping track of adjacencies that can be elimi-
nated (l.11). For structures over five or more nodes
we need to consider nodes from FCI’s Possible-D-Sep
set (Spirtes et al., 1999). In practice, it rarely finds
any additional (reliable) independencies, and we opt
to skip this step for speed and simplicity (l.6), simi-
lar to the RFCI approach in (Colombo et al., 2011).
As the set W = {X,Y } ∪ Z can be encountered in
different ways, line (7) checks if the test on that set
has been performed already. A list of probability esti-
mates p(L|D) for each logical causal statement is built
up (l.10), until no more information is found.

The inference stage (l.16-21) then processes the list  L
in decreasing order of reliability, until the threshold
is reached. Statements in  L are added one-by-one to
the matrix of logical causal statements LC (encoding
identical to  L), with additional information inferred
from the causal logic rules. Basic conflict resolution
is achieved through not overriding existing informa-
tion (from more reliable statements). The final step
(l.22,23) retrieves all explicit causal relations in the
form of a causal matrix MC , and maps this onto the
skeleton P obtained from Stage 1 to return a graphical
PAG representation.

5 Experimental Evaluation

We have tested various aspects of the BCCD algorithm
in many different circumstances, and against various
other methods. The principal aim at this stage is to
verify the viability of the Bayesian approach. We com-
pare our results and that of other methods from data
against known ground-truth causal models. For that,
we generate random causal graphs with certain prede-
fined properties (adapted from Melancon et al. (2000);
Chung and Lu (2002)), generate random data from
this model, and marginalize out one or more hidden
confounders. We looked at the impact of the number
of data points, size of the models, sparseness, choices
for parameter settings etc. on the performance to get
a good feel for expected strengths and weaknesses in
real-world situations.

It is well-known that the relative performance of dif-
ferent causal discovery methods can depend strongly
on the performance metric and/or specific test prob-
lems used in the evaluation. Therefore, we will not
claim that our method is inherently better than oth-
ers based on the experimental results below, but sim-
ply note that the fact that in nearly all test cases the
BCCD algorithm performed as good or better than
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other methods, is a clear indication of the viability
and potential of this approach.

Having limited space available, we only include results
of tests against the two other state-of-the-art meth-
ods that can handle hidden confounders: FCI as the
de facto benchmark, and its equivalent adapted from
conservative PC. For the evaluation we use two com-
plementary metrics: the PAG accuracy looks at the
graphical causal model output and counts the number
of edge marks that matches the PAG of true equiva-
lence class (excluding self-references). The causal ac-
curacy looks at the proportion of all causal decisions,
either explicit as BCCD does or implicit from the PAG
for FCI, that are correct compared to the generating
causal graph.

In a nutshell: we found that in most circumstances
conservative FCI outperforms vanilla FCI by about
3− 4% in terms of PAG accuracy and slightly more in
terms of causal accuracy. In its standard form, with a
uniform prior over structures of 5 nodes, the BCCD al-
gorithm consistenly outperforms conservative FCI by
a small margin of about 1 − 2% at default decision
thresholds (θ = 0.5 for BCCD, α = 0.05 for FCI).
Including additional tests / nodes per test and using
an extended mapping often increases this difference to
about 2− 4% at optimal settings for both approaches
(cf. Figure 3). This gain does come at a cost: BCCD
has an increase in run-time of about a factor two com-
pared to conservative FCI, which in turn is marginally
more expensive than standard FCI. Evaluating many
large structures can increases this cost even further,
unless we switch to evaluating equivalence classes via
the BDe metric in §3.2. However, the main benefit of
the BCCD approach lies not in a slight improvement
in accuracy, but in the added insight it provides into
the generated causal model: even in this simple form,
the algorithm gives a useful indication of which causal
decisions are reliable and which are not, which seems
very useful to have in practice.

The figures below illustrate some of these findings.
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Figure 2: BCCD approach to (complex) independence test
in eq.(2); (a) conditional independence X ⊥⊥ Y |W,Z, (b)
minimal conditional dependence X⊥⊥�Y |W ∪ [Z]

First we implemented the BCCD approach as a (min-
imal) independence test. Figure 2 shows a typi-
cal example in the form of ROC-curves for different
sized data sets, compared against a chi-squared test
and a Bayesian log-odds test from (Margaritis and
Bromberg, 2009), with the prior on independence as
the tuning parameter for BCCD. For ‘regular’ con-
ditional independence there was no significant differ-
ence (BCCD slightly ahead), but other methods reject
minimal independencies for both high and low deci-
sion thresholds, resulting in the looped curves in (b);
BCCD has no such problem.
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Figure 3: Equivalence class accuracy (% of edge marks
in PAG) vs. decision parameter; for BCCD and (conserva-
tive) FCI, from 1000 random models; (a) 6 observed nodes,
1-2 hidden, 1000 points, (b) idem, 12 observed nodes

Figure 3 shows typical results for the BCCD algorithm
itself: for a data set of 1000 records the PAG accuracy
for both FCI and conservative FCI peaks around a
threshold α ≈ 0.05 - lower for more records, higher
for less - with conservative FCI consistently outper-
forming standard FCI. The BCCD algorithm peaks at
a cut-off value θ ∈ [0.4, 0.8] with an accuracy that
is slightly higher than the maximum for conservative
FCI. The PAG accuracy tends not to vary much over
this interval, making the default choice θ = 0.5 fairly
safe, even though the number of invariant edge marks
does increase significantly (more decisions).

Table 5 shows the confusion matrices for edge marks
in the PAG model at standard threshold settings for
each of the three methods. We can recognize how FCI
makes more explicit decisions than the other two (less
circle marks), but also includes more mistakes. Con-
servative FCI starts from the same skeleton: it is more
reluctant to orient uncertain v -structures, but man-
ages to increase the overall accuracy as a result (sum
of diagonal entries). The BCCD algorithm provides
the expected compromise: more decisions than CFCI,
but less mistakes than FCI, resulting in a modest im-
provement on the output PAG.

Figure 4 depicts the causal accuracy as a function
of the tuning parameter for the three methods. The
BCCD dependency is set against (1− θ) so that going
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BCCD −��− → −− −◦
−��− 13.2 0.1 0.0 0.1
→ 1.0 3.3 0.1 0.7
−− 0.3 0.5 0.7 0.5
−◦ 1.6 1.7 0.8 5.5

16.1 5.6 1.6 6.8

cFCI −��− → −− −◦
−��− 12.7 0.3 0.0 0.4
→ 0.9 3.2 0.0 0.9
−− 0.3 0.4 0.4 0.9
−◦ 1.4 1.8 0.3 6.0

15.3 5.7 0.7 8.2

FCI −��− → −− −◦
−��− 12.7 0.5 0.0 0.2
→ 0.9 3.5 0.0 0.6
−− 0.3 0.9 0.4 0.4
−◦ 1.4 3.7 0.5 3.9

15.3 8.6 0.9 5.1
(a) (b) (c)

Table 1: Confusion matrices for PAG output: (a) BCCD algorithm, (b) Conservative FCI, (c) Standard FCI ;
rows = true value, columns = output edge mark (1000 random models over 6 nodes, 10,000 data points)
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Figure 4: Accuracy of causal decisions as a function of the
decision parameter

from 0 → 1 matches processing the list of statements
in decreasing order of reliability. As hoped/expected:
changing the decision parameter θ allows to access a
range of accuracies, from a few very reliable causal
relations to more but less certain indications. In con-
trast, the accuracy of the two FCI algorithms cannot
be tuned effectively through the decision parameter α.
The reason behind this is apparent from Figure 2(b):
changing the decision threshold in an independence
test shifts the balance between dependence and inde-
pendence decisions, but it cannot identify or alter the
balance in favor of more reliable decisions. We con-
sider the fact that the BCCD can do exactly that as
the most promising aspect of the Bayesian approach.

6 Extensions and Future Work

The experimental results confirm that the Bayesian
approach is both viable and promising: even in a ba-
sic implementation the BCCD algorithm already out-
performs other state-of-the-art causal discovery algo-
rithms. It yields slightly better accuracy, both for op-
timal and standard settings of the decision parameters.
Furthermore, BCCD comes with a decision threshold
that is easy to interpret and can be used to vary from
making just a few but very reliable causal statements

to many possibly less certain decisions. Perhaps coun-
terintuitively, changing the confidence level in (conser-
vative) FCI does not lead to similar behavior as it only
affects the balance between dependence and indepen-
dence decisions, which in itself does not increase the
reliability of either.

An interesting question is how far off from the theo-
retical optimum we are: at the moment it is not clear
whether we are fighting for the last few percent or if
sizeable gains can still be made. There are many op-
portunities left for improvement, both in speed and
accuracy. An easy option is to try to squeeze out as
much as possible from the current framework: scoring
equivalence classes with the BDe metric should bring a
significant performance gain for large structures, with-
out any obvious drawback, as the likelihood contribu-
tions of all members are aggregated anyway.

A hopeful but ambitious path is to tackle some of
the fundamental problems: as stated, we would like
to score MAGs directly instead of having to go via
uDAGs. This would improve both the mapping and
the probability estimates of the inferred logical causal
statements. We can try to include higher order in-
dependencies (larger substructures) through sampling:
reasonable probability estimate can be obained from a
limited number of high scoring alternatives, see, e.g.
(Bouckaert, 1995). Finally, we would like to obtain
principled probability estimates for new statements de-
rived during the inference process: this would improve
conflict resolution, and would ultimately allow to give
a meaningful estimate for the probability of all causal
relations inferred from a given data set.
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Abstract

Decentralized partially observable Markov de-
cision processes (Dec-POMDPs) are rich mod-
els for cooperative decision-making under uncer-
tainty, but are often intractable to solve optimally
(NEXP-complete). The transition and observa-
tion independent Dec-MDP is a general subclass
that has been shown to have complexity in NP,
but optimal algorithms for this subclass are still
inefficient in practice. In this paper, we first pro-
vide an updated proof that an optimal policy does
not depend on the histories of the agents, but only
the local observations. We then present a new
algorithm based on heuristic search that is able
to expand search nodes by using constraint opti-
mization. We show experimental results compar-
ing our approach with the state-of-the-art Dec-
MDP and Dec-POMDP solvers. These results
show a reduction in computation time and an in-
crease in scalability by multiple orders of magni-
tude in a number of benchmarks.

1 Introduction

There has been substantial progress on algorithms for mul-
tiagent sequential decision making represented as decen-
tralized partially observable Markov decision processes
(Dec-POMDPs) [18, 20, 7, 2]. Algorithms that are able to
exploit domain structure when it is present have been par-
ticularly successful [24, 1, 25]. Unfortunately, because the
general Dec-POMDP problem is NEXP-complete [8], even
these methods cannot solve moderately sized problems op-
timally.

The decentralized Markov decision process (Dec-MDP)
with independent transitions and observations represents
a general subclass of Dec-POMDPs that has complexity
in NP rather than NEXP [5]. A few algorithms for solv-
ing this Dec-MDP subclass have been recently proposed

[5, 21, 22]. While these approaches can often solve much
larger problems than Dec-POMDP methods, they cannot
solve truly large problems or those with more than 2 agents.

In this paper, we present a novel algorithm for optimally
solving Dec-MDPs with independent transitions and obser-
vations that combines heuristic search and constraint opti-
mization. We show that one can cast any Dec-MDP with in-
dependent transitions and observations as a continuous de-
terministic MDP where states are probability distributions
over states in the original Dec-MDP, which we call state
occupancy distributions. This allows us to adapt continu-
ous MDP techniques [6, 4] to solve decentralized MDPs.
Following this insight, we designed an algorithm where
the state occupancy exploration is performed similarly to
learning real-time A∗ [13] and the policy selection is in ac-
cordance with decentralized POMDP techniques [10, 15].
The result is an approach that is able to leverage problem
structure through heuristics, limiting the space of policies
that are explored by bounding their value and efficiently
generating policies with the use of constraint optimization.
This algorithm (termed Markov policy search or MPS), is
shown to be a much more efficient algorithm than any other
approach that can be used in Dec-MDPs with independent
transitions and observations.

The remainder of this paper is organized as follows. First,
we provide some motivating examples utilizing properties
of Dec-MDPs with independent transitions and observa-
tions. Next, we describe the Dec-MDP framework and
discuss the related work. We then present theoretical re-
sults, showing that the optimal policy for Dec-MDPs with
independent transitions and observations does not depend
on the agent histories. While this has been proven before,
we offer a more general proof that permits additional in-
sights. Next, we describe the decentralized Markov policy
search algorithm, which combines constraint optimization
and heuristic search to more efficiently produce optimal so-
lutions for Dec-MDPs with independent transitions and ob-
servations. Finally, we present an empirical evaluation of
this algorithm with respect to the state-of-the-art solvers
that apply in decentralized MDPs, showing the ability to
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Figure 1: A meeting-grid under uncertainty scenario on a
8 × 8 grid, inspired from Seuken and Zilberstein [24].

solve problems that are multiple orders of magnitude larger
and those that include up to 10 agents.

2 Motivating examples

To illustrate the characteristics of decentralized partially
observable Markov decision processes (Dec-POMDPs)
that we are interested in, consider a simple two-agent
“meeting-in-a-grid under uncertainty” domain in Figure 1.
In this scenario, two agents want to meet as soon as possi-
ble on a two-dimensional grid. In this world, each agent’s
possible actions include moving north, south, west, east
and staying in the same place. The actions of a given agent
do not affect the other agents. After taking an action, each
agent can sense some information, which in this case cor-
responds to its own location. Here, each agent’s own par-
tial information is insufficient to determine the global state
of the world. This is mainly because agents are not per-
mitted to explicitly communicate their local locations with
each other. However, if this (instantaneous and noise-free)
communication were allowed the agents’ partial informa-
tion together would reveal the true state of the world, (i.e.,
the agents’ joint location). It is the presence of this joint full
observability property that differentiates Dec-MDPs from
Dec-POMDPs.

More generally, in partially observable models including
Dec-POMDPs, the agents’ partial information together can
map to multiple different states of the world. As a con-
sequence, decisions in such models depend on the entire
past histories of actions and observations that the agents
ever experienced. In the meeting-in-a-grid under uncer-
tainty problem, since both transitions and observations are
not affected by the other agents, each agent’s decision de-
pends only on its last piece of partial information, (i.e., the
agent’s own location) [5]. These characteristics appear in
many real-world applications including:

Mars exploration rovers. The meeting-in-a-grid domain

was motivated by a real problem of controlling the opera-
tion of multiple space exploration rovers, such as the ones
used by NASA to explore the surface of Mars [27].

Distributed sensor net surveillance. The sensor net do-
main [17], where a team of stationary or moveable UAVs,
satellites, or other sensors must coordinate to track targets
while sensors have independent transitions and observa-
tions, is particularly suited to our model.

Distributed smart-grid domains. This application aims
at finding the optimal schedules and amounts of generated
power for a collection of generating units, given demands,
and operational constraints over a time horizon.

3 Background and Related Work

In this section, we review the decentralized MDP model,
the assumptions of transition and observation indepen-
dence, the associated notation, and related work.

Definition 1 (The decentralized MDP) A n-agent decen-
tralized MDP (S,A, p, r) consists of:

• A finite set S = Z1 × Z2 × · · ·Zn of states s =
〈z1, z2, · · · , zn〉, where Zi denotes the set of local ob-
servations zi of agent i = 1, 2, . . . , n.

• A finite setA = A1×A2×· · ·An of joint actions a =
〈a1, a2, · · · , an〉, where Ai is the set of local actions
ai of agent i = 1, 2, . . . , n.

• A transition function p(s, a, s′), which denotes
the probability of transiting from state s =
〈z1, z2, . . . , zn〉 to state s′ = 〈z′1, z′2, . . . , z′n〉 when
taking joint action a = 〈a1, a2, . . . , an〉

• A reward function r : S × A 7→ R, where r(s, a) de-
notes the reward received when executing joint action
a in state s

As noted above, decentralized MDPs are distinguished by
the state being jointly fully observable. This property en-
sures that the global state would be known if all agents
shared their observations at a given step (i.e., there is no
external uncertainty in the problem) and follows trivially
from the definition of states as observations for each agent.
The Dec-MDP is parameterized by the initial state distribu-
tion η0. When the agents operate over a bounded number of
steps (typically referred to as the problem horizon) T , the
model is referred to as a finite-horizon decentralized MDP.
Solving a decentralized MDP for a given planning horizon
T and start state distribution η0 can be seen as finding n
individual policies that maximize the expected cumulative
reward over the steps of the problem.
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3.1 Additional Assumptions

We are interested in decentralized MDPs that exhibit two
properties. The first is the transition independence assump-
tion where the local observation of each agent depends only
on its previous local observation and the local action taken
by that agent.

Definition 2 (The transition independent assumption)
An n-agent decentralized MDP is said to be transition
independent if there exists local transition functions
p1 : Z1 × A1 × Z1 7→ [0, 1], p2 : Z2 × A2 × Z2 7→ [0, 1],
. . . , pn : Zn ×An × Zn 7→ [0, 1] such that

p(s, a, s′) =
∏

i=1,...,n

pi(zi, ai, z′
i
),

where s = 〈z1, z2, . . . , zn〉 and s′ = 〈z′1, z′2, . . . , z′n〉
and a = 〈a1, a2, . . . , an〉.

We also implicitly assume observation independence,
which states that the observation function of each
agent does not depend on the dynamics of the other
agents. That is, P (z′1, z′2, . . . , z′n|s, a1, a2, . . . , an) =

×i P (z′i|s, ai). Because we are assuming a Dec-
MDP with the state factored into local observations
then this becomes the same as transition independence:∏
i P (z′i|zi, ai).

3.2 Preliminary Definitions and Notations

The goal of solving a Dec-MDP is to find a decentral-
ized deterministic joint policy π = 〈π1, . . . , πn〉. An in-
dividual policy πi is a sequence of decision rules πi =
〈σi0, . . . , σiT−1〉. In addition, we call decentralized decision
rule στ at time τ an n-tuple of decision rules (σ1

τ , . . . , σ
n
τ ),

for τ = 0, 1, . . . , T − 1. In this paper, we distinguish be-
tween history-dependent and Markov decision rules.

Each history-dependent decision rule σiτ at time τ maps
from τ -step local action-observation histories hiτ =
〈ai0, zi1, . . . , aiτ−1, z

i
τ 〉 to local actions: σiτ (hiτ ) = aiτ , for

τ = 0, 1, . . . , T − 1. A sequence of history-dependent de-
cision rules defines a history-dependent policy.

In contrast, each Markov decision rule σiτ at time τ maps
from local observations ziτ to local actions: σiτ (ziτ ) = aiτ ,
for τ = 0, 1, . . . , T − 1. A sequence of Markov decision
rules defines a Markov policy. Moreover, it is worth notic-
ing that decentralized Markov policies are exponentially
smaller than decentralized history-dependent ones.

The state occupancy is another important notion in this pa-
per. The τ -th state occupancy of a system under the con-
trol of a decentralized Markov policy 〈σ0, σ1, · · · , στ−1〉,
denoted σ0:τ−1, and starting at η0 is given by: ητ (s) =
P (s|σ0:τ−1, η0), for all τ ≥ 1. Moreover, the cur-
rent state occupancy ητ depends on the past decentral-
ized Markov policy σ0:τ−1 only through previous state

occupancy ητ−1 and decentralized Markov decision rule
στ−1. That is, ητ (s′) =

∑
s p(s, στ−1(s), s′) · ητ−1(s),

for all τ ≥ 1. Following [11], this update-rule is denoted
ητ = χτ (ητ−1, στ−1) for the sake of simplicity. We also
denote 4τ the state occupancy space at the τ -th horizon,
that is the standard |S|-dimensional simplex.

Distinction with belief states. The state occupancy may
be thought of as a belief state, but there are differ-
ences. Formally, a belief state bτ is given by bτ (s) =
P (s|hτ , σ0:τ−1, η0), for all τ ≥ 1 [3]. That is, in be-
lief states, the information agents have about states is typ-
ically conditioned on a single joint action-observation his-
tory hτ . From the total probability property, we then have
that ητ (s) =

∑
hτ

P (s|hτ , σ0:τ−1, η0) ·P (hτ |σ0:τ−1, η0).
Overall, the τ -th state occupancy summarizes all the infor-
mation about the world states contained in all belief states
at horizon τ . In other words, the doubly exponentially
joint action-observation histories are summarized in a sin-
gle state occupancy that does not make use of local infor-
mation.

3.3 Related Work

In this section, we focus on approaches for solving Dec-
MDPs with independent transitions and observations as
well as other relevant solution methods. For a thorough in-
troduction to solution methods in Dec-POMDPs, the reader
can refer to [24, 20, 7, 2].

Becker et al. [5] were the first to describe the transition
and observation independent Dec-MDP subclass and solve
it optimally. Their approach, called the coverage set algo-
rithm, consists of three main steps. First, sets of augmented
MDPs are created which incorporate the joint reward into
local reward functions for each agent. Then, all best re-
sponses for any of the other agent policies are found us-
ing these augmented MDPs. Finally, the joint policy that
has the highest value from all agents’ best responses is re-
turned. While this algorithm is optimal, it keeps track of the
complete set of policy candidates for each agent, requiring
a large amount of time and memory.

Petrik and Zilberstein [22] reformulated the coverage set al-
gorithm as a bilinear program, thereby allowing optimiza-
tion approaches to be utilized. The bilinear program can
be used as an anytime algorithm, providing online bounds
on the solution quality at each iteration. The representation
is also better able to take advantage of sparse joint reward
distributions by representing independent rewards as linear
terms and compressing the joint reward matrix. This results
in greatly increased efficiency in many cases, but when the
agents’ rewards often depend on the other agents the bilin-
ear program can still be inefficient due to lack of reward
sparsity.

In general Dec-POMDPs, approximate approaches have at-
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tempted to scale to larger problems and horizons by not
generating the full set of policies that may be optimal.
These approaches, known as memory-bounded algorithms,
were introduced by Seuken and Zilberstein [24] and then
successively refined [10, 15]. Memory-bounded algorithms
sample forward a bounded number of belief states, and
back up (i.e., generate next step policies for) one decen-
tralized history-dependent policy for each belief state. To
avoid the explicit enumeration of all possible policies, Ku-
mar and Zilberstein [15] perform the backup by solving
a corresponding constraint optimization problem (COP)
[9], that represents the decentralized backup. Although,
memory-bounded techniques are suboptimal, the decentral-
ized backup can be applied in exact settings as we demon-
strate in our algorithm.

More specifically, the decentralized backup can build a
horizon-τ decentralized policy that is maximal with respect
to a belief state and horizon-(τ + 1) policies available for
each agent. The associated COP is given by: a set of vari-
ables, one for each local observation of each agent; a set of
domains, where the domain for the variables corresponding
to an agent is the set of horizon-(τ + 1) policies available
for that agent; a set of soft constraints, one for each joint
observation. The soft constraint maps assignments to real
values. Intuitively, these values represent the expected re-
ward accrued when agents together perceive a given joint
observation and follow a given horizon-(τ + 1) decentral-
ized policy. Since horizon-τ decentralized policies consist
of horizon-(τ+1) policies, it is easy to see that maximizing
the sum of the soft constraints yields a maximal horizon-τ
decentralized policy.

Closer to our model is the ND-POMDP framework [19]. It
aims at modeling multiagent teamwork where agents have
strong locality of interaction, often through binary interac-
tions. That is, the reward model in such domains is de-
composed among sets of agents. There has been a substan-
tial body of work that extend general Dec-POMDP tech-
niques (discussed above) to exploit the locality of interac-
tion [19, 14, 16]. Nair et al. [19] introduced the only opti-
mal algorithm for this model, namely the General Optimal
Algorithm (GOA). When the domain does not contain bi-
nary interactions, there is no reason to expect GOA to out-
perform general Dec-POMDP algorithms, as all methods
use similar strategies in selecting policy candidates. How-
ever, when the domain contains primarily binary interac-
tions (or more generally when each agent’s rewards are not
dependent on many other agents), GOA is likely to outper-
form general Dec-POMDP algorithms.

It is worth noting that ND-POMDPs and transition and ob-
servation independent Dec-MDPs make the same assump-
tions about transition and observation independence, but
make different assumptions about the reward model and
partial observability. More specifically, ND-POMDPs as-
sume the reward can be decomposed into the sum of local

reward models for sets of agents, while the reward model
for transition and observation independent Dec-MDPs is
more general, allowing global rewards for all agents (i.e.,
considering all agents to be in one set). Dec-MDPs assume
that the state is jointly fully observable (i.e., that the state
is fully determined by the combination of local observa-
tions of all agents), while ND-POMDPs do not make this
limiting assumption. Both models therefore make different
assumptions to address complexity and the choice of model
depends on which assumptions best match the domain be-
ing solved.

4 Theoretical Properties

In this section, we demonstrate the main theoretical results
of this paper.

4.1 Optimal Policies

A decentralized MDP solver aims to calculate an optimal
decentralized policy π∗ that maximizes the expected cu-
mulative reward:

π∗ = arg maxπ E[
∑T−1
τ=0 r(sτ , aτ )|π, η0]. (1)

The following theorem proves that decentralized Markov
policies yield the optimal performance in decentralized
MDPs with independent transitions and observations.
Goldman et al. [12] established the optimality of Markov
policy for an agent under the assumption that the other
agents choose Markov policies. Here, we state the opti-
mality of Markov policies for an agent no matter what its
teammates’ policies are. We also construct the proof in a
manner that more directly relates policies to values (rather
than information sets). This may be more clear to some
readers.

Theorem 1 (Optimality of decentralized Markov policies)
In Dec-MDPs with independent transitions and observa-
tions, optimal policies for each agent depend only on the
local state and not on agent histories.

Proof Without loss of generality, we construct a proof by
induction for two agents, 1 and 2, from agent 1’s perspec-
tive. We first show that in the last step of the problem, agent
1’s policy does not depend on its local history.

Agent 1’s local policy on the last step is:
σ1∗
T−1(h1

T−1) = arg maxa1
∑
h2
T−1

P (h2
T−1|h1

T−1) ·
R(s, a1, σ2

T−1(h2
T−1)), which chooses a local action

to maximize value based on the possible local his-
tories of agent 2 and resulting states of the system
s = 〈z1

T−1, z
2
T−1〉.

Based on transition and observation independence and
the use of decentralized policies, it can be shown that
P (h2

T−1|h1
T−1) = P (h2

T−1). Due to space limitations, we
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do not include full proof of this claim. Intuitively it holds
because each agent does not receive any information about
the other agents’ local histories due to transition indepen-
dence. Therefore, we can represent agent 1’s policy on the
last step as σ1∗

T−1(h1
T−1) = arg maxa1

∑
h2
T−1

P (h2
T−1) ·

R(s, a1, σ2
T−1(h2

T−1)) which no longer depends on the his-
tory h1

T−1. Therefore, the policy on the last step for either
agent does not depend on history.

This allows us to define the value function on the last step
as υT−1(s, σ1

T−1(z1
T−1), σ2

T−1(z2
T−1)).

Then for the induction step, we can show that if the policy
at step τ + 1 does not depend on history, then the policy at
step τ also does not depend on its local history. Again, we
show this from agent 1’s perspective.

Agent 1’s policy on step τ can be represented
by: σ1∗

τ (h1
τ ) = arg maxa1

∑
h2
τ
P (h2

τ |h1
τ ) ·

υτ+1(s, a1, σ2
τ (h2

τ )), where the value function υτ+1

is assumed to not depend on history. We can again
show that P (h2

τ |h1
τ ) = P (h2

τ ) because of transition
independence and represent agent 1’s policy on step τ as:

σ1∗
τ (h1

τ ) = arg maxa1
∑
h2
τ
P (h2

τ ) · υτ+1(s, a1, σ2
τ (h2

τ ))

which no longer depends on the local history h1
τ .

Therefore, the policy of either agent does not depend on
local history for any step of the problem.

We now establish the sufficient statistic for the selection of
decentralized Markov decision rules.

Theorem 2 (Sufficient Statistic) The state occupancy is a
sufficient statistic for decentralized Markov decision rules.

Proof We build upon the proof of the optimality of decen-
tralized Markov policies in Theorem 1. We note that an
optimal decentralized Markov policy starting in η0 is given
by:

π∗ = arg maxπ
∑
τ

∑
hτ
P (hτ |σ0:τ−1, η0) · r(sτ , στ [sτ ])

The substitution of hτ by (hτ−1, aτ−1, sτ ) plus the sum
over all pairs (hτ−1, aτ−1) yields

π∗ = arg maxπ
∑
τ

∑
sτ
P (sτ |σ0:τ−1, η0) · r(sτ , στ [sτ ]),

We denote ηπτ = P (sτ |σ0:τ−1, η0) the state occupancy dis-
tribution that decentralized Markov policy π produced at
horizon τ . And hence,

π∗ = arg maxπ
∑
τ

∑
sτ∈S ηπτ (sτ ) · r(sτ , στ [sτ ])

So, state occupancy ηπτ summarizes all possible joint
action-observation histories hτ decentralized Markov pol-
icy π produced at horizon τ for the estimate of joint deci-
sion rule στ . Thus, the state occupancy is a sufficient statis-
tic for decentralized Markov decision rules since their esti-
mates depend only upon a state occupancy, and no longer
on all possible joint observation-histories.

States, belief states, and multi-agent belief states are all suf-
ficient to select directly actions for MDPs, POMDPs, and
decentralized POMDPs, respectively. This is mainly be-
cause all these statistics summarize the information about
the world states from a single agent perspective. The
state occupancy, instead, summarizes the information about
the world states from the perspective of a team of agents
that are constrained to execute their policies independently
from each other. In such a setting, joint actions cannot
be selected independently, instead, they are selected jointly
through decentralized Markov decision rules.

4.2 Optimality Criterion

This section presents the optimality criterion based on the
policy value functions.

We first define the τ -th expected immediate reward func-
tion rτ (·, στ ) : 4τ 7→ R that is given by rτ (ητ , στ ) =
Es∼ητ [r(s, στ [s])]. This quantity denotes the immediate
reward of taking decision rule στ when the system is in
state occupancy ητ at the τ -th time step.

Let υπ(η0) represent the expected total reward over the de-
cision making horizon if policy π is used and the system is
in state occupancy η0 at the first time step τ = 0. For π
in the space of decentralized Markov policies, the expected
total reward is given by:

υπ(η0) ≡ E(η1,··· ,ηT−1)

[∑T−1
τ=0 rτ (ητ , στ ) | η0, π

]

We say that a decentralized Markov policy π∗ is opti-
mal under the total reward criterion whenever υπ∗(η0) ≥
υπ(η0) for all decentralized Markov policies π.

Following the Bellman principle of optimality [23], one
can separate the problem of finding the optimal policy π∗

into simpler subproblems. Each of these subproblems con-
sists of finding policies στ :T−1 that are optimal for all
τ = 0, · · · , T − 1. To do so, we then define the τ -th value
function υστ:T−1

: 4τ 7→ R under the control of decentral-
ized Markov policy στ :T−1 as follows:

υστ:T−1
(ητ ) = rτ (ητ , στ ) + υστ+1:T−1

(χτ+1(ητ , στ ))

where quantity υστ:T−1
(ητ ) denotes the expected sum of

rewards attained by starting in state occupancy ητ , taking
one joint action according to στ , taking the next joint ac-
tion according to στ+1, and so on. We slightly abuse nota-
tion and write the τ -th value function under the control of
an “unknown” decentralized Markov policy στ :T−1 using
υτ : 4τ 7→ R.

We further denote Vτ to be the space of bounded value
functions at the τ -th horizon. For each υτ+1 ∈ Vτ+1, and
decentralized Markov decision rule στ , we define the linear
transformation Lστ : Vτ+1 7→ Vτ by

[Lστυτ+1](ητ ) = rτ (ητ , στ ) + υτ+1(χτ+1(ητ , στ )).

221



As such, the τ -th value function υτ can be built from a
(τ + 1)-th value function υτ+1 as follows:

υτ (ητ ) = maxστ [Lστυτ+1](ητ ),
υT (ηT ) = 0.

(2)

In our setting, Equations (2) denote the optimality equa-
tions. It is worth noting that the decentralized Markov
policy solution π = 〈σ0, · · · , σT−1〉 of the optimal-
ity equations is greedy with respect to value functions
υ0, . . . , υT−1.

5 Markov Policy Search

In this section, we compute optimal decentralized Markov
policy 〈σ∗0 , · · · , σ∗T−1〉 given initial state occupancy η0 and
planning horizon T . Note that while state occupancies
are used to calculate heuristics in this algorithm, the final
choices at each step do not depend on the state occupan-
cies. That is, the result is a nonstationary policy for each
agent mapping local observations to actions at each step.

We cast decentralized MDPs (S,A, p, r) as continuous and
deterministic MDPs where: states are state occupancy dis-
tributions ητ ; actions are decentralized Markov policies στ ;
the update-rules χτ (·, στ−1) define transitions; and map-
pings rτ (·, στ ) denote the reward function. So, techniques
that apply in continuous and deterministic MDPs also apply
in decentralized MDPs with independent transitions and
observations. For the sake of efficiency, we focus only on
optimal techniques that exploit the initial information η0.

The learning real-time A∗ (LRTA∗) algorithm can be used
to solve deterministic MDPs [13]. This approach updates
only states that agents actually visit during the planning
stage. Therefore, it is suitable for continuous state spaces.
Algorithm 1, namely Markov Policy Search (MPS), illus-
trates an adaptation of the LRTA∗ algorithm for solving
decentralized MDPs with independent transitions and ob-
servations. The MPS algorithm relies on lower and upper
bounds υτ and ῡτ on the exact value functions for all plan-
ning horizons τ = 0, . . . , T − 1.

We use the following definitions. Q-value functions
q̄τ (ητ , στ ) denote rewards accrued after taking decision
rule στ at state occupancy ητ and then following the policy
defined by upper-bound value functions for the remaining
planning horizons. We denote Ψτ (ητ ) = {στ} to be the set
of all stored decentralized Markov decision rules for state
occupancy ητ . Thus, ῡτ (ητ ) = maxστ∈Ψτ (ητ ) q̄τ (ητ , στ )
represents the upper-bound value at state occupancy ητ .
Formally, we have that q̄τ (ητ , στ ) = [Lστ ῡτ+1](ητ ).

Next, we describe two variants of the MPS algorithm. The
exhaustive variant replaces states by state occupancy dis-
tributions, and actions by decentralized Markov decision
rules in the LRTA∗ algorithm. The second variant uses a
constraint optimization program instead of the memory de-

manding exhaustive backup operation that both the LRTA∗

algorithm and the exhaustive variant use.

5.1 The exhaustive variant

The exhaustive variant consists of three major steps: the
initialization step (line 1); the backup operation step (line
5); and the update step (lines 6 and 8). It repeats the execu-
tion of these steps until convergence (ῡ0(η0)−υ0(η0) ≤ ε).
At this point, an ε-optimal decentralized Markov policy has
been found.

Algorithm 1: The MPS algorithm.
begin

1 Initialize bounds υ and ῡ.
2 while ῡ0(η0)− υ0(η0) > ε do
3 MPS-TRIAL(η0)

MPS-TRIAL(ητ ) begin
4 while ῡτ (ητ )− υτ (ητ ) > ε do
5 σgreedy,τ ← arg maxστ q̄τ (ητ , στ )
6 Update the upper bound value function.
7 MPS-TRIAL(χτ+1[ητ , σgreedy,τ ])
8 Update the lower bound value function.

Initialization. We initialize lower bound υτ with the
τ -th value function of any decentralized Markov pol-
icy, such as a randomly generated policy πrand =
〈σrand,0, . . . , σrand,T − 1〉, where υτ = υσrand,τ ,...,σrand,T − 1

.
We initialize the upper bound ῡτ with the τ -th value func-
tion of the underlying MDP. That is, πmdp =
〈σmdp,0, . . . , σmdp,T − 1〉, where ῡτ = υσmdp,τ ,...,σmdp,T − 1

.

The exhaustive backup operation. We choose decentral-
ized Markov decision rule σgreedy,τ , which yields the high-
est value ῡτ (ητ ) through the explicit enumeration of all
possible decentralized Markov decision rules στ . We first
store all decentralized Markov decision rules στ for each
visited state occupancy ητ together with corresponding val-
ues q̄τ (ητ , στ ). Hence, the greedy decentralized Markov
decision rule σgreedy,τ is arg maxστ q̄τ (ητ , στ ) at state oc-
cupancy ητ .

Update of lower and upper bounds. We update the lower
bound value function based on decentralized Markov poli-
cies πgreedy = 〈σgreedy,0, . . . , σgreedy,T−1〉 selected at each
trial. If πgreedy yields a value higher than that of the cur-
rent lower bound, υ0(η0) < υπgreedy(η0), we set υτ =
υσgreedy,τ ,...,σgreedy,T − 1

for τ = 0, . . . , T − 1, otherwise we
leave the lower bound unchanged. We update the upper
bound value function based on decentralized Markov deci-
sion rules σgreedy,τ and the (τ + 1)-th upper-bound value
function ῡτ+1, as follows ῡτ (ητ ) = [Lσgreedy,τ ῡτ+1](ητ ).

Theoretical guarantees. The exhaustive variant of MPS
yields both advantages and drawbacks. On the one hand,
it inherits the theoretical guarantees from the LRTA∗ al-
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gorithm. In particular, it terminates with a decentralized
Markov policy within ε = ῡ0(η0) − υ0(η0) of the opti-
mal decentralized Markov policy. Indeed, the upper bound
value functions ῡτ never underestimate the exact value at
any state occupancy ητ . This is because we update the
upper bound value at each state occupancy based upon a
greedy decision rule for this state occupancy. On the other
hand, the exhaustive variant algorithm requires the exhaus-
tive enumeration of all possible decentralized Markov de-
cision rules at each backup step (Algorithm 1, line 5). In
MDP techniques, the exhaustive enumeration is not pro-
hibitive since the action space is often manageable. In de-
centralized MDP planning, however, the space of all de-
centralized Markov decision rules increases exponentially
with increasing observations and agents. As such, the ex-
haustive variant can scale only to problems with a moderate
number of observations (local states) and two agents.

5.2 The constraint optimization formulation

To overcome the memory limitation of the exhaustive vari-
ant, we use constraint optimization instead of the exhaus-
tive backup operation. More precisely, our constraint op-
timization program returns a greedy decentralized Markov
decision rule σgreedy,τ for each state occupancy ητ visited,
but without performing the exhaustive enumeration.

In our constraint optimization formulation, variables are
associated with decision rules σiτ (zi) for all agents i =
1, . . . , n and all local observations zi ∈ Zi. The do-
main for each variable σiτ (zi) is action space Ai. For
each state s ∈ S, we associated a single soft constraint
cτ (s, ·) : A 7→ R. Each of these assigns a value cτ (s, a) =
r(s, a) +

∑
s′ p(s, a, s

′) · υσmdp,τ + 1,...,σmdp,T − 1
(s′) to each

joint action a ∈ A. Value cτ (s, a) denotes the reward ac-
crued at horizon τ when taking joint action a in state s
and then following the underlying MDP joint policy for
the remaining planning horizons. For each decentralized
Markov decision rule στ ∈ Ψτ (ητ ), we also associate a
single soft constraint gτ (·). Each of these assigns value
gτ (στ ) = q̄τ (ητ , στ )−q̄mdp(ητ , στ ), where q̄mdp(ητ , στ ) =
[Lστυσmdp,τ + 1,...,σmdp,T − 1

](ητ ). The objective of our con-
straint optimization model is to find an assignment σgreedy,τ
of actions ai to variables σiτ (zi) such that the aggregate
value is maximized. Stated formally, we wish to find
σgreedy,τ = arg maxστ gτ (στ ) +

∑
s ητ (s)cτ (s, στ (s)).

To better understand our constraint optimization program,
note that by the definition of mapping q̄mdp we have that∑
s ητ (s) · cτ (s, στ (s)) = q̄mdp(ητ , στ ). Hence, if we

use q̄mdp(ητ , στ ) instead of
∑
s ητ (s) · cτ (s, στ (s)), we get

σgreedy,τ = arg maxστ q̄τ (ητ , στ ). Thus, our constraint
optimization program returns a decentralized Markov deci-
sion rule with the highest upper-bound value. Techniques
that solve our constraint optimization formulation abound
in the literature of constraint programming [9], allowing
many different approaches to be utilized.

Theoretical guarantees. The constraint optimization vari-
ant yields the same guarantees as the exhaustive variant
without the major drawback of exhaustive enumeration of
all decentralized Markov decision rules. Instead, it uses a
constraint optimization formulation that returns a greedy
decentralized Markov decision rule, which will often be
much more efficient than exhaustive enumeration. And
hence, we retain the property that stopping the algorithm
at any time, the solution is within ε = ῡ0(η0) − υ0(η0) of
an optimal decentralized Markov policy.

Comparison to COP based algorithms. There is a rich
body of work that replaces the exhaustive backup operation
by a constraint optimization formulation in decentralized
control settings [15, 14, 19]. These constraint optimiza-
tion programs compute a decentralized history-dependent
policy for a given belief state. While MPS also takes ad-
vantage of a constraint optimization formulation, it remains
fundamentally different. The difference lies in both the
COP formulation and the heuristic search. In existing COP
based algorithms for decentralized control, authors try to
find the best assignment of sub-policies to histories. In-
stead, in our case the COP formulation aims at mapping
local observations to local actions. This provides consid-
erable memory and time savings. Moreover, existing algo-
rithms proceed by backing up policies in a backward di-
rection (i.e., from last step to first) using a set pre-selected
belief states. In contrast, the MPS algorithm proceeds for-
ward, expanding the state occupancy distributions and se-
lecting greedily decision rules. Finally, the MPS algorithm
returns an optimal solution, whereas other COP based al-
gorithms for Dec-POMDPs return only locally optimal so-
lutions [15, 14]. Approximate solutions are returned by the
other algorithms because they plan over (centralized) be-
lief states, which do not constitute a sufficient statistic for
Dec-POMDPs (or Dec-MDPs).

6 Empirical Evaluations

We evaluated our algorithm using several benchmarks from
the decentralized MDP literature. For each benchmark, we
compared our algorithms with state-of-the-art algorithms
for solving Dec-MDPs and Dec-POMDPs. Note that we
do not compare with ND-POMDP methods. Since our
benchmarks allow all agents to interact with all teammates
at all times, there is no reason to expect the optimal ND-
POMDP method (GOA [19]) to outperform the algorithms
presented here. We report on each benchmark the optimal
value υ0(η0) together with the running time in seconds for
different planning horizons.

The MPS variants were run on a Mac OSX machine with
2.4GHz Dual-Core Intel and 2GB of RAM available. We
solved the constraint optimization problems using the aolib
library1. The bilinear programming approach (listed as

1The aolib library is available at the following website:
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T υ0(η0) ICE IPG BLP MPS

exh COP

Recycling robot (|Z| = 4,|A| = 9)

50 154.94 1.27 - 8848.7 0.016 0.5
60 185.71 6.00 - - 0.090 0.555
70 216.47 28.6 - - 0.111 0.395
80 247.24 - - - 0.124 0.545
90 278.01 - - - 0.151 0.373

100 308.78 - - - 0.156 0.438
1000 3078.0 - - - 1.440 5.374

Meeting Grid (|Z| = 81,|A| = 25)

2 0.0 0.00 5 10.0 - 0.030
3 0.13 0.02 17 34.7 - 0.110
4 0.43 0.37 54 192.8 - 0.114
5 0.89 4.38 600 571.2 - 0.131
6 1.49 - - 1160.6 - 0.159
10 4.68 - - 3938.5 - 0.309

100 94.26 - - - - 13.12
1000 994.2 - - - - 33.59

T υ0(η0) ICE IPG BLP COP

Meeting on a 8x8 Grid (|Z| = 4096,|A| = 25)

5 0.0 12.55 - - 5.05
6 0.0 - - - 6.20
7 0.71 - - - 13.16
8 1.67 - - - 13.76
9 2.68 - - - 16.94

10 3.68 - - - 18.66
20 13.68 - - - 38.37
30 23.68 - - - 52.39
40 33.68 - - - 59.70
50 43.68 - - - 74.28
100 93.68 - - - 214.73

Navigation (MIT) (|Z| = 7225,|A| = 16)

10 0.0 85.85 - - 47.322
20 0.0 - - - 321.26
30 14.28 - - - 180.70
40 34.97 - - - 400.48
50 54.92 - - - 1061.94
100 154.93 - - - 1236.11

T υ0(η0) ICE IPG BLP COP

Navigation (ISR) (|Z| = 8100,|A| = 16)

2 0.0 0.71 - 3225.8 2.39
3 0.0 6.50 - - 3.19
4 0.0 - - - 4.31
5 0.38 - - - 13.43
10 6.47 - - - 54.16
50 83.02 - - - 194.66

100 182.54 - - - 1294.28
Navigation (PENTAGON) (|Z| = 9801,|A| = 16)

2 0.0 0.99 - 4915.1 1.31
3 0.0 6.01 - - 5.11
4 0.0 - - - 8.75
5 0.38 - - - 13.81
10 4.82 - - - 62.89
20 19.73 - - - 129.48
30 39.18 - - - 209.11
40 57.75 - - - 276.20
50 76.39 - - - 1033.70

Table 1: Experimental results for the COP and exh. variants of MPS as well as GMAA∗-ICE (labeled ICE), IPG, and BLP.

BLP) was run on a 2.8GHz Quad-Core Intel Mac with 2GB
of RAM with a time limit of 3 hours. We used the best
available version of the bilinear program approach which
was the iterative best response version with standard pa-
rameters. This is a generic solution method which does not
perform as well as the more specialized approaches in [22],
but we do not expect results to differ by more than a single
order of magnitude. We do not compare to the coverage
set algorithm because the bilinear programming methods
have been shown to be more efficient for all available test
problems.

We provide values for the exhaustive variant, exh, on small
problems and constraint optimization formulation, COP,
for all problems. We tested our algorithms on six bench-
marks: recycling robot, meeting-in-a-grid 3x3 and 8x8;
and navigation problems2. These are the largest and hard-
est benchmarks we could find in the literature. We com-
pare our algorithms with: GMAA∗-ICE [25], IPG [1], and
BLP. The GMAA∗-ICE heuristic search consistently out-
performs other generic exact solvers such as (G)MAA∗

[25]. The IPG algorithm is a competitive alternative to the
GMAA∗ approach and performs well on problems with re-
duced reachability [1]. Results for GMAA∗-ICE were pro-
vided by Matthijs Spaan and as such were conducted on
a different machine. Similarly, results for IPG were col-
lected on different machine. As a result, the timing results
for GMAA∗-ICE and IPG are not directly comparable to
the other methods, but are likely to only differ by a small
constant factor from those that would be obtained on our
test machine.

The results can be seen in Table 1. In all benchmarks,
the COP variant of MPS outperforms the other algorithms.
The results show that the COP variant produces the opti-

http://graphmod.ics.uci.edu/group/aolibWCSP/
2All problem definitions are available at the following website:

http://users.isr.ist.utl.pt/∼ mtjspaan/decpomdp/

mal policies in much less time for all tested benchmarks.
For example, in the meeting in a 3x3 grid problem for
T = 5: the COP variant computed the optimal policies
approximately 33, 4358 and 4580 times faster than the
GMAA∗-ICE, BLP and IPG algorithms, respectively. We
also note that the COP variant is very useful for the medium
and large domains. For example, in all large domains, the
exh. variant ran out of memory while the COP variant com-
puted the optimal solutions for horizons up to 100. Yet,
the exh. variant can compute the optimal solution of small
problems faster than the COP variant. For instance, in the
recycling robot for horizon T = 1000, the exh. variant
computed the optimal solution in about 5 times faster than
the COP variant of the MPS algorithm due to overhead in
the constraint optimization formulation and a lack of struc-
ture that can be utilized.

There are many different reasons for these results. The
MPS algorithm outperforms GMAA∗-ICE and IPG mainly
because they perform a policy search in the space of decen-
tralized history-dependent policies. Instead, the MPS algo-
rithm performs its policy search in the space of decentral-
ized Markov policies, which is exponentially smaller than
that of the decentralized history-dependent policies. The
MPS outperforms the BLP algorithm mainly because of the
dimension of its solution representation. More specifically,
the number of bilinear terms in the BLP approach grows
polynomially in the horizon of the problem, causing it to
not perform well for large problems and large horizons with
tightly coupled reward values.

We continue the evaluation of the MPS algorithm on ran-
domly generated instances with multiple agents. The ran-
dom instances were built upon the recycling robot problem
described in Sutton and Barto [26]. Given n such models,
each of which is associated with a single agent, we choose a
number of interaction events. An interaction event is a pair
of joint states and actions (s, a) where the reward r(s, a)
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is randomly chosen. This structure ties all agents together
since the reward model cannot be decomposed among sub-
groups of agents. In an effort to provide insight on the
degree of interaction among all agents, we distinguish be-
tween four classes {c0, c1, c2, c3}, each of which depends
on the number of interaction events e. For each class ck, we
randomly choose e such that e ∈ [k4 emax; k4 (1 + emax)],
where emax denotes the number of joint state and action
pairs.

As depicted in Figure 2, the constraint formulation allows
us to deal with larger numbers of agents. We calculated op-
timal value functions for 100 instances of each class, and
reported the average computational time. The COP vari-
ant was able to scale up to 6 agents at horizon 10 in about
5, 000 seconds. We could also produce results for up to
10 agents in about 40, 000 seconds using a more powerful
machine. It can also be seen that increasing the number of
interaction events on each problem does not substantially
increase the amount of time required to solve these prob-
lems. This shows that even for dense reward matrices, our
approach will continue to perform well. Despite this high
running time, MPS is the first generic algorithm that scales
to teams of more than two agents without taking advan-
tage of the locality of interaction. For example the BLP
algorithm as it currently stands can only solve two-agent
problems. Moreover, ND-POMDP techniques exploit the
small number of local interactions among agents to scale to
multiple agents, but in this problem all agents interact.
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Figure 2: The MPS performance for increasing number of
agents at planning horizon N = 10 for randomized in-
stances of the recycling robot scenario.

7 Conclusion and Future Work

This paper explores new theory and algorithms for solv-
ing independent transition and observation Dec-MDPs. We
provide a new proof that optimal policies do not depend on
agent histories in this subclass, generalizing previous the-

oretical results. We also describe a novel algorithm that
combines heuristic search and constraint optimization to
more efficiently produce optimal solutions for this class of
problems. This new algorithm, termed learning Markov
policy or MPS, was shown to scale up to large problems
and planning horizons, reducing computation time by mul-
tiple orders of magnitude over previous approaches. We
were also able to demonstrate scalability with respect to the
number of agents in domains with up to 10 agents. These
results show that our approach could be applied to many
large and realistic domains.

In the future, we plan to explore extending the MPS al-
gorithm to other classes of problems and larger teams of
agents. For instance, we may be able to produce an opti-
mal solution to more general classes of Dec-MDPs or pro-
vide approximate results for Dec-POMDPs by extending
the idea of an occupancy distribution to those problems.
Furthermore, the scalability of our approach to larger num-
bers of agents is encouraging and we will pursue methods
to increase this even further. In particular, we think our ap-
proach could help increase the number of agents that inter-
act in conjunction with other structure in the model such as
locality of interaction (as in ND-POMDPs) or sparse joint
reward matrices (as in bilinear programming approaches).
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Abstract

We develop Graph-Coupled Hidden Markov
Models (GCHMMs) for modeling the spread
of infectious disease locally within a social
network. Unlike most previous research
in epidemiology, which typically models the
spread of infection at the level of entire popu-
lations, we successfully leverage mobile phone
data collected from 84 people over an ex-
tended period of time to model the spread of
infection on an individual level. Our model,
the GCHMM, is an extension of widely-used
Coupled Hidden Markov Models (CHMMs),
which allow dependencies between state tran-
sitions across multiple Hidden Markov Mod-
els (HMMs), to situations in which those de-
pendencies are captured through the struc-
ture of a graph, or to social networks that
may change over time. The benefit of making
infection predictions on an individual level is
enormous, as it allows people to receive more
personalized and relevant health advice.

1 INTRODUCTION

Growing amounts of information available from social
network data afford us an unprecedented opportunity
to answer questions about the individual agents who
are represented in these social networks, typically as
nodes, via the use of statistical models. The goal of
this paper is to provide a framework for modeling the
dynamical interactions between individual agents in a
social network, and to specifically apply it to modeling
the spread of infection.

We present the Graph-Coupled Hidden Markov Model
(GCHMM), a discrete-time model for analyzing the in-
teractions between agents in a dynamic social network.

New data and computational power have driven re-

cent developments in models of epidemic dynamics,
in which individuals in a population can express dif-
ferent epidemic states, and change state according to
certain events. These dynamics models range from
assuming homogeneous individuals and relations [Ker-
mack and McKendrick, 1927] to incorporating increas-
ingly more information on individuals and their rela-
tionships [Eubank et al., 2004, Salathé et al., 2010,
Stehlé et al., 2011, Hufnagel et al., 2004]. For ex-
ample, Eubank [Eubank et al., 2004] predicted out-
breaks ahead of time by placing sensors in key loca-
tions, and contained epidemics through a strategy of
targeted vaccination using land-use and population-
mobility from census data. Salath [Salathé et al., 2010]
looked at matching absentee records at a high school
with the epidemic size predicted by the susceptible-
exposed-infectious-recovered (SEIR) model.

In this paper, we focus on modeling the spread of in-
fection at an individual level, instead of for an entire
population. We aim to predict the state of each indi-
vidual’s health, and the paths of illness transmission
through individuals in a social network. This informa-
tion helps us to understand how disease is transmitted
locally within a network, and to give individual-level
behavioral advice about how to best maintain good
health.

The social network data that we employ for this re-
search is mobile phone data collected from 84 people
over an extended period of time. The data track each
person’s proximity to others within the network, and
daily symptom reports signal whether individual mem-
bers of the network might be ill.

Our graph coupled hidden Markov model (GCHMM)
incorporates dynamic social network structure into a
coupled hidden Markov model [Brand et al., 1997]. A
GCHMM allows us to predict at an individual level
how the spread of illness occurs and can be avoided.
Our results point to a new paradigm of infection con-
trol based on sensor networks and individual-level
modeling.
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Access to dynamic social networks is an essential part
of modeling the spread of disease, and is useful for
many other real-world social applications as well. The
study of dynamic social networks has attracted con-
siderable research in the machine-learning community
[Goldenberg et al., 2010]. Since diffusion within dy-
namic social networks is important in many appli-
cations, we believe the GCHMM will also be useful
for studying the dynamics of fads, rumors, emotions,
opinions, culture, jargon, and so on [Castellano et al.,
2009]. Even though we focus on epidemiology in this
paper, the same model could be applied to determin-
ing, for example, to what extent an individual will
change his opinion to match the value of a random
neighbor in the formation of community consensus
[Holley and Liggett, 1975], to what extent an individ-
ual will change one of his traits to match the value of
a random neighbor using the Axelrod model of culture
formation [Axelrod, 41], how a real-world vocabulary
is formed at the society level through imitation and
alignment at the individual level [Steels, 1995], and
for any of these what further implications might be at
both the individual level and the network level.

This paper therefore makes several novel contributions
to the field of human behavior modeling and machine
learning: 1) We introduce a new class of models, GCH-
MMs, which combine coupled HMMs with dynamic so-
cial networks. We inject dynamic social network struc-
ture into the CHMM allowing us to use this class of
models for a potentially very wide range of multi-agent
network or behavior modeling tasks (e.g. rumor, in-
novation, or organizational flow in social networks).
2) We specify a particular model in that class, which
is a novel model for epidemics. This model allows us
to make individual-level epidemics predictions not en-
abled by previous epidemics methods. 3) We provide
methods for performing inference, generally in the case
of 1) and specifically in the case of 2), and discuss how
they relate to each other and previous work. These
methods provide tools for researchers interested in a
broad range of multi-agent and social network appli-
cations. 4) We validate our epidemics model on an
interesting new dataset which tracks the spread of ill-
ness on a local, individual level.

The rest of the paper is organized as follows. In section
2 we review the coupled hidden Markov model. In
section 3 we introduce the GCHMM for multi-agent
modeling in dynamic social networks. In section 4 we
show how the GCHMM can be applied to modeling
the spread of infection in networks, and in 5 we derive
the Gibbs sampler for parameter learning and latent
state estimation of the GCHMM for epidemics. In
section 6 we apply the GCHMM to our epidemic data
from an undergraduate university residence hall, which

includes daily symptom reports and hourly proximity
tracking.

2 COUPLED HIDDEN MARKOV
MODELS

A coupled hidden Markov model (CHMM) describes
the dynamics of a discrete-time Markov process that
links together a number of distinct standard hidden
Markov models (HMMs). In a standard HMM, the
value of the latent state at time t (Xt) is dependent on
only the value of the latent state at time t− 1 (Xt−1).
In contrast, the latent state of HMM i at time t in the
CHMM (Xi,t) is dependent on the latent states of all
HMMs in the CHMM at time t− 1 (X·,t−1).

The CHMM generative model is defined as follows:

Xi,t ∼ Categorical(φi,X·,t−1
) (1)

Yi,t ∼ F (θXi,t) (2)

where Xi,t is the hidden state of HMM i at time t, Yi,t
is the emission of HMM i at time t, X·,t−1 is a vec-
tor of the state values of all HMMs at time t− 1, and
φi,X·,t−1

is a vector the dimensionality of which is equal
to the number of states in the HMM and the entries
of which sum to 1. The entries in φi,X·,t−1 represent
the probability that the state variable in HMM i will
transition from its state at time t− 1 to each possible
state at time t, given the states of all other HMMs at
time t−1. θXi,t is the emission parameter for observa-
tions that derive from state Xi,t. The graphical model
for the CHMM can be seen in figure 1.

Historically, inference in CHMMs has been achieved
via maximum likelihood estimation, usually using an
Expectation-Maximization (EM) algorithm. Special-
ized CHMMs are often used in practice, however, be-
cause a CHMM with Mi states for HMM i has

∏
iMi

states in total, and the state transition kernel φi is
a
∏
iMi ×

∏
iMi matrix, both of which are a con-

siderable size. Many specializations either omit the
inter-chain probability dependence, such as in the fac-
torial hidden Markov model [Ghahramani and Jordan,
1997, Brand et al., 1997], or introduce fixed sparse
inter-chain probability dependence, such as in hidden
Markov decision trees [Jordan et al., 1996]. The dy-
namic influence model [Pan et al., 2012] allows one
chain to probabilistically depend on all other chains
through only a few sufficient statistics without increas-
ing modeling complexity.

However, in the following sections we introduce the
GCHMM, which differs from the models described
above in considering HMMs that are coupled based
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Figure 1: CHMM graphical model

on social network structure, and for which efficient
inference can be performed based on the inter-chain
“relations” of sufficient statistics.

The CHMM generative model can easily be formulated
in a Bayesian manner, which helps to avoid overfitting
problems in real-world applications [Beal, 2003]:

θXi ∼ Conj(γ) (3)

φi,X· ∼ Dirichlet(α) (4)

where Conj refers to the distribution conjugate to F ,
above, and γ and α are shared hyperparameters. Here,
θXi and φi,X· are drawn once for all times t. Xi is the
set of all state values that HMM i can take on, while
X· is the set of all state values that all HMMs can take
on in the CHMM.

This is the Bayesian formulation of the CHMM that
we extrapolate in the next section in order to deal with
situations wherein the relationship between HMMs is
mediated by a dynamic social network.

3 GRAPH-COUPLED HIDDEN
MARKOV MODELS

Here, we introduce the graph-coupled hidden Markov
model (GCHMM) to model how infection and influ-
ence spread via the interactions of agents in a dynamic
social network.

Let Gt = (N,Et) be a dynamic network, where each
n ∈ N is a node in Gt representing an individual agent,
and Et = {(ni, nj)} is a set of edges in Gt represent-
ing interactions between agents ni and nj at time t.
Graph Gt changes over time, where there is a discrete
number of observations of the structure of the graph at
times t ∈ {1 . . . T}. Changes in Gt over time represent
changes in interactions between agents in the network
over time.

We can use the CHMM in conjunction with dynamic
network Gt if we let Xn,t be the state of agent (node) n
at time t, and Yn,t be noisy observations about agent n
at time t. Gt restricts the connections between latent
state variables in the CHMM, allowing us to model
multi-agent phenomena of interest while potentially al-
lowing for efficient inference.

The generative model of the GCHMM in its most gen-
eral form is as follows:

Xn,t ∼ Categorical(φn,Xe:{n,·}∈Gt,t−1
)(5)

Yn,t ∼ F (θXn,t) (6)

θXn ∼ Conj(γ) (7)

φn,Xe:{n,·}∈Gt ∼ H(Xe:{n,·}∈Gt , µ) (8)

Unlike the CHMM, whose transition matrix φn for
HMM n is dependent on all other HMMs, φn in the
GCHMM is dependent on only the HMMs that have
edges in the graph connected to node n. Thus, φi,X·
becomes φn,Xe:{n,·}∈Gt . We assume that n itself is also
included in this set of HMMs on which n is dependent.
There is also a difference in the prior distribution of
φn. In the CHMM, the prior is the same for all rows
of the transition matrix, whereas in the GCHMM the
prior on φn, H, depends on the values of the states of
the HMMs on which n is dependent at the previous
time step.

The graphical model for the GCHMM is given in fig-
ure 2. Here, we show a GCHMM with 3 HMMs. Net-
work structure Gt is depicted in the bubbles above
each time step, also showing the dependency structure
corresponding to Gt in the GCHMM graphical model.
The structure for Gt−1 is not displayed, since it would
be off the left side of the figure.

This is a discrete-time multi-agent model, and thus it
approximates its continuous-time multi-agent counter-
part: a Markov jump process, also called a compound
Poisson process. This approximation works well only
when the time step size in the discrete-time model is
smaller than the average rate of interaction events. In
our setting, as in many settings in which these multi
agent models may be used, this is not an issue.

In the following, we describe an application of the
GCHMM to fit susceptible-infectious-susceptible epi-
demic dynamics. Here, we assume specific forms for
distributions F and H. Much like in the CHMM,
efficient inference may not always be possible in the
GCHMM, but we show that efficient inference can eas-
ily be done in our specific application. We expect that
efficient inference in the GCHMM will be possible for
many applications, since the incorporation of social
networks in the GCHMM leads to sparsity in the con-
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Figure 2: GCHMM graphical model

nections between latent variables, since these networks
are typically sparse, and the incorporation of structure
resulting from network-specific prior knowledge in H
can also often be leveraged. For example, as in the
epidemics model, H can become a simple function of
a few parameters and sufficient statistics of connected
states.

4 GCHMMS FOR MODELING
INFECTION DYNAMICS

In this section, we show that the GCHMM can be used
as a discrete-time multi-agent epidemic model, where
the spread of infection is modeled on an individual level
as opposed to the standard population-level models
commonly used in epidemiology. In section 6, we show
that the GCHMM can be applied to real-world data
based on individual proximity and symptom reporting.

In particular, the GCHMM that we apply to epidemics
can be seen as an individual-level version of the clas-
sic susceptible-infectious-susceptible (SIS) epidemiol-
ogy model. The SIS model describes infection dynam-
ics in which the infection does not confer long-lasting
immunity, and so an individual becomes susceptible
again once recovered (e.g., the common cold).

Using the GCHMM to model SIS dynamics identifies
paths of infection based on individual-level interac-
tions that are captured in our data.The classical differ-
ential equation and stochastic models of SIS dynamics
work at the population level, and their variables are
density and size of susceptible and infectious popu-

lations, respectively. The differential equation model
Ṡ = −β · SI + γ · I and İ = β · SI − γ · I for SIS spec-
ifies that the rate of change of infectious-population
density is bilinear for both infectious-population den-
sity and susceptible-population density. In this sys-
tem, any two individuals from the infectious popu-
lation are treated as the same, as are any two indi-
viduals from the susceptible population, and therefore
any two individuals from different populations have
an equal chance of causing infection. The stochas-
tic model S + I → 2I, rate = β′ · |S| · |I| and
I → S, rate = γ′ · |I| specifies that infection happens
at a bilinear rate for both the infectious-population
density and the susceptible-population density. This
model enables us to reason about the randomness in
the SIS system when the population size is small and
randomness cannot be ignored.

The above models focus on the statistics of the spread
of infection over a homogeneous population. How-
ever, we are instead interested in predicting the spread
of infection on an individual level, given relevant in-
formation about each specific individual. Our goal
is to explain symptom observations in a commu-
nity with susceptible-infectious-susceptible dynamics
at any given point in time. How likely is a person
to be infectious at time t, given that his friends are
reporting symptoms, reporting no symptoms, or not
answering surveys, and given the infectious person’s
own survey responses and his recent proximity to his
friends? Which nodes and links are critical in spread-
ing infection in the community? How can we control
infection in this community?

We use the GCHMM to address these questions, fol-
lowing the generative model given in section 3 and the
details (state space, H, F , and so on) specified here.

Gt = (N,Et) is a dynamic network, where each
node n ∈ N represents a person in the network, and
Et = {(ni, nj)} is a set of edges in Gt representing
the fact that person ni and person nj have interacted
or come into contact at time t. There are two pos-
sible latent states for each person n at each time t,
Xn,t ∈ {0, 1}, where 0 represents the susceptible state
and 1 the infectious state. There are six possible symp-
toms that can be displayed by a person at any given
time, Yn,t, which are runny nose, coughing, fever, feel-
ing stressed, sadness, and diarrhea, and each symptom
Yn,t,i ∈ {0, 1} represents the presence or absence of
symptom i.

Our generative model is therefore as follows:

Xn,t ∼ Bernoulli(φn,Xe:{n,·}∈Gt,t−1
) (9)

Yn,t,i ∼ Bernoullii(θXn,t) (10)
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θXn ∼ Beta(h) (11)

This is identical to the generative model from section 3
(the Bernoulli is the same as Categorical for 2 states),
with F specified as a multivariate Bernoulli distribu-
tion. Here, h are given hyperparameters. The gener-
ative process for φn,Xe:{n,·}∈Gt is a little more subtle,
as it is defined using the interaction structure in the
network, detailed below..

In keeping with the SIS model, we assume that there
are certain transmission rates for the infection of one
person by another, and likewise a recovery rate for an
infected individual:

µ =





α ∼ Beta(a, b)

β ∼ Beta(a′, b′)

γ ∼ Beta(a′′, b′′)

(12)

γ is the probability that a previously-infectious in-
dividual recovers and so again becomes susceptible
(p(Xn,t+1 = 0|Xn,t = 1)), β represents the proba-
bility that an infectious person infects a previously-
susceptible person (p(Xni,t+1 = 1|Xni,t = 0, Xnj ,t =
1, {ni, nj} ∈ Et+1)), and α represents the probabil-
ity that an infectious person from outside the network
infects a previously-susceptible person within the net-
work. Each of these infection probabilities is assumed
to be independent. It is also assumed that a person
cannot be infected by more than one infectious per-
sons at the same time. Here, {a, b, a′, b′, a′′, b′′} are
given hyperparameters.

Therefore, we can now compute transition matrix
φn,Xe:{n,·}∈Gt (and thus specify H from section 3) in
terms of α, β, and γ:

p(Xn,t+1 = 0|Xn,t = 1) = γ (13)

P (Xn,t+1 = 1|Xn,t = 0, Xe:{n,·}∈Gt) (14)

= 1− P (Xn,t+1 = 0|Xn,t = 0, Xe:{n,·}∈Gt)

= 1− (1− α)(1− β)
∑
e:{n,·}∈Gt Xn′,t

Thus our H from equation 8 is now a simple func-
tion of parameters µ and sufficient statistics of con-
nected states, g(X), given by the summation term in
the above equation. Intuitively, the probability of a
susceptible person becoming infected is 1 minus the
probability that no one, including someone from out-
side the network, or any of the people within the
network with whom the susceptible person is known
to have interacted, infected that individual. When
the probability of infection is very small, it is ap-
proximately the sum of the probabilities from differ-
ent sources (P (Xn,t+1 = 1|Xn,t = 0, Xe:{n,·}∈Gt) ≈

α+ β ·∑|Xe:{n,·}∈Gt|1 Xe:{n,·}∈Gt,t), since the probabil-
ity that more than one source contributed to infection
is also small.

If this assumption is correct, then the probability of
seeing an entire state sequence/matrix X is therefore
as follows:

P (X,α, β, γ)

= P (α)P (β)P (γ)
∏

n

P (Xn,1)

∏

t,n

P (Xn,t+1|{Xn′∈N,t}, α, β, γ) (15)

= P (α)P (β)P (γ)
∏

n

P (Xn,1)

∏

t,n

γ1Xn,t=1·1Xn,t+1=0 · (1− γ)1Xn,t=1·1Xn,t+1=1 ·

(α+ β ·
|Xe:{n,·}∈Gt |∑

1

Xe:{n,·}∈Gt,t)
1Xn,t=0·1Xn,t+1=1 ·

(1− α− β ·
|Xe:{n,·}∈Gt |∑

1

Xe:{n,·}∈Gt,t)
1Xn,t=0·1Xn,t+1=0

It is assumed that all people start off in the susceptible
state, and that 1• in the above equation is the indicator
function.

In general, we can often identify M types of events
in agent-based models, sometimes by taking small
enough time intervals in time-discretization to make
first-order approximation sufficient, and count the dif-
ferent ways that events of type m ∈ {1, . . . ,M} could
change an agent’s state from x′ at time t to state x 6= x′

at time t+ 1, gm(X•,t+1 = x, {Xn,t : n, t}). The state
transition matrix can then be defined as

P (Xn,t+1 = x|Xn,t 6= x,Xe:{n,•}∈Gt) ≈ (16)

M∑

m=1

µm · gm(Xn,t+1 = x,Xn,t, Xe:{n,•}∈Gt),

where µm is the success rate of event type m.

This formulation of the GCHMM enables us to fit a
wide range of agent-based models to “big data” sets
of networked people, by specifying the right ways of
counting events [Castellano et al., 2009]. For exam-
ple, in the Sznajd model of opinion dynamics [Sznajd-
Weron, 2005], any pair of agents with the same opinion
will have a small chance µ of convincing one of their
neighbors to change to their opinion. The number of
ways that an individual can be convinced by a pair of

neighbors is then g(X) =
(∑

(n′,n)∈Gt 1Xn′ 6=Xn
2

)
, and the

chance that an agent is convinced is µ ·g(X). Sznajd’s
model captures the intuition that we might not pay
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attention to a single person looking up, but we would
look up if a group of people look up.

5 INFERENCE

In this section, we present an efficient inference algo-
rithm for our GCHMM in order to describe and pre-
dict the spread of infection. We start by describing
inference in the most general, worst case for GCH-
MMs, and progress from there to much more efficient
inference for the epidemics model. The worst case in-
ference algorithm for GCHMMs will be the same as
for CHMMs (the case where the graph is complete).
A Gibbs sampling algorithm for a particular CHMM
with two chains is given in [Rezek et al., 2000], which
we extend here to an unconstrained number of chains.
The two sampling steps relevant to the extension to
multiple chains become:

Xn,t+1 ∼ Categorical([
p(Xn,t+1 = j, Y |γ, φ)∑
k p(Xn,t+1 = k, Y |γ, φ)

])

φn,i ∼ Dirichlet([αj +

T∑

τ=1

1(Xn,τ+1 = j ∧X•,τ = i)])

Here j and k are states of n, and i is the transition
matrix row number corresponding to a combination of
states for all nodes. We can see that this sampling
procedure is not very efficient, particularly for a rea-
sonably large number of chains.

Fortunately, in practice most social networks are
sparse - far from complete. The number of parame-
ters needed to be inferred will decrease dramatically
for sparse networks (from O(NN ) to O(Nnmax) where
nmax is the maximum number of connections for node
n). The parameters of the transition matrix can now
be sampled conditioned on the network structure:

φn,i ∼ Dirichlet([αj+ (17)

T∑

τ=1

1(Xn,τ+1 = j ∧Xe:{n,·}∈Gτ+1,τ = i)])

Here i now corresponds to a combination of the states
of nodes connected to n only. While significantly bet-
ter than the full CHMM, this may still be intractable
for large N or T . However, the interaction structure
that we are interested in is also not typically governed
by unrestricted transition matrices, φ. There is struc-
ture to interactions or behavior that we can leverage
to drastically increase efficiency. One common exam-
ple is that all agents may be subject to the same φ.
Another is that interactions themselves have a struc-
ture which can be captured by an H(µ, g(X)), where

H is now a function parameterized by a reasonably
small set of parameters µ and sufficient statistics of
the current state space g(X). This allows us to sam-
ple p(µ|g(X)), and then compute φ, unlike in the algo-
rithms above. This form of H applies to many multi-
agent network models including the emergence of col-
laboration, the spread of rumors and the formation of
culture. It similarly applies to our epidemics model,
as described in section 4, where where g(X) can be
efficiently computed at each node, at each time step.
We now describe the resulting inference method for the
epidemics model, and then briefly discuss applying the
same inference scheme to some more general, g(X).

The epidemics inference algorithm learns the param-
eters of infection dynamics, including the rate of in-
fection and rate of recovery. It then estimates the
likelihood that an individual becomes infectious from
the contact with other students based on the reported
symptoms of others, and even when the individual’s
own symptom report is not available. Finally, the al-
gorithm enables us to make useful predictions about
the spread of infections within the community in gen-
eral.

We employ a Gibbs sampler to iteratively sample the
infectious/susceptible latent state sequences, to sam-
ple infection and recovery events conditioned on these
state sequences, and to sample model parameters.

The Gibbs sampler for the GCHMM for epidemics is
given in detail below.

The Gibbs sampler takes the following as its input:

G = (N,E): a dynamic network where nodes n ∈ N
represent a person in the network, and Et = {(ni, nj)}
is a set of edges in Gt representing that person ni and
person nj have interacted or come into contact at time
t.

Y : an observation matrix of symptoms indexed by
time and node.

The Gibbs sampler gives the following output:

{X,α, β, γ, θ}s: samples s. This includes several pa-
rameters: α, the base rate of infection; β, the rate
of infection by each infectious neighbor in Gt; and γ,
the rate of recovery. It includes the emission matrix
θ, which expresses the probability of seeing each of
the six symptoms given the infectious/susceptible la-
tent state. It also includes the state matrix X of the
epidemics GCHMM, which shows sequences of states
0 (susceptible) and 1 (infectious) for each individual
over time.

We randomly initialize the model parameters and set
the state matrix so that every individual in the net-
work is in the susceptible state. The Gibbs sampler
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then iterates through sampling the latent states:

Xn,t+1|{X,Y }\Xn,t+1;α, β, γ ∼

Bernoulli

(
P (Xn,t+1 = 1)∑

x=0,1 P (Xn,t+1 = x)

)
(18)

P (Xn,t+1 = 1) = P (X|α, β, γ)P (Y |X)

where P (X|α, β, γ), is the same as in equation 15 mi-
nus the priors on α, β, and γ. P (Y |X) can be com-
puted in a straightforward manner from the product
of entries in the emissions matrix, θ, where P (Y |X) =∏
n,t,i P (Yi,n,t|Xn,t).

After sampling the latent statesX, we sample infection
events. Due to the interaction structure, and to ease
sampling, we introduce the auxiliary variable Rn,t to
track the source of an infection (inside or outside the
network) if an infection event occurs for person n at
time t+ 1 (i.e., Xn,t = 0 and Xn,t+1 = 1):

Rn,t ∼ Categorical


 α, β, . . . , β

α+ β
∑
n′

1(n′,n)∈Et∩Xn′,t=1


 (19)

Here Rn,t takes the value 1 if the infection event orig-
inated outside the network, and Rn,t > 1 if transmis-
sion came from someone within the network. Given
the state sequences X and infection events R, we can
sample the remaining parameters from their posteri-
ors:

α ∼ Beta(a+
∑

n,t

1{Rn,t=1},

b+
∑

n,t:Xn,t=0

1−
∑

n,t

1{Rn,t=1}), (20)

β ∼ Beta(a′ +
∑

n,t

1{Rn,t>1}, (21)

b′ +
∑

n,t:Xn,t=0;n′

1(n′,n)∈Et∩Xn′,t=1 −
∑

n,t

1{Rn,t>1}),

γ ∼ Beta(a′′ +
∑

n,t:Xn,t=1

1{Xn,t+1=0}, (22)

b′′ +
∑

n,t:Xn,t=1

1−
∑

n,t:Xn,t=1

1{Xn,t+1=0}).

In the more general M state case, we can sample
Xn,t+1 from its posterior categorical distribution sim-
ilar to equation 18, sample events Rn,t ∈ {1, . . . ,M}
(reflecting which type of event caused the state change
of Xn,t, c.f., equation 16) similar to equation 19, and

sample the success rates of different types of events
similar to equation 20.

Xn,t+1|{X,Y }\Xn,t+1;µ (23)

∼ Categorial

(
P (Xn,t+1)∑

x P (Xn,t+1 = x)

)
,

Rn,t ∼ Categorial

(
µ1g1, . . . , µMgM∑

m µmgm

)
, (24)

µm ∼ Beta(am +
∑

n,t

1Rn,t=m, (25)

bm +
∑

n,t

gm − 1Rn,t=m)

6 EXPERIMENTAL RESULTS

In this section we describe the performance of the epi-
demics GCHMM in predicting missing data in multiple
synthetic time series, comparing to a Support Vector
Machine (SVM) and standard SIS model. We also fit
our epidemics model to the hourly proximity records
and self-reported symptoms in a real world Social Evo-
lution data set.

6.1 CONTAGION IN THE SOCIAL
EVOLUTION EXPERIMENT

To demonstrate the potential of GCHMMs and our
epidemics model, we use it on the data collected in
the Social Evolution experiment [Dong et al., 2011],
part of which tracked common cold symptoms in a
student residence hall from January 2009 to April
2009. This study monitored more than 80% of the
residents of the hall through their mobile phones from
October 2008 to May 2009, taking periodic surveys
which included health-related issues and interactions,
and tracked their locations. In particular students an-
swered flu surveys, about the following symptoms: (1)
runny nose, nasal congestion, and sneezing; (2) nau-
sea, vomiting, and diarrhea; (3) frequent stress; (4)
sadness and depression; and (5) fever. Altogether, 65
residents out of 84 answered the flu surveys.

Because of the symptom reports and proximity infor-
mation, the Social Evolution data is a good test bed
for fitting infection models to real-world data, and for
inferring how friends infect one another: For almost all
symptoms, a student with a symptom had 3-10 times
higher odds of having friends with the same symptom,
confirming that symptoms are probabilistically depen-
dent on their friendship network. The durations of
symptoms averaged two days, and fit an exponential
distribution well, agreeing with the discussed epidemic
models. The base probability of a subject reporting
a symptom is approximately 0.01, and each individ-
ual had a 0.006˜0.035 increased chance of reporting
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a symptom for each additional friend with the same
symptom, in line with the assumption that the rate of
contagion is proportional to the likelihood of contact
with an infected individual.

6.2 CALIBRATING PERFORMANCE

We took several steps to calibrate the performances of
our epidemics GCHMM and a support vector classifier
on synthetic data. First, we synthesized 200 time series
– each 128 days long – from the Bluetooth proximity
pattern in the Social Evolution data and different pa-
rameterizations. Then, we randomly removed the in-
fectious/susceptible data from 10% of the population,
added noise to each time series, and then inferred the
held-out data with each method, for each parameteri-
zation.

The different parameterizations were (1) α = 0.01,
β = 0.02, and γ = 0.3, with observation error 0.01;
(2) α = 0.01, β = 0.02, and γ = 0.3, with observation
error 0.001; and (3) α = 0.005, β = 0.045, and γ = 0.3,
with observation error 0.01. Comparing performances
between (1) and (2) enables us to see the effect of ob-
servation error on algorithm performance. Comparing
performances between (1) and (3) enables us to see
the effect of the network on algorithm performance.
Comparing performances between methods enables us
to see the difference between our model-based learning
and the SVM or SIS model.

We ran Gibbs samplers for 10,000 iterations, including
1000 for burn-in. We trained the SVM on a 1000-day
time series synthesized using the correct parameteriza-
tion, and used the number of infectious contacts yes-
terday, today, and tomorrow as features. We assigned
different weights to the “infected” class and the “sus-
ceptible” class to balance the true and false prediction
rates.

All methods can easily identify 20% of infectious cases
in the missing data with little error; however, the our
model-based method consistently performs better than
SIS and SVM. Less noise in symptoms observations
and in the contact networks of individuals significantly
improves the performance of inferring missing data, as
shown in Figure 3. An ROC curve shows how differ-
ent algorithms compare in terms of inferring infectious
cases in the held out 10% of the data.

The SVM performs poorly – especially at identify-
ing isolated infectious cases – because it assumes that
cases are i.i.d and because properly incorporating the
temporal structure of epidemic dynamics into the fea-
tures is not easy. The SVM also assumes that we have
enough training data. This assumption often cannot
be satisfied for the kinds of problems we are inter-
ested in. Lastly, we also compare to the traditional
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Figure 3: Less observation error (obs.err.=0.001) and
better knowledge about the network (β = 0.045) result
in a better trade-off between true positive rate (TPR)
and false positive rate (FPR). Lack of knowledge about
the network and assuming a compete graph structure
result in poor trade-off between TPR and FPR. The
support vector classifier has a worse trade-off between
TPR and FPR than the epidemics GCHMM does.

SIS methods (both pde and stochastic). They do not
predict well because they treat everyone in the pop-
ulation the same, regardless of individual interaction
network information.

Observation noise makes inferring the individual states
difficult, since it increases uncertainty in the parame-
ters of the system. Knowledge of the dynamic contact
network also affects the quality of parameter estima-
tion and state inference. The more we know about
who contacted whom, the more targeted we can be in
locating the infectious cases.

6.3 INFERRING COLD FROM
SYMPTOMS AND PROXIMITY

In this section, we report the results of our epidemics
model on the Social Evoluation data. In order to
infer infections we extracted an hour-by-hour prox-
imity snapshot over the 107 days that we monitored
symptoms, and interpolated hourly symptom reports
from the daily symptom reports. We assumed that
the symptoms are probabilistically independent given
the common cold (infectious) state. We ran the Gibbs
sampler for 10,000 iterations, with 1000 burn-in itera-
tions.

We do not have the clinical certainty of common cold
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diagnoses . However, the statistics that we discuss be-
low give solid evidence that the epidemics model cap-
tures the structure of a infection process accompanying
the symptom report.

Figure 4 shows the (marginal) likelihood of the daily
common-cold states of individuals. Rows in this heat
map are indexed by subjects, arranged so that friends
go together, and then placed next to a dendrogram
that organizes friends hierarchically into groups. Dif-
ferent colors on the leaves of the dendrogram repre-
sent different living sectors in the student residence
hall. Columns in this heat map are indexed by date
in 2009. Brightness of a heat-map entry indicates the
likelihood of infectiousness - the brighter a cell, the
more likely it is that the corresponding subject is in-
fectious on the corresponding day. Sizes of black dots
represent the number of reported symptoms. When
a black dot doesn’t exist on a table entry, the corre-
sponding person didn’t answer the survey that day.

This heat map shows clusters of common-cold infec-
tions. When larger clusters of interpersonal proxim-
ities occurred , symptom clusters lasted longer and
involved more people. The heat map also tells us that
subjects often submitted flu-symptom surveys daily
when they were healthy, but would forget to submit
surveys when in the infectious state. The Gibbs sam-
pler nonetheless uses the data to determines that the
individual was infectious for these days. Similarly, a
subject sometimes reported isolated symptoms. The
Gibbs sampler is able to conclude the he was most
likely healthy, because the duration of the symptom
reports didn’t agree with the typical duration of a
common cold, and because his symptom report was
isolated in his contact network.

Inferred Infectious states normally last four days to
two weeks. A student typically caught a cold 2-3
times during this time span. The bi-weekly searches
of the keyword “flu” from January 2009 to April 2009
in Boston – as reported by Google Trends – correlated
with these findings.

7 CONCLUSIONS

We have presented the GCHMM for modeling discrete-
time multi-agent dynamics when the agents are con-
nected through a social network. We showed that the
GCHMM can be used as an individual-level SIS model
to successfully predict the spread of infection through-
out a social network. In the future, it would be inter-
esting to use the GCHMM to learn graph dynamics, or
to predict missing links. It would also be interesting
to try to use the GCHMM in applications with a more
complex transition matrix structure.
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Figure 4: Our epidemics GCHMM can infer common
cold state, and captures infection data from symp-
tom self-reports and the proximity network. The size
of black dots represents the number of symptoms re-
ported, ranging from zero symptoms to all, and no
black dot means no self-report.

The study of infection in small populations has im-
portant implications both for refining epidemic models
and for advising individuals about their health. The
spread of infection in this context is poorly understood
because of the difficulty in closely tracking infection
throughout a complete community. This paper show-
cases the spread of an infection centered on a student
dormitory, with data based on daily symptom surveys
over a period of four months and on proximity track-
ing through mobile phones. It also demonstrates that
fitting a discrete-time multi-agent model of infection
to real-world symptom self-reports and proximity ob-
servations gives us useful insights into infection paths
and control.
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Abstract

Particle Filter is an effective solution to track ob-
jects in video sequences in complex situations.
Its key idea is to estimate the density over the
possible states of the object using a weighted
sample whose elements are called particles. One
of its crucial step is a resampling step in which
particles are resampled to avoid some degener-
acy problem. In this paper, we introduce a new
resampling method called Combinatorial Resam-
pling that exploits some features of articulated
objects to resample over an implicitly created
sample of an exponential size better representing
the density to estimate. We prove that it is sound
and, through experimentations both on challeng-
ing synthetic and real video sequences, we show
that it outperforms all classical resampling meth-
ods both in terms of the quality of its results and
in terms of response times.

1 INTRODUCTION

Tracking articulated structures with accuracy and within a
reasonable time is challenging due to the high complexity
of the problem to solve. Actually, the state space of such
a problem is inevitably high-dimensional and the estima-
tion of the state of an object thus requires that of many
parameters. When the dynamics of the objects is linear or
linearizable and when the uncertainties about their position
are Gaussian or mixtures of Gaussians, tracking can be per-
formed analytically by Kalman-like Filters [Chen, 2003].
Unfortunately, in practice, such properties seldom hold
and people often resort to sampling to approximate so-
lutions of the tracking problem. The Particle Filter (PF)
methodology [Gordon et al., 1993] is popular among these
approaches and, in this paper, we focus on PF.

PF consists of estimating the density over the states of the
tracked object using weighted samples whose elements are

possible realizations of the object state and are called par-
ticles. PF and its variants, e.g., Partition Sampling (PS)
[MacCormick and Blake, 1999], all use a resampling step
to avoid a problem of degeneracy of the particles, i.e., the
case when all but one of the particle’s weights are close
to zero [Douc et al., 2005]. Without this step, this problem
would necessarily occur [Doucet et al., 2001].

A few resampling algorithms are classically used, e.g.,
Multinomial Resampling [Gordon et al., 1993], Residual
Resampling [Liu and Chen, 1998], Stratified and System-
atic Resampling [Kitagawa, 1996]. However, these meth-
ods have not been designed specifically to deal with articu-
lated objects and, as such, they do not exploit their features.
In this paper, we introduce Combinatorial Resampling, an
algorithm that exploits them to produce better samples by
resampling over an implicitly created sample of an expo-
nential size. More precisely, in articulated object tracking,
a particle may be thought of as a tuple of the realizations of
each “part” of the object and it is often the case that swap-
ping the realizations of a given part among several particles
has no impact on the estimated distribution. For instance,
in a human body tracking, it may be the case that swap-
ping the positions of the left arm estimated by two particles
does not alter the estimated distribution. Given a particle
set, Combinatorial Resampling produces implicitly a new
set of particles resulting from all such swappings and re-
samples from it. As such, this new set is of exponential size
and acts as a much better description of the state space.

The paper is organized as follows. The next section recalls
the basics of articulated object tracking and, in particular,
Partitioned Sampling. It also recalls the fundamentals of
dynamic Bayesian networks, as our resampling method re-
lies on them. Section 3 presents a short overview of the
aforementioned classical resampling approaches and the
next one details our new resampling approach and its cor-
rectness. Section 5 shows some experimental results both
on challenging synthetic and real video sequences. Those
highlight the efficiency of our method both in terms of the
quality of its results and in terms of response times. Finally,
we give some concluding remarks and perspectives.
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Figure 1: A Markov chain for object tracking.

2 ARTICULATED OBJECT TRACKING

In this paper, articulated object tracking consists of esti-
mating a state sequence {xt}t=1,...,T , whose evolution is
given by equation xt = ft(xt−1,n

x
t ), from observations

{yt}t=1,...,T related to the states by yt = ht(xt,n
y
t ). Usu-

ally, ft and ht are nonlinear functions, and nx
t and ny

t are
i.i.d. noise sequences. From a probabilistic viewpoint, this
problem can be represented by the Markov chain of Fig. 1
and it amounts to estimate, for any t, p(x1:t|y1:t) where
x1:t denotes the tuple (x1, . . . ,xt). This can be computed
iteratively using Eq. (1) and (2), which are referred to as a
prediction step and a correction step respectively.

p(x1:t|y1:t−1) = p(xt|xt−1)p(x1:t−1|y1:t−1) (1)
p(x1:t|y1:t) ∝ p(yt|xt)p(x1:t|y1:t−1) (2)

with p(xt|xt−1) the transition corresponding to ft and
p(yt|xt) the likelihood corresponding to ht.

The PF framework [Gordon et al., 1993] approximates the
above densities using weighted samples {x(i)

t , w
(i)
t }, i =

1, . . . , N , where each x
(i)
t is a possible realization of state

xt called a particle. In its prediction step (Eq. (1)), PF
propagates the particle set {x(i)

t−1, w
(i)
t−1} using a proposal

function q(xt|x(i)
1:t−1,yt) which may differ from p(xt|x(i)

t-1)
(but, for simplicity, we will assume they do not); in its cor-
rection step (2), PF weights the particles using a likelihood

function, so that w(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t )

p(x
(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
1:t−1,yt)

,

with
∑N
i=1 w

(i)
t = 1. The particles can then be resampled:

those with the highest weights are duplicated while the oth-
ers are eliminated. The estimation of the posterior density

p(xt|y1:t) is then given by
∑N
i=1 w

(i)
t δ

x
(i)
t

(xt), where δ
x
(i)
t

are Dirac masses centered on particles x(i)
t .

As shown in [MacCormick and Isard, 2000], the number
of particles necessary for a good estimation of the above
densities grows exponentially with the dimension of the
state space, hence making PF’s basic scheme unusable in
real-time for articulated object tracking. To cope with this
problem, different variants of PF have been proposed, rang-
ing from local search-based methods like the Annealed
Particle Filter [Deutscher and Reid, 2005, Gall, 2005]
and hierarchical-refining methods [Chang and Lin, 2010]
to decomposition techniques like Partitioned Sampling
(PS) [MacCormick and Blake, 1999] and its siblings
[Rose et al., 2008, Besada-Portas et al., 2009]. Here, we
focus on decomposition-based particle filters like PS.

PS’s key idea is that the state and observation spaces X and
Y can often be naturally decomposed as X = X 1 × · · · ×
XP and Y = Y1 × · · · × YP where each X j represents
some “part” of the object. For instance, on Fig. 2, a human
body is decomposed as 6 parts (head, torso, etc.) numbered
from 1 to 6. The state of the jth part at time t is denoted
xjt . Then, by exploiting conditional independences among
different subspaces (X j ,Yj), PS estimates p(x1:t|y1:t) us-
ing only sequential applications of PF over (X j ,Yj). For
instance, on Fig. 2, given the position of the torso, the left
and right arm positions may be independent so, after ap-
plying PF on the torso, PS can apply it sequentially to the
left and right arms and still compute a correct estimation
of p(x1:t|y1:t). As the (X j ,Yj) subspaces are “smaller”
than (X ,Y), the distributions to estimate at each iteration
of PF have fewer parameters than those defined on (X ,Y),
which significantly reduces the number of particles needed
for their estimation and, thus, speeds up the computations.

The exploitation of the conditional independences among
the (X j ,Yj) leads to generalizing the Markov chain of
Fig. 1 by the Dynamic Bayesian Network (DBN) of Fig. 2
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A human body: part 1 corresponds to the torso,
parts 2 and 3 to the left arm, parts 4 and 5 to the
right arm and part 6 to the head. On the right
side of the figure, the corresponding DBN: to
the jth part corresponds a pair of state and ob-
servation variables xjt ,y

j
t . The arcs show the

dependences between variables, including be-
tween different time slices.
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Figure 2: A Dynamic Bayesian Network.
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[Murphy, 2002], in which the global state xt of the object
is more finely described as the set of states xjt of each part
of the object. The semantics of DBNs is similar to that of
Markov chains: the arcs correspond to probabilistic depen-
dences and the joint distribution over all the nodes in the
network is equal to the product of the distributions of each
node conditionally to its parents in the graph.

The resampling scheme we introduce in this paper, i.e.,
Combinatorial Resampling, is designed to be part of PS-
like algorithms and relies on DBNs. Therefore, we shall
now formalize PS in terms of operations over DBNs. For
this purpose, for any set J = {j1, . . . , jk}, let xJt denote
the tuple (xj1t , . . . ,x

jk
t ), i.e., the tuple of the states of the

object parts in J . For instance, on Fig. 2, if J = {2, 3},
then xJt represents the state of the whole left arm. Simi-
larly, let x(i),J

t denote the tuple of the parts in J of the ith
particle. For instance, for J = {2, 3}, x(i),J

t corresponds
the state of left arm as represented by the ith particle. In
the rest of the paper, we will assume that the object is com-
posed of precisely P parts (in Fig. 2, P = 6). Now, we
shall describe a slight generalization of PS where PF is it-
eratively applied on sets of object parts instead of just sin-
gletons like PS does. When PF is applied on a set, it is
applied independently on all its elements. We need to dis-
tinguish at each step of such tracking algorithm the parts
that were already processed by PF from those that were not
yet. Thus, for any step j,

• let Pj denote the set of object parts being processed at
the jth step (in the case of PS, Pj = {j});

• let Qj =
∑j
h=1 Ph denote the set of all the object

parts processed up to (including) the jth step;

• letRj =
∑P
h=j+1 Ph denote the set of the object parts

yet to process after the jth step is completed.

Fig. 2 illustrates these notations: here, P1 = {1}, i.e., PF
is first applied only on the torso; P2 = {2, 4, 6}, i.e., at

Input: A particle set {x(i)
t−1, w

(i)
t−1} at time t− 1, an image I

Output: A particle set {x(i)
t , w

(i)
t } at time t

Q← ∅; R← {1, . . . , P}
for j = 1 to K do

foreach k in Pj do
Q′ ← Q ∪ {k}; R′ ← R\{k}
{(x(i),Q′

t ,x
(i),R′
t−1 )} ← propagate ({x(i),Q

t ,x
(i),R
t−1 })

{(w(i),Q′
t , w

(i),R′
t−1 )} ←

correct ({(x(i),Q′
t ,x

(i),R′
t−1 ), (w

(i),Q
t , w

(i),R
t−1 )}, I)

Q← Q′; R← R′

{(x(i),Q
t ,x

(i),R
t−1 ), (w

(i),Q
t , w

(i),R
t−1 )} ←

resample ({(x(i),Q
t ,x

(i),R
t−1 ), (w

(i),Q
t , w

(i),R
t−1 )})

return {x(i)
t , w

(i)
t }

Algorithm 1: Partitioned Sampling PS.

its 2nd step, the tracking algorithm applies PF in paral-
lel on parts 2, 4 and 6. Therefore, at the 2nd step, parts
Q2 = {1, 2, 4, 6} have been processed and there remains
to process parts R2 = {3, 5}. Thus, if PF has propa-
gated all the parts in Q2 from time t − 1 to t, in the par-
ticles, the parts in R2 still refer to time t − 1 (see Fig. 2).
Let K denote the number of steps of the tracking algo-
rithm, i.e., the number of sets Pj (for PS, K = P ). To
simplify the proofs in the rest of the paper, we shall fix
Q0 = RK = ∅. Now, PS can be described in Algo-
rithm 1. In [MacCormick and Isard, 2000], it is showed
that this algorithm is mathematically sound when its resam-
pling method is a weighted resampling using a g function
corresponding to p(yt|xt) (see the next section).

3 RESAMPLING METHODS

Several resampling schemes are classically used, that we
shall review briefly now. Comparisons of their pros and
cons can be found in [Douc et al., 2005].

Multinomial resampling consists of selecting N numbers
ki, i = 1, . . . , N , w.r.t. a uniform distribution U((0, 1])

on (0, 1]. Then, sample S = {x(i)
t , w

(i)
t } is sub-

stituted by a new sample S ′ = {x(D(ki))
t , 1

N } where
D(ki) is the unique integer j such that

∑j−1
h=1 w

(h)
t <

ki ≤
∑j
h=1 w

(h)
t . If (n1, . . . , nN ) denote the number

of times each of the particles in S are duplicated, then
(n1, . . . , nN ) is distributed w.r.t. the multinomial distribu-
tion Mult(N ;w

(1)
t , . . . , w

(N)
t ). Stratified resampling dif-

fers from multinomial resampling by selecting randomly
the ki’s w.r.t. the uniform distribution U(( i−1

N , iN ]). In
systematic resampling, some number k is drawn w.r.t.
U((0, 1

N ]) and, then, the ki’s are defined as ki = i−1
N + k.

Residual resampling [Liu and Chen, 1998] is a method
very efficient for decreasing the variance of the particle
set induced by the resampling step. It is performed in two
steps. First, for every i ∈ {1, . . . , N}, n′i = bNw(i)

t c du-
plicates of particle x

(i)
t of S are inserted into S ′. The N −∑n

i=1 n
′
i particles still needed to complete the N -sample

S ′ are drawn randomly using the multinomial distribution
Mult(N −∑n

i=1 n
′
i;Nw

(1)
t − n′1, . . . , Nw(N)

t − n′N ), for
instance using the multinomial resampling algorithm. The
weights assigned to all the particles in S ′ are 1/N .

Finally, weighted resampling is defined as follows: let
g : X 7→ R be any strictly positive continuous func-
tion, where X denotes the state space. Weighted resam-
pling proceeds as follows: let ρt be defined as ρt(i) =

g(x
(i)
t )/

∑N
j=1 g(x

(j)
t ) for i = 1, . . . , N . Select in-

dependently indices k1, . . . , kN according to probability
ρt. Finally, construct the new set of particles S ′ =

{x(ki)
t , w

(ki)
t /ρt(ki)}Ni=1. [MacCormick, 2000] shows that

S ′ represents the same probability distribution as S while
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focusing the particles on the peaks of g. Note however
that, unlike the other resampling methods described above,
weighted resampling does not assign equal weights (1/N )
to all the particles. In the rest of the paper, we will need
this “equal weight” feature, so whenever weighted resam-
pling will be used, it will be implicitly followed by one of
the other above resampling methods.

In the next section, we will propose a new resampling
method that exploits the structure within articulated objects
to improve the efficiency of particle filtering.

4 DBN-BASED COMBINATORIAL
RESAMPLING

Our resampling scheme is suitable for particle filters as
described in Algo. 1. More precisely, we will show in
Subsection 4.1 that, in articulated object tracking, the set
{1, . . . , P} of parts of the objects to track can be parti-
tioned into some sets {P1, . . . , PK} such that those parts
in each Pj are all independent conditionally to ∪h<jPh.
For instance, in Fig. 2, P = 6 and K = 3, P1 = {1}
corresponds to the torso, P2 = {2, 4, 6} to the head and
both arms, and P3 = {3, 5} to the forearms. In addition,
given the position of the torso (P1), those of the head and
the arms (P2) are independent. In Subsection 4.2, these
independences will be exploited to justify that permuta-
tions of some particles’ parts do not alter the estimation of
p(x1:t|y1:t). Then, our resampling scheme, which will be
described in Subsection 4.3, will exploit these permutations
to construct implicitly some new exponential-size sample
from which it will resample new high-quality samples.

4.1 IDENTIFYING SETS P1, . . . , PK

To be sound, i.e., to not alter the estimation of p(x1:t|y1:t),
Combinatorial Resampling exploits conditional indepen-
dences among the different parts of the object. The par-
tition into sets P1, . . . , PK precisely accounts for these in-
dependences and thus naturally results from a d-separation
analysis, the independence property at the core of DBNs:

Definition 1 (d-separation [Pearl, 1988]) Two nodes xit
and xjs of a DBN are dependent conditionally to a set of
nodes Z if and only if there exists a chain, i.e., an undi-
rected path, {c1 = xit, . . . , cn = xjs} linking xit and xjs in
the DBN such that the following two conditions hold:

1. for every node ck such that the arcs are ck−1 → ck ←
ck+1, either ck or one of its descendants is in Z;

2. none of the other nodes ck belongs to Z.

Such a chain is called active (else it is blocked). If there
exists an active chain linking two nodes, these nodes are
dependent and are called d-connected, otherwise they are
independent conditionally to Z and are called d-separated.

In Fig. 2, conditionally to the position of the torso up to
time t, both arms are thus independent.

In the rest of the paper, we will assume that, within each
time slice, the DBN structure is a directed tree, i.e., there
do not exist nodes xit,x

j
t ,x

k
t such that xit → xjt ← xkt .

We will also assume that arcs across time slices link sim-
ilar nodes, i.e., there exist no arc xit−1 → xjt with j 6= i.
Finally, we will assume that nodes yjt have only one parent
xjt and no children. For articulated object tracking, these
requirements are rather mild and Fig. 2 satisfies all of them.

Now, we can construct sets P1, . . . , PK : for any node, say
Xt, in time slice t of the DBN, let Pa(Xt) and Pat(Xt)
denote the set of parents of Xt in the DBN in all time
slices and in time slice t only respectively. For instance,
in Fig. 2, Pa(x2

t ) = {x1
t ,x

2
t−1} and Pat(x2

t ) = {x1
t}. Let

{P1, . . . , PK} be a partition of {1, . . . , P} defined by:

• P1 = {k ∈ {1, . . . , P} : Pat(xkt ) = ∅};

• for any j > 1, Pj = {k ∈ {1, . . . , P}\⋃j−1
h=1 Ph :

Pat(xkt ) ⊆ ⋃j−1
h=1

⋃
r∈Ph{xrt}}.

On Fig. 2, this results in P1 = {1}, P2 = {2, 4, 6} and
P3 = {3, 5}. It turns out that the way we constructed the
Pj’s, all the xkt ∈ Pj can be processed independently by
PF because they are independent conditionally to Pa(xkt ),
and this is precisely this independence property which is
needed to enable a sound object part swapping within Com-
binatorial Resampling:

Proposition 1 The particle set resulting from Algorithm 1,
with Pj defined as in the preceding paragraph, Qj =∑j
h=1 Ph and Rj =

∑K
h=j+1 Ph, represents p(xt|y1:t).

Proof: By induction on j. Assume that, be-
fore processing parts Pj , particles estimate
p(x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t ). This is clearly the
case for P1 since P1 are the first parts processed. Remem-
ber that Pj , Qj , Rj are the set of parts processed at the jth
step, up to the jth step and still to process respectively. We
will now examine sequentially the distributions estimated
by the particle set after applying in parallel PF’s predic-
tion step over the parts in Pj , then after applying PF’s
correction step and, finally, after resampling.

1. Let us show that after the parallel propagations of the
parts in Pj (prediction step), the particle set represents den-
sity p(xQjt ,x

Rj
t−1|y1:t−1,y

Qj−1

t ). For instance, on Fig. 2,
this means that, after propagating the parts in P2, the parti-
cle set estimates p(x1,2,4,6

t ,x3,5
t−1|y1:t−1,y

1
t ), i.e., only the

positions of the forearms still refer to time t − 1 and the
only observation taken into account at time t is the position
of the torso (not yet those of the head and arms). All these
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parallel operations correspond to computing:
∫
p(x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t )
∏

k∈Pj
p(xkt |Pa(xkt )) dx

Pj
t−1.

By d-separation, a node is independent of all of its non
descendants conditionally to its parents. Hence, for every
k ∈ Pj , xkt is independent of xPj\{k}t ∪ x

Qj−1

t ∪ x
Rj−1

t−1 ∪
y1:t−1∪yQj−1

t conditionally to Pa(xkt ) (see Fig. 3.a where
xkt is the doubly-circled node, Pa(xkt ) are the striped nodes
and the black and shaded nodes correspond to the inde-
pendent observation and state nodes respectively). Con-
sequently, the above integral is equivalent to:

∫
p(x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t )

p(x
Pj
t |x

Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t ) dx
Pj
t−1

=

∫
p(x

Pj
t ,x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t ) dx
Pj
t−1.

As Qj = Qj−1 ∪ Pj and Rj−1 = Pj ∪ Rj , the above
equation is equivalent to p(xQjt ,x

Rj
t−1|y1:t−1,y

Qj−1

t ).

2. Let us show that after the parallel corrections of the Pj
parts, the particle set estimates p(xQjt ,x

Rj
t−1|y1:t−1,y

Qj
t ).

These operations correspond to computing, up to
a constant, distribution p(x

Qj
t ,x

Rj
t−1|y1:t−1,y

Qj−1

t ) ×∏
k∈Pj p(y

k
t |xkt ). By d-separation, nodes ykt are inde-

pendent of the rest of the DBN conditionally to xkt , so
p(y

Pj
t |x

Qj
t ,x

Rj
t−1,y1:t−1,y

Qj−1

t ) =
∏
k∈Pj p(y

k
t |xkt ). Af-

ter the corrections over Pj , the particle set thus esti-
mates p(xQjt ,x

Rj
t−1,y

Pj
t |y1:t−1,y

Qj−1

t ), which, when nor-
malized, is equal to p(x

Qj
t ,x

Rj
t−1|y1:t−1,y

Qj−1

t ,y
Pj
t ) =

p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj
t ). As resamplings do not alter

densities, at the end of the algorithm, the particle set es-
timates p(xQKt ,xRKt−1|y1:t−1,y

QK
t ) = p(xt|y1:t). �

4.2 SUBSTATE PERMUTATIONS

The advantage of using the Pj’s as defined above instead
of singletons as the classical PS does is that this enables
to improve by permutations the particle set without alter-
ing the joint posterior density. Those permutations are the

core of Combinatorial Resampling as the latter creates im-
plicitly new particle sets resulting from all the possible per-
mutations. The next proposition determines the permuta-
tions that guarantee the distributions are not altered. Intu-
itively, it asserts that whenever two particles are such that
they have the same states on some nodes Pas(xks), then
swapping their states on xks and its descendants cannot al-
ter the density estimated by the particle set. For instance,
on Fig. 3.b, if two particles have the same value for the
striped nodes Pas(xks), their values on the shaded node xks
and the black one (xks ’s descendant) can be safely swapped.

Proposition 2 Let {(x(i),Qj
t ,x

(i),Rj
t−1 )} be the particle set

at the jth step of Algo. 1. Let k ∈ Pj and let Desct(xkt )
be the set of descendants of xkt in time slice t. Let σ :
{1, . . . , N} 7→ {1, . . . , N} be any permutation such that
x

(i),h
s = x

(σ(i)),h
s for all the nodes xhs ∈ ∪ts=1Pas(xks).

Then, the particle set resulting from the application of σ on
the parts of {(x(i),Qj

t ,x
(i),Rj
t−1 )} corresponding to {xkt }∪

Desct−1(xkt−1) still estimates p(xQjt ,x
Rj
t−1|y1:t−1,y

Qj
t ).

Proof: If j = 1, the proposition trivially holds since σ
is applied to all the nodes of the connected component
of xkt . Assume now that j 6= 1. We shall now par-
tition the object parts as described on Fig. 3.c to high-
light which parts shall be permuted, which ones shall be
identical to enable permutations and which parts are un-
concerned: let xDt−1 = Desct−1(xkt−1), xk

′
t = Pat(xkt ),

xVt = x
Qj
t \({xkt ,xk

′
t }) and xWt−1 = x

Rj
t−1\xDt−1. Thus, the

permuted parts are xkt ∪ xDt−1 (see Fig. 3.c), the identical
part is xk

′
t , and the unconcerned parts are xVt ∪ xWt−1.

p(x
Qj
t ,x

Rj
t−1|y1:t−1,y

Qj
t ) ∝ p(xQjt ,x

Rj
t−1,y1:t−1,y

Qj
t )

= p(x
{k,k′}∪V
t ,xD∪Wt−1 ,y

{k,k′}∪V
1:t ,yD∪W1:t−1 )

=

∫
p(x
{k}∪V
t ,xk

′
1:t,x

D∪W
t−1 ,y

{k,k′}∪V
1:t ,yD∪W1:t−1 )dxk

′
1:t−1

Conditionally to {xk′1:t}, S = {xkt } ∪ xDt−1 ∪ yk1:t ∪ yD1:t−1

is independent of the rest of the DBN because, by Defini-
tion 1, no active chain can pass through an arc outgoing
from a node in a conditioning set and, removing from the
DBN the arcs outgoing from {xk′1:t}, S is not connected
anymore to the rest of the DBN. For the same reason,

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��
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′
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x
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x
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Figure 3: d-separation analysis.
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xVt ∪ xWt−1 ∪ yV1:t ∪ yW1:t−1 is independent of the rest of the
DBN conditionally to {xk′1:t}. Therefore, the above integral
is equal to:

∫
p(xk

′
1:t,y

k′
1:t) p(x

k
t ,x

D
t−1,y

k
1:t,y

D
1:t−1|xk

′
1:t)

p(xVt ,x
W
t−1,y

V
1:t,y

W
1:t−1|xk

′
1:t) dx

k′
1:t−1.

(3)

Permuting particles over parts {xkt } ∪ xDt−1 for fixed
values of xk

′
1:t cannot change the estimation of density

p(xkt ,x
D
t−1,y

k
1:t,y

D
1:t−1|xk

′
1:t) because estimations by sam-

ples are insensitive to the order of the elements in the
samples. Moreover, it can neither affect the estimation of
density p(xVt ,x

W
t−1,y

V
1:t,y

W
1:t−1|xk

′
1:t) since xVt ∪ xWt−1 ∪

yV1:t ∪ yW1:t−1 is independent of {xkt } ∪ xDt−1 conditionally
to {xk′1:t}. Consequently, applying permutation σ on parts
{xkt }∪xDt−1 does not change the estimation of Eq. (3) and,
therefore, of p(xQjt ,x

Rj
t−1|y1:t−1,y

Qj
t ). �

As shown in the next subsection, these permutations can be
exploited at the resampling level to improve samples.

4.3 OUR RESAMPLING APPROACH

All the permutations satisfying Proposition 2 can be ap-
plied to the particle set without altering the estimation of
the posterior density. For instance, let x(1)

t and x
(2)
t be two

particles whose torso positions are identical, then swapping
their left arm and forearm positions (x2

t ,x
3
t−1) cannot alter

the density estimation. Similarly, the latter is unaffected by
duplications of all the particles within a particle set. This
leads to Combinatorial Resampling:

Definition 2 (Combinatorial Resampling) Let S be the
particle set at the jth step of Algo. 1. For any k ∈ Pj ,
let Σk be the set of permutations satisfying Proposition 2.
Let Σ =

∏
k∈Pj Σk. Let S′ = ∪σ∈Σ{particle set result-

ing from the application of σ to S}. Combinatorial resam-
pling consists of applying any resampling algorithm over
the combinatorial set S′ instead of S.

On the example of Fig. 2, let x
(1)
t = 〈1, 2, 3, 4, 5, 6〉,

x
(2)
t = 〈1, 2′, 3′, 4′, 5′, 6′〉 and x

(3)
t =

〈1′′, 2′′, 3′′, 4′′, 5′′, 6′′〉 be three particles, where each
number, 1, 1′′, 2, 2′, 2′′, etc., corresponds to the state of a
part in Fig. 2. Assume that S = {x(1)

t ,x
(2)
t ,x

(3)
t } at the

2nd step of Algo. 1, i.e., the object parts just processed
are P2 = {2, 4, 6}. Parts {2, 3}, {4, 5} and {6} can be
permuted in x

(1)
t and x

(2)
t because their torso, i.e. 1, are

identical, hence S′ is the union of the result of all such
permutations over S and is thus equal to:

〈1,2 ,3 ,4 ,5 ,6 〉
〈1,2 ,3 ,4 ,5 ,6′〉
〈1,2 ,3 ,4′,5′,6 〉
〈1,2 ,3 ,4′,5′,6′〉
〈1,2′,3′,4 ,5 ,6 〉
〈1,2′,3′,4 ,5 ,6′〉
〈1,2′,3′,4′,5′,6 〉
〈1,2′,3′,4′,5′,6′〉

〈1,2′,3′,4′,5′,6′〉
〈1,2′,3′,4′,5′,6 〉
〈1,2′,3′,4 ,5 ,6′〉
〈1,2′,3′,4 ,5 ,6 〉
〈1,2 ,3 ,4′,5′,6′〉
〈1,2 ,3 ,4′,5′,6 〉
〈1,2 ,3 ,4 ,5 ,6′〉
〈1,2 ,3 ,4 ,5 ,6 〉

〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉

Constructing S′ in extension is impossible in practice be-
cause |Σ| grows exponentially with N , the number of par-
ticles. Fortunately, we can sample over S′ without actually
constructing it. We shall explain the idea on the particle set
S illustrated on Fig. 4, which corresponds to the object of
Fig. 2 in which we omitted the head part for clarity reasons.
Assume that parts Pj = {3, 5}, i.e., the forearms, have just
been processed and we wish to sample over combinatorial
sample S′ induced by S. To construct a new particle, the
idea is to first select a value for the parts inQj−1, i.e., those
processed at previous steps by PF and in which no permu-
tation will occur. Here, Qj−1 = {1, 2, 4}. We thus first
determine the different values of xQj−1

t in S and partition
S into sets S1, . . . , SR such that all the particles in each
set Sh have the same value for xQj−1

t (see Fig. 4). In this
figure, S1 thus contains the first two particles since their
values on x

Qj−1

t are both 〈1, 0, 3〉. To each such set Sh
is assigned a weight Wh defined below so that picking the
value of x

Qj−1

t in Sh w.r.t. weight Wh results in a parti-
cle set estimating the same distribution as that of S. Once
the value of xQj−1

t has been chosen, there just remains to
pick independently values for each xkt and their descen-
dants, k ∈ Pj , that are compatible with that chosen for
x
Qj−1

t . Thus, for any h ∈ {1, . . . , R}, let Skh denote the set
of particles in S whose kth part value is compatible with
the value of xQj−1

t in Sh. By Proposition 2, Skh is the set of
particles in S that have the same value of Pat(xkt ) as those
in Sh. For instance, in Fig. 4, S3

1 is the set of the first 3
particles because all of them have value 1 on part 2.

Now, to determine the aforementioned weights Wh, there
just needs to count how many times the combinatorial set
has duplicated Sh. So, let N1, . . . , NR and Nk

1 , . . . , N
k
R

denote the sizes of S1, . . . , SR and Sk1 , . . . , S
k
R respec-

tively. Finally, let Nk = max{Nk
1 , . . . , N

k
R} and, for any

h ∈ {1, . . . , R}, let W k
h denote the sum of the weights as-

signed to the kth part of the particles in Skh , i.e., W k
h =∑

x
(i)
t ∈Skh

w(i),k. Then, as proved below, for any h,
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Figure 4: Sets Sih and Sikh
. Each row represents a particle

x
(i)
t and each number a value x(i),j

t of part j of the particle.
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Input: A particle set {(x(i),Qj
t ,x

(i),Rj
t−1 ), w

(i)
t }Ni=1

Output: A new particle set {(x′′(i),Qjt ,x
′′(i),Rj
t−1 ), w

′′(i)
t }Ni=1

1 for i = 1 to N do
2 h← sample {1, . . . , R} w.r.t. weights W1, . . . ,WR

3 x
′′(i),Qj−1
t ← x

(z),Qj−1
t where x

(z)
t is any element in Sh

4 w
′′(i)
t ← 1

5 foreach k in Pj do
6 x

(r)
t ← sample from Skh w.r.t. weights {w(r),k

t }xrt∈Skh
7 x

′′(i),k
t ← x

(r),k
t ; w

′′(i)
t ← w

′′(i)
t × w(r),k

t

8 x
′′(i),Desct−1(x

k
t−1)

t−1 ← x
(r),Desct−1(x

k
t−1)

t−1

9 return {x′′(i)t , w′′(i)}Ni=1

Algorithm 2: Efficient resampling over S′.

Wh = Nh ×
∏

k∈Pj

Nk!

A
Nh

Nkh

×ANh−1

Nkh−1
×W k

h , (4)

where Akn = n!/(n − k)! stands for the number of k-
permutations out of n elements. Resampling over S′ can
thus be performed efficiently as in Algo. 2. To scale-up to
large particle sets, log(Wh) should be computed instead of
Wh and the weights used in line 2 of Algo. 2 should be
exp(logWh − logW ), where W = max{W1, . . . ,WR}.

Proposition 3 Algorithm 2 produces a particle set estimat-
ing the same density as that given in input.

Proof: Let S = {(x(i),Qj
t ,x

(i),Rj
t−1 )}Ni=1 and S′ its combi-

natorial set (see Def. 2). In lines 2–3, Algo. 2 selects which
central part Qj−1 particle x′′t should have. By definition,
this amounts to selecting one set Sh w.r.t. the sum of the
weights of the particles in S′ having the same central part
as those in Sh. Let us show that this is achieved using the
weights described in Eq. (4).

In Definition 2, Σk is the set of all the possible permuta-
tions of the kth part of the particles in S. Clearly, within
each set Skh , all the Nk

h ! permutations of the kth part of the
particles of this set are admissible. They form the cycles
within the permutations of Σk and, as such, a given per-
mutation σ over Skh shall appear many times within Σk.
There is no need to count precisely how many times σ
is repeated, what is important is that the repeated sets of
particles estimate the same density as S. To do so, re-
mark that Nk = max{Nk

1 , . . . , N
k
R} is the size of the

biggest set Sk1 , . . . , S
k
R. Applying all the permutations over

this set multiplies its size by Nk!, so the size of all the
other sets should be multiplied by the same amount. Du-
plicating Nk!/Nk

h ! permutation σ guarantees that all the
Qj−1-central parts of the particles in S are duplicated the
same number of times. Now, the particles in Sh also be-
long to Skh . As |Sh| = Nh, there are ANh

Nkh
different pos-

sibilities to assign some k-part of Skh to the particles of
Sh. The number of times these permutations are repeated
within those over Skh is thus Nk

h !/ANh
Nkh

. Hence, duplicating

(Nk!/Nk
h !) × (Nk

h !/ANh
Nkh

) = Nk!/ANh
Nkh

times the permu-
tations over Sh ensures that the particle set estimates the
same density as S. The same applies to all the other parts
in Pj , hence the product in Eq. (4).

Now, let us compute the sum of the weights of the parti-
cles resulting from all the permutations over Sh. Each such
permutation generates a new set of Nh particles. By sym-
metry, if W is the sum of the weights of the first particle
in each set, call it x(i)

t , then the overall sum we look for
is Nh ×W. As permutations over the parts in Pj are in-
dependent, W is equal to the product over parts k ∈ Pj
of the sum Wk of the weights induced by all the permuta-
tions over the kth part, i.e., the permutations over Skh . By
symmetry, any weight in Skh can be assigned to x

(i)
t , hence

Wk is equal to the sum of all these weights, W k
h , times the

number O of occurrences of each weight induced by all the
permutations over Skh . For instance, if there are 3 weights
1,2,3, then there are O = 2 permutations where the first
particle as a weight of 1: 〈1, 2, 3〉 and 〈1, 3, 2〉. Once parti-
cle x

(i)
t has been assigned a weight, there remains Nh − 1

weights to assign to the other particles from a set ofNk
h −1

weights, hence there are O = ANh−1
Nkh−1

possibilities. Over-

all, Wk is thus equal to W k
h ×ANh−1

Nkh−1
and we get Eq. (4).

So, lines 2–3 select correctly the Qj−1 part. Once this is
done, by d-separation, all the parts in Pj are independent
and should be sampled w.r.t. p(xkt |Pat(xkt )), which is done
in lines 5–8 since p(xkt |Pat(xkt )) ∝ w(i),k

t . �

We shall now provide some experiments highlighting the
efficiency of our resampling scheme.

5 EXPERIMENTATIONS

We performed experiments on synthetic data in order to
create sequences varying the criteria whose impact on our
algorithm’s efficiency are the most important, i.e. the num-
ber of parts processed in parallel and the length of the ob-
ject’s arms. As such, this resulted in a fine picture of the
behaviors of our algorithm. These results are given in Sub-
section 5.1. Of course, our algorithm is also effective on
real sequences. This is illustrated in Subsection 5.2.

For both cases, articulated objects are modeled by a set of
P polygonal parts (or regions): a central one P1 (contain-
ing only one polygon) to which are linked |Pj |, j > 1, arms
of length K − 1 (see Fig. 5 for some examples). The poly-
gons are manually positioned in the first frame. State vec-
tors contain the parameters describing all the parts and are
defined by xt = {x1

t , . . . ,x
P
t }, with xkt = {xkt , ykt , θkt },

where (xkt , y
k
t ) is the center of part k, and θkt is its ori-

entation, k = 1, . . . , P . We thus have |X | = 3P . A
particle x

(i)
t = {x(i),1

t , . . . ,x
(i),P
t }, i = 1, . . . , N , is a

possible spatial configuration, i.e., a realization, of the ar-
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ticulated object. Particles are propagated using a random
walk whose variances σx, σy and σθ have been empiri-
cally fixed. Particle weights are computed by measuring
the similarity between the distribution of pixels in the re-
gion of the estimated part of the object and that of the cor-
responding reference region using the Bhattacharyya dis-
tance [Bhattacharyya, 1943]. The particle weights are then
computed by w

(i)
t+1 = w

(i)
t p(yt+1|x(i)

t+1) ∝ w
(i)
t e−λd

2

,
with, in our tests, λ = 50 and d the Bhattacharyya dis-
tance between the target (prior) and the reference (previ-
ously estimated) 8-bin histograms. The articulated object’s
distribution is estimated starting from its central part P1.

5.1 TESTS ON SYNTHETIC VIDEO SEQUENCES

We have generated our own video sequences composed of
300 frames of 800× 640 pixels. Each video displays an ar-
ticulated object randomly moving and deforming over time,
subject to either weak or strong motions. Some examples
are given in Fig. 5. With various numbers of parts, the artic-
ulated objects are designed to test the ability of resampling
to deal with high-dimensional state spaces.

We compare six different resampling approaches. The
first five (multinomial, systematic, stratified, residual and
weighted resampling) are integrated into PS. PS propagates
and corrects particles polygon after polygon to derive a
global estimation of the object. For combinatorial resam-
pling, the object’s arms are considered independent condi-
tionally to the central part and, thus, the Pj parts, j > 1,
correspond to the jth joints of all the arms. For weighted
resampling, function g is set empirically to g(w) = e20w

to favor the selection of high-weighted particles over low-
weighted ones. Results are compared w.r.t. two criteria:
computation times and estimation errors, defined as the
sum of the Euclidean distances between each corner of the
estimated parts and its sibling in the ground truth. For all
these tests, we fixed σx = σy = 1 pixel and σθ = 0.025
rad. All the results presented are a mean over 30 runs per-
formed on a MacBook Pro with a 2.66 GHz Intel Core i7.

We first compared the estimation errors. Fig 6.(a-c) show
a convergence study of the resampling methods depending
on the numberN of particles for the 3 objects of Fig. 5. For

(a) (b) (c)

K = 4, |Pj | = 4 K = 6, |Pj | = 4 K = 4, |Pj | = 8

P = 13, |X | = 39 P = 21, |X | = 63 P = 25, |X | = 125

Figure 5: Excerpts of frames from our synthetic video se-
quences, and the features of the corresponding articulated
objects (number of arms |Pj |, j > 1, length of arms K−1,
total number of parts P , and dimension of state space X ).

all these tests, combinatorial resampling (CR) outperforms
all the other methods: i) it converges faster (about only
N = 100 particles are necessary to do so) when the other
methods often require 300 particles to converge; ii) CR’s
error at convergence is much lower than that of the other
methods. For instance, in Fig.6(a), CR reaches the conver-
gence error of the other methods (about 230 pixels) with
only N = 20 particles and, with 100 particles, its error de-
creases to 112 pixels. When the length of the arms (given
byK) increases (Fig 6(b)), CR stays robust, whereas multi-
nomial, systematic, stratified and residual resampling tend
to fail (estimation errors twice higher). Weighted resam-
pling seems more stable, but gives estimation errors 25%
higher than those of CR. Finally, when the number of parts
treated in parallel increases (Fig 6(c)), CR stays stable:
with only N = 20 particles, its estimation error is 2.5 to
3 times lower than the one of other resampling approaches.

Finally, resampling times (in seconds) over the whole se-
quences, are reported in Table 1 for the estimation of the
densities of the objects of Fig. 5(a-c) with N = {100, 600}
particles. The first four resampling approaches have similar
behaviors. Due to its additional step ensuring that weights
are equal to 1/N , which is required by Algo. 1, weighted
resampling is longer. The best approach is CR when the
number of particles is high (600) and when the size of
the Pj’s is high. For instance, when tracking the object
of Fig. 5(c) (8 parts processed simultaneously), the resam-
pling times are considerably lower with CR than with the
other methods. This is due to the fact that, by process-
ing several object parts simultaneously, the number of re-
samplings performed is significantly reduced. Hence, even
if performing CR once is longer than performing another
method, overall, CR is globally faster. Note also that CR’s
response times increase more slowly with N than the other
methods. Finally, when K increases (Fig. 5(b)), our ap-
proach also provides significantly smaller resampling times
when N becomes high.

5.2 TESTS ON REAL VIDEO SEQUENCES

We tested our approach on sequences from the UCF50
dataset (http://server.cs.ucf.edu/∼vision/data/UCF50.rar),
to demonstrate the efficiency of our combinatorial resam-
pling to make the particle set better focus on the modes

Table 1: Resampling times (in seconds) for the estimation
of the density of different objects, with N = {100, 600}.

Fig. 5.a Fig. 5.b Fig. 5.c
100 600 100 600 100 600

Multinomial 0.5 17.1 1.3 46.9 1.8 79.6
Systematic 0.5 19.8 1.2 53.6 1.7 80.5
Stratified 0.5 16.9 1.3 44.8 1.7 74.9
Residual 0.5 20.3 1.3 55.7 1.8 83.4
Weighted 1.0 33.0 2.5 90.1 3.5 157.8
Combinatorial 0.7 10.6 1.5 26.3 1.5 22.3
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(a) (b) (c)

Figure 6: Comparison of convergence for different resampling approaches: errors of estimation of the density of objects
depending on N : (a) with |Pi| = 4, K = 4 (object of Fig. 5.(a)), (b) with |Pi| = 4, K = 6 (object of Fig. 5.(b)) and (c)
with |Pi| = 8, K = 4 (object of Fig. 5.(c)).

Figure 7: Tracking results on JumpRope sequence with N = 500 particles (frames 10, 50, 121 and 234). First line, using
residual resampling, last line, using our combinatorial resampling.

of the densities to estimate. This feature holds even when
there are wide movements over time and when images
have a low resolution. Qualitative results are given by su-
perimposing on the frames of the sequences a red articu-
lated object corresponding to the estimation derived from
the weighted sum of the particles. For this test, we fixed
σx = σy = 2 pixels and σθ = 0.08 rad.

Figure 7 shows tracking results on the JumpRope se-
quence (containing 290 frames of 320 × 240 pixels) with
N = 500 particles. In this sequence, a person is
quickly moving from left to right while jumping, and cross-
ing/uncrossing his arms and legs. For this test, we defined
an articulated object with P = 12 parts, hence |X | = 36,
and we compared the estimations resulting from PS with a
residual resampling (top line) with those resulting from our
proposed resampling approach (bottom line). As can be
observed, our approach produces better results: its estima-
tions are more stable along the sequence. For example, on
the images of the 2nd and 3rd columns, we can see the es-
timation of the articulated object fails with residual resam-
pling but is correct with our combinatorial resampling. For

this sequence, on average over 20 runs, our method needed
16 seconds while residual resampling needed 22. In addi-
tion, our algorithm proved to be more robust and provided
more accurate results. As for synthetic sequences, our tests
show that the higher the number of particles, the more our
algorithm outperforms residual resampling in terms of re-
sponse time. It is also always more accurate.

6 CONCLUSION

In this paper, we have introduced a new resampling method
called Combinatorial Resampling. From a given sample S,
this algorithm constructs implicitly a new sample S′ expo-
nentially larger than S. By construction, S′ is more repre-
sentative than S of the density over the whole state space
and resampling from S′ rather than S produces much bet-
ter results, as confirmed by our experiments. We proved the
mathematical correctness of the method and showed that it
is effective for real time tracking. For future researches,
there remains to exhibit theoretical convergence results for
PS combined with this new resampling scheme.
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Abstract

We present and prove properties of a new off-
line policy evaluator for an exploration learning
setting which is superior to previous evaluators.
In particular, it simultaneously and correctly in-
corporates techniques from importance weight-
ing, doubly robust evaluation, and nonstationary
policy evaluation approaches. In addition, our
approach allows generating longer histories by
careful control of a bias-variance tradeoff, and
further decreases variance by incorporating in-
formation about randomness of the target pol-
icy. Empirical evidence from synthetic and real-
world exploration learning problems shows the
new evaluator successfully unifies previous ap-
proaches and uses information an order of mag-
nitude more efficiently.

1 Introduction

We are interested in the “contextual bandit” setting, where
on each round:

1. A vector of features (or “context”) x ∈ X is revealed.
2. An action (or arm) a is chosen from a given set A.
3. A reward r ∈ [0, 1] for the action a is revealed, but

the rewards of other actions are not. In general, the
reward may depend stochastically on x and a.

This setting is extremely natural, because we commonly
make decisions based on some contextual information and
get feedback about that decision, but not about other deci-
sions. Prominent examples are the ad display problems at
Internet advertising engines [15, 7], content recommenda-
tion on Web portals [18], as well as adaptive medical treat-
ments. Despite a similar need for exploration, this setting
is notably simpler than full reinforcement learning [25],

∗This work was done while MD, JL, and LL were at Yahoo!
Research.

because there is no temporal credit assignment problem—
each reward depends on the current context and action only,
not on previous ones.

The goal in this setting is to develop a good policy for
choosing actions. In this paper, we are mainly concerned
with nonstationary policies which map the current context
and a history of past rounds to an action (or a distribution
of actions). Note that as a special case we cover also sta-
tionary policies, whose actions depend on the currently ob-
served context alone. While stationary policies are often
sufficient in supervised learning, in situations with partial
feedback, the most successful policies need to remember
the past, i.e., they are nonstationary.

The gold standard of performance here is deploying a pol-
icy and seeing how well it actually performs. This standard
can be very expensive in industrial settings and often im-
possible in academic settings. These observations motivate
us to construct methods for scoring policies offline using
recorded information from previously deployed policies.
As a result, we can dramatically reduce the cost of deploy-
ing a new policy while at the same time rapidly speeding
up the development phase through the use of benchmarks,
similar to supervised learning (e.g., the UCI repository [1])
and off-policy reinforcement learning [21]. We would like
our method to be as general and rigorous as possible, so
that it could be applied to a broad range of policies.

An offline policy evaluator is usually only useful when the
future behaves like the past, so we make an IID assump-
tion: the contexts are drawn IID from an unknown distri-
bution D(x), and the conditional distribution of rewards
D(r|x, a) does not change over time (but is unknown). In
our intended applications like medical treatments or Inter-
net advertising, this is a reasonable assumption.

Below, we identify a few desiderata for an offline evaluator:

• Low estimation error. This is the first and foremost
desideratum. The error typically comes from two
sources—bias (due to covariate shift and/or insuffi-
cient expressivity) and variance (insufficient number
of samples). Successful methods allow optimization
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of the tradeoff between these two components.
• Incorporation of a prior reward estimator. The evalu-

ator should be able to take advantage of a reasonable
reward estimator whenever it is available.

• Incorporation of “scavenged exploration.” The eval-
uator should be able to take advantage of ad hoc past
deployment data, with the quality of such data deter-
mining the bias introduced.

Existing Methods. Several prior evaluators have been
proposed. We are going to improve on all of them.

• The direct method (DM) first builds a reward estima-
tor r̂(x, a) from logged data that predicts the average
reward of choosing action a in context x, and then
evaluates a policy against the estimator. This straight-
forward approach is flexible enough to evaluate any
policy, but its evaluation quality relies critically on the
accuracy of the reward estimator. In practice, learning
a highly accurate reward estimator is extremely chal-
lenging, rendering high bias in the evaluation results.

• Inverse Propensity Scoring (IPS) [11] and importance
weighting require the log of past deployment that in-
cludes for each action the probability p with which
it was chosen. The expected reward of policy π is
estimated by rI(π(x)=a)

p , where I(·) is the indicator
function. This formula comes up in many contexts
and is built into several algorithms for learning in this
setting such as EXP4 [3]. The IPS evaluator can take
advantage of scavenged exploration through replacing
p by an estimator p̂ [16, 24], but it does not allow eval-
uation of nonstationary policies and does not take ad-
vantage of a reward estimator.

• Doubly Robust (DR) Policy Evaluation [6, 23, 22, 20,
13, 7, 8] incorporates a (possibly biased) reward esti-
mator in the IPS approach according to:

(r − r̂(x, a))I(π(x) = a)/p+ r̂(x, π(x)) , (1.1)

where r̂(x, a) is the estimator of the expected reward
for context x and action a. The DR evaluator remains
unbiased (for arbitrary reward estimator), and usually
improves on IPS [8]. However, similar to IPS, it does
not allow evaluation of nonstationary policies.

• Nonstationary Policy Evaluation [18, 19] uses rejec-
tion sampling (RS) to construct an unbiased history of
interactions between the policy and the world. While
this approach is unbiased, it may discard a large frac-
tion of data through stringent rejection sampling, es-
pecially when the actions in the log are chosen from
a highly non-uniform distribution. This can result in
unacceptably large variance.

Contributions. In this paper, we propose a new policy
evaluator that takes advantage of all good properties from
the above approaches, while avoiding their drawbacks. As
fundamental building blocks we use DR estimation, which

Algorithm 1 DR-ns(π, {(xk, ak, rk, pk)}, q, cmax)
1. h0 ← ∅, t← 1, c1 ← cmax

R← 0, C ← 0, Q← ∅
2. For k = 1, 2, . . . consider event (xk, ak, rk, pk)

(a) Rk ←
∑

a′

π(a′|xk, ht−1)r̂(xk, a
′)

+
π(ak|xk, ht−1)

pk
· (rk− r̂(xk, ak))

(b) R← R+ ctRk
(c) C ← C + ct

(d) Q← Q ∪
{

pk
π(ak|xk, ht−1)

}

(e) Let uk ∼ Uniform[0, 1]

(f) If uk ≤
ctπ(ak|xk, ht−1)

pk
i. ht ← ht−1 + (xk, ak, rk)

ii. t← t+ 1
iii. ct ← min{cmax, q-th quantile of Q}

3. Return R/C

is extremely efficacious in stationary settings, and rejection
sampling, which tackles nonstationarity. We introduce two
additional strategies for variance control:

• In DR, we harness the knowledge of the randomness
in the evaluated policy (“revealed randomness”). Ran-
domization is the preferred tool for handling the ex-
ploration/exploitation tradeoff and if not properly in-
corporated into DR, it would yield an increase in the
variance. We avoid this increase without impacting
bias.

• We substatially improve sample use (i.e., acceptance
rate) in rejection sampling by modestly increasing the
bias. Our approach allows an easy control of the
bias/variance tradeoff.

As a result, we obtain an evaluator of nonstationary poli-
cies, which is extremely sample-efficient while taking ad-
vantage of reward estimators and scavenged exploration
through incorporation into DR. Our incorporation of re-
vealed randomness yields a favorable bonus: when the past
data is generated by the same (or very similar) policy as
the one evaluated, we accept all (or almost all) samples—a
property called “idempotent self-evaluation.”

After introducing our approach in Sec. 2, we analyze its
bias and variance in Sec. 3, and finally present an extensive
empirical evaluation in Sec. 4.

2 A New Policy Evaluator

Algorithm 1 describes our new policy evaluator DR-ns (for
”doubly robust nonstationary”). Over the run of the algo-
rithm, we process the past deployment data (exploration
samples) and run rejection sampling (Steps 2e–2f) to cre-
ate a simulated history ht of the interaction between the
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target policy and the environment. The algorithm returns
the expected reward estimate R/C.

The algorithm takes as input a target policy to evaluate, ex-
ploration samples, and two scalars q and cmax which con-
trol the tradeoff between the length of ht and bias. On
each exploration sample, we use a modified DR to estimate
Eπ[rt|xt = xk, ht−1] (Step 2a). Compared with Eq. (1.1),
we take advantage of revealed randomness.

The rate of acceptance in rejection sampling is controlled
by the variable ct that depends on two parameters: cmax,
controlling the maximum allowed acceptance rate, and q,
which allows adaptive (policy-specific) adjustment of the
acceptance rate. The meaning of q is motivated by unbi-
ased estimation as follows: to obtain no bias, the value of ct
should never exceed the ratio pk/π(ak|xk, ht−1) (i.e., the
right-hand side in Step 2f should never exceed one). Dur-
ing the run of the algorithm we keep track of the observed
ratios (inQ), and q determines the quantile of the empirical
distribution in Q, which we use as an upper bound for ct.
Setting q = 0, we obtain the unbiased case (in the limit).
By using larger values of q, we increase the bias, but get
longer sequences through increased acceptance rate. Simi-
lar effect is obtained by varying the value of cmax, but the
control is cruder, since it ignores the evaluated policy.

In reward estimation, we weigh the current DR estimate by
the current acceptance rate, ct (Step 2b). In unbiased case,
for each simulated step t, we expect to accumulate multiple
samples with the total weight of 1 in expectation. To obtain
better scaling (similar to importance weighted methods),
we also accumulate the sum of weights ct in the variable
C, and use them to renormalize the final estimate as R/C.

As a quick observation, if we let cmax = 1 and evaluate
a (possibly randomized nonstationary) policy on data that
this policy generated, every event is accepted into the his-
tory regardless of q. Note that such aggressive all-accept
strategy is unbiased for this specific “self-evaluation” set-
ting and makes the maximal use of data. Outside self-
evaluation, q has an effect on acceptance rate (stronger if
exploration and target policy are more different). In our
experiments, we set cmax = 1 and rely on q to control the
acceptance rate.

3 Analysis

We start with basic definitions and then proceed to analysis.

3.1 Definitions and Notation

Let D(x) and D(r|x, a) denote the unknown (conditional)
distributions over contexts and over rewards. To simplify
notation (and avoid delving into measure theory), we as-
sume that rewards and contexts are taken from some count-
able sets, but our theory extends to arbitrary measurable

context spaces X and arbitrary measurable rewards in [0, 1].
We assume that actions are chosen from a finite set A (this
is a critical assumption). Our algorithm also uses an esti-
mator of expected conditional reward r̂(x, a), but we do not
require that this estimator be accurate. For example, one
can define r̂(x, a) as a constant function for some value in
[0, 1]; often the constant may be chosen 0.5 as the minimax
optimum [4]. However, if r̂(x, a) ≈ ED[r|x, a], then our
value estimator will have a lower variance but unchanged
bias [8]. In our analysis, we assume that r̂ is fixed and de-
termined before we see the data (e.g., by initially splitting
the input dataset).

We assume that the input data is generated by some
past (possibly nonstationary) policy, which we refer to
as the “exploration policy.” Contexts, actions, and re-
wards observed by the exploration policy are indexed by
timesteps k = 1, 2, . . . . The input data consists of tuples
(xk, ak, rk, pk), where contexts and rewards are sampled
according toD, and pk is the logged probability with which
the action ak was chosen. In particular, we will not need
to evaluate probabilities of choosing actions a′ 6= ak, nor
require the full knowledge of the past policy, substantially
reducing logging efforts.

Our algorithm augments tuples (xk, ak, rk, pk) by indepen-
dent samples uk from the uniform distribution over [0, 1].
A history up to the k-th step is denoted

zk = (x1, a1, r1, p1, u1, . . . , xk, ak, rk, pk, uk) ,

and an infinite history (xk, ak, rk, pk, uk)
∞
k=1 is denoted z.

In our analysis, we view histories z as samples from a dis-
tribution µ. Our assumptions about data generation then
translate into the assumption about factoring of µ as

µ(xk, ak, rk, pk, uk|zk−1)

= D(xk)µ(ak|xk, zk−1)D(rk|xk, ak)

I (pk = µ(ak|xk, zk−1))U(uk)

where U is the uniform distribution over [0, 1]. Note that
apart from the unknown distribution D, the only degree of
freedom above is µ(ak|xk, zk−1), i.e., the unknown explo-
ration policy.

When zk−1 is clear from the context, we use a shorthand
µk for the distribution over the k-th tuple

µk(x, a, r, p, u)

= µ
(
xk = x, ak = a, rk = r, pk = p, uk = u

∣∣ zk−1
)
.

We also write Pµk and Eµk for Pµ[·|zk−1] and Eµ[·|zk−1].

For the target policy π, we index contexts, actions, and re-
wards by t. Finite histories of this policy are denoted as

ht = (x1, a1, r1, . . . , xt, at, rt)

and the infinite history is denoted h. Nonstationary poli-
cies depend on a history as well as the current context, and
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hence can be viewed as describing conditional probabil-
ity distributions π(at|xt, ht−1) for t = 1, 2, . . . . In our
analysis, we extend the nonstationary target policy π into a
probability distribution over h defined by the factoring

π(xt, at, rt|ht−1) = D(xt)π(at|xt, ht−1)D(rt|xt, at) .

Similarly to µ, we define shorthands πt(x, a, r), Pπt , Eπt .

We assume a continuous running of our algorithm on an
infinite history z. For t ≥ 1, let κ(t) be the index of the
t-th sample accepted in Step 2f; thus, κ converts an index
in the target history into an index in the exploration his-
tory. We set κ(0) = 0 and define κ(t) = ∞ if fewer than
t samples are accepted. Note that κ is a deterministic func-
tion of the history z. For simplicity, we assume that for
every t, Pµ[κ(t) = ∞] = 0. This means that the algo-
rithm generates a distribution over histories h, we denote
this distribution π̂.

Let B(t) = {κ(t − 1) + 1, κ(t − 1) + 2, . . . , κ(t)} for
t ≥ 1 denote the set of sample indices between the (t− 1)-
st acceptance and the t-th acceptance. This set of samples
is called the t-th block. The inverse operator identifying the
block of the k-th sample is τ(k) = t such that k ∈ B(t).
The contribution of the t-th block to the value estimator is
denoted RB(t) =

∑
k∈B(t)Rk. In our analysis, we assume

a completion of T blocks, and consider both normalized
and unnormalized estimators:

R =

T∑

t=1

ctRB(t) , R̃avg =

∑T
t=1 ctRB(t)∑T
t=1 ct|B(t)|

.

3.2 Bias Analysis

Our goal is to develop an accurate estimator. Ideally, we
would like to bound the error as a function of an increasing
number of exploration samples. For nonstationary policy,
it can be easily shown that a single simulation trace of a
policy can yield reward that is bounded away by 0.5 from
the expected reward regardless of the length of simulation
(see, e.g., Example 3 in [19]). Hence, even for unbiased
methods, we cannot accurately estimate the expected re-
ward from a single trace.

A simple (but wasteful) approach is to divide the explo-
ration samples into several parts, run the algorithm sepa-
rately on each part, obtaining estimates R(1), . . . , R(m),
and return the average

∑m
i=1R

(i)/m. (We only consider
the unnormalized estimator in this section. We assume that
the division into parts is done sequentially, so that each
estimate is based on the same number of blocks T .) Us-
ing standard concentration inequalities, we can then show
that the average is within O(1/

√
m) of the expectation

Eµ[R]. The remaining piece is then bounding the bias term
Eµ[R]−Eπ

[∑T
t=1 rt

]
.

Recall that R =
∑T
t=1 ctRB(t). The source of bias

are events when ct is not small enough to guarantee that

ctπ(ak|xk, ht−1)/pk is a probability. In this case, the prob-
ability that the k-th exploration sample is accepted is

pk min
{

1, ctπ(ak|xk,ht−1)
pk

}
= min {pk, ctπ(ak|xk, ht−1)} ,

which violates the unbiasedness requirement that the prob-
ability of acceptance be proportional to π(ak|xk, ht−1).

Let Ek denote this “bad” event (conditioned on zk−1 and
the induced target history ht−1):

Ek = {(x, a) : ctπt(a|x) > µk(a|x)} .

Associated with this event is the “bias mass” εk:

εk = P
(x,a)∼πt

[Ek]− P
(x,a)∼µk

[Ek]/ct .

Notice that from the definition of Ek, this mass is non-
negative. Since the first term is a probability, this mass is at
most 1. We assume that this mass is bounded away from 1,
i.e., that there exists ε such that for all k and zk−1 we have
the bound 0 ≤ εk ≤ ε < 1.

The following theorem analyzes how much bias is intro-
duced in the worst case, as a function of ε. Its purpose is to
identify the key quantities that contribute to the bias, and to
provide insights of what to optimize in practice.
Theorem 1. For T ≥ 1,
∣∣∣∣∣Eµ

[
T∑

t=1

ctRB(t)

]
−Eπ

[
T∑

t=1

rt

]∣∣∣∣∣ ≤
T (T + 1)

2
· ε

1− ε .

Intuitively, this theorem says that if a bias of ε is introduced
in round t, its effect on the sum of rewards can be felt for
T − t rounds. Summing over rounds, we expect to get an
O(εT 2) effect on the unnormalized bias in the worst case
or equivalently a bias of O(εT ) on the average reward. In
general a very slight bias can result in a significantly better
acceptance rate, and hence longer histories (or more repli-
cates R(i)).

This theorem is the first of this sort for policy evaluators, al-
though the mechanics of proving correctness are related to
the proofs for model-based reinforcement-learning agents
in MDPs (e.g., [14]). A key difference here is that we de-
pend on a context with unbounded complexity rather than
a finite state space.

Before proving Theorem 1, we state two technical lemmas
(for proofs see Appendix B). Recall that π̂ denotes the dis-
tribution over target histories generated by our algorithm.
Lemma 1. Let t ≥ 1, k ≥ 1 and let zk−1 be such that
κ(t− 1) = k− 1. Let ht−1 and ct be the target history and
acceptance ratio induced by zk−1. Then:
∑

x,a

∣∣Pµk [xκ(t) = x, aκ(t) = a]− πt(x, a)
∣∣ ≤ 2ε

1− ε ,

∣∣ctEµk [RB(t)]−Eπt [rt]
∣∣ ≤ ε

1− ε .
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Lemma 2.
∑
hT
|π̂(hT )− π(hT )| ≤ (2εT ) / (1− ε) .

Proof of Theorem 1. We first bound a single term
|Ez∼µ[ctRB(t)] − Eh∼π[rt]| using the previous two
lemmas, the triangle inequality and Hölder’s inequality:
∣∣Ez∼µ[ctRB(t)]−Eh∼π[rt]

∣∣

=
∣∣∣Ez∼µ

[
ctE

µ
κ(t)[RB(t)]

]
−Eh∼π[rt]

∣∣∣

≤
∣∣Ez∼µ [Eπt [rt]]−Eh∼π [Eπt [rt]]

∣∣+
ε

1− ε
=

∣∣∣∣ E
ht−1∼π̂

[
Eπt

[
r − 1

2

]]
− E
ht−1∼π

[
Eπt

[
r − 1

2

]]∣∣∣∣+
ε

1− ε

≤ 1

2

∑

ht−1

∣∣π̂(ht−1)− π(ht−1)
∣∣+

ε

1− ε

≤ 1

2
· 2ε(t− 1)

1− ε +
ε

1− ε =
εt

1− ε .

The theorem now follows by summing over t and using the
triangle inequality.

3.3 Progressive Validation

While the bias analysis in the previous section qualitatively
captures the bias-variance tradeoff, it cannot be used to
construct an explicit error bound. The second and perhaps
more severe problem is that even if we had access to a more
explicit bias bound, in order to obtain deviation bounds, we
would need to decrease the length of generated histories
by a significant factor (at least according to the simple ap-
proach discussed at the beginning of the previous section).

In this section, we show how we can use a single run of our
algorithm to construct a stationary policy, whose value is
estimated with an error O(1/

√
n) where n is the number

of original exploration samples. Thus, in this case we get
explicit error bound and much better sample efficiency.

Assume that the algorithm terminates after fully generating
T blocks. We will show that the valueR/C returned by our
algorithm is an unbiased estimate of the expected reward of
the randomized stationary policy πPV defined by:

πPV(a|x) =

T∑

t=1

ct|B(t)|
C

π(a|x, ht−1) .

Conceptually, this policy first picks among the histories h0,
. . . , hT−1 with probabilities c1|B(1)|/C, . . . , ct|B(T )|/C,
and then executes the policy π given the chosen history. We
extend πPV to a distribution over triples

πPV(x, a, r) = D(x)πPV(a|x)D(r|x, a) .

To analyze our estimator, we need to assume that during
the run of the algorithm, the ratio πt(ak|xk)/µk(ak|xk) is
bounded, i.e., we assume there exists M <∞ such that

∀z, ∀t ≥ 1, ∀k ∈ B(t) :
πt(ak|xk)

µk(ak|xk)
≤M .

Next, fix zk−1 and let t = τ(k) (note that τ(k) is a deter-
ministic function of zk−1). It is not too difficult to show
that Rk is an unbiased estimator of Er∼πt [r], and to bound
its range and variance (for proofs see Appendices B and C):

Lemma 3. Eµk [Rk] = Er∼πt [r].

Lemma 4. |Rk| ≤ 1 +M .

Lemma 5. Eµk [R2
k] ≤ 3 +M .

Now we are ready to show that R/C converges to the ex-
pected reward of the policy πPV:

Theorem 2. Let n be the number of exploration samples
used to generate T blocks, i.e., n =

∑T
t=1|B(t)|. With

probability at least 1− δ,
∣∣∣∣∣R/C − E

r∼πPV
[r]

∣∣∣∣∣ ≤
ncmax

C
· 2 max

{
(1 +M) ln(2/δ)

n
,

√
(3 +M) ln(2/δ)

n

}
.

Proof. The proof follows by Freedman’s inequality (Theo-
rem 3 in Appendix A), applied to random variables ctRk,
whose range and variance can be bounded using Lemmas 4
and 5 and the bound ct ≤ cmax.

4 Experiments

We conduct experiments on two problems, the first is a
public supervised learning dataset converted into an explo-
ration learning dataset, and the second is a real-world pro-
prietary dataset.

4.1 Classification with Bandit Feedback

In the first set of experiments, we illustrate the benefits of
DR-ns (Algorithm 1) over naive rejection sampling using
the public dataset rcv1 [17]. Since rcv1 is a multi-label
dataset, an example has the form (x, c), where x is the fea-
ture and c is the set of corresponding labels. Following
the construction of previous work [4, 8], an example (x, c)
in a K-class classification problem may be interpreted as a
bandit event with context x, action a ∈ [K] := {1, . . . ,K},
and loss la := I(a /∈ c), and a classifier as an arm-selection
policy whose expected loss is its classification error. In this
section, we aim at evaluating average policy loss, which
can be understood as negative reward. For our experiments,
we only use the K = 4 top-level classes in rcv1, namely
{C,E,G,M}; a random selection of 40K data from the
whole dataset were used. Call this dataset D.

Data Conversion. To construct a partially labeled explo-
ration data set, we choose actions non-uniformly in the fol-
lowing manner. For an example (x, c), a uniformly random
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score sa ∈ [0.1, 1] is assigned to arm a ∈ [K], and the
probability of action a is

µ(a|x) =
0.3× sa∑

a′ sa′
+

0.7× I(a ∈ c)
|c| .

This kind of sampling ensures two useful properties. First,
every action has a non-zero probability, so such a dataset
suffices to provide an unbiased offline evaluation of any
policy. Second, actions corresponding to correct labels
have higher observation probabilities, emulating the typical
setting where a baseline system already has a good under-
standing of which actions are likely best.

We now consider the two tasks of evaluating a static policy
and an adaptive policy. The first serves as a sanity check to
see how well the evaluator works in the degenerate case of
static policies. In each task, a one-vs-all reduction is used
to induce a multi-class classifier from either fully or par-
tially labeled data. In fully labeled data, each example is
included in data sets of all base binary classifiers. In par-
tially labeled data, an example is included only in the data
set corresponding to the action chosen. We use the LIB-
LINEAR [9] implementation of logistic regression. Given
a classifier that predicts the most likely label a∗, our pol-
icy follows an ε-greedy strategy with ε fixed to 0.1; that is,
with probability 0.9 it chooses a∗, otherwise a random label
a ∈ [K]. The reward estimator r̂ is directly obtained from
the probabilistic output of LIBLINEAR (using the “-b 1”
option). The scaling parameter is fixed to the default value
1 (namely, “-c 1”).

Static Policy Evaluation. In this task, we first chose a
random 10% of D and trained a policy π0 on this fully
labeled data. From the remainder, we picked a random
“evaluation set” containing 50% of D. The average loss
of π0 on the evaluation set served as the ground truth. A
partially labeled version of the evaluation set was gener-
ated by the conversion described above; call the resulting
dataset D′. Finally, various offline evaluators of π0 were
compared against each other on D′.1 We repeated the gen-
eration of evaluation set in 300 trials to measure the bias
and standard deviation of each evaluator.

Adaptive Policy Evaluation. In this task, we wanted to
evaluate the average online loss of the following adaptive
policy π. The policy is initialized as a specific “offline”
policy calculated on random 400 fully observed examples
(1% of D). Then the “online” partial-feedback phase starts
(the one which we are interested in evaluating). We up-
date the policy after every 15 examples, until 300 exam-
ples are observed. On policy update, we simply use an
enlarged training set containing the initial 400 fully labeled

1To avoid risks of overfitting, for evaluators that estimate r̂ (all
except RS), we split D′ into two equal halves, one for training r̂,
the other for running the evaluator. The same approach was taken
in the adaptive policy evaluation task.

and additional partially labeled examples. The offline train-
ing set was fixed in all trials. The remaining data was split
into two portions, the first containing a random 80% of D
for evaluation, the second containing 19% of D to deter-
mine the ground truth. The evaluation set was randomly
permuted and then transformed into a partially labeled set
D′ on which evaluators were compared. The generation
of D′ was repeated in 50 trials, from which bias and stan-
dard deviation of each evaluator were obtained. To esti-
mate the ground-truth value of π, we simulated π on the
randomly shuffled (fully labeled) 19% of ground-truth data
2 000 times to compute its average online loss.

Compared Evaluators. We compared the following
evaluators described earlier: DM for direct method, RS
for the unbiased evaluator in [19] combined with rejection
sampling, and DR-ns as in Algorithm 1 (with cmax = 1).
We also tested a variant of DR-ns, which does not monitor
the quantile, but instead uses ct equal to minD µ(a|x); we
call it WC since it uses the worst-case (most conservative)
value of ct that ensures unbiasedness of rejection sampling.

Results. Tables 1 and 2 summarize the accuracy of differ-
ent evaluators in the two tasks, including rmse (root mean
squared error), bias (the absolute difference between eval-
uation mean and the ground truth), and stdev (standard de-
viation of the evaluation results in different runs). It should
be noted that, given the relatively small number of trials,
the measurement of bias is not statistically significant. So
for instance, it cannot be inferred in a statistically signif-
icant way from Table 1 that WC enjoys a lower bias than
RS. However, the tables provide 95% confidence interval
for the rmse that allows a meaningful comparison.

It is clear from both tables that although rejection sam-
pling is guaranteed to be unbiased, its variance usually is
the dominating source of rmse. At the other extreme is the
direct method, which has the smallest variance but often
suffers high bias. In contrast, our method DR-ns is able
to find a good balance between these extremes and, with
proper choice of q, is able to yield much more accurate
evaluation results. Furthermore, compared to the unbiased
variant WC, DR-ns’s bias appears to be modest.

It is also clear that the main benefit of DR-ns is its low
variance, which stems from the adaptive choice of ct val-
ues. By slightly violating the unbiasedness guarantee, it in-
creases the effective data size significantly, hence reducing
the variance of its evaluation. In particular, in the first task
of evaluating a static policy, rejection sampling was able to
use only 264 examples (out of the 20K data in D′) since
the minimum value of µ(a|x) in the exploration data was
very small; in contrast, DR-ns was able to use 523, 3 375,
4 279, and 4 375 examples for q ∈ {0, 0.01, 0.05, 0.1}, re-
spectively. Similarly, in the adaptive policy evaluation task,
with DR-ns(q > 0), we could extract many more online tra-
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Table 1: Static policy evaluation results.
evaluator rmse (±95% C.I.) bias stdev

DM 0.0151± 0.0002 0.0150 0.0017
RS 0.0191± 0.0021 0.0032 0.0189
WC 0.0055± 0.0006 0.0001 0.0055

DR-ns(q = 0) 0.0093± 0.0010 0.0032 0.0189
DR-ns(q = 0.01) 0.0057± 0.0006 0.0021 0.0053
DR-ns(q = 0.05) 0.0055± 0.0006 0.0022 0.0051
DR-ns(q = 0.1) 0.0058± 0.0006 0.0017 0.0055

Table 2: Adaptive policy evaluation results.
evaluator rmse (±95% C.I.) bias stdev

DM 0.0329± 0.0007 0.0328 0.0027
RS 0.0179± 0.0050 0.0007 0.0181
WC 0.0156± 0.0037 0.0086 0.0132

DR-ns(q = 0) 0.0129± 0.0034 0.0046 0.0122
DR-ns(q = 0.01) 0.0089± 0.0017 0.0065 0.0062
DR-ns(q = 0.05) 0.0123± 0.0017 0.0107 0.0061
DR-ns(q = 0.1) 0.0946± 0.0015 0.0946 0.0053

jectories of length 300 for evaluating π, while RS and WC
were able to find only one such trajectory out of the evalu-
ation set. In fact, if we increased the trajectory length of π
from 300 to 500, neither RS or WC could construct a full
trajectory of length 500 and failed the task completely.

4.2 Content Slotting in Response to User Queries

In this set of experiments, we evaluate two policies on
a proprietary real-world dataset consisting of web search
queries, various content that is displayed on the web page
in response to these queries, and the feedback that we get
from the user (as measured by clicks) in response to the
presentation of this content. Formally, this partially labeled
data consists of tuples (xk, ak, rk, pk), where xk is a query
and corresponding features, ak ∈ {web-link,news,movie}
(the content shown at slot 1 on the results page), rk is a so-
called click-skip reward (+1 if the result was clicked,−1 if
a result at a lower slot was clicked), and pk is the recorded
probability with which the exploration policy chose the
given action.

The page views corresponding to these tuples represent a
small percentage of traffic for a major website; any given
page view had a small chance of being part of this exper-
imental bucket. Data was collected over a span of several
days during July 2011. It consists of 1.2 million tuples, out
of which the first 1 million were used for estimating r̂ with
the remainder used for policy evaluation. For estimating
the variance of the compared methods, the latter set was
divided into 10 independent test subsets of equal size.

Two policies were compared in this setting: argmax and
self-evaluation of the exploration policy. For argmax pol-

Table 3: Estimated rewards reported by different policy
evaluators on two policies for a real-world exploration
problem. In the first column results are normalized by the
(known) expected reward of the deployed policy. In the
second column results are normalized by the reward re-
ported by IPS. All± are computed standard deviations over
results on 10 disjoint test sets.

evaluator self-evaluation argmax policy
RS 0.986± 0.060 0.990± 0.048
IPS 0.995± 0.041 1.000± 0.027
DM 1.213± 0.010 1.211± 0.002
DR 0.967± 0.042 0.991± 0.026

DR-ns 0.974± 0.039 0.993± 0.024

icy, we first obtained a linear estimator r′(x, a) = wa · x
by importance-weighted linear regression (with importance
weights 1/pk). The argmax policy chooses the action with
the largest predicted reward r′(x, a). Note that both r̂ and
r′ are linear estimators obtained from the training set, but r̂
was computed without importance weights (and we there-
fore expect it to be more biased). Self-evaluation of the
exploration policy was performed by simply executing the
exploration policy on the evaluation data.

Table 3 compares RS [19], IPS, DM, DR [8], and
DR-ns(cmax = 1, q = 0.1). For business reasons, we do
not report the estimated reward directly, but normalize to
either the empirical average reward (for self-evaluation) or
the IPS estimate (for the argmax policy evaluation).

In both cases, the RS estimate has a much larger variance
than the other estimators. Note that the minimum observed
pk equals 1/13, which indicates that a naive rejection sam-
pling approach would suffer from the data efficiency prob-
lem. Indeed, out of approximately 20 000 samples per eval-
uation subset, about 900 are added to the history for the
argmax policy. In contrast, the DR-ns method adds about
13 000 samples, a factor of 14 improvement.

The experimental results are generally in line with theory.
The variance is smallest for DR-ns, although IPS does sur-
prisingly well on this data, presumably because values r̂ in
DR and DR-ns are relatively close to zero, so the benefit
of r̂ is diminished. The Direct Method (DM) has an unsur-
prisingly huge bias, while DR and DR-ns appear to have
a very slight bias, which we believe may be due to imper-
fect logging. In any case, DR-ns dominates RS in terms of
variance as it was designed to do, and has smaller bias and
variance than DR.

5 Conclusion and Future Work

We have unified best-performing stationary policy evalu-
ators and rejection sampling by carefully preserving their
best parts and eliminating the drawbacks. To our knowl-
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edge, the resulting approach yields the best evaluation
method for nonstationary and randomized policies, espe-
cially when reward predictors are available.

Yet, there are definitely opportunities for further improve-
ment. For example, consider nonstationary policies which
can devolve into a round-robin action choices when the re-
wards are constant (such as UCB1 [2]). A policy which cy-
cles through actions has an expected reward equivalent to
a randomized policy which picks actions uniformly at ran-
dom. However, for such a policy, our policy evaluator will
only accept on average a fraction of 1/K uniform random
exploration events. An open problem is to build a more
data-efficient policy evaluator for this kind of situations.
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Abstract

We consider the problem of sampling from so-
lutions defined by a set of hard constraints on
a combinatorial space. We propose a new sam-
pling technique that, while enforcing a uniform
exploration of the search space, leverages the rea-
soning power of a systematic constraint solver
in a black-box scheme. We present a series
of challenging domains, such as energy barri-
ers and highly asymmetric spaces, that reveal
the difficulties introduced by hard constraints.
We demonstrate that standard approaches such
as Simulated Annealing and Gibbs Sampling are
greatly affected, while our new technique can
overcome many of these difficulties. Finally, we
show that our sampling scheme naturally defines
a new approximate model counting technique,
which we empirically show to be very accurate
on a range of benchmark problems.

1 Introduction

In recent years, we have seen significant interest in proba-
bilistic reasoning approaches that combine both hard, log-
ical constraints and probabilistic information through soft,
weighted constraints. Markov Logic Networks [1] are a
prominent example of such a modeling language. The hard
constraints are used to capture definitional and other ir-
refutable relationships in the underlying domain, while soft
constraints capture less categorical information, generally
better for modeling real-world data and dependencies.

Markov Chain Monte Carlo (MCMC) methods, such as
Simulated Annealing (SA) and Gibbs Sampling [2], are
among the most prominent approaches to probabilistic rea-
soning, especially when exact inference is beyond reach.
In fact, they are guaranteed to asymptotically converge to

∗This work was supported by NSF Grant 0832782.

a stationary distribution that can theoretically provide uni-
form samples. However, sampling from the solutions of
a set of hard constraints is believed to be very hard in
worst case, as it is closely related to#-P complete prob-
lems such as model counting [3, 4, 5, 6, 7]. In partic-
ular, the time required for a Markov Chain to reach the
stationary distribution (mixing time) is often exponential
in the number of problem variables when hard constraints
are present. These difficulties led to the introduction of
alternate sampling strategies. For example, in the Sam-
pleSAT approach [8], a Markov Chain is constructed that
combines moves proposed according to a Simulated An-
nealing Markov Chain with so-called WalkSAT moves, in-
spired by local search constraint solvers. The SampleSAT
method provides a significant advance, since SA sampling
on constraint problems of practical interest generally does
not reach any solutions or, at best, only a small subset of
all possible solutions. SampleSAT was subsequently incor-
porated into MC-SAT in the Alchemy package for reason-
ing and learning for Markov Logic Networks [9]. A key
limitation of SampleSAT is that it is not guaranteed to con-
verge to the uniform distribution on the solution set. In
fact, one can create examples where the stationary distri-
bution of SampleSAT is arbitrarily biased (non-uniform) in
terms of solution samples. Still, this does not negate the
value of SampleSAT in many practical settings. For, al-
though SA-like sampling does sample in the limit from the
uniform stationary distribution on the solution set, reaching
the stationary distribution often requires exponential time,
making the SA strategy of little use in practice.

In this paper, we revisit the question of how to devise prac-
tical methods for sampling from solutions defined by a set
of hard constraints on a combinatorial space. We present a
series of challenging domains that reveal the difficulties in-
troduced by such constraints. These include high energy1

barriers, large energy plateaus (“golf-course” like energy
landscapes), and highly asymmetric sampling spaces. We
present data demonstrating that SA, Gibbs sampling, and
SampleSAT [8] are all greatly affected by these problems.

1Energy is defined as the number of violated constraints.
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However, we also show that highly structured energy land-
scapes can actually present new opportunities for solution
samplers. Combinatorially defined energy functions have
a rich structure embedded, but traditional MCMC meth-
ods are very general and therefore treat the energy as a
“black-box”, effectively ignoring the underlying structure.
On the other hand, modern day constraint solvers use clever
heuristic to exploit constraint structure as much as possi-
ble, and can solve very large structured industrial problems
with millions of variables [10]. However, these solvers can-
not be used directly as solution samplers because they tend
to oversample certain solutions, as they are designed just to
find one satisfying assignment but not to be uniform [8].

In this paper, we propose a novel sampling scheme called
SearchTreeSampler, which leverages the reasoning
power of a systematic constraint solver while enforcing
a uniform exploration of the search space. Constraint
solvers have been previously applied by SampleSearch
[11, 12, 13] in the context of importance sampling, a frame-
work where the performance is known to heavily depend
on the choice of the proposal distribution. In contrast,
SearchTreeSampler introduces a new way of explor-
ing the search space that does not rely on a heuristically
chosen proposal distribution, and directly provides (ap-
proximately) uniform samples. The constraint solver is
used as a black-box, so that any systematic solver can be
plugged in, with no modifications required. We empiri-
cally demonstrate that by leveraging constraint structure,
SearchTreeSampler can overcome many of the diffi-
culties encountered by other solution samplers. In particu-
lar, we show it can be orders of magnitude faster than com-
peting methods, while providing more uniform samples at
the same time. Further, we show that our sampling scheme
naturally defines a new technique for approximately count-
ing the number of distinct solutions (model counting), that
we empirically show to be very accurate on a range of
benchmark problems.

2 Problem Definition

We consider the problem of sampling from a combinatorial
search space defined byn Boolean variables andm con-
straints specified by a Boolean formulaF in conjunctive
normal form (CNF). A constraint orclauseC is a logical
disjunction of a set of (possibly negated) variables. A for-
mulaF is said to be in CNF form if it is a logical conjunc-
tion of a set of clausesC.
We defineV to be the set of propositional variables in the
formula, where|V | = n. A variable assignmentσ : V →
{0, 1} is a function that assigns a value in{0, 1} to each
variable inV . As usual, the value0 is interpreted as FALSE
and the value1 as TRUE. LetF be a formula in CNF over
the setV of variables withm = |C| clauses and letσ be
a variable or truth assignment. We say thatσ satisfies a

clauseC if at least one signed variable ofC is TRUE. We
say that a truth assignmentσ is a satisfying assignment for
F (also called a model or a solution) ifσ satisfies all the
clausesC ∈ C. LetSF be the set of solutions ofF , and let
Z = |SF | be the number of distinct solutions.

Given a Boolean formulaF , we define a discrete probabil-
ity distributionD over the set of all possible truth assign-
ments{0, 1}n such that

D(σ) =

{
1/Z if σ ∈ SF (i.e.,σ is a solution)
0 otherwise

In this paper we consider the problem of sampling from
D. This problem is very hard and in fact simply deciding
whether or not the support ofD is empty is NP-complete
(the CNF-SAT problem). Sampling is however believed
to be even harder, as it is closely related to#-P complete
problems such as inference and model counting [3, 4]. For
instance, SAT solvers cannot be directly used as solution
samplers because they tend to oversample certain solutions,
as they are designed just to find one satisfying assignment
but not to be uniform [8].

3 Background on Solution Sampling

In this section, we briefly describe the main techniques for
solution sampling.

3.1 Simulated Annealing

Simulated Annealing is a MCMC algorithm that defines a
reversible Markov Chain on the space of truth assignments
{0, 1}n to sample from a Boltzmann distribution [14]. The
transition probabilities (and the steady state probability dis-
tribution) depend only on a property of the truth assign-
ments called “energy”. The energyE : {0, 1}n → N gives
the number of clauses violated by a truth assignmentσ and
is defined as follows

E(σ) = |{c ∈ C|σ does not satisfyc}|.

The Boltzmann steady state probability distribution is
given by

PT (σ) =
1

Z(T )
e− E(σ)

T ,

whereT is a formal parameter called “temperature”, and
Z(T ) is the normalization constant. Notice thatPT assigns
the same probability to all solutions, i.e.PT (σ) = α for
all σ ∈ SF , but is not necessarily zero for non-solutions.
Given an algorithmA that produces samples fromPT , we
can construct an algorithmB that samples fromD (i.e.
uniformly from the solution set) using rejection sampling.
More specifically, we take sampless produced byA and
we discard all the ones such thats /∈ SF . The fundamental
tradeoff involved is that we want the probability distribu-
tion PT to be easier to sample from (compared toD), but
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at the same time the probability mass should be concen-
trated on satisfying assignments (i.e.PT should be close
enough toD) so that we don’t generate too many unwanted
samples (i.e. non-solutions). Closely related to Simulated
Annealing (SA) is the Gibbs Sampler for the Boltzmann
distribution, that defines a similar Markov Chain with the
same steady state probability distribution [2]. In our analy-
sis below, we consider a fixed temperature annealing where
T is fixed during the run of the Markov Chain.

3.2 SampleSAT

In [8] Wei et al. propose the use of an hybrid approach
where they interleave SA moves with moves based on a
focused random walk procedure (inspired by local search
SAT solvers [15]). This approach is based on a result by
Papadimitriou [16] proving that a random walk procedure
for SAT will find a solution to any satisfiable 2CNF for-
mula inO(n2) time, wheren is the number of variables in
the formula. While the role of focused random walk moves
is to find solution “clusters”, the role of SA moves is to
heuristically provide some level of uniformity of the sam-
pling. The drawback of this approach is that it does not
maintain any detailed balance equation so there is no con-
trol on the resulting steady state probability distribution.
SampleSAT therefore loses all the theoretical guarantees
on the uniformity of the sampling provided by SA, and as
we show below in the experimental section, it can lead to
poor uniformity also in practice.

3.3 SampleSearch

SampleSearch [11, 12, 13] is an importance sampling tech-
nique that draws samples from the so-calledbacktrack-free
distribution. Although it is not a uniform sampler, these
samples can be used to compute expectations (using impor-
tance sampling) by correcting for the non uniformity of the
backtrack-free distribution. The support of thebacktrack-
free distributioncorresponds exactly to the set of solutions,
and this greatly reduces the number of rejected samples.
However, as other importance sampling schemes, the per-
formance is highly dependent on the choice of the proposal
distribution, which is usually precomputed using a gener-
alized belief propagation scheme [11]. Sampling from the
backtrack-free distributioncan be achieved either by using
a complete solver as a black-box, or by using the Sample-
Search scheme, which integrates backtracking search with
sampling [12]. Our approach is similar in the sense that we
also use a complete solver as an oracle as we explore the
search tree. However, the search tree is explored is a very
different way. Specifically, ourrecursiveapproach aims
at uniformly exploring of the search tree level by level, and
directly provides (approximately) uniform samples without
need for a heuristically chosen proposal distribution (e.g.,
using variational methods). We will compare the perfor-
mance of the two methods for model counting below.

4 Black-Box Sampling

Modern day SAT solvers are very effective at findinga so-
lution, but they explore the search space in a highly non-
uniform way. This is because they use heuristics such as-
signing ”Pure literals” (e.g., if a variable only appears with
positive sign in a formula, then it can be safely set to true)
that heavily bias the search towards certain parts of the
search space.

Modifying a pure DPLL-style algorithm to produce uni-
form samples is a challenging task. Suppose the choice of
the ordering in which variables are set is chosen uniformly
at random, and the polarity (whether to assign true or false
to a variable during search) is also chosen uniformly at ran-
dom. Then in general the first solution found is not a uni-
form sample fromSF . A simple counterexample is the
formula x1 ∨ x2, where it can be seen that the solution
x1 = x2 = 1 is less likely to be found in both possible
variables orderings. In order to obtain uniform samples,
one could choose the polarity of the variables according
to their marginal probabilities (with respect toD), but this
would defy the purpose of sampling, since we often want
to obtain samples precisely to estimate quantities such as
marginals.

Instead of modifying an existing search procedure to pro-
duce uniform samples, we introduce a novel recursive sam-
pling scheme that aims at enforcing a level by level uniform
exploration of the search tree, while leveraging the reason-
ing power of a complete SAT solver.

4.1 A Recursive Sampling Strategy

Our method is based on the notion ofpseudosolution, de-
fined as follows:

Definition 1. Let π be an ordering of the variables. A
pseudosolutionof level i is a truth assignment to the first
i variables that can be completed to form a solution (i.e.
a node in the search tree at leveli that has a solution as
a descendant). We denoteSi the set ofpseudosolutionsof
leveli.

Our recursive strategy (Algorithm 1) is based on the idea of
dividing the search tree intoL levels, and recursively sam-
pling pseudosolutionsusing previously generated samples
of pseudosolutionsof a higher level (see Figure 1). In other
words, we assume to have access to uniform samples of
ancestors of solutions at leveli, and we generate samples
of ancestors of solutions at leveli + ℓ using Algorithm 2.
The procedure is initialized with a pseudosolution of level
0, i.e. an empty variable assignment. Note that generat-
ing samples frompseudosolutionsof leveln (if there aren
variables) is equivalent to the original problem of sampling
solutions fromSF .

A complete SAT solver is used in Algorithm 2 to generate
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Algorithm 1 SearchTreeSampler(F, k, M )

Input: FormulaF with n vars. Parametersk, M = 2ℓ

Output: A setS of solutions ofF
if F is not satisfiablethen

return ∅
else

Let Φ0 = {⊤} // True, empty variable assignment
Let L = ⌈n

ℓ ⌉ // number of levels
for i = 1, · · · , L do

Φi ← BlackBoxSampler(Φi−1, k, ℓ)
end for
return ΦL

end if

p s e u d o � s o l u t i o n
s a m p l e dp s e u d o � s o l u t i o n d e s c e n d a n t s g e n e r a t e du s i n g a c o m p l e t e s o l v e r

Figure 1: Representation of how Algorithm 1 explores the
search tree.

D(sj), the set of all pseudosolutions of leveli + ℓ with sj

as ancestor. This is accomplished by repeatedly checking
the satisfiability ofF ∧ sj

∧
d∈D ¬d until it is provably un-

satisfiable, adding apseudosolutiond to D each time one
is found. Completeness is required in order to enumerate
all elements ofD(sj), i.e. to prove unsatisfiability when all
elements have been found.

4.2 Analysis

It is easy to verify by induction that the setsΦi in Algo-
rithm 1 satisfy the property|Φi| ≥ min{k, |Si|}. The key
property of Algorithm 2 is that the setS returned is such
that sampling fromS is approximately equivalent to sam-
pling from Si+ℓ, the set ofpseudosolutionsof level i + ℓ.
The parameterk > 1 controls the uniformity of the sam-
pling. This is formalized by the following Theorem:

Theorem 1. LetS be the output of Algorithm 2 with input
Φ such that|Φ| ≥ min{k, |Si|}, ands, s′ ∈ Si+ℓ be any
two pseudosolutions of leveli + ℓ. We have

k

M + k − 1
≤ P (s)

P (s′)
≤ M + k − 1

k
, (1)

whereM = 2ℓ andP (s) is the probability that a uniformly
sampled element fromS is equal tos.

Algorithm 2 BlackBoxSampler(Φ,k,ℓ)
Input : A setΦ of uniformly sampled pseudosolutions of
level i. Parametersk, ℓ
Output : A setS of pseudosolutions of leveli + ℓ (ap-
proximately uniformly sampled) with2ℓ|Φ| ≥ |S| ≥ |Φ|
S = ∅
for j = 1, · · · , min{k, |Φ|} do

Samplesj from Φ without replacement
GenerateD(sj), the set of all pseudosolutions of level
i+ℓ with sj as ancestor (using a complete SAT solver)
S = S ∪D(sj)

end for
return S

Proof. Supposek ≤ |Φ| (otherwise, it means thatΦ con-
tains all pseudosolutions of leveli, hence by definition
S = Si+ℓ and thereforeP (s) = P (s′)), and thatΦ ⊆ Si

is a set of uniformly sampled pseudosolutions of leveli.
We can think of each pseudosolutions ∈ Φ as an urn, that
contains a certain number1 ≤ |D(s)| ≤ M = 2ℓ of pseu-
dosolutions at a lower leveli + ℓ (its descendants). Let
|Si| = N ≥ |Φ| be the total number of pseudosolutions of
level i.

Since Φ contains uniform samples,s1, · · · , sk in Algo-
rithm 2 are also uniform samples ofpseudosolutionsof
level i. Let S as in Algorithm 2 (the union of the contents
of thek urns selected). Lets ∈ Si+ℓ be a pseudosolution of
level i + ℓ, and leta(s) ∈ Si be its unique ancestor at level

i. Clearly, the probability thats ∈ S is P [s ∈ S] =
(N−1

k−1)
(N

k)
that is equal to the probability of selecting the ancestora(s)
of s on leveli. Let e be a randomly selected element ofS.
Ideally, we would like the probabilityP (s) , P [e = s] to
be a constant independent ofs (uniform sampling). How-
ever, intuitively this is not exactly constant because there
is a bias towards elements such that|D(a(s))| is small.
Specifically,

P (s) =
1(
N
k

)
∑

ℓ1···ℓk−1

1

|D(a(s)) ∪D(sℓ1) · · · ∪D(sℓk−1
)| .

Since the sets are disjoint,

P [e = s] = P (s) =

(
N−1
k−1

)
(
N
k

)
(N−1

k−1)∑

t=1

1(
N−1
k−1

) 1

|D(a(s))|+ zt
,

wherezt = |D(sℓ1) ∪ · · · ∪D(sℓk−1
)| ≥ k − 1. Let s′ ∈

Si+ℓ be another pseudosolution of leveli + ℓ. We rewrite
P (s) as

1(
N
k

)




(N−2
k−2)∑

t=1

1

|D(a(s))| + at + |D(a(s′))| +

(N−2
k−1)∑

t=1

1

|D(a(s))| + bt


 .
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Suppose wlog that|D(a(s))| ≥ |D(a(s′))|. Then,

1

|D(a(s′))|+ bt
≤ |D(a(s))|+ k − 1

|D(a(s′))|+ k − 1

1

|D(a(s))|+ bt

by Lemma 1, and using the fact that1 ≤ |D(a(s))| ≤M ,

1

|D(a(s′))|+ bt
≤ M + k − 1

k

1

|D(a(s))|+ bt
.

Hence,

(N−2
k−1)∑

t=1

1

|D(a(s′))|+ bt
≤ M + k − 1

k

(N−2
k−1)∑

t=1

1

|D(a(s))|+ bt

and finally,



(
N−2
k−2

)

∑

t=1

1

|D(a(s))| + at + |D(a(s′))|
+

(
N−2
k−1

)

∑

t=1

1

|D(a(s′))| + bt


 ≤

M + k − 1

k




(
N−2
k−2

)

∑

t=1

1

|D(a(s))| + at + |D(a(s′))|
+

(
N−2
k−1

)

∑

t=1

1

|D(a(s))| + bt




that gives
P (s′)
P (s)

≤ M + k − 1

k
.

Lemma 1. Givend ≥ c and a finite sequence{bj}T1 such
that0 < k − 1 ≤ bj for all j, we have

∑
j

1
c+bj∑

j
1

d+bj

≤ d + k − 1

c + k − 1
.

Proof. Notice that for anyj we have
1

c+bj
1

d+bj

≤ 1/(c+k−1)
1/(d+k−1)

because whenc ≤ d it is a monotonically decreasing func-
tion of bj . The desired result follows by summing up both
sides overj and dividing.

Equation (1) shows that the sampling becomes more uni-
form ask → ∞, and allows us to bound the uniformity of
the output of Algorithm 2 as a function ofk (a pseudoso-
lution cannot be much more likely than another one). For
instance, whenM = 2 and k = 100, a pseudosolution
cannot be more than1% more likely to be sampled than
another one. Notice that larger values ofk would both im-
prove the uniformity of the sampling and at the same time
increase the number of output samples (sampling is with-
out replacement). However, larger values ofk would also
require more calls to the SAT solver.

Remark: When Algorithm 2 is used recursively as in Al-
gorithm 1, the samples received as input are usually not
truly uniform unlessk is larger than the total number of so-
lutions2. Even though in general the setsΦi in Algorithm

2Uniformity is also guaranteed for the firstb levels, until
|Sb| < k.

1 do not meet the assumptions of Theorem 1, they tend to
satisfy them ask → ∞. The effect of rather small, practi-
cal values ofk is investigated empirically below, where we
evaluate the statistical properties of the output samplesΦL.

4.3 Complexity

If n is the number of variables of the input formulaF , Al-
gorithm 1 requiresO(⌈ n

log M ⌉Mk) calls to the SAT solver
to get at leastmin{#solutions of F, k} samples. Larger
valuesM require more calls to the SAT solver, but intu-
itively also improve the uniformity of the sampling by re-
ducing the number of recursions. In particular, in the ex-
treme (impractical) caseM = 2n we obtain truly uniform
sampling because it corresponds to exact model counting
(explicitly enumerating all solutions). Notice also that al-
though in our experiments we use constant values fork and
M , they could be chosen as a function of the leveli.

5 Evaluating Sampling Methods

It can be verified that Simulated Annealing (SA) is er-
godic for all “temperatures”T > 0 when new configura-
tions are generated by randomly flipping a variable cho-
sen uniformly at random (so that the chains are irreducible
[2]). Since according to the steady state probability distri-
bution all satisfying assignments have the same probabil-
ity, in principle SA will provide uniform samples if we are
willing to wait until the stationary distribution is reached.
However, the amount of time we have to wait until the chain
reaches its steady state and between two consecutive sam-
ples is of paramount importance for any practical applica-
tion. On the other hand, SampleSAT is often much faster
at finding solutions because of the focused random walk
component, but it does not provide any guarantee on the
uniformity of the sampling. To evaluate the practical utility
of these methods it is therefore important to quantitatively
measure the uniformity of the samples provided after finite
amounts of time.

The experiments are run on a set of formulasF for which
we know (analytically or using exact model counters [17])
that the number of distinct solutions|SF | is relatively small
(≤ 1000). Therefore, by taking a sufficiently large num-
ber of samples, we are able to check the uniformity of the
methods. In particular, letNi be the number of times theith
solution has been sampled, fori = 1, . . . , |SF |. GivenP
samples from a truly uniform solution sampler, we expect
Ni to be close toP/|SF | (since for the law of large num-
bersNi/P converges to1/|SF | in probability asP →∞).
To quantitatively measure the uniformity of the sampler, we
use the Pearson’sχ2 statistic defined as

χ2 =
1

P/|SF |
∑

i

(Ni − P/|SF |)2,

whereP/|SF | is the expected theoretical frequency under
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the hypothesis that the distribution is truly uniform. The
χ2 value can be used to test a null hypothesis stating that
the frequenciesNi observed are consistent with a uniform
distribution. In particular, the null hypothesis is rejected if
theχ2 value is larger than a cutoff value that depends on the
number of distinct solutions|SF | (specifying the number of
degrees of freedom of the distribution) and on the statistical
significance desired (e.g., 0.05).

For our experiments, we use MiniSAT 2.2 [18] as a com-
plete solver in Algorithm 1. Pseudosolutions are defined
according to lexicographical variable orderingπLX . For
efficiency, all the experiments are run withM = 2.
When we wish to obtainP samples, we keep running
SearchTreeSampler with a parameterk < |SF | < P
until we obtain at leastP samples (taking exactlyk sam-
ples without replacement fromSF per run), and we report
the total running time. Note that choosingk ≥ |SF | (e.g.,
k = P ) wouldn’t let us evaluate the performance of the
method as an approximately uniform sampler, because it
would correspond to enumerating all solutions (hence per-
fectly uniform sampling).

SA is evaluated as follows. We run the chain from a random
initial truth assignment, discarding all the samples for the
first 107 steps (burn-in phase). After the burn-in phase, we
assume that the Markov Chain has reached its steady state
distribution and we start taking samples. EveryK steps,
the current truth assignmentσt is taken as a sample from
the steady state distribution. We wait forK steps to en-
sure that consecutive samples are sufficiently independent.
If the sampleσt is a solution (σt ∈ SF ), we output it, oth-
erwise we discard it. This process is carried out until we
find a prescribed number of solutionsP (non necessarily
all distinct). SampleSAT is executed with default parame-
ters, and all methods are run on the same 3GHz machine
with 4Gb of memory.

6 Challenging Sample Spaces

6.1 Golf-Course energy landscape

We first consider a class of instances from [8] which we
call plateau(b), defined as

(x1 ∨ y1) ∧ (x1 ∨ y2) ∧ · · · ∧ (x1 ∨ yb) ∧
(¬x1 ∨ z1) ∧ (¬x1 ∨ ¬z1).

This class of instances is hard for local search methods such
as SA because it has a very large plateau of truth assign-
ments (of size at least2b+1) with energyE(σ) = 1, corre-
sponding to assignments withx1 = 1. The effect of the last
two clauses is to enforcex1 = 0, so that there are only two
distinct solutions. Intuitively, this instance is difficult for
SA because in order to reach one of the solutions, SA needs
to setx1 = 0. Settingx1 = 0 is likely to violate several
of the firstb clauses, making the uphill move unlikely to be

accepted. Formally, in [8] it is shown (Theorem 1) that SA
at fixed temperature with probability going to1 takes time
exponential (inb) to find a satisfying assignment.

As shown in [8], SampleSAT is not affected by en-
ergy plateaus because it uses focused moves to quickly
reach solutions. Since it is not based on local informa-
tion, SearchTreeSampler is not affected by energy
plateaus. In fact, sinceplateau(b) instances belong to 2-
CNF (formulas with at most2 variables per clause) and has
two solutions, we can use the following result:

Theorem 2. Algorithm 1 provides uniform samples in
polynomial time for 2-CNF instancesF such thatSF ≤ k.

Proof. Follows from the fact that 2-SAT is solvable in
polynomial time. Uniformity follows from the fact that Al-
gorithm 1 will output all solutions whenSF ≤ k.

6.2 Energy barriers

We define an energy barrier between two variable assign-
mentsσ, σ′ ∈ {0, 1}n as the minimum over the set of
all possible paths on the Boolean hypercube{0, 1}n be-
tweenσ and σ′ of the maximum energy of the configu-
rations in each path. Simulated Annealing is designed to
deal with energy barriers (such as the ones encountered
around a local minimum) by allowing occasional uphill
moves (stochastic hill climbing), i.e. moves that lead to
an increase of the energy function. In particular, larger val-
ues of the temperature parameterT make the acceptance of
uphill moves more likely.

In this section, we will show that SA can only deal with rel-
atively low energy barriers if we want to maintain a reason-
able efficiency in the rejection sampling scheme. Consider
the following CNF formula that we callXORBarrier(b):

(x1 ⇒ y1) ∧ (x1 ⇒ y2) ∧ · · · ∧ (x1 ⇒ yb) ∧
(¬x1 ⇒ ¬y1) ∧ (¬x1 ⇒ ¬y2) ∧ · · · ∧ (¬x1 ⇒ ¬yb) .

We use the termXORBarrier(b) because it is equiv-
alent to a conjunction of XOR constraints of the form
¬(x1 XOR y1) ∧ · · · ∧ ¬(x1 XOR yb). It is easy to see
that for any value ofb, these instances have only two so-
lutions(x1, y1, · · · , yb) = (0 . . . 0) and(x1, y1, · · · , yb) =
(1 · · · 1). It can be seen thatd(i) = |{σ ∈ {0, 1}n|E(σ) =
i}| = 2

(
b
i

)
. For any value of the temperature parameterT ,

the steady state probability of having SA in a configuration
with energyi is

P[E(σ) = i] =
∑

σ|E(σ)=i

PT (σ) ∝ n(i)e− i
T = 2

(
b

i

)
e− i

T .

The key feature of this type of instances is the follow-
ing. Since Simulated Annealing (and Gibbs Sampling) flips
only one variable at a time, it is easy to see that any path
in the Markov Chain graph that brings from one solution to

260



00 . 0 50 . 10 . 1 50 . 20 . 2 50 . 30 . 3 50 . 40 . 4 50 . 5
0 5 1 0 1 5 2 0F requency S o l u t i o n i n d e x

U n i f o r mS e a r c h T r e e S a m p l eS a m p l e S A T
(a) Asymmetric space with energy barrier.
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(b) Random formula with energy barrier.

Figure 2: Uniformity of sampling. Frequency each solution is sampled by different methods.

the other one will contain a configuration that violatesb/2
constraints. Therefore we conclude that there is an energy
barrier of “height”b/2 between the two solutions.

For large values ofb, one cannot find a temperatureT that
provides both high enoughPT (0) (i.e. small number of
flips per solution) andPT (b/2) (i.e. probability of “jump-
ing” over the barrier) to obtain a practical sampler. For
instance, forb = 80, to getPT (40) > 10−9 (i.e. climbing
the barrier on average once in about a billion samples) SA
needs a temperatureT > 0.75, butP0.75(0) = 7.4× 10−9

(which means that on average we need more than108 sam-
ples to get a single solution). Similar results are obtained
when using Gibbs sampling. This is because a Gibbs sam-
pler has the same Boltzmann steady state probability dis-
tribution and it also proceeds by flipping a single variable
at a time, so it cannot “jump” over the barrier with a single
move.

Since instances inXORBarrier(b) belong to 2-SAT and
have2 solutions, from Theorem 2 Algorithm 1 provides
uniform samples in polynomial time.

A common strategy to partially overcome the ergodic-
ity problems of Gibbs sampling and Simulated Anneal-
ing is the use of multiple parallel chains [9] or restarts
[8]. These approaches can be quite effective and, for in-
stance, are capable of producing uniform samples for the
XORBarrier(b) class of instances presented above. Intu-
itively, this is because on average50% of the random initial
assignments will be on one side of the barrier (i.e., the half-
hypercube withx1 = 0) and the other50% on the other side
(i.e.,x1 = 1).

6.3 Asymmetric spaces with energy barriers

These approaches are however not sufficient to sample
from distributions where there are “solution clusters” (i.e.,
groups of solutions that are close in Hamming distance) of
different sizes that are separated by energy barriers. Con-
sider for instance the following class of instances that we
call AsymXORbarrier(b, ℓ):

XORBarrier(b)∧(x1 ∨ z1)∧(x1 ∨ z2)∧· · ·∧(x1 ∨ zℓ) .

The effect of the additional clauses(x1 ∨ zi) is to create a
cluster of2ℓ solutions on one side of the barrier (x1 = 1),
while there exist only one solution withx1 = 0.

As shown in Figure 2a and Table 1 (bottom rows),
SearchTreeSampler provides a much more uniform
sampling compared to SampleSAT on this type of in-
stances. Specifically, the uniformity of sampling hypoth-
esis is rejected for SampleSAT according to theχ2-test.
This is because SampleSAT employs restarts and there-
fore samples the first solution in Figure 2a (corresponding
to the isolated solution with all variables set to0) too of-
ten, i.e. about50% of the times. Similarly biased results
are obtained using a Gibbs Sampler with multiple paral-
lel chains (as implemented in the Alchemy system [9]),
while plain SA or Gibbs is not able to cross the barrier in
a reasonable amount of time. Further, we see from Table 1
(4th column) that thanks to MiniSAT’s reasoning power,
SearchTreeSampler is about 3 orders of magnitude
faster than SampleSAT.

6.4 Embedded energy barriers

In Table 1 (top rows), we evaluate the performance of the
methods considered on three types of instances: a logis-
tic one generated by SATPlan [19] (logistic, with 110 vari-
ables,461 clauses, and512 solutions), a graph Coloring
problem from SatLib [20](coloring, with 90 variables,300
clauses, and900 solutions), and a random 3-SAT formula
(random, with 75 variables,315 clauses, and48 solutions).
We collect respectivelyP = 50000, P = 200000, and
P = 5000 samples for each instance. We also artificially
introduce an energy barrier in each of these instances by
choosing a variablez such that there are roughly half so-
lutions with z = 1 and half solutions withz = 0 in the
original formula. We then introduce a new set clauses de-
fined by XORbarrier(40) where we substitutez to x1

andy1, . . . , y40 are fresh variables. Note that this does not
change the number of solutions.

We experimented with several values ofk andT and we
provide a summary of the best results obtained in Table 1,
both for the original formulas and the ones with an em-
bedded energy barrier. By carefully choosing the tempera-
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Method Instance Parameter Time (s) χ2 P-value
SA logistic T=0.25 11028 550 0.11
SampleSAT logistic - 7598 534.9 0.23
SearchTreeSampler logistic k=5 9.8 545.82 0.14
SearchTreeSampler logistic k=20 10.1 487.43 0.77
SearchTreeSampler logistic k=50 9.6 407.01 0.99
SA logistic+Barrier T=0.25 42845 50495.8 0
SampleSAT logistic+Barrier - 7296 178860.2 0
SearchTreeSampler logistic+Barrier k=20 42.53 469.23 0.90

SA coloring T=0.25 7589 875.131 0.71
SampleSAT coloring - 28998 132559 0
SearchTreeSampler coloring k=50 184 844 0.90
SearchTreeSampler coloring k=100 204 808.3 0.98
SearchTreeSampler coloring k=200 228 672.15 1.00
SA coloring+Barrier T=0.25 29434 100905 0
SampleSAT coloring+Barrier - 29062 141027 0
SearchTreeSampler coloring+Barrier k=100 435 746.40 0.99

SA random T=0.3 8673 36.62 0.88
SampleSAT random - 740 970.21 0
SearchTreeSampler random k=10 2.5 76.84 0
SearchTreeSampler random k=15 3 31.28 0.96
SearchTreeSampler random k=20 5 29.26 0.98
SA random+Barrier T=0.3 71077 4211.40 0
SampleSAT random+Barrier - 744 1104.9 0
SearchTreeSampler random+Barrier k=10 7.0 64.55 0.04
SearchTreeSampler random+Barrier k=15 7.1 32.64 0.94
SearchTreeSampler random+Barrier k=20 7.1 32.33 0.95

SampleSAT AsymXORBarrier(80,4) - 290 6508 0
SearchTreeSampler AsymXORBarrier(80,4) k=2 0.7 51.54 0
SearchTreeSampler AsymXORBarrier(80,4) k=5 0.4 17.35 0.36
SearchTreeSampler AsymXORBarrier(80,4) k=10 0.3 7.84 0.95
SampleSAT AsymXORBarrier(80,8) - 4260 1893391 0
SearchTreeSampler AsymXORBarrier(80,8) k=25 1.9 220.14 0.94
SearchTreeSampler AsymXORBarrier(80,8) k=50 1.6 197.17 0.99

Table 1: Uniformity of sampling for instances with and without embedded energy barriers. P-value is the probability of
observing an event at least as extreme under the null hypothesis (uniform sampling). In bold null hypothesis is not rejected.

ture parameterT , SA can provide uniform samples for the
original formulas. However, it is very slow compared to
the other methods (smallerT would make it faster, but the
samples would not be uniform). On the other hand, Sam-
pleSAT is generally much faster, but the samples provided
are far less uniform.SearchTreeSampler is superior
to both SA and SampleSAT, both in terms of running time
(at least 2 orders of magnitude faster) and uniformity. As
expected, increasingk improves the uniformity and it does
not affect the running time because it also produces more
samples per run.

As expected, the introduction of energy barriers severely
limits the ergodicity of SA, as shown in the last column of
Table 1 and in Figure 2. As a result, both SA and Sample-
SAT fail to provide uniform samples (according to theχ2

test) for the instances with embedded energy barriers. On
the other hand, the uniformity ofSearchTreeSampler
is not affected, although the runtime increases (because the
search tree is deeper with the introduced fresh variables).

7 A New Model Counting Technique

A typical way [21, 22] to estimate the number of solutions
|SF | = Z (model count) of a formulaF using a sample
approximation is to estimate a series of multipliers

Z

Z(x1 = a1)

Z(x1 = a1)

Z(x1 = a, x2 = a2)
· · · Z(x1 = a1, · · · , xn−1 = an−1)

1
.

For instance,Z(x1=a1)
Z is given by the fraction of solutions

that havex1 = a1 (the number of solutions in the green vs.
yellow part of the search tree in Figure 3), and so on. This
can be a challenging task because one has to heuristically
select a “good” variable ordering and polaritiesa1, · · · , an

to condition on, and solve multiple sampling tasks with
some of the variables clamped [22].

Algorithm 1 provides a new direct way of estimating the
number of solutions. LetSi be the set of pseudosolutions of
level i. SupposeZ = |Sn| > 0 (the formula is satisfiable),
and for simplicity letM = 2ℓ = 2. Then, we have

Z = |Sn| =
|Sn|
|Sn−1|

|Sn−1|
|Sn−2|

|Sn−2|
|Sn−3|

· · · |S1|
1

(see right panel of Figure 3), where we can estimate each
multiplier using the relation

|Si|
|Si−1|

=
1

|Si−1|
∑

s∈Si−1

|D(s)| ≈ 1

|Φi−1|
∑

s̃∈Φi−1

|D(s̃)|,

where elements̃s ∈ Φi−1 provided by Algorithm 1
are (approximately) uniformly sampled elements ofSi−1.
Note that each multiplier corresponds to the average num-
ber of descendants at a given leveli of the search tree,
and we can estimate all of them in a single run of
SearchTreeSampler (i.e. no need to solve multiple
sampling tasks as in [22]).
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(a) Latin square (ls8-normalized)
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(b) Latin square (ls9-normalized)
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(c) Langoford problem (lang-12)
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(d) Langford problem (lang-15)

Figure 4: Estimated model count as a function of runtime.

X 1 = 1 S 1S 2S 3X 1 = 0X 2 = 1 X 2 = 0X 3 = 1 X 3 = 0
Figure 3: Pictorial representation of the traditional (left)
and new model counting techniques (right). Notice the ver-
tical vs. horizontal division of the search tree.

7.1 Experimental Results

We compare our new counting method with Sample-
Search [23], currently the best model counter based on
(importance) sampling [12], on several large instances
(with known ground truth) from a standard model counting
benchmark [3]. In Figure 4 we plot the estimated model
count over time (as more samples are being collected) for
the two methods, for4 representative instances (encod-
ings of Latin Squares and Langford’s problems). Note
that both methods rely on MiniSAT as internal constraint
solver. Both methods are run on the same 3GHz machine,
SearchTreeSampler with k = 500 and SampleSearch
with parameters as in [23].

Our empirical results show thatSearchTreeSampler

converges faster and provides more accurate estimates.
Similar results are obtained for other instances in the
benchmark (not reported for space reasons). Note that these
instances have a rather large number of solutions so it is dif-
ficult to evaluate the uniformity of the sampling using aχ2

test. In this case, the accuracy of the estimates ofZ is an
indication of the of the quality of the sampling scheme.

8 Conclusions

We presentedSearchTreeSampler, a new method to
sample solutions of Boolean formulas and to estimate their
count. Our method uses a constraint solver as a black-
box, and can therefore leverage the reasoning power of
state-of-the-art constraint solving technology, while main-
taining an approximately uniform exploration of the search
tree. We presented several challenging domains, such as
energy barriers and asymmetric search spaces, that reveal
the difficulties of sampling. We presented data demon-
strating that standard methods such as Simulated Anneal-
ing, Gibbs Sampling, and SampleSAT seriously suffer
from these difficulties in terms of runtime and unifor-
mity of the sampling. Our results also demonstrate that
SearchTreeSampler can overcome many of these dif-
ficulties and is considerably faster on a set of benchmark
problems. Further, we show that the intermediate samples
of pseudosolutions provided by our method can be used in
a new model counting technique, which is shown to be very
effective in practice.
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Abstract

Generative models for graphs have been typ-
ically committed to strong prior assumptions
concerning the form of the modeled distribu-
tions. Moreover, the vast majority of cur-
rently available models are either only suit-
able for characterizing some particular net-
work properties (such as degree distribution
or clustering coefficient), or they are aimed
at estimating joint probability distributions,
which is often intractable in large-scale net-
works. In this paper, we first propose a
novel network statistic, based on the Lapla-
cian spectrum of graphs, which allows to dis-
pense with any parametric assumption con-
cerning the modeled network properties. Sec-
ond, we use the defined statistic to develop
the Fiedler random graph model, switching
the focus from the estimation of joint prob-
ability distributions to a more tractable con-
ditional estimation setting. After analyz-
ing the dependence structure characterizing
Fiedler random graphs, we evaluate them ex-
perimentally in edge prediction over several
real-world networks, showing that they allow
to reach a much higher prediction accuracy
than various alternative statistical models.

1 INTRODUCTION

Arising from domains as diverse as bioinformatics and
web mining, large-scale data exhibiting network struc-
ture are becoming increasingly available. Network
models are commonly used to represent the relations
among data units and their structural interactions.
Recent studies, especially targeted at social network
modeling, have focused on random graph models of

∗Université Charles de Gaulle – Lille 3, Villeneuve
d’Ascq (France).

those networks. In the simplest form, a social net-
work is a configuration of binary random variables
Xuv such that the value of Xuv stands for the pres-
ence or absence of a link between nodes u and v in the
network. The general idea underlying random graph
modeling is that network configurations are generated
by a stochastic process governed by specific probability
laws, so that different models correspond to different
families of distributions over graphs.

The simplest random graph model is the Erdős-Rényi
(ER) model [Erdős and Rényi, 1959], which assumes
that the probability of observing a link between two
nodes in a given graph is constant for any pair of nodes
in that graph, and it is independent of which other
edges are being observed. In preferential attachment
models [Barabási and Albert, 1999], the probability
of linking to any specified node is proportional to the
degree of the node in the graph, leading to “rich get
richer” effects. Small-world models [Watts and Stro-
gatz, 1998] try to capture instead some phenomena
often observed in real networks such as high clustering
coefficients and small diameters [Newman, 2010]. A
sophisticated attempt to model complex dependences
between edges in the form of Gibbs-Boltzmann distri-
butions is made by exponential random graph (ERG)
models [Snijders et al., 2006], which subsume the ER
model as a special case. Finally, a recent attempt at
modeling real networks through a stochastic genera-
tive process is made by Kronecker graphs [Leskovec
et al., 2010], which try to capture phenomena such as
heavy-tailed degree distributions and shrinking diam-
eter properties while paying attention to the temporal
dynamics of network growth.

While some of these models behave better than oth-
ers in terms of computational tractability, one basic
limitation affecting all of them is what we may call a
parametric assumption concerning the probability laws
underlying the observed network properties. In other
words, currently available models of network struc-
ture assume that the probability distribution gener-
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ating the network can be expressed through a partic-
ular parametric form P (G| θ), where G is the observed
graph and θ is a parameter vector. For example, typ-
ical formulations of exponential random graph mod-
els assume that the building blocks of real networks
are given by such structures as k-stars and k-triangles,
with different weights assigned to different structures,
whereas Kronecker graphs assume that the number of
edges and the number of nodes in a given network
are related by a densification power law with a suit-
able densification parameter. In such frameworks, es-
timating the model from data reduces to fitting the
model parameters, whereas the model structure re-
mains fixed from the very beginning. The problem
is that, in order for a parametric model to deliver an
accurate estimate of the distribution at hand, its prior
assumption concerning the form of the modeled distri-
bution must be satisfied by the given data, which is
something that we can rarely assess a priori. To date,
the knowledge we have concerning real-world network
phenomena does not allow to assume that any particu-
lar parametric assumption is really capturing in depth
any network-generating law, although some observed
properties may happen to be modeled fairly well.

The aim of this paper is twofold. On the one hand,
we take a first step toward nonparametric modeling
of random networks by developing a novel network
statistic, which we call the Fiedler delta statistic. The
Fiedler delta function allows to model different graph
properties at once in an extremely compact form. This
statistic is based on the spectral analysis of the graph
Laplacian. In particular, it is based on the smallest
non-zero eigenvalue of the Laplacian matrix, which is
known as Fiedler value [Fiedler, 1973, Mohar, 1991].
On the other hand, we systematically adopt a con-
ditional approach to random graph modeling, i.e. we
focus on the conditional distribution of edges given
some neighboring portion of the network, while set-
ting aside the problem of estimating joint distribu-
tions. The resulting conditional random graph model
is what we call Fiedler random graph (FRG). Roughly
speaking, to model the conditional distribution of an
edge variable Xuv with respect to its neighborhood, we
compute the difference in Fiedler values for the vicin-
ity subgraph including or excluding the edge {u, v}.
The underlying intuition is that the variations encap-
sulated in the Fiedler delta for each particular edge
will give a measure of the role of that edge in deter-
mining the algebraic connectivity of its neighborhood.
As part of our contributions, we theoretically prove
that FRGs capture edge dependencies at any distance
within a given neighborhood, hence defining a fairly
general class of conditional probability distributions
over graphs.

Experiments on the estimation of (conditional) link
distributions in large-scale networks show that FRGs
are well suited for estimation problems on very large
networks, especially small-world and scale-free net-
works. Our results reveal that the FRG model su-
persedes other approaches in terms of edge prediction
accuracy, while allowing for efficient computation in
the large-scale setting. In particular, it is known that
the computation of the Fiedler delta scales polynomi-
ally in the size of the analyzed neighborhood [Bai et al.,
2000]. And the experiments show that even for small
sizes of neighborhoods (which allow for extremely fast
computation), our model regularly outperforms the al-
ternative ones—which we reformulate here in terms of
conditional models so as to allow for transparent com-
parison.

The paper is organized as follows. Sec. 2 reviews some
preliminary notions concerning the Laplacian spec-
trum of graphs. The FRG model is presented in Sec. 3,
where we also show how to estimate FRGs from data,
and we analyze the dependence structures involved in
FRGs. In Sec. 4 we review (and to some extent de-
velop) a few alternative conditional approaches to ran-
dom graph estimation, starting from some well-known
generative models. All considered models are then
evaluated experimentally in Sec. 5, while Sec. 6 draws
some conclusions and sketches a few directions for fur-
ther work.

2 GRAPHS, LAPLACIANS, AND
EIGENVALUES

Let G = (V , E) be an undirected graph with n nodes.
In the following we assume that the graph is un-
weighted with adjacency matrix A. For each (un-
ordered) pair of nodes {u, v} such that u 6= v, we
take Xuv to denote a binary random variable such that
Xuv = 1 if {u, v} ∈ E , and Xuv = 0 otherwise. Since
the graph is undirected, Xuv = Xvu.

The degree du of a node u ∈ V is defined as the
number of connections of u to other nodes, that is
du = |{v: {u, v} ∈ E}|. Accordingly, the degree ma-
trix D of a graph G corresponds to the diagonal ma-
trix with the vertex degrees d1, . . . , dn on the diago-
nal. The main tools exploited by the random graph
model proposed here are the graph Laplacian matri-
ces. Different graph Laplacians have been identified
in the literature [von Luxburg, 2007]. In this paper,
we use consistently the unnormalized graph Laplacian,
defined as L = D − A. The basic facts related to the
unnormalized Laplacian matrix can be summarized as
follows:

Proposition 1 (Mohar [1991]). The unnormalized
graph Laplacian L of an undirected graph G with n
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nodes has the following properties: (i) L is symmetric
and positive semi-definite; (ii) L has n non-negative,
real-valued eigenvalues 0 = λ1(G) ≤ . . . ≤ λn(G); (iii)
the multiplicity of the eigenvalue 0 of L equals the
number of connected components in the graph, that is,
λ2(G) > 0 if and only if G is connected.

In the following, the (algebraic) multiplicity of an
eigenvalue λ will be denoted by M(λ, G). If the graph
has one single connected component, then M(0, G) =
1, and the second smallest eigenvalue λ2(G) > 0 is
called Fiedler eigenvalue. The Fiedler eigenvalue pro-
vides insight into several graph properties: when there
is a nontrivial spectral gap, i.e. λ2(G) is clearly sepa-
rated from 0, the graph has good expansion proper-
ties, stronger connectivity, and rapid convergence of
random walks in the graph [Mohar, 1991]. For ex-
ample, it is known that λ2(G) ≤ µ(G), where µ(G) is
the edge connectivity of the graph (i.e. the size of the
smallest edge cut whose removal makes the graph dis-
connected). Notice that if the graph has more than one
connected component, then λ2(G) will be also equal to
zero, thus implying that the graph is not connected.
Without loss of generality, we abuse the term Fiedler
eigenvalue to denote the smallest eigenvalue different
from zero, regardless of the number of connected com-
ponents. In this paper, by Fiedler value we will mean
the eigenvalue λk+1(G), where k = M(0, G).

For any pair of nodes u and v in a graph G = (V , E),
we define two corresponding graphs G+ and G− in the
following way: G+ = (V , E ∪ {{u, v}}), and G− =
(V , E \ {{u, v}}). Clearly, we have that either G+ = G
or G− = G. A basic property concerning the Lapla-
cian eigenvalues of G+ and G− is the following [Mohar,
1991, Anderson and Morley, 1985, Cvetković et al.,
1979]:

Lemma 1. If G+ and G− are two graphs with n nodes,
such that {u, v} ⊆ V, G+ = (V , E ∪ {{u, v}}), and
G− = (V , E \ {{u, v}}), then we have that:

1.
∑n

i=1 λi(G+) − λi(G−) = 2;

2. λi(G+) ≤ λi(G−) for any i such that 1 ≤ i ≤ n.

3 FIEDLER RANDOM GRAPHS

Fiedler random graphs are defined in Sec. 3.1, while in
Secs. 3.2 and 3.3 we deal with the problems of estimat-
ing them from data and characterizing their statistical
dependence structure respectively.

3.1 CONDITIONAL DISTRIBUTIONS

Given the notions reviewed above, we introduce the
Fiedler delta function ∆λ2, which is defined as follows.

Let k = M(0, G+). Then,

∆λ2(u, v, G) = λk+1(G+) − λk+1(G−) (1)

In other words, for any pair of nodes u and v in graph
G, the Fiedler delta value of the pair {u, v} in G is
the (absolute) variation in the Fiedler eigenvalue of
the graph Laplacian that would result from removing
edge {u, v} from G+.

Lemma 1 immediately implies the following proposi-
tion:

Proposition 2. For any graph G = (V , E) and any
pair of nodes u and v such that {u, v} ∈ E, we have
that 0 ≤ ∆λ2(u, v, G) ≤ 2.

Proof. Let G− = (V , E \ {{u, v}}) and k = M(0, G).
The theorem follows straightforwardly from Lemma 1,
given that ∆λ2(u, v, G) = λk+1(G) − λk+1(G−).

Using the Fiedler delta statistic, we can proceed to
define a Fiedler random graph. Given G = (V , E), let
X (G) denote the set of random variables defined on G,
that is X (G) = {Xuv: u 6= v ∧ {u, v} ⊆ V}. Then:

Definition 1. Given a graph G = (V , E), suppose we
associate a subgraph Guv of G to each variable Xuv ∈
X (G). We say that G is a Fiedler random graph if,
for any Xuv ∈ X (G), we have that P (Xuv| X (Guv) \
{Xuv}) = P (Xuv| ∆λ2(u, v, Guv)).

Concerning Definition 1, we stress the importance of
two points. First, the key intuition motivating FRGs is
to treat the Fiedler delta function as a real-valued ran-
dom variable defined over graph configurations, and to
exploit this random variable as a compact representa-
tion of those configurations. Second, FRGs are condi-
tional models, i.e. they only define conditional distri-
butions of edges in a random graph given the possible
configurations of other edges. The model definition
does not specify whether and how the considered con-
ditional distributions can be combined to obtain a con-
sistent factorization of the joint distribution of X (G).
In order to obtain that result, the model should take
into account the global dependence structure of X (G),
but this goal is not pursued by FRG modeling. Two
interesting questions that can be raised on the nature
of the FRG model are then the following. First, how
does the Fiedler delta statistic behave with respect to
the Markov dependence property [Besag, 1974, Frank
and Strauss, 1986]? Second, how useful can be the
information enclosed in the Fiedler delta statistic for
learning and mining applications over large-scale net-
works? One basic result related to the first question is
presented in Sec. 3.3, whereas Sec. 5 will address the
second point.
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3.2 MODEL ESTIMATION

The goal of estimating a FRG from data is to
obtain an estimate of the conditional distribution
P (Xuv| X (Guv) \ {Xuv}), defined over subgraphs Guv

of G. Starting from Definition 1, this quantity can be
manipulated as follows:

P (Xuv| X (Guv) \ {Xuv}) = P (Xuv| ∆λ2(u, v, Guv))

=
p(∆λ2(u, v, Guv)| Xuv)P (Xuv)

p(∆λ2(u, v, Guv))

=
p(∆λ2(u, v, Guv)| Xuv)P (Xuv)∑

xuv

p(∆λ2(u, v, Guv)| xuv)P (xuv)

(2)

In Eq. 2, P (Xuv) is the prior probability of observ-
ing an edge between any two nodes u and v, whereas
p(∆λ2(u, v, Guv)| Xuv) is the conditional density of
the Fiedler delta ∆λ2(u, v, Guv) given the value of
Xuv. Suppose we have a network G = (V , E), and
that our training sample is a dataset D, defined as
D =

{
(xu1v1 , Gu1v1), . . . , (xunvn , Gunvn)

}
. In other

words, the training data are n observations of node
pairs {ui, vi} such that, for each one of them, we know
both the value of Xuivi and the configuration of Guivi

in G. A simple estimate for P (Xuv) can then be ob-
tained by computing the proportion of linked/unlinked
node pairs {ui, vi} in D. Let Dxuv denote the set{
{ui, vi}: (xuivi , Guivi) ∈ D ∧ xuivi = xuv

}
. Then,

P̂ (xuv) = 1
n

∣∣Dxuv

∣∣. On the other hand, in order
to estimate p(∆λ2(u, v, Guv)| Xuv), we need to make
a choice concerning the form of the modeled density
function. In the lack of prior knowledge concerning
the form of the density, a reasonable choice is to adopt
a nonparametric estimation technique. In particular,
we use a kernel density estimator [Rosenblatt, 1956,
Parzen, 1962], defined as follows:

p̂(∆λ2(u, v, Guv)| xuv) =

=
1

|Dxuv |
∑

{ui,vi}∈Dxuv

K∆λ2

(
{u, v}, {ui, vi}

) (3)

where

K∆λ2

(
{u, v}, {ui, vi}

)
=

=
1

h
K

(
∆λ2(u, v, Guv) − ∆λ2(ui, vi, Guivi)

h

)
(4)

and K is a kernel function with bandwidth h [Silver-
man, 1986]. In our implementation of FRGs, we use
the Epanechnikov kernel [Epanechnikov, 1969], namely
K(t) = 3

4

(
1 − t2

)11(|t|), where 1y(x) = 1 if x ≤ y,
and 1y(x) = 0 otherwise. The Epanechnikov kernel
is more appealing than other possible functions (such
as the Gaussian kernel) because of its computational

convenience. At the same time, it displays analogous
properties in terms of statistical consistency [Silver-
man, 1986].

3.3 DEPENDENCE STRUCTURE

In order to illustrate the behavior of FRGs with re-
spect to conditional independence, we first recall the
definition of Markov dependence for random graph
models [Frank and Strauss, 1986]. Let N (Xuv) de-
note the set {Xwz: {w, z} ∈ E ∧ |{w, z} ∩ {u, v}| = 1}.
A Markov random graph is then defined as follows:

Definition 2. A random graph G is said to be a
Markov graph (or to have a Markov dependence
structure) if, for any pair of variables Xuv and Xwz

in G such that {u, v} ∩ {w, z} = ∅, we have that
P (Xuv|Xwz, N (Xuv)) = P (Xuv| N (Xuv)).

Based on Definition 2, we say that the dependence
structure of a random graph G is non-Markovian
if, for disjoint pairs of nodes {u, v} and {w, z},
it does not imply that P (Xuv| Xwz, N (Xuv)) =
P (Xuv|N (Xuv)), i.e. if it is consistent with the in-
equality P (Xuv| Xwz, N (Xuv)) 6= P (Xuv| N (Xuv)).
We can then prove the following proposition:

Proposition 3. There exist Fiedler random graphs
with non-Markovian dependence structure.

Proof. To prove the proposition, we make use of
the following equalities [Fiedler, 1973]: if graphs
G1 and G2 are, respectively, a path and a cir-
cuit of size n, then λ2(G1) = 2 (1 − cos(π/n))
and λ2(G2) = 2 (1 − cos(2π/n)). Consider a
graph G = (V , E) such that V = {u, v, w, z} and
E = {{u, v}, {v, w}, {w, z}, {u, z}}, and let Guv =
(Vuv, Euv) be the subgraph of G incident to Euv =
E\{{w, z}}. If G is a Markov graph, it must be the case
that P (Xuv| Xwz, Xvw, Xuz) = P (Xuv| Xvw, Xuz).
Now, suppose that G is a FRG. In this case, we have
that

P (Xuv| Xwz, Xvw, Xuz) = P (Xuv| X (G) \ {Xuv})

=
p(∆λ2(u, v, G)| Xuv)P (Xuv)

p(∆λ2(u, v, G))
(5)

and, similarly,

P (Xuv| Xvw, Xuz) =
p(∆λ2(u, v, Guv)| Xuv)P (Xuv)

p(∆λ2(u, v, Guv))
(6)

Eqs. 5–6 imply that, if the dependence structure of G
is Markovian, then the following equality must hold:

p(∆λ2(u, v, G)| Xuv)

p(∆λ2(u, v, G))
=

p(∆λ2(u, v, Guv)| Xuv)

p(∆λ2(u, v, Guv))
(7)
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Since the configuration of G and Guv is given by a cir-
cuit and a path respectively, where both have size 4,
we know that λ2(G) = 2 (1 − cos(π/2)) and λ2(Guv) =
2 (1 − cos(π/4)). Also, if G− = (V , E \ {{u, v}}) and
G−

uv = (Vuv, Euv \ {{u, v}}), notice that λ2(G−) =
λ2(Guv), since G− is also a path of size 4, and that
M(0, G−

uv) = M(0, Guv) + 1, since G−
uv has one more

connected component than Guv. Therefore, we have
that ∆λ2(u, v, G) = 2 cos(π/4) and ∆λ2(u, v, Guv) =
2 (1−cos(π/4)), i.e. ∆λ2(u, v, G) 6= ∆λ2(u, v, Guv). Be-
cause of this inequality, there will exist parameteriza-
tions of p which do not satisfy Eq. 7, which means that
the dependence structure of G is non-Markovian.

Note that the proof of Proposition 3 can be straight-
forwardly generalized to the dependence between Xuv

and Xwz in circuits/paths of arbitrary size n, since
the expression used for the Fiedler eigenvalues of such
graphs holds for any n. In fact, suppose that the
4-nodes circuit G used in the proof is replaced with
a circuit G∗ = (V∗, E∗) of size n, where V∗ = V ∪
{s1, . . . , s1, . . . , sm, t1, . . . , tm} and E∗ is obtained from
E by replacing {u, z} and {v, w}, respectively, with
a path from u to z going through s1, . . . , sm and a
path from v to w going through t1, . . . , tm, so that
n = 2m + 4. In this case, if G∗

uv is the subgraph of
G∗ incident to E∗

uv = E∗ \ {{w, z}}, we have again
that ∆λ2(u, v, G∗) 6= ∆λ2(u, v, G∗

uv), which means

that there exist FRGs such that p(∆λ2(u,v,G∗)| Xuv)
p(∆λ2(u,v,G∗)) 6=

p(∆λ2(u,v,G∗
uv)| Xuv)

p(∆λ2(u,v,G∗
uv)) .

4 OTHER CONDITIONAL
RANDOM NETWORKS

In this section, we adapt three families of ran-
dom graph models—namely the ERG, Watts-
Strogatz (WS), and Barabási-Albert (BA) models
respectively—to the task of conditional estimation of
edge distributions, and we also review the entailed
dependence structures. This will allow for a clear
comparison of such models to FRGs in Sec. 5. Kro-
necker graphs are not considered here because it is not
straightforward how they could be turned into condi-
tional estimators.

4.1 EXPONENTIAL RANDOM GRAPH
MODELS

Let G(V) be the set of all possible (undirected) graphs

G with fixed vertex set V , where |G(V)| =
√

2|V|2−|V|.
Suppose that Φ denotes a collection of potential func-
tions ϕi over graphs, where each ϕi(G) is a graph
statistic such as the number of edges or the number
of triangles in G. Then, an ERG with parameter vec-

tor θ = (θ1, . . . , θ|Φ|) defines the following Boltzmann
distribution [Robins et al., 2007]:

P (X (G)| θ) =
1

Z(θ)
exp

{ |Φ|∑

i=1

θiϕi(G)

}
(8)

where each θi is a real-valued parameter associated to
the potential function ϕi, and Z(θ) denotes the par-
tition function [Koller and Friedman, 2009], given by

Z(θ) =
∑

Gj∈G(V) exp
{∑|Φ|

i=1 θiϕi(Gj)
}
. Computing

the partition function exactly is clearly intractable for
graphs with more than a few nodes, which makes it
quite expensive to compute joint probabilities in large
networks using ERGs.

ERGs entail a simple form for the conditional distri-
bution of edges given the remainder of the graph:

P (Xuv| X (G) \ {Xuv}; θ) =

exp

{ |Φ|∑
i=1

θiϕi(G)

}

∑
xuv

exp

{ |Φ|∑
i=1

θiϕi(Gxuv )

}

(9)
where Gxuv denotes the configuration of G that we ob-
tain by clamping the value of Xuv to xuv. Therefore,
if we want to estimate the parameters of an ERG so as
to maximize the model log-likelihood with respect to a
data sample D =

{
(xu1v1 , GS1), . . . , (xunvn , GSn)

}
, we

can optimize each parameter θi by taking the deriva-
tive ∂

∂θi

∑n
j=1 log P (xujvj | X (GSj ) \ {Xuv}; θ) and ap-

plying any gradient-based optimization technique.

4.1.1 Markov Random Graphs

Given a graph G = (V , E), define a k-star (for k ≥
2) as a set ESk

⊆ E such that |ESk
| = k and,

for any {u, v} and {w, z} in ESk
, {u, v} ∩ {w, z} =

1. Also, let a k-triangle (for k ≥ 1) be a set
ETk

⊆ E of size 2k + 1 such that the elements of ETk

are edges {u, v}, {u, w1}, {v, w1}, . . . , {u, wk}, {v, wk},
where wi 6= wj for any i and j such that 1 ≤ i, j ≤ k.
If we use E(G), Sk(G), and Tk(G) to denote, respec-
tively, the number of edges, the number of k-stars, and
the number of k-triangles in G, then an exponential
Markov random graph (MRG) model with parameter
vector θ is defined by the following probability distri-
bution [Frank and Strauss, 1986]:

P (G| θ) =
1

Z
exp

{
η E(G) +

K∑

k=2

σkSk(G) + τ T (G)

}

(10)
where K is the maximum value that we want
to consider for k in the k-star statistics, θ =
(η, σ2, . . . , σK , τ), and T (G) = T1(G) is simply the
number of triangles in G. That is to say, a MRG de-
fines a Boltzmann distribution over graphs, with pa-
rameters corresponding to edge, k-star, and triangle
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statistics. Interestingly, the ER model can be charac-
terized as a special case of MRG, where all the param-
eters except for η are set to zero.

MRGs are known to satisfy Definition 2 [Robins et al.,
2007]. Therefore, under the probability model defined
by Eq. 10, we have that, for any pair of nodes {u, v}
and any subgraph sample GS from G, P (Xuv| X (GS) \
{Xuv}; θ) = P (Xuv| NS(Xuv); θ), where NS(Xuv) is
the set of all variables Xwz from GS such that |{w, z}∩
{u, v}| = 1. Note that while Definition 2 specifies a
general class of random graph models, MRGs in the
strict sense refer to the class of ERGs defined above.

4.1.2 Higher-Order Models

Higher-order ERG models (HRGs) are readily ob-
tained from MRGs by adding k-triangle counts (for
k ≥ 1) to the Boltzmann distribution of Eq. 10 [Robins
et al., 2007]. Moreover, in order to avoid fixing in ad-
vance the maximum value of the k parameter, a gen-
eral formulation has been proposed for HRGs through
the alternating k-star and the alternating k-triangle
statistics [Snijders et al., 2006], obtaining the follow-
ing probability model:

P (G| θ) =
1

Z
exp {η E(G) + σ S∗(G) + τ T ∗(G)} (11)

where, if n is the number of nodes in G and Sk and Tk

are the usual k-stars and k-triangle counts, S∗(G) and

T ∗(G) are defined as S∗(G) =
∑n−1

k=2 (−1)k Sk

ρk−2 and

T ∗(G) =
∑n−2

k=2 (−1)k Tk

ρk−2 (with ρ ≥ 1 acting as a sort

of regularization parameter).

It is known that, under the distribution
given by Eq. 11, P (Xuv| X (GS ) \ {Xuv}; θ) =
P (Xuv|N ∗

S (Xuv); θ) [Robins et al., 2007], where
N ∗

S (Xuv) is the set containing any Xwz from G such
that Xwz 6= Xuv and, for at least one edge {s, t}, we
have that |{s, t} ∩ {u, v}| = 1 and {s, t} ∩ {w, z} 6= ∅.
Clearly, NS(Xuv) ⊆ N ∗

S (Xuv), which is why HRGs
are ‘higher-order’ than MRGs.

4.2 WATTS-STROGATZ MODEL

The WS network model [Watts and Strogatz, 1998]
defines a random network as a regular ring lattice
which is randomly ‘rewired’ so as to introduce a cer-
tain amount of disorder, which typically leads to small-
world phenomena. Given nodes u1, . . . , un, a WS net-
work is generated by constructing a regular ring lattice
such that each node is connected to exactly 2 δ other
nodes. Network edges are then scanned sequentially,
and each one of them is rewired with probability β,
where, if i < j, rewiring an edge {ui, uj} means to
replace it with another edge {ui, uk} such that k 6= i

and uk is chosen uniformly at random from the set of
all nodes that are not already linked to ui.

Interestingly, the degree distribution corresponding to
a WS network G with parameters δ and β takes the
following form [Barrat and Weigt, 2000], for any degree
k ≥ δ:

P (k) =

I∑

i=0

(
δ

i

)
(1 − β)i βδ−i (δ β)k−δ−i

(k − δ − i)!
exp(−β δ)

(12)
where I = min{k − δ, δ}. Given Eq. 12, we model the
conditional distribution of a variable Xuv given the
remainder of G through the following quantity:

P (Xuv| X (G) \ {Xuv}) =
P (du(G))P (dv(G))∑

xuv

P (du(Gxuv ))P (dv(Gxuv ))

(13)

where du(G) denotes the degree of node u in G, and
each P is implicitly conditional on the values of δ and
β. We refer to the conditional random graph model
specified in Eq. 13 as the conditional Watts-Strogatz
(CWS) model.

For the CWS model, the following proposition follows
straightforwardly from Eq. 13:

Proposition 4. The dependence structure of CWS
models is Markovian.

A simple estimate of the δ parameter for a data sample
D =

{
(xu1v1 , Gu1v1), . . . , (xunvn , Gunvn)

}
is the follow-

ing:

δ̂ =
1

2 n

n∑

i=1

dui(GSi) + dvi(Guivi) (14)

On the other hand, a simple strategy for estimating
the rewiring probability by a maximum likelihood ap-
proach consists in parameterizing it as a sigmoid func-
tion β = 1

1+exp(−θβ) , where θβ can be optimized by ex-

ploiting the derivative ∂
∂θβ

∑n
i=1 log P (xuivi | X (Guivi)\

{Xuv}; δ, θβ).

4.3 BARABÁSI-ALBERT MODEL

The BA model was originally proposed for explain-
ing the scale-free degree distributions often observed
in real-world networks [Barabási and Albert, 1999].
In the BA model, the probability P (u) of linking to
any particular node u in a network G = (V , E) takes

the form P (u) = du(G)α
∑

v∈V dv(G)α [Albert and Barabási,

2002], where α is a real-valued parameter affecting the
shape of the degree distribution. Given P (u), we can
use the following expression to characterize the con-
ditional probability of observing edge {u, v} given the
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remainder of G [Newman, 2001, Barabási et al., 2002]:

P (Xuv = 1| X (G) \ {Xuv}; α) =
du(G)α dv(G)α

(∑
w∈V dw(G)α

)2

(15)
We refer to the random graph model of Eq. 15 as
the conditional Barabási-Albert (CBA) model. The
α parameter can be optimized straightforwardly by
gradient-based methods, so as to maximize the ob-
jective

∑n
i=1 log P (xuivi | X (Guivi) \ {Xuv}; α) over an

observed sample of size n.

The following property holds for CBA networks:

Proposition 5. The dependence structure of CBA
models is non-Markovian.

Proof. Consider a CBA network G = (V , E), where
{u, v} and {w, z} are edges in E such that {u, v} ∩
{w, z} = ∅. G is a Markov graph if and only
if P (Xuv| Xwz, N (Xuv)) = P (Xuv| N (Xuv)). Let
G1 and G2 be the same as defined in the proof
of Proposition 4. Although du(G2) = du(G1) and
dv(G2) = dv(G1), we have that

∑
w∈V dw(G2)

α >∑
w∈V dw(G1)

α. Therefore,

P (Xuv| Xwz, N (Xuv)) = P (Xuv| X (G2) \ {Xuv})

=
du(G2)

α dv(G2)
α

(∑
w∈V dw(G2)α

)2 6= du(G1)
α dv(G1)

α

(∑
w∈V dw(G1)α

)2

= P (Xuv| X (G1) \ {Xuv}) = P (Xuv| N (Xuv))

(16)

5 EXPERIMENTAL EVALUATION

In order to assess experimentally the accuracy of FRGs
as models of conditional edge distributions in large-
scale networks, we test them in the following link pre-
diction setting. First, we take a network G = (V , E),
with a number of nodes ranging from a few thousands
to a couple of millions, and a number of edges going up
to several millions. We then sample n training pairs
{ui, vi} uniformly at random from V , with ui 6= vi.
For each sampled pair of nodes {ui, vi}, we recover the
subgraph Guivi induced on G by the vertex set Vuivi =
{ui, vi}∪{wi: {ui, wi} ∈ E∨{vi, wi} ∈ E}, so as to get a
training set D =

{
(xu1v1 , Gu1v1), . . . , (xunvn , Gunvn)

}
.

We then estimate from D each one of the condi-
tional random graph models described in the previ-
ous sections, using the respective learning techniques.
Given the estimated models, we sample a test set
T =

{
(xu1v1 , Gu1v1), . . . , (xumvm , Gumvm)

}
from G such

that T ∩ D = ∅, where each element of T is sampled
through the same technique used for D. For each es-
timated model, we assess its accuracy by first using

it to compute the conditional probability of observ-
ing a link for each pair of nodes {uj, vj} in T , and
then calculating the area under the ROC curve (AUC)
for the predictions delivered on T . Since the problem
of predicting the presence of edges in real-world net-
works is severely unbalanced, i.e. |E| ≪ 1

2 |
(
V|2 − |V|

)
,

the ROC curve is a particularly appropriate evalua-
tion measure [Fawcett, 2006]. Also, in order to as-
sess the sensitivity of each model to the size of the
training sample, we ran some preliminary experiments
with several different values of |D|. The result of this
preliminary investigation was that, provided that the
training sample contains at least a few pairs of linked
nodes (in the order of ten or twenty), then the behav-
ior of the different models is not significantly affected
by increasing sample sizes.

Table 1: General statistics for the network datasets
used in the experiments. CCG and DG denote the
average clustering coefficient and the network diameter
respectively.

Network |V| |E| CCG DG
AstroPh 18,772 396,160 0.63 14
GrQc 5,242 28,980 0.52 17
HepPh 12,008 237,010 0.61 13
HepTh 9,877 51,971 0.47 17
Enron 36,692 367,662 0.49 12
RoadCA 1,965,206 5,533,214 0.04 850
RoadTX 1,379,917 3,843,320 0.04 1,049

We compare the performance of the MRG, HRG,
CWS, CBA, and FRG models on seven different net-
works, drawn from the arXiv e-print repository, the
Enron email corpus, and the US road network respec-
tively [Leskovec et al., 2007, 2009]. The ER model is
not considered in these experiments, since the involved
independence assumption makes that model simply
unusable for conditional estimation tasks. Some rep-
resentative network statistics for the used datasets
are summarized in Table 1. For the arXiv datasets
(i.e. the AstroPh, GrQc, HepPh, and HepTh net-
works), we report results for a choice of 10, 000 node
pairs both for the training and the test set, whereas
for the Enron and US road (RoadCA and RoadTX)
networks we have |D| = |T | = 100, 000 and |D| =
|T | = 10, 000, 000 respectively. However, notice that
nearly identical results can be obtained in each case
after reducing the number of training samples down
to even 20%–40% of the indicated size (as discovered
through preliminary analysis). ROC curves for the de-
scribed datasets are plotted in Figs. 1–3, whereas the
corresponding AUC values are given in Table 2. As
a general remark, we point out that AUC values less
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Figure 1: ROC curves for the AstroPh (a), GrQc (b), HepPh (c), and HepTh (d) networks.

than 0.5 (as recorded for some models) do not necessar-
ily mean that prediction accuracy is being worse than
random guessing. In fact, recent studies show that,
depending on signal strength and stratification errors
between training and test sets, random guessing can
drop to AUC values even lower than 0.3 [Parker et al.,
2007]. Therefore, AUC values less than 0.5 should be
considered simply as no better than random guessing,
rather than worse than random.

FRGs significantly outperform all other models both in
the arXiv and in the Enron networks. Such networks
are generally characterized by power law degree distri-
butions, contrary to the road networks, which exhibit
instead a regular topology, with degree distribution
peaked around its mean. This explains the better be-
havior of the CBA model with respect to the remaining
options in most of the scale-free networks. Interest-
ingly, this trend is reverted for the HepPh data, where
not only CWS outperforms CBA, but we also observe
that HRG behaves much better than it does on the

Table 2: AUC values for the ROC curves plotted in
Figs. 1–3. CCG and DG denote the average clustering
coefficient and the network diameter respectively.

AUC (%)
Network CBA CWS FRG HRG MRG

AstroPh 46.04 32.39 91.66 28.69 14.78
GrQc 66.22 50.86 94.90 27.10 22.32
HepPh 40.04 50.84 92.73 65.62 15.02
HepTh 53.21 42.47 79.34 32.82 32.36
Enron 48.45 49.03 85.92 19.94 11.23
RoadCA 30.84 91.21 66.70 77.90 81.12
RoadTX 34.67 93.01 63.75 62.51 68.36

other scale-free networks. The fact that, in this partic-
ular case, FRGs remain the best available option pro-
vides evidence for their higher stability (i.e. robustness
to variation in the underlying network properties) with
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Figure 2: ROC curves for the Enron network.

respect to the other models. On the other hand, for
the US road networks we observe a completely differ-
ent pattern of results. This time, the FRG model per-
forms worse than the CWS model or the two variants
of ERG. The reason is related to the lattice-shaped
regularity exhibited by such graphs. This is not sur-
prising, as the WS model subsumes regular lattices as
special case scenarios. A natural explanation for the
superiority of the CWS model on the road networks
lies in the fact that their parametric assumption con-
cerning the observed degree distribution happens to be
satisfied for such data, while it is clearly violated by
the scale-free networks, which is exactly the opposite
of what happens for the CBA model. It is worth not-
ing, however, that FRGs are again performing signifi-
cantly better than the CBA model. Therefore, FRGs
appear to be a more stable class of conditional ran-
dom network models, since their predictions ensure a
regularly accurate behavior across networks displaying
significantly different statistical properties. Overall,
the presented results encourage the hypothesis that a
genuinely nonparametric approach to conditional ran-
dom graph modeling can offer dramatic advantages
over parametric approaches.

6 CONCLUSION

The work presented in this paper started from two mo-
tivations. On the one hand, we remarked that statisti-
cal modeling of networks cries for nonparametric esti-
mation, because of the inaccuracy often resulting from
fallacious parametric assumptions. In this respect, we
showed that statistics derived from the Laplacian spec-
trum of graphs (such as the Fiedler delta function)
offer practical ways of developing nonparametric esti-
mators. On the other hand, we suggested that a condi-
tional approach to random graph modeling can be very
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Figure 3: ROC curves for the RoadCA (a) and
RoadTX (b) networks.

effective in the large-scale setting, since it allows e.g. to
dispense with the intractable partition functions often
involved in joint distributions. With respect to this
point, we showed how FRGs allow us to tackle very
large datasets, processing effectively even millions of
queries over networks with millions of nodes and edges.
Interesting options for future work consist in analyz-
ing the effect of the subgraph sampling mechanism in
determining the distribution of the Fiedler delta, as
well as investigating alternative ways of exploiting the
information enclosed in the graph spectrum.
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Abstract

We consider the problem of Probably Ap-

proximate Correct (PAC) learning of a bi-

nary classifier from noisy labeled exam-

ples acquired from multiple annotators

(each characterized by a respective clas-

sification noise rate). First, we consider

the complete information scenario, where

the learner knows the noise rates of all the

annotators. For this scenario, we derive

sample complexity bound for the Mini-

mum Disagreement Algorithm (MDA) on

the number of labeled examples to be ob-

tained from each annotator. Next, we

consider the incomplete information sce-

nario, where each annotator is strategic

and holds the respective noise rate as a

private information. For this scenario, we

design a cost optimal procurement auc-

tion mechanism along the lines of Myer-

son’s optimal auction design framework

in a non-trivial manner. This mechanism

satisfies incentive compatibility property,

thereby facilitating the learner to elicit

true noise rates of all the annotators.

1 Background

In supervised learning, it is usually assumed that

the training set is sampled i.i.d. from some fixed

distribution, and the true labels are readily avail-

able. In contrast to this, there are many real-world

applications in which obtaining true labels is a time

consuming or costly process. However, for such ap-

plications, acquiring non-expert labels is easy, fast,

and inexpensive. Web based crowdsourcing [Howe,

2008] platforms like Rent-A-Coder and Galaxy Zoo

allow any web-user to perform various data an-

notation tasks. Amazon’s Mechanical Turk allow

any individual to publish a crowdsourcing task. In

such cases, labels obtained from such sources are

typically noisy, as the annotators can be careless

or even deceitful. Further, the annotators can act

strategically if it helps them fetch better rewards.

The problem of learning with noisy labeled ex-

amples has been studied mostly in two differ-

ent contexts: (1) studying the learnability of the

problem and developing learning algorithms un-

der the PAC learning framework [Valiant, 1984],

[Angluin and Laird, 1988], [Aslam and Decatur,

1996], [Blum et al., 1994], [Decatur and Gennaro,

1995], [Decatur, 1997], [Kearns, 1993], [Littlestone,

1991], and (2) estimating the noise rates of

the annotators and building robust classifier

models (independent or joint estimation and

learning) [Dawid and Skene, 1979], [Raykar et al.,

2009], [Yan et al., 2010], [Donmez et al., 2010].

In the former context, most of the work has

been done in a single noisy annotator scenario

with different kinds of noise models including

Malicious Noise [Valiant, 1985], [Kearns and Li,

1993], [Goldman and Sloan, 1995] and Nasty Noise

[Bshouty et al., 2002]. In the latter context,

the focus has been mainly using different clas-

sifier models and presenting different noise rate

estimation techniques. Our work differs from

these works in the following way: (1) we ex-

tend PAC learning sample complexity bound
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results to the multiple noisy annotators sce-

nario as this problem is becoming more preva-

lent in recent times [Dekel and Shamir, 2009a],

[Dekel and Shamir, 2009b], and (2) we design an

optimal auction mechanism that facilitates elicit-

ing (instead of estimating) true noise rates from

the annotators followed by a cost-effective pur-

chase of labeled examples satisfying the PAC learn-

ing constraint. We assume that annotators know

their true noise rate. This is practical in many

scenarios, e.g. many litigation service providing

companies outsource document labeling tasks to

paralegal agencies who in turn hire human edi-

tors. These agencies know the competence level

of the editors through long standing relationship.

The agencies bid for securing outsourcing contract

while fully knowing the quality of its editors. The

closest work in this direction is due to [Dekel et al.,

2008] where they have focused on regression prob-

lem and took the elicitation approach via pro-

viding incentives to know the distribution infor-

mation (privately held by the agents for evalua-

tion). In contrast, our work is classification fo-

cused; furthermore, unlike the noisy annotators

who charge labeling cost in our scenario, the strate-

gic agents do not charge any price for annota-

tion in their case. Instead, in their model, the

agents have other vested interest in influencing the

outcome of the learning; similar framework has

also been used in [Meir et al., 2008], [Meir et al.,

2009], [Dalvi et al., 2004], [L’Huillier et al., 2009],

and [Kantarcioglu et al., 2008]. The main contri-

butions of our work are:

• We consider the problem of PAC learning a

binary classifier using noisy labeled examples

obtained from multiple noisy annotators (in

contrast to the conventional single noisy an-

notator scenario). We introduce the notion of

annotation plan, and derive sample complex-

ity bounds for PAC learning of finite concept

class using the well-known minimum disagree-

ment algorithm (MDA), in the known noise

rates information scenario.

• We present an optimal auction mechanism

to purchase labeled examples from strategic

noisy annotators by eliciting true noise rate

information in a more realistic scenario of un-

known noise rates. Our approach is inspired

by Myerson’s Nobel prize winning work on op-

timal auction design [Myerson, 1981]. We de-

rive allocation and payment rules for purchas-

ing labeled examples at a near-optimal cost

from strategic noisy annotators, satisfying the

PAC constraint. To the best of our knowledge

there has been no prior art with such results.

2 PAC Learning and Bounds

In this section, we provide basic definitions re-

lated to the PAC learning model [Valiant, 1984],

[Angluin and Laird, 1988] with n noisy annotators,

and derive sample complexity bounds for PAC

learning with n noisy annotators. The PAC learn-

ing model comprises of an instance space X and a

concept class C . The instance space X is a fixed

set which can be finite, countably infinite, {0, 1}d,
or Rd for some d ≥ 1. The concept class C is a

set of concepts. A concept c is a subset of X ,

which can equivalently be expressed as a boolean

function from X to {0, 1}, and it should be clear

from the context whether c is referring to a sub-

set or to a function. The task of the learner is to

determine a close approximation to an unknown

target (or true) concept ct, from the labeled ex-

amples. We assume that ct ∈ C . The learner has

access to n noisy annotators as the sources of its

training data. Each call to an annotator returns

a labeled example ⟨x, y⟩, where instance x ∈ X is

drawn randomly and independently according to

some unknown (to the learner) sampling distribu-

tion D. The learner gets mi ≥ 0 labeled exam-

ples from annotator i, where i = 1, . . . , n, which

together constitute the training dataset. Finally,

the learner employs a learning algorithm to out-

put a hypothesis h ∈ C , based on the training

data. The annotator i, (i = 1, . . . , n) reports the

label y which is subject to an independent random

mistake with a known probability ηi. So, the re-

ported label is y = ¬ ct(x) with probability ηi and

y = ct(x) with probability (1 − ηi). This noise

model is known as random classification noise and

was first studied by [Angluin and Laird, 1988] and

[Laird, 1988] for the single noisy annotator case.

The probability ηi, i = 1, . . . , n is known as noise

rate of the annotator i. In this paper, we assume

that 0 < ηi < 1/2, i = 1, . . . , n.
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2.1 PAC learning with n noisy annotators

For any hypothesis h ∈ C , the error rate (or gen-

eralization error) is defined to be the probability

that h(x) ̸= ct(x) for an instance x ∈ X that is

randomly drawn according to D. The error rate

of a hypothesis h is given by PD(ct∆h), where

ct∆h ⊆ X is the symmetric difference between

sets ct and h, and PD(·) is the probability of this

event (calculated with respect to D). A hypothesis

h is said to be ϵ-bad if its error rate is more than

ϵ, i.e. PD(ct∆h) > ϵ. In the classical PAC model

of [Valiant, 1984], the learner’s goal is to come up

with a learning algorithm which outputs an ϵ-bad

hypothesis h with probability at most δ, where the

probability is defined with respect to the distribu-

tion of training examples of a fixed size. Such a

learning algorithm is known as PAC learning algo-

rithm. In general, the error rate of the hypothesis

chosen by a learning algorithm critically depends

on the number of training examples supplied to

the algorithm. Thus, a learning algorithm with

single annotator is said to satisfy PAC bound with

respect to the sample size m(ϵ, δ) if the following

condition holds true: Pm(ϵ,δ)(PD(ct∆h) > ϵ) < δ,

where h is the hypothesis output by the learning

algorithm when trained on the m(ϵ, δ) number of

training examples. The sample size m(ϵ, δ) is a

non-negative integer valued function of the param-

eters ϵ and δ. The probability Pm(ϵ,δ)(·) is taken

over the distribution of m(ϵ, δ) training examples

(noisy or non-noisy). For a given algorithm, the

smallest sample size m∗(ϵ, δ) for which it still sat-

isfies PAC bound is known as its sample complex-

ity. Now, we extend the PAC learning framework

to the case of n noisy annotators; starting with the

following definitions:

• An instance of the PAC learning problem is

a set of specifications of instance space X ,

concept class C , true concept ct, and sampling

distribution D.

• An annotation plan, denoted by m(ϵ, δ) =

(m1(ϵ, δ), . . . ,mn(ϵ, δ)), is a vector of sample

sizes (number of examples) annotated by the

n annotators. This quantity is analogous to

sample size m(ϵ, δ) in the single annotator

case. In rest of the paper, we use mi and

mi(ϵ, δ), i = 1, 2, . . . , n, interchangeably.

• A learning algorithm for n noisy annotators

is said to satisfy PAC bound for annotation

plan m = (m1, . . . ,mn) if following holds true:

P(m1,...,mn)(PD(ct∆h) > ϵ) < δ (1)

Note that the noise rates η1, . . . , ηn of the annota-

tors could be very different. Hence the PAC bound

depends not just on
∑n
i=1mi, but on the individ-

ual numbers m1, . . . ,mn also. This motivates us

to define the notions of feasible and infeasible

annotation plans, as:

• For a given learning algorithm, an annotation

plan m = (m1, . . . ,mn) is said to be feasible

if the learning algorithm satisfies PAC bound

(1) for every instance of the problem when

training data is supplied as per this plan.

• Given an algorithm, an annotation plan m =

(m1, . . . ,mn) is said to be infeasible if the al-

gorithm fails to satisfy PAC bound (1) for at

least one instance of the problem when train-

ing data is supplied as per this plan.

2.2 Feasible annotation plans for MDA

In this section, we consider a simple learning algo-

rithm, namely Minimum Disagreement Algorithm

(MDA) and derive PAC learnability bound on an-

notation plan complexity for this algorithm in the

presence of n noisy annotators. [Laird, 1988] an-

alyzed this algorithm for single noisy annotator

case. MDA outputs the hypothesis h, which min-

imizes the empirical loss, Le(h), on the training

dataset. We describe MDA for multiple annota-

tors, below.

Algorithm 1 (MDA) Let D = {⟨xij , yij⟩ i =

1, . . . , n; j = 1, . . . ,mi} be the input training data,

where ⟨xij , yij⟩ is supplied by annotator i in jth call.

The empirical loss Le(h) for hypothesis h is given

as:

Le(h) =

n∑

i=1

mi∑

j=1

1(h(xij) ̸= yij) (2)

where 1(·) is an indicator variable. Output hypoth-

esis h∗ ∈ C , such that Le(h
∗) ≤ Le(h),∀h ∈ C

(use any tie breaking rule).
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Next we derive a characterization of feasible an-

notation plans for MDA. For this, we define a few

events and their corresponding probabilities, as-

suming a finite concept class C having |C | = N <

∞. The events are defined for an annotation plan

(m1, . . . ,mn) and a hypothesis h. We assume that

mi samples of xi are drawn randomly and inde-

pendently, according to the distribution D by an-

notator i, and labels yi are flipped independently

with noise rates ηi. The events E1, E2, E3, and E4,

of our interest are defined as:

• E1(h,m1, . . . ,mn): The empirical error of a

given hypothesis h ∈ C is no more than the

empirical error of the true hypothesis ct, i.e.

Le(h) ≤ Le(ct).

• E2(h,m1, . . . ,mn): The empirical error of a

given hypothesis h ∈ C is the minimum across

all hypotheses in the class C , i.e. Le(h) ≤
Le(h

′) ∀h′ ∈ C .

• E3(h,m1, . . . ,mn): MDA outputs a given hy-

pothesis h.

• E4(ϵ,m1, . . . ,mn): MDA outputs an ϵ-bad

hypothesis.

The probabilities of events Ei, i = 1, 2, 3

and E4 are denoted by P(m1,...,mn)[Ei(h)] and

P(m1,...,mn)[E4(ϵ)], respectively. Next, we show the

following useful lemmas:

Lemma 1 Given a concept class C such that ct ∈
C and N = |C |, the following holds true for any

given annotation plan (m1, . . . ,mn):

P(m1,...,mn)[E4(ϵ)] ≤ (N − 1)×
[

max

h ∈ C , h is ϵ-bad
P(m1,...,mn)[E1(h)]

]

Proof: By definition of the events, for any hy-

pothesis h ∈ C that is ϵ-bad (for any ϵ > 0),

we have E3(h, m1, . . . , mn) ⊆ E2(h, m1, . . . , mn) ⊆
E1(h, m1, . . . , mn). Also, E4(ϵ, m1, . . . , mn) =∪

h∈C ;h is ϵ-bad E3(h, m1, . . . , mn). The lemma fol-

lows from taking probabilities of these events.

Q.E.D.

Now, we state our main result regarding character-

ization of the feasible annotation plans for MDA.

Figure 1: Probability Tree for ct and h.

Theorem 1 Consider the PAC learning model

with n noisy annotators and the MDA (Algorithm

1). Let N = |C | < ∞. Then, for any given

0 < ϵ, δ < 1 and 0 < ηi < 1/3, i = 1, . . . , n,

if mi, i = 1, . . . , n, satisfy the following inequality

then the MDA will satisfy PAC bound.

log(N/δ) ≤
n∑

i=1

miψ(ηi) (3)

where ψ(ηi) = log [1 − ϵ (1 − exp (−(1 − 3ηi)/8))]
−1

for i = 1, . . . , n

Remark: The inequality (3) characterizes a subset

of the feasible annotation plans. This characteri-

zation is independent of the problem instance and

the tie breaking rule of the MDA.

Proof: MDA satisfies PAC bound iff there ex-

ists an annotation plan (m1, . . . ,mn) such that

P(m1,...,mn)[E4(ϵ)] < δ. From Lemma 1, it can be

seen that for any 0 < ϵ, δ < 1, if an annotation plan

(m1, . . . ,mn) satisfies the following condition, then

MDA will satisfy PAC bound.
[

max

h is ϵ-bad
P(m1,...,mn)[E1(h)]

]
≤ δ/N (4)

Notice a change in the LHS expression as com-

pared to Lemma 1. The LHS in the above expres-

sion is an upper bound for the RHS of the expres-

sion in Lemma 1 (excluding N−1), because here h

may not belong to C . This makes the bound inde-

pendent of the problem instance, although MDA

will only output h ∈ C . Now, we upper bound the

LHS of (4). To do this, we derive an upper bound

for P(m1,...,mn)[E1(h)] when hypothesis h has an

error rate of ϵ (for any ϵ ∈ (0, 1)).

To derive this bound, we note that for any random

and independent sample (x, y) that is delivered by
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an annotator i, the probability of its agreeing (or

disagreeing) with hypotheses ct and h (having er-

ror rate ϵ) is given by a probability tree shown

in Figure 1. From the tree, it can be seen that

P(m1,...,mn)[E1(h)] is same as the probability that

the number of samples that fall under leaf B in the

probability tree is at most the number of samples

that fall under leaf A.

To compute the above quantity, first we com-

pute the conditional probability, Pk1,...,kn(Le(h) ≤
Le(ct)), defined as: if ki examples, (0 ≤ ki ≤ mi),

from annotator i (i = 1, . . . , n) come from the set

(ct∆h), then the probability that empirical error

of h (given by Le(h)) is less than or equal to em-

pirical error of ct (given by Le(ct)).

Consider the random variable Zji , i = 1, . . . , n j =

1, . . . , ki, which is the indicator of whether jth

sample from ith annotator is from leaf node B,

given that all the data points are from ct∆h re-

gion. Thus, P(Zji = 1) = (1 − ηi) and P(Zji =

0) = ηi. Let Z =
∑n
i=1

∑ki

j=1 Z
j
i . Then the

event Le(h) ≤ Le(ct) is same as the event Z ≤∑n
i=1 ki/2. Hence, we are interested in finding an

upper bound on P(Z ≤ ∑n
i=1 ki/2). We can use

the multiplicative form of Chernoff bound (see e.g.

Theorem 4.2 in [Motwani and Raghavan, 1995]),

which says P[Z ≤ (1− ν)µ] ≤ exp(−µν2/2), where

µ = E[Z] =
∑n
i=1(1 − ηi)ki. Hence, by letting

ν =
∑n

i=1 ki(1−2ηi)

2
∑n

i=1 ki(1−ηi)
, we get the following bound:

P(k1,...,kn)(Le(h) ≤ Le(ct)) ≤ e
−(

∑n
i=1 ki(1−2ηi))

2

8
∑n

i=1
ki(1−ηi)

Simplifying this bound, for 0 ≤ ηi ≤ 1/3 we get:

P(k1,...,kn)(Le(h) ≤ Le(ct)) ≤ e
− ∑n

i=1 ki(1−3ηi)

8 (5)

Summing up the above conditional probability

bound over all possible values of ki, the total prob-

ability P(m1,...,mn)[E1(h)] becomes:

m1∑

k1=0

· · ·
mn∑

kn=0

(
n∏

i=1

((
mi

ki

)
ϵki(1 − ϵ)mi−ki

)
(6)

P(k1,...,kn)(Le(h) ≤ Le(ct))
)

Using the bound in (5), we get the following upper

bound on P(m1,...,mn)[E1(h)]:

n∏

i=1

(
mi∑

ki=0

(
mi

ki

)
ϵki(1 − ϵ)mi−ki exp (−ki(1 − 3ηi)/8)

)

Using the moment generating function of the Bi-

nomial distribution, the bound becomes

∏n
i=1 [1 − ϵ(1 − exp(−(1 − 3ηi)/8))]

mi

In above bound, h has an error rate exactly equal

to ϵ. However, this bound is valid for an ϵ-bad

hypothesis also because the expression decrease as

ϵ increases. Substituting this upper bound on the

LHS of (4), we get the desired claim. Q.E.D.

Note that the Theorem 1 is valid only for the

range of 0 < ηi < 1/3. However, we can extend

the definition of ψ(·) to the boundary points in

a manner that the same relation (3) holds true.

For this, observe that minimum number of exam-

ples required from a single non-noisy annotator

would be m0 = log(N/δ)/ log [1 − ϵ]
−1

. This is be-

cause in such a case, we have P(Le(h) ≤ Le(ct) |
x ∈ ct∆h) = 0 and P(x ̸∈ ct∆h) = (1 − ϵ).

Hence, we can let ψ(0) = log [1 − ϵ]
−1

. Also, we

let ψ(1/3) = log [1 − ϵ (1 − exp(−(1/18)))]
−1

and

m1/3 = log(N/δ)/ψ(1/3) from [Laird, 1988].

3 Cost Optimal Mechanism Design

for PAC Learning

We consider the problem of procuring a feasible an-

notation plan when the learner needs to pay anno-

tators for their efforts, under known and unknown

noise rate scenarios. In the unknown noise rate sce-

nario, we propose an auction model and present an

optimal auction mechanism.

We assume that each annotator i (with noise rate

ηi) incurs an internal cost c(ηi) of annotation for

labeling one data point; note that the cost is de-

pendent on the noise rate, and the cost function

is same for all the annotators. The cost function

is assumed to be a bounded, continuously differ-

entiable, strictly decreasing function in 0 ≤ ηi <

1/2 ∀ i = 1, . . . , n. If an annotator is more compe-

tent (i.e. less noisy) then he can make more money

by selling his services and time to somewhere else

in the market, which translates to saying that his

internal cost of annotation is high.

Consider a simplistic scenario of complete infor-

mation where the learner knows noise rates of

all the annotators. In such a case, the goal of

the learner is purchase an annotation plan m =
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(m1,m2, . . . ,mn) in such a way that the procure-

ment cost (that is, cost of annotation), given by∑n
i=1mic(ηi), is minimized subject to the PAC

learning constraint (3). This is an integer linear

programming problem. An approximate solution

can be obtained by relaxing the integer constraint

and rounding off the optimal solution to the near-

est integer value.

Now, let us consider a more realistic scenario of

incomplete information where the learner does not

know noise rates η = (η1, . . . , ηn). There are two

possible approaches: (1) estimation, and (2) elic-

itation. In the estimation approach, the learner

estimates ηi using previously acquired examples

(say, for example, comparing labels from differ-

ent annotators). In the elicitation approach, the

learner gets ηi directly from the annotators. The

former approach has the disadvantage that poor

estimates result in either paying more (when over-

estimated) or not satisfying the PAC bound (when

underestimated). Due to this reason, we are inter-

ested in elicitation. In this approach, the learner

pays an incentive (a.k.a. price of information) to

get ηi from the annotators. Note that the learner

needs to pay this price of information to elicit true

noise rates. (Otherwise, the annotators can falsely

report the noise rate.) For this purpose, we pro-

pose to design a procurement auction mechanism

to procure a feasible annotation plan with mini-

mum cost; now, the procurement cost also includes

the price of information. This problem is challeng-

ing because from annotator’s perspective, he would

like to maximize his utility (i.e., the payment re-

ceived minus the internal cost for annotation). The

choice of mechanism depends crucially on various

design parameters such as N, ϵ, δ, ηi, c(·), and the

choice of the learning algorithm. We assume that

N, ϵ, δ, c(·), and the choice of the learning algo-

rithm are public knowledge, and only ηi is the pri-

vate information of ith annotator.

3.1 Procurement Auction Model

The learner solicits simultaneous and confidential

bids for the noise rates from annotators. Let η̂i
be the bid of ith annotator that can possibly be

a false noise rate. Assume that annotator i draws

his true noise rate ηi in an independent random

manner using a density function ϕi in the inter-

val Ii = [0, 1/3] with the corresponding cumulative

distribution function (Φi), and let ϕi(ηi) > 0 for all

ηi ∈ Ii and i = 1, 2, . . . , n. Let I = I1×I2×. . .×In
and ϕ = ϕ1 × ϕ2 . . . × ϕn denote respective joint

spaces. We use the subscript −i to exclude ith an-

notator in any variable (e.g. I−i, η−i) and, we also

use the notation η̂ = (η̂i, η̂−i).

After receiving the bids (i.e. η̂ = (η̂1, . . . , η̂n)),

the learner allocates a contract of supplying certain

number of labeled examples to each annotator and

an associated payment. Thus, a procurement auc-

tion mechanism is a pair of mappings M = (a, p),

where a : I 7→ Nn0 1 is the allocation rule and

p : I 7→ Rn is the payment rule.

Given an auction mechanism M = (a, p), an an-

notator i, having noise rate ηi, gets the following

utility when all the annotators report their bids η̂:

ui(η̂; ηi) = pi(η̂) − ai(η̂)c(ηi) (7)

Note that the first and the second term denote the

payment received from the learner and the inter-

nal cost in supplying the labeled examples, respec-

tively. Since each annotator i does not know η−i
and moreover, others’ bids η̂−i affect his utility,

it is useful to define expected allocation rule α

and the expected payment rule π for any mech-

anism M = (a, p) in the following manner (from

ith annotator’s perspective).

αi(η̂i) =

∫

I−i

ai(η̂i, η̂−i)ϕ−i(η̂−i)dη̂−i (8)

πi(η̂i) =

∫

I−i

pi(η̂i, η̂−i)ϕ−i(η̂−i)dη̂−i (9)

The expected utility of annotator i, when he bids

η̂i while having true value ηi, can now be given by

Ui(η̂i; ηi) = πi(η̂i) − αi(η̂i)c(ηi) (10)

When both arguments in (10) are same, we use

Ui(ηi) to mean Ui(ηi; ηi) (for notational simplic-

ity). Given this background, we first present sev-

eral definitions that are essential to prove our re-

sults. A Mechanism M = (a, p) is said to be:

1The symbol N0 denotes the set of natural numbers
inclusive of zero. The allocation and the payment rules
are functions of N, ϵ, δ, c(·), and the algorithm. For
notational simplicity, we drop these parameters.
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• Dominant Strategy Incentive Compati-

ble (DSIC) if for every annotator i and for ev-

ery possible true noise rate ηi ∈ Ii, the utility

u(·) is maximized when η̂i = ηi irrespective of

what others are bidding, i.e., ui(ηi, η̂−i; ηi) ≥
ui(η̂i, η̂−i; ηi) ∀ η̂i ∈ Ii, η̂−i ∈ I−i.

• Bayesian Incentive Compatible (BIC) if

for every annotator i and for every possible

true noise rate ηi ∈ Ii, the expected utility

Ui(·) is maximized when η̂i = ηi, i.e., Ui(ηi) ≥
Ui(η̂i; ηi) ∀η̂i ∈ Ii. Note, any mechanism

satisfying DSIC will also satisfy BIC but the

other way is not necessarily true.

• PAC compatible if the annotation plan pro-

cured by this mechanism satisfies the PAC

bound condition (3) whenever all the an-

notators report their true noise rates, i.e.,

log(N/δ) ≤∑n
i=1 ai(η)ψ(ηi).

• Individually Rational (IR) if no annotator

loses (in expected sense) anything by report-

ing true noise rates, i.e., πi(ηi)−αi(ηi)c(ηi) ≥
0 ∀ ηi ∈ Ii.

Our goal is to design a procurement auction mech-

anism that satisfies BIC, PAC Compatibility, and

IR properties; and minimizes the expected cost of

procurement for the learner. We call such an auc-

tion mechanism as Optimal Auction for Data La-

beling. Our design is inspired from the Nobel Prize

winning work of Roger Myerson on optimal auction

design [Myerson, 1981]. For a comprehensive treat-

ment of this topic, readers are referred to [Krishna,

2002] and [Mishra, 2008].

3.2 Characterization of Incentive

Compatibility

To design an optimal auction mechanism for data

labeling problem, we need to first characterize the

space of auction rules that satisfy BIC property.

For this, we begin with the following definitions.

An allocation rule a is said to be:

• weakly monotone (WM) if for every an-

notator i and for every η̂−i ∈ I−i, we have

ai(ηi, η̂−i) ≥ ai(η̂i, η̂−i) for all ηi, η̂i ∈ Ii, with

ηi > η̂i.

• weakly monotone in expectation

(WME) if for every annotator i and for

every ηi, η̂i ∈ Ii with ηi > η̂i, we have

αi(ηi) ≥ αi(η̂i).

[Myerson, 1981] showed that BIC is characterized

by the WME allocation rules in the setting of single

object auction. Interestingly, a similar characteri-

zation holds in our problem setting also. We state

this result as an important theorem.

Theorem 2 A Mechanism M = (a, p) is a BIC

mechanism iff (i) the allocation rule a(·) is WME,

and (ii) the expected payment rule π(·) satisfies:

πi(ηi) = γi + αi(ηi)c(ηi) − zi(ηi) (11)

where γi = πi(0) − αi(0)c(0) and zi(ηi) =∫ ηi

0
αi(ti)c

′(ti)dti.

Proof: Suppose M = (a, p) is a BIC mecha-

nism. Then, we show that the allocation rule is

WME and (11) holds. Consider an annotator i

and ηi, η̂i ∈ Ii with ηi > η̂i. Then, it follows

from (10) and BIC that πi(ηi) − αi(ηi)c(ηi) ≥
πi(η̂i) − αi(η̂i)c(ηi) and πi(η̂i) − αi(η̂i)c(η̂i) ≥
πi(ηi) − αi(ηi)c(η̂i). Adding these two inequal-

ities, we get [αi(ηi) − αi(η̂i)] [c(η̂i) − c(ηi)] ≥ 0.

Since ηi > η̂i and c(·) is a strictly decreasing

function, this implies that αi(ηi) ≥ αi(η̂i) (i.e.

αi is non-decreasing). Now, since M is BIC,

for every ηi, η̂i ∈ Ii, we have Ui(ηi) ≥ Ui(η̂i) −
αi(η̂i) [ci(ηi) − ci(η̂i)]. This is obtained from

adding and subtracting αic(η̂i) to Ui(η̂i; ηi) (Equa-

tion (10)) and rearranging the terms. Similarly,

switching the roles of ηi and η̂i, we get Ui(η̂i) ≥
Ui(ηi)−αi(ηi) [ci(η̂i) − ci(ηi)]. On combining these

two inequalities, we get −αi(ηi) [ci(η̂i) − ci(ηi)] ≤
Ui(η̂i) − Ui(ηi) ≤ −αi(η̂i) [ci(η̂i) − ci(ηi)]. Now,

by dividing with (η̂i − ηi) and letting η̂i → ηi, the

two-sided inequality implies that −αi(·)c′(·) is the

derivative of Ui(·). Since c′(·) is continuous and

αi(·) is non-decreasing, the function αi(·)c′(·) has

finitely many points of discontinuity and hence is

Riemann integrable in the interval [0, 1/3]. Thus,

we have
∫ ηi

0
−αi(ti)c′(ti)dti = Ui(ηi) − Ui(0). On

substituting Ui(ηi) = πi(ηi) − αi(ηi)c(ηi) and

Ui(0) = πi(0) − αi(0)c(0), we get (11).

Now, suppose that a is WME and (11) holds.

We will show that M = (a, p) is a BIC mecha-

nism. For any annotator i and any ηi, η̂i ∈ Ii, we

have πi(ηi) − πi(η̂i) = αi(ηi)c(ηi) − αi(η̂i)c(ηi) +
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αi(η̂i) [c(ηi) − c(η̂i)] − zi(ηi) + zi(η̂i). Using the

facts αi(·) is non-decreasing and c′(·) ≤ 0, it can be

shown that αi(η̂i) [c(ηi) − c(η̂i)] − zi(ηi) + zi(η̂i) ≥
0. Therefore,πi(ηi) − πi(η̂i) ≥ αi(ηi)c(ηi) −
αi(η̂i)c(ηi) which is the condition for BIC. Q.E.D

A similar characterization result can be derived for

the DSIC case also. Due to lack of space, we skip

the results. Note that Theorem (2) suggests that

the learner can only increase the contract size with

higher noise rate. This is a bit counter intuitive as

the learner is buying more examples from a more

noisy annotator (in a relative sense). However, this

is essentially the key to enforce truthful elicitation

of the noise rates. Even if an annotator misreports

higher noise rate to get a bigger size contract, the

payment rule would make sure that the additional

payment is not enough to cover the cost of label-

ing the required additional examples. A similar

argument holds for the other direction as well.

3.3 Optimal Auction Mechanism

We pose the optimization problem of designing the

auction mechanism as follows:

min
a(·),p(·)

Π(a, p) =
∑n

i=1

∫ 1/3

0

πi(ti)ϕi(ti)dti s.t. (12)

αi(·) is non-decreasing (13)

πi(ηi) = γi + αi(ηi)c(ηi) − zi(ηi) ∀ηi ∈ Ii, ∀i (14)

πi(ηi) ≥ αi(ηi)c(ηi) ∀ηi ∈ Ii, ∀i (15)

log(N/δ) ≤
∑

i
ai(ηi, η−i)ψ(ηi) ∀(ηi, η−i) ∈ I (16)

Note that the objective function (12) constitutes

the total expected payment made to all the an-

notators. The constraints (13) and (14) are BIC

constraints, (15) is the IR constraint, and (16)

is the PAC compatibility constraint. Recall, c(·)
is a strictly decreasing function. If (14) is sat-

isfied then (15) will be satisfied iff γi ≥ 0 (i.e.

πi(0) ≥ αi(0)c(0)) ∀i. Because our goal is to min-

imize (12), we must set γi = 0. Then, by setting

γi = 0 and using the definition of αi(·), we can

rewrite the objective function after some algebraic

manipulations as:

Π(a, p) =

∫

I

(∑n

i=1
vi(xi)ai(x)

)
ϕ(x)dx (17)

where vi(ηi) = c(ηi) − 1−Φi(ηi)
ϕi(ηi)

c′(ηi) is called as

virtual cost function. Note that since c′(ηi) is

negative, ϕi(·) > 0 for all i and for all ηi ∈ Ii, the

virtual cost function is always non-negative, well

defined and is higher than c(ηi). Note that (17)

is essentially a function of the allocation rule a(·)
since p(·) is dictated by a(·) via (14). We need

to minimize (17) subject to the constraints (13)

and (16). It seems difficult to solve this problem,

particularly with the constraint (13) without im-

posing additional regularity condition. To arrive

at this condition, we consider solving (17) by ig-

noring the constraint (13) momentarily. So, we

consider minimizing (17) subject to the constraint

(16) alone for the moment. Note, for minimizing

(17), it suffices to minimize
∑n
i=1 vi(ηi)ai(η) for

every possible profile η subject to the constraint

(16). For a fixed η, this is an integer linear pro-

gramming (ILP) problem whose approximate solu-

tion can be obtained by relaxing the integer con-

straint and rounding off the optimal solution to

the nearest integer value. This approximate solu-

tion is a near-optimal way of purchasing examples

from noisy annotators for PAC learning (ignoring

(13)). By looking at the dual of such a relaxed LP,

one can verify that in this near-optimal scheme, the

learner should purchase ⌈log(N/δ)/ψ(ηi∗)⌉ number

of examples from only that annotator, say i∗, for

whom the ratio vi(ηi)/ψ(ηi) is the minimum. Let

us call this rule as the minimum allocation rule

whose approximation guarantee is given below.

Theorem 3 Let ALG be the total cost of purchase

incurred by the min allocation rule. Let OPT be

the optimal value of the ILP and m0 be non-noisy

sample complexity. Then, we must have

ALG ≤ OPT + vi∗(ηi∗) ≤ OPT (1 + 1/m0) (18)

Proof: The optimal solution of the linear re-

laxation is always a lower bound on the opti-

mal solution of the ILP. Therefore, we must have

log(N/δ)vi∗(ηi∗)/ψ(ηi∗) ≤ OPT . This implies

ALG = vi∗(ηi∗)⌈log(N/δ)/ψ(ηi∗)⌉
≤ log(N/δ)vi∗(ηi∗)/ψ(ηi∗) + vi(ηi∗)

≤ OPT + vi(ηi∗) (19)

To get the other bound, note that the number

of examples suggested by the minimum allocation

rule is at least as much as m0. Therefore, we must

have log(N/δ)/ψ(ηi∗) ≥ m0. Thereby, we get:

OPT ≥ log(N/δ)vi∗(ηi∗)/ψ(ηi∗) ≥ m0 vi(ηi∗) (20)
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Substituting the bound on vi(ηi∗) from (20) into

(19) will give us the second term. Q.E.D

Regularity Condition: So far, we considered the

approximate optimal auction mechanism design

without the constraint (13). Therefore, the min-

imum allocation rule need not satisfy the WME

property. However, it is WME under the regu-

larity condition that vi(·)/ψ(·) is a non-increasing

function. Under this condition, as ηi increases, the

annotator i remains the winner if he/she is already

the winner (with an increased contract size) or be-

comes the winner as per the minimum allocation

rule. Therefore, the allocation rule satisfies the

WM property (hence, WME). This implies that

the allocation rule would give an approximate op-

timal mechanism satisfying BIC + IR+ PAC com-

patibility properties. For every (ηi, η−i) and every

i, the associated payment rule can be given by

pi(ηi, η−i) = ai(ηi, η−i)c(ηi) − wi(ηi) (21)

where wi(ηi) =
∫ ηi

0
ai(ti, η−i)c′(ti)dti. One can

verify that the corresponding expected payment

rule πi(·) satisfies BIC and IR constraints. In fact,

it turns out that the minimum allocation rule and

the payment rule (21) together satisfy the DSIC

property. We skip this proof as it follows the same

line of arguments given in the proof of Theorem 2.

Simplified Payment Rule: We define for every

annotator i, the smallest bid value sufficient to win

the contract as per the minimum allocation rule as:

qi(η−i) = inf

{
η̂i | vi(ηi)

ψ(ηi)
≤ vj(ηj)

ψ(ηj)
∀j ̸= i

}
(22)

Then, the minimum allocation rule and simplified

payment rule can be written as:

ai(η) =

{ ⌈log(N/δ)/ψ(ηi)⌉ : if ηi ≥ qi(η−i)
0 : otherwise

(23)

pi(η) =

{ ⌈
log(N/δ)
ψ(ηi)

⌉
c(qi(η−i)) : for winner

0 : otherwise
(24)

Thus, we now have the following mechanism.

Algorithm 2 (Approx Mechanism) The

learner should choose an annotator i∗ for whom

the score vi(ηi)/ψ(ηi) is minimum (breaking ties

arbitrarily), and award a contract of supplying

⌈log(N/δ)/ψ(ηi∗)⌉ labeled examples. The learner

must pay an amount equal to c(qi∗(η−i∗)) per

example to this annotator, where qi∗(η−i∗) denotes

the smallest noise rate bidding which the winning

annotator i∗ still stays as the winner. The other

annotators are not paid any amount.

For the winning annotator i∗, we have qi∗(η−i∗) ≤
ηi∗ (under the regularity condition). This implies

that c(qi∗(η−i∗)) ≥ c(ηi∗). Note that the right

hand side of this inequality is the cost involved

when η is known. Therefore, the learner needs to

pay some extra cost to annotators for eliciting the

true noise rates. The following theorem is now ap-

parent from the analysis done so far.

Theorem 4 Suppose the regularity condition

holds. Then, Approx Mechanism is an approxi-

mate optimal mechanism satisfying DSIC, IR, and

PAC compatibility properties. The approximation

guarantee of this mechanism is given by ALG ≤
OPT + vi∗(ηi∗) ≤ OPT (1 + 1/m0).

Note, DSIC is a preferred condition than BIC and

DSIC implies BIC. The above result says that un-

der the regularity condition, a DSIC mechanism

comes very close to the optimal BIC mechanism.

4 Conclusion

To the best of our knowledge, this is the first paper

to model and analyze the problem of acquiring la-

beled examples from multiple noisy strategic an-

notators for PAC learning. For such a setting, we

have proposed an approximate cost optimal auc-

tion mechanism for the unknown noise rates sce-

nario, by extending Myerson’s optimal auction de-

sign framework in a non-trivial manner. As fu-

ture enhancements, (1) the assumption of finite

concept class can be relaxed by making use of

VC-dimension, (2) PAC bound can be derived for

an improved Weighted MDA (WMDA) algorithm,

where we give more importance to the samples

from less noisy annotator while computing the loss

Le(·), and (3) one can design better approximate

algorithms to solve the underlying ILP problems.

283



References

J. Howe. Crowdsourcing: why the power of the

crowd is driving the future of business. Crown

Business, 2008.

L.G. Valiant. A theory of learnable. Communica-

tions of the ACM, 27:1134–1142, 1984.

D. Angluin and P. Laird. Learning from noisy ex-

amples. Machine Learning, 2(4):343–370, 1988.

J.A. Aslam and S.E. Decatur. On the sample com-

plexity of noise-tolerant learning. Information

Processing Letters, 57(4):189–195, 1996.

A. Blum, M. Furst, J. Jackson, M. J. Kearns,

Y. Mansour, and S. Rudich. Weakly learning

DNF and characterizing statistical query learn-

ing using fourier analysis. In STOC, 1994.

S. E. Decatur and R. Gennaro. On learning from

noisy and incomplete examples. In COLT, pages

353–360, 1995.

S. E. Decatur. PAC learning with constant-

partition classification noise and applications to

decision tree induction. In Proceedings of the

Sixth International Workshop on Artificial In-

telligence and Statistics, pages 147 – 156, 1997.

M. Kearns. Efficient noise-tolerant learning from

statistical queries. In 25th ACM Symposium on

the Theory of Computing (STOC), pages 392 –

401, 1993.

N. Littlestone. Redundant noisy attributes, at-

tribute errors, and linear-threshold learning us-

ing winnow. In Conference on Learning Theory

(COLT), 1991.

A. P. Dawid and A.M. Skene. Maximum likelihood

estimation of observer error-rates using the EM

algorithm. Applied Statistics, 28(1):20–28, 1979.

V. C. Raykar, S. Yu, L. H. Zhao, A. Jere-

bko, C. Florin, G. H. Valadez, L. Bogoni, and

L. Moy. Supervised learning from multiple ex-

perts: Whom to trust when everyone lies a bit.

In International Conference on Machine Learn-

ing (ICML), 2009.

Y. Yan, G. Hermosillo, R. Rosales, L. Bogoni,

G. Fung, L. Moy, M. Schmidt, and J. G. Dy.

Modeling annotator expertise: Learning when

everybody knows a bit of something. In Interna-

tional Conference on Artificial Intelligence and

Statistics (AISTATS), 2010.

P. Donmez, J. Carbonell, and J. Schneider. A

probabilistic framework to learn from multiple

annotators with time-varying accuracy. In Pro-

ceedings of the SIAM International Conference

on Data Mining, 2010.

L. G. Valiant. Learning disjunctions of conjunc-

tions. In International Joint Conference on Ar-

tificial Intelligence (IJCAI), pages 560 – 566,

1985.

M. Kearns and M. Li. Learning in the presence of

malicious error. SIAM Journal on Computing,

22(4):807–837, 1993.

S.A. Goldman and R.H. Sloan. Can PAC learn-

ing algorithms tolerate random attribute noise?

Algorithmica, 14(1):70–84, 1995.

N. H. Bshouty, N. Eiron, and E. Kushilevitz. PAC

learning with nasty noise. Theoretical Computer

Science, 288(2):255–275, 2002.

O. Dekel and O. Shamir. Vox populi: Collecting

high-quality labels from a crowd. In Conference

on Learning Theory (COLT), 2009a.

O. Dekel and O. Shamir. Good learners for evil

teachers. In International Conference in Ma-

chine Learning (ICML), 2009b.

O. Dekel, F. Fischer, and A. D. Procaccia. Incen-

tive Compatible Regression Learning. In Pro-

ceedings of the 19th Annual ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), pages

277–286, 2008.

R. Meir, A. D. Procaccia, and J. S. Rosenschein.

Strategyproof Classification under Constant Hy-

potheses: A tale of two functions. In Proceedings

of the 23rd Conference on Artificial Intelligence

(AAAI)., 2008.

R. Meir, A. D. Procaccia, and J. S. Rosenschein.

Strategyproof Classification with Shared Inputs.

In Proceedings of the 21st International Joint

Conference on Artificial Intelligence (IJCAI),

2009.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and

D. Verma. Adversarial Classification. In In-

ternational Conference on Knowledge Discovery

284



and Data Mining (KDD). ACM, August 22-25

2004.

G. L’Huillier, R. Weber, and N. Figueroa. Online

Phishing Classification Using Adversarial Data

Mining and Signaling Games. In International

Conference on Knowledge Discovery and Data

Mining (KDD), 2009.

M. Kantarcioglu, B. Xi, and C. Clifton. A Game

Theoretical Framework for Adversarial Learn-

ing. In CERIAS 9th Annual Information Se-

curity Symposium, 2008.

R. B. Myerson. Optimal auction design. Math.

Operations Res., 6(1):58–73, Feb. 1981.

P. D. Laird. Learning from good and bad data.

Kluwer Academic Publishers, Norwell, MA,

USA, 1988.

R. Motwani and P. Raghavan. Randomized Algo-

rithms. Cambridge University Press, NY, USA,

1995.

V. Krishna. Auction Theory. Academic Press,

2002.

D. Mishra. An introduction to mechanism de-

sign theory. Unpublished Manuscript. URL:

http://www.isid.ac.in/~dmishra/doc/survey.pdf,

May 2008.

285



Combining local search techniques and path following for bimatrix
games

Nicola Gatti, Giorgio Patrini, Marco Rocco
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Milano, Italy

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

Abstract

Computing a Nash equilibrium (NE) is a cen-
tral task in computer science. An NE is a
particularly appropriate solution concept for
two–agent settings because coalitional devia-
tions are not an issue. However, even in this
case, finding an NE is PPAD–complete. In
this paper, we combine path following algo-
rithms with local search techniques to design
new algorithms for finding exact and approx-
imate NEs. We show that our algorithms
largely outperform the state of the art and
that almost all the known benchmark game
classes are easily solvable or approximable
(except for the GAMUT CovariantGame–
Rand class).

1 Introduction

Finding a Nash equilibrium (NE) of a normal–form
(aka strategic–form aka bimatrix) game is PPAD–
complete [8] even with just two players [6]. Al-
though PPAD ⊆ NP (but PPAD 6⊆ NP–complete
unless NP = co–NP) it is generally believed that
PPAD 6= P. Thus the worst–case complexity of find-
ing an NE is exponential in the size of the game.
This pushed researchers to study approximate solution
concepts, providing some polynomial–time algorithms
that compute solutions with a guaranteed approxima-
tion bound [2, 11, 22]. However, bimatrix games do not
have a fully polynomial–time approximation scheme
unless PPAD ⊆ P [6].

Worst–case complexity, being too pessimistic, is of-
ten a bad indicator of the actual performance of an
algorithm, and average–case complexity is difficult
to determine. A new metric of complexity, called
smoothed complexity, has been gaining interest in re-
cent years [21]. It studies how the introduction of small
perturbations affects the worst–case complexity. Un-
fortunately, finding an NE in two–player games is not

smoothed polynomial unless PPAD ⊆ RP [5].

In this paper, we focus on two–player general–sum
strategic–form games. An NE is a particularly ap-
propriate solution concept in two–agent settings be-
cause coalitional deviations are not an issue. The
main known algorithms are LH [14] based on linear
complementarity mathematical programming (LCP),
PNS [18] based on support enumeration, and MIP
Nash [19] based on mixed–integer linear programming
(MILP). None of these beats the others on all games,
and all of them have worst–case complexity exponen-
tial in the size of the game. In particular, there are
game instances, called hard–to–solve games (HtSG),
that always require exponential time when solved with
LH and PNS [20].

The integration of local search techniques with support
enumeration algorithms, called LS–PNS, can be effec-
tive on games that are hard for all three algorithms
above [3, 4]. (Other local search algorithms, based
on simulated annealing or homotopy, that are slower
but have convergence guarantees, have also been de-
signed [12, 13].) In this paper, we combine local search
techniques with path following algorithms (e.g., LH)
instead. This opens new promising opportunities, al-
lowing a dramatic reduction of the solution space:
path following algorithms work on a solution space
that is O(2.6m) where m is the number of actions per
agent, while the number of supports is O(4m). Our
contributions include the following.

(i) We design new algorithms: (a) an LH version with
random restarts (rrLH)1, (b) a version of the adapta-
tion of the Lemke algorithm (L) proposed in [24] with
random restarts (rrL), (c) a local search algorithm
moving on the best response vertices (LS–v), and (d)
an anytime LH version based on iteratively decreasing
perturbation of the payoff matrices (ip–LH).

1
A similar algorithm is presented in [7]. We extend such algo-

rithm with an iterative deepening cutoff, we theoretically analyze its
properties, and we provide a more thorough experimental analysis,
developing a floating–point implementation that is about two times
faster and developing a new arbitrary–precision implementation.
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(ii) We prove that rrLH is asymptotically optimal in
the space of algorithms that randomize over LH paths
(the result can be extended to rrL).

(iii) We experimentally show that LH requires ar-
bitrary precision with some classes of GAMUT
games [17] and HtSG. L requires arbitrary precision
for almost all the game instances.

(iv) rrLH outperforms all our and state–of–the–art
algorithms, requiring an average number of steps
that is linear in the size of the game except for
CovariantGame–Rand and HtSG. rrL works asymptot-
ically as rrLH, but its compute time is usually larger.

(v) LS–v outperforms the other algorithms in approx-
imating hard instances, except HtSG.

(vi) HtSG can be easily approximated by ip–LH even
with a perturbation of 10−10. Thus there must exist
a different worst case for LH unless PPAD ⊆ RP. (In
contrast, CovariantGame–Rand stays hard even when
perturbed, thus it is a possible candidate.)

2 Game model and solution concepts

A bimatrix game is a tuple (N, A, U), where N =
{1, 2} is the set of agents (we denote by i ∈ N a
generic agent); A = (A1, A2) where Ai is the set of
mi = |Ai| actions available to agent i (we denote by
a ∈ A1 ∪ A2 a generic action); U = (U1, U2) where
Ui is the utility matrix of agent i [9]. Without loss of
generality, we assume that maxj,k{Ui(j, k)} = 1 and
minj,k{Ui(j, k)} = 0 for every i ∈ N .

We denote by xi the strategy (vector of probabili-
ties) of agent i and by xi,a the probability with which
agent i plays action a ∈ Ai. We denote by ∆i the
space of strategies over action space Ai, i.e., vectors
where the probabilities sum to 1. Given strategy xi,
the support Si is the set of actions a ∈ Ai played with
a non–zero probability in xi.

The central solution concept is NE. A profile of strate-
gies (x1,x2) is an NE if and only if, for each i ∈ N ,
xT

i Uix−i ≥ x′T
i Uix−i for every x′

i ∈ ∆i. The problem
of finding an NE can be expressed as an LCP:

xi ≥ 0 ∀i ∈ {1, 2} (1)

1vi − Uix−i ≥ 0 ∀i ∈ {1, 2} (2)

xT
i (1vi − Uix−i) = 0 ∀i ∈ {1, 2} (3)

1T xi = 1 ∀i ∈ {1, 2} (4)

Here vi is the expected utility of agent i. Con-
straints (1) and (4) state that every xi ∈ ∆i. Con-
straints (2) state that no pure strategy of agent i gives
expected utility greater than vi. Constraints (3) state
that each agent plays only optimal actions.

The most common approximate solution concept is
ǫ–Nash equilibrium (ǫ–NE): (x1,x2) is an ǫ–NE if,
for each i ∈ N , xT

i Uix−i ≥ x′T
i Uix−i − ǫ for ev-

ery x′
i ∈ ∆i. Informally, (x1,x2) is an ǫ–NE if at

most each player loses a utility of ǫ w.r.t. playing
her best response. Other approximate solution con-
cepts that we use in this paper are ǫ–Well Supported–
Nash equilibrium (ǫWS–NE) and regret–Nash equilib-
rium (r–NE). (x1,x2) is an ǫWS–NE if, for each i ∈ N ,
eT

k Uix−i ≥ eT
j Uix−i − ǫ for every k ∈ Si, j ∈ Ai (ek

is a vector of 0 but 1 in position k). Thus playing
singularly each action of the support, the agent loses
a utility of at most ǫ w.r.t. playing the her best re-
sponse. Finally, (x1,x2) is an r–NE if, for each i ∈ N ,
r =

∑
i={1,2}

∑
l∈Si

ri,l and eT
k Uix−i ≥ eT

j Uix−i − ri,k

for every k ∈ Si, j ∈ Ai.

3 Randomizing over paths

In this section we develop NE algorithms that random-
ize over almost complementary paths.

3.1 Randomizing over Lemke–Howson (LH)
paths

For every agent i, define the best response polyhedron
Pi = {x̃i ∈ Rmi |U−ix̃i ≤ 1, x̃i ≥ 0}. Let Vi be the
vertices of Pi. The space Θ of solutions traversed by
LH is a subset of pairs of vertices of V = V1 × V2.
Let s−i be the slack variables of U−ix̃i + s−i = 1.
Variables si,a and xi,a are called complementary. A
basic solution of the tableaux associated with P1 and
P2 is complementary if the basis contains exactly one
complementary variable for all i and a, while it is al-
most complementary if both variables of a single pair
of complementary variables are in the basis. A com-
pletely complementary solution is an NE.

The initial solution of the LH algorithm [14] is gener-
ated by starting from the artificial solution (0,0) (cor-
responding to the case in which all the slack variables
si, for every i, are in the basis), and putting in the
basis of one of the two tableaux a variable xi,a associ-
ated with some action a ∈ A1 ∪ A2. Thus, there are
m1 +m2 different possible initial solutions. LH follows
a path of almost complementary solutions by repeat-
edly applying complementary pivoting steps. At each
step, the current basis is changed by putting in the ba-
sis the variable that is complementary to the variable
that has left the basis in the previous step, until a com-
pletely complementary solution has been found. The
leaving variable is determined by the minimum ratio
test [15] and it is unique except for degenerate games;
however, degeneracy can be removed by introducing
lexicographic perturbation [24].

For each initial solution, there is a different path lead-
ing to a (potentially different) NE: LH partitions the
solution space in m1 + m2 different paths. If the path
that the algorithm is following is an exponentially long
one, it may be convenient to have restart.

We observe that any random restart policy over the
solutions traversed by the LH algorithm can be for-
mulated as a two–stage randomization policy: (1) ran-

287



domization over the m1 + m2 possible paths and (2)
randomization, given a path, over its solutions. We ini-
tially present an algorithm, called rrLH, that adopts
only a blind randomization of type (1) and, subse-
quently, we investigate randomization of type (2).

rrLH is described in Algorithm 1. It randomly chooses
one of the paths (Step 2) and follows it (Step 4) until
an NE is found; if the length (in terms of number of
pivoting steps) of the path is larger than a given cut-
off and there is a path that has not been visited till
cutoff (Steps 5, 6, and 8), the algorithm restarts with
a new path, otherwise (Step 7) cutoff is updated in an
iterative deepening fashion and a restart is done.

Algorithm 1 Lemke–Howson with random restart
(rrLH)

1: cutoff = cutoff0
2: randomly choose one path non–visited till cutoff
3: repeat
4: apply complementary pivoting
5: if the path is longer than cutoff then
6: if all the paths are visited till cutoff then
7: cutoff = cutoff + cutoff0
8: go to Step 2
9: until a completely complementary solution is found

10: return current solution

(To improve the efficiency of the algorithm, we save the
variables of the current basis before making a restart
and, when a path is re–visited, we derive the last vis-
ited basis by matrix inversion and we restart from it.)
The advantages of rrLH are simplicity and complete-
ness. The potential drawbacks are that the number
of possible paths is limited and that the algorithm is
forced to move along fixed paths. Call l∗ the short-
est LH path. The compute time of rrLH is linear in
l∗. When l∗ is known or it is possible to estimate a
tight upper bound, cutoff 0 can be conveniently fixed.
Assigning, e.g., cutoff 0= l∗, we have that the worst
case compute time is l∗(m1 + m2), while the average
is l∗(m1 +m2 +1)/2. Thus, if l∗ grows in length expo-
nentially in m1+m2, also rrLH compute time grows in
length exponentially. Adopting a non–blind random-
ization of type (1) would keep the compute time, even
in the best case, linear in l∗ and hence is useless.

We focus on randomization of type (2). This type of
randomization cannot be efficiently achieved with LH.
Indeed, differently from what happens with support–
enumeration algorithms [3, 4] where it is possible to
start from any support profile, no every possible al-
most complementary basis corresponds to a feasible
starting solution for LH: some sets of almost com-
plementary variables are not feasible basic solutions,
while the feasible ones can belong to LH paths or
not, and in this latter case they may belong to cyclic
paths that do not lead to any equilibrium (the mem-
bership of a solution to a path can be discovered only
during the traversing of the path itself and therefore,
if the algorithm starts from an arbitrary solution, it

cannot know the path over which it is moving and
cannot distinguish paths from cycles). Thus, an ini-
tial solution must be searched by using pivoting and
the number of pivoting steps may be exponential in
m1 + m2. However, we show that any algorithm with
randomization of type (2) has a compute time that
is asymptotically the same of our rrLH and therefore
rrLH is (asymptotically) optimal in the space of the al-
gorithms making random restarts over the LH paths.
This holds even dropping completeness and consider-
ing algorithms that find an NE with a probability p.
Initially, we state the following lemma.

Lemma 1. The best cutoff of a generic randomized al-
gorithm that finds the terminal vertex of an l–step–long
path with probability p and is able to position blindly
in every vertex of the path is l · p.
Proof. The best configuration of the algorithm can
be obtained by minimizing the number of steps of the
algorithm (i.e., cutoff · res, where res is the number
of restarts), under the constraint that the probability
to find the terminal is p, i.e., p = 1 − (1 − cutoff/l)res,
res ≥ 1, and cutoff ≥ 1. From p = 1−(1−cutoff/l)res it
follows that res = log(1−p)/ log(1−cutoff/l) ≥ 1, thus
log(1−p) ≥ log(1− cutoff/l), that means p ≤ cutoff/l.
res · cutoff can be rewritten as log(1 − p)/ log(1 −
cutoff/l) · cutoff. After having removed the negative
constant log(1 − p) the objective is to maximize the
monotonic decreasing function cutoff/ log(1−cutoff/l)
under the constraint p ≤ cutoff/l. The optimum is
cutoff = l · p and res = 1. �
From Lemma 1 it follows that, even when it is possible
to perform a blind randomization over the solutions
composing a single path, like stage (2) prescribes, the
optimal configuration of the algorithm is such that this
path is traversed only once without making restarts
(i.e. res = 1). Thus, this path can be safely removed
from the set of the available paths at stage (1). From
Lemma 1, we can easily derive the following lemma.

Lemma 2. The worst case compute time of a ran-
domized algorithm finding the terminal vertex of an
l–step–long path and able to position blindly in every
vertex of the path is l, while the average time is l/2.

Finally, we show that including randomization of
type (2) the compute time keeps to be linear in l∗

as stated by Lemma 3. From Lemma 2 we can state
the following.

Lemma 3. LH with blind randomization policy of
type (2) has a compute time O(l∗).

We can evaluate for specific interesting cases the ra-
tio between the average compute time of an algorithm
Π adopting randomization of type (2) and the one of
an algorithm Π′ that does not. Assign cutoff = l∗

and assume, for simplicity, that the length of all the
non–shortest paths is l > l∗ and m1 = m2 = m.
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The average compute time of Π is (2m + 1)/2 · l∗.
The average case compute time of Π′ is given by
1/2m·l∗/2·∑2m

k=0(1−l∗/2)k+(l∗)2/2l·1/2n·∑2m−1
k=0 (1−

l∗/l)k(2m − 1 − k). The two opposite possible situa-
tions are: l∗/l → 1 and l∗/l → 0. In the best situation
l∗/l → 1 the average compute time is l∗/2 and there-
fore randomization of type (2) reduces the compute
time by 2m+1 times. In the worst situation l∗/l → 0,
the ratio is 1 and therefore no reduction is obtained. In
both cases, the compute time keeps to be linear in l∗.
We observe that, randomization of type (2) exploits
the existence of paths that are not excessively longer
than the shortest path.

Now, we focus on non–blind randomization of type (2),
providing a negative result.

Lemma 4. Any algorithm that finds the terminal ver-
tex of an l–step–long path with probability p and able
to position non–blindly in every vertex of the path, re-
quires either an exponential number (res) of restarts
or an exponential cutoff as l grows in length exponen-
tially.

Proof. Suppose to have an oracle that, given a cutoff
and an almost complementary solution, is able to say
whether or not such a solution is farther than cutoff
from the terminal vertex. If the solution is farther,
then it is discarded, otherwise the algorithm follows
the path from the given solution and the terminal ver-
tex. The probability to find a randomly generated
solution that is not farther than cutoff from the equi-
librium by res random restarts is: 1− (1− cutoff/l)res.
By posing: 1 − (1 − cutoff/l)res = p, we obtain res =
log(1−p)/ log(1−cutoff/l). When liml→+∞ cutoff/l =
0, we can write res = −l log(1 − p)/cutoff. There-
fore, if l grows in length exponentially then either
res or cutoff grow in length exponentially. When
liml→+∞ cutoff/l > 0, cutoff grows in length expo-
nentially as l does. �
From the above lemma, it can be easily observed that
when all the LH paths grow in length exponentially
non–blind randomization is useless: even dropping the
completeness and accepting that the NE can be found
with a probability p, in the worst case the compute
time is O(l∗). Thus, rrLH is asymptotically optimal
among algorithms randomizing over LH paths.

3.2 Randomizing over Lemke (L) paths

As discussed in the previous section, randomization
over paths exhibits a compute time that depends on
the length of shortest path. The main drawback of LH
is that the number of available paths is small. In this
section, we resort to the Lemke algorithm adaptation
as prescribed by [24], which we will call L. This algo-
rithm allows for an arbitrary initial solution, each cor-
responding to a different path, and therefore it allows
for an infinite number of paths. Define the polyhedron

P as follows.

P =



[z0 z1 z2]

∣∣∣∣∣∣

M1,1z1 + M1,2z2 + d1z0 = q1

M2,1z1 + M2,2z2 + d2z0 + q2 ≥ 0
z0, z2 ≥ 0





with d1 = 1,d2 = [−(U1x2)
T , −(U2x1)

T ]T where x1

and x2 are parameters (therefore P is parametric),
q1 = −1, q2 = 0 and

z1 =

[
v1

v2

]
M1,1 =

[
0 0
0 0

]
M1,2 =

[
1T 0T

0T 1T

]

z2 =

[
x1

x2

]
M2,1 =

[
1 0
0 1

]
M2,2 =

[
0 −U1

−U2 0

]

Let V be the set of vertices of P . The space Θ of so-
lutions traversed by the Lemke algorithm is a subset
of V . Call w the slack variables of M2,1z1 + M2,2z2 +
d2z0+q2−w = 0 and consider the associated tableau.
Call zj, with j 6= 0, the j–th element of z = [zT

1 , zT
2 ].

Variables zj and wj are called complementary. A solu-
tion is completely complementary if the basis contains
one complementary variable between zj and wj for ev-
ery j (therefore z0 is out the basis), while a solution is
almost complementary if both variables zj and wj for
a single j are not in the basis but z0 is.

The algorithm moves along almost complementary so-
lutions, each corresponding to a pair of strategies
(x1+z0x1,x2+z0x2). The initial solution is such that:
(a) z0 is in the basis and it is equal to 1, (b) all the
variables xi,a such that a is a best response to x−i are
in the basis except one, and (c) for all the non–best–
response actions a the complementary variable wj of
xi,a is in the basis. Given the initial solution, the al-
gorithm follows a path of almost complementary solu-
tions by repeatedly applying complementary pivoting
(the entering variable is the complementary variable
of the leaving variable at the previous step, while the
leaving variable is determined by the lexico minimum
ratio test). At the first step of L, the entering vari-
able is xi,a such that a is the only best response not
yet in the basis. (L terminates when z0 is the leaving
variable, finding as NE.)

LH has a finite number of possible paths (m1 + m2),
while L has an infinite number of them, thus we try to
design a non–blind randomization policy among paths
and we fixed a limit to the restarts, otherwise in the
worst case the compute time would be infinite. We
design the version of L with random restarts (rrL)
like rrLH except that: (a) the initial solution is deter-
mined by randomly generating x1 and x2; since there
are infinitely many possible initial solutions and many
of them could lead to potentially long paths, (b) we
use quality metrics to accept or discard an initial so-
lution θ (we accept θ if g(θ) > th, where g can be
defined in different ways, e.g., ǫ, ǫWS , and r, and th
is a threshold), (c) we use a cutoff as a function of
how the different metrics ǫ, ǫWS , r, and z0 decrease
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along the path; and (d) we disable the cutoff after a
given number of restarts to guarantee completeness,
the potential restarts would be infinite otherwise.

The advantage of rrL is that the initial solution can
be any and thus much more paths than rrLH can be
followed. The potential drawbacks are that the algo-
rithm is forced to move along fixed paths and that the
pivoting step requires about twice as much compute
time as LH due to the tableau size.

4 Local search on best response
vertices

We cast NE finding as a local search based optimiza-
tion problem (Θ, f, N) where Θ is the solution space,
f is a function f : Θ → R to minimize, and N is the
neighborhood function that specifies, for each solution
θ ∈ Θ, a set N(θ) ⊆ Θ of solutions that can be directly
reached from θ [16].

The solution space Θ is the set of vertices Vi of the
polyhedron Pi = {x̃i ∈ Rmi |U−ix̃i ≤ 1, x̃i ≥ 0} that
constitutes the best response polyhedron of agent i,
where agent i is the agent with the minimum number
of actions. This choice allows one to reduce the solu-
tion space as shown below (however, our algorithm can
be applied with any i). Every vertex x̃i of Vi, except
for x̃i = 0, is equivalent to a strategy xi = 1

1T x̃i
x̃i.

The function f to minimize associates each strategy
xi = xi with the ǫ value of the best ǫ–Nash equilibrium
when agent i plays xi. This value can be computed as:

min
ǫ,x−i

ǫ (5)

s.t. xT
i Uix−i + ǫ − eT

k Uix−i ≥ 0 ∀k ∈ Ai (6)

xT
i U−ix−i + ǫ − xT

i U−iek ≥ 0 ∀k ∈ A−i (7)

1
T
x−i = 1 (8)

x−i ≥ 0 (9)

ǫ ≥ 0 (10)

The constraints ensure that x−i ∈ ∆−i and ǫ is non–
negative. Note that the solution ǫ∗ of the above linear
program is 0 if and only if there is some x−i = x−i

such that (xi,x−i) is an NE. Therefore, we recognize
whether or not a local minimum is a global minimum.

Given a vertex x̃i of Vi, the neighbors are all the adja-
cent vertices of x̃i. These vertices can be found by ex-
ploiting pivoting. More precisely, consider the tableau
U−ix̃i + s = 1 where s are slack variables. A basic
solution of the tableau is composed by m−i variables
belonging to x̃i and s (when only variables s are in the
basis we have the artificial solution x̃i = 0). A vertex
x̃i of Vi corresponds to a basic solution of the tableau.
We can change the basis by making a non–basic vari-
able enter the basis (the leaving variable is uniquely
determined by the minimum ratio test). The number
of entering variables is mi; thus each vertex has ex-

actly mi neighbors. In contrast, in the local search
over supports, each solution has m1 · m2 neighbors.

The local search algorithm for solving (Θ, f, N), called
LS–v, is provided in Algorithm 2. The initial solution
(Step 1) is generated starting from the artificial solu-
tion x̃i = 0 and applying a random number of random
pivoting steps (as described above). In principle, any
possible vertex of Pi may be an initial solution. We
use a tabu list to keep track of previously generated
initial solutions in order to avoid repetitions. Given
solution s, the algorithm searches in the neighborhood
N(s) for a solution s′ such that f(s′) < f(s) (Step 3).
This search is driven by a heuristic. We use three main
heuristics: best improvement (BI) where all neighbors
are generated and the best neighbor better than the
current is chosen, first improvement (FI) where the
neighbors are searched in a given order and the first
neighbor better than the current is chosen, first im-
provement with random generation (FIR) where the
neighbors are searched randomly and the first neigh-
bor better than the current solution is chosen. (With
FIR we disable the tabu list for the initial solution be-
cause randomization makes the algorithm follow dif-
ferent paths at every execution, and we generate at
most max–n neighbors.) If there is no neighbor bet-
ter than the current solution or if the path length is
longer than cutoff and there exists an unvisited initial
solution, then a restart is conducted (Steps 4 and 5).

Algorithm 2 Local search on best response vertices
(LS–v)

1: randomly choose an unvisited initial solution s from x̃i = 0 by
pivoting

2: repeat
3: choose neighbor θ′ ∈ N(θ) with f(θ′) < f(θ) and assign

θ = θ′

4: if there is no θ′ or the path is longer than cutoff then
5: go to Step 1
6: until f(θ) > 0

7: return current solution

The advantages of rrL are that it can traverse solutions
that are not in LH/L paths and that the number of
neighbors is low (w.r.t. local search on supports). The
drawback is that the algorithm is incomplete.

5 Anytime iterative perturbation over
paths

Given a two–player game with utilities (U1, U2) and a
game with (U ′

1, U
′
2) where every U ′

i is obtained by per-
turbing each payoff of Ui with an arbitrary probability
distribution over [−δ, δ], it has been shown that an NE
for (U ′

1, U
′
2) is an ǫ–NE for (U1, U2) with ǫ ≤ 4δ [5]. We

argue that the bound is tighter:

Theorem 1. Given a two–player game with (U1, U2)
and a game with (U ′

1, U
′
2) where every U ′

i is obtained
by perturbing each payoff of Ui with an arbitrary prob-
ability distribution over [−δ, δ], an NE (x̂1, x̂2) for
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(U ′
1, U

′
2) is an ǫ–NE for (U1, U2) with ǫ ≤ 2δ.

Proof Call x∗
1 the best response of agent 1 to x̂2 of

agent 2 for the game (U1, U2). By definition, ||Ui −
U ′

i ||∞ ≤ δ. We can compute the upper bound over the
expected utility loss of agent 1: ǫ = x∗

1U1x̂2−x̂1U1x̂2 ≤
x∗

1U1x̂2 − x∗
1U

′
1x̂2 + x̂1U

′
1x̂2 − x̂1U1x̂2 ≤ |x∗

1U1x̂2 −
x∗

1U
′
1x̂2| + |x̂1U

′
1x̂2 − x̂1U1x̂2| ≤ x∗

1||U1 − U ′
1||∞x̂2 +

x̂1||U ′
1 − U1||∞x̂2 ≤ ||U1 − U ′

1||∞ + ||U ′
1 − U1||∞ ≤

2δ. The same reasoning can be applied to agent 2,
obtaining the same upper bound. Hence, the theorem
is proved. �
We exploit this result to produce a simple anytime
algorithm (Algorithm 3) based on the idea that an
hard game could become easy after perturbed. The
algorithm iteratively applies LH starting from a per-
turbed game obtained with a large perturbation (i.e.,
δ = 0.125) and then exponentially reducing the per-
turbation at each step where LH has found an NE.

Algorithm 3 Anytime iterative perturbation over
paths (ip-LH)

1: set k = 3
2: while deadline has not been reached do
3: set δ = 1/2k

4: apply δ–uniform perturbation on (U1, U2)
5: apply LH to perturbed (U1, U2)
6: set k = k + 1

7: return current solution

6 Experimental evaluation

6.1 Experimental setting

We implemented LH, L, rrLH, rrL and ip–LH in C in
two different versions: one with floating–point and one
with arbitrary–precision integer arithmetic by means
of the GMP library2. We implemented LS–v, PNS and
LS–PNS in C calling CPLEX via AMPL to solve LPs,
while MIP Nash directly in AMPL3 with CPLEX4. All
the algorithms that use pivoting techniques are opti-
mized with the revised technique [15] and those using
GMP with integer pivoting [23] to save compute time.
(Revised technique allows us to store and perform piv-
oting on a reduced tableau, obtaining a relevant im-
provement in the performance of the algorithms.) We
conducted the experiments on a UNIX computer with
2.33GHz CPU, 16GB RAM and kernel 2.6.24.

Using GAMUT [17], we generated 500 instances
of CovariantGame–Rand, GraphicalGame–RG and
PolymatrixGame–RG games (being the hardest classes
w.r.t. PNS, LH and MIP Nash) and 10 instances of all
the other classes with m1 = m2 = m ∈ {5, . . . , 150}
and a step of 5. We also generated an instance of SGC
games with m ∈ {3, . . . , 99} and a step of 4 as pre-
scribed in [19]. In SGC games, all equilibria have a

2
http://gmplib.org/.

3
http://www.ampl.com.

4
http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer/.

medium number of pure strategies in their supports.
Finally, we generated one instance of HtSG (its gen-
eration not being random) with m ∈ {2, . . . , 18} and
a step of 2 as prescribed in [20]. In HtSG, all the LH
paths are exponentially long.5

6.2 Numerical instability with floating point
precision

We evaluated numerical instability of LH and L with
floating–point precision for different game classes,
comparing their results to those obtained with ar-
bitrary precision. With GAMUT game classes, L
presents numerical instability (the algorithm goes in
ray termination) even with small games (m = 30)
for all the game classes, while LH presents instability
with a limited number of game classes (not recogniz-
ing equilibria or finding non–NE solutions). With long
double precision, LH performs a wrong path on 96.1%
of 100x100 TravelersDilemma instances and on 22.75%
of 100x100 WarOfAttrition instances. More available
tricks could be used to diminish the numerical instabil-
ity than the ones used in our implementation, but the
result would be the same: LH and L are intrinsically
unstable. Using other tricks we can increase the size
of the games at which instability appears. However,
the relative comparison of the game classes in terms
of arbitrary precision stands. On HtSG, arbitrary pre-
cision arithmetic is required even during the game in-
stance generation. We generated game instances using
both the trigonometric and the non–trigonometric mo-
ment curves as described in the appendix of [20]. We
counted, using the lrs algorithm [1], the number of
vertices of the polyhedron associated with the game
generated with floating point precision and compared
it to that obtained with arbitrary precision. When at
least one vertex is lost, the polyhedron loses its hard-
ness characteristics and at least a short path appears.
Tab. 1 shows that arbitrary precision is required for
instances with ≥ 14 actions per agent.

Table 1: Percentage of lost vertices in HtSG due to
floating–point precision with different moment curves.

Actions per agent
6 8 10 12 14 16

non–trigonometric
0% 0% 0% 0% 1% 29%

trigonometric
0% 64% 72% 95% 92% 82%

6.3 Path distribution

We ran LH along every possible path with all the
100x100 (99x99 with SGC) instances of our experi-
mental setting (except HtSG), measuring the length of

5
Although HtSG square instances can be easily solved by sup-

port enumeration algorithms, the equilibrium being unique and fully
mixed, non–square games can be built such that support enumera-
tion algorithms require exponential time.
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the paths and deriving their distribution for each game
class. Almost all the distributions are fat–tailed [10].
These distributions present a lot of data points in
the tail, showing that the performance of an algo-
rithm may vary dramatically from run to run. For-
mally, a distribution is fat–tailed if its kurtosis (µ4/µ2

2,
where µj is the j–th moment) is larger than 3 (i.e.,
the kurtosis of a standard normal). All the game
classes have a kurtosis larger then 3, except for Disper-
sionGame, MinimunEffortGame (the kurtosis is not
defined since µ2 = 0 and µ4 = 0, all the paths having
the same length), SGC (1.0), TravelersDilemma (1.8),
and WarOfAttrition (2.39). As suggested in [10], with
fat–tailed distributions, random restarts may drasti-
cally improve performance. Our experiments, dis-
cussed below, confirm this.

Although almost all the classes present fat–tailed dis-
tributions, the performance of LH varies greatly across
them. We ran LH with instances of different sizes and
bucketed the game classes into five groups:

1. (DispersionGame, MinimumEffortGame) The
length of all the paths is constant (= 2) with game
size.

2. (BidirectionalLEG–CG/RG/SG,
CovariantGame–Pos, LocationGame,
UniformLEG–CG/RG/SG, WarOfAttrition)
The average and maximum path length tends to
a constant value (< 10) as game size increases.

3. (SGC, TravelersDilemma) The average path
length increases linearly in game size.

4. (BertrandOligopoly, CovariantGame–
Rand/Zero, GraphicalGame–RG/Road/SG/SW,
PolymatrixGame–CG/RG/Road/SW, Ran-
domGame) These games have an exponential
growth of the average number of steps with
the game size, but there can be some paths
with polynomial length. Fig. 1 reports, for two
classes, the average number of steps and the
pertinent box–plot diagram: median, 1–st and
3–rd quartiles (dashed), max and min (dotted).

5. (HtSG). All the paths are exponentially long.

We produced the same analysis for L by randomly
generating m initial solutions. All the classes present
the same behavior they have with LH — except Dis-
persionGame, which, when solved with L, belongs to
Group 2. HtSG preserves, with L, the same charac-
teristic exhibited with LH: the length of the shortest
paths grows exponentially.

6.4 Finding an NE by rrLH

Groups 1–3 are easy even without resorting to ran-
dom restarts (these games are easy also with other
algorithms, e.g. PNS). Thus, we just briefly summa-
rize the main results omitting details. Instances of

LH rrLH
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Figure 1: Comparison between LH (left) and rrLH
(right) in terms of average number of steps and box–
plot (median, 1–st/3–rd quartiles with dotted lines,
min/max with dashed lines) of PolymatrixGame–RG
and CovariantGame–Rand.

Groups 1 and 2 are solved by LH with a very small
number of steps even in the worst cases (the compute
times are less than one second). With Group 3, LH
requires a linear compute time. With SCG it has al-
ready been experimentally demonstrated that LH out-
performs MIP Nash and PNS [19]. With Travelers-
Dilemma, LH (with arbitrary precision) is essentially
the unique applicable algorithm — the commercial LP
solvers do not support arbitrary precision, while a pre-
liminary evaluation of GLPK with arbitrary precision
led to compute times two orders of magnitude longer.

Random restarts play a crucial role with Group 4.
These games are hard (in average) when solved with
LH (and the other known algorithms: PNS, MIP
Nash, LS–PNS). The application of rrLH with cutoff =
20 makes all the classes except for CovariantGame–
Rand easy: all the executions of rrLH find an NE
by the deadline and the average compute time is lin-
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Table 2: Termination percentage and compute times.
rr–LH MIP Nash PNS

BetrandOligopoly
(100%) 0.27 s (100%) 2.25 s (100%) 0.15 s

CovariantGame–Rand
(80%) 176.61 s (10%) 254.02 s (20%) 18.13 s

CovariantGame–Zero
(100%) 0.15 s (80%) 155.79 s (90%) 3.75 s

GraphicalGame–RG
(100%) 0.16 s (10%) 124.42 s (90%) 3.64 s

GraphicalGame–Road
(100%) 0.13 s (60%) 98.32 s (90%) 4.47 s

GraphicalGame–SG
(100%) 0.15 s (40%) 180.61 s (60%) 2.30 s

GraphicalGame–SW
(100%) 0.14 s (30%) 155.28 s (90%) 3.42 s

PolymatrixGame–CG
(100%) 0.14 s (30%) 213.77 s (60%) 3.27 s

PolymatrixGame–RG
(100%) 0.14 s (60%) 160.80 s (90%) 1.14 s

PolymatrixGame–Road
(100%) 0.15 s (70%) 208.48 s (90%) 2.51 s

PolymatrixGame–SW
(100%) 0.13 s (20%) 73.73 s (90%) 2.43 s

RandomGame
(100%) 0.13 s (50%) 160.14 s (60%) 4.80 s

ear the game size (the same for max and median),
as shown in Fig. 1 for PolymatrixGame–RG. With
CovariantGame–Rand, we observed that there is at
least an instance whose shortest path grows in length
exponentially (therefore, as shown in Section 3, no cut-
off, even with iterative deepening, can lead to non–
exponential compute times). As a result, the average
number of steps is not smaller than that of LH.

We compared rrLH with floating–point precision (ar-
bitrary precision is averagely 56 times slower) to MIP
Nash and PNS with 150x150 instances of Group 4 (LS–
PNS is not useful for non–hard instances [3]). Tab. 2
shows the percentage of instances solved within 600 s
and the compute time in seconds. rrLH dramatically
outperforms the other two algorithms. More precisely,
PNS terminates very quickly if there is an NE with
very small support and takes exponential time other-
wise. Call s the smallest support size of all the NEs
of a game. PNS scans O(n2s) supports before finding
an NE, instead we observed that rrLH makes O(2ns)
pivoting steps. Thus, as n increases, PNS is inefficient
even with small s, instead rrLH scales well. MIP Nash
performs radically worse than the others.

With HtSG, obviously, rrLH is not effective.

6.5 Finding an NE by rrL

The performance of rrL with blind random restarts
are similar to rrLH, requiring for some classes (e.g.
CovariantGame–Rand) a smaller number of steps but
requiring more time per step. Given that all the other
classes can be easily solved by applying rrLH except
for CovariantGame–Rand and HtSG, we focused only
on these two hard classes exploiting the main pecu-

liarity of rrL: adopting a non–blind approach, trying
to characterize good initial solutions and discarding
those that are not promising.

We initially studied correlation between the values of
ǫ, ǫWS , and r of the initial solutions and the length of
the paths with L, and we observed that no statistical
correlation is present. Thus, such parameters cannot
be used to identify short paths and discard those po-
tentially long. Instead, we found statistical correlation
for CovariantGame–Rand (and PolymatrixGame–RG)
between the length of the L paths and the distance
(d∞) in ||·||∞ between the initial solution and the equi-
librium (the steps reduce as d∞ increases), as shown
in Fig. 2. Because the equilibrium is unknown, we
can only use the vertices of the simplices as initial so-
lutions (these are by definition the farthest points).
However, with these initial solutions, L behaves like
LH. This justifies why, although L allows potentially
infinite paths, LH performs like L.

Given the difficulty of characterizing good initial so-
lutions, we tried to characterize good paths by an-
alyzing how some metrics (ǫ, ǫWS , r, z0) vary dur-
ing the paths. We designed a measure defined as
decr(z0, h) = 1

z01

∑h
k=1 |z0k

− z0k+1
| that is equal to

1 when z0 decreases monotonically and greater than
1 otherwise. Fig. 2 shows that with CovariantGame–
Rand, decr(z0, h) is high on long paths. However, ex-
perimentally, this strategy resulted ineffective even fix-
ing a small cutoff. Furthermore, there is no statistical
correlation when ǫ or ǫWS or r are used in place of z0.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

d∞

A
ve

ra
ge

 n
um

be
r 

of
 s

te
ps

CovariantGame−Rand

0.35 0.4 0.45 0.5 0.55
0

0.5

1

1.5

2
x 10

4

Mean d∞

A
ve

ra
ge

 n
um

be
r 

of
 s

te
ps

HtSG

0 10 20 30 40
0

1000

2000

3000

4000

5000

6000

7000

8000

S
te

ps

decr(z
0
)

CovariantGame−Rand

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2
x 10

4

decr(z
0
)

S
te

ps

HtSG

Figure 2: Relation between the measures d∞,
decr(z0, m) and number of steps with 50x50
CovariantGame–Rand and 16x16 HtSG.

6.6 Finding an NE by LS–v

We mainly focused the evaluation of LS–v on
CovariantGame–Rand, the other classes being easy
and LS–v being not applicable to HtSG due to lack
of arbitrary precision. We tuned the parameters
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cutoff and max–n of FIR in LS–v as follows. We
isolated 15 100x100 hard CovariantGame–Rand in-
stances that cannot be solved by 600 s by PNS,
MIP Nash or rrLH. We randomly chose 5 instances
and tuned LS–v with cutoff ∈ {m, 2m, m2, 2m2} and
max–n ∈ {m/2, m, 2m, m2/2}. The best configuration
was cutoff = m2/2 and max–n = 2m2. With such
configuration, the number of random restarts is very
small. In practice, every solution has a better neighbor
with high probability. Then we compared the perfor-
mance of the three heuristics BI, FI and FIR (with its
best configuration) with the other 10 hard instances
(non–used for the tuning). The best heuristic was FIR
with ǫ = 3.64 · 10−4 by 600 s, while ǫ > 3 · 10−3 with
the other two. However, LS–v never found an NE with
these 10 hard instances. In addition, we evaluated LS–
v with generic (not necessarily hard) instances. Tab. 3
reports success probability and ǫ of the best solution
found by 600 s. LS–v is outperformed by rrLH and
rrL (that found an NE with GraphicalGame–RG and
PolymatrixGame–RG with a probability of 100% and
of 30% with 100x100 CovariantGame–Rand).

Table 3: Percentage of solved instances and average
best ǫ–NE found within 600 s with LS–v.

Actions per agent
60 80 100

CovariantGame–Rand

(56%)9.34 · 10−5 (63%)1.82 · 10−4 (13%)1.80 · 10−4

GraphicalGame–RG

(56%)1.32 · 10−4 (38%)1.72 · 10−4 (36%)7.83 · 10−4

PolymatrixGame–RG

(60%)3.91 · 10−5 (40%)3.95 · 10−4 (30%)2.57 · 10−4

6.7 Approximating an NE

We compared LS–v to the anytime versions of the
other algorithms, obtained by keeping track of the
best ǫ–NE during the pivoting, and ip–LH. Tab. 4
shows that LS–v is the best anytime algorithm (in-
cluding PNS–anyT) for the 15 hard CovariantGame–
Rand instances by an order of magnitude. It
can be observed that ip–LH does not perform well
with CovariantGame–Rand. This result shows that
CovariantGame–Rand instances are stable, keeping to
be hard even when perturbed.

We compared the anytime performance of LS–v and
LH–anyT, these algorithms working on a similar solu-
tion space. Fig. 3 shows that LS–v found very good
approximate solutions within a small number of steps
and it outperforms LH–anyT for all setting of run time
(the other heuristics provide similar results: LS–v finds
very quickly a good approximate equilibrium).

We studied the ǫ–NEs with 16x16 HtSG. These games
were easy for ip–LH (with arbitrary precision), requir-
ing less than 10 steps even with a perturbation of
10−10, returning ǫ ≈ 10−12 (we cannot apply a per-

Table 4: Average best ǫ–NE found within 600 s on
100x100 hard CovariantGame–Rand.

LH–anyT L–anyT PNS–anyT MILP–anyT

6 · 10−3 2 · 10−2 8 · 10−2 3 · 10−3

ip–LH LS–v LS–PNS

1 · 10−2 3 · 10−4 2 · 10−3

LS–v LH–anyT
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Figure 3: How the best ǫ–NE found so far changes
during two sample executions of LS–v and LH–anyT.

turbation smaller than 10−10 due to limits of GMP
library). This shows that HtSG instances are highly
unstable when perturbed. Therefore, there must ex-
ist another game class that is hard for LH and that is
stable unless PPAD ⊆ RP. Finally, LH–anyT provided
best performance, returning ǫ ≈ 10−34 within 600 s.

7 Conclusions and future research

The computation of an NE is a challenging task even
with two agents. In this paper we present by and
large the fastest algorithms for the problem to date.
We also present other results about the problem. For
many situations, arbitrary–precision arithmetic is nec-
essary even with LH. Complementary pivoting with
blind random restarts over paths is the best heuris-
tic, linearizing the average compute time in game size
and outperforming all our and state–of–the–art al-
gorithms for all the benchmark game classes except
CovariantGame–Rand and HtSG. We provide theoret-
ical results that allow us to say that rrLH is asymptot-
ically optimal among algorithms that randomize over
LH paths. We did not find any metric to characterize
good L paths and therefore to have non–blind ran-
dom restarts. Local search guided by the minimiza-
tion of ǫ exhibits worse performance in finding exact
equilibria, but it is the best in approximating hard in-
stances, except for HtSG. HtSG games are unstable
in the sense that they can be easily approximated by
introducing a very small perturbation; therefore there
must exist an alternative hard instance for LH that is
stable (CovariantGame–Rand is a possible candidate,
it being stable). In the future, we will extend our algo-
rithms to games with more than two agents and isolate
hard stable instances for each algorithm.
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Abstract

This paper provides some new guidance in the
construction of region graphs for Generalized
Belief Propagation (GBP). We connect the prob-
lem of choosing the outer regions of a Loop-
Structured Region Graph (SRG) to that of find-
ing a fundamental cycle basis of the correspond-
ing Markov network. We also define a new class
of tree-robust Loop-SRG for which GBP on any
induced (spanning) tree of the Markov network,
obtained by setting to zero the off-tree interac-
tions, is exact. This class of SRG is then mapped
to an equivalent class of tree-robust cycle bases
on the Markov network. We show that a tree-
robust cycle basis can be identified by proving
that for every subset of cycles, the graph obtained
from the edges that participate in a single cycle
only, is multiply connected. Using this we iden-
tify two classes of tree-robust cycle bases: pla-
nar cycle bases and “star” cycle bases. In exper-
iments we show that tree-robustness can be suc-
cessfully exploited as a design principle to im-
prove the accuracy and convergence of GBP.

1 Introduction

Loopy belief propagation (BP) on Markov networks (MNs)
[16, 29, 5, 22, 1, 17] has remained an active area of research
for more than a decade. Much progress has been made in
characterizing its fixed points [26, 33, 9], improving and
understanding its convergence properties [26, 4, 11, 12],
designing convergent alternatives [32, 35, 9, 7, 8, 19], de-
veloping new message passing algorithms based on alter-
native convex objectives [27, 28, 10, 25], and extending BP
to GBP based on larger clusters (also known as the Kikuchi
approximation or Cluster Variation Method) [14, 20, 34].

Despite all this progress, very little attention has been paid
to the question of how to actually choose the outer regions

(clusters, cliques) for any of the GBP algorithms. This is
surprising given that GBP has the potential to improve the
accuracy of BP by orders of magnitude without necessar-
ily adding all that much computational burden. Moreover,
GBP is very sensitive to the choice of outer regions; a bad
choice can lead to poor convergence behavior and little im-
provement in accuracy, while a good choice can result in
fast convergence and an accurate approximation.

Some guidance on choosing regions has appeared in the
literature. In [30] a (greedy) region pursuit algorithm was
proposed that ranks candidate clusters by sending a lim-
ited set of messages through the network. This approach
is computationally expensive because all candidate clus-
ters need to be evaluated. Moreover, the algorithm has no
way of deciding when to stop adding regions. A similarly
expensive “wrapper” approach based on the edge deletion
method was published in [2]. A scheme that utilizes mini-
bucket elimination to choose regions in a two layer region
graph (called a join graph) is presented in [3]. In this re-
gion graph, inner regions represent the separators and con-
nections between outer and inner regions are chosen so that
the running intersection property holds.

Two desirable properties of region graphs on partially or-
dered sets (posets) - k-connectedness and k-balancedness
- were proposed in [18, 23]. Those authors also show that
the Cluster Variation Method (CVM) [14, 20, 34] yields
a region graph that is totally connected and balanced and
that the join-graph construction is only 1-connected and 1-
balanced. Structured Region Graphs (SRGs) introduced in
[31] also inherit the total connectedness and balancedness
properties. Another desirable property of region graph con-
structions discussed in [34] is that the sum of all counting
numbers should equal 1. This property ensures exact re-
sults for infinitely strong interactions. A condition called
maxent-normality, which ensures that the free energy is
maximal in the limit of zero interactions, was also intro-
duced in [34]. Maxent-uniqueness was strengthened in [31]
to guarantee that uniform beliefs are the unique fixed points
of GBP.

In [31] it was shown that Loop-SRGs - a specific class of
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SRG with loop outer regions - satisfy all the desirable con-
ditions when the loop regions form a linearly independent
set of size #edges - #nodes + 1 - i.e. a cycle basis. Our
contribution can be seen as a refinement of the criteria pro-
posed in [31]. In particular, we show that to satisfy the de-
sirable conditions (e.g. non-singularity and sum of count-
ing numbers equal 1), the set of loop regions must form
a fundamental cycle basis. We also propose a condition
called “tree-robustness” that further restricts the choice of
loop regions. The idea of tree-robustness is to require GBP
on a SRG to be exact on every possible tree embedded in the
Markov Network, where an embedded tree is obtained by
zeroing out the interactions on the off-tree edges. For loop
SRGs, we show that this idea can be translated to an equiv-
alent problem in graph theory, namely that of finding tree-
robust cycle bases. We then characterize the class of tree
robust cycle bases and identify two families of tree robust
cycle bases. Finally, we demonstrate the performance of
GBP on Loop-SRGs constructed to satisfy tree-robustness.

2 Generalized Belief Propagation and
Structured Region Graphs

Belief Propagation (BP) [24] is an algorithm for computing
marginal probabilities in distributions taking the following
form:

p(x) =
1

Z

∏

a

fa(xa) (1)

where a indexes the factors in the model and f(xa) is a
function on xa, which is a subset of {x1, ..., xn}, the n
discrete-valued random variables in the distribution. In this
paper we assume p(x) to be comprised of only pairwise
factors but the extension to factor graphs is straightforward.

BP is a message passing algorithm that computes marginals
by iteratively sending messages from one node to its neigh-
boring nodes. It is most easily described in terms of mes-
sages passed along the edges of a factor graph [15] (factors
are pairwise interactions in this paper), which is a bipartite
graph comprised of factor nodes and variable nodes. The
edges in a factor graph connect each factor node a to the
variable nodes i for which xi ∈ xa. The belief bi(xi) at
variable node i is an approximation to the exact marginal
p(xi) and is defined as:

bi(xi) ∝
∏

a∈N(i)

ma→i(xi) (2)

where ma→i(xi) is a message from factor node a to vari-
able node i and N(i) is the set of factor nodes neighboring
variable node i. The belief ba(xa) over the variables xa is
defined in an analogous fashion, as a product of messages
from variable nodes to factor node a. These beliefs will be
exact if the factor graph contains no cycles.

An important limitation of BP is that messages are defined
on a single variable. This means that interactions between

variables may be lost during message passing. Generalized
Belief Propagation (GBP) [34] is a class of algorithms that
address this limitation. In GBP, messages over one or more
variable are passed among sets of nodes or regions. A re-
gion graph is a structure, analogous to the factor graph, that
helps organize the computation of GBP messages.

DEFINITION 1. A Region R is a set of variable nodes and
factor nodes such that if factor node a is in region R, all
variable nodes i where xi ∈ xa are also in R.

LetR denote the set of all regions. Let xR denote the set of
variables in region R and fR(xR) =

∏
a∈R fa(xa) be the

factors in region R. Every variable and factor must belong
to some region.

DEFINITION 2. A Region Graph (RG) is a directed graph
G(V,E), where each vertex v ∈ V is associated with a
region R ∈ R and the directed edges e ∈ E are from some
vertex vp to vertex vc if xRc ⊂ xRp , where xRi is the set of
variables in region Ri. In such cases, vertex (region) p is
the parent of vertex c.

Let pa(R) denote the parents, an(R) denote the ancestors
and de(R) denote the descendants of region R. Regions
with no parents will be referred to as outer regions; all other
regions are inner regions. The Bethe RG is a RG with outer
regions for each factor and inner regions for each variable.

Each region R is associated with a counting number κr
used to define the region-based free energy of a RG. Let
R(i) = {R ∈ R|xi ∈ xR} denote the set of regions con-
taining variable i. A RG is considered 1-balanced if:

∑

R∈R(i)

κR = 1 ∀ i (3)

1-balancedness is satisfied if κR is defined recursively as:

κR = 1−
∑

A∈an(R)

κA (4)

A RG is 1-Connected if the subgraph consisting of the re-
gions R(i) is connected for all i. These conditions can be
strengthened by considering the set of regions containing a
larger set of variables - i.e. R(s) = {R ∈ R|xs ∈ xR}
for xs ⊆ {x1, ..., xn}. A RG is called totally connected
and balanced if it is connected and balanced for all sets of
variables that are subsets of an outer region - i.e. for any
xs ⊆ xR for outer region R [23]. Junction graphs [18] and
Join Graphs [3] are two-layer RG constructions satisfying
1-balancedness and 1-connectednesss, while CVM [14, 21]
ensures total connectivity and balancedness.

Many different GBP algorithms can be defined on RGs.
The parent-to-child (or canonical) GBP algorithm is one
such algorithm. It is defined in terms of messages sent from
a parent region to a child region. As in BP, the belief at a
particular region R is computed as a product of messages
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into R. However, the messages do not come from the re-
gions neighboringR, but rather from regions external toR.
The belief bR(xR) at region R is given by:

bR(xR) ∝ fR(xR)
∏

P∈pa(R)

mP→R(xR) · (5)

∏

D∈de(R)

∏

P ′∈P ′(R)

mP ′→D(xD) (6)

where P ′(R) = {pa(D) \ {R ∪ de(R)}}. Figure 1 illus-
trates how beliefs are computed on a 3-by-3 grid.

Figure 1: Illustration of message passing on a factor graph (top
right) and region graph (bottom) for the 3-by-3 grid in the top-
left. In BP, the belief b5(x5) is a product of messages into vari-
able node 5. The belief at region 6, bR6(x4, x5), is a product of
messages into region 6 and its descendants (i.e. region 9).

The RG framework was extended in [31] to structured mes-
sage passing algorithms.
DEFINITION 3. A Structured Region Graph (SRG) is a re-
gion graph in which each region R is associated with a
set of cliques C(R). Every variable in xR must appear in
some clique or factor. The set of factors and cliques asso-
ciated with a region define a structure G(R), which is an
undirected graph with vertices for each variable in xR and
edges connecting any pair of variables appearing in the
same factor or clique.

In the rest of the paper, we restrict our attention to Loop-
SRGs, which are a particular type of SRG.
DEFINITION 4. A Loop-SRG is a 3-level SRG consisting of
loop outer regions and edge and node inner regions, where
a loop outer region has a structure G(R) that forms an (ele-
mentary) cycle. Loop outer regions are connected to the set
of edge inner regions comprising the loop and edge inner
regions are connected to the two node regions comprising
the edge.

A Loop-SRG on the grid in Figure 1 can be formed by tak-
ing the faces of the grid as the loop regions, the edges of
the grid as edge regions and all vertices as node regions.
Importantly, Loop-SRGs are not limited to planar graphs.
In fact, a Loop-SRG can be constructed on any graph struc-
ture containing cycles.

3 Properties of SRGs
The balancedness and connectedness conditions can be sat-
isfied by many different SRGs for some distribution p(x).
However, some SRGs will give better quality approxima-
tions than others. Two properties of SRGs that are useful
in identifying ”good” SRGs were identified in [34]. The
first property is that

∑
R κR = 1. This property ensures

that the region-based entropy is correct if the variables in
p(x) are perfectly correlated. This property will be re-
ferred to as counting number unity. The second property is
maxent-normality, which requires the region-based entropy
of a connected SRG to achieve its maximum when the re-
gion beliefs bR(xR) are uniform. The maxent-normality
property was strengthened in [31] to require that message
passing with uniform factors have a unique fixed point at
which bR(xR) are uniform. This stronger property is re-
ferred to as non-singularity. An SRG that does not satisfy
this condition is singular.

In [31] it was shown that an acyclic SRG is non-singular.
Proving this required a set of reduction operators that mod-
ify an SRG’s structure while preserving the fixed points of
the region-based free energy. The reduction operators will
be used in this paper, but are not presented for space rea-
sons (see [31, 30]).

The following qualities of Loop-SRGs come from [31]:

THEOREM 1. A Loop-SRG has
∑
R κR = |L|− |E|+ |V |,

where |L| is the number of loop regions, |E| the number of
edge regions and |V | the number of node regions.

THEOREM 2. A Loop-SRG is singular if
∑
R κR > 1.

THEOREM 3. A Loop-SRG is singular iff there is a subset
of loop regions and constituent edge regions such that all
of the edge regions have 2 or more parents.

These theorems are illustrated on the grid in Figure 2. In
this Loop-SRG, every edge region has exactly 2 loop re-
gions as parents and is thus singular by Theorem 3. There
are also |L| = 3 loop regions, |E| = 7 edge regions and
|V | = 6 node regions, so that

∑
R κR = 2. Thus, the

Loop-SRG is also singular by Theorem 2.

Figure 2: A Loop-SRG (right) for the 2-by-3 grid (left). There
are 3 loop outer regions and 7 edge inner regions. The node re-
gions have been dropped for clarity.

Theorems 2 and 3 describe conditions that are undesirable
in Loop-SRGs, but offer no guidance on how to identify
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”good” Loop-SRGs. The following section establishes a
connection between the set of loop regions in a Loop-SRG
and cycle bases of a graph that will prove useful in con-
structing well-behaved Loop-SRGs.

4 Loop Regions and Cycle Bases
In [31] it was noted that counting number unity in a Loop-
SRG requires |L| = |E| − |V | + 1 loops. This number
of loops is exactly the dimension of the cycle space of the
undirected graph G describing the MN p(x). The connec-
tion between loop regions and cycle bases is formalized
in this section. We begin with some background on cycle
bases taken from [13].

Let G = (V,E) be a 2-connected graph. A simple cycle
C in G is a connected Eulerian subgraph in which every
vertex has degree 2. The cycle space C(G) of a graph G
consists of all simple and non-simple cycles ofG including
the empty cycle ∅. The dimension of a cycle space for a
graph with 1 connected component is µ ≡ µ(G) = |E| −
|V |+ 1.
DEFINITION 5. A Cycle Basis of C(G) is a set of simple
cycles B = {C1, ..., Cµ} such that for every cycle C of G,
there exists a unique subset BC ⊆ B such that the set of
edges appearing an odd number of times in BC comprise
the cycle C.
DEFINITION 6. A cycle basis B is a
Fundamental Cycle Basis (FCB) if there exists
a permutation π of the cycles in B such that
Cπ(i) \

{
Cπ(1) ∪ · · · ∪ Cπ(i−1)

}
6= ∅ for i = 2...µ.

In other words, the cycles can be ordered so that cycle
Cπ(i) has some edge that does not appear in any cycle
preceding it in the ordering.

Consider mapping each loop outer region R to a cycle C
in the basis B of the undirected graph of p(x).1 Using this
mapping, we can claim the following.
THEOREM 4. A Loop-SRG is Non-Singular and satisfies
Counting Number Unity if its loop outer regions are a Fun-
damental Cycle Basis (FCB) of G.

The proof2 uses reduction operators to show that a loop
outer region with a unique edge (i.e. an edge not shared
with any other loop region) can be reduced to the set of
edges comprising that loop. Since the set of loops form a
FCB, we are guaranteed to find a loop region with a unique
edge if we reduce loops along π - i.e. beginning with the
loop corresponding to Cπ(µ) and ending at loop Cπ(1).

This result implies that the loop regions in an SRG should
form a FCB. This greatly reduces the set of loops consid-
ered when constructing a Loop-SRG. However, a graph

1More specifically, the structure G(R) of each outer region R
is chosen to be a unique cycle C ∈ B

2Formal proofs of all theorems in this paper are provided as
supplementary material.

may have many fundamental bases, so one may ask if
Loop-SRGs formed from certain FCBs are better than oth-
ers. The next section defines a class of Loop-SRG with
loop regions corresponding to a specific type of FCB.

5 Tree Robust Cycle Bases

Non-singularity and counting number unity ensure that
GBP behaves sensibly in two opposite and extreme situ-
ations. Non-singularity requires GBP to be exact in the
presence of uniform factors, while counting number unity
ensures that GBP is exact in the presence of perfectly cor-
related variables.

Tree-Robustness is a condition which ensures that GBP be-
haves sensibly in an orthogonal way. The idea of Tree-
Robustness is as follows. Imagine removing some set of
factors from p(x) to produce a modified MN p′(x) that is
acyclic. It would be nice if GBP run on the original Loop-
SRG of p(x) but retaining only the factors of p′(x), were
equivalent to BP run directly on the Bethe RG for p′(x)
(since BP will be exact in that case). A Tree Robust SRG is
a Loop-SRG that is exact w.r.t. all acyclic MNs produced
by retaining some of the factors in p(x).

More formally, let T be some spanning tree of the undi-
rected graph G describing p(x) and let T̄ denote the off-
tree edges. A SRG is Tree Exact w.r.t. to T if by removing
only factors on edges T̄ , the SRG can be reduced so that
inference on T is exact. In other words, a sequence of re-
duction operations can be applied to the SRG so that it can
be reduced to a Bethe RG with edge regions for each edge
in T and node regions for each variable. Since T is acyclic,
running GBP on this resulting RG will be exact. Finally,
we say that a SRG is Tree Robust (TR) if it is Tree Exact
w.r.t. all spanning trees of G.

The previous section established that a Loop-SRG is non-
singular if its loops form a FCB. In this section, we first
define a TR cycle basis and then show that a Loop-SRG is
TR if its loops form a TR cycle basis.

DEFINITION 7. Let T be some spanning tree of G.
A cycle basis B is Tree Exact w.r.t. T if there ex-
ists an ordering π of the cycles in B such that{
Cπ(i) \ {Cπ(1) ∪ · · · ∪ Cπ(i−1)}

}
\ T 6= ∅ for i = 2...µ.

In other words, the cycles can be ordered so that cycle
Cπ(i) has some edge that: 1) does not appear in any cy-
cle preceding it in the ordering; and 2) does not appear in
the spanning tree T .

DEFINITION 8. A cycle basis B is Tree Robust (TR) if it is
Tree Exact w.r.t. all spanning trees of G.

By mapping each loop outer region to a cycle in basis B it
can be shown that3:

3See supplementary material for formal proof.
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THEOREM 5. A Loop-SRG is Tree Robust if its loop outer
regions are a Tree Robust cycle basis of G.

In the remainder of this section, we introduce two theorems
that characterize TR cycle bases. These results prove useful
in showing that, for example, the faces of a planar graph
constitute a TR cycle basis. The ensuing theorems require
the following definition.

DEFINITION 9. The Unique Edge Graph of a set of cycles
C = {C1, ..., Ck} is a graph comprised of the set of edges
that are in exactly one cycle in C. We will use I(C) to denote
the unique edge graph for cycle set C. I(C) is cyclic if it
contains at least one cycle.

Using this definition we can now state the following equiv-
alent characterization of TR cycle bases.

THEOREM 6. Let B|k| denote all size k subsets of cycles
in B. A FCB B is Tree Robust iff I(Bk) is cyclic and not
empty for all Bk ∈ B|k| for 1 ≤ k ≤ µ. In other words,
the unique edge graph must be cyclic for all pairs of cycles,
and all triples of cycles,..., and all of the µ cycles.

COROLLARY 1. An FCB is TR iff Bk is TR for all Bk ∈
B|k| for 1 ≤ k ≤ µ.

We sketch the main idea of the proof here. Sufficiency fol-
lows because whatever ordering π we choose to remove
the cycles in, there is never a tree T that can block all of
the edges of the unique edge graph under consideration
(since it is always cyclic). Necessity follows because if
there were a subset of cycles for which the exposed edge
graph is acyclic then there exists no ordering π that can
avoid that subset (or a larger subset with an acyclic unique
edge graph). Hence, by choosing the tree T to block all
edges of the acyclic unique edge graph under consideration
we prove that the bases is not tree robust.

6 Planar and Complete Graphs
Using the theorems from the previous section, we now
identify TR cycle bases of planar and complete graphs. In
the case of planar graphs, a TR basis can be constructed
from the cycles forming the faces of the planar graph. This
supports the observation of previous authors that GBP run
on the faces of planar graphs gives accurate results.

THEOREM 7. Consider a planar graph G. The cycle basis
B comprised of the faces of G is TR.

Proof. We use theorem 6. Consider the graph formed by
any subset of k faces of the planar graph. Consider any
of its connected components. The path that traces the cir-
cumference of that component is a loop and also consists
of unique edges.

In the case of complete graphs, a TR basis can be con-
structed by choosing some vertex as a root, creating a span-
ning tree with edges emanating from that root and con-

structing loops of length 3 using each edge not in the span-
ning tree. This is exactly the ’star’ construction of [31],
which was shown empirically to be superior to other Loop-
SRGs on complete graphs.

THEOREM 8. Consider a complete graph G on n vertices
(i.e. Kn). Construct a cycle basis B as follows. Choose
some vertex v as the root. Create a ’star’ spanning tree
rooted at v (i.e. with all edges v-u). Now construct cycles
of the form v-i-j from each off-tree edge i-j. The basis B
constructed in this way is TR.

Proof. We use again theorem 6. Consider the graph con-
structed from any subset of k triangles. The edges not on
the spanning tree (i.e. not connecting to the root) are all
unique and will either form a loop (in which case we are
done) or a tree. In case of a tree, consider a path connect-
ing two leaf nodes, which are both also connected to the
root, thus forming a loop. Because the two edges connect-
ing to the root are also unique (since they correspond to
leaf nodes) we have proven the existence of a cycle in the
unique edge graph.

This result can be extended to partially complete graphs
where there exists some vertex v that is connected to all the
other vertices in G.

7 TR SRGs in General Graphs
The previous section identified TR cycle bases for two spe-
cific classes of graphs. The prescription for how to con-
struct TR SRGs for MNs on these types of graphs is clear:
simply find a TR basis B of the underlying graph and make
the cycles in B the loop regions. This prescription can be
generalized in some cases to graphs containing many TR
components. More formally,

THEOREM 9. Consider a graph G comprised of com-
ponents (subgraphs) H1, ...,Hk. Let the components
H1, ...,Hk be mutually singly connected if for any two
components Hi and Hj there exist vertices vi ∈ Hi and
vj ∈ Hj that are singly connected (i.e. connected through
a single path). Let BH1 , ...,BHk denote the TR cycle
bases for each component. Then a TR cycle basis of G
is BG = {BH1

∪ · · · ∪ BHk}.

Proof. First note that by singly connecting the components
H1, ...,Hk we do not create any new cycles. Thus BG is a
cycle basis of G. Every subset of cycles of BG is the union
of some subset of cycles from the component cycle bases
{BHi}. Moreover, for any of these subsets the unique edge
graph must be cyclic (by theorem 6). Since the component
cycle bases do not overlap it thus follows that the unique
edge graph for every subset of cycles of BG must also be
cyclic.

For MNs defined over more general graphs, the picture of
how to construct a TR SRG is less clear. Since verifying
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that a basis is TR requires inspecting all subsets of cycles in
that basis, searching for a TR basis in a general graph seems
difficult. Moreover, not every graph will admit a TR basis.
In this section we describe a method for constructing Loop-
SRGs that are partially TR. In other words, we sacrifice
finding a TR basis ofG to find a basis that is Tree Exact for
many (just not all) spanning trees of G.

The method for finding a partially TR basis works as fol-
lows. We first find the largest complete or planar subgraph
H of G and construct a TR basis B(H) for H as described
in the previous section. Since the TR core H is a subgraph
of G, the µ(H) cycles in B(H) will not form a complete
basis of G. We choose the remaining µ(G)− µ(H) cycles
so that the basis of G is fundamental. We do so by finding
a sequence of ears (simple paths or cycles) in G, such that
each new ear has some edge not occurring in some previ-
ous ear. This process is described in Algorithm Construct
Basis and is illustrated on a 2× 3 grid in Figure 3.

Algorithm: Construct Basis

Input: MN p(x) described by undirected graph G
Output: Cycle Basis B

Find TR subgraph H of G with TR basis B(H)
if G contains no TR subgraph (i.e. H = ∅) then

Let H be some simple cycle in G
end if
Add cycles B(H) to B
Mark all edges in H as used
Mark all vertices in H as visited
while ∃ unused edge e = (s, t) from a visited vertex s
do

If t is visited, then set p1 = e
Else, find an ear p1 from s through edge e = (s, t) to
some visited vertex u.
Find shortest path p2 from s to u on used edges
Add cycle C consisting of p1 ∪ p2 to the bases B
Mark all edges (vertices) on C as used (visited)

end while

Figure 3: A graph G (left) and its TR core H (right). Add the
faces (1, 2, 5, 4) and (2, 3, 6, 5) of H to B. Mark all edges (ver-
tices) in H as used (visited). Edge (1, 6) is an ear (unused edge).
The path 6, 3, 2, 1 connects the start and end vertices of this ear
along used edges, so cycle (1, 6, 3, 2) is added to B. Similarly, cy-
cle (3, 4, 5, 6) might be added for ear (3, 4), giving us the partially
TR basis B = {(1, 2, 5, 4), (2, 3, 6, 5), (1, 6, 3, 2), (3, 4, 5, 6)}.

8 Experiments

We conducted a series of experiments to validate the
recommendations for constructing Loop-SRGs made in
this paper. In each of the experiments that fol-
low, we generated a set of M random MNs with bi-
nary variables. Each MN instance has unary poten-
tials of the form fi(xi) = [exp(hi); exp(−hi)]
and pairwise potentials of the form fij(xi, xj) =
[exp(wij) exp(−wij); exp(−wij) exp(wij)]. The val-
ues of hi and wij were drawn from Normal distributions
N (0, σ2

hi
) and N (0, σ2

wij ), respectively. Two different er-
ror measures are reported. ErrorZ = | logZ − log Z̃| is
the absolute error in the exact (Z) and approximate (Z̃)
values of the log partition function. ErrorL1

measures
the error in the marginal probabilities and is computed as
ErrorL1 = 1

n

∑n
i=1 |b(xi) − p(xi)| where n is number

of variables in a MN instance. Averages of ErrorZ and
ErrorL1

were computed across the M MN instances. Er-
ror bars indicate standard error. To aid convergence, GBP
was run with a damping factor of 0.5 for at most 1000 iter-
ations.

8.1 TR Bases vs non-TR Bases

We first ran a set of experiments to show that tree robust-
ness is a desirable property. To test this hypothesis, we
generated 31 different Loop-SRGs for a MN defined on a
complete graph with 20 binary variables (i.e. on K20). We
first constructed a TR basis B comprised of all cycles of
length 3 passing through vertex 1 (e.g. using the star con-
struction from Section 6 with vertex 1 as root). From this
TR basis, a sequence of 30 fundamental bases were cre-
ated as follows: for i = 1...30, we choose a cycle Ci of
the form Ci = (1, u, v) from B and modify it by swapping
vertex 1 with some vertex w (w 6= u 6= v 6= 1) so that
Ci = (w, u, v). At every iteration we choose cycles that
have not been modified and reject modifications that make
the basis non-fundamental. In this way, as i increases the
basis is made less TR but always remains fundamental.

Figure 4 shows ErrorL1
and ErrorZ as the Loop-SRG is

made less TR. In this figure, we generated M = 500 ran-
dom MN instances with σhi = 1 and σwij = 1/

√
20− 1.

Note that by keeping the cycle length at 3 and ensuring that
each basis is fundamental, the increase in error can only be
explained by the change in the TR core of the basis. Since
error increases as the basis is made less TR, these results
support the hypothesis that tree robustness is a desirable
property. It was also observed that GBP took an increasing
number of iterations to converge as the basis was made less
TR.

We also ran a set of experiments to characterize the conver-
gence properties of TR SRGs on Ising grid models. Though
not reported, these experiments confirm the finding in [34]
that running GBP on an RG where the outer regions are
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(a) ErrorL1 on increasingly non-TR Loop SRGs.

(b) ErrorZ on increasingly non-TR Loop SRGs.

Figure 4: Performance of GBP run on a sequence of increasingly
non-TR Loop-SRGs.

taken as the faces of the grid model is more accurate than
ordinary BP. We also found the TR SRG construction to
be more accurate than GBP run on Loop-SRGs constructed
from fundamental, but non-TR cycle bases on Ising grids.

8.2 Partially TR SRGs

The previous experiment considered a class of MNs for
which a TR basis is known. This section considers more
general MNs.

The algorithm in Section 7 seeks an initial TR subgraph
H of the graph G. The previous experiments showed that
GBP yields accurate approximations when H = G. When
a graph contains no TR core (i.e. H = ∅) the algorithm
Construct Basis method simply finds a fundamental basis
of G. We wish to study the performance of GBP between
these two extremes - i.e. on partially TR SRGs. We con-
ducted experiments on two types of MNs, where the size of
H (relative to G) can be controlled.

The following experiments include a comparison to the It-

erative Join Graph Propagation (IJGP) method [3]. This
method forms a join graph (i.e. a 1-connected and 1-
balanced RG) using a heuristic, ”mini-bucket” clustering
strategy. In IJGP, the number of variables appearing in
an outer region is restricted to be less than or equal to an
iBound parameter. The iBound controls the computational
complexity of message computations in IJGP because in
the join graph construction each outer region forms a clique
over all variables in that region. Importantly, since Loop-
SRGs assume a loop structure in the outer regions, message
computations on Loop-SRGs are equivalent to IJGP with
iBound = 3.

8.2.1 Partial K-Trees

In these experiments we construct a set of partial K-tree
instances via the following procedure4. We first build a
random K-tree on n vertices using the process described
in [6]. The number of neighbors (degree) of the vertices in
K-trees constructed by this procedure follow a power law.
This means there will exist a few vertices that are adjacent
to most of the vertices in G. As a result, the TR core will
comprise a large portion of G. To reduce the size of the
TR core, we iteratively remove edges from the K-tree as
follows: choose a vertex v with probability proportional to
the current degree of that vertex. Modify G by removing
an edge from v to one of its neighbors, so long as removing
that edge does not disconnect G. This process is repeated
until the ratio of the maximum degree in G to n falls below
some threshold. We refer to this ratio as the connectivity
of the graph. A random MN is formed over each partial
K-tree structure by assigning random unary and pairwise
potentials to the vertices and edges.

Figure 5 shows the performance of GBP as a function of
connectivity. In these figures, we generated M = 100
random MN instances at each level of connectivity (with
K = 10, n = 100, σhi = 1 and σwij = 0.3). The partially
TR SRGs are found by choosing the TR core to be the sub-
graph H found using the max degree vertex as the root of
the star construction described in Section 6. Cycles are
added to this TR core as described in algorithm Construct
Basis. The partially TR SRGs are compared to Loop-SRGs
formed by finding a fundamental cycle basis (FCB) of each
partialK-tree (constructed using algorithm “Construct Ba-
sis” with H = ∅). Importantly, these FCBs do not build
upon the TR core. Figure 5 shows that the benefit of the
partially TR SRG diminishes as connectivity is decreased.
This behavior confirms our belief that the benefit of find-
ing a TR core decreases as the TR core comprises a smaller
proportion of cycles in the fundamental basis. Even so, it is
important to note that choosing a Loop-SRG with outer re-
gions forming a FCB yields more accurate approximations
than both IJGP and BP.

4K-trees are chordal graphs w/ size K maximal cliques. Par-
tial K-trees are non-chordal graphs w/ size K maximal cliques
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(a) ErrorL1 as a function of connectivity.

(b) ErrorZ as a function of connectivity.

Figure 5: Performance of GBP run on the partial TR construc-
tion, the FCB construction and IJGP with iBound = 3 as a func-
tion of connectivity (see text for discussion).

Figure 6 shows the performance of GBP as a function of
iBound for a fixed connectivity level. iBound is increased
from 2 (which is equivalent to BP) to 10 (which is exact).
These plots show that GBP run on the partial TR SRG is
roughly equivalent to IJGP with iBound = 7, while GBP
run on the FCB is equivalent to IJGP with iBound = 6.
The fact that GBP run on both SRGs performs better than
IJGP with iBound = 6 is quite remarkable considering
that message passing on Loop-SRGs is computationally
equivalent to IJGP with iBound = 3.

8.2.2 Grids with long range interactions

In addition to the partial K-tree instances, we also consid-
ered grid instances with an increasing number of long range
interactions. The additional interactions were added via the
following procedure. We begin with a 10×10 grid. LetG0

denote this initial graph. Two vertices u and v are randomly
chosen from the grid. If edge (u, v) exists in graph Gi−1,
new vertices u and v are chosen randomly; if edge (u, v) is

(a) ErrorL1 as a function of iBound.

(b) ErrorZ as a function of iBound.

Figure 6: Performance of the SRG constructions as a function of
iBound with fixed connectivity of 0.7.

not inGi−1, then graphGi is created by adding edge (u, v)
to Gi−1. This process is repeated until a specified number
of edges have been added to G0.

Figure 7 compares the ErrorL1
and ErrorZ of GBP run

on different loop SRG constructions. M = 25 instances
were generated with 5,10,.., and 50 additional edges. In all
250 of these MN instances the unary and pairwise terms
were drawn with σhi = 1 and σwij = 0.5. For the par-
tially TR SRG construction, we take the TR core H to be
G0 and fill out the cycle basis using algorithm Construct
Basis (as illustrated in Figure 3). As in the partial K-tree
experiments, for the FCB construction we choose a funda-
mental basis that does not build upon the TR core by using
algorithm “Construct Basis” with H = ∅. In Figure 7, we
see that both the partially TR and FCB construction outper-
form IJGP with an equivalent iBound. Interestingly, when
adding 50 additional edges we do not see the ErrorL1 of
the partially TR and the FCB constructions coalesce. This
may be explained by the fact that even with 50 additional
edges more than 60% of the loops in the SRG are TR (131
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cycles in the basis, 81 of which come from the TR core).

(a) ErrorL1 on grids with long range interactions

(b) ErrorZ on grids with long range interactions

Figure 7: Performance of the different SRG constructions as an
increasing number of long range interactions are added to a 10×
10 grid.

9 Conclusion

This paper provides some new guidance in the construc-
tion of region graphs. In particular, we connected the prob-
lem of choosing the loop outer regions of a Loop-SRG to
that of finding a fundamental cycle basis of the undirected
graph describing a MN. We proposed tree robustness as a
refinement to the criterion that the loop regions form a fun-
damental basis and offered a characterization of the class
of TR cycle bases. We identified TR cycle bases for planar
and complete graphs. This characterization helps explain
the success of GBP on the “star” construction of [31] for
complete graphs and the “all faces” construction on planar
graphs. We also proposed a practical Loop-SRG construc-
tion that first identifies a TR core and then expands to a full
cycle basis using an ear construction which makes sure the
final basis is still fundamental (and partially TR).

The experiments in this paper confirm that GBP can yield

very accurate approximations when the loop regions of a
Loop-SRG form a fundamental basis and that these approx-
imations can be further improved by choosing a fundamen-
tal basis that is at least partially tree robust. The criteria
proposed in this paper also lead to approximations that are
comparable to IJGP run with a much higher iBound (and
therefore much higher space and computational complex-
ity).

These findings open the door for much future work. Rather
than simply finding a TR subgraph, as the method in Sec-
tion 7 does, it would be preferable to have an algorithm
that searches for TR bases in a graph or at the very least
identifies when a graph does not admit a TR basis. The
recommendations in this paper are also purely structural in
nature. A natural extension would be to incorporate inter-
action strengths in the search for suitable loop regions.

The current paper considered pairwise interactions only. A
natural extension is to consider factor graphs or more gen-
erally region graphs. We argue that we should be looking
for a maximal collection of subsets {Ci} of outer regions
(or factors) that have the property that there exists an or-
dering π for which Cπ(i) \

{
Cπ(1) ∪ · · · ∪ Cπ(i−1)

}
6= ∅.

In other words, the subsets can be ordered so that subset
Cπ(i) has some element that does not appear in any sub-
set preceding it in the ordering. This definition is identical
to the one for a fundamental cycle basis (see definition 6)
and will guarantee through the reduction rules of [31] that
the region graph (factor graph) can be decomposed into in-
dependent variable nodes, establishing non-singularity. A
next step would then be to define tree-robustness as a col-
lection of region-subsets that can still be decomposed along
some ordering if we do not allow certain elements that cor-
respond to the regions of any embedded junction tree to
become unique. Again this is very similar to definitions 7
and 8 for TR cycle bases. Whether these generalizations
can be captured with mathematical structures as elegant as
the theory of cycle spaces (or more generally matroids) re-
mains to be seen and will be left for future research.
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Abstract

The recent proliferation of richly structured prob-
abilistic models raises the question of how to au-
tomatically determine an appropriate model for a
dataset. We investigate this question for a space
of matrix decomposition models which can ex-
press a variety of widely used models from unsu-
pervised learning. To enable model selection, we
organize these models into a context-free gram-
mar which generates a wide variety of structures
through the compositional application of a few
simple rules. We use our grammar to generically
and efficiently infer latent components and esti-
mate predictive likelihood for nearly 2500 struc-
tures using a small toolbox of reusable algo-
rithms. Using a greedy search over our gram-
mar, we automatically choose the decomposi-
tion structure from raw data by evaluating only
a small fraction of all models. The proposed
method typically finds the correct structure for
synthetic data and backs off gracefully to sim-
pler models under heavy noise. It learns sen-
sible structures for datasets as diverse as image
patches, motion capture, 20 Questions, and U.S.
Senate votes, all using exactly the same code.

1 Introduction

There has been much interest recently in learning hier-
archical models, which extend simpler models by intro-
ducing additional dependencies between the parameters.
While there have been many advances in modeling par-
ticular kinds of structure, as the desired structure becomes
higher level and more abstract, the correct model becomes
less obvious a priori. We aim to determine an appropri-
ate model structure automatically from the data, in order to
make hierarchical modeling usable by non-experts and to
explore a wider variety of structures than would be possi-
ble by manual engineering.

There has been much work on structure learning in partic-
ular model classes, such as undirected (Lee et al., 2006)
and directed (Teyssier and Koller, 2005) graphical models.
Most such work focuses on determining the particular fac-
torization and/or conditional independence structure within
a fixed model class. Our concern, however, is with identify-
ing the overall form of the model. For instance, suppose we
are interested in modeling the voting patterns of U.S. Sen-
ators. We can imagine several plausible modeling assump-
tions for this domain: e.g., that political views can be sum-
marized by a small number of dimensions, that Senators
cluster into voting blocks, or that votes can be described in
terms of binary attributes. Choosing the correct assump-
tions is crucial for uncovering meaningful structure. Right
now, the choice of modeling assumptions is heavily depen-
dent on the intuition of the human researcher; we are in-
terested in determining appropriate modeling assumptions
automatically.

Many common modeling assumptions, or combinations
thereof, can be expressed by a class of probabilistic mod-
els called matrix decompositions. In a matrix decomposi-
tion model, component matrices are first sampled indepen-
dently from a small set of priors, and then combined using
simple algebraic operations. This expressive model class
can represent a variety of widely used models, including
clustering, co-clustering (Kemp et al., 2006), binary latent
factors (Griffiths and Ghahramani, 2005), and sparse cod-
ing (Olshausen and Field, 1996). Nevertheless, the space
of models is compositional: each model is described re-
cursively in terms of simpler matrix decomposition mod-
els and the operations used to combine them. We propose
to exploit this compositional structure to efficiently and
generically evaluate and perform inference in matrix de-
composition models, and to automatically search through
the space of structures to find one appropriate for a dataset.

A common heuristic researchers use for designing hierar-
chical models is to fit an existing model, look for additional
dependencies in the learned representation, and extend the
model to capture those dependencies. We formalize this
process in terms of a context-free grammar. In particular,
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we present a notation for describing matrix decomposition
models as algebraic expressions, and organize the space of
models into a context-free grammar which generates such
expressions. The starting symbol corresponds to a struc-
tureless model where the entries of the input matrix are
modeled as i.i.d. Gaussians. Each production rule corre-
sponds to a simple unsupervised learning model, such as
clustering or dimensionality reduction. These production
rules lie at the heart of our approach: we fit and evaluate a
wide variety of models using a small toolbox of algorithms
corresponding to the production rules, and the production
rules guide our search through the space of structures.

The main contributions of this paper are threefold. First, we
present a unifying framework for matrix decompositions
based on a context-free grammar which generates a wide
variety of structures through the compositional application
of a few simple production rules. Second, we exploit our
grammar to infer the latent components and estimate pre-
dictive likelihood in all of these structures generically and
efficiently using a small toolbox of reusable algorithms cor-
responding to different component matrix priors and pro-
duction rules. Finally, by performing greedy search over
our grammar using predictive likelihood as the criterion,
we can (in practice) typically choose the correct structure
from the data while evaluating only a small fraction of all
possible structures.

Section 3 defines our matrix decomposition formalism, and
Sections 4 and 5 present our generic algorithms for infer-
ring component matrices and evaluating individual struc-
tures, respectively. Section 6 describes how we search our
space of structures. Finally, in Section 7, we evaluate the
structure learning procedure on synthetic data and on real-
world datasets as diverse as image patches, motion capture,
20 Questions, and Senate voting records, all using exactly
the same code. Our procedure learns correct and/or plausi-
ble model structures for a wide variety of synthetic and real
datasets, and gracefully falls back to simpler structures in
high-noise conditions.

2 Related work

There is a long history of attempts to infer model struc-
tures automatically. The field of algorithmic information
theory (Li and Vitanyi, 1997) studies how to represent
data in terms of a short program/input pair which could
have generated it. One prominent example, Solomonoff in-
duction, can learn any computable generative model, but
is itself uncomputable. Minimum message length (Wal-
lace, 2005), minimum description length (Barron et al.,
1998), and Bayesian model comparison (MacKay, 1992)
are frameworks which can, in principle, be used to compare
very different generative models. In practice, they have pri-
marily been used for controlling complexity within a given
model class. By contrast, our aim is to choose from a very

large space of model classes by exploiting shared structure
between the models.

Other work has focused on searching within more restricted
spaces of models, such as undirected (Lee et al., 2006) and
directed (Teyssier and Koller, 2005) graphical models, and
graph embeddings (Kemp and Tenenbaum, 2008). Kemp
and Tenenbaum (2008) model human “domain structure”
learning as selecting between a fixed set of graph struc-
tures. Similarly to this paper, their structures are gener-
ated from a few simple rules; however, whereas their set
of structures is small enough to exhaustively evaluate each
one, we search over a much larger set of structures in a way
that explicitly exploits the recursive nature of the space.
Furthermore, our space of matrix decomposition structures
is especially broad, including many bread-and-butter mod-
els from unsupervised learning, as well as the building
blocks of many hierarchical Bayesian models.

We note that several other researchers have proposed uni-
fying frameworks for unsupervised learning which over-
lap substantially with our own. Roweis and Ghahramani
(1999)’s “generative model for generative models” presents
a lattice showing relationships between different models.
Srebro (2004) and Singh and Gordon (2008) each inter-
preted a variety of unsupervised learning algorithms as fac-
torizing an input matrix into a product of two factors. Ex-
ponential family PCA (Collins et al., 2002; Mohamed et al.,
2008) generalizes low-rank factorizations to other observa-
tion models in the exponential family. Our work differs
from these in that our matrix decomposition formalism is
specifically designed to support efficient generic inference
and structure learning. We defer discussion of particular
matrix decomposition models to Section 3.1, after we have
introduced our formalism.

Our work has several parallels in the field of equation dis-
covery. Langley et al. (1984) built a knowledge discovery
system called BACON which reproduced classical scien-
tific discoveries. BACON followed a greedy search proce-
dure similar to our own: it repeatedly fit statistical mod-
els and looked for additional structure in the learned pa-
rameters. Our work is similar in spirit, but uses matrices
rather than scalars as the building blocks, allowing us to
capture rich structure in high-dimensional spaces. Todor-
ovski and Dzeroski (1997) used a context-free grammar to
define spaces of candidate equations. Our approach differs
in that we explicitly use the grammar to structure posterior
inference and search over model structures.

3 A grammar for matrix decompositions

We first present a notation for describing matrix decompo-
sition models as algebraic expressions, such as MG + G.
Each letter corresponds to a particular distribution over ma-
trices. When the dimensions of all the component matrices
are specified, the algebraic expression defines a generative
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model: first sample all of the component matrices indepen-
dently from their corresponding priors, and then evaluate
the expression. The component priors are as follows:

1. Gaussian (G). Entries are independent Gaussians:

uij ∼ Gaussian(0, λ−1i λ−1j ).

This is our most generic component prior, and gives a
way of deferring or ignoring structure.1

2. Multinomial (M). Rows are independent multinomi-
als, with one 1 and the rest 0’s:

π ∼ Dirichlet(α) ui ∼ Multinomial(π).

This is useful for clustering models, where ui deter-
mines the cluster assignment for the ith row.

3. Bernoulli (B). Entries are independent Bernoullis:

πj ∼ Beta(a, b) uij ∼ Bernoulli(πj).

This is useful for binary latent feature models.

4. Integration matrix (C). Entries below the diagonal
are deterministically 1:

uij = 1i≥j .

This is useful for modeling temporal structure, as mul-
tiplying by this matrix has the effect of cumulatively
summing the rows. (Mnemonic: C for “cumulative.”)

We allow expressions consisting of addition, matrix multi-
plication, matrix transpose, elementwise multiplication (◦),
and elementwise exponentiation (exp). Some of the dimen-
sions of the component matrices are determined by the size
of the input matrix; the rest (the latent dimensions) are de-
termined automatically using the techniques of Section 4.

We observe that this notation for matrix decompositions
is recursive: each sub-expression (such as GMT + G
in the above example) is itself a matrix decomposition
model. Furthermore, the semantics is compositional: the
value of each expression depends only on the values of
its sub-expressions and the operations used to combine
them. These observations motivate our decision to define a
space of models using a context-free grammar, a formalism
which is widely used for representing recursive and com-
positional structures such as languages.

1The precision parameters λi and λj are drawn from the dis-
tribution Gamma(a, b). If i indexes a data dimension (i.e. rows
correspond to rows of the input matrix), the λis are tied. This al-
lows the variance parameters to generalize to additional rows. If
i indexes a latent dimension, the λis are all independent draws.
This allows the variances of latent dimensions to be estimated.
The same holds for the λjs.

+G M GT

M + GM + GG

G ! GM

T
+ G

G

G ! MG + G

Figure 1: A synthetic example showing how an input matrix with
block structure can be co-clustered by fitting the matrix decom-
position structure M(GMT + G) + G. Rows and columns are
sorted for visualization purposes.

The starting symbol in our grammar is G, a structureless
model where the entries are assumed to be independent
Gaussians. Other models (expressions) are generated by
repeatedly applying one of the following production rules:

low-rank approximation G→ GG+G (1)
clustering G→MG+G | GMT +G (2)

M →MG+G (3)
linear dynamics G→ CG+G | GCT +G (4)

sparsity G→ exp(G) ◦G (5)
binary factors G→ BG+G | GBT +G (6)

B → BG+G (7)
M → B (8)

For instance, any occurrence of G in a model may be re-
placed by GG + G or MG + G. Repeated application of
these production rules allows us to build hierarchical mod-
els by capturing additional dependencies between variables
which were previously modeled as independent.

3.1 Examples

We now turn to several examples in which our simple com-
ponents and production rules give rise to a rich variety
of models from unsupervised learning. While the model
space is symmetric with respect to rows and columns, for
purposes of exposition, we will adopt the convention that
the rows of the input matrix correspond to data points and
columns corresponds to observed attributes.

We always begin with the model G, which assumes the en-
tries of the matrix are i.i.d. Gaussian. Applying produc-
tions in our grammar allows us to capture additional struc-
ture. For instance, starting with Rule 2(a) gives the model
MG + G, which clusters the rows (data points). In more
detail, the M represents the cluster assignments, the first G
represents the cluster centers, and the second G represents
within-cluster variation. These three matrices are sampled
independently, the assignment matrix is multiplied by the
center matrix, and the within-cluster variation is added to
the result. By applying Rule 2(b), the clustering model can
be extended to co-clustering (Kemp et al., 2006), where the
columns (attributes) form clusters as well. In our frame-
work, this can be represented as M(GMT + G) + G. We
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need not stop here: for instance, there may be coherent co-
variation even within individual clusters. One can capture
this variation by applying Rule 3 to get the Bayesian Clus-
tered Tensor Factorization (BCTF) (Sutskever et al., 2009)
model (MG+G)(GMT +G) +G. This process is shown
in cartoon form in Figure 1.

For an example from vision, consider a matrix X , where
each row is a small (e.g. 12 × 12) patch sampled from
an image and vectorized. Image patches can be viewed as
lying near a low-dimensional subspace spanned by the low-
est frequency Fourier coefficients (Bossomaier and Sny-
der, 1986). This can be captured by the low-rank model
GG+G. In a landmark paper, Olshausen and Field (1996)
found that image patches are better modeled as a linear
combination of a small number of components drawn from
a larger dictionary. In other words, X is approximated as
the product WA, where each row of A is a basis function,
and W is a sparse matrix giving the linear reconstruction
coefficients for each patch. By fitting this “sparse coding”
model, they obtained a dictionary of oriented edges simi-
lar to the receptive fields of neurons in the primary visual
cortex. If we apply Rule (5), we obtain a Bayesian ver-
sion of sparse coding, (exp(G) ◦ G)G + G, similar to the
model proposed by Berkes et al. (2008). Intuitively, the
latent Gaussian coefficients are multiplied elementwise by
“scale” variables to give a heavy-tailed distribution. Many
researchers have designed models to capture the depen-
dencies between these scale variables, and such “Gaussian
scale mixture” models represent the state-of-the art for low-
level vision tasks such as denoising (Portilla et al., 2003)
and texture synthesis (Portilla and Simoncelli, 2000). One
such GSM model is that of Karklin and Lewicki (2008),
who fit a low-rank model to the scale variables. By apply-
ing Rule (1) to the sparse coding structure, we can represent
their model in our framework as (exp(GG+G)◦G)G+G.
This model has been successful at capturing higher-level
textural properties of a scene and has properties similar to
complex cells in the primary visual cortex.

Figure 2 gives several additional examples of matrix de-
composition models and highlights the relationships be-
tween them. We emphasize that our goal is not to repro-
duce existing models exactly, but to develop a formalism
powerful enough to express a wide variety of statistical as-
sumptions about the latent factors underlying the data.

We note that many of the above models are not typically
viewed as matrix decomposition structures. Describing
them as such results in a compact notation for defining
them and makes clearer the relationships between the dif-
ferent models. The above examples have in common that
complex models can be derived by incrementally adding
structure to a sequence of simpler models (in a way that
parallels the path researchers took to discover them). This
observation motivates our proposed procedures for infer-
ence and structure learning.

4 Posterior inference of component matrices

Searching over matrix decomposition structures requires a
generic and unified approach for posterior sampling of the
latent matrices. Unfortunately, for most of the structures
we consider, this posterior is complicated and multimodal,
and escaping from local modes requires carefully chosen
special-purpose sampling operators. Engineering such op-
erators for thousands of different models would be undesir-
able.

Fortunately, the compositional nature of our model space
allows us to focus the engineering effort on the relatively
small number of production rules. In particular, observe
that in a realization of the generative process, the value
of an expression depends only on the values of its sub-
expressions. This suggests the following initialization pro-
cedure: when applying a production rule P to a matrix S,
sample from the posterior for P ’s generative model condi-
tioned on it evaluating (exactly) to S. Many of our produc-
tion rules correspond to simple machine learning models
for which researchers have already expended much time
developing efficient inference algorithms:

1. Low rank. To apply the ruleG→ GG+G, we fit the
probabilistic matrix factorization (Salakhutdinov and
Mnih, 2008) model using block Gibbs sampling over
the two factors. While PMF assumes a fixed latent
dimension, we choose the dimension automatically by
placing a Poisson prior on the dimension and moving
between states of differing dimension using reversible
jump MCMC (Green, 1995).

2. Clustering. To apply the clustering rule to rows:
G → MG + G, or to columns: G → GMT + G,
we perform collapsed Gibbs sampling over the cluster
assignments in a Dirichlet process mixture model.

3. Binary factors. To apply the rule G → BG + G or
G → GBT + G, we perform accelerated collapsed
Gibbs sampling (Doshi-Velez and Ghahramani, 2009)
over the binary variables in a linear-Gaussian In-
dian Buffet Process (Griffiths and Ghahramani, 2005)
model, using split-merge proposals (Meeds et al.,
2006) to escape local modes.

4. Markov chains. The rule G → CG + G is equiv-
alent to estimating the state of a random walk given
noisy observations, which is done using Rauch-Tung-
Striebel (RTS) smoothing.

The remaining production rules begin with a random de-
composition of S. While some of these algorithms in-
volve fitting Bayesian nonparametric models, once the di-
mensionality is chosen, the model is converted to a finite
model of fixed dimensionality (as defined in section 3). The
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Figure 2: Examples of existing machine learning models which fall under our framework. Arrows represent models reachable using a
single production rule. Only a small fraction of the 2496 models reachable within 3 steps are shown, and not all possible arrows are
shown.

smart initialization step is followed by generic Gibbs sam-
pling over the entire model. We note that our initialization
procedure generalizes “tricks of the trade” whereby com-
plex models are initialized from simpler ones (Kemp et al.,
2006; Miller et al., 2009).

In addition to simplifying the engineering, this procedure
allows us to reuse computations between different struc-
tures. Most of the computation time is in the initialization
steps. Each of these steps only needs to be run once on the
full matrix, specifically when the first production rule is ap-
plied. Subsequent initialization steps are performed on the
component matrices, which are considerably smaller. This
allows a large number of high level structures to be fit for a
fraction of the cost of fitting them from scratch.

5 Scoring candidate structures

Performing model selection requires a criterion for scoring
individual structures which is informative yet tractable. To
motivate our method, we first discuss two popular choices:
marginal likelihood of the input matrix and entrywise mean
squared error (MSE). Marginal likelihood, the probability
of the data with all the latent variables integrated out, is
widely used in Bayesian model selection. Unfortunately,
this requires integrating out all of the latent component ma-
trices, whose posterior distribution is highly complex and
multimodal. While elegant solutions exist for particular
models, estimating the data marginal likelihood generically
is still extremely difficult. At the other extreme, one can
hold out a subset of the entries of the matrix and compute
the mean squared error for predicting these entries. MSE
is easier to implement, but we found that it was unable to
distinguish many of the the more complex structures in our
grammar.

As a compromise between these two approaches, we chose
to evaluate predictive likelihood of held-out rows and

columns. That is, for each row (or column) x of the matrix,
we evaluate p(x|XO), where XO denotes an “observed”
sub-matrix. Like marginal likelihood, this tests the model’s
ability to predict entire rows or columns. However, it can
be efficiently approximated in our class of models using
a small but carefully chosen toolbox corresponding to the
component matrix priors in our grammar. We discuss the
case of held-out rows; columns are handled analogously.

First, by expanding out the products in the expression, we
can write the decomposition uniquely in the form

X = U1V1 + · · ·+ UnVn + E, (1)

where E is an i.i.d. Gaussian “noise” matrix and the Ui’s
are any of the following: (1) a component matrix G, M ,
or B, (2) some number of Cs followed by G, (3) a Gaus-
sian scale mixture. The held-out row x can therefore be
represented as:

x = V T1 u1 + · · ·+ V Tn un + e. (2)

The predictive likelihood is given by:

p(x|XO) =

∫
p(UO, V |XO)p(u|UO)p(x|u, V ) dUO du dV

(3)

where UO is shorthand for (UO1, . . . , UOn) and u is short-
hand for (u1, . . . , un).

In order to evaluate this integral, we generate samples from
the posterior p(UO, V |X) using the techniques described
in Section 4, and compute the sample average of

ppred(x) ,
∫
p(u|UO)p(x|u, V ) du (4)

If the term Ui is a Markov chain, the predictive distribu-
tion p(ui|UO) can be computed using Rauch-Tung-Striebel
smoothing; in the other cases, u and UO are related only
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through the hyperparameters of the component prior. Ei-
ther way, each term p(ui|UO) can be summarized as a
Gaussian, multinomial, Bernoulli, or Gaussian scale mix-
ture distribution.

It remains to marginalize out the latent representation u of
the held-out row. While this can be done exactly in some
simple models, it is intractable in general (for instance, if
u is Bernoulli or a Gaussian scale mixture). It is important
that the approximation to the integral be a lower bound, be-
cause otherwise an overly optimistic model could be cho-
sen even when it is completely inappropriate.

Our approach is a hybrid of variational and sampling tech-
niques. We first lower bound the integral (4) in an approx-
imate model p̃ where the Gaussian scale mixture compo-
nents are approximated as Gaussians. This is done using
using the variational Bayes bound

log p̃pred(x) ≥ Eq[log p̃pred(x, u)] +H(q).

The approximating distribution q(u) is such that all
of the discrete components are independent, while the
Gaussian components are marginalized out. The ratio
ppred(x)/p̃pred(x) is then estimated using annealed im-
portance sampling (AIS) (Neal, 2001). Because AIS is an
unbiased estimator which always takes positive values, by
Markov’s inequality we can regard it as a stochastic lower
bound. Therefore, this small toolbox of techniques allows
us to (stochastically) lower bound the predictive likelihood
across a wide variety of matrix decomposition models.

6 Search over structures

We aim to find a matrix decomposition structure which is a
good match to a dataset, as measured by the predictive like-
lihood criterion of Section 5. Since the space of models is
large and inference in many of the models is expensive, we
wish to avoid exhaustively evaluating every model. Instead,
we adopt a greedy search procedure inspired by the process
of scientific discovery. In particular, consider a common
heuristic researchers use to build probabilistic models: we
begin with a model which has already been applied to a
problem, look for additional dependencies not captured by
the model, and refine the model to account for those depen-
dencies.

In our approach, refining a model corresponds to apply-
ing one of the productions. This suggests the following
greedy search procedure, which iteratively “expands” the
best-scoring unexpanded models by applying all possible
production rules and scoring the resulting models. In par-
ticular we first expand the structureless model G. Then, in
each step, we expand the K best-performing models from
the previous step by applying all possible productions. We
then score all the resulting models. The procedure stops
when no model achieves sufficient improvement over the

best model from the previous step. We refer to the models
reached in i productions as the Level imodels; for instance,
GG+G is a Level 1 model and (MG+G)G+G is a Level
2 model.

The effectiveness of this search procedure depends whether
the score of a simple structure is a strong indicator of the
best score which can be obtained from the structures de-
rived from it. In our experiments, the scores of the sim-
pler structures turned out to be a powerful heuristic: while
our experiments used K = 3, in most all cases, the cor-
rect (or best-scoring) structure would have been found with
a purely greedy search (K = 1). This results in enor-
mous savings because of the compositional nature of our
search space: while the number of possible structures (up
to a given level) grows quickly in the number of production
rules, the number of structures evaluated by this search pro-
cedure is merely linear.

The search procedure returns a high-scoring structure for
each level in our grammar. There remains a question of
when to stop. Choosing between structures of differing
complexity imposes a tradeoff between goodness of fit and
other factors such as interpretability and tractability of in-
ference, and inevitably the choice is somewhat subjective.
In practice, a user may wish to run our procedure up to
a fixed level and analyze the sequence of models chosen,
as well as the predictive likelihood improvement at each
level. However, for the purposes of evaluating our system,
we need it to return a single answer. In all of our experi-
ments, we adopt the following arbitrary but consistent cri-
terion: prefer the higher level structure if its predictive log-
likelihood score improves on the previous level by at least
one nat per row and column.2

7 Experiments

7.1 Synthetic data

We first validated our structure learning procedure on syn-
thetic data where the correct model was known. We gen-
erated matrices of size 200 × 200 from all of the models
in Figure 2, with 10 latent dimensions. The noise variance
σ2 was varied from 0.1 to 10, while the signal variance was
fixed at 1.3 The structures selected by our procedure are
shown in Table 1.

2More precisely, if Si−Si−1

N+D
> 1, where Si is the total pre-

dictive log-likelihood for the level i model summed over all rows
and columns, andN andD are the numbers of rows and columns,
respectively. We chose to normalize byN+D because the predic-
tive likelihood improvements between more abstract models tend
to grow with the number of rows and columns in the input matrix,
rather than the number of entries.

3Our grammar generates expressions of the form · · ·+G. We
consider this final G term to be the “noise” and the rest to be the
“signal,” even though the models and algorithms do not distin-
guish the two.
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— Increasing noise−→
σ2 = 0.1 σ2 = 1 σ2 = 3 σ2 = 10

low-rank GG+G GG+G GG+G 1 G
clustering MG+G MG+G MG+G MG+G

binary latent features 1 (BG+G)G+G BG+G BG+G BG+G

co-clustering M(GMT +G) +G M(GMT +G) +G M(GMT +G) +G 1 GMT +G

binary matrix factorization 1 (BG+G)(GBT +G) +G (BG+G)BT +G 2 GG+G 2 GG+G

BCTF (MG+G)(GMT +G) +G (MG+G)(GMT +G) +G 2 GMT +G 3 G
sparse coding (exp(G) ◦G)G+G (exp(G) ◦G)G+G (exp(G) ◦G)G+G 2 G

dependent GSM 1 (exp(G) ◦G)G+G 1 (exp(G) ◦G)G+G 1 (exp(G) ◦G)G+G 3 BG+G
random walk CG+G CG+G CG+G 1 G

linear dynamical system (CG+G)G+G (CG+G)G+G (CG+G)G+G 2 BG+G

Table 1: The structures learned from 200× 200 matrices generated from various distributions, with signal variance 1 and noise variance
σ2. Incorrect structures are marked with a 1, 2, or 3, depending how many decisions would need to be changed to find the correct
structure. We observe that our approach typically finds the correct answer in low noise settings and backs off to simpler models in high
noise settings.

We observe that seven of the ten structures were identi-
fied perfectly in both trials where the noise variance was
no larger than the data variance (σ2 ≤ 1). When σ2 = 0.1,
the system incorrectly chose (BG+G)G+G for the binary
latent feature data, rather than BG+G. Similarly, it chose
(BG+G)(GBT +G) +G rather than (BG+G)BT +G
for binary matrix factorization. In both cases, the sampler
learned an incorrect set of binary features, and the addi-
tional flexibility of the more complex model compensated
for this. This phenomenon, where more structured models
compensate for algorithmic failures in simpler models, has
also been noted in the context of deep learning (Salakhut-
dinov and Murray, 2008).

Our system also did not succeed in learning the dependent
Gaussian scale mixture structure (exp(GG+G)◦G)G+G
from synthetic data, instead generally falling back to the
simpler sparse coding model (exp(G) ◦ G)G + G. For
σ2 = 0.1 the correct structure was in fact the highest scor-
ing structure, but did not cross our threshold of 1 nat im-
provement over the previous level. We note that in every
case, there were nearly 2500 incorrect structures to choose
from, so it is notable that the correct model structure can be
recovered most of the time.

In general, when the noise variance was much larger than
the signal variance, the system gracefully fell back to sim-
pler models, such asGMT +G instead of the BCTF model
(MG+G)(GMT +G) +G (see Section 3.1). At the ex-
treme, in the maximum noise condition, it chose the struc-
tureless model G much of the time. Overall, our procedure
reliably learned most of the model structures in low-noise
settings (impressive considering the extremely large space
of possible wrong answers) and gracefully fell back to sim-
pler models when necessary.

7.2 Real-world data

Next, we evaluated our system on several real-world
datasets. We first consider two domains, motion capture
and image statistics, where the core statistical assumptions
are widely agreed upon, and verify that our learned struc-
tures are consistent with these assumptions. We then turn

to domains where the correct structure is more ambiguous
and analyze the representations our system learns.

In general, we do not expect every real-world dataset to
have a unique best structure. In cases where the predictive
likelihood score differences between multiple top-scoring
models were not statistically significant, we report the set
of top-scoring models and analyze what they have in com-
mon.

Motion capture. We first consider a human motion capture
dataset (Hsu et al., 2005; Taylor et al., 2007) consisting of
a person walking in a variety of styles. Each row of the
matrix gives the person’s orientation and displacement in
one frame, as well as various joint angles. We used 200
frames (6.7 seconds), and 45 state variables. In the first
step, the system chose the Markov chain model CG + G,
which assumes that the components of the state evolve con-
tinuously but independently over time. Since a person’s
different joint angles are clearly correlated, the system next
captured these correlations with the modelC(GG+G)+G.
This is slightly different from the popular linear dynamical
system model (CG + G)G + G, but it is more physically
correct in the sense that the LDS assumes the deviations of
the observations from the low-dimensional subspace must
be independent in different time steps, while our learned
structure captures the temporal continuity in the deviations.

Natural image patches. We tested the system on the
Sparsenet dataset of Olshausen and Field (1996), which
consists of 10 images of natural scenes which were blurred
and whitened. The rows of the input matrix corresponded
to 1,000 patches of size 12×12. In the first stage, the model
learned the low-rank representation GG + G, and in the
second stage, it sparsified the linear reconstruction coeffi-
cients to give the sparse coding model (exp(G)◦G)G+G.
In the third round, it modeled the dependencies between
the scale variables by recursively giving them a low-rank
representation, giving a dependent Gaussian scale mixture
(GSM) model (exp(GG + G) ◦ G)G + G reminiscent
of Karklin and Lewicki (2008). A closely related model,
(exp(GBT + G) ◦ G)G + G, also achieved a score not
significantly lower. Both of these structures resulted in a

312



Level 1 Level 2 Level 3
Motion capture CG+G C(GG+G) +G —
Image patches GG+G (exp(G) ◦G)G+G (exp(GG+G) ◦G)G+G
20 Questions MG+G M(GG+G) +G —
Senate votes GMT +G (MG+G)MT +G —

Table 2: The best performing models at each level of our grammar for real-world datasets. These correspond to plausible structures for
the datasets, as discussed in the text.

rank-one factorization of the scale matrix, similar to the ra-
dial Gaussianization model of Lyu and Simoncelli (2009)
for neighboring wavelet coefficients.

Dependent GSM models (see Section 3.1) are the state-of-
the-art for a variety of image processing tasks, so it is in-
teresting that this structure can be learned merely from the
raw data. We note that a single pass through the gram-
mar reproduces an analogous sequence of models to those
discovered by the image statistics research community as
discussed in Section 3.1.

20 Questions. We now consider a dataset collected by
Pomerleau et al. (2009) of Mechanical Turk users’ re-
sponses to 218 questions from the 20 Questions game about
1000 concrete nouns (e.g. animals, foods, tools). The sys-
tem began by clustering the entities using the flat clustering
model MG + G. In the second stage, it found low-rank
structure in the matrix of cluster centers, resulting in the
model M(GG+G) +G. No third-level structure achieved
more than 1 nat improvement beyond this. The low-rank
representation had 8 dimensions, where the largest vari-
ance dimension corresponded to living vs. nonliving and
the second largest corresponded to large vs. small. The 39
clusters, the 20 largest of which are shown in Figure 3, cor-
respond to semantically meaningful categories.

We note that two other models expressing similar assump-
tions, M(GBT +G) +G and (MG+G)G+G, achieved
scores only slightly lower. What these models have in
common is a clustering of entities (but not questions) cou-
pled with low-rank structure between entities and ques-
tions. The learned clusters and dimensions are qualitatively
similar in each case.

Senate voting records. Finally, we consider a dataset of
roll call votes from the 111th United States Senate (2009-
2010). Rows correspond to Senators, and the columns cor-
respond to all 696 votes, most of which were on proce-
dural motions and amendments to bills. Yea votes were
mapped to 1, Nay and Present were mapped to -1, and ab-
sences were treated as unobserved. In the first two stages,
our procedure clustered the votes and Senators, giving the
clustering model GMT + G and the co-clustering model
(MG+G)MT +G, respectively. Senators clustered along
party lines, as did most of the votes, according to the party
of the proposer. The learned representations are all visual-
ized in Figure 4.

In the third stage, one of the best performing models was
Bayesian clustered tensor factorization (BCTF) (see sec-
tion 3.1), where Senators and votes are each clustered in-
side a low-rank representation.4 This low-rank represen-
tation was rank 5, with one dominant dimension corre-
sponding to the liberal-conservative axis. The BCTF model
makes it clearer that the clusters of Senators and votes are
not independent, but can be seen as occupying different
points in a low-dimensional representation. This model im-
proved on the previous level by less than our 1 nat cutoff.5

The models in this sequence increasingly highlight the po-
larization of the Senate.

8 Discussion

We have presented an effective and practical method for
automatically determining the model structure in a partic-
ular space of models, matrix decompositions, by exploit-
ing compositionality. However, we believe our approach
can be extended beyond the particular space of models
presented here. Most straightforwardly, additional compo-
nents can be added to capture other motifs of probabilistic
modeling, such as tree embeddings and low-dimensional
embeddings. More generally, it should be fruitful to in-
vestigate other model classes with compositional structure,
such as tensor decompositions.

In either case, exploiting the structure of the model space
becomes increasingly essential. For instance, the number
of models reachable in 3 steps is cubic in the number of
production rules, whereas the complexity of the greedy
search is linear. For tensors, the situation is even more over-
whelming: even if we restrict our attention to analogues of
GG+G, a wide variety of provably distinct generalizations
have been identified, including the widely used Tucker3
and PARAFAC decompositions (Kolda and Bader, 2007).

4The other models whose scores were not significantly differ-
ent were: (MG+G)MT+BG+G, (MG+G)MT+GMT+G,
G(GMT +G) +GMT +G, and (BG+G)(GMT +G) +G.
All of these models include the clustering structure but account
for additional variability within clusters.

5BCTF results in a more compact representation than the co-
clustering model, but our predictive likelihood criterion doesn’t
reward this except insofar as overfitting hurts a model’s ability to
generalize to new rows and columns. We speculate that a fully
Bayesian approach using marginal likelihood may lead to more
compact structures.
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1. Miscellaneous. key, chain, powder, aspirin, umbrella, quarter, cord, sunglasses, toothbrush, brush
2. Clothing. coat, dress, pants, shirt, skirt, backpack, tshirt, quilt, carpet, pillow, clothing, slipper, uniform
3. Artificial foods. pizza, soup, meat, breakfast, stew, lunch, gum, bread, fries, coffee, meatballs, yoke
4. Machines. bell, telephone, watch, typewriter, lock, channel, tuba, phone, fan, ipod, flute, aquarium
5. Natural foods. carrot, celery, corn, lettuce, artichoke, pickle, walnut, mushroom, beet, acorn
6. Buildings. apartment, barn, church, house, chapel, store, library, camp, school, skyscraper
7. Printed things. card, notebook, ticket, note, napkin, money, journal, menu, letter, mail, bible
8. Body parts. arm, eye, foot, hand, leg, chin, shoulder, lip, teeth, toe, eyebrow, feet, hair, thigh
9. Containers. bottle, cup, glass, spoon, pipe, gallon, pan, straw, bin, clipboard, carton, fork
10. Outdoor places. trail, island, earth, yard, town, harbour, river, planet, pond, lawn, ocean
11. Tools. knife, chisel, hammer, pliers, saw, screwdriver, screw, dagger, spear, hoe, needle
12. Stuff. speck, gravel, soil, tear, bubble, slush, rust, fat, garbage, crumb, eyelash
13. Furniture. bed, chair, desk, dresser, table, sofa, seat, ladder, mattress, handrail, bench, locker
14. Liquids. wax, honey, pint, disinfectant, gas, drink, milk, water, cola, paste, lemonade, lotion
15. Structural features. bumper, cast, fence, billboard, guardrail, axle, deck, dumpster, windshield
16. Non-solid things. surf, fire, lightning, sky, steam, cloud, dance, wind, breeze, tornado, sunshine
17. Transportation. airplane, car, train, truck, jet, sedan, submarine, jeep, boat, tractor, rocket
18. Herbivores. cow, horse, lamb, camel, pig, hog, calf, elephant, cattle, giraffe, yak, goat
19. Internal organs. rib, lung, vein, stomach, heart, brain, smile, blood, lap, nerve, lips, wink
20. Carnivores. bear, walrus, shark, crocodile, dolphin, hippo, gorilla, hyena, rhinocerous

Figure 3: (left) The 20 largest clusters discovered by our Level 2 model M(GG + G) + G for the 20 Questions dataset. Each line
gives our interpretation, followed by random items from the cluster. (right) Visualizations of the Level 1 representation MG + G
and the Level 2 representation M(GG + G) + G. Rows = entities, columns = questions. 250 rows and 150 columns were selected at
random from the original matrix. Rows and columns are sorted first by cluster, then by the highest variance dimension of the low-rank
representation (if applicable). Clusters were sorted by the same dimension as well. Blue = cluster boundaries.

(a) Level 1: GMT +G (b) Level 2: (MG +G)MT +G (c) Level 3: (MG +G)(GMT +G) +G

Figure 4: Visualization of the representations learned from the Senate voting data. Rows = Senators, columns = votes. 200 columns were
selected at random from the original matrix. Black = yes, white = no, gray = absence. Blue = cluster boundaries. Rows and columns are
sorted first by cluster (if applicable), then by the highest variance dimension of the low-rank representation (if applicable). Clusters are
sorted by the same dimension as well. The models in the sequence increasingly reflect the polarization of the Senate.

What is the significance of the grammar being context-
free? While it imposes no restriction on the models them-
selves, it has the effect that the grammar “overgenerates”
model structures. Our grammar licenses some nonsensical
models: for instance, G(MG+G) +G, which attempts to
cluster dimensions of a latent space which is defined only
up to affine transformation. Reassuringly, we have never
observed such models being selected by our search proce-
dure — a useful sanity check on the output of the algorithm.
The only drawback is that the system wastes some time
evaluating meaningless models. Just as context-free gram-
mars for English can be augmented with attributes to en-
force contextual restrictions such as agreement, our gram-
mar could be similarly extended to rule out unidentifiable
models. Such extensions may become important if our ap-
proach is applied to a much larger space of models.

Our context-free grammar formalism unifies a wide vari-
ety of matrix decomposition models in terms of composi-
tional application of a few production rules. We exploited
this compositional structure to efficiently and generically

sample from and evaluate a wide variety of latent variable
models, both continuous and discrete, flat and hierarchi-
cal. Greedy search over our grammar allows us to select a
model structure from raw data by evaluating only a small
fraction of all models. This search procedure was effec-
tive at recovering the correct structure for synthetic data
and sensible structures for real-world data. More generally,
we believe this paper is a proof-of-concept for the practi-
cality of selecting complex model structures in a composi-
tional manner. Since many model spaces other than matrix
factorizations are compositional in nature, we hope to spur
additional research on automatically searching large, com-
positional spaces of models.
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Abstract

Hierarchical beta process has found interesting
applications in recent years. In this paper we
present a modified hierarchical beta process prior
with applications to hierarchical modeling of
multiple data sources. The novel use of the prior
over a hierarchical factor model allows factors to
be shared across different sources. We derive a
slice sampler for this model, enabling tractable
inference even when the likelihood and the prior
over parameters are non-conjugate. This allows
the application of the model in much wider con-
texts without restrictions. We present two differ-
ent data generative models – a linear Gaussian-
Gaussian model for real valued data and a linear
Poisson-gamma model for count data. Encour-
aging transfer learning results are shown for two
real world applications – text modeling and con-
tent based image retrieval.

1 Introduction

Hierarchical modeling is becoming increasingly popular
in Bayesian statistics – it allows joint modeling of multi-
ple data sources, permitting shared patterns. A successful
example of hierarchy in text modeling is the hierarchical
Dirichlet process (HDP) [18]. HDP is used as a prior over
a mixture model allowing shared mixture components (top-
ics) across multiple data sources. Each data point from
a data source is modeled using 1-out-of-K topics, shared
across different sources. In many applications, where it
may not be easy to separate out data into K mutually ex-
clusive groups, an appropriate approach is factor analysis,
where each data point is modeled using P-out-of-K factors.
The benefits of joint modeling can still be retained by shar-
ing these factors across different sources.

Previous works on nonparametric factor analysis have used
beta processes. One of the earliest work develops the In-
dian buffet process (IBP) and uses it as a nonparametric

prior over infinite binary matrices [6]. Similar works dif-
fering in inference methods are proposed in [15, 14, 5]. A
significant contribution by Thibaux and Jordan [19] uncov-
ers that the IBP is a predictive process for an underlying
beta process with concentration parameter equaling one. In
addition, they propose a hierarchical beta process (HBP)
model and demonstrate its use for document classification
in a single data source. The use of HBP can be extended to
modeling multiple data sources by utilizing it as a nonpara-
metric prior for factor models, in a similar way to HDP
being used as a nonparametric prior for mixture models.
However, when combining HBP with the factor model, in-
ference is often intractable. This is mainly due to the need
to integrate out the parameters when invoking new factors
according to the HBP prior. For efficient computation of
this integration, conjugacy is required between the param-
eter priors and the likelihood. However, the requirement of
the conjugacy restricts the applicability of this model. One
approach to deal with the non-conjugacy issues is through
explicit representation of all the samples drawn from beta
process. This requires representation of an infinite set of
atoms - a practically impossible task. To circumvent this
problem, one possible solution is to truncate the beta pro-
cess. However, a pre-specified truncation level is arbitrary.
To avoid this arbitrary truncation for a IBP based factor
model, Teh et al [17] use a slice sampling technique, which
turns the infinite representation problem into a finite rep-
resentation problem. A similar approach for Dirichlet pro-
cesses was taken by Walker [20]. However, a slice sampler
for HBP based factor model is yet to be developed.

An attempt on nonparametric, hierarchical factor analysis
using HBP was made in [8]. However, inference for this
model has many approximation steps (refer section 3.1.2 in
[8]), which risk sampling from incorrect posterior distribu-
tions. Thus more accurate inference methods need to be
developed.

In this paper, we take the HBP prior and replace the up-
per beta process layer by an IBP prior, i.e. the concen-
tration parameter of the underlying beta process is fixed
to one. We refer to this modified hierarchical prior as the
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Restricted Hierarchical Beta Process (R-HBP). This mod-
ification allows us to use the stick breaking construction
of IBP [17] and explicitly represent the samples of the un-
derlying beta process. To handle the resultant infinite rep-
resentation problem, we present a novel slice sampler for
the proposed R-HBP, deriving an infinite limit, necessary
for tractable posterior over stick-weights of IBP. At the
data source level, we still retain beta processes with arbi-
trary concentration parameters, allowing arbitrary sharing
between data sources.

For the hierarchical factor analysis (i.e. factor analysis us-
ing R-HBP prior), we propose two different data models
– a linear Gaussian data model for real-valued data and
a Poisson-gamma model for count data. For the linear
Poisson-gamma model, we present novel inference using
auxiliary variables. Through synthetic experiments, we il-
lustrate the behavior of our model, demonstrating that it
correctly discovers all parameters including the dimension-
alities of the factor subspaces. We further demonstrate the
proposed models for two real world tasks – text model-
ing and content based image retrieval. For text modeling,
which is demonstrated on NIPS 0-12 dataset (constructed
from 12 years of NIPS proceedings), we successfully show
the benefits of transfer learning. In addition, we show
that linear Poisson-gamma model achieves much better per-
plexity than other models such as linear Gaussian model or
HDP mixture model. For content based image retrieval,
using NUS-WIDE animal dataset, we demonstrate that our
method outperforms recent state-of-the-art methods.

Our main contributions are:

• A slice sampler for the proposed R-HBP model –
we derive an infinite limit, which is necessary for
tractable posterior over stick-weights of IBP.

• A novel, auxiliary variable, Gibbs sampler for the lin-
ear Poisson-gamma model.

• Demonstration of the proposed models for text mod-
eling and content based image retrieval.

The rest of this paper is organized as follows: Section 2
presents brief background on the related nonparametric pri-
ors. Section 3 describes the modeling distributions for non-
parametric hierarchical factor analysis. Section 4 presents
the inference covering the novel slice sampling along with
Gibbs sampling. Section 5 demonstrates the experiments
using synthetic and real-world text and image data. Sec-
tion 6 concludes this paper.

2 Preliminaries

2.1 Hierarchical Modeling using Beta Process

Let Ω be the set of all outcomes and F be its sigma algebra.
We denote a beta process [10] as B ∼ BP(γ0,B0) where

γ0 is a positive concentration parameter and B0 is a base
measure on Ω. The beta process is a completely random
measure [13], implying that if C1, . . . ,Cn are the disjoint
sets in Ω, the measures B(C1) , . . . ,B(Cn) are independent
random variables and the draws from a beta process are
discrete with probability one. Using this property, a draw
B from the beta process BP(γ0,B0) can be written as B =

∑k βkδφk where φk ∈ Ω is an atom drawn from B0 and βk is
a random weight assigned to φk according to the following

βk ∼ beta(γ0B0 (φk) ,γ0 (1−B0 (φk))) , k = 1,2, . . . (1)

If B0 = ∑k ξkδφk (i.e. discrete), B0 (φk) = ξk. For a contin-
uous B0, {(φk,βk)} are i.i.d. draws from a Poisson process
on the product space Ω× [0,1] with a Lévy measure [12].

Building a hierarchy over beta processes, Thibaux and Jor-
dan [19] introduced a hierarchical beta process (HBP) prior
that allows the sharing of the atoms (drawn from a beta pro-
cess) across multiple data sources. A hierarchical beta pro-
cess is constructed in the following way : B ∼ BP(γ0,B0)
is a draw from a beta process with base measure B0 and
there emanate J child beta processes using B as their base
measure (drawn as A j ∼ BP(α j,B), j = 1, . . . ,J). Finally,
each A j is used to parametrize a Bernoulli process denoted
as Zi,:

j | A j ∼ BeP(A j) where Zi,:
j denotes i-th row of a bi-

nary matrix Z j. The support of random measure B is the
same as that of base measure B0 and is passed on to each
A j (for each j) allowing sharing of atoms across J-sources.

2.2 Indian Buffet Process and Stick-Breaking
Construction

Indian buffet process (IBP) [6] is a nonparametric predic-
tive prior developed as a generative model for infinite bi-
nary matrices. A key property of IBP is that it is exchange-
able, i.e. if Z = [z1, . . . ,zN ] (where zi is a binary-valued infi-
nite vector) then p(z1, . . . ,zN) = p

(
zσ(1), . . . ,zσ(N)

)
where

σ is a permutation over {1, · · · ,N}. Given this exchange-
ability property, it is interesting to find out the underlying
de Finetti stochastic process [4]. Investigating this ques-
tion, Thibaux and Jordan [19] discovered that this underly-
ing stochastic process is a beta process with concentration
parameter equal to one, (i.e. γ0 = 1 in Eq (1)). In most
of the models, to construct the binary matrix Z from IBP,
a sequential process [6] can be followed. However, this
keeps the underlying beta process hidden. There are many
applications where it is required to represent the underly-
ing beta process explicitly. In such applications, one needs
to know how to sample from the beta process underlying
IBP. A solution to this problem was proposed by Teh et al
[17] who derived stick-breaking construction for IBP and
related this scheme to a similar stick breaking construction
for Dirichlet processes.

Let us denote the beta process underlying IBP by B ∼
BP(1,B0) and assume that τ0 = B0 (Ω). Using an infi-
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Figure 1: Directed graphical representation for the proposed
nonparametric hierarchical factor model. The hyperparameters
over W j, φk and E j are denoted by ηw j ,ηφ and ηEj respectively.

nite set of atoms, we can write B = ∑l βlδφl . Now let{
β(1),β(2), . . . ,β(K)

}
be the decreasing ordered representa-

tion of {β1,β2, . . . ,βK}, where βl ∼ beta
( τ0

K ,1
)
. Teh et al

[17] showed that in the limit K → ∞, the β(k) variables can
be obtained from the following procedure

ν(t) ∼ beta(τ0,1) , β(k) = ν(k)β(k−1) = Πk
t=1ν(t) (2)

We shall denote the stick-breaking construction of Eq (2)
as β(k) ∼ StickIBP(τ0). A key property of this construc-
tion is that there exists a Markov relation [17] among{

β(1),β(2), . . . ,β(K)

}
, i.e. β(k) is conditionally independent

of β(1:k−2) given β(k−1). Formally,

p
(
β(k) | β(1:k−1)

)
= τ0β−τ0

(k−1)
β τ0−1

(k) 1
(
0 ≤ β(k) ≤ β(k−1)

)

(3)
where 1(Q) equals to one if Q is true and zero otherwise.
Given top k variables

{
β(1),β(2), . . . ,β(k)

}
, the other vari-

ables βl have the following density function [17]

p
(
βl | β(1:k)

)
=

τ0

K
β

−( τ0
K )

(k) β ( τ0
K )−1

l 1
(
0 ≤ βl ≤ β(k)

)
(4)

2.3 Restricted Hierarchical Beta Process

Restricted hierarchical beta process (R-HBP) is defined as a
hierarchical beta process where the parent beta process has
a concentration parameter equal to one. In other words, the
parent beta process in a R-HBP is a beta process for which
the predictive process is an Indian buffet process. Formally,

B ∼ BP(1,B0) , A j ∼ BP(α j,B) , Zi,:
j | A j ∼ BeP(A j)

Alternatively, using Eqs (1-2), we can write the above as

β(k) ∼ StickIBP(τ0) (5)

π jk ∼ beta
(
α jβ(k),α j

(
1−β(k)

))
,Zi,:

j ∼ BeP(π j) (6)

3 Hierarchical Factor Analysis using
R-HBP

We now consider joint factor analysis [7, 8] and use the R-
HBP prior to infer the dimensionalities of factor subspaces.
Our goal is to model multiple data matrices X1, ...,XJ
jointly using a factor matrix Φ = [φ1, ...,φK ] where φk ∈ RM

denotes the k-th factor. Some of the factors in Φ may
be shared amongst the various data sources whereas oth-
ers factors are specific to individual sources. For each
j = 1, . . . ,J, X j ∈ RM×Nj has a representation H j ∈ RNj×K

in the subspace spanned by Φ along with the factorization
error E j. Formally,

Π :

⎧
⎪⎨
⎪⎩

X1 = ΦHT
1 +E1

· · · · · ·
XJ = ΦHT

J +EJ

(7)

We allow the number of factors (K) to grow infinitely when
more data is observed. To infer the value of K, we repre-
sent the matrix H j as an element-wise multiplication of two
matrices Z j and W j, i.e. H j = Z j � W j, where Zik

j = 1

implies the presence of factor φk for i-th data point X:,i
j

from source j and Wik
j represents the corresponding coeffi-

cient or weight of the factor φk. The collection of matrices
Z1, . . . ,ZJ are now modeled using R-HBP prior. In particu-
lar, we model i-th row of Z j as a draw from a Bernoulli pro-
cess parametrized by a beta process A j, i.e. Zi,:

j ∼ BeP(π j)

where π j �
[
π j1, . . . ,π jK

]
and π jk is defined in Eq (6). We

note that sampling π jk according to Eq (6) allows sharing
of the factors φk’s across data sources. This is because β(k)
(the stick-breaking weights of B, i.e. β(k) ∼ StickIBP(τ0))
are used for all data sources. For the factor analysis pa-
rameters, we propose two different models : a Gaussian-
Gaussian model (GGM) for real-valued data and a Poisson-
gamma model (PGM) for count data. The whole model can
be summarized as

PGM :

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φik ∼ gamma
(
aφ ,bφ

)

Wi,:
j ∼ ΠK

k=1gamma
(
aw j ,bw j

)

X:,i
j | Φ,Zi,:

j ,Wi,:
j

∼ Poisson
(

Φ
(

Zi,:
j �Wi,:

j

)T
+λ j

) (8)

GGM :

⎧
⎪⎨
⎪⎩

Φik ∼ N
(

0,σ2
φ

)
,Wi,:

j ∼ N
(

0,σ2
w j

I
)

X:,i
j | Φ,Zi,:

j ,Wi,:
j ∼ N

(
Φ
(

Zi,:
j �Wi,:

j

)T
,σ2

n j
I
)

(9)

For reference purposes, we call the above model as Non-
parametric Hierarchical Factor Analysis (NHFA) and the
two variants as NHFA-PGM and NHFA-GGM.

4 Model Inference
For inference, we use a combination of slice sampling and
collapsed Gibbs sampling. The main variables of interest
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for NHFA model are Z, W, Φ, π , β and α j (see Figure
1). In addition, we introduce an auxiliary variable ρ . The
purpose of this auxiliary variable is to turn the infinite rep-
resentation of beta process into a finite representation. We
integrate out π and sample Z, W, Φ and β . Notation-wise,
we use β = {βk : k = 1, . . . ,K}, π =

{
π j : j = 1, . . . ,J

}
and

a superscript attached to a variable followed by a ‘−’ sign
(e.g. m− jk , Zi,−k

j etc) means a set excluding the variable
indexed by the superscript. In the following, we describe
the inference steps. Further details on some of the deriva-
tions are provided in the supplementary material [9].

The joint distribution of β and Z can be written as

p(β ,Z,ρ) = p(β ) p(ρ | Z,β )

ˆ

π
p(Z | π) p(π | β )dπ

(10)
Let us assume that the auxiliary variable ρ is uniformly
distributed as

p(ρ | Z,β ) =
1

β ∗ 1(0 ≤ ρ ≤ β ∗) (11)

where β ∗ (a function of β(1:∞) and Z) is equal to the stick
weight of the smallest active factor, i.e.

β ∗ = min
k|∃i, Zik

j =1
β(k) (12)

Using Eq (11), the conditional of Z given ρ and β can be
written as

p(Z | ρ,β ) ∝
1

β ∗ 1(0 ≤ ρ ≤ β ∗)
ˆ

π
p(Z | π) p(π | β )dπ

(13)
We note that given ρ , ∀i, Zik

j = 0 if β(k) < ρ and therefore,
we only need to update Zik

j for those values of k such that
β(k) ≥ ρ [17]. We now proceed to derive the full condi-
tional distributions required for Gibbs sampling.

4.1 Sampling ρ

Let K† denote the index such that all active features have
index k < K†. The index K† is also represented although it
is an inactive feature. We sample ρ according to Eq (11).
If the new value of ρ is such that β(K†) ≥ ρ , then we ex-
tend the stick breaking representation until β(K†) < ρ . For
the extended representation, Φ and W can be sampled from
their prior distributions while β(k) are sampled from the fol-
lowing conditional distribution

p
(

β(k) | β(k−1),Z:,≥k = 0
)

∝ p
(
β(k) | β(k−1)

)
p
(

Z:,≥k = 0 | β(k)

)
(14)

where Z:,≥k �
{

Zik′
j | ∀ j, i and k′ ≥ k

}
. The likelihood

term in the above expression can be computed as

p
(

Z:,≥k = 0 | β(k)

)

= ΠJ
j=1 p

(
Z:,k

j = 0 | β(k)

)
p
(

Z:,>k
j = 0 | β(k)

)
(15)

In the above expression, the first term of the right hand side
(R.H.S.) requires marginalizing out π jk and is computed as

p
(

Z:,k
j = 0 | β(k)

)

=

ˆ 1

0
p
(

Z:,k
j = 0 | π jk

)
p
(
π jk | β(k)

)
dπ jk

=
Γ(α j)Γ

(
α jβ̄(k) +Nj

)

Γ
(
α jβ̄(k)

)
Γ(α j +Nj)

(16)

where β̄(k) � 1−β(k) . For each k ≥ 1, let us use lk to define
the mapping βlk = β(k)and let Lk = {1, . . . ,K}\{l1, . . . , lk},
then the second term in the right hand side (R.H.S.) of Eq
(15) can be computed as the following

p
(

Z:,>k
j = 0 | β(k)

)

= lim
K→∞

ˆ

p
(
βLk | β(k)

)
p
(

Z:,Lk
j = 0 | βLk

)
dβLk

= lim
K→∞

ˆ

Πl∈Lk p
(
βl | β(k)

)
p
(

Z:,l
j = 0 | βl

)
dβLk

= lim
K→∞

(
ˆ β(k)

0
p
(
βl | β(k)

)
p
(

Z:,l
j = 0 | βl

)
dβl

)K−k

(17)
In the above limmand, we first simplify the integral to the
following
ˆ β(k)

0
p
(
βl | β(k)

)
p
(

Z:,l
j = 0 | βl

)
dβl

=
Γ(α j)

Γ(α j +Nj)

Nj

∑
u jk=0

[
Nj

u jk

]
αu jk

j

× Πu jk
t”=1t”

Πu jk
t ′=1

( τ
K + t ′

)
[

1+
τ
K

u jk

∑
p=1

Πp−1
t=1

( τ
K + t

)

p!
β̄ p

(k)

]
(18)

where
[ n

m

]
denotes the unsigned Stirling numbers of the

first kind. In the above expression, we note that the term
Γ(α j)

Γ(α j+Nj)
∑

Nj
u jk=0

[
Nj
u jk

]
αu jk

j × (...) can be written as

Γ(α j)

Γ(α j +Nj)

Nj

∑
u jk=0

[
Nj

u jk

]
αu jk

j ×
(

term involving u jk
)

=
Nj

∑
u jk=0

[
Nj
u jk

]
αu jk

j

∑
Nj
u′

jk=0

[
Nj
u′

jk

]
α

u′
jk

j

×
(

term involving u jk
)

=
Nj

∑
u jk=0

ω̃u jk ×
(

term involving u jk
)

where ∑
Nj
u jk=0 ω̃u jk is equal to 1. Continuing from Eq (18)

and substituting it in Eq (17), we can write

p
(

Z:,>k
j = 0 | β(k)

)

= lim
K→∞

(
Nj

∑
u jk=0

ω̃u jk

Πu jk
t”=1t”

Πu jk
t ′=1

( τ
K + t ′

)
(

1+
τ
K

Ru jk

))K−k
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which simplifies to (see supplementary material [9])

p
(

Z:,>k
j = 0 | β(k)

)

= lim
K→∞

⎛
⎝1+

Nj

∑
u jk=0

ω̃u jk

τ
(

Tu jk −Hu jk

)

K + τHu jk

⎞
⎠

K−k

= exp

(
τ

Nj

∑
u jk=0

ω̃u jk

(
Tu jk −Hu jk

))
(19)

where we have defined Ru jk � ∑
u jk
p=1

Πp−1
t=1 ( τ

K +t)
p! β̄ p

(k), Tu jk �

∑
u jk
p=1

β̄ p
(k)
p and the harmonic number Hu jk = ∑

u jk
h=1

1
h . Plug-

ging the likelihood of (19) and (16) into Eq (15) and using
Eq (14), we obtain

p
(

β(k) | β(k−1),Z:,≥k = 0
)

∝ τβ−τ
(k−1)β

τ−1
(k) 1

(
0 ≤ β(k) ≤ β(k−1)

)
×

ΠJ
j=1

Γ
(
α jβ̄(k) +Nj

)

Γ
(
α jβ̄(k)

) exp

(
τ

Nj

∑
u jk=0

ω̃u jk

(
Tu jk −Hu jk

))

∝ β τ−1
(k) 1

(
0 ≤ β(k) ≤ β(k−1)

)
×

ΠJ
j=1

Nj

∑
v jk=0

[
Nj

v jk

](
α jβ̄(k)

)v jk exp

(
τ

Nj

∑
u jk=0

ω̃u jk

u jk

∑
p=1

β̄ p
(k)

p

)

Introducing the auxiliary variables v =
(
v jk : ∀ j,k

)
, we get

p
(

β(k) | β(k−1),Z:,≥k = 0,v
)

∝ β τ−1
(k)

(
β̄(k)
)∑ j v jk exp

(
τ

Nj

∑
u jk=0

ω̃u jk

u jk

∑
p=1

β̄ p
(k)

p

)

1
(
0 ≤ β(k) ≤ β(k−1)

)
(20)

The auxiliary variable v jk can be sampled as

p
(

v jk | v− jk
)

∝
[

Nj

v jk

](
α jβ̄(k)

)v jk (21)

Sampling from Eq (20) can be obtained using Adaptive
Rejection Sampling (ARS) procedure as the distribution is
log-concave in β(k). Sampling of auxiliary variable v jk is
straight-forward as it is sampling from a discrete distribu-
tion with finite support.

4.2 Sampling Z j

Given other variables, Zik
j (for k = 1, . . . ,K† − 1) can be

sampled from the following Gibbs conditional posterior
distribution

p
(

Zik
j = 1 | Zi,−k

j ,Z− ji,Wi
j,β ,Φ,Xi

j,ρ
)

∝ p
(

ρ | Zik
j = 1,Zi,−k

j ,Z− ji,β
)

× p
(

Zik
j = 1 | Z−i,k

j ,β(k)

)
p
(

Xi
j | Zik

j = 1,Zi,−k
j ,Wi

j,Φ
)

=
n−i,k

j +α jβ(k)

β ∗ p
(

Xi
j | Zik

j = 1,Zi,−k
j ,Wi

j,Φ
)

(22)

where n−i,k
j = ∑i′ �=i Zi′k

j . In the above posterior expression,
we note the dependency of β ∗ on the sample of Zik

j .

4.3 Sampling β(k)

To sample from the posterior of each β(k), we use
auxiliary variable sampling [3, 18]. We define m =(
m jk : ∀ j,k

)
, l =

(
l jk : ∀ j,k

)
and n jk = ∑i Zi,k

j where m jk ∈
{0,1, . . . ,n jk}, l jk ∈ {0,1, . . . ,Nj − n jk}, and sample β(k)

(for k = 1, . . . ,K†) and auxiliary variables m, l as below

p
(

β(k) | β−(k),m, l,Z,ρ
)

∝ β τ0

(K†)
β mk−1

(k)

(
1−β(k)

)lk 1
(
β(k+1) ≤ β(k) ≤ β(k−1)

)

(23)

p
(

m jk | m− jk, l,β ,Z,ρ
)

∝
[

n jk

m jk

]
(α jβk)

m jk (24)

p
(

l jk | l− jk,m,β ,Z,ρ
)

∝
[

n̄ jk

l jk

](
α jβ̄k

)l jk (25)

where mk �∑ j m jk, lk �∑ j l jk, n̄ jk = Nj −n jk. For detailed
derivation, see supplementary material [9].

4.4 Sampling Parameters Φ, W j and λ j for
NHFA-PGM model

Under the model described in Eq (8), Gibbs conditional
posterior of Φ can be written as

p
(
Φi,: | Z1:J ,W1:J ,X1:J ,λ1:J ,aφ ,bφ ,s

)

∝ ΠK†

k=1

(
Φik
)aφ +∑ j,l silk

j −1
exp

{
−
(

bφ +∑
j,l

Hlk
j

)
Φik

}

(26)

The auxiliary variables s =
{

silk
j , ∀ j, l

}K†+1

k=1
are drawn as

p
(

sil1
j , . . .silK†

j ,s
il(K†+1)
j | rest

)

∝
Xil

j !

sil1
j ! . . .silK

j !s
il(K†+1)
j !

s.t. ∑K†+1
p=1 sil p

j =1

ΠK†

k=1

(
ΦikHlk

j

)silk
j λ

s
il(K†+1)
j

j

(27)

Gibbs sampling update for W ji conditioned on the remain-
ing variables is given as

p
(

Wl,:
j | Z j,Φ,X j,λ j,aw j ,bw j , t

)

∝ ΠK†

k=1

(
Wlk

j

)aw j +∑i tilk
j −1

× exp

{
−
(

bw j +∑
i

(
ΦDZl,:

j

)ik
)

Wlk
j

}
(28)
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where DZl,:
j

denotes a diagonal matrix constructed from Zl,:
j

and the auxiliary variables t =
{

til p
j , for each i

}K†+1

p=1
are

sampled as below

p
(

til1
j , . . . tilK†

j , t
il(K†+1)
j | rest

)

∝
Xil

j !

til1
j ! . . . tilK†

j !t
il(K†+1)
j !

s.t. ∑K†+1
p=1 til p

j =1

ΠK†

k=1

(
ΦlkHlk

j

)tilk
j λ

t
il(K†+1)
j

j

(29)

Gibbs sampling of λ j remains similar to the variables Φ
and W j. The required posterior distributions are given as

p(λ j | Z1:J ,W1:J ,Φ,X1:J ,r)

∝ λ
aλ j

+∑M
i=1 ∑

Nj
l=1 ril

j −1

j exp
{
−
(

bλ j +MNj

)}
(30)

For each i, l, the auxiliary variables ril
j can be sampled as

ril
j | rest = Binomial

⎛
⎜⎝Xil

j ,
λ j

Φi,:
(

Hl,:
j

)T
+λ j

⎞
⎟⎠ (31)

4.5 Sampling Parameters Φ, W j, σw j and σn j for
NHFA-GGM model

Gibbs sampling updates for these parameters remains same
as the updates described in [8].

4.6 Sampling α j

Once again, Gibbs sampling updates for α j remains same
as the updates described in [8]. The hyperparameter α j
controls the variation of A j (source-specific beta process)
around B (parent beta process). As α j vary from a low to
high value, its concentration on the random distribution B
increases. Since the random distribution B is shared across
different data sources, this increases the probability of shar-
ing more and more factors.

4.7 Predictive Likelihood
Let us denote the test data from the j-th source by ma-
trix X̃ j and the corresponding matrix factorization as X̃ j =
Φ
(
Z̃ j �W̃ j

)
+ Ẽ j, then the Monte Carlo approximation of

predictive likelihood can be written as

p
(
X̃ j | X1:J

)
≈ 1

LR

R

∑
r=1

L

∑
l=1

p
(

X̃ j | Φ[l], Z̃[r]
j ,W̃[r]

j

)
(32)

where L is the number of training samples
{

Φ[l]
}

and R is

the number of test samples
{

Z̃[r]
j ,W̃[r]

j

}
.

5 Experiments

We carry out a variety of experiments to demonstrate the
effectiveness of the proposed NHFA model. To illus-
trate the behavior of our model, we first perform experi-
ments with a synthetic dataset, for which the true dimen-
sionality of subspaces and other parameters are known.

Through these experiments, we show the correct recov-
ery of these parameters. Next, we demonstrate the use-
fulness of our model for two real-world tasks – text mod-
eling and content based image retrieval. For both syn-
thetic and real-world tasks, the priors for hyperparameters
are chosen as the following : τ0 = 1, α j ∼ gamma(1,1).
For NHFA-GGM, both the shape and the scale parame-
ters of gamma priors for σφ , σn j and σw j were set to 1.
For NHFA-PGM, since we expect the results to be sparse
we set the shape parameters of hyperparameters as aφ = 1,
aw j = 1 whereas the scale parameters were sampled as :
bφ ∼ gamma

(
1,1/μφ

)
, bw j ∼ gamma

(
1,1/μw j

)
, where

μφ � 1
MK ∑i,k Φik and μw j � 1

NjK ∑l,k Wlk
j . Supplementary

material provides further details.

5.1 Experiments-I : Synthetic Data

We create a synthetic dataset similar to [8] so that we can
show the benefits of our model vis-à-vis the model con-
sidered in [8]. For this dataset, we create twelve 100-D bi-
nary factors and distribute them across the two data sources
termed as D1 and D2. The first four factors were used by
the data points from D1, the next four factors were used
by the data points from D2 while the last four factors were
shared by data points across both D1 and D2. We gener-
ated the mixing configuration matrices Z1 and Z2 randomly
with discrete support {0,1}. The weight/coefficient matri-
ces of the two sources, i.e. W1 and W2 were sampled from
gamma distribution with shape and scale parameters 1 and
2 respectively. The using these parameters along with noise
(with rate parameter 0.1 for both sources), the data for both
D1 and D2 were generated from Poisson distributions ac-
cording to the generative model described in section 3.

To verify the correctness of the inference, we run the slice
sampler along with Gibbs updates as detailed in section 4
starting with the value of K† as one. We observe that the
sampler converges to the true value of the number of factors
(i.e. K† = 12) in less than 100 iterations. However, we run
the sampler longer to verify that the mode of the posterior
over the number of factors remains at this true value. It can
be seen from Figure 2 that the model correctly learns all the
factors and their scores automatically.

To compare the computational efficiency of our slice sam-
pler with the approximate Gibbs sampler of [8], we see that
both methods need to sample {β ,Z,Φ,W}. Sampling Φ
and W remain identical in both cases. Only sampling of β
and Z differ. In case of the approximate Gibbs sampler, β
conditioned on {m, l,Z} is drawn from a beta distribution
whereas in the slice sampler, β conditioned on {ρ,m, l,Z}
uses adaptive rejection sampling (ARS) (see Eq (23)). Al-
though not as fast as sampling from a beta distribution,
ARS is quite efficient due to sampling in one dimensional
space. When comparing sampling of Z, the slice sampler
is more efficient than the approximate Gibbs sampler. The
main difference lies in sampling the number of new factors
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Figure 2: Synthetic data experiments (a) true factors (b) inferred factors (c) Number of active factors vs. Gibbs iterations (d) true factor
scores for source-1 (e) true factor scores for source-2 (f) inferred factor scores for source-1 (g) inferred factor scores for source-2; for
an easy comparison with (d) and (e), columns of (f) and (g) are permuted according to the mapping between (a) and (b).

for i-th data point from j-th source (say Fji). In slice sam-
pling, Fji grows gradually based on the slice variable and
requires sampling of Fji new βk variables using ARS. On
the other hand, the approximate Gibbs sampler, to sample
Fji, approximates an intractable integral (Eq (3.22) in [8])
using Monte Carlo samples. For the synthetic experiments
described above, slice sampler takes about 100 iterations
to converge and runs in 6.67 minutes. On the other hand,
the approximate Gibbs sampler [8] requires about 1000 it-
erations to converge to the true number of factors taking
totally 52.3 minutes. This timing analysis is performed us-
ing a Windows PC with Intel i7@3.4 GHz and 8 GB RAM.

5.2 Experiments-II : Real Data

5.2.1 Results using NIPS 0-12 Dataset
Our first real-world dataset is the NIPS 0-12 dataset, which
contains the articles from the proceedings of Neural Infor-
mation Processing Systems (NIPS) conference published
between 1988 and 1999. In this dataset1, text articles are di-
vided into nine different sections/tracks plus one miscella-
neous section/track. We work with nine sections which are
Cognitive Science (CS), Neuroscience (NS), Learning The-
ory (LT), Algorithms and Architecture (AA), Implemen-
tations (IM), Speech and Signal Processing (SSP), Visual
Processing (VP), Applications (AP) and Control, Naviga-
tion and Planning (CNP). We treat each section as one data
source and generate nine different term-document matrices.
In doing so, we ensure that these matrices use a common
dictionary for terms2.

1A processed version of this dataset is made available by Y. W.
Teh at http://www.gatsby.ucl.ac.uk/~ywteh/research/data.html.

2It is possible to make a common dictionary by merging the
terms from all the sections.

Through this dataset, we intend to show the strength of our
model for transfer learning. For this, we choose section VP
as target data source while other sections (one at a time)
as auxiliary data sources. We follow this scheme for two
reasons. First, we believe that although there may be un-
derlying sharing across different sections, each section has
its own focus and differs in distribution. NHFA exploits the
sharing across different sections while still retaining the fo-
cus of individual section by maintaining a hierarchy. Sec-
ond, this allows us to compare our results with two base-
lines (i.e. Gupta et al [8] and Teh et al [18]) as they use the
same dataset with similar settings.

Out of 1564 articles in total across nine sections, we ran-
domly select 80 articles from each section and use them for
training. Similar to [8, 18], the test set is chosen from VP
section (consisting of 44 articles) and kept fixed through-
out the experimentation with NIPS 0-12 dataset. On av-
erage, the number of words per article are approximately
1000. We compute the perplexity on the test set and re-
port the performance in terms of perplexity per document.
Given the training data X1:J and a test set X̃ j from j-th data
source, perplexity per document (PPD) is defined as

PPD
(
X̃ j
)

= exp
(

− 1
Ñ

log p
(
X̃ j | X1:J

))
(33)

where Ñ denotes the number of documents in the test set.

Baseline Methods To compare the proposed model with
other related works, we choose three baselines.

• Baseline-1a [“No auxiliary”]: This baseline is a linear
Poisson-gamma based factor analysis model which to-
tally relies on the target data and does not use any aux-
iliary data for training.

322



20 40 60 80

1100

1110

1120

1130

1140

1150

Number of VS training documents

A
v
e
r
a
g
e
 
P
e
r
p
l
e
x
i
t
y
 
(
p
e
r
 
d
o
c
) No Auxiliary

Auxiliary (without hierarchy)
Auxiliary (with hierarchy)

(a)

1090

1095

1100

1105

1110

1115

CN LT AA CS NS AP SP IMM
e
a
n
 
A
v
e
r
a
g
e
 
P
e
r
p
l
e
x
i
t
y
 
(
p
e
r
 
d
o
c
) Generalizations from other NIPS sections to VS

(b)

Figure 3: Perplexity results using NIPS 0-12 dataset (a) perplexity for the test data from VP section vs. number of VP training
documents (averaged over 10 runs); for Baseline-1a, Baseline-1b and the proposed NHFA-PGM (b) mean average perplexity for the test
data from VP section (averaged over 10 runs) versus different NIPS auxiliary sections (except VP) using the proposed NHFA-PGM.

• Baseline-1b [“Auxiliary - without hierarchy”]: This
baseline is a linear Poisson-gamma based factor anal-
ysis model similar to the first baseline but also uses
auxiliary data simply by augmenting them with the
target data and does not maintain any hierarchy.

• Baseline-2 [NHFA-GGM (approx.)]: This baseline is
the hierarchical model recently proposed in Gupta et
al [8]. This model attempts to learn both shared and
individual subspace using a hierarchical model. The
data distributions for this model are similar to the
NHFA-GGM model proposed in section 2, however
it uses a series of approximations for inference.

• Baseline-3 [HDP]: This baseline is the hierarchical
Dirichlet process proposed in [18]. This model uses
a hierarchy for sharing topics across different groups.

Experimental Results We run the proposed NHFA-
PGM and the baseline models and compute the perplexity
per doc (PPD) values over 10 independent runs. For each
run, we select VP section as the target source while other
sections as auxiliary (one at a time) and compute perplex-
ity values for increasing number of target training articles
varying from 10 to 80 at a step of 10. By doing this, our
intention is to see at what point, the auxiliary data ceases to
improve the generalization performance.

Figure 3 depicts the perplexity results for the proposed
model and compares with baseline-1a and baseline-1b. It
can be seen from Figure 3a that the proposed NHFA-PGM
model achieves significantly lower perplexity compared to
the two baselines irrespective of the number of training ar-
ticles from VP section. When comparing the results be-
tween the baseline-1a and the baseline 1b, one can see that
as long as the number of training documents from VP sec-
tion are less than 50, the performance of baseline-1b is bet-
ter than that of baseline 1a. This goes according to our in-
tuition as the auxiliary source help learning some patterns.

But, as soon as there are enough training articles from the
VP section, simply combining auxiliary data does not help
and the performance of baseline-1b goes lower than that
of baseline-1a. This clearly shows that the baseline-1b is
prone to negative transfer learning whereas the same is not
true for the proposed NHFA-PGM model which retains low
perplexity values compared to baseline-1a. Figure 3b fo-
cuses on the results of NHFA-PGM model and provides
the mean average perplexity for each auxiliary section (a
single figure measure computed by averaging the perplex-
ity values along increasing number of training documents).
It can be seen from the figure that the top three auxiliary
sections that help maximum generalization are IM, SP and
AP in decreasing order of performance.

Table 1 lists a comparison of the proposed NHFA-PGM and
NHFA-GGM models with baseline-2 and baseline-3. One
can clearly see that since the NIPS 0-12 data matrices are
count data, both NHFA-PGM and the baseline-3 achieve
significantly lower perplexity compared to NHFA-GGM
and baseline-2. The proposed NHFA-PGM clearly out-
performs the baseline-3, suggesting that Poisson-gamma
model may be a better fit to the count data than topic mod-
els. When comparing the perplexity values of baseline-
2 and NHFA-GGM, NHFA-GGM achieves better perfor-
mance. This gain in performance is attributed to the exact
inference made possible by slice sampling.

Method Average Log
Perplexity (per doc)

NHFA-GGM (approx.) [8] 6232.5±164.0
Proposed NHFA-GGM 5945.3±16.8

HDP [18] 2862.5±268.3
Proposed NHFA-PGM 1102.9±6.5

Table 1: Comparison of various hierarchical models in terms of
average log perplexity per doc (PPD) using NIPS 0-12 dataset.
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5.2.2 Results using NUS-WIDE Animal Dataset

Our second dataset is a subset of the NUS-WIDE [2]
dataset. This subset comprises of 3411 images involving 13
animals. We use six different low-level features [2] namely
64-D color histogram, 144-D color correlogram, 73-D edge
direction histogram, 128-D wavelet texture, 225-D block-
wise color moments. We construct a real-valued feature
matrix for each animal category and treat it as a sepa-
rate data source under our hierarchical framework. This
is done with a belief that features of different animal cat-
egories vary in their distributions. Out of 3411 images,
2054 images are used for training while the remaining im-
ages are held for testing. This is done for comparing with
[21, 22, 1, 8] where an identical training and test settings
were used.

Unlike NIPS 0-12 data, the feature matrices for NUS-
WIDE images are real valued. Therefore, we use NHFA-
GGM model (instead of NHFA-PGM model) to learn the
factor matrix Φ and H j (for j = 1, . . . ,13). Having learnt
the matrix Φ, we construct the test matrix X̃ from the
test data and compute its subspace coefficient matrix H̃ =[
h̃1, . . . , h̃Ñ

]
such that X̃ ≈ ΦH̃. To retrieve the similar im-

ages for the r-th test image, cosine similarity between its
subspace coefficient vector h̃r and the subspace coefficient
matrices of the training data (i.e. H j for each j = 1, . . . ,13)
is computed. The retrieved images are ranked in decreasing
order of their similarity values.

Evaluation Measures and Baselines To evaluate the
performance of the proposed method, we use standard
precision-scope curve3 and mean average precision (MAP).
We compare the result of the proposed NHFA-GGM with
the recent state-of-the-art multi-view learning techniques
[1, 21, 22] and “NHFA-GGM (approx.)” model [8] (the
model used as baseline-2 for NIPS 0-12 experiments).

Experimental Results Table 2 compares the proposed
NHFA-GGM with the recent works [1, 21, 22, 8] on im-
age retrieval using NUS-WIDE animal dataset. This com-
parison is based on the mean average precision (MAP) val-
ues presented in [1, 8]. We note that the dataset used for
generating these results (including the test set) is identi-
cal. For the works in [1, 21, 22], the MAP values are re-
ported using 60 topics. The NHFA-GGM (approx.) model
of [8] is a nonparametric model and reports the total num-
ber of shared and individual factors varying between 5 to
8. On the contrary, our proposed NHFA-GGM, which is
exact version of NHFA-GGM (approx.), uses 30 to 40 fac-
tors typically. It can be clearly seen from the Table 2, that
NHFA-GGM outperforms all the baselines. Focusing on
the exact and approximate models, we report the precision
scope curve which shows that NHFA-GGM model achieves
clearly higher precision at initial scope levels which is often

3Precision scope (P@N) curve reports precision values for top
N retrieved items.

quite important in search applications as users are typically
more interested in top few search results.

Method Mean Average
Precision (MAP)

DWH [21] 0.153

TWH [22] 0.158

MMH [1] 0.163

NHFA-GGM (approx.) [8] 0.1789±0.0128

Proposed NHFA-GGM 0.1945±0.0115

Table 2: Comparison of image retrieval results with recent state-
of-the art multi-view learning and hierarchical modeling tech-
niques using NUS-WIDE animal dataset.
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Figure 4: Comparison of the retrieval performances in terms of
precision-scope (P@N) curve for NHFA-GGM and NHFA-GGM
(approx.)[8].

6 Conclusion

We have presented a novel slice sampler for restricted
hierarchical beta process (R-HBP). A key feature of the
proposed sampler is that it keeps the inference tractable,
even when the prior and the likelihood are non-conjugate –
therefore, it can be applied for joint modeling of multiple
data sources in more elaborate settings. Another key fea-
ture of this sampler is that it offers an exact inference and
does not need a series of approximations used by standard
Gibbs samplers [11, 16, 8]. We have combined this sam-
pler with two hierarchical factor analysis data models – lin-
ear Poisson-gamma model and linear Gaussian-Gaussian
model for modeling count data and real-valued data re-
spectively. To show the utility of the proposed models,
we applied them for learning shared and individual sub-
spaces across multiple data sources where unlike paramet-
ric models, the subspace dimensionalities were learned au-
tomatically. Using two real world datasets (NIPS 0-12 and
NUS-WIDE animal datasets), we have demonstrated that
our method outperforms recent state-of-the-art methods for
text modeling and content based image retrieval. Further,
the slice sampling derived in this paper is general and can
be utilized for other matrix factorizations.
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Abstract

This paper presents a novel approach to the prob-
lem of semantic parsing via learning the corre-
spondences between complex sentences and rich
sets of events. Our main intuition is that cor-
rect correspondences tend to occur more fre-
quently. Our model benefits from a discrim-
inative notion of similarity to learn the corre-
spondence between sentence and an event and a
ranking machinery that scores the popularity of
each correspondence. Our method can discover
a group of events (called macro-events) that best
describes a sentence. We evaluate our method
on our novel dataset of professional soccer com-
mentaries. The empirical results show that our
method significantly outperforms the state-of-
the-art.

1 Introduction

This paper addresses the problem of understanding profes-
sional commentaries of soccer games. Computational un-
derstanding of such domains has crucial impact in auto-
matic generation of commentaries and also in game analy-
sis and strategic planning. To this end, one needs to infer
the semantics of natural language text; this is an extremely
challenging problem. Understanding professional soccer
commentaries further introduces interesting and challeng-
ing issues. For example, commentators do not typically
talk about all the events of the game, selecting what is im-
portant. Also, they use a variety of phrases to report similar
events. For example, a simple event of “A passes to B” can
be commentated in several different ways: “A feeds B”, “A
and B in a nice combination”, “A, what a beautiful way to
B”. Further, in some cases, commentators create a group
of events and only mention a macro-event. For example,
instead of saying “A passes to B, B passes to C, and C
passes to D”, the commentators report this whole sequence
of events as “Team X is coming forward” or “nice attack by

X”. Also, professional commentators report several statis-
tics and related information about the league, players, sta-
dium, and weather during less interesting segments of a
play.

A general solution to understanding such a complex phe-
nomenon requires infering about game-related events, rea-
soning in terms of very complex paraphrases, and also
forming high-level understandings of game events. Most
recent work in semantic parsing of natural language trans-
lates individual sentences into the underlying meaning rep-
resentations. Meaning representations are usually logi-
cal forms represented with events or relations among en-
tities. The problem of semantic parsing can be formulated
as learning to map between sentences and meaning repre-
sentation in a supervised fashion [Zettlemoyer and Collins,
2005]. One can decrease the amount of supervision in spe-
cific controlled domains, such as RoboCup soccer [Chen
et al., 2010; Hajishirzi et al., 2011] and Windows help
instructions [Branavan et al., 2009]. Recently, [Liang et
al., 2009] introduce a general semantic parsing technique
that is not restricted to a specific domain, but is not scal-
able to large datasets due to the complexity of the model.
In this paper, we introduce an algorithm that does not re-
quire domain-specific knowledge and is scalable to larger
datasets.

We formulate the problem of understanding soccer com-
mentaries as learning to align sentences in commentaries
to a list of events in the corresponding soccer game. Our
approach does not need expensive supervision in terms of
correspondences between sentences and events. Similar to
previous work [Liang et al., 2009; Chen et al., 2010], we
use loose temporal alignments between sentences in com-
mentaries and events of games. We pair sentences with
several events that occur in the rough temporal vicinities
of the sentences. Each pair consists of a sentence and a
corresponding event. We then try to distinguish between
correct and incorrect pairs. We rank pairs based on how
consistently they appear in other places. We use a discrim-
inative notion of similarity to reason about repetitions of
pairs of sentences and events. The core intuition is that,
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Commentaries	  

	  
1’:	  Straight	  from	  kick	  off	  Chamakh	  diving	  
header	  from	  Sagna's	  cross	  is	  deflected	  for	  an	  
Arsenal	  corner!	  
	  
1'	  :	  What	  a	  chance	  early	  on!	  Koscielny	  has	  a	  
free	  header	  two	  yards	  out	  and	  diverts	  it	  over	  
the	  bar!	  What	  a	  start	  for	  Arsenal.	  
	  
…	  
	  
2'	  :	  First	  aGack	  for	  Drogba,	  outmuscling	  Sagna	  
and	  sending	  an	  effort	  in	  from	  the	  edge	  of	  the	  
box	  which	  is	  blocked.	  Song	  then	  brings	  down	  
Drogba	  for	  a	  free	  kick.	  

Sec	   Event	   Qualifier	   Team	   Player	  

21’’	   Pass	   Cross	   Arsenal	   Sagna	  

23’’	   Save	   Through	  Ball	   Chelsea	   Alex	  

23’’	   AGempt	  Saved	   Assisted	   Arsenal	   Chamakh	  

28’’	   Corner	   Through	  Ball	   Chelsea	   Alex	  

28’’	   Corner	   Head	  Pass	   Arsenal	   Chamakh	  

48’’	   Pass	   Chipped	   Arsenal	   	  Nasri	  

50’’	   Ball	  Touch	   Through	  Ball	   Chelsea	   Malouda	  

51’’	   Miss	   Head	  Pass	   Arsenal	   Kosciently	  

…	  

119’’	   Take	  on	   Head	  Pass	   Chelsea	   Drogba	  

119’’	   Challenge	   Through	  Ball	   Arsenal	   Sagna	  

124’’	   Saved	   Head	   Arsenal	   Drogba	  

124’’	   Save	   Through	  Ball	   Arsenal	   Song	  

126’’	   Recovery	   N/A	   Arsenal	   Wilshere	  

Figure 1: Examples of sentences in the commentaries with corresponding buckets of events. The correct correspondences
in each bucket are marked with arrows.

under appropriate similarity metrics, correct pairs of sen-
tences and events appear more often across several games.
Our model is capable of forming macro-events and match-
ing a group of events to a sentence. Experimental evalu-
ations show that our method significantly outperforms the
state of the art in our dataset and a benchmark of RoboCup
soccer dataset. Our qualitative results demonstrate how our
method can form macro-events and reason about complex
paraphrases. We also introduce a dataset of eight English
Primier League games with their commentaries and the ac-
curate log of the game events. For evaluation purposes,
we manually aligned sentences with events. Our dataset is
publicly available.

1.1 Related Works

There are several approaches that learn to map natural lan-
guage texts to meaning representations. Some researchers
use full supervision in general and controlled domains
[Zettlemoyer and Collins, 2005; Ge and Mooney, 2006;
Snyder and Barzilay, 2007] . More recent work reduces
the amount of required supervision in mapping sentences to
meaning representations in controlled domains. [Kate and
Mooney, 2007] introduce an Expectation Maximization
(EM) approach with weak supervision in the GeoQuery and
Child corpora. [Branavan et al., 2009; Vogel and Jurafsky,
2010] use a reinforcement learning approach to map Win-
dows help or navigational instructions to real events in the
world. The supervision is weakly provided through inter-
actions with a physical environment. [Chen et al., 2010;
Hajishirzi et al., 2011] introduce EM-like approaches to
map RoboCup soccer commentaries to real events of the
game. They use weak supervision through the tempo-
ral alignments between sentences and events or the do-
main knowledge about soccer events. [Poon and Domin-
gos, 2009] introduce an unsupervised method that finds is-

a relationships among the entities in the domain by taking
advantage of clustering structures of sentences and argu-
ments. Most previous work take advantage of the special
properties of the underlying domains and cannot be applied
to the commentaries of real soccer games due to the com-
plexity of the domain.

The closest work to ours are [Liang et al., 2009; Bordes et
al., 2010] that introduce an interesting generative approach
and a ranking system to map texts to meaning represen-
tations, respectively. The generative approach of [Liang et
al., 2009] is general, but it is not scalable as we demonstrate
in our experiments. The system of [Bordes et al., 2010]
uses different models and objectives for ranking functions.
Also, these two methods, as well as most previous work,
has a one-to-one restriction in mapping between segments
and events. This is not a well-suited assumption for real-
world domains like professional soccer commentaries. One
exception is the work of [Branavan et al., 2010] that finds
high-level comments which is specific to Windows instruc-
tions.

2 Problem Definition

The input to our problem is a representation of temporal
evolution of the world state (sequence of events) and a nat-
ural language text (sequence of sentences). We use a rough
alignment between every sentence Si and a list of events
B(Si); we call this list of events a bucket associated with
the sentence Si. We form a pair by combining a sentence
Si with an event in the corresponding bucket B(Si). The
sentence Si may describe zero, one, or more events in the
bucket B(Si). Our objective is to find events in B(Si) that
correspond to the sentence Si. Figure 1 shows three exam-
ple sentences and a portion of corresponding buckets in the
dataset. Due to very loose alignments between sentences
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and events one has to consider a rather big bucket size.

Every event e(~x) is represented by an event type e and
a list of arguments ~x. The arguments of an event can
take two different types: string and categorical. String ar-
guments correspond to lexical properties, such as player
names, that can be easily found through a lexical analy-
sis. Often only a part of the argument appears in the text.
For instance, “Steven Gerrard” might be referred as “Ger-
ard” or “Steven”. Categorical arguments correspond to dis-
crete values in the domain such as zone (back, left,
front, right). These arguments might be addressed
in many different ways and cannot be identified with lexi-
cal search. In fact, identical words to the categorical values
do not convey any information. For ease of notations, we
call each event ej , discarding all the arguments.

Professional Soccer Commentaries Dataset (PSC) This
paper introduces a dataset of professional soccer commen-
taries aligned with real events that occur in each match. We
also provide ground-truth alignments between sentences in
the commentaries and events of the game for evaluation
purposes only. Our model does not use any domain specific
knowledge, but we focus on soccer domain in this paper.

Commentaries: Commentaries are English texts, gener-
ated by professional soccer commentators. We collect
the professionally generated commentaries for matches in
the 2010-2011 season of English Premier League from
Espn.net.

Soccer Events: The events are all actions that occur around
the ball and are labeled by human annotators. We use the
F24 soccer data feed collected for the EPL by Opta [Opta,
2012]. The F24 data is a time-coded feed that lists all
events within the game with a player, team, event type,
minute, and second for each event. Each event has a type
together with a series of arguments describing it. The
data include different types of events, such as goals, shots,
passes (with start/end point), tackles, clearances, cards, free
kicks, corners, offsides, substitutions and stoppages. This
data is currently used for real-time online visualizations of
events, as well as post-analysis for prominent television
shows and newspaper articles.

Ground Truth Alignments: For evaluation purposes only,
we generate the ground truth labels which denote the cor-
rect mapping between sentences in the commentary and
events in the F24 Opta feed. Every sentence can be
matched with zero, one, or more events in the bucket.

The commentaries, list of events with their time stamp, and
the features are publicly available at: http://vision.
ri.cmu.edu/data-sets/psc/psc.html.

This domain is much more complex than the RoboCup soc-
cer, weather, or Windows instruction datasets used by pre-
vious work. The sentences are more complex. The com-
mentator uses different phrases to refer to an identical event

type. Most of the arguments in the events are categorical,
which cannot be aligned using lexical analysis. For some
buckets, there are no events that correspond to the sentence
because the sentence is either a general statement about the
game or is about game statistics, weather, etc. For many
buckets, multiple events correspond to the sentence. Figure
3 shows examples of sentences with 2, 3, or 4 correspond-
ing events that our approach finds correctly.

3 Approach

The problem of semantic understanding of commentaries
can be formulated as establishing alignments between a
sentence and a set of events. This, in fact, reduces to figur-
ing out which events in the bucket B(Si) correspond to the
sentence Si. Every sentence can be aligned with multiple
events in the corresponding bucket. Providing supervision
at the level of sentence-event alignments is tedious and ex-
pensive. Instead, we use the weak supervision in the rough
alignments between sentences and events.

To set up notations, assume that the input to our system
includes s sentences represented by Si, i ∈ {1 . . . s}, and
each sentence Si corresponds to a bucket of events B(Si).
Without loss of generality, we can assume that each bucket
has n events: B(Si) = {ei1, ei2, ..., ein}. Each sentence Si
can be aligned with a group of events, meaning that each
sentence Si can be matched to a member of the power set
of B(Si), called P(B(Si)). The cardinality of this set is
2|B(Si)|. The problem of finding a group of events that best
aligns to the sentence Si can be formalized as:

arg max
Ei∈P(B(Si))

ρ(Si, Ei)

| Ei |≤ k (1)

where ρ is a ranking function that scores pairs of sentences
and events based on the quality of the correspondence and
E is a group of events (called macro-event) of a cardinality
less than or equal to k. This is obviously a search in an
exponential space. Later, we show that Equation 1 is a form
of budgeted submodular maximizations. We also show how
we can search this space more efficiently.

Before going into the details of our search method, we need
to specify a ranking function, ρ. The main role of ρ is to
score the quality of each pair; each pair includes a sentence
and an event in the corresponding bucket. The core idea is
that under an “appropriate” notion of similarity, a good pair
tends to appear more consistently across the data. For that,
one needs to somehow count the number of appearances of
a pair. Simple counting does not work because exact sen-
tences and events may not appear more than once. How-
ever, the underlying pattern of correspondence between a
sentence and an event may appear rather frequently. There-
fore, we need a way of capturing the patterns of correspon-
dences for pairs and then score them based on the popular-
ity of the patterns in the dataset.
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3.1 Learning Pair Models

We adopt a discriminative approach that learns the char-
acteristic correspondence patterns that distinguishes a pair
from all other pairs. Recently in computer vision, Exem-
plar Support Vector Machines (ESVM) has shown great
success in learning what is unique about an image that
can distinguish it from all other images [Malisiewicz et
al., 2011; Shrivastava et al., 2011]. The main idea is very
simple, yet surprisingly effective. To learn what is unique
about each example, one can fit an SVM with only one pos-
itive instance and large number of negative instances. The
main intuition is that an example can be defined as what it
is not, rather than what it is like. Despite being susceptible
to overfitting, the proposed hard negative mining method
gets away from this issue.

This framework suits our problem setting very well because
we learn for all pairs of sentences and events in each bucket
and do not need training labels for which pairs are correct.
We extend this approach to learn models of pairs (called
PairModel). A PairModel demonstrates how to weigh fea-
tures of a pair against each other in a discriminative man-
ner. If a learned model for a pair produces a positive score
when applied to another pair, then two pairs share analo-
gous patterns of correspondences.

Feature Vector: The features for each pair pij = (Si, e
i
j)

of a sentence Si and event eij are ~Φij = (~ΦSi ,
~Φeij ,

~Φsti).
~ΦSi is a binary vector representing the sentence Si, where
each element in the vector shows the presence of a word in
the vocabulary. The vocabulary consists of frequent words
in the domain except the words that can occur in the string
arguments. For instance, the vocabulary does not include
the player names. ~Φeij is a binary vector representation
of the event eij that includes the event type together with its
arguments. Each element in the vector represents the pres-
ence of the corresponding event type or the argument value
in eij . ~Φsti is a binary vector with one element for every
string type in the event arguments. Every element in the
vector sti denotes if the string argument is matched with a
word in the sentence. For instance, the feature vector has
an argument to demonstrate whether or not the player
name (argument of the event eij) has occurred in the sen-
tence Si.

Pair Model: For each pair pij = (Si, e
i
j), we fit a lin-

ear SVM to a set of pairs with pij = (Si, e
i
j) as a posi-

tive training example and a large number of pairs as neg-
ative examples. The negative examples are selected in a
way that encourages weak similarities between patterns of
correspondences compared to the positive example. To do
that, we try to make sure that none of the examples in the
negative set contains the identical sentence or event to the
positive example. If the events (resp. sentences) are simi-
lar (in Euclidean distance) to the event (resp. sentence) of

the positive example, we make sure that sentences (resp.
events) are very different (more details in Algorithm 1 and
Section 4.1). We balance the examples by weighting them
accordingly. The algorithm is sketched in Algorithm 1.

The output of the PairModel Mij learned for the pair
pij = (Si, e

i
j) is a weight vector ~Θij . The confidence of ap-

plying Mij over a new pair pkl = (Sk, e
k
l ) is computed as

Conf(Mij , pkl) = ~Θij · ~Φkl. This confidence compares the
patterns of correspondence between Si and eij and patterns
of correspondence between Sk and ekl . The PairModel tries
to weight the features that are most important to discrimi-
nate the corresponding pair from the rest. High confidence
means that those important features are “on” in an exam-
ple; therefore, it is following the same pattern. Figure 2
demonstrates three PairModels, the top-weight words for
each pair, and the nearest sentence under the learned pat-
terns of correspondences. Non-discriminative measures of
similarity like Cosine or Euclidean are not desirable be-
cause they treats all the dimensions in the same way. For
comparisons and experimental evaluations please see Sec-
tion 4.

A PairModel Mij likes the pair pkl by Conf(Mij , pkl). We
score the similarity between two pairs by looking at their
mutual likeness meaning that they both share analogous
patterns of correspondence. We can now start reasoning
about the popularity of PairModels by aggregating all mu-
tual likeness scores. To propagate the mutual likeness in-
formation we adopt a strategy similar to Google PageRank.

3.2 Ranking Pairs

The input to this module are all of the pairs and their
learned models, and the output is the popularity scores of
the pairs relative to each other. A pair pij = (Si, e

i
j) is

likely to be a correct match if the pattern of correspondence
extracted by Mij occurs frequently relative to other pairs;
this means that pij is popular . A pair is frequent if many
popular pairs like that pair with high confidence. This re-
sembles similar problems in ranking Web pages.

We adopt an approach similar to the PageRank algorithm
[Brin and Page, 1998] utilized by Google to order the im-
portance of webpages. PageRank examines the graph of
webpages (called Webgraph) and assigns a high score to a
web page if many important pages link to the page.

Here, we are interested in computing relative scores of
the pairs. We build a graph of pairs by assigning a node
to each pair. Unlike the Webgraph, the edges are undi-
rected and weighted. We assign a weighted edge between
a pair pij and a pair pkl, if they mutually like each other
(i.e., Conf(Mij , pkl) > 0 and Conf(Mkl, pij) > 0). We
call this edge the popularity link. The graph also has
self loops; i.e., a node can also be connected to itself if
Conf(Mij , pij) > 0. This self loop encodes how com-
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petent each PairModel is. The weight of an edge be-
tween pairs denotes the degree of confidence that each
pair likes the other. Calibrating pairmodels against each
other is an issue. For that, we use the rank of each pair
among all the other pairs to model the degree of confi-
dence. More formally, the weight of the edge between
pij and pkl is 1/(rank(Mkl, pij).rank(Mij , pkl)) where
rank(Mkl, pij) shows the order of pij among all the pairs
p with Conf(Mij , p) > 0.

Our approach, PairRank (sketched in Algorithm 3), first
builds the adjacency matrix of the graph using the edges
and their weights. The ranking function ρ(pij) iteratively
computes the popularity score of a pair according to Equa-
tion 2. At every iteration, ρ(pij) is the expected sum (with
probability d) of the score of the adjacent pairs (computed
at the previous iteration) and the self confidence value:

ρ(pij) = (1−d)Conf(Mij , pij)+d
∑

pkl∈T (pij)

ρ(pkl)

edge(pij , pkl)

(2)
where edge(pij , pkl) = rank(Mij , pkl).rank(Mkl, pij),
T (pij) is the set of adjacent nodes to pij , d is a damping
factor, and ρ(pij) is initialized by random values.

At iteration 1, only popularity links with length 1 are con-
sidered; ρ(pij) only adds up the scores of the pairs that are
directly linked to pij . In next iterations, longer popularity
paths are considered; the effect of indirectly linked pairs
to pij is included in the scores of neighboring pairs. We
are not interested in adding the effect of pairs with high
distances from pij . We control the expected length of the
popularity paths with a damping factor d.

At the end of each iteration, we divide ρ(pij) by the fre-
quency of the type of the event eij to discount the biases
in the dataset. For instance, there are 8,597 events with
type pass in the dataset. However, only 451 (5.2%) of the
pass events occur in the ground-truth events. The last step
of each iteration is to normalize the scores of all the pairs.

3.3 Searching for Good Correspondences

Now that we learn PairModels and rank the pairs based on
their popularity, we return to our main goal of aligning sen-
tences with events. If we knew that each sentence only cor-
responds to one event we could report the arg max of the
outputs of the PairRank scores. However, most of the times
sentences correspond to groups of events merged together,
called macro-events.

Dealing with macro events requires learning PairModels
and performing the PairRank on pairs with macro-events.
To pair a sentence S with a macro-event E we need to de-
fine how to merge events to form macro-events. Assume
that we want to merge (S, e1) and (S, e2) to form the pair
(S, E). A PairModel for (S, E) should learn the correspon-
dences between the sentence S and all the events in E . To

learn the PairModel for (S, E), we use (S, e1) and (S, e2)
as positive examples and generate negative examples as be-
fore (Algorithm 1). This results in a PairModel M . The
confidence of the PairModel M over a pair Pk = (Sk, É)
is the maximum confidence of the M on pairs of the sen-
tence with every event in the macro event É (Algorithm 2).
Conf(M,Pk) = maxekj Conf(M,pkj = (sk, e

k
j )).

To score the popularity of every pair with macro-event, we
run the PairRank method by adding one node per each pair
with macro-event. The edge weights to the new node are
computed as the maximum score of all the events in the
macro-event (Algorithm 2).

As mentioned before, the search space for each sentence
is the exponential space of all possible ways of merg-
ing events in each bucket (Equation 1). However, the
good news is that our main objective function in Equa-
tion 1 is submodular. Because by definition, the ranking
function works as a maximization of a set function over
the examples that form the macro-event. This results in
ρ(Si, Ej)+ρ(Si, ek) ≥ ρ(Si, (Ej⊕ek))+ρ(Si, (Ej	ek)).
We denote the operation of merging two events by ⊕ and
the inverse operation by 	. These operators resemble the
union and intersections over sets. Now we can adopt a
greedy approximation of Equation 1 with reasonable er-
ror bounds [Goundan and Schulz, 2009; Dey et al., 2012;
Krause et al., 2008]. The core intuition is that instead of
searching the exponential space of all possible ways of
merging events, we start with the best scoring event and
merge events that maximizes the marginal benefits of merg-
ing them. We keep merging until we observe no benefit of
doing so. More formally, our recursive greedy solution is:

E l = E l−1 ⊕A∗
A∗ = arg max

A∈B(S)\D
ρ(S, E l ⊕A)− ρ(S, E l) (3)

where E0 = ∅, E l is the macro-event, of cardinality at most
l, that we want to grow using the merging procedure ⊕,
and D is the set of all elements in E l. We stop this pro-
cedure after k steps or when merging events does not help
(Algorithm 4).

To elaborate more, assume that for the sentence S we are
given the bucket of events B(S) = {e1, e2, e3}. We start
with the best scoring event in B(S), let’s say e1. We
then look for the event that maximizes the marginal ben-
efit (Equation 3), let’s say e2. We now check to see if there
is any gain in forming macro-events. If there is no gain we
stop and report e1 as the answer. Otherwise, we form the
macro-event e12 = e1 ⊕ e2 by merging the two events to-
gether, (E2 = e12). We now can go to the next layer and
search for the next event that maximizes the marginal ben-
efit, let’s say e3. If adding e3 helps, we form a new macro-
event, E3 = e123 = e12 ⊕ e3. This procedure may result in
aligning sentences with macro-events of cardinality up to
k. In our experiments we set the k = 4.
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Algorithm 1. PairModel(S, E)
• Input: pair (S, E)

1. ~Φ← feature vector for (S, ej) ∀ej in E
2. Pos← ∪j(S, ej) ∀ej in E
// Generate Negative Examples

3. ∀ pairs: sort De ← Dist(e, ek), sort DS ← Dist(S, Sk)
4. Neg1 ← (Sk, el) : Sk ∈ DS1:N , el ∈ Deend−N:end

5. Neg2 ← (Sk, el) : Sk ∈ DSend−N :end, el ∈ De1:N
6. Neg ← Neg1 ∪Neg2
7. return SVM(Pos,Neg) with the weight vector ~Θ

Algorithm 2. ComputeConf(pij , pkl)
• Input: pairs pij = (Si, Eij) and pkl = (Sk, Ekl ) with fea-

ture vector Φkl
1. Mij ← PairModel(pij) (Alg. 1)
2. ~Θij ← weight vector of Mij

3. Conf(Mij , pkl)← maxel∈Ekl
~Θij .~Φkl

Algorithm 3. PairRank(pairs)
• Output: ranks of all the pairs
//Build adjacency matrix
1. for pairs pij , pkl:

(a) ComputeConf(pij , pkl) (Alg. 2)
(b) ~Pi ← scores of applying Mij on all pairs
(c) ~Pk ← scores of applying Mkl on all pairs
(d) edge(pij , pkl) ← (rank(pkl) in ~Pi) and

(rank(pij) in ~Pk)
//Iteration t
2. while |~ρt − ~ρt−1| ≥ ε

(a) for every pair pij = (Si, e
i
j)

i. ρt(pij)← Equation 2
ii. ρt(pij)← ρt(pij)

frequency(eij .type)

iii. ρt(pij)← ρt(pij)

sum(~ρ)

3. return ~ρt

Algorithm 4. ReturnMacroEvent(pairs,k)
• Output: best macro event for each bucket
1. Iteration l = 0:

(a) E = ∅
(b) ~ρ← PairRank(pairs)
(c) A∗ ← highest ranked pair in each bucket according

to ~ρ
2. Iteration l:

(a) E ← E ⊕A∗
(b) ~ρ1 ← PairRank(pairs ∪ A∗)
(c) for ei in every bucket:

i. ~ρ2 ← PairRank(pairs ∪ E ⊕ ei)
ii. ∆ei ← ρ2(S, E ⊕ ei)− ρ1(S, E)

(d) A∗ ← arg maxei
~∆

3. repeat until l ≤ k
4. return E for each bucket

4 Experiments

We evaluate our method on how accurately it aligns sen-
tences in professional soccer commentaries with events in
the actual games. We use our professional soccer dataset
as the main testbed and compare our method with state-of-
the-art methods and several different baselines. For com-
parison, we also test our model on a benchmark dataset of
RoboCup soccer [Chen and Mooney, 2008].

4.1 Professional Soccer Commentaries

Our dataset consists of time-stamped commentaries and
event logs of 8 games in 2010-2011 season of English Pre-
mier League. For evaluation purposes, we label ground-
truth annotations for the correspondences between sen-
tences and events throughout the dataset. There are 935
sentences, 14,845 events, 2,147 words, and 306 players in
total. Each sentence on average has 16.62 words. For each
sentence in the commentaries, we assign a bucket by select-
ing events that occur in an interval of 150 seconds around
the time the sentence has been generated. We then pair each
sentence with all of the events in the corresponding bucket.
This results in 38,332 pairs. On average, there are 42 pairs
in each bucket. Of course, not all of these pairs are cor-
rect correspondences. There are in total 1,404 pairs labeled
as correct matches in the ground-truth labels. On average
there are 2 correct pairs in each bucket.

Each event is represented with an event type followed by a
list of its arguments. There are 55 event types and several
arguments defined in the event logs. Examples of the argu-
ments are the time that the event occurred, the player
name that is the agent of the event, the team name, the
outcome of the event, and the body part. Most of
the arguments are categorical. The only string field is the
player name that can provide useful information for
finding initial guesses for correct correspondences. How-
ever, identical player names occur in multiple events in
each bucket.

We apply our method (Algorithm 4) on this dataset. We
start by pairing sentences with events in the corresponding
buckets. This step is followed by learning PairModels for
every pair pij = (Si, e

i
j) that has at least one matching

player name between the sentence Si and the event eij . The
features for the pair pij are Φij = (ΦSi ,Φeij ,Φst) where
ΦSi and Φeij are binary vectors representing the sentence
and the event, and Φst is an integer value corresponding to
the number of players matched between the sentence and 3
consecutive events. At the first step, each PairModel Mij

is trained using one positive example (Si, e
i
j) and 100 neg-

ative examples generated automatically as follows. We sort
all sentences according to their Euclidean distance to the
sentence Si and all events based on their Euclidean dis-
tance to the event eij . We generate negative examples from
the sentences and events that are not identical to Si and eij .
Half of the negative pairs are generated from the sentences
with lowest distance to Si and events with highest distance
to eij . The other half are generated by pairing sentences
with highest distance to Si and events with lowest distance
to eij . We make sure that no pairs with matching player
names between sentences and events exist in the negative
set. This way we try to make sure that negative examples
do not contain the same patterns of correspondences as the
positive examples.
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Chelsea looking for a penalty as Malouda's 
header hits Koscielny, not a chance as it hit 
him in the stomach.	


First attack for Drogba, outmuscling Sagna and 
sending an effort in from the edge of the box 
which is blocked, and Song then brings down 
Drogba for a free kick	

	


Two poor efforts for the price of one from 
the free kick as Nasri's shot hits the wall 
before Vermaelen fires wide.	

	


Ev
en

t	  

E:Foul   Q:Head Pass   T:Chelsea   P:Malouda E:Challenge  Q: Through Ball  T:Arsenal  P:Sagna E:Miss    Q: Pass    T:Arsenal   P:Sagna

To
p	  

W
ei
gh
ts
	  

'penalty’,	  'looking’,	  'hits’,	  'Foul’,	  'header’,	  
'chance’,	  'chelsea’,	  'city’,	  'clear’,'half’	  

	  

'box’,	  'first’,'edge’,'block’,	  'a@ack’,'effort’,	  
'kick’,	  'free’,’wide’,	  break	  

	  

'shot’,	  'wide’,	  'two’,	  'hits’,	  'poor’,'one'	  
	  	  	  	  'free’,	  'kick’,	  ’Miss’,	  'chelsea'	  

	  

To
p	  
Se
nt
en

ce
s	  

Alex	  Song	  is	  too	  strong	  for	  Malouda,	  who	  goes	  
down	  looking	  for	  a	  foul.	  Nothing	  given	  by	  the	  

referee.	  
	  

Foul	  by	  Arshavin	  as	  he	  blocks	  Essien's	  a@ack.	  He's	  
lucky	  to	  escape	  a	  card	  there.	  

	  

A	  choppy	  start	  from	  both	  sides	  with	  
possession	  swapping	  hands	  regularly.	  

Wilshere	  gets	  stuck	  into	  Jovanovic	  and	  gives	  
away	  a	  free	  kick.	  

	  

Figure 2: Qualitative analysis of PairModels: Each column corresponds to a PairModel trained with a sentence on the first row and the
event in the second row as the positive example. The learned PairModel assigns high values to the features corresponding to the words
in the third row. The closest sentence under the learned pattern of correspondences between the sentence and the event in the pair is
shown in the fourth row.

We then fit linear SVMs [Fan et al., 2008] to the positive
and negative examples for each pair. We use LibLinear
with c = 100. We weight positive instances to avoid the
affects of unbalanced data. We then apply the PairRank
with the damping factor d = 0.5 to rank the pairs based
on their consistency. To create macro-events we run Algo-
rithm 4 with k = 4.
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Figure 4: Our method outperforms the state-of-the-art on all the
games.

Method F1 AUC Precision Recall
No PairModel 23.3 36.4 37.3 17.1
No PairRank 27.3 37.4 39.4 21.1
MIL 11.0 36.8 37.3 7.0
[Liang et al., 2009] 27.6 N/A 27.2 28.4
Our approach 41.4 46.8 33.9 54.0

Table 1: Average performance of different approaches over all
games in our dataset.

4.1.1 Comparisons

We compare the performance of our method with the stat-
of-the-art method of [Liang et al., 2009], a Multiple In-
stance Learning (MIL) method of [Andrews et al., 2002],

and two baselines.As the main testbed, we use our pro-
fessional soccer dataset where we have 16 half games (8
games). Figure 4 plots the comparisons mentioned above
on all 16 half games. We use F1 as the measure of per-
formance per half game. Table 1 contains the results of all
the aforementioned methods using F1 and AUC measures
averaged over all half games.

[Liang et al., 2009] This approach uses a generative
model that learns the correspondence between sentences
and events. We use their publicly available code and run
their method for 5 iterations. To have a generous compari-
son, we report the best results achieved during 5 iterations
(sometimes the best performance is achieved earlier than
5 iterations). Table 1 shows the average accuracy of this
method over all the games. Our model outperforms this
method by more than 14% in F1. Due to the complexity of
the model, [Liang et al., 2009] cannot take advantage of the
full capacity of the domain. It runs out of memory on a ma-
chine with 8GB of memory when using 6 arguments. The
reason is that this approach grows exponentially with the
number of arguments whereas our approach grows linearly.
To be compatible, we decrease the number of arguments
of every event to 3 arguments team, player-name,
qualifier, in all the comparisons. Even after decreas-
ing the number of arguments, the method of [Liang et al.,
2009] still runs out of memory for one game that consist of
long sentences (half-game 16). Due to memory limitations,
this method is not applicable to all games at the same time;
we perform all comparisons on half game basis.

Multiple Instance Learning (MIL): Finding correct cor-
respondences given the rough alignments between sen-
tences and events can be formulated as a multiple instance
learning problem. Pairs of sentences with all the events in
the corresponding bucket can be considered as bags. A pos-
itive bag includes at least one correct pair. Negative bags
do not include any correct pairs. We utilize the same proce-
dure that we used to generate negative pairs to produce neg-
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Sentences	   Discovered	  Events	  

1: Chelsea looking for penalty as Malouda’s 
header hits Koscielny, not a chance as it hit 
him in the stomach.	


E: Pass Q: Head Pass T: Chelsea P: F. Malouda

E: Ball touch Q: Through ball T: Arsenal P: L. Koscielny 

E: Foul Q: through ball T: Arsenal P: L. Koscielny

E: Foul Q: Head Pass T: Chelsea P: F. Malouda

2: GOAL, Drogba opens the scoring! 
Ramires finds Ashley Cole with a perfectly 
waited pass, Cole's low cross finds Drogba 
at the near post who back-heels it beyond a 
stranded Fabianski. 1-0 to the champions.	


E: Pass Q: Cross T: Chelsea P: A. Cole

E: Goal Q: Head Pass T: Chelsea P: D. Drogba

3: Essien dispossesses Arshavin and earns 
Chelsea's fourth corner of the match	


E: Intercept Q: Cross T: Chelsea P: M. Essien

E: Pass Q: Pass T: Chelsea P: M. Essien

E: Corner Awarded Q: Pass T: Chelsea P: M. Essien

4: Cole is sent off for a lunge on Koscielny, 
it was poor, it was late but I'm not entirely 
sure that should have been red.	


E: Foul Q: Long Ball T: Liverpool P: J. Cole

E: Foul Q: Through Ball T: Arsenal P: L. Koscielny

E: Card Q: None T: Liverpool P: J. Cole

5: First attack for Drogba, outmuscling 
Sagna and sending an effort in from the 
edge of the box which is blocked, and Song 
then brings down Drogba for a free kick.	


E: Take On Q: Head Pass T: Chelsea P: D. Drogba

E: Challenge Q: Through Ball T: Arsenal P: B. Sagna

E: Save Q: Through Ball T: Arsenal P: A. Song

E: Foul Q: Through Ball T: Arsenal P: A. Song

6: Two poor efforts for the price of one 
from the free kick as Nasri's shot hits the 
wall before Vermaelen fires wide.	


E: Attempt Saved Q: Head Pass T: Arsenal P: S. Nasri

E: Miss Q: Head Pass T: Arsenal P: T. Vermaelen

Figure 3: Qualitative exampels of macro-events discovered by our method in correspondence to sentences. For instance, in sentence 4
the commentator is implicitly describing a foul occurred in the game which led to a card but there is no explicit mention of ‘Foul’ nor
‘Card’ in the sentence. However, our method can discover both events correctly.

ative bags. We use the publicly available implementation
of mi-SVM [Andrews et al., 2002] for comparisons. Ta-
ble 1 compares the performance of our method with that of
MIL. Our method outperforms MIL significantly (by about
30% in F1). We postulate that, the complex structure in the
correspondences between sentences and events cannot be
discovered by latent methods like mi-SVM.

No PairModel Baseline: To analyze the importance of dis-
criminative notion of correspondences, we also compare
our method with a baseline that uses a non-discriminative
notion of correspondences between sentences and events.
In our model, we replace the PairModel with a non-
discriminative similarity metric (such as Cosine or Eu-
clidean). In our experiments, we did not find any consid-
erable difference between the non-discriminative distances.
Table 1 shows performance numbers using Euclidean dis-
tance. Replacing the PairModel with non-discriminative
distances decreases the performance by 16%.

No PairRank Baseline: We also replace the PairRank
component in our model with a voting scheme. In this
baseline, we compute the confidence scores of applying
all PairModels on all pairs. We then compute the score
of each pair by counting the number of non-negative confi-
dence values. Replacing the PairRank model with a voting
scheme decreases the performance by 13%.

We also analyze the importance of incorporating macro-
events. To this purpose, we enforce our model to produce
macro-events at multiple different lengths. Figure 5 plots
the F1 measures against the maximum cardinality of macro
events. Forming macro-events up to the cardinality 4 dra-
matically boosts the performance. Our experiments do not
show any boost by adding longer macro-events.

333



0.2	  

0.25	  

0.3	  

0.35	  

0.4	  

0.45	  

1	   2	   3	   4	   5	   6	  

F1	  

Cardinality	  of	  Macro-‐events	  

Figure 5: Average F1 over all games by increasing the number
of iterations.

4.1.2 Qualitative Examples

Figure 3 shows examples of macro-events discovered by
our method in correspondence to the sentences in the first
column. The correspondences are not obvious and show
deep understanding of sentences in commentaries. To
further analyze the intermediate result of our model, we
looked at the top scoring dimensions in the features for
specific events. For example for event Foul, the highest
weights correspond to ‘Foul’,‘free’,‘kick’,‘card’, ‘danger-
ous’, and ‘late’. For the event Save, the highest dimen-
sions corresponds to ‘Save’,‘goal’, ‘shot’,‘block’,‘ball’.

4.2 RoboCup Soccer Commentary

We also compare our approach with the state-of-the-art
methods in the RoboCup soccer dataset [Chen and Mooney,
2008]. The data is based on commentaries of four cham-
pionship games of the RoboCup simulation league. Each
game is associated with a sequence of human comments in
English and the Robocup soccer events that happen in the
original game tagged with time. Sentences are on average
5.7 words long. There are 17 events, including actions with
the ball or other game information. The buckets are gen-
erated by mapping sentences and the events that occurred
within 5 time steps of when the comments were recorded.
There are in total 1,919 pairs and average of 2.4 events per
bucket. It is assumed that every sentence is matched with
at most one event. Following previous approach, we adopt
the scheme of 4 fold cross validation and report the micro-
averaged results for four games in terms of F1. Table 2
demonstrates that our method outperforms the state-of-the-
art. [Hajishirzi et al., 2011] uses domain knowledge about
soccer events instead of buckets information. [Chen et al.,
2010] can achieve the F1 of 79.1% by initializing with the
output generated by [Liang et al., 2009]. We cannot di-
rectly compare [Bordes et al., 2010] to other methods in
the table because a) they use Bigram and Trigram features.
This gives a strong boost for games like the game 3 where
most sentences are 3 or 4 words long. b) they use post
processing heuristics to find sentences with no matching
events. With the same heuristics our model can go up to an
F1 of 84.57 (cf. 83.0 of [Bordes et al., 2010]).

Approach F1

[Chen and Mooney, 2008] 67.0
[Chen et al., 2010] 73.5
[Liang et al., 2009] 75.7
[Hajishirzi et al., 2011] 77.9
Our approach 81.6

Table 2: The average F1 scores of 4 fold cross validation in the
Roboup dataset.

5 Discussion and Future Work

In this paper, we present an approach that can form macro-
events that best describe sentences given a bucket of events
that correspond to each sentence. Our method takes ad-
vantage of a discriminative notion of correspondence cou-
pled with a ranking technique to find popular pairs in our
professional soccer dataset. To avoid exponential searches
over all possible ways of merging events in a bucket we use
a greedy approximation with reasonable bounds. We up-
date the macro-events incrementally by combining events
that provide maximum marginal benefits. Our experi-
ments show significant improvement over the state-of-the-
art methods. In fact, our method achieves an F1 measure
of 41.4% comparing to the state of the art performance
of 27.6% in professional soccer commentaries. Also, our
method outperforms state-of-the-art on RoboCup dataset.

Our method can assign a macro-event to a part of the text
that cannot be further segmented. For instance, the first
part of the sentence 1 in Figure 3 is mapped to both pass
and corner. We argue that we need to first align sentences
with macro-events and then start the segmentation with a
relaxed one-to-one assumption. Discovering strategy-level
macro events still remains open. For example our method
cannot align attack or coming forward with series of passes.
We believe that we can make progress by augmenting our
method with more powerful Natural Language Processing
tools that improves lexical analysis. Also, our method can-
not address the cases where there is no event corresponding
to a sentence. Our formulation forces at least one event per
sentence. This is not desirable for many domains includ-
ing soccer commentaries where there are several sentences
that do not correspond to any ball-related event in the game.
Our ultimate goal is to build an automatic commentary gen-
eration for professional soccer games. This paper is one
step forward toward that big goal.
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Abstract

We consider a setting where an agent’s uncer-
tainty is represented by a set of probability mea-
sures, rather than a single measure. Measure-
by-measure updating of such a set of measures
upon acquiring new information is well-known
to suffer from problems; agents are not always
able to learn appropriately. To deal with these
problems, we propose using weighted sets of
probabilities: a representation where each mea-
sure is associated with a weight, which de-
notes its significance. We describe a natural
approach to updating in such a situation and
a natural approach to determining the weights.
We then show how this representation can be
used in decision-making, by modifying a stan-
dard approach to decision making—minimizing
expected regret—to obtain minimax weighted ex-
pected regret (MWER). We provide an axiomati-
zation that characterizes preferences induced by
MWER both in the static and dynamic case.

1 Introduction

Agents must constantly make decisions; these decisions are
typically made in a setting with uncertainty. For decisions
based on the outcome of the toss of a fair coin, the uncer-
tainty can be well characterized by probability. However,
what is the probability of you getting cancer if you eat fries
at every meal? What if you have salads instead? Even ex-
perts would not agree on a single probability.

Representing uncertainty by a single probability measure
and making decisions by maximizing expected utility leads
to further problems. Consider the following stylized prob-
lem, which serves as a running example in this paper. The

∗Work supported in part by NSF grants IIS-0534064, IIS-
0812045, and IIS-0911036, by AFOSR grants FA9550-08-1-0438
and FA9550-09-1-0266, and by ARO grant W911NF-09-1-0281.

1 broken 10 broken
cont 10,000 -10,000
back 0 0
check 5,001 -4,999

Table 1: Payoffs for the robot delivery problem. Acts are in
the leftmost column. The remaining two columns describe
the outcome for the two sets of states that matter.

baker’s delivery robot, T-800, is delivering 1, 000 cupcakes
from the bakery to a banquet. Along the way, T-800 takes a
tumble down a flight of stairs and breaks some of the cup-
cakes. The robot’s map indicates that this flight of stairs
must be either ten feet or fifteen feet high. For simplicity,
assume that a fall of ten feet results in one broken cupcake,
while a fall of fifteen feet results in ten broken cupcakes.

T-800’s choices and their consequences are summarized in
Table 1. Decision theorists typically model decision prob-
lems with states, acts, and outcomes: the world is in one
of many possible states, and the decision maker chooses
an act, a function mapping states to outcomes. A natu-
ral state space in this problem is {good,broken}1000, where
each state is a possible state of the cupcakes. However, all
that matters about the state is the number of broken cakes,
so we can further restrict to states with either one or ten
broken cakes.

T-800 can choose among three acts: cont : continue the de-
livery attempt; back : go back for new cupcakes; or check :
open the container and count the number of broken cup-
cakes, and then decide to continue or go back, depending
on the number of broken cakes. The client will tolerate one
broken cupcake, but not ten broken cupcakes. Therefore, if
T-800 chooses cont , it obtains a utility of 10, 000 if there is
only one broken cake, but a utility of −10, 000 if there are
ten broken cakes. If T-800 chooses to go back , then it gets
a utility of 0. Finally, checking the cupcakes costs 4, 999
units of utility but is reliable, so if T-800 chooses check , it
ends up with a utility of 5, 001 if there is one broken cake,
and a utility of −4, 999 if there are ten broken cakes.
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If we try to maximize expected utility, we must assume
some probability over states. What measure should be
used? There are two hypotheses that T-800 entertains: (1)
the stairs are ten feet high and (2) the stairs are fifteen feet
high. Each of these places a different probability on states.
If the stairs are ten feet high, we can take all of the 1, 000
states where there is exactly one broken cake to be equally
probable, and take the remaining states to have probabil-
ity 0; if the stairs are fifteen feet high, we can take all of
the C(1000, 10) states where there are exactly ten broken
cakes to be equally probable, and take the remaining states
to have probability 0. One way to model T-800’s uncer-
tainty about the height of the stairs is to take each hypothe-
sis to be equally likely. However, not having any idea about
which hypothesis holds is very different from believing that
all hypotheses are equally likely. It is easy to check that tak-
ing each hypothesis to be equally likely makes check the
act that maximizes utility, but taking the probability that
the stairs are fifteen feet high to be .51 makes back the act
that maximizes expected utility, and taking the probability
that the stairs are ten feet high to be .51 makes cont the act
that maximizes expected utility. What makes any of these
choices the “right” choice?

It is easy to construct many other examples where a single
probability measure does not capture uncertainty, and does
not result in what seem to be reasonable decisions, when
combined with expected utility maximization. A natural
alternative, which has often been considered in the litera-
ture, is to represent the agent’s uncertainty by a set of prob-
ability measures. For example, in the delivery problem,
the agent’s beliefs could be represented by two probability
measures, Pr1 and Pr10, one for each hypothesis. Thus,
Pr1 assigns uniform probability to all states with exactly
one broken cake, and Pr10 assigns uniform probability to
all states with exactly ten broken cakes.

But this representation also has problems. Consider the
delivery example again. In a more realistic scenario, why
should T-800 be sure that there is exactly either one broken
cake or ten broken cakes? Of course, we can replace these
two hypotheses by hypotheses that say that the probability
of a cake being broken is either .001 or .01, but this doesn’t
solve the problem. Why should the agent be sure that the
probability is either exactly .001 or exactly .01? Couldn’t
it also be .0999? Representing uncertainty by a set of mea-
sures still places a sharp boundary on what measures are
considered possible and impossible.

A second problem involves updating beliefs. How should
beliefs be updated if they are represented by a set of proba-
bility measures? The standard approach for updating a sin-
gle measure is by conditioning. The natural extension of
conditioning to sets of measure is measure-by-measure up-
dating: conditioning each measure on the information (and
also removing measures that give the information probabil-
ity 0).

However, measure-by-measure updating can produce some
rather counterintuitive outcomes. In the delivery example,
suppose that a passer-by tells T-800 the information E: the
first 100 cupcakes are good. Assuming that the passer-by
told the truth, intuition tells us that there is now more rea-
son to believe that there is only one broken cupcake.

However, Pr1 | E places uniform probability on all states
where the first 100 cakes are good, and there is exactly one
broken cake among the last 900. Similarly, Pr10 | E places
uniform probability on all states where the first 100 cakes
are good, and there are exactly ten broken cakes among
the last 900. Pr1 | E still places probability 1 on there
being one broken cake, just like Pr1, Pr10 | E still places
probability 1 on there being ten broken cakes. There is no
way to capture the fact that T-800 now views the hypothesis
Pr10 as less likely, even if the passer-by had said instead
that the first 990 cakes are all good!

Of course, both of these problems would be alleviated if
we placed a probability on hypotheses, but, as we have al-
ready observed, this leads to other problems. In this paper,
we propose an intermediate approach: representing uncer-
tainty using weighted sets of probabilities. That is, each
probability measure is associated with a weight. These
weights can be viewed as probabilities; indeed, if the set of
probabilities is finite, we can normalize them so that they
are effectively probabilities. Moreover, in one important
setting, we update them in the same way that we would
update probabilities, using likelihood (see below). On the
other hand, these weights do not act like probabilities if
the set of probabilities is infinite. For example, if we had
a countable set of hypotheses, we could assign them all
weight 1 (so that, intuitively, they are all viewed as equally
likely), but there is no uniform measure on a countable set.

More importantly, when it comes to decision making, we
use the weights quite differently from how we would use
second-order probabilities on probabilities. Second-order
probabilities would let us define a probability on events (by
taking expectation) and maximize expected utility, in the
usual way. Using the weights, we instead define a novel
decision rule, minimax weighted expected regret (MWER),
that has some rather nice properties, which we believe will
make it widely applicable in practice. If all the weights are
1, then MWER is just the standard minimax expected regret
(MER) rule (described below). If the set of probabilities is
a singleton, then MWER agrees with (subjective) expected
utility maximization (SEU). More interestingly perhaps, if
the weighted set of measures converges to a single measure
(which will happen in one important special case, discussed
below), MWER converges to SEU. Thus, the weights give
us a smooth, natural way of interpolating between MER
and SEU.

In summary, weighted sets of probabilities allow us to rep-
resent ambiguity (uncertainty about the correct probability
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distribution). Real individuals are sensitive to this ambigu-
ity when making decisions, and the MWER decision rule
takes this into account. Updating the weighted sets of prob-
abilities using likelihood allows the initial ambiguity to be
resolved as more information about the true distribution is
obtained.

We now briefly explain MWER, by first discussing MER.
MER is a probabilistic variant of the minimax regret deci-
sion rule proposed by Niehans [10] and Savage [13]. Most
likely, at some point, we’ve second-guessed ourselves and
thought “had I known this, I would have done that instead”.
That is, in hindsight, we regret not choosing the act that
turned out to be optimal for the realized state, called the ex
post optimal act. The regret of an act a in a state s is the
difference (in utility) between the ex post optimal act in s
and a. Of course, typically one does not know the true state
at the time of decision. Therefore the regret of an act is the
worst-case regret, taken over all states. The minimax regret
rule orders acts by their regret.

The definition of regret applies if there is no probability on
states. If an agent’s uncertainty is represented by a single
probability measure, then we can compute the expected re-
gret of an act a: just multiply the regret of an act a at a state
s by the probability of s, and then sum. It is well known
that the order on acts induced by minimizing expected re-
gret is identical to that induced by maximizing expected
utility (see [8] for a proof). If an agent’s uncertainty is rep-
resented by a set P of probabilities, then we can compute
the expected regret of an act a with respect to each prob-
ability measure Pr ∈ P , and then take the worst-case ex-
pected regret. The MER (Minimax Expected Regret) rule
orders acts according to their worst-case expected regret,
preferring the act that minimizes the worst-case regret. If
the set of measures is the set of all probability measures
on states, then it is not hard to show that MER induces
the same order on acts as (probability-free) minimax re-
gret. Thus, MER generalizes both minimax regret (if P
consists of all measures) and expected utility maximization
(if P consists of a single measure).

MWER further generalizes MER. If we start with a
weighted set of measures, then we can compute the
weighted expected regret for each one (just multiply the
expected regret with respect to Pr by the weight of Pr) and
compare acts by their worst-case weighted expected regret.

Sarver [12] also proves a representation theorem that in-
volves putting a multiplicative weight on a regret quan-
tity. However, his representation is fundamentally different
from MWER. In his representation, regret is a factor only
when comparing two sets of acts; the ranking of individual
acts is given by expected utility maximization. By way of
contrast, we do not compare sets of acts.

It is standard in decision theory to axiomatize a decision
rule by means of a representation theorem. For example,

Savage [14] showed that if an agent’s preferences � satis-
fied several axioms, such as completeness and transitivity,
then the agent is behaving as if she is maximizing expected
utility with respect to some utility function and probabilis-
tic belief.

If uncertainty is represented by a set of probability mea-
sures, then we can generalize expected utility maximiza-
tion to maxmin expected utility (MMEU). MMEU com-
pares acts by their worst-case expected utility, taken over
all measures. MMEU has been axiomatized by Gilboa and
Schmeidler [7]. MER was axiomatized by Hayashi [8] and
Stoye [16]. We provide an axiomatization of MWER. We
make use of ideas introduced by Stoye [16] in his axioma-
tization of MER, but the extension seems quite nontrivial.

We also consider a dynamic setting, where beliefs are up-
dated by new information. If observations are generated
according to a probability measure that is stable over time,
then, as we suggested above, there is a natural way of up-
dating the weights given observations, using ideas of likeli-
hood. The idea is straightforward. After receiving some in-
formationE, we update each probability Pr ∈ P to Pr | E,
and take its weight to be αPr = Pr(E)/ supPr′∈P Pr′(E).
Thus, the weight of Pr after observing E is modified by
taking into account the likelihood of observing E assum-
ing that Pr is the true probability. We refer to this method
of updating weights as likelihood updating.

If observations are generated by a stable measure (e.g., we
observe the outcomes of repeated flips of a biased coin)
then, as the agent makes more and more observations,
the weighted set of probabilities of the agent will, almost
surely, look more and more like a single measure. The
weight of the measures in P closest to the measure gen-
erating the observations will converge to 1, and the weight
of all other measures will converge to 0. This would not be
the case if uncertainty were represented by a set of proba-
bility measures and we did measure-by-measure updating,
as is standard. As we mentioned above, this means that
MWER will converge to SEU.

We provide an axiomatization for dynamic MWER with
likelihood updating. We remark that a dynamic version of
MMEU with measure-by-measure updating has been ax-
iomatized by Jaffray [9], Pires [11], and Siniscalchi [15].

Likelihood updating is somewhat similar in spirit to an up-
dating method implicitly proposed by Epstein and Schnei-
der [5]. They also represented uncertainty by using (un-
weighted) sets of probability measures. They choose a
threshold α with 0 < α < 1, update by conditioning, and
eliminate all measures whose relative likelihood does not
exceed the threshold. This approach also has the property
that, over time, all that is left in P are the measures closest
to the measure generating the observations; all other mea-
sures are eliminated. However, it has the drawback that it
introduces a new, somewhat arbitrary, parameter α.
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Chateauneuf and Faro [2] also consider weighted sets of
probabilities (they model the weights using what they call
confidence functions), although they impose more con-
straints on the weights than we do. They then define and
provide a representation of a generalization of MMEU us-
ing weighted sets of probabilities that parallels our gener-
alization of MER. Chateauneuf and Faro do not discuss the
dynamic situation; specifically, they do not consider how
weights should be updated in the light of new information.

The rest of this paper is organized as follows. Section 2 in-
troduces the weighted sets of probabilities representation,
and Section 3 introduces the MWER decision rule. Ax-
iomatic characterizations of static and dynamic MWER are
provided in Sections 4 and 5, respectively. We conclude
in Section 6. All proofs can be found in the full paper
(http://cs.cornell.edu/home/halpern/papers/mwr.pdf).

2 Weighted Sets of Probabilities

A set P+ of weighted probability measures on a set S con-
sists of pairs (Pr, αPr), where αPr ∈ [0, 1] and Pr is a
probability measure on S.1 Let P = {Pr : ∃α(Pr, α) ∈
P+}. We assume that, for each Pr ∈ P , there is exactly
one α such that (Pr, α) ∈ P+. We denote this number by
αPr, and view it as the weight of Pr. We further assume
for convenience that weights have been normalized so that
there is at least one measure Pr ∈ P such that αPr = 1.2

We remark that, just as we do, Chateaunef and Faro [2] take
weights to be in the interval [0, 1]. They impose additional
requirements on the weights. For example, they require
that the weight of a convex combination of two probability
measures is at least as high as the weight of each one. This
does not seem reasonable in our applications. For example,
an agent may know that one of two measures is generating
his observations, and give them both weight 1, while giving
all other distributions weight 0.

As we observed in the introduction, one way of updat-
ing weighted sets of probabilities is by using likelihood
updating. We use P+ | E to denote the result of ap-
plying likelihood updating to P+. Define P+

(E) =

sup{αPr Pr(E) : Pr ∈ P}; if P+
(E) > 0, set αPr|E =

sup{Pr′∈P:Pr′|E=Pr|E}
αPr′ Pr′(E)

P+
(E)

. Note that given a mea-

sure Pr ∈ P , there may be several distinct measures Pr′

in P such that Pr′ | E = Pr | E. Thus, we take the

1In this paper, for ease of exposition, we take the state space
S to be finite, and assume that all sets are measurable. We can
easily generalize to arbitrary measure spaces.

2While we could take weights to be probabilities, and nor-
malize them so that they sum to 1, if P is finite, this runs into
difficulties if we have an infinite number of measures in P . For
example, if we are tossing a coin, and P includes all probabilities
on heads from 1/3 to 2/3, using a uniform probability, we would
be forced to assign each individual probability measure a weight
of 0, which would not work well in the definition of MWER.

weight of Pr | E to be the sup of the possible candidate
values of αPr|E . By dividing by P+

(E), we guarantee that
αPr|E ∈ [0, 1], and that there is some measure Pr such that
αPr|E = 1, as long as there is some pair (αPr,Pr) ∈ P
such that αPr Pr(E) = P+

(E). If P+
(E) > 0, we take

P+ | E to be

{(Pr | E,αPr|E) : Pr ∈ P}.

If P+
(E) = 0, then P+ | E is undefined.

In computing P+ | E, we update not just the probabil-
ity measures in P , but also their weights. The new weight
combines the old weight with the likelihood. Clearly, if
all measures in P assign the same probability to the event
E, then likelihood updating and measure-by-measure up-
dating coincide. This is not surprising, since such an ob-
servation E does not give us information about the rela-
tive likelihood of measures. We stress that using likelihood
updating is appropriate only if the measure generating the
observations is assumed to be stable. For example, if ob-
servations of heads and tails are generated by coin tosses,
and a coin of possibly different bias is tossed in each round,
then likelihood updating would not be appropriate.

It is well known that, when conditioning on a single prob-
ability measure, the order that information is acquired is
irrelevant; the same observation easily extends to sets of
probability measures. As we now show, it can be further
extended to weighted sets of probability measures.

Proposition 1. Likelihood updating is consistent in the
sense that for all E1, E2 ⊆ S, (P+ | E1) | E2 = (P+ |
E2) | E1 = P+ | (E1∩E2), provided that P+ | (E1∩E2)
is defined.

3 MWER

We now define MWER formally. Given a set S of states
and a set X of outcomes, an act f (over S and X) is a
function mapping S to X . For simplicity in this paper, we
take S to be finite. Associated with each outcome x ∈ X
is a utility: u(x) is the utility of outcome x. We call a
tuple (S,X, u) a (non-probabilistic) decision problem. To
define regret, we need to assume that we are also given a
set M ⊆ XS of feasible acts, called the menu. The rea-
son for the menu is that, as is well known (and we will
demonstrate by example shortly), regret can depend on the
menu. Moreover, we assume that every menu M has util-
ities bounded from above. That is, we assume that for all
menus M , supg∈M u(g(s)) is finite. This ensures that the
regret of each act is well defined.3 For a menu M and act

3Stoye [17] assumes that, for each menuM , there is a finite set
AM of acts such that M consists of all the convex combinations
of the acts in AM . Our assumption is clearly much weaker than
Stoye’s.
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f ∈ M , the regret of f with respect to M and decision
problem (S,X, u) in state s is

regM (f, s) =

(
max
g∈M

u(g(s))

)
− u(f(s)).

That is, the regret of f in state s (relative to menuM ) is the
difference between u(f(s)) and the highest utility possible
in state s (among all the acts in M ). The regret of f with
respect to M and decision problem (S,X, u) is the worst-
case regret over all states:

max
s∈S

regM (f, s).

We denote this as reg
(S,X,u)
M (f), and usually omit the su-

perscript (S,X, u) if it is clear from context. If there is a
probability measure Pr over the states, then we can con-
sider the probabilistic decision problem (S,X, u,Pr). The
expected regret of f with respect to M is

regM,Pr(f) =
∑

s∈S
Pr(s)regM (f, s).

If there is a set P of probability measures over the states,
then we consider theP-decision problem (S,X, u,P). The
maximum expected regret of f ∈M with respect toM and
(S,X, u,P) is

regM,P(f) = sup
Pr∈P

(∑

s∈S
Pr(s)regM (f, s)

)
.

Finally, if beliefs are modeled by weighted probabil-
ities P+, then we consider the P+-decision problem
(S,X, u,P+). The maximum weighted expected regret of
f ∈M with respect to M and (S,X, u,P+) is

regM,P+(f) = supPr∈P
(
αPr

∑
s∈S Pr(s)regM (f, s)

)
.

The MER decision rule is thus defined for all f, g ∈ XS as

f �S,X,uM,P g iff reg(S,X,u)
M,P (f) ≤ reg

(S,X,u)
M,P (g).

That is, f is preferred to g if the maximum expected regret
of f is less than that of g. We can similarly define �M,reg ,
�S,X,uM,Pr , and�S,X,uM,P+ by replacing reg

(S,X,u)
M,P by reg

(S,X,u)
M ,

reg
(S,X,u)
M,Pr , and reg

(S,X,u)
M,P+ , respectively. Again, we usually

omit the superscript (S,X, u) and subscript Pr or P+, and
just write �M , if it is clear from context.

To see how these definitions work, consider the delivery ex-
ample from the introduction. There are 1, 000 states with
one broken cake, and C(1000, 10) states with ten broken
cakes. The regret of each action in a state depends only on
the number of broken cakes, and is given in Table 2. It is
easy to see that the action that minimizes regret is check ,
with cont and back having equal regret. If we represent un-
certainty using the two probability measures Pr1 and Pr10,

1 broken cake 10 broken cakes
Payoff Regret Payoff Regret

cont 10,000 0 -10,000 10,000
back 0 10,000 0 0
check 5,001 4,999 -4,999 4,999

Table 2: Payoffs and regrets for delivery example.

1 broken cake 10 broken cakes
Payoff Regret Payoff Regret

cont 10,000 10,000 -10,000 10,000
back 0 20,000 0 0
check 5,001 14,999 -4,999 4,999
new 20,000 0 -20,000 20,000

Table 3: Payoffs and regrets for the delivery problem with
a new choice added.

the expected regret of each of the acts with respect to Pr1

(resp., Pr10) is just its regret with respect to states with one
(resp. ten) broken cakes. Thus, the action that minimizes
maximum expected regret is again check .

As we said above, the ranking of acts based on MER
or MWER can change if the menu of possible choices
changes. For example, suppose that we introduce a new
choice in the delivery problem, whose gains and losses are
twice those of cont , resulting in the payoffs and regrets de-
scribed in Table 3. In this new setting, cont has a lower
maximum expected regret (10, 000) than check (14, 999),
so MER prefers cont over check . Thus, the introduction of
a new choice can affect the relative order of acts according
to MER (and MWER), even though other acts are preferred
to the new choice. By way of contrast, the decision rules
MMEU and SEU are menu-independent; the relative order
of acts according to MMEU and SEU is not affected by the
addition of new acts.

We next consider a dynamic situation, where the agent
acquires information. Specifically, in the context of the
delivery problem, suppose that T-800 learns E—the first
100 items are good. Initially, suppose that T-800 has no
reason to believe that one hypothesis is more likely than
the other, so assigns both hypotheses weight 1. Note that
P1(E) = 0.9 and Pr10(E) = C(900, 10)/C(1000, 10) ≈
0.35. Thus, P+ | E = {(Pr1 | E, 1), (Pr10 |
E,C(900, 10)/(.9C(1000, 10))}.
We can also see from this example that MWER interpolates
between MER and expected utility maximization. Suppose
that a passer-by tells T-800 that the first N cupcakes are
good. If N = 0, MWER with initial weights 1 is the same
as MER. On the other hand, ifN ≥ 991, then the likelihood
of Pr10 is 0, and the only measure that has effect is Pr1,
which means minimizing maximum weighted expected re-
gret is just maximizing expected utility with respect to Pr1.
If 0 < N < 991, then the likelihoods (hence weights)
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of Pr1 and Pr10 are 1 and C(1000−N,10)
C(1000,10) × 1000

1000−N <

((999 − N)/999)9. Thus, as N increases, the weight of
Pr10 goes to 0, while the weight of Pr1 stays at 1.

4 An axiomatic characterization of MWER

We now provide a representation theorem for MWER.
That is, we provide a collection of properties (i.e., ax-
ioms) that hold of MWER such that a preference order on
acts that satisfies these properties can be viewed as aris-
ing from MWER. To get such an axiomatic characteriza-
tion, we restrict to what is known in the literature as the
Anscombe-Aumann (AA) framework [1], where outcomes
are restricted to lotteries. This framework is standard in
the decision theory literature; axiomatic characterizations
of SEU [1], MMEU [7], and MER [8, 16] have already
been obtained in the AA framework. We draw on these
results to obtain our axiomatization.

Given a set Y (which we view as consisting of prizes), a
lottery over Y is just a probability with finite support on Y .
Let ∆(Y ) consist of all finite probabilities over Y . In the
AA framework, the set of outcomes has the form ∆(Y ).
So now acts are functions from S to ∆(Y ). (Such acts are
sometimes called Anscombe-Aumann acts.) We can think
of a lottery as modeling objective uncertainty, while a prob-
ability on states models subjective uncertainty; thus, in the
AA framework we have both objective and subjective un-
certainty. The technical advantage of considering such a set
of outcomes is that we can consider convex combinations
of acts. If f and g are acts, define the act αf+(1−α)g to be
the act that maps a state s to the lottery αf(s)+(1−α)g(s).

In this setting, we assume that there is a utility function U
on prizes in Y . The utility of a lottery l is just the expected
utility of the prizes obtained, that is,

u(l) =
∑

{y∈Y : l(y)>0}
l(y)U(y).

This makes sense since l(y) is the probability of getting
prize y if lottery l is played. The expected utility of an
act f with respect to a probability Pr is then just u(f) =∑
s∈S Pr(s)u(f(s)), as usual. We also assume that there

are at least two prizes y1 and y2 in Y , with different utilities
U(y1) and U(y2).

Given a set Y of prizes, a utility U on prizes, a state space
S, and a set P+ of weighted probabilities on S, we can de-
fine a family�S,∆(Y ),u

M,P+ of preference orders on Anscombe-
Aumann acts determined by weighted regret, one per menu
M , as discussed above, where u is the utility function on
lotteries determined by U . For ease of exposition, we usu-
ally write �S,Y,UM,P+ rather than �S,∆(Y ),u

M,P+ .

We state the axioms in a way that lets us clearly distinguish
the axioms for SEU, MMEU, MER, and MWER. The ax-
ioms are universally quantified over acts f , g, and h, menus

M andM ′, and p ∈ (0, 1). We assume that f, g ∈M when
we write f �M g.4 We use l∗ to denote a constant act that
maps all states to l.

Axiom 1. (Transitivity) f �M g �M h⇒ f �M h.

Axiom 2. (Completeness) f �M g or g �M f .

Axiom 3. (Nontriviality) f �M g for some acts f and g
and menu M .

Axiom 4. (Monotonicity) If (f(s))∗ �{(f(s))∗,(g(s))∗}
(g(s))∗ for all s ∈ S, then f �M g.

Axiom 5. (Mixture Continuity) If f �M g �M h, then
there exists q, r ∈ (0, 1) such that

qf + (1− q)h �M∪{qf+(1−q)h} g
and g �M∪{rf+(1−r)h} rf + (1− r)h.

Menu-independent versions of Axioms 1–5 are standard.
Clearly (menu-independent versions of) Axioms 1, 2, 4,
and 5 hold for MMEU, MER, and SEU; Axiom 3 is as-
sumed in all the standard axiomatizations, and is used to
get a unique representation.

Axiom 6. (Ambiguity Aversion)

f ∼M g ⇒ pf + (1− p)g �M∪{pf+(1−p)g} g.

Ambiguity Aversion says that the decision maker weakly
prefers to hedge her bets. It also holds for MMEU, MER,
and SEU, and is assumed in the axiomatizations for MMEU
and MER. It is not assumed for the axiomatization of SEU,
since it follows from the Independence axiom, discussed
next. Independence also holds for MWER, provided that
we are careful about the menus involved. Given a menu M
and an act h, let pM+(1−p)h be the menu {pf+(1−p)h :
p ∈M}.
Axiom 7. (Independence)

f �M g iff pf + (1− p)h �pM+(1−p)h pg + (1− p)h.

Independence holds in a strong sense for SEU, since we
can ignore the menus. The menu-independent version of
Independence is easily seen to imply Ambiguity Aversion.
Independence does not hold for MMEU.

Although we have menu independence for SEU and
MMEU, we do not have it for MER or MWER. The fol-
lowing two axioms are weakened versions of menu inde-
pendence that do hold for MER and MWER.

4Stoye [17] assumed that menus were convex, so that if f, g ∈
M , then so is pf + (1 − p)g. We do not make this assumption,
although our results would still hold if we did (with the axioms
slightly modified to ensure that menus are convex). While it may
seem reasonable to think that, if f and g are feasible for an agent,
then so is pf +(1− p)g, this not always the case. For example, it
may be difficult for the agent to randomize, or it may be infeasible
for the agent to randomize with probability p for some choices of
p (e.g., for p irrational).
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Axiom 8. (Menu independence for constant acts) If l∗ and
(l′)∗ are constant acts, then l∗ �M (l′)∗ iff l∗ �M ′ (l′)∗.

In light of this axiom, when comparing constant acts, we
omit the menu.

An act h is never strictly optimal relative to M if, for all
states s ∈ S, there is some f ∈ M such that (f(s))∗ �
(h(s))∗.
Axiom 9. (Independence of Never Strictly Optimal Alter-
natives (INA)) If every act in M ′ is never strictly optimal
relative to M , then f �M g iff f �M∪M ′ g.
Axiom 10. (Boundedness of menus) For every menu M ,
there exists a lottery l ∈ ∆(Y ) such that for all f ∈M and
s ∈ S, (f(s))∗ � l∗.

The boundedness axiom enforces the assumption that we
made earlier that every menu has utilities that are bounded
from above. Recall that this assumption is necessary for
regret to be finite.
Theorem 1. For all Y , U , S, and P+, the family of
preference orders �S,Y,UM,P+ satisfies Axioms 1–10. Con-
versely, if a family of preference orders �M on the acts in
∆(Y )S satisfies Axioms 1–10, then there exist a weighted
set P+ of probabilities on S and a utility U on Y such that
�M=�S,Y,UM,P+ . Moreover, U is unique up to affine transfor-
mations, and P+ can be taken to be maximal, in the sense
that if �M=�S,Y,UM,(P′)+ , and (α,Pr) ∈ (P ′)+, then there
exists α′ ≥ α such that (α′,Pr) ∈ P+.

Showing that �S,Y,UM,P+ satisfies Axioms 1–10 is fairly
straightforward; we leave details to the reader. The
proof of the converse is quite nontrivial, although
it follows the lines of the proof of other repre-
sentation theorems. We provide an outline of the
proof here; details can be found in the full paper
(http://cs.cornell.edu/home/halpern/papers/mwr.pdf).

Using standard techniques, we can show that the axioms
guarantee the existence of a utility function U on prizes
that can be extended to lotteries in the obvious way, so that
l∗ � (l′)∗ iff U(l) ≥ U(l′). We then use techniques of
Stoye [17] to show that it suffices to get a representation
theorem for a single menu, rather than all menus: the menu
consisting of all acts f such that U(f(s)) ≤ 0 for all states
s ∈ S. This allows us to use techniques in the spirit of
those used by by Gilboa and Schmeidler [6] to represent
(unweighted) MMEU. However, there are technical diffi-
culties that arise from the fact that we do not have a key
axiom that is satisfied by MMEU: C-independence (dis-
cussed below). The heart of the proof involves dealing with
the lack of C-independence; We leave details of the proof
to the full paper.

In standard representation theorems, not only is the util-
ity function unique (up to affine transformations, so that
we can replace U by aU + b, where a > 0 and b are

constants), but the probability (or set of probabilities) is
unique as well. We were not able to find natural conditions
on weighted sets of probabilities that guarantee uniqueness.
In the case of sets of probabilities, we need to assume that
the set is convex and closed to get uniqueness. But there
seems to be no natural notion of convexity for a set P+

of weighted probabilities, and the requirement that P+ be
closed seems unreasonable. For example, if P+ consists
of a single probability measure Pr with weight αPr = 1,
then there are sequences Prn → Pr with αPrn = 0,
and yet αPr = 1. To see why something like convex-
ity is needed for uniqueness, consider the delivery exam-
ple and the expected regrets in Table 2, and the distribution
0.5 Pr1 +0.5 Pr10. The weighted expected regret of any act
with respect to 0.5 Pr1 +0.5 Pr10 is bounded above by the
maximum weighted expected regret of that act with respect
to Pr1 and Pr10. Therefore, adding 0.5 Pr1 +0.5 Pr10 to
P+, with any weight in (0, 1], yields another representa-
tion for the MWER preferences. Although we do not get
a unique set P+ in the representation, the maximality re-
quirement allows us to view the set P+ as canonical in a
certain sense.

It is instructive to compare Theorem 1 to other represen-
tation results in the literature. Anscombe and Aumann
[1] showed that the menu-independent versions of ax-
ioms 1–5 and 7 characterize SEU. The presence of Ax-
iom 7 (menu-independent Independence) greatly simpli-
fies things. Gilboa and Schmeidler [7] showed that ax-
ioms 1–6 together with one more axiom that they call
Certainty-independence characterizes MMEU. Certainty-
independence, or C-independence for short, is a weaken-
ing of independence (which, as we observed, does not hold
for MMEU), where the act h is required to be a constant
act. Since MMEU is menu-independent, we state it in a
menu-independent way.
Axiom 11. (C-Independence) If h is a constant act, then
f � g iff pf + (1− p)h � pg + (1− p)h.

As we observed, in general, we have Ambiguity Aversion
(Axiom 6) for regret. Betweenness [3] is a stronger notion
than ambiguity aversion, which states that if an agent is
indifferent between two acts, then he must also be indiffer-
ent among all convex combinations of these acts. While
betweenness does not hold for regret, Stoye [16] gives
a weaker version that does hold. A menu M has state-
independent outcome distributions if the set L(s) = {y ∈
∆(Y ) : ∃f ∈M,f(s) = y} is the same for all states s.
Axiom 12. If h is a constant act, and M has state-
independent outcome distributions, then

h ∼M f ⇒ pf + (1− p)h ∼M∪{pf+(1−p)h} f.

The assumption that the menu has state-independent out-
come distributions is critical in Axiom 12.

Stoye [16] shows that Axioms 1–9 together with Axiom 12
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SEU REG MER MWER MMEU
Ax. 1-6,8-10 X X X X X
Ind X X X X
C-Ind X X
Ax. 12 X X X
Symmetry X X

Table 4: Characterizing axioms for several decision rules.

characterize MER.5 Non-probabilistic regret (which we de-
note REG) can be viewed as a special case of MER, where
P consists of all distributions. This means that it satisfies
all the axioms that MER satisfies. As Stoye [17] shows,
REG is characterized by Axioms 1–9 and one additional
axiom, which he calls Symmetry. We omit the details here.

The assumption that the menu has state-independent out-
come distributions is critical in Axiom 12. In the full pa-
per, we give an example showing that the variant of Axiom
12 without the state-independent outcome distribution re-
quirement does not hold.

Table 4 describes the relationship between the axioms char-
acterizing the decision rules.

5 Characterizing MWER with Likelihood
Updating

We next consider a more dynamic setting, where agents
learn information. For simplicity, we assume that the infor-
mation is always a subset E of the state space. If the agent
is representing her uncertainty using a set P+ of weighted
probability measures, then we would expect her to update
P+ to some new set Q+ of weighted probability mea-
sures, and then apply MWER with uncertainty represented
byQ+. In this section, we characterize what happens in the
special case that the agent uses likelihood updating, so that
Q+ = (P+ | E).

For this characterization, we assume that the agent has a
family of preference orders �E,M indexed not just by the
menu M , but by the information E. Each preference or-
der �E,M satisfies Axioms 1–10, since the agent makes
decisions after learning E using MWER. Somewhat sur-
prisingly, all we need is one extra axiom for the charac-
terization; we call this axiom MDC, for ‘menu-dependent
dynamic consistency’.

To explain the axiom, we need some notation. As usual, we
take fEh to be the act that agrees with f on E and with h
off of E; that is

fEh(s) =

{
f(s) if s ∈ E
h(s) if s /∈ E.

5Stoye actually worked with choice correspondences; see Sec-
tion 6.

In the delivery example, the act check can be thought of as
(cont)E(back), where E is the set of states where there is
only one broken cake.

Roughly speaking, MDC says that you prefer f to g once
you learn E if and only if, for any act h, you also pre-
fer fEh to gEh before you learn anything. This seems
reasonable, since learning that the true state was in E is
conceptually similar to knowing that none of your choices
matter off of E.

To state MDC formally, we need to be careful about the
menus involved. Let MEh = {fEh : f ∈ M}. We can
identify unconditional preferences with preferences condi-
tional on S; that is, we identify �M with �S,M . We also
need to restrict the sets E to which MDC applies. Recall
that conditioning using likelihood updating is undefined for
an event such that P+

(E) = 0. That is, αPr Pr(E) = 0 for
all Pr ∈ P . As is commonly done, we capture the idea that
conditioning onE is possible using the notion of a non-null
event.

Definition 1. An event E is null if, for all f, g ∈ ∆(Y )S

and menus M with fEg, g ∈M , we have fEg ∼M g.

MDC. For all non-null events E, f �E,M g iff
fEh �MEh gEh for some h ∈M .6

The key feature of MDC is that it allows us to reduce all the
conditional preference orders �E,M to the unconditional
order �M , to which we can apply Theorem 1.

Theorem 2. For all Y , U , S, and P+, the family of prefer-
ence orders �S,Y,UM,P+|E for events E such that P+

(E) > 0

satisfies Axioms 1–10 and MDC. Conversely, if a family
of preference orders �E,M on the acts in ∆(Y )S satis-
fies Axioms 1–10 and MDC, then there exist a weighted
set P+ of probabilities on S and a utility U on Y non-null
E, �E,M=�S,Y,UM,P+|E . Moreover, U is unique up to affine
transformations, and P+ can be taken to be maximal.

Proof. Since �M=�S,M satisfies Axioms 1–10, there
must exist a weighted set P+ of probabilities on S and a
utility function U such that f �M g iff f �S,Y,UM,P+ g. We

now show that if E is non-null, then P+
(E) > 0, and

f �E,M g iff f �(S,X,u)
M,P+|E g.

For the first part, it clearly is equivalent to show that if
P+

(E) = 0, then E is null. So suppose that P+
(E) = 0.

Then αPr Pr(E) = 0 for all Pr ∈ P . This means that
αPr Pr(s) = 0 for all Pr ∈ P and s ∈ E. Thus, for all acts

6Although we do not need this fact, it is worth noting that the
MWER decision rule has the property that fEh �MEh gEh for
some act h iff fEh �MEh gEh for all acts h. Thus, this property
follows from Axioms 1–10.
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f and g,

regM,P+(fEg)
= supPr∈P

(
αPr

∑
s∈S Pr(s)regM (fEg, s)

)

= supPr∈P
(
αPr

(∑
s∈E Pr(s)regM (f, s)

)

+
∑
s∈Ec Pr(s)regM (g, s)

)

= supPr∈P
(
αPr

∑
s∈S Pr(s)regM (g, s)

)

= regM,P+(g).

Thus, fEg ∼M g for all acts f, g and menusM containing
fEg and g, which means that E is null.

For the second part, we first show that if P+
(E) > 0, then

for all f, h ∈M , we have that

regMEh,P+(fEh) = P+
(E)regM,P+|E(f).

We proceed as follows:

regMEh,P+(fEh)
= supPr∈P

(
αPr

∑
s∈S Pr(s)regMEh(fEH, s)

)

= supPr∈P
(
αPr Pr(E)

∑
s∈E Pr(s | E)regM (f, s)

+αPr

∑
s∈Ec Pr(s)reg{h}(h, s)

)

= supPr∈P
(
αPr Pr(E)

∑
s∈E Pr(s|E)regM (s, f)

)

= supPr∈P
(
P+

(E)αPr|E
∑
s∈E Pr(s|E)regM (f, s)

)

[since αPr|E = sup{Pr′∈P:Pr′|E=Pr|E}
αPr′ Pr′(E)

P+
(E)

]

= P+
(E) · regM,P+|E(f).

Thus, for all h ∈M ,

regMEh,P+(fEh) ≤ regMEh,P+(gEh)

iff P+
(E) · regM,P+|E(f) ≤ P+

(E) · regM,P+|E(g)

iff regM,P+|E(f) ≤ regM,P+|E(g).

It follows that the order induced by Pr+ satisfies MDC.

Moreover, if 1–10 and MDC hold, then for the weighted set
P+ that represents �M , we have

f �E,M g
iff for some h ∈M,fEh �MEh gEh
iff regM,P+|E(f) ≤ regM,P+|E(g),

as desired.

Analogues of MDC have appeared in the literature before
in the context of updating preference orders. In particular,
Epstein and Schneider [4] discuss a menu-independent ver-
sion of MDC, although they do not characterize updating in
their framework. Sinischalchi [15] also uses an analogue of
MDC in his axiomatization of measure-by-measure updat-
ing of MMEU. Like us, he starts with an axiomatization
for unconditional preferences, and adds an axiom called
constant-act dynamic consistency (CDC), somewhat anal-
ogous to MDC, to extend the axiomatization of MMEU to
deal with conditional preferences.

6 Conclusion

We proposed an alternative belief representation using
weighted sets of probabilities, and described a natural ap-
proach to updating in such a situation and a natural ap-
proach to determining the weights. We also showed how
weighted sets of probabilities can be combined with regret
to obtain a decision rule, MWER, and provided an axiom-
atization that characterizes static and dynamic preferences
induced by MWER.

We have considered preferences indexed by menus here.
Stoye [17] used a different framework: choice functions. A
choice function maps every finite set M of acts to a subset
M ′ of M . Intuitively, the set M ′ consists of the ‘best’ acts
in M . Thus, a choice function gives less information than
a preference order; it gives only the top elements of the
preference order. The motivation for working with choice
functions is that an agent can reveal his most preferred acts
by choosing them when the menu is offered. In a menu-
independent setting, the agent can reveal his whole prefer-
ence order; to decide if f � g, it suffices to present the
agent with a choice among {f, g}. However, with regret-
based choices, the menu matters; the agent’s most preferred
choice(s) when presented with {f, g} might no longer be
the most preferred choice(s) when presented with a larger
menu. Thus, a whole preference order is arguably not
meaningful with regret-based choices. Stoye [17] provides
a representation theorem for MER where the axioms are
described in terms of choice functions. The axioms that we
have attributed to Stoye are actually the menu-based ana-
logue of his axioms. We believe that it should be possible
to provide a characterization of MWER using choice func-
tions, although we have not yet proved this.

Finally, we briefly considered the issue of dynamic con-
sistency and consistent planning. As we showed, making
this precise in the context of regret involves a number of
subtleties. We hope to return to this issue in future work.

Acknowledgments: We thank Joerg Stoye and Edward
Lui for useful comments.
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Abstract

Sequential decision problems are often ap-
proximately solvable by simulating possible
future action sequences. Metalevel decision
procedures have been developed for select-
ing which action sequences to simulate, based
on estimating the expected improvement in
decision quality that would result from any
particular simulation; an example is the re-
cent work on using bandit algorithms to con-
trol Monte Carlo tree search in the game
of Go. In this paper we develop a theo-
retical basis for metalevel decisions in the
statistical framework of Bayesian selection
problems, arguing (as others have done) that
this is more appropriate than the bandit
framework. We derive a number of basic
results applicable to Monte Carlo selection
problems, including the first finite sampling
bounds for optimal policies in certain cases;
we also provide a simple counterexample to
the intuitive conjecture that an optimal pol-
icy will necessarily reach a decision in all
cases. We then derive heuristic approxima-
tions in both Bayesian and distribution-free
settings and demonstrate their superiority to
bandit-based heuristics in one-shot decision
problems and in Go.

1 Introduction

The broad family of sequential decision problems in-
cludes combinatorial search problems, game playing,
robotic path planning, model-predictive control prob-
lems, Markov decision processes (MDP), whether fully
or partially observable, and a huge range of applica-
tions. In almost all realistic instances, exact solution
is intractable and approximate methods are sought.
Perhaps the most popular approach is to simulate a

limited number of possible future action sequences, in
order to find a move in the current state that is (hope-
fully) near-optimal. In this paper, we develop a the-
oretical framework to examine the problem of select-
ing which future sequences to simulate. We derive a
number of new results concerning optimal policies for
this selection problem as well as new heuristic policies
for controlling Monte Carlo simulations. As described
below, these policies outperform previously published
methods for “flat” selection and game-playing in Go.

The basic ideas behind our approach are best ex-
plained in a familiar context such as game playing.
A typical game-playing algorithm chooses a move by
first exploring a tree or graph of move sequences and
then selecting the most promising move based on this
exploration. Classical algorithms typically explore in a
fixed order, imposing a limit on exploration depth and
using pruning methods to avoid irrelevant subtrees;
they may also reuse some previous computations (see
Section 6.2). Exploring unpromising or highly pre-
dictable paths to great depth is often wasteful; for a
given amount of exploration, decision quality can be
improved by directing exploration towards those ac-
tions sequences whose outcomes are helpful in selecting
a good move. Thus, the metalevel decision problem is
to choose what future action sequences to explore (or,
more generally, what deliberative computations to do),
while the object-level decision problem is to choose an
action to execute in the real world.

That the metalevel decision problem can itself be for-
mulated and solved decision-theoretically was noted
by Matheson (1968), borrowing from the related con-
cept of information value theory (Howard, 1966). In
essence, computations can be selected according to
the expected improvement in decision quality resulting
from their execution. I. J. Good (1968) independently
proposed using this idea to control search in chess, and
later defined “Type II rationality” to refer to agents
that optimally solve the metalevel decision problem
before acting. As interest in probabilistic and decision-
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theoretic approaches in AI grew during the 1980s, sev-
eral authors explored these ideas further (Dean and
Boddy, 1988; Doyle, 1988; Fehling and Breese, 1988;
Horvitz, 1987). Work by Russell and Wefald (1988,
1991a,b) formulated the metalevel sequential decision
problem, employing an explicit model of the results of
computational actions, and applied this to the control
of game-playing search in Othello with encouraging re-
sults.

An independent thread of research on metalevel con-
trol began with work by Kocsis and Szepesvári (2006)
on the UCT algorithm, which operates in the context
of Monte Carlo tree search (MCTS) algorithms. In
MCTS, each computation takes the form of a simula-
tion of a randomized sequence of actions leading from
a leaf of the current tree to a terminal state. UCT
is primarily a method for selecting a leaf from which
to conduct the next simulation, and forms the core of
the successful MoGo algorithm for Go playing (Gelly
and Silver, 2011). The UCT algorithm is based on
the the theory of bandit problems (Berry and Frist-
edt, 1985) and the asymptotically near-optimal UCB1
bandit algorithm (Auer et al., 2002). UCT applies
UCB1 recursively to select actions to perform within
simulations.

It is natural to consider whether the two indepen-
dent threads are consistent; for example, are bandit
algorithms such as UCB1 approximate solutions to
some particular case of the metalevel decision prob-
lem defined by Russell and Wefald? The answer, per-
haps surprisingly, is no. The essential difference is
that, in bandit problems, every trial involves execut-
ing a real object-level action with real costs, whereas
in the metareasoning problem the trials are simula-
tions whose cost is usually independent of the util-
ity of the action being simulated. Hence, as Audibert
et al. (2010) and Bubeck et al. (2011) have also noted,
UCT applies bandit algorithms to problems that are
not bandit problems.

One consequence of the mismatch is that bandit poli-
cies are inappropriately biased away from exploring ac-
tions whose current utility estimates are low. Another
consequence is the absence of any notion of “stopping”
in bandit algorithms, which are designed for infinite se-
quences of trials. A metalevel policy needs to decide
when to stop deliberating and execute a real action.

Analyzing the metalevel problem within an appropri-
ate theoretical framework ought to lead to more effec-
tive algorithms than those obtained within the bandit
framework. For Monte Carlo computations, in which
samples are gathered to estimate the utilities of ac-
tions, the metalevel decision problem is an instance
of the selection problem studied in statistics (Bech-

hofer, 1954; Swisher et al., 2003). Despite some recent
work (Frazier and Powell, 2010; Tolpin and Shimony,
2012b), the theory of selection problems is less well
understood than that of bandit problems. Most work
has focused on the probability of selection error rather
than optimal policies in the Bayesian setting (Bubeck
et al., 2011). Accordingly, we present in Sections 2
and 3 a number of results concerning optimal policies
for the general case as well as specific finite bounds on
the number of samples collected by optimal policies
for Bernoulli arms with beta priors. We also provide a
simple counterexample to the intuitive conjecture that
an optimal policy should not spend more on deciding
than the decision is worth; in fact, it is possible for an
optimal policy to compute forever. We also show by
counterexample that optimal index policies (Gittins,
1989) may not exist for selection problems.

Motivated by this theoretical analysis, we propose in
Sections 4 and 5 two families of heuristic approxi-
mations, one for the Bayesian case and one for the
distribution-free setting. We show empirically that
these rules give better performance than UCB1 on
a wide range of standard (non-sequential) selection
problems. Section 6 shows similar results for the case
of guiding Monte Carlo tree search in the game of Go.

2 On optimal policies for selection

In a selection problem the decision maker is faced with
a choice among alternative arms1. To make this choice,
they may gather evidence about the utility of each of
these alternatives, at some cost. The objective is to
maximize the net utility, i.e., the expected utility of
the final arm selected, less the cost of gathering the
evidence. In the classical case (Bechhofer, 1954), evi-
dence might consist of physical samples from a product
batch; in a metalevel problem with Monte Carlo simu-
lations, the evidence consists of outcomes of sampling
computations:

Definition 1. A metalevel probability model is
a tuple (U1, . . . , Uk, E) consisting of jointly distributed
random variables:

• Real random variables U1, . . . , Uk, where Ui is the
utility of arm i, and

• A countable set E of random variables, each vari-
able E ∈ E being a computation that can be per-
formed and whose value is the result of that com-
putation, where e ∈ E will denote that e is a po-
tential value of the computation E.

1Alternative actions are known as arms in the bandit
setting; we borrow this terminology for uniformity.
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For simplicity, in the below we’ll assume the utilities
Ui are bounded, without loss of generality in [0, 1].

Example 1 (Bernoulli sampling). In the Bernoulli
metalevel probability model, each arm will either
succeed or not Ui ∈ {0, 1}, with an unknown latent
frequency of success Θi, and a set of stochastic sim-
ulations of possible consequences E = {Eij |1 ≤ i ≤
k, j ∈ N} that can be performed:

Θi
iid∼ Uniform[0, 1] for i ∈ {1, . . . , k}

Ui | Θi ∼ Bernoulli(Θi) for i ∈ {1, . . . , k}
Eij | Θi

iid∼ Bernoulli(Θi) for i ∈ {1, . . . , k}, j ∈ N

The one-armed Bernoulli metalevel probability
model has k = 2, Θ1 = λ ∈ [0, 1] a constant, and
Θ2 ∼ Uniform[0, 1].

A metalevel probability model, when combined with a
cost of computation c > 0,2 defines a metalevel deci-
sion problem: what is the optimal strategy with which
to choose a sequence of computations E ∈ E in order
to maximize the agent’s net utility? Intuitively, this
strategy should choose the computations that give the
most evidence relevant to deciding which arm to use,
stopping when the cost of computation outweighs the
benefit gained. We formalize the selection problem as a
Markov Decision Process (see, e.g., Puterman (1994)):

Definition 2. A (countable state, undiscounted)
Markov Decision Process (MDP) is a tuple M =
(S, s0, As, T,R) where: S is a countable set of states,
s0 ∈ S is the fixed initial state, As is a countable set
of actions available in state s ∈ S, T (s, a, s′) is the
transition probability from s ∈ S to s′ ∈ S after per-
forming action a ∈ As, and R(s, a, s′) is the expected
reward received on such a transition.

To formulate the metalevel decision problem as an
MDP, we define the states as sequences of computa-
tion outcomes and allow for a terminal state when the
agent chooses to stop computing and act:

Definition 3. Given a metalevel probability model3

(U1, . . . , Uk, E) and a cost of computation c > 0, a
corresponding metalevel decision problem is any

2The assumption of a fixed cost of computation is a
simplification; precise conditions for its validity are given
by Harada (1997).

3Definition 1 made no assumption about the compu-
tational result variables Ei ∈ E , but for simplicity in the
following we’ll assume that each Ei takes one of a count-
able set of values. Without loss of generality, we’ll further
assume the domains of the computational variables E ∈ E
are disjoint.

MDP M = (S, s0, As, T,R) such that

S = {⊥} ∪ {〈e1 . . . , en〉 : ei ∈ Ei for all i,

for finite n ≥ 0 and distinct Ei ∈ E}
s0 = 〈〉
As = {⊥} ∪ Es

where ⊥ ∈ S is the unique terminal state, where Es ⊆ E
is a state-dependent subset of allowed computations,
and when given any s = 〈e1, . . . , en〉 ∈ S, computa-
tional action E ∈ E, and s′ = 〈e1, . . . , en, e〉 ∈ S where
e ∈ E, we have:

T (s, E, s′) = P (E = e | E1 = e1, . . . , En = en)

T (s,⊥,⊥) = 1

R(s, E, s′) = −c
R(s,⊥,⊥) = max

i
µi(s)

where µi(s) = E[Ui | E1 = e1, . . . , En = en].

Note that when stopping in state s, the expected util-
ity of action i is by definition µi(s), so the optimal ac-
tion to take is i∗ ∈ argmaxi µi(s) which has expected
utility µi∗(s) = maxi µi(s).

One can optionally add an external constraint on the
number of computational actions, or their total cost,
in the form of a deadline or budget. This bridges with
the related area of budgeted learning (Madani et al.,
2004). Although this feature is not formalized in the
MDP, it can be added by including either time or past
total cost as part of the state.

Example 2 (Bernoulli sampling). In the Bernoulli
metalevel probability model (Example 1), note that:

Θi | Ei1, . . . , Eini ∼ Beta(si + 1, fi + 1) (1)

Ei(ni+1) | Ei1, . . . , Eini ∼ Bernoulli

(
si + 1

ni + 2

)
(2)

E[Ui | Ei1, . . . , Eini ] = (si + 1)/(ni + 2) (3)

by standard properties of these distributions, where
si =

∑ni
j=1Eini is the number of simulated successes of

arm i, and fi = ni − si the failures. By Equation (1),
the state space is the set of all k pairs (si, fi); Equa-
tions (2) and (3) suffice to give the transition proba-
bilities and terminal rewards, respectively. The one-
armed Bernoulli case is similar, requiring as state just
(s, f) defining the posterior over Θ2.

Given a metalevel decision problem M =
(S, s0, As, T,R) one defines policies and value
functions as in any MDP. A (deterministic, station-
ary) metalevel policy π is a function mapping states
s ∈ S to actions to take in that state π(s) ∈ As.
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The value function for a policy π gives the expected
total reward received under that policy starting from a
given state s ∈ S, and the Q-function does the same
when starting in a state s ∈ S and taking a given
action a ∈ As:

V πM (s) = EπM

[
N∑

i=0

R(Si, π(Si), Si+1) | S0 = s

]
(4)

where N ∈ [0,∞] is the random time the MDP is
terminated, i.e., the unique time where π(SN ) = ⊥,
and similarly for the Q-function QπM (s, a).

As usual, an optimal policy π∗, when it exists, is one
that maximizes the value from every state s ∈ S, i.e.,
if we define for each s ∈ S

V ∗M (s) = sup
π
V πM (s),

then an optimal policy π∗ satisfies V π
∗

M (s) = V ∗M (s) for
all s ∈ S, where we break ties in favor of stopping.

The optimal policy must balance the cost of computa-
tions with the improved decision quality that results.
This tradeoff is made clear in the value function:

Theorem 4. The value function of a metalevel deci-
sion process M = (S, s0, As, T,R) is of the form

V πM (s) = EπM [−cN + max
i
µi(SN ) | S0 = s]

where N denotes the (random) total number of com-
putations performed; similarly for QπM (s, a).

In many problems, including the Bernoulli sampling
model of Example 2, the state space is infinite. Does
this preclude solving for the optimal policy? Can in-
finitely many computations be performed?

There is in full generality an upper bound on the ex-
pected number of computations a policy performs:

Theorem 5. The optimal policy’s expected number of
computations is bounded by the value of perfect infor-
mation (Howard, 1966) times the inverse cost 1/c:

Eπ
∗
[N | S0 = s] ≤ 1

c

(
E[max

i
Ui | S0 = s]−max

i
µi(s)

)
.

Further, any policy π with infinite expected number of
computations has negative infinite value, hence the op-
timal policy stops with probability one.

Although the expected number of computations is al-
ways bounded, there are important cases in which the
actual number is not, such as the following inspired by
the sequential probability ratio test (Wald, 1945):

Example 3. Consider the Bernoulli sampling model
for two arms but with a different prior: Θ1 = 1/2,

and Θ2 is 1/3 or 2/3 with equal probability. Simu-
lating arm 1 gains nothing, and after (s, f) simulated
successes and failures of arm 2 the posterior odds ratio
is

P (Θ2 = 2/3 | s, f)

P (Θ2 = 1/3 | s, f)
=

(2/3)s(1/3)f

(1/3)s(2/3)f
= 2s−f .

Note that this ratio completely specifies the posterior
distribution of Θ2, and hence the distribution of the
utilities and all future computations. Thus, whether it
is optimal to continue is a function only of this ratio,
and thus of s−f . For sufficiently low cost, the optimal
policy samples when s − f equals −1, 0, or 1. But
with probability 1/3, a state with s− f = 0 transitions
to another state s − f = 0 after two samples, giving
finite, although exponentially decreasing, probability to
arbitrarily long sequences of computations.

However, in a number of settings, including the orig-
inal Bernoulli model of Example 1, we can prove an
upper bound on the number of computations. For
reasons of space, and for its later use in Section 4,
we prove here the bound for the one-armed Bernoulli
model.

Before we can do this, we need to get an analytical
handle on the optimal policy. The key is through a
natural approximate policy:

Definition 6. Given a metalevel decision problem
M = (S, s0, As, T,R), the myopic policy πm(s) is de-
fined to equal argmaxa∈As Q

m(s, a) where Qm(s,⊥) =
maxi µi(s) and

Qm(s, E) = EM [−c+ max
i
µi(S1) | S0 = s,A0 = E].

The myopic policy (known as the metalevel greedy ap-
proximation with single-step assumption in (Russell
and Wefald, 1991a)) takes the best action, to either
stop or perform a computation, under the assump-
tion that at most one further computation can be per-
formed. It has a tendency to stop too early, because
changing one’s mind about which real action to take
often takes more than one computation. In fact, we
have:

Theorem 7. Given a metalevel decision problem M =
(S, s0, As, T,R) if the myopic policy performs some
computation in state s ∈ S, then the optimal policy
does too, i.e., if πm(s) 6= ⊥ then π∗(s) 6= ⊥.

Despite this property, the stopping behavior of the my-
opic policy does have a close connection to that of the
optimal policy:

Definition 8. Given a metalevel decision problem
M = (S, s0, As, T,R), a subset S′ ⊆ S of states
is closed under transitions if whenever s′ ∈ S′,
a ∈ As′ , s′′ ∈ S, and T (s′, a, s′′) > 0, we have s′′ ∈ S′.
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Theorem 9. Given a metalevel decision problem M =
(S, s0, As, T,R) and a subset S′ ⊆ S of states closed
under transitions, if the myopic policy stops in all
states s′ ∈ S′ then the optimal policy does too.

Using these results connecting the behavior of the op-
timal and myopic policies, we can prove our bound:

Theorem 10. The one-armed Bernoulli decision pro-
cess with constant arm λ ∈ [0, 1] performs at most
λ(1− λ)/c− 3 ≤ 1/4c− 3 computations.

Proof. Using Definition 6 and Example 2, we deter-
mine which states the myopic policy stops in by bound-
ing Qm(s, E). For a state (s, f), let µ = (s+1)/(n+2)
be the mean utility for arm 2, where n = s+f . Fixing
n and maximizing over µ, we get sufficient condition
for stopping Since the set of states satisfying Equa-
tion (5) is closed under

c ≥ λ(1− λ)

(n+ 3)
n ≥ λ(1− λ)

c
− 3 (5)

Since the set of states satisfying Equation (5) is closed
under transitions (n only increases), by Theorem 7.
Finally, note maxλ∈[0,1] λ(1− λ) = 1/4.

A key implication is that the optimal policy can be
computed in time O(1/c2), i.e., quadratic in the in-
verse cost. This is particularly appropriate when the
cost of computation is relatively high, such as in simu-
lation experiments (Swisher et al., 2003), or when the
decision to be made is critical.

3 Context effects and non-indexability

The Gittins index theorem (Gittins, 1979) is a famous
structural result for bandit problems. It states that in
bandit problems with independent reward distribution
for each arm and geometric discounting, the optimal
policy is an index policy: each arm is assigned a
real-valued index based on its state only, such that it
is optimal to sample the arm with greatest index.

The analogous result does not hold for metalevel de-
cision problems, even when the action’s values are in-
dependent (this formalized later in Definition 13):

Example 4 (Non-indexability). Consider a metalevel
probability model with three actions. U1 is equally
likely to be −1.5 or 1.5 (low mean, high variance), U2

is equally likely to be 0.25 or 1.75 (high mean, low vari-
ance), and U3 = λ has a known value (the context).
The two computations are to observe exactly U1 and
U2, respectively, each with cost 0.2. The corresponding
metalevel MDP has 9 states and can be solved exactly.
Figure 1 plots Q∗λ(s0, Ui)−Q∗λ(s0,⊥) as a function of

the known value λ. As the context λ varies the op-
timal action inverts from observing 1 to observing 2.
Inversions like this are impossible for index policies.
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Figure 1: Optimal Q-values of computing relative to
stopping as a function of the utility of the fixed alter-
native. Note the inversion where for low λ observing
action 1 is strictly optimal, while for medium λ ob-
serving action 2 is strictly optimal.

There is, however, a restriction on what kind of influ-
ence the context can have:

Definition 11. Given a metalevel decision problem
M = (S, s0, As, T,R), and a constant λ ∈ R, define
Mλ = (S, s0, As, T,Rλ) to be M with an additional
action of known value λ, defined by:

Rλ(s, E, s′) = R(s, E, s′)

Rλ(s,⊥,⊥) = max{λ,R(s,⊥,⊥)}

Note this is equivalent to adding an extra arm with
constant value Uk+1 = λ.

Theorem 12. Given a metalevel decision problem
M = (S, s0, As, T,R), there exists a real interval I(s)
for every state s ∈ S such that it is optimal to stop in
state s in Mµ iff µ /∈ I(s). Furthermore, I(s) contains
maxi µi(s) whenever it is nonempty.

4 The blinkered policy

The myopic policy is an extreme approximation, often
stopping far too early. A better approximation can be
obtained, at least for the case where each computation
can only affect the value of one action. The technical
definition (closely related to subtree independence in
Russell and Wefald’s work) is as follows:

Definition 13. A metalevel probability model
(U1, . . . , Uk, E) has independent actions if the com-
putational variables can be partitioned E = E1∪· · ·∪Ek
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such that such that the sets {Ui} ∪ Ei are independent
of each other for different i.

With independent actions, we can talk about metalevel
policies that focus on computations affecting a sin-
gle action. These policies are not myopic—they can
consider arbitrarily many computations—but they are
blinkered because they can look in only a single direc-
tion at a time:

Definition 14. Given a metalevel decision prob-
lem M = (S, s0, As, T,R) with independent actions,
the blinkered policy πb is defined by πb(s) =
argmaxa∈As Q

b(s, a) where Qb(s,⊥) = ⊥ and for Ei ∈
Ei

Qb(s, Ei) = sup
π∈Πbi

Qπ(s, Ei) (6)

where Πb
i is the set of policies π where π(s) ∈ Ei for

all s ∈ S.

Clearly, blinkered policies are better than myopic:
Qm(s, a) ≤ Qb(s, a) ≤ Q∗(s, a). Moreover, the blink-
ered policy can be computed in time proportional to
the number of arms, by breaking the decision problem
into separate subproblems:

Definition 15. Given a metalevel decision problem
M = (S, s0, As, T,R) with independent actions, a
one-action metalevel decision problem for i =
1, . . . , k is the metalevel decision problem M1

i,λ =
(Si, s0, As0, Ti, Ri) defined by the metalevel probability
model (U0, Ui, Ei) with U0 = λ.

Note that given a state s of a metalevel decision prob-
lem, we can form a state si by taking only the results
of computations in Ei (see Definition 3). By action
independence, µi(s) is a function only of si.

Theorem 16. Given a metalevel decision problem
M = (S, s0, As, T,R) with independent actions, let
M1
i,λi

be the ith one-action metalevel decision prob-
lem for i = 1, . . . , k. Then for any s ∈ S, whenever
Ei ∈ As ∩ Ei we have:

QbM (s, Ei) = Q∗M1
i,µ∗−i

(si, Ei)

where µ∗−i = maxj 6=i µj(s).

Theorem 16 shows that to compute the blinkered pol-
icy we need only compute the optimal policies for k
separate one-action problems.

For the Bernoulli problem with k actions, the one-
action metalevel decision problems are all one-action
Bernoulli problems (Example 1). By Theorem 10 these
policies perform at most 1/4c − 3 computations. As
a result, the blinkered policy can be numerically com-
puted in time O(D/c2) independent of k by backwards
induction, where D is the number of points λ ∈ [0, 1]

for which we compute Q∗
M1
i,m

(s).4 This will be worth

the cost in the same situations as mentioned at the
end of Section 2.

Figure 2 compares the blinkered policy to several other
policies from the literature, using a Bernoulli sampling
problem with k = 25 and a wide range of values for
the step cost c. Performance is measured by expected
regret, where the regret includes the cost of sampling:
R = (maxi Ui)−Uj+c n where n is the number of com-
putations and j is the action actually selected. The
blinkered policy significantly outperforms all others.
The myopic policy plateaus as it quickly reaches a po-
sition where no single computation can change the final
action choice. ESPb performs quite well given that is
making a normal approximation to the Beta posterior.
The curves for UCB1-B and UCB1-b show that even
given a good stopping rule, UCB1’s choice of actions
to sample is not ideal.
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Figure 2: Average regret of various policies as a func-
tion of the cost in a 25-action Bernoulli sampling prob-
lem, over 1000 trials. Error bars omitted as they are
negligible (the relative error is at most 0.03).

5 Upper bounds on Value of
Information

In many practical applications of the selection prob-
lem, such as search in the game of Go, prior distri-
butions are unavailable.5 In such cases, one can still
bound the value of information of myopic policies us-
ing concentration inequalities to derive distribution-
independent bounds on the VOI. We obtain such
bounds under the following assumptions:

4In our experiments below, D = 129 points are equally
spaced, using linear interpolation between points.

5The analysis is also applicable to some Bayesian set-
tings, using “fake” samples to simulate prior distributions.
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1. Samples are iid given the value of the arms
(variables), as in the Bayesian schemes such as
Bernoulli sampling.

2. The expectation of a selection in a belief state is
equal to the sample mean (and therefore, after
sampling terminates, the arm with the greatest
sample mean will be selected).

When considering possible samples in the blinkered
semi-myopic setting, two cases are possible: either the
arm α with the highest sample mean Xα is tested, and
Xα becomes lower than Xβ of the second-best arm β;
or, another arm i is tested, and Xi becomes higher
than Xα.

Our bounds below are applicable to any bounded dis-
tribution (without loss of generality bounded in [0, 1]).
Similar bounds can be derived for certain unbounded
distributions, such as the normally distributed prior
value with normally distributed sampling. We derive
a VOI bound for testing an arm a fixed N times, where
N can be the remaining budget of available samples or
any other integer quantity. Denote by Λbi the intrinsic
VOI of testing the ith arm N times, and the number
of samples already taken from the ith arm by ni.

Theorem 17. Λbi is bounded from above as

Λbα ≤
NX

nβ
β

nα
Pr(X

nα+N

α ≤ Xnβ
β )

Λbi|i 6=α ≤
N(1−Xnα

α )

ni
Pr(X

ni+N

i ≥ Xnα
α ) (7)

The probabilities can be bounded from above using
the Hoeffding inequality (Hoeffding, 1963):

Theorem 18. The probabilities in Equation (7) are
bounded from above as

Pr(X
nα+N

α ≤ Xnβ
β ) ≤ 2 exp

(
−ϕ(X

nα
α −X

nβ
β )2nα

)

Pr(X
nα+N

i|i6=α≥ X
nβ
β ) ≤ 2 exp

(
−ϕ(X

nα
α −X

ni
i )2ni

)
(8)

where ϕ = min

(
2( 1+n/N

1+
√
n/N

)2

)
= 8(
√

2− 1)2 > 1.37.

Corollary 19. An upper bound on the VOI estimate
Λbi is obtained by substituting Equation (8) into (7).

Λbα ≤ Λ̂bα =
2NX

nβ
β

nα
exp

(
−ϕ(X

nα
α −X

nβ
β )2nα

)
(9)

Λbi|i6=α ≤ Λ̂bi =
2N(1−Xnα

α )

ni
exp

(
−ϕ(X

nα
α −X

ni
i )2ni

)

More refined bounds can be obtained through tighter
estimates on the probabilities in Equation (7), for
example, based on the empirical Bernstein inequal-

ity (Maurer and Pontil, 2009), or through a more care-
ful application of the Hoeffding inequality, resulting in:

Λbi ≤
N
√
π

ni
√
ni

[
erf
(

(1−Xni
i )
√
ni

)
−erf

(
(X

nα
α −X

ni
i )
√
ni

)]

Λbα ≤
N
√
π

nα
√
nα

[
erf
(
X
nα
α

√
nα

)
− erf

(
(X

nα
α −X

nβ
β )
√
nα

)]

(10)

Selection problems usually separate out the decision
of whether to sample or to stop (called the stopping
policy), and what to sample. We’ll examine the first
issue here, along with the empirical evaluation of the
above approximate algorithms, and the second in the
following section.

Assuming that the sample costs are constant, a semi-
myopic policy will decide to test the arm that has the
best current VOI estimate. When the distributions
are unknown, it makes sense to use the upper bounds
established in Theorem 17, as we do in the following.
This evaluation assumes a fixed budget of samples,
which is completely used up by each of the candidate
schemes, making a stopping criterion irrelevant.
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Figure 3: Average regret of various policies as a func-
tion of the fixed number of samples in a 25-action
Bernoulli sampling problem, over 10000 trials.

The sampling policies are compared on random
Bernoulli selection problem instances. Figure 3 shows
results for randomly-generated selection problems with
25 Bernoulli arms, where the mean rewards of the arms
are distributed uniformly in [0, 1], for a range of sample
budgets 200..2000, with multiplicative step of 2, aver-
aging over 10000 trials. We compare UCB1 with the
policies based on the bounds in Equation (9) (VOI)
and Equation (10) (VOI+). UCB1 is always consider-
ably worse than the VOI-aware sampling policies.

6 Sampling in trees

The previous section addressed the selection problem
in the flat case. Selection in trees is more compli-
cated. The goal of Monte-Carlo tree search (Chaslot
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et al., 2008) at the root node is usually to select an
action that appears to be the best based on outcomes
of search rollouts. But the goal of rollouts at non-root
nodes is different than at the root: here it is impor-
tant to better approximate the value of the node, so
that selection at the root can be more informed. The
exact analysis of sampling at internal nodes is outside
the scope of this paper. At present we have no better
proposal for internal nodes than to use UCT there.

We thus propose the following hybrid sampling scheme
(Tolpin and Shimony, 2012a): at the root node, sample
based on the VOI estimate; at non-root nodes, sample
using UCT.

Strictly speaking, even at the root node the station-
arity assumptions6 underlying our belief-state MDP
for selection do not hold exactly. UCT is an adap-
tive scheme, and therefore the values generated by
sampling at non-root nodes will typically cause val-
ues observed at children of the root node to be non-
stationary. Nevertheless, sampling based on VOI esti-
mates computed as for stationary distributions works
well in practice. As illustrated by the empirical eval-
uation (Section 6), estimates based on upper bounds
on the VOI result in good sampling policies, which ex-
hibit performance comparable to the performance of
some state-of-the-art heuristic algorithms.

6.1 Stopping criterion

When a sample has a known cost commensurable with
the value of information of a measurement, an upper
bound on the intrinsic VOI can also be used to stop
the sampling if the intrinsic VOI of any arm is less
than the total cost of sampling C: maxi Λi ≤ C.

The VOI estimates of Equations (7) and (9) include
the remaining sample budget N as a factor, but given
the cost of a single sample c, the cost of the remaining
samples accounted for in estimating the intrinsic VOI
is C = cN . N can be dropped on both sides of the
inequality, giving a reasonable stopping criterion:

1

N
Λbα ≤

X
nβ
β

nα
Pr(X

nα+N

α ≤ Xnα
β ) ≤ c

1

N
max
i

Λbi ≤max
i

(1−Xnα
α )

ni
Pr(X

ni+N

i ≥ Xnα
α ) ≤ c

∀i : i 6= α (11)

The empirical evaluation (Section 6) confirms the via-
bility of this stopping criterion and illustrates the in-
fluence of the sample cost c on the performance of the
sampling policy. When the sample cost c is unknown,

6This is not a restriction, however, of the general for-
malism in Section 2.

one can perform initial calibration experiments to de-
termine a reasonable value, as done in the following.

6.2 Sample redistribution in trees

The above hybrid approach assumes that the informa-
tion obtained from rollouts in the current state is dis-
carded after an real-world action is selected. In prac-
tice, many successful Monte-Carlo tree search algo-
rithms reuse rollouts generated at earlier search states,
if the sample traverses the current search state during
the rollout; thus, the value of information of a rollout
is determined not just by the influence on the choice of
the action at the current state, but also by its potential
influence on the choice at future search states.

One way to account for this reuse would be to incor-
porate the ‘future’ value of information into a VOI
estimate. However, this approach requires a nontriv-
ial extension of the theory of metareasoning for search.
Alternately, one can behave myopically with respect to
the search tree depth:

1. Estimate VOI as though the information is dis-
carded after each step,

2. Stop early if the VOI is below a certain threshold
(see Section 6.1), and

3. Save the unused sample budget for search in fu-
ture states, such that if the nominal budget is N ,
and the unused budget in the last state is Nu, the
search budget in the next state will be N +Nu.

In this approach, the cost c of a sample in the current
state is the VOI of increasing the budget of a future
state by one sample. It is unclear whether this cost can
be accurately estimated, but supposing a fixed value
for a given problem type and algorithm implemen-
tation would work. Indeed, the empirical evaluation
(Section 6.3) confirms that stopping and sample redis-
tribution based on a learned fixed cost substantially
improve the performance of the VOI-based sampling
policy in game tree search.

6.3 Playing Go against UCT

The hybrid policies were compared on the game Go, a
search domain in which UCT-based MCTS has been
particularly successful (Gelly and Wang, 2006). A
modified version of Pachi (Braudǐs and Loup Gailly,
2011), a state of the art Go program, was used for the
experiments:

• The UCT engine of Pachi was extended with VOI-
aware sampling policies at the first step.
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• The stopping criterion for the VOI-aware policy
was modified and based solely on the sample cost,
specified as a constant parameter. The heuristic
stopping criterion for the original UCT policy was
left unchanged.

• The time-allocation model based on the fixed
number of samples was modified for both the orig-
inal UCT policy and the VOI-aware policies such
that

– Initially, the same number of samples is avail-
able to the agent at each step, independently
of the number of pre-simulated games;

– If samples were unused at the current step,
they become available at the next step.

While the UCT engine is not the most powerful en-
gine of Pachi, it is still a strong player. On the other
hand, additional features of more advanced engines
would obstruct the MCTS phenomena which are the
subject of the experiment. The engines were com-
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Figure 4: Winning rate of the VOI-aware policy in
Go as a function of the cost c, for varying numbers of
samples per ply.

pared on the 9x9 board, for 5000, 7000, 1000, and
15000 samples (game simulations) per ply, each exper-
iment repeated 1000 times. Figure 4 depicts a cali-
bration experiment, showing the winning rate of the
VOI-aware policy against UCT as a function of the
stopping threshold c (if the maximum VOI of a sam-
ple is below the threshold, the simulation is stopped,
and a move is chosen). Each curve in the figure cor-
responds to a certain number of samples per ply. For
the stopping threshold of 10−6, the VOI-aware policy
is almost always better than UCT, and reaches the
winning rate of 64% for 10000 samples per ply.

Figure 5 shows the winning rate of VOI against UCT
c = 10−6. In agreement with the intuition (Fig-
ure 6.2), VOI-based stopping and sample redistribu-
tion is most influential for intermediate numbers of
samples per ply. When the maximum number of sam-
ples is too low, early stopping would result in poorly
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Figure 5: Winning rate of the VOI-aware policy in
Go as a function of the number of samples, fixing cost
c = 10−6.

selected moves. On the other hand, when the maxi-
mum number of samples is sufficiently high, the VOI
of increasing the maximum number of samples in a
future state is low.

Note that if we disallowed reuse of samples in both
Pachi and in our VOI-based scheme, the VOI based-
scheme win rate is even higher than shown in Figure 5.
This is as expected, as this setting (which is somewhat
unfair to Pachi) is closer to meeting the assumptions
underlying the selection MDP.

7 Conclusion

The selection problem has numerous applications.
This paper formalized the problem as a belief-state
MDP and proved some important properties of the
resulting formalism. An application of the selection
problem to control of sampling was examined, and the
insights provided by properties of the MDP led to ap-
proximate solutions that improve the state of the art.
This was shown in empirical evaluation both in “flat”
selection and when extending the methods to game-
tree search for the game of Go.

The methods proposed in the paper open up several
new research directions. The first is a better approx-
imate solution of the MDP, that should lead to even
better flat sampling algorithms for selection. A more
ambitious goal is extending the formalism to trees—
in particular, achieving better sampling at non-root
nodes, for which the purpose of sampling differs from
that at the root.
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Abstract

In this paper we present a new approach
for tightening upper bounds on the parti-
tion function. Our upper bounds are based
on fractional covering bounds on the entropy
function, and result in a concave program
to compute these bounds and a convex pro-
gram to tighten them. To solve these pro-
grams effectively for general region graphs
we utilize the entropy barrier method, thus
decomposing the original programs by their
dual programs and solve them with dual
block optimization scheme. The entropy bar-
rier method provides an elegant framework
to generalize the message-passing scheme to
high-order region graph, as well as to solve
the block dual steps in closed-form. This is
a key for computational relevancy for large
problems with thousands of regions.

1 Introduction

A large set of reasoning problems can be framed as a
set of dependency relations among possible structures.
These dependencies, usually expressed by a graph, de-
fine a joint probability function which drives an infer-
ence engine over those structures [18]. Such graph-
ical models, also known as Markov Random Fields
(MRFs), are found in a wide variety of fields and ap-
plications, including object detection [5], stereo vision
[30], parsing [19], or protein design [29], as well as
other broad disciplines which include artificial intelli-
gence, signal processing and statistical physics.

The inference problem in MRFs involves assessing
the likelihood of possible structures, whether objects,
parsers, or molecular structures. The structures are
specified by assignments of random variables, whose
scores are described in a concise manner by interac-
tions over small subsets of variables. In a fully proba-

bilistic treatment, all possible alternative assignments
are considered. However, this requires summing over
the assignments with their respective weights – eval-
uating the partition function. The partition function
has a special role which goes beyond that of assign-
ing a probability to the alternative assignments. In
addition it plays a fundamental role in various con-
texts including approximate inference [26], maximum-
likelihood parameter estimation [20] and large devi-
ation bounds [4]. Computing the partition function
requires summing over the assignments with their re-
spective weights, thus it is a #P hard problem (i.e.,
efficient weighted counting is unlikely achievable) [31].
Instead there is much focus on finding approximate
solutions and bounds [34].

In this paper we propose an iteration of concave and
convex programs, each using a primal-dual iterative
scheme, to compute increasingly tight upper bounds
on the partition function that are based on fractional
covering bounds on the entropy [6, 23]. Our work is
distinct on a couple of fronts: we handle general re-
gion graphical models, unlike previous attempts that
focus on particular graphs like bipartite forms (outer
and inner regions) or on limited size factors (like pair-
wise). Secondly, our method is based on achieving
a message-passing constellation between nodes of the
region graph thereby utilizing the local structure of
the problem. A message-passing framework, or more
generally the dual decomposition framework, is key
for computational relevancy for large problems which
contain scores of thousands of regions where the fac-
tors are defined on a relatively small number of vari-
ables (e.g., when variables correspond to a large grid
of points).

We begin by introducing the notation and the frac-
tional covering upper bounds of interest. We subse-
quently present a message-passing algorithm to com-
pute the upper bound, using dual decomposition. We
also introduce a new approach to tighten the fractional
covering upper bounds based on the entropy barrier
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function and dual block optimization, and demon-
strate the effectiveness of the approach.

2 Notations, Problem Setup and
Background

Let x = (x1, ..., xn) be the realizations of n discrete
random variables where the range of the i′th random
variable is {1, ..., ni}, i.e., xi ∈ {1, ..., ni}. We consider
a joint distribution p(x1, ..., xn) and assume that it fac-
tors into a product of non-negative functions ψr(xr),
known as potentials. Usually, the potentials are de-
fined over a small subset of indexes r ⊂ {1, ..., n},
called regions:

p(x1, ..., xn) =
1

Z

∏

r∈R
ψr(xr)

where for singletons, i.e. |r| = 1, the functions ψr(xr)
represent ”local evidence” or prior data on the states of
xi, and for |r| > 1 the potential functions describe the
interactions of their variables xr ⊂ {x1, ..., xn}, and Z
is the normalization constant, also called the partition
function. For convenience, we adopt the additive form
by setting φr(xr) = lnψr(xr) thereby having the joint
probability take the form of a Gibbs distribution:

p(x1, , xn) = e
∑
r∈R φr(xr)−lnZ

For example, p(x1, x2, x3) ∝ exp(φ2(x2) +
φ123(x1, x2, x3) + φ23(x2, x3)) has three factors
with regions R = {2}, {1, 2, 3}, {2, 3}. The factor-
ization structure above defines a hypergraph whose
nodes represent the n random variables, and the
regions r ∈ R correspond to its hyperedges. A
convenient way to represent this hypergraph is by
a region graph. A region graph is a directed graph
whose nodes represent the regions and its direct edges
correspond to the inclusion relation, i.e., a directed
edge from node r to s is possible only if s ⊂ r. We
adopt the terminology where P (r) and C(r) stand for
all nodes that are parents and children of the node
r, respectively. Also, we define Ri to be the set of
regions which contains the variable i.

Inference is closely coupled with the ability to evaluate
the logarithm of the partition function lnZ. From a
variational perspective, there is a relationship between
the (minus) Gibbs-Helmholtz free-energy and lnZ:

lnZ = max
p(x) ≥ 0,∑
x p(x) = 1

{∑

r∈R

∑

xr

p(xr)φr(xr) +H(p)
}

(1)

where p(xr) =
∑
x\xr p(x) is the marginal probability

and H(p) = −∑x p(x) ln p(x) is the entropy of the
distribution. However, the complexity of the varia-
tional representation is unwieldy because both the en-
tropy and the simplex constraint require an evaluation

over all possible states of the system x = (x1, ..., xn),
which is exponential in n. Instead one looks for an ap-
proximation or bounds. An upper bound is designed
with a tractable approximation of the free-energy by
(i) upper bounding the entropy term H(p) by a com-
bination of local entropies over marginal probabilities
p(xr), and (ii) by outer bounding the probability sim-
plex constraints by the so called ”local consistency”
constraints.

An upper bound on the entropy function H(p) pro-
ceeds by replacing the entropy by the fractional cov-
ering entropy bounds [6, 23]. These upper bounds are
defined as sum of local entropies over the marginal
probabilities H(p(xr)) = −∑xr

p(xr) ln p(xr):

H(p) ≤
∑

r∈R
crH(p(xr))

These upper bounds hold whenever cr ≥ 0 and for ev-
ery i = 1, ..., n there holds

∑
r∈Ri cr = 1, where Ri

is the set of all regions that contain i. The second
step in obtaining an efficient upper bound is replacing
the marginal distributions p(xr) by ”beliefs” br(xr).
The beliefs form ”pseudo distributions” in the sense
that the beliefs might not necessarily arise as marginal
probabilities of some distribution p(x1, ..., xn). To
maintain local consistency between beliefs which share
the same variables, we define the local consistency poly-
tope L(G) for the region graph G, as follows:

L(G) =



{br}r∈R :

∑

xs\xr
bs(xs) = br(xr) ∀r, s ∈ P (r)

br ≥ 0,
∑
xr
br(xr) = 1 ∀r ∈ R

For example, assume R consists of the three fac-
tors {1}, {1, 2}, {1, 3} then the consistency con-
straints on the beliefs b1(x1), b1,2(x1, x2), b1,3(x1, x3)
enforce their distribution constraints and marginal-
ization constraints

∑
x3
b1,3(x1, x3) = b1(x1) and∑

x2
b1,2(x1, x2) = b1(x1).

Taken together, the upper bound on the log-partition
is defined as follows:

lnZ ≤ max
br(xr)∈L(G)

{∑

r,xr

br(xr)φr(xr) +
∑

r

crH(br)
}

(2)

Thus we introduce a family of upper bounds for the
partition function, for the set of fractional covering
numbers cr. The computational complexity of these
upper bounds is no longer exponential in n, but lin-
ear in the number of the regions and the number of
assignments in each region.

357



Computing the fractional covering upper bound: Given potential functions φr(xr), and nonnegative
covering numbers cr. Set cp,r = cp/(cr +

∑
p′∈P (r) cp′). for every initial values of messages λc→p(xc):

1. For t = 1, 2, ...

(a) For r ∈ R do:

∀xr,∀p ∈ P (r) µp→r(xr) = cp log
( ∑

xp\xr
exp

(
(φp(xp) +

∑

c∈C(p)\r
λc→p(xc)−

∑

p′∈P (p)

λp→p′(xp))
/
cp

))

∀xr,∀p ∈ P (r) λr→p(xr) = cp,r

(
φr(xr) +

∑

c∈C(r)

λc→r(xc) +
∑

p′∈P (r)

µp′→r(xr)
)
− µp→r(xr)

2. Output:

(beliefs) ∀r ∈ R cr 6= 0 : b∗r(xr) ∝ exp
(

(φr(xr) +
∑

c∈C(r)

λc→r(xc)−
∑

p∈P (r)

λr→p(xr))
/
cr

)

∀r ∈ R cr = 0 : support(b∗r) ⊂ argmaxxr{φr(xr) +
∑

c∈C(r)

λc→r(xc)−
∑

p∈P (r)

λr→p(xr)}

(bound)
∑

r,xr

b∗r(xr)φr(xr) +
∑

r

crH(b∗r)

Figure 1: The fractional covering upper bound appears in equation (2). The support of the beliefs are their
non-zero entries, and when cr = 0 it corresponds to the max-beliefs. When considering bipartite region graphs,
this algorithm reduces to many of the previous message-passing algorithms, see Section 6.

3 Computing High-Order Upper
Bounds

In the following we develop an efficient message-
passing method to compute the region based upper
bounds and their optimal beliefs br(xr), for fixed value
of covering numbers cr, as described in equation (2).
These upper bounds depend on the non-negative frac-
tional covering numbers, therefore correspond to max-
imizing a concave function subject to convex con-
straints. Such concave programs can be solved by
minimizing their dual convex programs. Neverthe-
less, there are potentially many different convex dual
programs, depending on the set of constraints, or La-
grange multipliers, one aims at satisfying. We realize
that the probability simplex constraints for br(xr) are
easier to satisfy, therefore we derive a dual program
which ignores these constraints. For this purpose we
use the entropy function as a barrier function over the
probability simplex.

Theorem 1. Define the entropy as a barrier function
over the probability simplex,

H(br) =

{
−∑xr

br(xr) log br(xr) if br ∈ ∆
−∞ otherwise

where br ∈ ∆ if br(xr) ≥ 0 and
∑
xr
br(xr) = 1. The

fractional covering numbers in equation (2) are non-
negative, thus the bound is a concave function and its

dual function takes the form

D(λ) =
∑

r

cr log
(∑

xr

exp(φ̂r(xr)/cr)
)

where

φ̂r(xr) = φr(xr) +
∑

c∈C(r)

λc→r(xc)−
∑

p∈P (r)

λr→p(xr)

In particular, strong duality holds and the primal op-
timal solution can be derived from the dual optimal
solution

br(xr) ∝ exp
(
φ̂r(xr)

/
cr

)

Whenever cr = 0 the corresponding primal optimal so-
lution br(xr) corresponds to the max-beliefs, i.e., prob-
ability distributions over the maximal arguments of
φ̂r(xr).

Proof: Since we use the entropy as a barrier function
over the probability simplex we only need to apply
Lagrange multipliers λr→p(xr) for the marginalization
constraints br(xr) =

∑
xp\xr bp(xp) for every region

r ∈ R, every assignment xr and every parent p ∈ P (r).
Therefore the Lagrangian takes the form

L(br, λc→p) =
∑

r,xr

br(xr)φr(xr) +
∑

r

crH(br)

+
∑

r, xr, p∈P (r)

λr→p(xr)
( ∑

xp\xr
bp(xp)− br(xr)

)
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The dual function is recovered by maximizing the be-
liefs br(xr) in the Lagrangian. Thus

D(λ) =
∑

r

max
br
{
∑

xr

br(xr)φ̂r(xr) + crH(br)}

=
∑

r

cr max
br
{
∑

xr

br(xr)(φ̂r(xr)/cr) +H(br)}

The maximization over the beliefs in the Lagrangian
is done while satisfying the probability simplex con-
straint as they are encoded in the domain of the en-
tropy function. The result follows from the duality
between the entropy barrier function over the proba-
bility simplex and the log-partition function, c.f. equa-
tion (1). Strong duality holds using Theorem 6.2.5 in
[1]. The primal optimal solution is derived from the
dual optimal solution as the primal arguments that
maximize the Lagrangian.

The theorem above uses the conjugate duality between
the entropy barrier function, weighted by the non-
negative number cr, and the weighted extension of
the log-partition. The weighted log-partition is called
the soft-max function and it is used as a smooth ap-
proximation for the max function whenever cr → 0.
In particular, when cr = 0 the soft-max function re-
duces to the max-function, and Theorem 1 demon-
strates the known conjugate duality between the in-
dicator function over the probability simplex and the
max-function.

One of the most important properties of the dual func-
tion is that it decomposes the constraints set, a fea-
ture that is typically called dual decomposition. In
Theorem 1 every dual variable λc→p(xc) represents a
marginalization constraint

∑
xp\xc bp(xp) = bc(xc) in

the primal. Therefore optimizing a single dual variable
amounts to solving the primal problem with a single
constraint. Therefore, the dual coordinate descent al-
gorithm decomposes the primal problem complexity
to smaller sub-problems, while the dual function en-
codes the consistency between the sub-problems solu-
tions. Moreover, since the marginalization constraints
encode the graphical model, performing block coor-
dinate descent results in sending messages along the
edges of the region graph, thus we are able to cope
with large-scale and high-order graphical models.

Theorem 2. Block coordinate descent on the dual in
Theorem 1 takes the form: For every region r ∈ R

∀xr,∀p ∈ P (r)

µp→r(xr) = cp log
( ∑

xp\xr
exp(φp,r(xp)/cp)

)

λr→p(xr) = cp,r

(
φr(xr) +

∑

c∈C(r)

λc→r(xc) +
∑

p′∈P (r)

µp′→r(xr)
)

−µp→r(xr)

where cp,r = cp/(cr +
∑
p′∈P (r) cp′) and φp,r(xp) =

φp(xp)+
∑
c∈C(p)\r λc→p(xc)−

∑
p′∈P (p) λp→p′(xp). If

a region covering number in the dual objective equals
zero, i.e., cr = 0, then the block coordinate descent
update rules for this region hold for every non-negative
cr.

Proof: The gradient equals to

∂D

∂λr→p(xr)
=
∑

xp\xr
bp(xp)− br(xr)

where the probability distributions br(xr), bp(xp) are

proportional to exp(φ̂(xr)/cr) and exp(φ̂(xp)/cp) re-

spectively while φ̂ is defined in Theorem 1. Whenever
cr or cp are zero, their respective (sub)gradients are
their max-beliefs or equivalently probability distribu-
tions over their maximal arguments of φ̂, c.f., Danskin
theorem [1].

The optimal dual variables are those for which
∂D/∂λr→p(xr) = 0, i.e., the corresponding beliefs
agree on their marginal probabilities. When set-
ting µp→r(xr) as above, the marginalization of bp(xp)
equals

∑

xp\xr
bp(xp) ∝ exp

(
(µp→r(xr) + λr→p(xr))/cp

)

Therefore, by taking the logarithm, the gradient van-
ishes whenever the beliefs numerators agree up to an
additive constant

µp→r(xr) + λr→p(xr)
cp

=
φ′r(xr)−

∑
p∈P (r) λr→p(xr)

cr
(3)

where φ′r(xr) = φr(xr) +
∑
c∈C(r) λc→r(xc). Multiply-

ing both sides by crcp and summing both sides with
respect to p′ ∈ P (r) we are able to obtain

∑

p′∈P (r)

λr→p′(xr) = cp,r

(
φ′r(xr) +

∑

p′∈P (r)

µp′→r(xr))
)

Plugin it into equation (3) results in the desired block
dual descent update rule, i.e., λr→p(xr) for which the
partial derivatives vanish.

For convenience, the explicit update rules also appear
in Fig. 1. The above theorem provides a closed-form
solution for block coordinate descent on the dual ob-
jective. Since the dual values are always lower bounded
by the primal values, this algorithm is guaranteed to
converge. However, the dual objective is not strictly
convex therefore, a-priori, coordinate descent might
not converge to the optimal solution [27]. Neverthe-
less, our proof technique demonstrates the dual-primal
relation of dual coordinate descent, as throughout its
runtime it generates a sequence of primal variables,
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namely the beliefs, which agree on their marginal prob-
abilities. In the following we describe the conditions
for which we can recover the primal optimal and dual
optimal solutions.

Theorem 3. The dual block descent algorithm in The-
orem 2 is guaranteed to converge whenever cr are non-
negative. Moreover, if cr > 0 the dual block descent
algorithm converges to the dual optimal value, and the
beliefs br(xr) that are generated throughout the algo-
rithm runtime converge to the primal optimal solution
; whenever its dual sequence is bounded every of its
limit points is an optimal dual solution.

Proof: See supplementary material.

The above theorem does not constrain the dual vari-
ables, namely the messages. Specifically, although the
dual value is guaranteed to converge to the optimum,
the messages are not guaranteed to be bounded. This
may happen since the dual function is not strictly con-
vex, and the messages can be updated along an un-
bounded plateau that does not reduce the dual objec-
tive. The above result can be extended to guarantee
optimality even if cr > 0 only for the maximal regions,
i.e., regions that are not contained by other regions.
However, this result is mathematically involved as it
does not correspond anymore to Bregman divergences
and it is beyond the scope of this work.

The algorithm in Theorem 2 has an important mean-
ing even when the primal function is not concave.
In this case we lose all convergence guarantees, but
the algorithm represents the Lagrangian saddle points.
Therefore, whenever the algorithm converges it reaches
a local maximum of the primal program.

Theorem 4. Assume the program in equation (2) has
mixed numbers cr ≷ 0. Then this program is not con-
cave and the algorithm in Theorem 2 is not guaranteed
to converge, but whenever it converges it reaches a sta-
tionary point for this program.

Proof: See Supplementary material.

The saddle point theorem does not consider programs
for which the covering numbers can be zero, since in
these cases we cannot uniquely restrict the beliefs.
Nevertheless, this theorem applies to many impor-
tant cases, such as the Bethe entropy and the tree
reweighed entropies. In these cases, the negative coef-
ficients for variables ci = 1−∑α⊃i cα, where α are the
non-singleton regions, play an important role. Specif-
ically, the Bethe entropy provides an exact character-
ization for the entropy function over tree models, and
the tree-reweighted entropy provides tighter bounds
than the fractional covering bounds when restricting
the fractional coverings to pairwise entropies. Unfor-
tunately, the message-passing algorithm is not guaran-

teed to converge in these cases but the theorem above
proves that when it converges it reaches a (local) max-
imum of the model.

4 Tightening High-Order Upper
Bounds

Up to this point, the fractional covering numbers cr
were held fixed, while we computed the upper bound
for the partition function that is described in equation
(2). We now consider how to find the optimal covering
numbers which minimize the upper bound, while as-
suming we are able to compute the upper bound and
its optimal arguments efficiently as described in Fig.
1. First we state some of the properties of these up-
per bounds as a function of their fractional covering
numbers:

Theorem 5. (Danskin Theorem) Denote the log-
partition upper bound by

U(c) = max
br(xr)∈L(G)

{∑

r,xr

br(xr)φr(xr) +
∑

r

crH(br)
}

Assume cr ≥ 0 and that the maximal regions cover-
ing numbers are positive. Then U(c) is a convex and
differentiable function, and its partial derivatives are

∂U

∂cr
= H(b∗r)

where

b∗r(xr) = argmax
br(xr)∈L(G)

{∑

r,xr

br(xr)φr(xr) +
∑

r

crH(br)
}

Proof: This is a special case of Danskin theorem, since
L(G) is a compact set. [1]

To find the minimal upper bound on the partition
function we need to minimize a convex and differen-
tiable function over the convex set of fractional cover-
ing.

min
cr≥0,

∑
r∈Ri cr=1

U(c)

Minimizing a convex function over a convex set is typ-
ically done using the conditional gradient method, for
which one finds a direction of descent while respect-
ing the fractional covering constraints [2]. Finding the
direction of descent amounts to solving the linear pro-
gram

d = argmin
cr≥0,

∑
r∈Ri cr=1

∑

r

crH(b∗r) (4)

The direction of descent is always attained, since
it is the minimal argument of a continuous func-
tion over a compact set. However, when considering
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Tightening the fractional covering upper bound: Given functions φi(ri). For every initial values of λi(r):

1. For t = 1, 2, ...

(a) For r ∈ R do:

∀i ∈ r λi(r) = ε log
(∑

ri 6=r
exp

(
(φi(ri) + λi(ri)

/
ε
))
− φi(r)

additively normalize λi(r) such that
∑

i∈r
λi(r) = 0

2. Output: ∀i, set qi(ri) ∝ exp
(

(φi(ri) + λi(ri))
/
ε
)

and ∀r set cr = qi(r), for any of i ∈ r.

Figure 2: The dual decomposition algorithm for recovering the direction of descent, described in equation (4).
This algorithm can be seen as message-passing by reformulating the indexes λi(r) ↔ λi→r. This demonstrates
the differences between our two algorithms. The similarity between the two algorithms is a consequence of the
block dual steps and the use of the entropy barrier method.

large-scale problems, this linear program cannot be
efficiently solved using standard linear programming
solvers. For example, the simplex algorithms or inte-
rior point methods typically involve inverting the con-
straints matrix, an operation that cannot be done effi-
ciently when dealing with graphical models that con-
sist of millions of regions.

In this section we develop a new type of efficient lin-
ear programming solver for finding the minimal up-
per bound. Importantly, we cannot use the message-
passing solvers in Section 3 to minimize these upper
bounds, since the objective as well as the constraint
sets in equation (4) are significantly different. How-
ever, we are able to construct efficient solvers while
using the entropy barrier function in a similar manner.
This emphasizes the computational importance of the
entropy barrier function, since it results in closed-form
update rules which turn to be crucial for large-scale
linear programs.

The constraints of the linear program in equation (4)
restrict the covering numbers (cr)r∈Ri to the proba-
bility simplex. In order to use dual decomposition
effectively, we need to decouple these simplex con-
straints, such that they restrict separate distributions.
Therefore we inflate the covering numbers cr to non-
overlapping probability distribution qi(ri) for every
i = 1, ..., n, while enforcing these distributions to
agree, namely qi(r) = qr for every i ∈ r. One can
verify that these constraints are equivalent to the con-
straints over cr in equation (4). Thus we reformulate
the linear program in equation (4) as

argmin
∀i qi is probability
∀i ∈ r qi(r) = qr

∑

i,ri

qi(ri)
(
H(b∗ri)/|ri|

)

For computational efficiency we solve the above linear
program by dual block ascent. Unfortunately, dual
coordinate ascent may be sub-optimal when the dual
program is not smooth, or equivalently the primal pro-
gram is not strictly convex. Therefore we use the
entropy barrier method to make the primal program
strictly convex, which results in a smooth dual pro-
gram. The following theorem shows that using the
barrier method does not affect the quality of the solu-
tion.

Theorem 6. Let φi(ri) = H(b∗ri)/|ri| and consider
the linear program for finding the direction of descent

min
∀i qi is probability
∀i ∈ r qi(r) = qr

∑

i,ri

qi(ri)φi(ri)

Then the primal-dual programs

(primal)

min
∀i qi is probability
∀i ∈ r qi(r) = qr

∑

i,ri

qi(ri)φi(ri)− ε
∑

i

H(qi)

(dual)

max∑
i∈r λi(r)=0

ε
∑

i

log
(∑

ri

exp
(

(φi(ri) + λi(ri))
/
ε
))

are δ−approximations of the original linear program,
where δ =

∑
i ε log |ri|

Proof: The entropy H(qi) is a non-negative measure,
thus the primal program lower bounds the original lin-
ear program. The bound holds since H(qi) ≤ log |ri|.
The dual program is also a δ−approximation since
strong duality holds.

Having a smooth dual program which relates to a
strictly convex primal program, we can perform dual
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block ascent to reach their optimum. Using the en-
tropy barrier function enables us to derive a closed-
form update rules.

Theorem 7. Consider the primal and dual programs
in Theorem 6. Then the block dual ascent takes the
form

∀r, ∀i ∈ r
λi(r) = ε log

(∑

ri 6=r
exp

(
(φi(ri) + λi(ri)

/
ε
))
− φi(r)

additively normalize λi(r) such that
∑

i∈r
λi(r) = 0

Also, block dual ascent is guaranteed to converge to the
dual optimum, the probabilities qi(ri) that are gener-
ated throughout the algorithm runtime converge to the
primal optimal point and whenever the dual sequence
is bounded it is guaranteed to converge to an optimal
dual solution.

Proof: See supplementary material.

For convenience, the algorithm appears in its explicit
form in Fig. 2. The above block dual ascent algo-
rithm can be seen as message-passing, where messages
are sent between regions and variables, λi(r)↔ λi→r.
This demonstrates the differences between our two al-
gorithms, where the first sends two types of real-valued
vectors λc→p(xc), µp→c(xc) along the edges of the re-
gions graph, and the second sends a real number λi→r
between variables and regions. The similarity between
the two algorithms is a consequence of the block dual
steps and the entropy barrier function.

5 Empirical Evaluation

In our experiments we first compared our message-
passing algorithm for computing the fractional cover-
ing upper bound in equation (2) with the current state-
of-the-art solver [12]. We compared these algorithms
on the grid shape spin glass model. A spin glass model
consists of n spins x1, ..., xn ∈ {−1, 1}, whose local po-
tentials are φi(xi) = θixi and its pairwise potentials
are φi,j(xi, xj) = θi,jxixj . The field parameters θi
were chosen uniformly at random from [−0.05, 0.05]
and the coupling parameters θi,j were chosen uni-
formly at random from [−1, 1]. We used the same
covering numbers for all edges and squares in the grid,
setting ci,j = ci,j,k,l = 1/9 and ci = 1 −∑r∈Ri\i cr.
Therefore we satisfy the covering number constraints,
cr ≥ 0 and

∑
r∈Ri cr = 1. Our algorithm described

in Fig. 1 used a region graph which connects squares
to pairs and pairs to singletons, namely the Hesse di-
agram. [12] use a bipartite inner-outer region graph,
for which all outer regions, i.e., squares, are connected
to all inner regions, i.e., pairs and singletons. We used
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Figure 3: Comparing our message-passing algorithm
for computing the fractional covering upper bound in
Section 3 with [12]. Comparison is for 5 × 5,...,
100×100 grid shape spin glass models, with singletons,
pairs and squares regions. Our approach can utilize in-
termediate size message, between pairs and singletons,
while [12] use the inner-outer region graph, thus send-
ing square based messages in every iteration.

the same Matlab code, on a single core of Intel I5 with
8GB RAM, for both algorithm as our algorithm can
be applied to bipartite region graphs as well. We com-
pared both methods on 5×5 ,..., 100×100 grids and the
stopping criteria was a primal-dual gap of 10−4. Fig.
3 shows that passing messages over the Hesse-diagram
is better than working over the bipartite inner-outer
region graph, and the gap between these methods is
significant for large graphical models. We attribute
this behavior to the fact that on the Hesse diagram
we can pass many messages between pairs and sin-
gletons, while using time consuming square messages
only when they are needed. In contrast [12] use square
messages in every message-passing iteration.

In our experiments we also compared our dual decom-
position algorithm for recovering the direction of de-
scent over the fractional covering numbers in the tight-
ening procedure, as described in Fig. 2. In this experi-
ment we used the singletons, pairs and squares regions
that correspond to the grid shape graphs. We used
φi(ri) = H(b∗r)/|r|, where b∗r(xr) were the optimal be-
liefs in our previous experiments. The results in Fig. 4
show that the state-of-the-art off-the-shelf solver, the
CPLEX, is good for small scale problems but signif-
icantly worse when applied to large scale graphical
models. We note that our implementation is in Mat-
lab, which has a significant overhead when applied to
small scale problems.
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Figure 4: Comparing our dual decomposition algorithm
for recovering the direction of descent over fractional
covering numbers in Section 4 with the CPLEX algo-
rithm. Comparison is for singletons, pairs and squares
regions that correspond to 5×5,..., 100×100 grid shape
graphs.

Tightening the fractional covering upper bounds can
be applied to general region graphs. However, we can-
not compare our approach on high-order region graph,
as all previous approaches are efficient only when the
regions consist of at most pairs of indexes. There-
fore we compared our approach to tightening tree
reweighed upper bounds [32] implemented by [14]. In
our experiments we used the grid shaped spin glass
model with local field parameters θi ∈ [−0.05, 0.05]
and mixed coupling potentials θi,j ∈ [−c, c] that ranges
over c = 0, ..., 2. Our tightening algorithm used single-
tons, pairs and squares regions. The results appear in
Fig. 5 showing that going to high-order regions graphs
provides tighter upper bounds.

6 Related Work

In this work we investigate upper bounds on the par-
tition function over regions graphs. For this purpose
we use the known fractional covering upper bounds for
the entropy function [6, 23]. We applied these bound
to the partition function through conjugate duality.

Tightening upper bounds for the partition function re-
sults in two programs: A concave program for com-
puting the upper bounds and a convex program which
tightens these bounds. The field of convex (or con-
cave) optimization is large and contains many differ-
ent solvers. However, most of these solvers cannot
be applied efficiently to our problems, since they ig-
nore their structures [3, 1]. Our work differs from
these works in an important respect, as we exploit the
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Figure 5: Comparing tightening tree-reweighted bounds
with fractional covering bounds over grid shaped
graphs. Our approach can use covering numbers of
high-order regions therefore achieves better bounds.

structure of the problem, decomposing the constraints
through the dual program and then performing effi-
cient closed-form steps in every iteration. This block
coordinate steps in the dual enable us to efficiently
deal with large-scale problems.

Upper bounds on the partition function were exten-
sively studied in the last decade. [32] presents upper
bounds for graphical models that are based on span-
ning trees, as well as a method to tighten these bounds
using conditional gradient descent. The conditional
gradient is recovered by looking for a maximal span-
ning tree in the graphical model. The upper bound for
the graphical model is computed by a message-passing
algorithm called sum-TRBP, a method that extends to
region graphs [35]. This work differs from ours in im-
portant respects: First, the spanning tree method best
fits graph and encounters computational difficulties
when dealing with hypergraphs, or equivalently region
graphs. Working with region graphs, their conditional
gradient method looks for a spanning hypertree, which
is a NP-hard problem [17]. This problem was already
pointed out in [32] and motivates this work. Thus in
our work we suggest to use the known fractional cov-
ering upper bounds over regions graphs [6, 23], and
we compute the conditional gradient through dual de-
composition and the entropy barrier method. Second,
the sum-TRBP and its high-order extension compute
a bound that has covering numbers with mixed signs.
Thus the sum-TRBP is not guaranteed to converge.
In contrast our work considers bounds that have only
positive covering numbers, thus our bound computa-
tion is guaranteed to converge to the optimum. We
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note that there are other algorithms that fix the con-
vergence of sum-TRBP, but these algorithms cannot
be applied to high-order regions graphs [9, 11].

Convexity provides a well established framework to ex-
tend the spanning trees upper bounds to other com-
binatorial objects. [8] describe upper bounds based
on planar decomposition. Since planarity is a prop-
erty of pairwise regions this work does not extend to
general region graphs. In contrast, our work presents
efficient bounds and tightening for high-order region
graphs. [7] provide a family of upper bounds that are
based on conditional entropy decompositions. These
upper bounds can be applied to high-order region
graphs. However, this work differs from ours in im-
portant respects: First, to compute the bound they
directly solved the primal program. Since the primal
program consists of conditional entropies, which are
not strictly concave, they used a conditional gradient
solver which is suboptimal when addressing large scale
region graphs. A subsequent work presented the corre-
sponding message-passing solver, but it was restricted
to pairwise regions [9]. In contrast, our work intro-
duces the fractional covering entropy bounds which are
strictly concave, thus providing an efficient dual de-
composition solver through message-passing over the
region graph. Second, their tightening approach con-
siders all conditional entropies sequences, thus they
are restricted to a small number of sequences. In con-
trast, our work provides an efficient dual decomposi-
tion algorithm to tighten the bound over all fractional
covering numbers. [21] introduce a new approach for
conditional entropy decomposition, which allows to
use more sequences through a mini-bucket elimination
method. However, this approach suffers from similar
drawbacks as [7] when applied to region graphs.

In Fig. 1 we present a message-passing algorithm to
compute upper bounds on the partition function in
high-order graphical models. This algorithm can be
applied to general programs, consisting of sums of lin-
ear terms and entropy terms. In the last decade many
different message-passing algorithms were devised for
similar programs. Assuming all regions intersect on
at most one variable, our algorithm has two types of
messages, λi→α(xi) and µα→i(xi), and it reduces to
the norm-product belief propagation, which includes
as special cases both sum-product and max-product,
tree-reweighted belief propagation, NMPLP and the
asynchronous splitting algorithm for different values
of ci, cα [26, 32, 33, 10, 28]. However, the main pur-
pose of our algorithm is high-order region graphs. In
this perspective, when the region graph is a bipartite
graph that contains outer-inner regions, our algorithm
reduces the parent-to-child generalized belief propa-
gation algorithm [36, 16, 13], and its convex forms

[12, 24]. These works differ from ours in an impor-
tant respect, as they consider a bipartite region graph
which is computationally demanding since it uses the
maximal regions in every iterations. In contrast, our
algorithm considers a general region graph, thus en-
ables to pass messages between intermediate size re-
gions to gain computational efficiency.

7 Conclusions and Discussion

In our work we describe methods to tighten upper
bounds on the partition function over general region
graphs. These upper bounds use the fractional cover-
ing bounds on the entropy function. We introduced
two dual decomposition algorithms, for computing the
upper bound and to minimize the upper bound. Both
algorithms use the entropy barrier function to obtain
a closed-form block dual steps that optimize their re-
spective dual programs.

To compute the upper bound we solve a concave pro-
gram, consisting of linear terms and entropy terms.
Our solver passes messages along the edges of the re-
gion graph that describe these terms. The computa-
tional complexity of this solver depends on the struc-
ture of the region graph. It turns out that there are
many different region graphs, such as the inner-outer
graph or the Hesse diagram that describe the same pro-
gram [12, 36]. Although some works reasoned about
the optimal graph, this problem is largely open [25].

Interestingly, the message-passing algorithm for com-
puting the upper bound sends partial log-partition
functions µp→c(xc) weighted by the covering num-
ber cr. In particular, when cr = 1 it sends a sum-
product based message and when cr = 0 is sends a
max-product based messages. The form of these mes-
sages is determined by the covering number, and their
primal interpretation relates to the weight cr of the
corresponding entropy function. For example, when-
ever no entropy terms are used, i.e., we use the algo-
rithm for solving linear program relaxations, we only
use max-product based operations and our algorithm
contains the max-product, max-TRBP, NMPLP and
convex max-product as special cases. In this perspec-
tive we could have used this algorithm to tighten lin-
ear program relaxations, but this problem was solved
by [29]. Surprisingly, using fractional covering upper
bounds while some of the covering numbers equal zero,
we get a mixture of sum-product and max-product
rules. This is a result of having sum of entropy and
non-entropy terms in the primal. This goes against
the common practice that mixing max-product and
sum-product rules relates to the marginal-MAP solu-
tion [18, 22, 15]. The relations and differences between
these two problems are subject to further research.
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Convex Analysis and Optimization. Athena Sci-
entific, 2003.

[2] D.P. Bertsekas. Nonlinear programming. 1999.

[3] S.P. Boyd and L. Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2004.

[4] T.M. Cover, J.A. Thomas, J. Wiley, et al. El-
ements of information theory, volume 6. Wiley
Online Library, 1991.

[5] P.F. Felzenszwalb, R.B. Girshick, D. McAllester,
and D. Ramanan. Object detection with discrimi-
natively trained part-based models. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, pages 1627–1645, 2009.

[6] E. Friedgut. Hypergraphs, entropy, and in-
equalities. The American Mathematical Monthly,
111(9):749–760, 2004.

[7] A. Globerson and T. Jaakkola. Approximate in-
ference using conditional entropy decompositions.
In Proceedings of the Eleventh International Con-
ference on Artificial Intelligence and Statistics,
2007.

[8] A. Globerson and T. Jaakkola. Approximate in-
ference using planar graph decomposition. In
Advances in Neural Information Processing Sys-
tems 19: Proceedings of the 2006 Conference, vol-
ume 19, page 473. The MIT Press, 2007.

[9] A. Globerson and T. Jaakkola. Convergent prop-
agation algorithms via oriented trees. In UAI,
2007.

[10] A. Globerson and T. S. Jaakkola. Fixing max-
product: convergent message passing algorithms
for MAP relaxations. In NIPS, 2007.

[11] T. Hazan and A. Shashua. Convergent message-
passing algorithms for inference over general
graphs with convex free energies. In Conference
on Uncertainty in Artificial Intelligence (UAI),
Helsinki, Finland, July 2008.

[12] T. Heskes. Convexity arguments for efficient min-
imization of the Bethe and Kikuchi free ener-
gies. Journal of Artificial Intelligence Research,
26(1):153–190, 2006.

[13] T. Heskes and O. Zoeter. Generalized belief
propagation for approximate inference in hybrid
bayesian networks. In Artificial Intelligence and
Statistics. Citeseer, 2003.

[14] A. Jaimovich, O. Meshi, I. McGraw, and G. Eli-
dan. Fastinf: An efficient approximate inference
library. The Journal of Machine Learning Re-
search, 11:1733–1736, 2010.

[15] J. Jiang, P. Rai, and H. Daumé III. Message-
passing for approximate map inference with latent
variables. NIPS, 2011.

[16] H.J. Kappen and W. Wiegerinck. Novel iteration
schemes for the cluster variation method. In Ad-
vances in Neural Information Processing Systems
14, 2001.

[17] D. Karger and N. Srebro. Learning markov net-
works: Maximum bounded tree-width graphs.
In Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, pages 392–
401. Society for Industrial and Applied Mathe-
matics, 2001.

[18] D. Koller and N. Friedman. Probabilistic graphical
models. MIT press, 2009.

[19] T. Koo, A.M. Rush, M. Collins, T. Jaakkola,
and D. Sontag. Dual decomposition for parsing
with non-projective head automata. In Proceed-
ings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 1288–1298.
Association for Computational Linguistics, 2010.

[20] J. Lafferty, A. McCallum, and F. Pereira. Con-
ditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Inter-
national Conference of Machine Learning, pages
282–289, 2001.

[21] Q. Liu and A. Ihler. Bounding the partition func-
tion using hölders inequality. 2011.

[22] Qiang Liu and Alexander Ihler. Variational algo-
rithms for marginal map. In Uncertainty in Arti-
ficial Intelligence (UAI). Barcelona, Spain, 2011.

[23] M. Madiman and P. Tetali. Information inequal-
ities for joint distributions, with interpretations
and applications. Information Theory, IEEE
Transactions on, 56(6):2699–2713, 2010.

[24] T. Meltzer, A. Globerson, and Y. Weiss. Conver-
gent message passing algorithms-a unifying view.
In UAI, 2009.

[25] P. Pakzad and V. Anantharam. Estimation and
marginalization using the kikuchi approximation
methods. Neural Computation, 17(8):1836–1873,
2005.

[26] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers, 1988.

365



[27] M.J.D. Powell. On search directions for mini-
mization algorithms. Mathematical Programming,
4(1):193–201, 1973.

[28] N. Ruozzi and S. Tatikonda. Convergent and
correct message passing schemes for optimization
problems over graphical models. Arxiv preprint
arXiv:1002.3239, 2010.

[29] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola,
and Y. Weiss. Tightening LP relaxations for MAP
using message passing. In Conf. Uncertainty in
Artificial Intelligence (UAI). Citeseer, 2008.

[30] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler,
V. Kolmogorov, A. Agarwala, M. Tappen, and
C. Rother. A comparative study of energy mini-
mization methods for markov random fields with
smoothness-based priors. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages
1068–1080, 2007.

[31] L.G. Valiant. The complexity of computing
the permanent. Theoretical computer science,
8(2):189–201, 1979.

[32] M. J. Wainwright, T. S. Jaakkola, and A. S. Will-
sky. A new class of upper bounds on the log par-
tition function. Trans. on Information Theory,
51(7):2313–2335, 2005.

[33] M. J. Wainwright, T. S. Jaakkola, and A. S. Will-
sky. MAP estimation via agreement on trees:
message-passing and linear programming. Trans.
on Information Theory, 51(11):3697–3717, 2005.

[34] M.J. Wainwright and M.I. Jordan. Graphical
models, exponential families, and variational in-
ference. Foundations and Trends R© in Machine
Learning, 1(1-2):1–305, 2008.

[35] W. Wiegerinck. Approximations with reweighted
generalized belief propagation. 2005.

[36] JS Yedidia, WT Freeman, and Y. Weiss. Con-
structing free-energy approximations and gener-
alized belief propagation algorithms. Information
Theory, IEEE Transactions on, 51(7):2282–2312,
2005.

366



Inferring Strategies from Limited Reconnaissance
in Real-time Strategy Games

Jesse Hostetler and Ethan Dereszynski and Tom Dietterich and Alan Fern
{hostetje, dereszet, tgd, afern}@eecs.orst.edu

Department of Electrical Engineering and Computer Science
Oregon State University

Corvallis, OR 97331

Abstract

In typical real-time strategy (RTS) games,
enemy units are visible only when they are
within sight range of a friendly unit. Knowl-
edge of an opponent’s disposition is limited to
what can be observed through scouting. In-
formation is costly, since units dedicated to
scouting are unavailable for other purposes,
and the enemy will resist scouting attempts.
It is important to infer as much as possi-
ble about the opponent’s current and future
strategy from the available observations. We
present a dynamic Bayes net model of strate-
gies in the RTS game Starcraft that com-
bines a generative model of how strategies
relate to observable quantities with a prin-
cipled framework for incorporating evidence
gained via scouting. We demonstrate the
model’s ability to infer unobserved aspects of
the game from realistic observations.

1 INTRODUCTION

Real-time strategy (RTS) games, which are video game
simulations of both the economic and military aspects
of warfare, present a rich variety of reasoning chal-
lenges. Players must manage resources, plan at multi-
ple time scales, coordinate heterogeneous armies com-
posed of as many as 100 individual units, and respond
to the actions of adversaries, all with incomplete in-
formation about the game state and under real-time
constraints. We are particularly interested in the prob-
lem of decision-making with incomplete information.
Specifically, how can an agent predict the intentions of
its opponent from a limited number of observations?

This work addresses the problem of unit count infer-
ence during the early stages of the game. In the open-
ing minutes, players make choices about what kinds
of units to build and what technologies to pursue.

These choices dictate the overall “feel” of the game:
aggressive versus defensive, economy versus technol-
ogy, etc. The players’ plans are reflected in their open-
ing build orders. Because resources are limited in the
early game, players must commit to a particular path
through the technology tree, culminating in a certain
composition of the initial army. The primary concern
early in the game is to choose an opening strategy that
will gain an advantage against the opponent’s opening.

This task is complicated by the limited information
available to the players. Enemy units are visible only
if a friendly unit is nearby. A player’s knowledge of her
opponent’s strategy is thus limited to what has been
observed through reconnaissance. It is impractical to
observe all important actions of the enemy, because at-
tempting to do so would divert many units from other
tasks, and the enemy will attempt to destroy the scouts
before they learn anything useful. Instead, players
must gain whatever information they can with reason-
able effort, and then evaluate their limited knowledge
to infer the likely disposition of the enemy. An effec-
tive model of opening strategy must be able to make
useful inferences from realistic evidence.

We present a dynamic Bayesian network model of
opening strategy and apply it to the RTS game Star-
craft. We combine a latent variable model of the true
game state with an observation model that describes
how the latent state generates the observed state. The
true state, which we call the battle space, can be de-
scribed by the true counts of each type of unit con-
trolled by the enemy. The evolving counts of the var-
ious unit types are represented as Markov processes
that are conditionally independent given the history
of a hidden strategy process. The strategy determines
which units are produced in a given time step, and the
produced units accumulate to form the true counts.
The observation model then determines the likelihood
of observations given the true state and a measure of
observation “effort.” Although the hidden state space
is potentially very large due to the number and car-
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dinality of the “count” variables, the structure of the
model admits an efficient particle filtering algorithm
for inference, taking advantage of the conditional in-
dependence of the unit counts.

1.1 REAL-TIME STRATEGY GAMES

We now briefly describe the mechanics of a typical RTS
game. RTS games are simulations of total warfare.
Players claim bases, which contain resources, by build-
ing city centers. They then use workers to harvest
the resources, which they spend to construct buildings
and mobile units. We will use the generic term units
to refer both to buildings and to mobile units. Pro-
duction buildings produce mobile units, including both
workers and military units. In contrast, constructing
tech buildings enables access to more powerful fighting
units, and to further tech buildings. The game ends
when one player controls no buildings, though players
will typically resign a lost position much earlier.

Most RTS games contain a mechanism called the “fog
of war”. A metaphor for the limited intelligence avail-
able to military commanders, the fog of war makes en-
emy units invisible unless they are within visual range
of a friendly unit. Players who lack accurate infor-
mation about their opponents’ activities are at risk
of being surprised by attacks for which they are not
prepared. Skilled players thus make scouting a high
priority, and they are adept at inferring their oppo-
nents’ intentions on the basis of that scouting. It is
this inference process that we seek to model.

1.2 RELATED WORK

A complete description of a player’s opening would
specify how many units of each type existed at any
moment. To our knowledge, no one has yet attempted
to create a model of openings at this level of granu-
larity. Existing work simplifies the task by adopting
less-detailed descriptions of opening strategies.

A common simplification is to assume a small num-
ber of opening categories, such as “rush attack” or
“strong economy.” Weber and Mateas (2009) created
a set of labels for Starcraft openings based on player-
community vocabulary, and tried a variety of super-
vised classifiers for predicting the labels. Schadd et al.
(2007) designed a two-level hierarchy of labels for the
free RTS game Spring.

An alternative to categorical strategies is to model the
dynamics of the game state itself. One can then rep-
resent an opening strategy as a path through the state
space. Ponsen et al. (2007) used a finite state ma-
chine (FSM) model of building construction in War-
gus. States represent which buildings have been built,

and transitions are triggered by the construction of
novel building types. Hsieh and Sun (2008) took a sim-
ilar approach in Starcraft but used a stochastic FSM,
with transition probabilities learned from gameplay
data. Dereszynski et al. (2011) used a hidden Markov
model (HMM). Transitions between hidden states oc-
cur at fixed time intervals, and the observations are
Bernoulli random variables specifying the probability
of building units of each type in the current state.

Except for Schadd et al. (2007), the work discussed
so far assumes that the agent has access to infor-
mation, such as the times at which particular units
were constructed, that would be difficult to observe
during actual gameplay. Another exception is Syn-
naeve and Bessière (2011), who used a directed graph-
ical model to describe a joint distribution over strat-
egy categories, game states, and observations in Star-
craft. Their game states are Boolean vectors indi-
cating whether each type of unit has been built, and
game states are conditionally independent given strat-
egy categories. Observations are incorporated by as-
signing 0 posterior probability to states that are in-
consistent with observations.

The idea of an observation model (also known as a
detection model) has been applied in many settings.
Observation models are needed when we do not ob-
serve the true state of a system, but rather the results
of some process parameterized by the latent true state.
For example, in ecological modeling, we are often in-
terested in the true number of individuals of a certain
species present in the environment, but have access
only to counts provided by field observers, who may
not detect the species even if it is present (MacKen-
zie et al., 2002). The observation model describes how
the hidden state determines the observed state, possi-
bly as a function of covariates such as observer effort.
One can then find the MAP estimate of the hidden
state, accounting for the evidence. Our model is quite
similar in spirit to the “occupancy-detection” models
discussed by Hutchinson et al. (2011).

1.3 OUR CONTRIBUTIONS

This work improves upon existing models of RTS game
opening strategy in several ways. First, we model the
game state at the level of individual unit counts over
time, enabling inference at the level of detail neces-
sary for making gameplay decisions. Second, because
individual unit counts are directly observable during
gameplay, our model does not require evidence that
is impossible to acquire in order to make inferences.
Third, because our observation model includes pre-
dictors of scouting success, we can extract maximum
value from limited observations, particularly from fail-
ure to observe a unit despite significant effort.
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Figure 1: Two-slice representation of the reconnaissance
model. We use plate notation to show that separate
P,K,U, f , and O variables exist for each unit type i (but
note that the variables are not exchangeable). There is a
direct link from U it−1 to U it for each unit type. Shaded
rectangles denote variables that we can directly observe.

2 THE MODEL

The overall model (Figure 1) is a discrete-time dy-
namic Bayes net (Dean and Kanazawa, 1988), com-
bining two distinct components, the state model and
the observation model, which we describe separately.

2.1 STATE MODEL

The state model describes the process that generates
the true state of the battle space. Each game corre-
sponds to a path through a discrete state space be-
ginning at a designated start state. Let St denote the
state at time t. Time is discretized into 30-second in-
tervals, and the player makes a state transition once
every 30 seconds. We will say “epoch k” or “time
t = k” to denote the time step begun by the kth tran-
sition. When the player visits state s, he or she decides
how many units of each type to produce. Let P it be
the number of units of type i produced at time t. We
model the decision to produce k units of type i as oc-
curring in two steps. First, a decision is made about
whether to produce any units of type i at all. Then, if
the first decision is to produce one or more units, a de-
cision is made about how many units to produce. This
is modeled by the zero-inflated Poisson distribution

P (P it = k|St = s) =

{
1− νis k = 0
νis · Pois(k − 1;λis) k > 0

Here, νis is the probability of producing one or more
units of type i in state s, and hence, 1 − νis is the
probability of producing zero units. The number of
units produced (beyond the first) is then determined
by the Poisson rate parameter λis.

We model production as a two-step decision to make
it easier to capture the decision not to produce any
units of a particular type. This is important for mod-
eling the production of tech buildings. In most cases,
only one tech building of a given type is needed—
it just serves as a prerequisite for producing higher-
tech units. Decisions to produce tech buildings reflect
strategic choices, so it is important to capture these
0/1 decisions. The alternative of just using a Poisson
distribution does not handle this well, because there is
no way to control the probability of producing 0 units
without also changing the shape of the distribution.
Similarly, modeling the unit production as Bernoulli
random variables is not appropriate, because there do
exist cases where two such buildings will be produced.

Let Pt = (P it )
N
i=1 denote the vector of unit production

for all N unit types at time t. In our model, the P it
variables are independent conditioned on the current
state St. Of course, there are important constraints
among production rates of multiple unit types, since
producing units of one type consumes resources that
cannot be spent to produce other types. In principle,
these constraints can be incorporated by using a suf-
ficiently large number of states. However, that may
conflict with the goal of capturing the player’s overall
strategy via the sequence of state transitions. Thus,
the number of states must be selected appropriately to
balance these objectives.

When scouting, we cannot directly observe the produc-
tion of units; rather, a scout only observes (a subset
of) the units that exist at a given time. To connect
the individual unit production decisions to the scout-
ing observations, we need to model the total number
of units U it of type i that exist at time t. This is
equal to the number of units produced by time t mi-
nus the number that have died. Each U it takes val-
ues in {0, 1, . . . , Umax}, where Umax is the maximum
number of units that can exist. Because the produc-
tion variable P it has infinite support, the assignment
U it = Umax represents the situation where there are
Umax or more units of type i.

Unit deaths can occur in two ways. Most deaths in-
volve our units killing their units, and these deaths,
Kt = (Ki

t)
N
i=1, are observed. Each unit of type i

also has a small probability `i of suffering an unob-
served loss in each time step. For example, a building
that was scouted while under construction may subse-
quently be canceled. Starting from initial unit counts
ci, the total count of unit type i at time t is defined
recursively as

U i0 = ci

U it ∼ Binomial(U it−1 −Ki
t−1, 1− `i) + P it

When calculating U it in the case where U it−1 = Umax,
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we do not know the exact value represented by U it−1,
so we assume that it is exactly Umax. Very rarely, this
will lead us to underestimate U it , but we set Umax to
be large enough to avoid this problem in most cases.

Let Ut = (U it )
N
i=1 be the vector collecting the numbers

of units of each type that exist at time t. We refer to
Ut as the “battle space” at time t.

2.2 OBSERVATION MODEL

The observation model specifies the likelihood of an
observation given a particular assignment to Ut. We
define an observation as the number of units of each
type that we saw during a time interval, Ot = (Oit)

N
i=1.

We assume that we can distinguish between individual
enemy units within an epoch, but not between epochs.
That is, if we make two observations of a unit of a cer-
tain type during the same epoch, we know whether we
have seen the same unit twice, or two different units.
We can therefore model these observations as sampling
without replacement from Ut within an epoch. For
observations in different epochs, we assume that we
cannot tell whether a unit observed in one epoch is
the same as a unit observed in a previous epoch.

If we observe an enemy unit, we know that the unit
exists. If, on the other hand, we do not observe a
unit, there are two possible explanations. Either the
unit does not exist, or it does exist but we did not look
hard enough for it. Hence our observation model needs
to incorporate some measure of scouting “effort”. If
we put little effort into scouting, failure to observe a
unit does not tell us much about whether it exists. If
we scout extensively and still do not see the unit, it
probably does not exist.

We can exploit domain knowledge to come up with a
measure of effort. In Starcraft, players construct most
of their buildings in either their main base or their
natural expansion. The main base is the area of the
map where the player’s starting units appear at the
beginning of the game, while the natural expansion is
the location where it is most “natural” to construct a
second base. Because buildings must be defended, it
is tactically advantageous to keep them close together.
In the early game, the main base and the natural ex-
pansion are thus the most important areas to scout,
since that is where the buildings will be located. A
natural measure of scouting effort, then, is the pro-
portion of these two areas that have been seen. We
denote this proportion for slice t as Et.

We must now decide how our scouting effort influences
the number of units we observe. Our initial approach
was to treat each observable unit as an independent
Bernoulli trial, with probability of success Et. An ob-
servation would then be a vector of Binomial random

variables, Oit ∼ Binomial(U it , Et).
The Binomial model assumes that the locations of
units are distributed uniformly and independently in
space. However, this assumption is wrong. Units tend
to cluster together. For example, the primary task of
“worker” units is to gather resources, which they do
by traveling back and forth between the city center
and the resource. Thus, almost all worker units will
be found in the area between the city center and the
resources. If we see one worker, it is probably because
we have seen part of this area, and we would expect
to have seen most of the other workers, too. There is
thus more variance in the observations than the Bino-
mial model would predict; the data are overdispersed
with respect to the Binomial distribution.

We account for overdispersion by placing a Beta prior
on the success probability parameter of the Binomial,
forming a Beta-Binomial model (Haseman and Kup-
per, 1979):

Oit ∼ BetaBinomial(U it , µit, ρi)

=

(
U it
Oit

)
B(Oit + αit, U

i
t −Oit + βit)

B(αit, β
i
t)

where B(x, y) is the beta function, and

αit = µit
1− ρi
ρi

, βit = (1− µit)
1− ρi
ρi

.

We adopt the (µ, ρ) parameterization of the Beta dis-
tribution, where µ ∈ [0, 1] is the mean of the Beta and
ρ ∈ [0, 1] is the dispersion parameter, which can be
thought of as the correlation between individual suc-
cesses. The Beta distribution is a conjugate prior of
the Binomial. When ρ → 0, the Beta-Binomial ap-
proaches the Binomial, while as ρ increases, the den-
sity spreads out and eventually becomes bimodal. The
bi-modality captures the “clumpiness” of the units:
depending on whether the part of the area of inter-
est we saw contains the units, the success probability
is either high or low, but probably not in the middle.

For each unit type i, we learn a mapping f i(Et) from
the observation effort to the mean and dispersion of a
Beta-Binomial distribution:

logit(µ̂it) = ai0 + ai1Et

logit(ρ̂i) = bi.

This is then plugged into the Beta-Binomial to com-
pute the likelihood of observing Oit given that U it units
exist. We learn a different mapping for each unit type,
to allow for differences in dispersion and ease of observ-
ability between unit types. The regression coefficients
are assumed constant in time, but µ̂it varies in time
due to its dependence on Et.
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2.3 TRAINING

All model variables except S are observed during train-
ing. Because all other variables are conditionally inde-
pendent of S given P and P is observed, we can factor
the full model into a latent variable model composed
of S and P, and a fully observed model containing the
rest of the parameters. We can learn the parameters of
S and P separately from the rest, simplifying training.

The production process is a hidden Markov model
(HMM) (Rabiner, 1990), where St is the latent
state and P 1

t , ..., P
N
t are the emissions. The pa-

rameters of the HMM are the initial state prob-
abilities P (S0) = Multinomial(η1, ..., ηM ), the
state transition probabilities P (St|St−1 = s) =
Multinomial(πs1, ..., π

s
M ), and the inflated Poisson pa-

rameters P (P it = k > 0|St = s) = νis · Pois(k −
1;λis). We denote the parameter set of the HMM
Φ = (η1, ..., ηM , π

1
1 , ..., π

M
M , λ

1
1, ..., λ

N
M , ν

1
1 , ..., ν

N
M ).

At training time, we observe Pt. We can then estimate
Φ in the usual way using the Expectation Maximiza-
tion (EM) algorithm. We initialized the EM algorithm
as follows: the η and π parameters are set to 1/M ,
values of ν are drawn from a Uniform(0, 1), and λ pa-
rameters are drawn from a Uniform(0, 10).

The “unobserved loss” probabilities `i are estimated
as the number of unobserved losses of units of type
i divided by the number of unit-epochs (analogous to
human-years) during which a unit of that type existed.
For unit types that were present in at least 100 unit-
epochs, `i was estimated using additive smoothing as
ˆ̀i = di+1

Di+2 where di is the number of unobserved losses

of unit type i and Di is the number of unit-epochs for
type i. The smoothing ensures that all unit types have
non-zero `i even if there were no unobserved losses in
the training data. For types that were not present in at
least 100 unit-epochs, the median estimate was used.

The functions f i giving the parameters of the distri-
butions of Oit are learned via logistic regression with
a maximum likelihood objective using the R package
aod (Lesnoff et al., 2010). We fit a µ̂i parameter for
unit type i only if a unit of that type was observed
on at least 100 occasions in the dataset. We fit a ρ̂i

parameter only if the unit type met the condition for
µ̂i and there were at least two of the unit type present
(but not necessarily observed) on at least 100 occa-
sions. The reason for the condition on ρ̂ is that if it
is rare for more than one instance of the unit to exist,
then there is little dispersion in the data, and the esti-
mate of ρ̂i will be near 0. In this case, ρ̂i would merely
be modeling the tendency not to build more than one
unit, which is properly the job of Pt. For types that
did not have enough data for µ̂ or ρ̂, the median of the
estimated regression coefficients are used.

2.4 INFERENCE

We denote the subset of latent variables for a slice t as
Xt =

{
St, P

1
t , . . . , P

N
t , U

1
t , . . . , U

N
t

}
, and the observed

variables as Yt =
{
Et,K

1
t , . . . ,K

N
t , O

1
t , . . . , O

N
t

}
. We

use the lowercase yt and xt to denote instantiations
of these variables (i.e, yt refers to the evidence at
time t). Because each U it is conditioned on St, and
St and U it are Markovian, an exact filtering pass
would require representing the forward message αt =
P (St, U

1
t , ..., U

N
t ). This is intractable for even a mod-

est number of types, since the size of the joint dis-
tribution is MUNmax. However, a key observation is
that, given the history of the strategy state, S0:t =
(S0, . . . , St), the model up to time t decomposes into
N independent HMMs, each tracking the count of a
single type. We leverage this structure by employing a
Rao-Blackwellized particle filter (RBPF) for approxi-
mate inference (Doucet et al., 2000; Murphy, 2000).

In our application of RBPF, we draw particles of
S0:t, and compute P (U it |s0:t) analytically via standard
HMM filtering. Following an importance sampling
framework, particles are generated at each time step
from a proposal distribution Q(St). We use the state
transition model for our proposal, Q(St) = P (St|st−1).
While this choice ignores recent evidence at time t, it
is computationally efficient to sample, and there are
often periods of no evidence, anyway.

At t = 0 we draw R particles from the initial state
prior s10, . . . , s

R
0 ∼ P (S0). Each particle has an im-

portance weight wrt = φ(srt )/Q(srt ), where φ(srt ) is
the probability of the particle’s value srt given by
the full model (up to normalization). At t = 0,
wr0 = (P (y0|sr)P (sr)) /Q(sr). For t > 0, each par-
ticle generates its next value of the state sit ∼ Q(St) =
P (St|sit−1). We then update its weight using the ratio:

wr
′
t =

P (Yt = yt|y0:t−1, s
r
0:t)P (St = srt |St−1 = srt−1)

P (St = srt |St−1 = srt−1)
.

The new weight for particle r is then wrt = wrt−1w
r′
t .

Because our proposal distribution is identical to
P (St|St−1) (canceling out the denominator), we are
only interested in the likelihood term of the numera-
tor, P (Yt = yt|y0:t−1, s

r
0:t), which factors as

N∏

i=1

[
P (U it |U it−1, P

i
t ,K

i
t−1)P (U i,rt−1)

· P (P it |St = srt )P (Oit|U it , Eit)
]
.

P (U i,rt−1) is a forward-pass message that captures the
posterior marginal distribution over the counts of unit
type i at time t − 1. After we weight a sample, we
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compute P (U i,rt |sr0:t, yt) to update its belief about the
unit count and to pass to slice t + 1. Each particle
computes N such messages, one for each unit type.

Particle filters often include a resampling step in which
a new set of particles is sampled in proportion to the
weights of the current set and given uniform weights.
We do not include a resampling step because we expect
that there will often be periods of no observations,
particularly in the opening several epochs. Resampling
would reduce the diversity of the particle population,
with the result that if observations later come in that
suggest a priori unlikely strategies, there may be no
particles left that can represent them well.

3 EXPERIMENTS

We evaluated our model on its ability to infer the cor-
rect hidden unit counts, given the observations avail-
able to players during real games. We used two differ-
ent metrics. For unit types that are usually present in
numbers greater than 1, such as army units, we mea-
sured the model’s ability to infer the correct number of
units. For unit types that are either not built or built
once, such as tech buildings, we measured accuracy in
determining whether or not the unit is present. We
also specifically tested the model’s ability to infer the
absence of units, a task that requires the observation
model and the state model to work together.

Our experiments were conducted using gameplay
data1 from the RTS game Starcraft. We collected re-
plays of 509 Protoss versus Terran games from the
archives of the “Gosu Gamers” website.2 Starcraft
features three playable “races,” Protoss, Terran, and
Zerg, each with different units and abilities. We fo-
cused on a single match-up in this work. In our exper-
iments, we take the perspective of the Terran player,
and try to predict what the Protoss player is doing.

Data about unit counts and observations was extracted
from the replays using the BWAPI library (BWAPI,
2012). We used the BWTA terrain analysis library
(Perkins, 2010) to divide the maps into regions, and
manually identified the regions corresponding to the
Protoss player’s main base and natural expansion.

The dataset was divided into 5 folds for cross-
validation. To select M (number of strategy states)
in the production model, we compared the average
likelihood P (P|Φ) on the held-out data for M =
20, 25, 30, 35, and 40. The likelihoods for M = 25, 30,
and 35 were statistically identical, and we selected
M = 30 based on examination of the learned param-
eters and our knowledge of Starcraft. After selecting

1Our dataset is available at http://web.engr.
oregonstate.edu/∼tgd/rts/scouting/

2http://www.gosugamers.net/starcraft/replays/
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Figure 2: Average scouting effort, and proportion of games
with non-zero effort, by epoch.

M , we estimated the observation model parameters for
each of the 5 folds using their respective training sets.

3.1 BASELINE METHOD

We implemented a simple baseline consisting of two
sets of averages: the average number of units of each
type at the end of each epoch for 1) all games, and 2)
only games in which the unit was present in at least
one epoch. At time t, if no units of type i have been
scouted so far, the baseline predicts the average for
type i at time t across all games. If at least one unit of
type i has been scouted, the baseline predicts the aver-
age across games in which that unit type was present.
The baseline should perform fairly well in the opening,
since many openings are similar and thus unit counts
often have low variance.

3.2 TYPICAL SCOUTING BEHAVIOR

Since our model uses observations obtained through
scouting as its evidence, it is important to know what
typical scouting behavior looks like. There is a pro-
nounced peak in scouting effort from t = 5 to t = 8,
after which effort falls back to a steady “background”
level (Figure 2). The first significant scouting appears
to begin at t = 4. Based on this pattern of scouting,
we should expect our model to perform best during
the peak scouting period, t = 5, 6, 7, 8.

3.3 MODEL ANALYSIS

The (logistic-transformed) regression coefficients of the
observation model reveal varying levels of dispersion
for different types of units. Typical values of ρ̂i for
mobile units were around 0.3, suggesting that mobile
units often travel in groups. Values for buildings var-
ied more widely. For Gateways (which produce mili-
tary units), ρ̂i was equal to 0.71, indicating that Gate-
ways are very likely to be close to one another. At the
other extreme, the value of ρ̂i for the Nexus (the “city
center” where resources are deposited by workers) was
10−8, since Nexi are never built near one another. The
regression coefficients of the scouting effort were al-
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Figure 3: Relative expected absolute error for filtering
predictions of common unit types, versus baseline. The
error bars are 95% confidence intervals.

most all near 1.0, indicating that our scouting effort
measure is a good predictor of scouting success. The
two effort coefficients that were substantially less than
1 corresponded to units with the Cloak ability, which
can only be seen by particular kinds of units. For
one of these units, the Observer, the model learned
that greater scouting effort decreases the probability
of detection. This seems incorrect; we believe it occurs
because in addition to being hard to detect, Observers
usually are not fielded until after the period of peak
scouting, so effort is negatively correlated with Ob-
server presence.

3.4 INFERRING UNIT QUANTITIES

For common units that are built in large numbers, we
would like to be able to infer the true counts. In Star-
craft, the most common units in the early game are the
Probe (the Protoss worker), the Dragoon and Zealot
(basic military units), and the Gateway (a building
that produces Dragoons and Zealots). Figure 3 com-
pares our model’s performance to that of the baseline
for the filtering task over these four unit types. The
dotted lines show the baseline method, the solid lines
show our model’s accuracy at filtering, and the dashed
lines show our model’s accuracy with no observations.
The error measure is relative expected absolute error.
That is, for a true count uit and the model’s marginal
distribution U it , the error is given by

εit = E[|U it − uit|]/(uit + 1).

We outperform the baseline from the onset of scout-
ing for both Dragoons and Zealots. For Probes, we do
worse for most of the opening, although both models
have low error. We can attribute the good perfor-
mance of the baseline to the low variance in Probe
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Figure 4: Expected 0/1 error for filtering predictions of

tech buildings, versus baseline. The error bars are 95%
confidence intervals. Error bars have been omitted for the
model with no observations, for clarity.

counts. Players almost always build Probes as quickly
as possible in order to increase resource income, up
to a “saturation” point that depends on the number
of bases the player has secured. The large increase in
the baseline’s error at the end of the opening suggests
that this is a point where some players have reached
saturation while others have not. Our model does not
experience a notable increase in error because it can
represent multi-modal distributions. For Gateways,
the baseline is notably better from t = 10 to t = 12.
This is explained by the typical timing of Gateway
construction. The first dip at t = 4 is a time when
nearly everyone has built their first Gateway. Players
will then build a second “batch” of Gateways, with the
exact timing and number depending on their strategy.
The second dip in baseline error around t = 11 is the
end of the second period of Gateway production. Our
model has trouble capturing this structure because it
is stationary.

The shapes of the error curves for our model in the
case of no observations are very similar to the base-
line, although the baseline generally has better accu-
racy. Our model tracks the average-case behavior, but
over-predicts production due to the Markov assump-
tion on strategy states. For example, our model will
give some probability of transitioning to a Dragoon-
producing state earlier than a Dragoon could possibly
have been produced.

3.5 INFERRING TECH BUILDINGS

While counts are important for units that are produced
in numbers, for tech buildings we are primarily con-
cerned with whether or not they exist. Thus, we com-
pared our model to an appropriately modified baseline
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Figure 5: Error in predictions for t = 13 given evidence
up to various horizons, on games where the target unit is
not present. Error bars are 95% confidence intervals.

using expected 0/1 error for four tech buildings.

There are two qualitatively different shapes in the
baseline error curves (Figure 4). For the Robotics
Facility and the Observatory, baseline error peaked
and then decreased, while for the Citadel of Adun
(“Citadel”) and Robotics Support Bay (“Support
Bay”), it continued to increase for the entire opening.
Our model with no observations tracks the baseline
error closely, until the baseline error begins to drop.

We again seem to outperform the baseline from the on-
set of scouting, though the baseline sometimes makes
a comeback at the end of the opening. As with the
Gateway results in Section 3.4, the drop in error for the
Robotics Facility at the end of the opening is explained
by typical strategy. The great majority of openings in-
volve building a single Robotics Facility before epoch
13. In constrast to the Gateway results, our model
was able to capture this temporal structure for the
Robotics Facility, perhaps because a Robotics Facility
is built only once, whereas multiple Gateways are built
over a period of time. On the other hand, a Support
Bay will only be built in some openings, and will be
skipped entirely in others. We would expect error to
stabilize after the time period during which the Sup-
port Bay would be constructed passes, and we do see
some evidence of this for our model with observations.
It is also worth noting that the probability of scouting
a Robotics Facility given that it exists is 0.37, while
the probability of scouting a Support Bay is only 0.18.

3.6 INFERRING ABSENCE OF UNITS

Because we model the probability of observation suc-
cess as a function of effort put into observing, we can
make maximum use of negative observations to infer
that units are not present. In Figure 5, we show our
model’s error for predictions of the final epoch, given
evidence up to varying horizons, in games where the
target unit was not present. For example, at hori-
zon 6, the model is making predictions for t = 13
given evidence through t = 6. The true count is equal
to 0, so all of the error comes from over-predicting.
We see that as more negative observations arrive, the
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Figure 6: Belief that a unit of each of four different types
will exist in future epochs in our Reaver drop case study
game, given evidence up to t = 6 and t = 10. The Shuttle
and Support Bay were actually built at t = 9, and the
Reaver was built at t = 11. No Observatory was built.
Error bars are 95% confidence intervals over 30 runs.

model revises its predictions downwards. The obser-
vation model uses the negative observations to infer
that there are currently no units, and the rates of pro-
duction given by the state model limit the number of
units that could be built in the remaining time. The
effect is strongest for units that are normally easy to
scout. For example, Dragoons are present in all but
11 games, and they are easy to observe because they
will be trying to attack the scout. Similarly, Robotics
Facilities are both more common and more frequently
scouted than Observatories. The baseline (not shown)
would have a large, flat error on this task.

3.7 CASE STUDY

To demonstrate how our model would be applied in
a game-playing agent, we examined a single game in
detail. In this game, the Protoss player follows the
Reaver drop strategy, which involves using a transport
aircraft to carry a powerful unit called a Reaver be-
hind enemy lines to attack the workers. This attack
is potentially devastating, but easy to stop unless we
are caught by surprise. We must note that one of the
reasons that we chose this particular game is that the
Terran player’s scouting was particularly effective, giv-
ing our model a chance to make interesting inferences.

The key units in this strategy are the Robotics Support
Bay, which is the tech building required for the Reaver;
the Shuttle, which is the aircraft that transports the
Reaver; and of course the Reaver itself. We can also
contrast the Reaver drop opening to the “standard”
opening, which involves building an Observatory.

This game features two distinct periods of scouting.
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The Terran player scouts the Protoss at t = 6, leaves
for a while, then returns to scout again at t = 10.
Figure 6 shows, for each of the key units, the model’s
belief that at least one such unit will exist at each
future time step, given evidence up to t = 6 and t = 10.

We first examine our model’s predictions with evidence
up to t = 6. The Terran player has just scouted the
Robotics Facility, but the Support Bay and Reaver
have not been built yet. Belief that an Observatory
or a Support Bay exists begins to increase at t = 8.
The Observatory is the “standard” continuation, so it
receives more belief. Belief that a Shuttle exists in-
creases in step with belief in the Support Bay because
the Support Bay is strongly associated with the Reaver
drop strategy, which always features a Shuttle. Belief
that a Reaver exists increases more slowly than belief
in the Support Bay because a Support Bay must be
completed before a Reaver can be built. In the game,
the Support Bay and Shuttle were actually built at
t = 9, and the Reaver was built at t = 11.

We now examine how the model’s predictions change
when more evidence arrives. At t = 10, the Terran
player scouts the Support Bay. This should unam-
biguously signal that a Reaver is going to be built,
since there is no other reason to build a Support Bay.
As expected, belief that a Reaver is coming increases
considerably compared to the prediction with evidence
through time 6. Belief that a Shuttle exists has also
increased.

4 DISCUSSION

Our model generally performed well in comparison to
the baseline for both count predictions and 0/1 predic-
tions. The fact that our model is stationary while the
baseline is non-stationary appears to account for most
of the cases where the baseline was equal to or bet-
ter than our model. Whereas the baseline can exploit
the fact that certain patterns of production events are
associated with particular time periods, in our model
the Markov property of the hidden state erases infor-
mation about how much time has elapsed. In the early
game, our model begins predicting production events
too early because it models the first several epochs,
which all look the same, with a single state that has
a high self-transition probability. Later in the game,
uncertainty about the time means it has trouble cap-
turing time-dependent “pauses” in production. On the
other hand, our model can in principle be extended to
full-length games, while our baseline method is too
coarse to be useful much beyond the opening.

Another weakness of our model is that it incorporates
no explicit prior knowledge about configurations of
unit counts. For example, there will almost never be

two Observatories, but our model can only account for
this by designing the state transition matrix to visit
the Observatory-producing state only once. Accuracy
could be improved by making production of a unit at
time t (P it ) dependent on the count of that unit at time
t−1 (U it−1), with a corresponding increase in the com-
plexity of the latent variable portion of the model. The
situation worsens if we want to incorporate prerequi-
site relationships, as these cause the counting processes
for different unit types to become coupled, destroying
the conditional independences that we leveraged for
efficient inference.

5 FUTURE WORK

A significant future challenge is to devise a model that
can perform well in a full-length game. The space of
possible strategies expands greatly as the game runs
longer and the actions of the opponent begin to in-
fluence one’s own decisions. Naively extending the
current model by adding states is likely to prove in-
tractable. One possibility is to try to exploit hier-
archical structure in strategies to reduce the strategy
space. We suspect that strategic decisions take place
on multiple time scales—broad objectives at the top
level, and smaller steps necessary to achieve them at
the bottom. A model of a full game will need to in-
corporate a model of resource flow in order to reason
effectively about production rates. It will also need
to account for changes in the opponent’s strategy in
response to our actions.

We are also interested in applying opponent models
to optimize scouting policies. As we saw in Figure 2,
human players have converged on at least one time
period in which the tradeoff between probability of
scouting success and expected information gain is at an
optimum. An agent could use our model to determine
when important information is likely to be available.
Modeling the probability that a scouting action will
succeed in acquiring information, assuming that the
information is there, is a challenging problem in itself.
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Abstract

Herding and kernel herding are determinis-
tic methods of choosing samples which sum-
marise a probability distribution. A related
task is choosing samples for estimating inte-
grals using Bayesian quadrature. We show
that the criterion minimised when selecting
samples in kernel herding is equivalent to
the posterior variance in Bayesian quadra-
ture. We then show that sequential Bayesian
quadrature can be viewed as a weighted ver-
sion of kernel herding which achieves perfor-
mance superior to any other weighted herd-
ing method. We demonstrate empirically a
rate of convergence faster than O(1/N). Our
results also imply an upper bound on the em-
pirical error of the Bayesian quadrature esti-
mate.

1 INTRODUCTION

The problem: Integrals A common problem in
statistical machine learning is to compute expectations
of functions over probability distributions of the form:

Zf,p =

∫
f(x)p(x)dx (1)

Examples include computing marginal distributions,
making predictions marginalizing over parameters, or
computing the Bayes risk in a decision problem. In this
paper we assume that the distribution p(x) is known in
analytic form, and f(x) can be evaluated at arbitrary
locations.

Monte Carlo methods produce random samples from
the distribution p and then approximate the integral
by taking the empirical mean Ẑ = 1

N

∑N
n=1 fxn of

the function evaluated at those points. This non-
deterministic estimate converges at a rate O( 1√

N
).

 

 
Herding Samples

SBQ Samples

Figure 1: The first 8 samples from sequential Bayesian
quadrature, versus the first 20 samples from herding.
Only 8 weighted sbq samples are needed to give an es-
timator with the same maximum mean discrepancy as
using 20 herding samples with uniform weights. Rela-
tive sizes of samples indicate their relative weights.

When exact sampling from p is impossible or impracti-
cal, Markov chain Monte Carlo (MCMC) methods are
often used. MCMC methods can be applied to almost
any problem but convergence of the estimate depends
on several factors and is hard to estimate (Cowles &
Carlin, 1996). The focus of this paper is on quasi-
Monte Carlo methods that – instead of sampling ran-
domly – produce a set of pseudo-samples in a deter-
ministic fashion. These methods operate by directly
minimising some sort of discrepancy between the em-
pirical distribution of pseudo-samples and the target
distribution. Whenever these methods are applicable,
they achieve convergence rates superior to the O( 1√

N
)

rate typical of random sampling.
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In this paper we highlight and explore the connec-
tions between two deterministic sampling and integra-
tion methods: Bayesian quadrature (bq) (O’Hagan,
1991; Rasmussen & Ghahramani, 2003) (also known
as Bayesian Monte Carlo) and kernel herding (Chen
et al., 2010). Bayesian quadrature estimates integral
(1) by inferring a posterior distribution over f condi-
tioned on the observed evaluations fxn , and then com-
puting the posterior expectation of Zf,p. The points
where the function should be evaluated can be found
via Bayesian experimental design, providing a deter-
ministic procedure for selecting sample locations.

Herding, proposed recently by Chen et al. (2010), pro-
duces pseudosamples by minimising the discrepancy of
moments between the sample set and the target dis-
tribution. Similarly to traditional Monte Carlo, an es-
timate is formed by taking the empirical mean over
samples Ẑ = 1

N

∑N
n=1 fxn . Under certain assump-

tions, herding has provably fast, O( 1
N ) convergence

rates in the parametric case, and has demonstrated
strong empirical performance in a variety of tasks.

Summary of contributions In this paper, we
make two main contributions. First, we show that the
Maximum Mean Discrepancy (MMD) criterion used to
choose samples in kernel herding is identical to the ex-
pected error in the estimate of the integral Zf,p under
a Gaussian process prior for f . This expected error is
the criterion being minimized when choosing samples
for Bayesian quadrature. Because Bayesian quadra-
ture assigns different weights to each of the observed
function values f(x), we can view Bayesian quadra-
ture as a weighted version of kernel herding. We show
that these weights are optimal in a minimax sense
over all functions in the Hilbert space defined by our
kernel. This implies that Bayesian quadrature dom-
inates uniformly-weighted kernel herding and other
non-optimally weighted herding in rate of convergence.

Second, we show that minimising the MMD, when us-
ing bq weights is closely related to the sparse dictio-
nary selection problem studied in (Krause & Cevher,
2010), and therefore is approximately submodular
with respect to the samples chosen. This allows us
to reason about the performance of greedy forward se-
lection algorithms for Bayesian Quadrature. We call
this greedy method Sequential Bayesian Quadrature
(sbq).

We then demonstrate empirically the relative perfor-
mance of herding, i.i.d random sampling, and sbq, and
demonstrate that sbq attains a rate of convergence
faster than O(1/N).

2 HERDING

Herding was introduced by Welling (2009) as a method
for generating pseudo-samples from a distribution in
such a way that certain nonlinear moments of the
sample set closely match those of the target distri-
bution. The empirical mean 1

N

∑N
n=1 fxn over these

pseudosamples is then used to estimate integral (1).

2.1 Maximum Mean Discrepancy

For selecting pseudosamples, herding relies on an
objective based on the maximum mean discrepancy
(MMD; Sriperumbudur et al., 2010). MMD measures
the divergence between two distributions, p and q with
respect to a class of integrand functions F as follows:

MMDF (p, q) = sup
f∈F

∣∣∣∣
∫
fxp(x)dx−

∫
fxq(x)dx

∣∣∣∣ (2)

Intuitively, if two distributions are close in the MMD
sense, then no matter which function f we choose from
F , the difference in its integral over p or q should be
small. A particularly interesting case is when the func-
tion class F is functions of unit norm from a reproduc-
ing kernel Hilbert space (RKHS) H. In this case, the
MMD between two distributions can be conveniently
expressed using expectations of the associated kernel
k(x, x′) only (Sriperumbudur et al., 2010):

MMD2
H(p, q) = sup

f∈H
‖f‖H=1

∣∣∣∣
∫
fxp(x)dx−

∫
fxq(x)dx

∣∣∣∣
2

(3)

= ‖µp − µq‖2H (4)

=

∫∫
k(x, y)p(x)p(y)dxdy

−2

∫∫
k(x, y)p(x)q(y)dxdy

+

∫∫
k(x, y)q(x)q(y)dxdy, (5)

where in the above formula µp =
∫
φ(x)p(x)dx ∈ H

denotes the mean element associated with the dis-
tribution p. For characteristic kernels, such as the
Gaussian kernel, the mapping between a distribution
and its mean element is bijective. As a consequence
MMDH(p, q) = 0 if and only if p = q, making it a
powerful measure of divergence.

Herding uses maximum mean discrepancy to evaluate
of how well the sample set {x1, . . . , xN} represents the
target distribution p:
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εherding ({x1, . . . , xN}) = MMDH

(
p,

1

N

N∑

n=1

δxn

)

(6)

=

∫∫
k(x, y)p(x)p(y)dxdy

−2
1

N

N∑

n=1

∫
k(x, xn)p(x)dx+

1

N2

N∑

n,m=1

k(xn, xm)

(7)

The herding procedure greedily minimizes its objective
εherding ({x1, . . . , xN}) , adding pseudosamples xn one
at a time. When selecting the n+ 1-st pseudosample:

xn+1 ← argmin
x∈X

εherding ({x1, . . . , xn, x}) (8)

= argmax
x∈X

2Ex′∼p [k(x, x′)]− 1

n+ 1

n∑

m=1

k(x, xm),

assuming k(x, x) = const. The formula (8) admits
an intuitive interpretation: the first term encourages
sampling in areas with high mass under the target dis-
tribution p(x). The second term discourages sampling
at points close to existing samples.

Evaluating (8) requires us to compute Ex′∼p [k(x, x′)],
that is to integrate the kernel against the target dis-
tribution. Throughout the paper we will assume that
these integrals can be computed in closed form. Whilst
the integration can indeed be carried out analytically
in several cases (Song et al., 2008; Chen et al., 2010),
this requirement is the most pertinent limitation on
applications of kernel herding, Bayesian quadrature
and related algorithms.

2.2 Complexity and Convergence Rates

Criterion (8) can be evaluated in only O(n) time.
Adding these up for all subsequent samples, and as-
suming that optimisation in each step has O(1) com-
plexity, producing N pseudosamples via kernel herding
costs O(N2) operations in total.

In finite dimensional Hilbert spaces, the herding al-
gorithm has been shown to reduce MMD at a rate
O( 1

N ), which compares favourably with the O( 1√
N

)

rate obtained by non-deterministic Monte Carlo sam-
plers. However, as pointed out by Bach et al. (2012),
this fast convergence is not guaranteed in infinite di-
mensional Hilbert spaces, such as the RKHS corre-
sponding to the Gaussian kernel.

x

f(x)

 

 

samples

GP mean

GP variance

Z

 

 

target density

expected area

posterior on Z

Figure 2: An illustration of Bayesian Quadrature. The
function f(x) is sampled at a set of input locations.
This induces a Gaussian process posterior distribution
on f , which is integrated in closed form against the
target density, p(x). Since the amount of volume under
f is uncertain, this gives rise to a (Gaussian) posterior
distribution over Zf,p.

3 BAYESIAN QUADRATURE

So far, we have only considered integration methods
in which the integral (1) is approximated by the em-
pirical mean of the function evaluated at some set of
samples, or pseudo-samples. Equivalently, we can say
that Monte Carlo and herding both assign an equal 1

N
weight to each of the samples.

In (Rasmussen & Ghahramani, 2003), an alternate
method is proposed: Bayesian Monte Carlo, or
Bayesian quadrature (bq). bq puts a prior distribu-
tion on f , then estimates integral (1) by inferring a
posterior distribution over the function f , conditioned
on the observations f(xn) at some query points xn.
The posterior distribution over f then implies a dis-
tribution over Zf,p. This method allows us to choose
sample locations xn in any desired manner. See Figure
2 for an illustration of Bayesian Quadrature.

3.1 BQ Estimator

Here we derive the bq estimate of (1), after condition-
ing on function evaluations f(x1) . . . f(xN ), denoted
as f(X). The Bayesian solution implies a distribution
over Zf,p. The mean of this distribution, E [Z] is the
optimal Bayesian estimator for a squared loss.

For simplicity, f is assigned a Gaussian process prior
with kernel function k and mean 0. This assumption
is very similar to the one made by kernel herding in
Eqn. (7).
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After conditioning on fx, we obtain a closed-form pos-
terior over f :

p(f(x?)|f(X)) = N
(
fx? |f̄(x?), cov(x?, x

′
?)
)

(9)

where

f̄(x?) =k(x?, X)K−1f(X) (10)

cov(x?, x
′
?) =k(x?, x?)− k(x?, X)K−1k(X,x?) (11)

and K = k(X,X). Conveniently, the gp posterior
allows us to compute the expectation of (1) in closed
form:

Egp [Z] = Egp

[∫
f(x)p(x)dx

]
(12)

=

∫∫
f(x)p(f(x)|f(X))p(x)dxdf (13)

=

∫
f̄(x)p(x)dx (14)

=

[∫
k(x,X)p(x)dx

]
K−1f(X) (15)

= zTK−1f(X) (16)

where

zn =

∫
k(x, xn)p(x)dx = Ex′∼p [k(xn, x

′)] . (17)

Conveniently, as in kernel herding, the desired expec-
tation of Zf,p is simply a linear combination of ob-
served function values f(x):

Egp [Z] = zTK−1f(X) (18)

=
∑

n

w
(n)
bq fxn) (19)

where

w
(n)
bq =

∑

m

zTj K
−1
nm (20)

Thus, we can view the BQ estimate as a weighted ver-
sion of the herding estimate. Interestingly, the weights
wbq do not need to sum to 1, and are not even neces-
sarily positive.

3.1.1 Non-normalized and Negative Weights

When weighting samples, it is often assumed, or en-
forced (as in Bach et al., 2012; Song et al., 2008), that
the weights w form a probability distribution. How-
ever, there is no technical reason for this requirement,
and in fact, the optimal weights do not have this prop-
erty. Figure 3 shows a representative set of 100 bq
weights chosen on samples representing the distribu-
tion in figure 1. There are several negative weights,
and the sum of all weights is 0.93.

Figure 4 demonstrates that, in general, the sum of the
Bayesian weights exhibits shrinkage when the number
of samples is small.
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Figure 3: A set of optimal weights given by bq, af-
ter 100 sbq samples were selected on the distribution
shown in Figure 1. Note that the optimal weights are
spread away from the uniform weight ( 1

N ), and that
some weights are even negative. The sum of these
weights is 0.93.
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Figure 4: An example of Bayesian shrinkage in the
sample weights. In this example, the kernel width is
approximately 1/20 the width of the distribution be-
ing considered. Because the prior over functions is
zero mean, in the small sample case the weights are
shrunk towards zero. The weights given by simple
Monte Carlo and herding do not exhibit shrinkage.
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3.2 Optimal sampling for BQ

Bayesian quadrature provides not only a mean
estimate of Zf,p, but a full Gaussian posterior
distribution. The variance of this distribution
V [Zf,p|fx1

, . . . , fxN ] quantifies our uncertainty in the
estimate. When selecting locations to evaluate the
function f , minimising the posterior variance is a sen-
sible strategy. Below, we give a closed form formula
for the posterior variance of Zf,p, conditioned on the
observations fx1 . . . fxN , which we will denote by ε2bq.
For a longer derivation, see Rasmussen & Ghahramani
(2003).

ε2bq(x1, . . . , xN ) = V [Zf,p|fx1
, . . . , fxN ] (21)

= Ex,x′∼p [k(x, x′)]− zTK−1z, (22)

where zn = Ex′∼p [k(xn, x
′)] as before. Perhaps sur-

prisingly, the posterior variance of Zf,p does not de-
pend on the observed function values, only on the loca-
tion xn of samples. A similar independence is observed
in other optimal experimental design problems involv-
ing Gaussian processes (Krause et al., 2006). This al-
lows the optimal samples to be computed ahead of
time, before observing any values of f at all (Minka,
2000).

We can contrast the bq objective ε2bq in (22) to the
objective being minimized in herding, ε2herding of equa-

tion (7). Just like ε2herding, ε
2
bq expresses a trade-off

between accuracy and diversity of samples. On the
one hand, as samples get close to high density regions
under p, the values in z increase, which results in de-
creasing variance. On the other hand, as samples get
closer to each other, eigenvalues of K increase, result-
ing in an increase in variance.

In a similar fashion to herding, we may use a greedy
method to minimise ε2bq, adding one sample at a
time. We will call this algorithm Sequential Bayesian
Quadrature (sbq):

xn+1 ← argmin
x∈X

εbq ({x1, . . . , xn, x}) (23)

Using incremental updates to the Cholesky factor, the
criterion can be evaluated in O(n2) time. Iteratively
selecting N samples thus takes O(N3) time, assuming
optimisation can be done on O(1) time.

4 RELATING V [Zf,p] TO MMD

The similarity in the behaviour of ε2herding and ε2bq is
not a coincidence, the two quantities are closely related
to each other, and to MMD.

Proposition 1. The expected variance in the
Bayesian quadrature ε2bq is the maximum mean dis-

crepancy between the target distribution p and qbq(x) =∑N
n=1 w

(n)
bq δxn(x)

Proof. The proof involves invoking the representer
theorem, using bilinearity of scalar products and the
fact that if f is a standard Gaussian process then
∀g ∈ H : 〈f, g〉 ∼ N (0, ‖g‖H):

V [Zf,p|fx1
, . . . , fxN ] = (24)

= Ef∼GP

(∫
f(x)p(x)dx−

N∑

n=1

w
(n)
bq f(xn)

)2

(25)

= Ef∼GP

(∫
〈f, φ(x)〉 p(x)dx−

N∑

n=1

w
(n)
bq 〈f, φ(xn)〉

)2

(26)

= Ef∼GP

〈
f,

∫
φ(x)p(x)dx−

N∑

n=1

w
(n)
bq φ(xn)

〉2

(27)

=
∥∥µp − µqbq

∥∥2
H (28)

= MMD2(p, qbq) (29)

We know that the the posterior mean
Egp [Zf,p|f1, . . . , fN ] is a Bayes estimator and
has therefore the minimal expected squared error
amongst all estimators. This allows us to further
rewrite ε2bq into the following minimax forms:

ε2bq = sup
f∈H

‖f‖HH=1

∣∣∣∣∣

∫
fxp(x)dx−

N∑

n=1

w
(n)
bq fxn

∣∣∣∣∣

2

(30)

= inf
Ẑ:XN 7→R

sup
f∈H

‖f‖HH=1

∣∣∣Z − Ẑ (fx1
, . . . , fxN )

∣∣∣
2

(31)

= inf
w∈RN

sup
f∈H

‖f‖HH=1

∣∣∣∣∣

∫
fxp(x)dx−

N∑

n=1

wnfxn

∣∣∣∣∣

2

(32)

Looking at ε2bq this way, we may discover the deep
similarity to the criterion ε2herding that kernel herding
minimises. Optimal sampling for Bayesian quadrature
minimises the same objective as kernel herding, but
with the uniform 1

N weights replaced by the optimal
weights. As a corollary

ε2bq(x1, . . . , xN ) ≤ ε2KH(x1, . . . , xN ) (33)

It is interesting that ε2bq has both a Bayesian interpre-
tation as posterior variance under a Gaussian process
prior, and a frequentist interpretation as a minimax
bound on estimation error with respect to an RKHS.
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5 SUBMODULARITY

In this section, we use the concept of approximate sub-
modularity (Krause & Cevher, 2010), in order to study
convergence properties of sbq.

A set function s : 2X 7→ R is submodular if, for all
A ⊆ B ⊆ X and ∀x ∈ X

s(A ∪ {x})− s(A) ≥ s(B ∪ {x})− s(B) (34)

Intuitively, submodularity is a diminishing returns
property: adding an element to a smaller set has larger
relative effect than adding it to a larger set. A key
result (see e. g. Krause & Cevher, 2010, and refer-
ences therein) is that greedily maximising a submodu-
lar function is guaranteed not to differ from the opti-
mal strategy by more than a constant factor of (1− 1

e ).

Herding and sbq are examples of greedy algorithms
optimising set functions: they add each pseudosamples
in such a way as to minimize the instantaneous reduc-
tion in MMD. So it is intuitive to check whether the
objective functions these methods minimise are sub-
modular. Unfortunately, neither εherding, nor εbq sat-
isfies all conditions necessary for submodularity. How-
ever, noting that sbq is identical to the sparse dictio-
nary selection problem studied in detail by Krause &
Cevher (2010), we can conclude that sbq satisfies a
weaker condition called approximate submodularity.

A set function s : 2X 7→ R is approximately submodular
with constant ε > 0, if for all A ⊆ B ⊆ X and ∀x ∈ X

s(A ∪ {x})− s(A) ≥ s(B ∪ {x})− s(B)− ε (35)

Proposition 2. ε2bq(∅)−ε2bq(·) is weakly a weakly sub-
modular set function with constant ε < 4r, where r is
the incoherency

r = max
x,x′∈P⊆X

k(x, x′)√
k(x, x)k(x′, x′)

(36)

Proof. By the definition of MMD we can see that

−ε2bq = infw∈RN
∥∥∥µp −

∑N
n=1 w

(n)
bq k(·, xn)

∥∥∥
2

H
is the

negative squared distance between the mean element
µp and its projection onto the subspace spanned by the
elements k(·, xn). Substituting k = 1 into Theorem 1
of Krause & Cevher (2010) concludes the proof.

Unfortunately, weak submodularity does not provide
the strong near-optimality guarantees as submodular-
ity does . If s : 2X 7→ R is a weakly submodular
function with constant ε, and |An| = n is the result of
greedy optimisation of s, then

s(An) ≥
(

1− 1

e

)
max
|A|≤n

s(A)− nε (37)

As pointed out by Krause & Cevher (2010), this guar-
antee is very weak, as in our case the objective function
ε2bq(∅)− ε2bq(·) is upper bounded by a constant. How-
ever, establishing a connection between sbq and sparse
dictionary selection problem opens up interesting di-
rections for future research, and it may be possible
to apply algorithms and theory developed for sparse
dictionary selection to kernel-based quasi-Monte Carlo
methods.

6 EXPERIMENTS

In this section, we examine empirically the rates of
convergence of sequential Bayesian quadrature and
herding. We examine both the expected error rates,
and the empirical error rates.

In all experiments, the target distribution p is chosen
a 2D mixture of 20 Gaussians, whose equiprobability
contours are shown in Figure 1. To ensure a compar-
ison fair to herding, the target distribution, and the
kernel used by both methods, correspond exactly to
the one used in (Chen et al., 2010, Fig. 1). For ex-
perimental simplicity, each of the sequential sampling
algorithms minimizes the next sample location from a
pool of 10000 locations randomly drawn from the base
distribution. In practice, one would run a local opti-
mizer from each of these candidate locations, however
in our experiments we found that this did not make a
significant difference in the sample locations chosen.

6.1 Matching a distribution

We first extend an experiment from (Chen et al., 2010)
designed to illustrate the mode-seeking behavior of
herding in comparison to random samples. In that
experiment, it is shown that a small number of i. i. d.
samples drawn from a multimodal distribution will
tend to, by chance, assign too many samples to some
modes, and too few to some other modes. In con-
trast, herding places ‘super-samples’ in such a way as
to avoid regions already well-represented, and seeks
modes that are under-represented.

We demonstrate that although herding improves upon
i. i. d. sampling, the uniform weighting of super-
samples leads to sub-optimal performance. Figure 1
shows the first 20 samples chosen by kernel herding, in
comparison with the first 8 samples chosen by sbq. By
weighting the 8 sbq samples by the quadrature weights
in (20), we can obtain the same expected loss as by us-
ing the 20 uniformly-weighted herding samples. Figure
5 shows MMD versus the number of samples added, on
the distribution shown in Figure 1. We can see that in
all cases, sbq dominates herding. It appears that sbq
converges at a faster rate than O(1/N), although the
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Figure 5: The maximum mean discrepancy, or ex-
pected error of several different quadrature methods.
Herding appears to approach a rate close to O(1/N).
sbq appears to attain a faster, but unknown rate.

form of this rate is unknown.

There are two differences between herding and sbq:
sbq chooses samples according to a different criterion,
and also weights those samples differently. We may
ask whether the sample locations or the weights are
contributing more to the faster convergence of sbq.
Indeed, in Figure 1 we observe that the samples se-
lected by sbq are quite similar to the samples se-
lected by kernel herding. To answer this question,
we also plot in Figure 5 the performance of a fourth
method, which selects samples using herding, but later
re-weights the herding samples with bq weights. Ini-
tially, this method attains similar performance to sbq,
but as the number of samples increases, sbq attains a
better rate of convergence. This result indicates that
the different sample locations chosen by sbq, and not
only the optimal weights, are responsible for the in-
creased convergence rate of sbq.

6.2 Estimating Integrals

We then examined the empirical performance of the
different estimators at estimating integrals of real func-
tions. To begin with, we looked at performance on 100
randomly drawn functions, of the form:

f(x) =
10∑

i=1

αik(x, ci) (38)
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Figure 6: Within-model error: The empirical error
rate in estimating Zf,p, for several different sampling
methods, averaged over 250 functions randomly drawn
from the RKHS corresponding to the kernel used.

where

‖f‖2H =

10∑

i=1

10∑

j=1

αiαjk(ci, cj) = 1 (39)

That is, these functions belonged exactly to the unit
ball of the RKHS defined by the kernel k(x, x′) used to
model them. Figure 6 shows the empirical error versus
the number of samples, on the distribution shown in
Figure 1. The empirical rates attained by the method
appear to be similar to the MMD rates in Figure 5.

By definition, MMD provides a upper bound on the
estimation error in the integral of any function in
the unit ball of the RKHS (Eqn. (3)), including the
Bayesian estimator, sbq. Figure 7 demonstrates this
quickly decreasing bound on the sbq empirical error.

6.3 Out-of-model performance

A central assumption underlying sbq is that the in-
tegrand function belongs to the RKHS specified by
the kernel. To see how performance is effected if this
assumption is violated, we performed empirical tests
with functions chosen from outside the RKHS. We
drew 100 functions of the form:

f(x) =
10∑

i=1

αi exp(−1

2
(x− ci)TΣ−1i (x− ci) (40)

where each αi ci Σi were drawn from broad distribu-
tions. This ensured that the drawn functions had fea-
tures such as narrow bumps and ridges which would

383



10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

number of samples

a
b
so
lu
te

e
rr
o
r

 

 

bound

SBQ errors

Figure 7: The empirical error rate in estimating Zf,p,
for the sbq estimator, on 10 random functions drawn
from the RKHS corresponding to the kernel used. Also
shown is the upper bound on the error rate implied by
the MMD.

not be well modelled by functions belonging to the
isotropic kernel defined by k. Figure 8 shows that,
on functions drawn from outside the assumed RKHS,
relative performance of all methods remains similar.

Code to reproduce all results is available at
http://mlg.eng.cam.ac.uk/duvenaud/

7 DISCUSSION

7.1 Choice of Kernel

Using herding techniques, we are able to achieve fast
convergence on a Hilbert space of well-behaved func-
tions, but this fast convergence is at the expense of the
estimate not necessarily converging for functions out-
side this space. If we use a characteristic kernel (Sripe-
rumbudur et al., 2010), such as the exponentiated-
quadratic or Laplacian kernels, then convergence in
MMD implies weak convergence of qN to the target
distribution. This means that the estimate converges
for any bounded measurable function f . The speed of
convergence, however, may not be as fast.

Therefore it is crucial that the kernel we choose is
representative of the function or functions f we will
integrate. For example, in our experiments, the con-
vergence of herding was sensitive to the width of the
Gaussian kernel. One of the major weaknesses of ker-
nel methods in general is the difficulty of setting kernel
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Figure 8: Out-of-model error: The empirical error
rates in estimating Zf,p, for several different sampling
methods, averaged over 250 functions drawn from out-
side the RKHS corresponding to the kernels used.

parameters. A key benefit of the Bayesian interpreta-
tion of herding and MMD presented in this paper is
that it provides a recipe for adapting the Hilbert space
to the observations f(xn). To be precise, we can fit the
kernel parameters by maximizing the marginal likeli-
hood of Gaussian process conditioned on the observa-
tions. Details can be found in (Rasmussen & Williams,
2006).

7.2 Computational Complexity

While we have shown that Bayesian Quadrature pro-
vides the optimal re-weighting of samples, computing
the optimal weights comes at an increased computa-
tional cost relative to herding. The computational
complexity of computing Bayesian quadrature weights
for N samples is O(N3), due to the necessity of in-
verting the Gram matrix K(x, x). Using the Wood-
bury identity, the cost of adding a new sample to an
existing set is O(N2). For herding, the computational
complexity of evaluating a new sample is only O(N),
making the cost of choosingN herding samplesO(N2).
For Monte Carlo sampling, the cost of adding an i.i.d.
sample from the target distribution is only O(1).

The relative computational cost of computing samples
and weights using bq, herding, and sampling must be
weighed against the cost of evaluating f at the sample
locations. Depending on this trade-off, the three sam-
pling methods form a Pareto frontier over computa-
tional speed and estimator accuracy. When computing
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method complexity rate guarantee

MCMC O(N) variable ergodic theorem
i.i.d. MC O(N) 1√

N
law of large numbers

herding O(N2) 1√
N
≥ · ≥ 1

N (Chen et al., 2010; Bach et al., 2012)

SBQ O(N3) unknown approximate submodularity

Table 1: A comparison of the rates of convergence and computational complexity of several integration methods.

f is cheap, we may wish to use Monte Carlo methods.
In cases where f is computationally costly, we would
expect to choose the sbq method. When f is relatively
expensive, but a very large number of samples are re-
quired, we may choose to use kernel herding instead.
However, because the rate of convergence of sbq is
faster, there may be situations in which the O(N3)
cost is relatively inexpensive, due to the smaller N
required by sbq to achieve the same accuracy as com-
pared to using other methods.

There also exists the possibility to switch to a less
costly sampling algorithm as the number of samples
increases. Table 1 summarizes the rates of convergence
of all the methods considered here.

8 CONCLUSIONS

In this paper, we have shown three main results: First,
we proved that the loss minimized by kernel herding
is closely related to the loss minimized by Bayesian
quadrature, when selecting sample locations. This im-
plies that sequential Bayesian quadrature can viewed
as an optimally-weighted version of kernel herding.

Second, we showed that the loss minimized by the
Bayesian method is approximately submodular with
respect to the samples chosen, and established connec-
tions to the submodular dictionary selection problem
studied in (Krause & Cevher, 2010).

Finally, we empirically demonstrated a superior rate of
convergence of sbq over herding, and demonstrated a
bound on the empirical error of the Bayesian quadra-
ture estimate.

8.1 Future Work

In section 5, we showed that sbq is approximately
submodular, which provides only weak sub-optimality
guarantees of its performance. It would be of interest
to further explore the connection between Bayesian
Quadrature and the dictionary selection problem to
see if algorithms developed for dictionary selection can
provide further practical or theoretical developments.
The results in section 6, specifically Figure 5, sug-
gest that the convergence rate of sbq is faster than

O(1/N). However, we are not aware of any work show-
ing what the theoretically optimal rate is. It would be
of great interest to determine this optimal rate of con-
vergence for particular classes of kernels.
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Abstract

Much of scientific data is collected as ran-
domized experiments intervening on some
and observing other variables of interest.
Quite often, a given phenomenon is investi-
gated in several studies, and different sets of
variables are involved in each study. In this
article we consider the problem of integrating
such knowledge, inferring as much as possible
concerning the underlying causal structure
with respect to the union of observed vari-
ables from such experimental or passive ob-
servational overlapping data sets. We do not
assume acyclicity or joint causal sufficiency
of the underlying data generating model, but
we do restrict the causal relationships to be
linear and use only second order statistics of
the data. We derive conditions for full model
identifiability in the most generic case, and
provide novel techniques for incorporating an
assumption of faithfulness to aid in inference.
In each case we seek to establish what is and
what is not determined by the data at hand.

1 INTRODUCTION

For many scientific domains different research groups
study the same or closely related phenomena. In gen-
eral the resulting data sets may contain different sets
of variables with only partial overlap, and some of the
data sets may be passive observational, while others
have resulted from experiments intervening on a subset
of the variables. In the context of discovering causal
pathways, it would be desirable to be able to integrate
all the findings of these ‘overlapping’ experimental and
observational data sets, not only to gain an overall
view, but, where possible, to also detect causal rela-
tions that were not identified in any individual study.

In the literature on causal discovery methods this

problem has been addressed in two complementary, yet
so far, independent ways. On the one hand a variety
of algorithms have been developed that integrate data
from overlapping but purely passive observational data
sets (Tillman et al., 2009; Triantafillou et al., 2010;
Tillman and Spirtes, 2011). On the other hand there
are several procedures that combine multiple experi-
mental studies on the same set of variables (Cooper
and Yoo, 1999; Tong and Koller, 2001; Murphy, 2001;
Eaton and Murphy, 2007; He and Geng, 2008; Schmidt
and Murphy, 2009; Eberhardt et al., 2010; Hyttinen
et al., 2010).

In this article we present methods that combine the
two approaches: we consider data sets that con-
tain passive observational or experimental measures of
overlapping sets of variables. We do not assume that
the set of variables is jointly causally sufficient; in other
words we allow for the possible existence of common
causes of the measured variables that are not mea-
sured in any of the available data sets. Moreover, un-
like any of the previous work on overlapping data sets,
we do not assume that the underlying causal struc-
ture is acyclic. To ensure that we have a well-defined
representation of the cyclic relations, we assume that
the causal relations are linear (see Section 2). The
assumption of linearity also enables the use of quan-
titative constraints that can lead to the identifiability
of the underlying causal structure in cases which are
non-identifiable without such a parametric assumption
(Hyttinen et al., 2011). We provide necessary and suf-
ficient conditions under which the true causal model
can be identified, but given the weak set of background
assumptions, these are inevitably very demanding. In
general there may only be a very limited number of ex-
perimental data sets, and so the remaining underdeter-
mination can still be quite substantial. We then pro-
vide a novel approach for incorporating the assump-
tion of faithfulness (Spirtes et al., 1993) to aid in model
search for this family of linear models. We show that,
for sparse graphs, a significant amount of structure can
be inferred using this framework.
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Figure 1: An example of a linear cyclic model with
latent variables (left) and the corresponding manipu-
lated model in an experiment where x1 is intervened,
x3, x4 are observed and x2 is hidden (right). Single-
headed arrows denote non-zero direct effects while
double-headed arrows represent the existence of latent
confounders. The disturbance variables are omitted to
improve readability.

This paper is structured as follows. We formalize the
problem in Section 2, by defining the model family we
are considering, specifying the representation used for
overlapping data sets, and formulating the inference
problem. Then, in Section 3, we derive necessary and
sufficient conditions for the identifiability of the model,
in the absence of extra assumptions. In Section 4, we
consider an approach to integrate simple faithfulness
constraints, which we then extend to a more general
and powerful method in Sections 5-6. Simulations are
provided in Section 7, and some conclusions in Sec-
tion 8.

2 MODEL AND PROBLEM
DEFINITION

We use the following formal representation of the
setting with overlapping data sets: Given data sets
D1, . . . ,DK with measurements on the sets of variables
V1, . . . ,VK , respectively, let the joint set of variables
be V = {x1, . . . , xn} =

⋃
k=1,...,K Vk. Obviously, the

individual sets Vk of variables in Dk will generally not
be causally sufficient, but we also allow the joint set
of variables V to be causally insufficient, i.e. there can
be confounders that are not measured in any of the
available data sets. Each data set Dk is considered to
be the result of an experiment Ek that partitions the
variables V into Jk (intervened), Uk (observed), and
Lk (hidden) variables. We assume that all variables
in V are measured in at least one of the experiments,
i.e. for any x ∈ V there exists some experiment Ek
with 1 ≤ k ≤ K such that x ∈ Jk ∪ Uk. Passive ob-
servational studies are trivially represented by ‘null’-
experiments where Jk = ∅.

We assume that there is a single generating model over
the variables in V that, suitably manipulated for each
experiment, gives rise to all the data sets. We consider
the model class of linear cyclic models with latent vari-
ables (linear non-recursive SEMs with correlated dis-
turbances) (Bollen, 1989). The model can be described
by the equation

x := Bx + e (1)

where x is a vector that denotes the variables in V
while e represents the corresponding exogenous distur-
bances. The model is parameterized by a direct effects
matrix B and a covariance matrix of the disturbances
cov(e) = Σe. Confounding due to variables external
to the joint set of variables V is modeled implicitly
by non-zero off-diagonal entries in Σe that correlate
the disturbances. Figure 1 shows how the structure
of such a model can be described by a mixed graph.
Note that we assume throughout that the diagonal of
B is zero; this is not a substantial assumption.1

We use the standard notion of “surgical” interventions
(Pearl, 2000), where an intervention makes the inter-
vened variable independent of its normal causes. For-
mally, the intervened model (B̃, Σ̃e) is the same as the
unintervened model (B,Σe) except that each row in
B̃ corresponding to edges incident on some xi ∈ J is
set to zero (thereby breaking the edges into any such
variables); similarly, for the ith row and column of
Σ̃e. An intervention vector c is added to the model
Equation (1) that determines the values of (only) the
intervened variables according to an intervention dis-
tribution with µc and Σc. For notational simplicity we
assume that the intervened variables are randomized
independently with zero mean and unit variance. This
does not seriously limit the applicability of the meth-
ods.2 For any individual (experimental) data set Dk
we then assume that only the values of x correspond-
ing to variables in Jk ∪ Uk are revealed (see Figure 1,
right).

To ensure that the cyclic model has a well-defined
equilibrium distribution, Hyttinen et al. (2012) ex-
amined models that are weakly stable, that is, mod-
els for which the I −B matrix of the model (where I
is the identity matrix) and all corresponding manip-
ulated versions are invertible. Weak stability implies
that the observed distribution follows a covariance ma-
trix cov(x) = (I−B)−1Σe(I−B)−T . However, in the

1There is inherent underdetermination of the diagonal
elements of B, related to self-loops (edges from a node to
itself) in the model. These do not affect the equilibrium
distribution in linear cyclic models, and can be handled by
a suitable normalization (Hyttinen et al., 2012).

2A detailed formal account of the intervened model is
given by Hyttinen et al. (2012), see their Equation 7 and
Lemma 5.
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case of overlapping data sets we have to make a slightly
stronger assumption to obtain the desired identifiabil-
ity results:

Assumption 1 (No unit cycles) The sum-product
of edge-coefficients on any subset of paths from a vari-
able back to itself cannot sum up to exactly 1.

Weak stability follows from this assumption. The
proof of this claim, and all subsequent results in this
paper, can be found in the Appendix in the Supple-
mentary Material.

We can now state our learning problem formally:
Given data sets D1, . . . ,DK containing measurements
of the marginalized distribution of a (experimentally
manipulated) linear cyclic model with latent variables
(B,Σe) that satisfies Assumption 1, identify as many
causal relations among the joint set of variables, i.e.
entries in B, as possible.

3 IDENTIFIABILITY

One of the advantages of linear cyclic models is that
the correlation measured between an intervened vari-
able xi and a non-intervened variable xj corresponds
to the sum-product of all the directed paths from xi
to xj in a graph where all arcs into the intervened
variables in Jk are cut. Eberhardt et al. (2010) refer
to these terms as experimental effects and use the no-
tation covk(xi, xj) = t(xi xj ||Jk). When the inter-
vention set of an experimental effect contains all but
one variable, then it corresponds to the direct effect :
t(xi xj ||V \ {xj}) = b(xi → xj) = B[j, i]. Similarly,
when only one variable is subject to intervention, we
have the total effect : t(xi xj ||{xi}) = t(xi xj).
Eberhardt et al. (2010) describe a learning algorithm
which uses experimental effects estimated from the
data to form linear equations on the unknown total
effects. In particular, for an experiment with a vari-
able xi ∈ Jk and a variable xu ∈ Uk, one can obtain
the constraint

t(xi xu) =
∑

xj∈Jk\{xi}
t(xi xj)t(xj xu||Jk) (2)

+ t(xi xu||Jk).

Note that for all xj ∈ Jk the experimental effects
t(xj xu||Jk) are directly given by the relevant co-
variances (see above) in the data from this experiment,
so the equation is linear in the unknown total effects.
The intuition behind the equation is that the set of
all directed paths from xi to xu in the original (un-
manipulated) model can be separated into those go-
ing through each of the other intervened variables (the
ones in Jk \ {xi}) and the remaining ones. Collecting

a sufficient number of such linear constraints makes
it possible to identify all total effects, from which it
is straightforward to obtain the direct effects, as de-
scribed in their paper.

While their learning procedure was constructed for the
fully observed case, we note that it is directly appli-
cable to our overlapping data sets case, since for any
xi ∈ Jk and any xu ∈ Uk, all required experimen-
tal effects are covariances between observed variables
(and do not involve any variables in Lk). Moreover,
the identifiability results described in Eberhardt et al.
(2010) and Hyttinen et al. (2012) can be generalized
to the current setting once it is clarified how their con-
ditions apply when the set of variables V is split into
three sets Jk, Uk and Lk, rather than just Jk and Uk.
For this purpose, we say that a given set of experi-
ments E1, . . . , EK satisfies the pair condition for the
ordered pair of variables (xj , xu) if there is an exper-
iment Ek, with 1 ≤ k ≤ K, such that xj ∈ Jk and
xu ∈ Uk. Note that an experiment with xj ∈ Jk and
xl ∈ Lk does not satisfy the pair condition for the pair
(xj , xl) even though xl is not subject to intervention.
The identifiability conditions for overlapping data sets
are then as follows:

Theorem 1 (Sufficiency) Given some set of exper-
iments, a linear cyclic model with latent variables sat-
isfying Assumption 1 is fully identified if the pair
condition is satisfied for all ordered pairs (xi, xj) ∈
V × V, xi 6= xj.

Note that unlike in Eberhardt et al. (2010), our suf-
ficiency result here requires the slightly stronger As-
sumption 1. We further show that the sufficient con-
dition is also in the worst case necessary.

Theorem 2 (Worst Case Necessity) Given any
set of experiments that does not satisfy the pair con-
dition for all ordered pairs of variables (xi, xj) ∈ V ×
V, xi 6= xj, there exist two distinct linear cyclic mod-
els with latent variables satisfying Assumption 1 that
are indistinguishable given those experiments.

So with minor adjustments to the conditions and as-
sumptions, we obtain for the overlapping data sets case
very similar identifiability results as were given for the
case when all data sets shared the same set of variables.
In fact, as indicated in Appendix C, the learning algo-
rithm of Eberhardt et al. (2010) is also complete given
the background assumptions we have been considering
here, in the sense that the information gained from
the experimental effects fully exhausts what can be
inferred about the underlying causal model. That is,
correlations between non-intervened variables in this
case provide no extra benefit. In Section 7 we use this
algorithm (‘EHS’) as a baseline comparison of what a
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complete procedure can infer without making stronger
search space assumptions. Together, Theorems 1 and
2 provide a priori guidelines to identify which experi-
mental results are needed to complement any available
ones. Note that K specifically chosen experiments are
enough to the satisfy the identifiability condition for
models with up to

(
K
bK/2c

)
variables (Spencer, 1970).

4 FAITHFULNESS & BILINEARITY

In most realistic contexts the set of available overlap-
ping data sets will not contain a sufficient variety of
experimental interventions to satisfy the demanding
identifiability condition given in the previous section.
Hence, the full model will typically not be fully iden-
tified by the ‘EHS’ procedure. Furthermore, in most
cases the overwhelming majority of the direct effects
will remain underdetermined, as is evident from the
simulations in Section 7.

Thus, a useful approach might be to strengthen the as-
sumptions regarding the underlying model. The nat-
ural assumption, prevalent throughout causal discov-
ery research, is the assumption of faithfulness (Spirtes
et al., 1993), which can be seen as a simplicity or min-
imality assumption for causal discovery procedures.
Most commonly used for inference in passive obser-
vational data, we consider the natural extension of the
faithfulness assumption to experimental contexts: A
data-generating model is said to be faithful if all in-
dependences true in any (manipulated) observed dis-
tribution are consequences of the structure of the (ma-
nipulated) graph, and not due to the specific parameter
values of the model. In short, faithfulness enables us to
infer from a statistical independence that there is an
absence of a causal connection between the variables
in question, in the particular context under which the
statistical independence occurs. It is well known that
heavy confounding often results in causal models that
are effectively unfaithful given the limited sample size
of the data. Nevertheless, if one has reason to believe
that models are sparse and confounding limited, then
faithfulness may constitute a reasonable assumption
that can provide further insights.

Hyttinen et al. (2010) considered a set of simple faith-
fulness rules by which marginal or conditional indepen-
dencies in the observed variables were used to derive
constraints of the form b(xi → xj) = B[j, i] = 0, i.e.
based on statistical independencies in the experimen-
tal data, some direct effects were inferred to equal zero.
While these constraints are (trivially) linear in the di-
rect effects, they are highly non-linear in the total ef-
fects, and thus cannot easily be integrated with linear
constraints on the total effects of the form of Equa-
tion 2. To solve this problem Hyttinen et al. (2010)

noted that one could, in fact, use the measured exper-
imental effects to put linear constraints on the direct
effects, as opposed to the total effects.

t(xi xu||Jk)= b(xi xu) + (3)∑

xj∈V\(J∪{xu})
t(xi xj ||Jk)b(xj xu)

In this way, the constraints from the experimental ef-
fects could be straightforwardly combined with faith-
fulness constraints, resulting in a fully linear system
of equations constraining the direct effects (Hyttinen
et al., 2010). The resulting linear system can be an-
alyzed to determine which direct effects are identified
and which are underdetermined; this procedure is em-
pirically evaluated in Section 7 under the abbreviation
‘HEH’.

Unfortunately, in the overlapping variables scenario, in
most cases one cannot obtain many linear constraints
on the direct effects. This is because one or more of
the non-intervened variables may be latent, and one
needs the experimental effects to all non-intervened
variables in a given experiment to construct the linear
constraints on the direct effects. In general, the exper-
imental effects t(xi xj ||Jk) are not available when
xj ∈ Lk, unless they can be inferred from the com-
bination of results from all data sets. On the other
hand, as we discussed in Section 3, we can obtain lin-
ear constraints on the total effects, because latents do
not form a problem in this case. The remaining prob-
lem is thus that, in general, we may have a large set of
linear constraints on the elements of the total effects
matrix T = (I−B)−1, where T[j, i] = t(xi xj), com-
bined with the knowledge that certain elements of B
are zero, but finding a solution to this combined set of
constraints is no longer trivial.

One approach to solving this problem is to take the
combination of the direct effects (elements of B) and
the total effects (elements of T) as the unknown free
parameters of the problem. In this way, we now have
a bilinear system of equations: There are equations
linear in the elements of B, equations linear in the el-
ements of T, and the constraint T(I − B) = I yields
equations that are bilinear; they are linear in one pa-
rameter vector given the other. To determine the un-
derdetermination of the system under this combined
set of constraints thus involves characterizing the so-
lution set for such a bilinear equation system. Unfortu-
nately, no efficient solution methods for large bilinear
equation systems are known, except in certain special
cases (Cohen and Tomasi, 1997; Johnson and Link,
2009).

Nevertheless, one can attempt to solve the system by
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minimizing the objective function

C(B,T) = ‖K1vec(B)− k1‖2 + (4)

‖K2vec(T)− k2‖2 + ‖T(I−B)− I‖2,

where the ‖ · ‖2 denotes squared Euclidean norm (for
a vector) and squared Frobenius norm (for a matrix),
i.e. in both cases the sum of squares of the elements.
In this objective function, the first term (involving K1

and k1) represents all linear constraints on the ele-
ments of B that we have been able to construct, the
second term (involving K2 and k2) similarly repre-
sents any available linear constraints on the elements
of T, while the last term derives from the constraint
T = (I − B)−1. This objective function is quadratic
in B (for fixed T), and quadratic in T (for fixed B),
so it is easy to set up an alternating variables ap-
proach which minimizes with respect to each one at
a time, keeping the other fixed. Since the objective is
not convex with respect to the joint parameter vector,
one cannot be guaranteed to find the global minimum
using such a procedure. In our experience, however,
this approach is generally quite effective in finding so-
lutions to the underlying system of equations, when
such solutions exist. We use this procedure, starting
from a sample of random initial points, to generate a
sample of solutions to the available constraints. For
each of the direct effects (elements of B) we then, on
the basis of its variance in the sample, classify it as
determined or underdetermined. For determined coef-
ficients we further infer whether the coefficient is zero
(edge is absent) or non-zero (edge is present), based on
the mean value of the coefficient in the sample. Note
that any constraints on the model parameters that fol-
low the above bilinear form can easily be added to this
inference procedure. In fact, it turns out that several
of the faithfulness constraints derived in the following
section can be added. With these additions, we em-
pirically evaluate this method (under the abbreviation
‘BILIN’) in the simulations in Section 7.

5 FAITHFULNESS CONSTRAINTS
ON SETS OF PATHS

While constraints of the form b(xi → xj) = 0 are the
most obvious consequences of the faithfulness assump-
tion, they by no means exhaust the inferences that are
possible in linear models. In this section, we provide a
more general framework for deriving and representing
faithfulness constraints, and in the following section
we make use of these constraints in an inference algo-
rithm for the overlapping data sets setting.

We build on the work of Claassen and Heskes (2011),
who developed a logical inference procedure based on
minimal conditioning sets to derive graphical conse-

quences of the faithfulness assumption. A minimal
conditioning set, indicated by the brackets, identifies
exactly the set of variables that make a pair of vari-
ables (in)dependent. Formally, for variables x and y
and disjoint sets of variables C and D not containing
x and y, we denote a minimal independence by

x ⊥⊥ y |D ∪ [C] whenever we have

x ⊥⊥ y |D ∪ C and ∀C ′ ( C, x \⊥⊥y |D ∪ C ′,

and a minimal dependence by

x \⊥⊥y |D ∪ [C] whenever we have

x \⊥⊥y |D ∪ C and ∀C ′ ( C, x ⊥⊥ y |D ∪ C ′.

In both cases D and C can be empty, although when
C is empty, the statements become trivial. Under
the assumption that the generating model is acyclic,
Claassen and Heskes (2011) provide causal inference
rules based on such minimal dependencies and inde-
pendencies, that identify all consequences of faithful-
ness given passive observational data on a set of (po-
tentially) causally insufficient variables. We drop their
acyclicity axiom and change and expand their rules
to apply to overlapping data sets, experimental data,
and cyclic generating models. We use them to derive
constraints on the experimental effects of hypotheti-
cal experiments, which, in turn, are used to identify
additional features of the underlying causal model.

For example, if we find that x ⊥⊥ y | [z] in the ma-
nipulated distribution where only z is subject to an
intervention, then we infer that t(x y||{x, z}) = 0,
i.e. for an experiment in which x and z are subject to
intervention, there would be no correlation between x
and y, since, by faithfulness, there is no directed path
from x to y that does not pass through z. Moreover,
we can generalize this constraint to all supersets of the
intervention set:

t(x y||J ) = 0 ⇒ t(x y||J ∪ C) = 0 (5)

for all C ⊆ V \ {y}. Note, in particular, that C may
contain variables in L. As a special case of this rule
we thus obtain the direct effect constraint t(x y||V \
{y}) = b(x → y) = 0. Similarly, x and y can be re-
versed in all the previous constraints. If we addition-
ally found for some non-intervened w, that x \⊥⊥y | {z}∪
[w], then w is a so-called “unshielded collider”, which
implies that t(w x||{w, z}) = t(w y||{w, z}) = 0.
Again we can also generate constraints for all the ex-
perimental effects with supersets of the intervention
sets.

Since faithfulness in general implies the absence of par-
ticular causal pathways given a set of discovered inde-
pendence constraints, it implies for the linear models
that we have been considering, that the sum-products
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of edge coefficients representing a (set of) path(s) con-
necting two variables are zero. An independence be-
tween x and y in a passive observational data set can
thus give rise to a set of polynomial equations rep-
resenting the fact that there is no directed pathway
from x to y or vice versa, and that there is no (latent)
common cause of x and y. Quite apart from the large
number of equations such a general approach produces,
there are no known efficient solution methods for such
a set of equations. We thus have to determine which
subset of the consequences of faithfulness we can han-
dle.

We found that for consequences of faithfulness that
can be represented as bilinear equations on the exper-
imental effects, such as Equation 6, computationally
feasible solution methods could still be developed.

t(x u||J ∪ {x}) · t(u y||J ∪ {u}) = 0 (6)

The bilinear approach of Section 4 can include such
equations as (6) if one of the experimental effects is
a total effect and the other is a direct effect. In Sec-
tion 6 we present a method that handles versions of
Equation 6 in its more general form. In Appendix D
we describe the full set of faithfulness rules we apply
and the equations we use. These include the skeleton
rules of the PC-algorithm, as well as many other stan-
dard faithfulness inferences. We also note the rules’
limitations by giving an example of an inference that
we cannot include in the current bilinear representa-
tion.

The independence constraints due to faithfulness thus
allow us to obtain zero-constraints on a variety of ex-
perimental effects and their products without ever hav-
ing to perform the corresponding experiment or having
a data set that includes all the variables present in the
constraint. We note that in practice inferences due
to faithfulness are very sensitive to the correctness of
the independence test judgments. In particular, once
the inference depends on more than a simple uncondi-
tional independence test, reliability rapidly decreases
and the theoretical gains one obtains in the infinite
sample limit evaporate (see Section 7 for more discus-
sion and comparisons). So while a complete method
for inferences based on faithfulness given the back-
ground assumptions here is still of theoretical interest,
its practical usefulness may be limited.

6 INFERENCE ALGORITHM

In Section 4 we took an approach that overparameter-
ized the search problem by treating both the total and
the direct effects as unknown. The proposed method
searched for solutions using the available constraints
that could be represented in the bilinear system relat-

Algorithm 1 Linear Inference algorithm: LININF

Record all observed experimental effects.

Record any experimental effects directly identified as zero by
the faithfulness rules.

While TRUE,

Initialize matrix A and vector b as empty. Let x be the
vector of the remaining unknown experimental effects.

For all experimental effects t(xi xu||Jk),

For all sets Jl such that Jk ( Jl ( V \ {xu},
If Equation 7 is linear with respect to the unknown
experimental effects, add it to the system Ax = b.

For all equations induced by the faithfulness rules,

If the equation is linear with respect to the unknown
experimental effects, add it to the system Ax = b.

Solve x from Ax = b and determine the uniquely identified
elements of x.

Record all experimental effects corresponding to uniquely
identified elements of x, and derive implied experimental
effects based on Equation 5.

Exit if no new experimental effects were recorded.

Output the recorded experimental effects.

ing total and direct effects. But in the previous section
we showed that the assumption of faithfulness implies
zero-constraints on the experimental effects that can-
not, in general, be used by such a bilinear method (see
Equations 5 & 6). In this section we propose a method
that includes these more general constraints on exper-
imental effects that are neither total nor direct effects.
We consider all experimental effects as unknown pa-
rameters of the model. This can be seen as taking the
overparametrization one step further, but given that
there are now a total of n(n − 1)2n−2 different ex-
perimental effects for a model with n variables in V,
the iterative approach of Section 4 becomes unfeasible;
something simpler is needed.

Some experimental effects are readily observed in the
overlapping experiments. We use these observed ex-
perimental effects to determine some of the remain-
ing unknown ones. Hyttinen et al. (2012) generalized
Equation 2 to show how some experimental effects can
be used to constrain others. If two experiments with
intervention sets Jk and Jl satisfy Jk ( Jl ( V\{xu},
then the experimental effects of the two experiments
are related by the following equation:

t(xi xu||Jk)= t(xi xu||Jl) + (7)∑

xj∈Jl\Jk
t(xi xj ||Jk)t(xj xu||Jl)

Generally such equations are non-linear in the un-
known experimental effects. However, the equation
is linear if for all xj ∈ Jl \ Jk either t(xi xj ||Jk) or
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Figure 2: A case study. (a) True data generating model. (b) The manipulated and marginalized model cor-
responding to an experiment with J1 = {x1}, U1 = {x2, x4}, and L1 = {x3}. (c) The marginalized model
corresponding to a ‘null’-experiment with J2 = ∅, U2 = {x2, x3, x4}, and L2 = {x1}. (d) The causal structure
over the union of observed variables learned by LININF (omitting any double-headed arcs). Notice that all causal
arcs between x1 and x3 are discovered to be absent, although variables x1 and x3 are not observed together in
either of the observed data sets. Dotted arrows indicate underdetermined parameters.

t(xj xu||Jl) is already known. In addition, the full
set of implications from the faithfulness rules of Sec-
tion 5 (see Appendix D) may require that a particular
experimental effect is zero, or – as in Equation 6 – that
t(xi xj ||Jk)t(xj xu||Jl) is zero. Combining all the
available information can render several equations lin-
ear. We ignore any equations that remain non-linear
in the unknown experimental effects in order to keep
the solvability of the system feasible.

There are a total of n(n− 1)
∑n−2
i=0

(
n−2
i

)
(2n−i−2 − 1)

equations similar to Equation 7 for a model with n
variables in V. Thus, if even a small share of these
equations are linear with respect to the unknown ex-
perimental effects, the model space compatible with
the constraints at hand will be substantially restricted.
Furthermore, equations that were initially non-linear
in the unknown experimental effects, can be rendered
linear as we iterate the inference and more experimen-
tal effects are determined. Since we are only using
linear equations, we can trivially see which of the un-
known experimental effects are uniquely determined
by the system of equations. Similarly, since the di-
rect effects are just a special case of the experimental
effects, we can find which direct effects are underde-
termined.

The Linear Inference algorithm using these ideas is
outlined in Algorithm 1. A powerful part of the algo-
rithm is the application of the inference in Equation 5
throughout the several rounds of inference. For finite
samples this inference depends on judging whether an
inferred experimental effect that is not measured in
any of the available data sets, is zero. One option is
to run the same algorithm in parallel on several re-
sampled data sets, and see whether all estimates for a
single experimental effect are effectively zero or not.

Unlike the bilinear procedure of Section 4, this linear
inference procedure is consistent. It is incomplete as
it does not exploit the available non-linear equations,

but it is able to extract more information from the
overlapping experiments by benefiting from the vast
number of different faithfulness constraints produced
by sparse data generating models.

7 SIMULATIONS

In the overlapping data set setting the general idea is
that the experiments have already been run, with little
regard to how the data sets and interventions may fit
together. So it is likely that the identifiability condi-
tion of Section 3 is not satisfied and that there still is
a large amount of underdetermination. In particular,
one might expect substantial underdetermination with
regard to the causal relations between variables that
are never measured together in one data set. Figure 2
offers a concrete example of how the findings from mul-
tiple experimental data sets can be synthesized to yield
knowledge not available from any of the individual
data sets. Panel (a) shows the true underlying data
generating model. This model is subject to one exper-
iment where x1 is intervened, x2 and x4 are observed,
while x3 is latent (b), and one ‘null’-experiment where
all variables except x1 are passively observed (c). Note
that x1 and x3 are never measured together in the
same data set. One can think of the two experiments
as resulting from two different research groups inves-
tigating two overlapping sets of variables. Panel (b)
represents the manipulated and marginalized version
of the true model corresponding to the first experi-
ment, while (c) represents the marginalized model cor-
responding to the ‘null’-experiment. Panel (d) shows
the output of the Linear Inference algorithm described
in Section 6 applied to the overlapping data sets of the
two experiments. Here, solid edges denote identified
edges, absences of edges denotes cases where the al-
gorithm has inferred that there is no edge, and what
remains undetermined is shown by dotted edges. Note
that faithfulness has been effectively used to detect the
absence of several edges in the underlying model. In
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particular, x4 is determined not to be a direct cause
of any other variable, without there being any exper-
iment intervening on x4. Also, similarly to the re-
sults of Tillman et al. (2009) for passive observational
data from acyclic models, we can detect the absence of
edges between x1 and x3, even though they were never
measured together in any of the data sets. Only the
existence of the arcs x2 → x1 and x3 → x4 (indicated
by dotted arrows) is left underdetermined. Finally,
note that we have not discussed the detection of con-
founding here, so the absence of bi-directed edges in
panel (d) is not indicative of any prediction on such
edges.

We assessed the performance of our methods more gen-
erally in simulations. To test the effect of the faith-
fulness assumption we ran the method of Eberhardt
et al. (2010) (EHS), that was shown in Section 3 to
be complete for our circumstances, as a baseline for
comparison. It does not assume faithfulness. We com-
pared this baseline with the performance of the new
BILINear and LINear-INFerence methods, presented
in Sections 4 and 6, respectively, that were specifi-
cally designed for the overlapping data set case, and
that assume faithfulness. Lastly, we ran the method of
Hyttinen et al. (2010) (HEH), that only uses faithful-
ness constraints on the direct effects obtained within
each data set.

The methods3 were modified to produce one of three
answers: ‘present’, ‘ absent’, or ‘unknown’, for each
possible edge, i.e. each entry of B. An algorithm could
only return ‘present’ if it had actually identified a spe-
cific value for the edge parameter. We compared how
much of the true model the algorithms identified, and
what percentage of that was correct.

To ensure that assuming faithfulness could actually
make a difference, we simulated the methods on sparse
models. We generated 100 6-variable models, with
around 20% of the possible edges present, and 15%
of the possible non-zero covariances, representing ex-
ogenous latent confounders. We drew the connection
strengths randomly, though we avoided generating co-
efficients that were very close to zero, in order to make
the predictions of absence/presence of edges meaning-
ful. For each model, we constructed 5 overlapping ex-
periments by selecting uniformly among partitions of
the set of variables into intervened, observed and hid-
den variables, with the only constraint that for each
experiment, neither J nor U were empty.

Figure 3 reports the percentage correct among the
edges reported absent (left) and present (right) for

3Code implementing all compared methods and repro-
ducing the simulations is available at
http://www.cs.helsinki.fi/u/ajhyttin/exp/
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Figure 3: Accuracy of the learning algorithms. Each
point on the lines is the average over 100 models.
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Figure 4: Predictions of the learning algorithms. Each
bar represents the predictions over 100 models.

each algorithm at 1,000 and 10,000 samples per experi-
ment, as well as for the infinite sample limit. Note that
for the finite sample cases we restricted the maximum
size of the conditioning set, in the search for faithful-
ness rules, to 1; this tends to improve the accuracy of
the predictions. Similarly, in the finite sample cases,
we restricted the number of inference rounds in the
LININF algorithm to 1. With the exception of BILIN,
the algorithms have a similar performance across the
board. BILIN offers an undesirable trade-off: for fi-
nite samples it offers a high correctness of predicted
absences, but a poor performance for predicted links.
And since it is not consistent, it does not guarantee
the absences of errors in the infinite sample limit, as
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can be seen in the presence of errors for the predicted
absences.

Figure 4 shows the actual numbers of correct and
incorrect predicted absences (left column) and links
(right column) for each algorithm at 1,000 samples
per experiment (top row) and the infinite sample limit
(bottom row). In the 100 true models of the simu-
lation there were a total of 624 edges and 2376 ab-
sences (confounding is not included in either of these
counts). The first thing to notice is the scale of the
plots: Substantial underdetermination remains for all
algorithms, especially with respect to the identified
links: More than half the links remain underdeter-
mined. With respect to the individual algorithms we
notice that EHS produces very few predictions, most
edges are simply marked as ‘unknown’, since faithful-
ness is not assumed. HEH produces a remarkable num-
ber of predicted absences with good accuracy, so that
the improvement of the methods tailored to the setting
of overlapping experiments is limited for finite samples.
However, the improvement in the number of predicted
links is clearly quite significant (top and bottom right
plots).

It would be desirable to have a comparison of how
much underdetermination is inevitable given the over-
lapping data sets. A brute force check is not feasible
even for six variable models, and we are not aware of
any general results on equivalence classes for (manip-
ulated) linear cyclic models with latent confounders.
Developing an extension of LININF that is complete
with regard to faithfulness may thus be the more
promising route for such a comparison.

8 CONCLUSION

We have presented two new algorithms (BILIN and
LININF) designed for causal learning from overlap-
ping experimental or passive observational data sets.
The first algorithm relies on a bilinear iterative opti-
mization, while the second is based on solving linear
constraints on general experimental effects. Both al-
gorithms assume faithfulness, but apply to the general
model class of linear cyclic models with latent con-
founding. We have also formulated necessary and suf-
ficient conditions for model identifiability when faith-
fulness is not assumed.

The approach we have taken brings together several
different strands of related work: We have connected
the results on combining different experimental results
on the same set of variables with the techniques of inte-
grating overlapping data sets of passive observational
data. To do so, we have relied on the inferences based
on faithfulness developed for non-parametric, acyclic
causal models with latent confounding, but adapted

them to linear, cyclic models with latent confounding.
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Abstract

We develop several algorithms taking advan-
tage of two common approaches for bound-
ing MPE queries in graphical models: mini-
bucket elimination and message-passing up-
dates for linear programming relaxations.
Both methods are quite similar, and offer use-
ful perspectives for the other; our hybrid ap-
proaches attempt to balance the advantages
of each. We demonstrate the power of our
hybrid algorithms through extensive empiri-
cal evaluation. Most notably, a Branch and
Bound search guided by the heuristic func-
tion calculated by one of our new algorithms
has recently won first place in the PASCAL2
inference challenge.

1 INTRODUCTION

Combinatorial optimization tasks such as finding the
most likely variable assignment of a probability model,
the most probable explanation (MPE) or maximum a
posteriori (MAP) problem, arise in many applications.
These problems are typically NP-hard; graphical mod-
els provide a popular framework for reasoning about
such tasks and organizing computations (Pearl, 1988).

Mini-Bucket Elimination (MBE) (Dechter & Rish,
2003) is a popular bounding scheme that generates
upper and lower bounds by applying the exact Bucket
Elimination (BE) algorithm (Dechter, 1999) to a sim-
plified problem obtained by duplicating variables. The
relaxation view of MBE is closely related to a fam-
ily of iterative approximation techniques based on lin-
ear programming (LP). These include “reweighted”
max-product (Wainwright et al., 2005), max-product
linear programming (MPLP) (Globerson & Jaakkola,
2007), dual decomposition (Komodakis et al., 2007),
and soft arc consistency (Schiex, 2000; Bistarelli et al.,
2000). These algorithms simplify the graphical model

into independent components and tighten the resulting
bound via iterative cost-shifting updates. They can be
thought of as “re-parameterizing” the original func-
tions without changing the global model. Most of the
schemes operate on the original factors of the model,
although some works tighten the approximations by
introducing larger clusters (Sontag et al., 2008).

In this paper we combine these ideas to define two
new hybrid schemes. One algorithm, called mini-
buckets with max-marginal matching (MBE-MM), is
a non-iterative algorithm that applies a single pass of
cost-shifting during the mini-bucket construction. The
second approach, Join Graph Linear Programming
(JGLP) applies cost-shifting updates to the full mini-
bucket join-graph, iteratively. Our empirical evalua-
tion demonstrates the increased power of these hybrid
approximations over their individual components.

Finally, one of the primary uses of bounding schemes
is in generating heuristics for Best-First and Branch
and Bound search (Marinescu & Dechter, 2009a,b).
Our hybrid schemes drastically decrease the search
space explored by Branch and Bound to significantly
increase its power, evidenced by both our empirical
evaluation and the results of the current Probabilistic
Inference Challenge1, where our algorithm won first
place in all optimization categories.

From an LP perspective, JGLP can be viewed as a
specific algorithm within the class of generalized EM-
PLP (Sontag & Jaakkola, 2009). Its main novelty is
in showing how the systematic join-graph structures
of mini-bucket can facilitate effective clique choices.
JGLP works “top down”, creating large clusters im-
mediately, compared to other methods (e.g., Sontag
& Jaakkola, 2009; Batra et al., 2011) that work “bot-
tom up” (gradually including triplets, etc.) and may
be less effective for large-width problems. Our non-
iterative MBE-MM algorithm is an MBE scheme with
some cost-shifting done locally in each bucket. From

1http://www.cs.huji.ac.il/project/PASCAL/
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this perspective it is closely related to (Rollon & Lar-
rosa, 2006); the two methods differ primarily in the
form of the cost-shifting update within each bucket.
However, our update is motivated by its connection to
a globally applicable tightening algorithm.

2 PRELIMINARIES

We consider combinatorial optimization problems ex-
pressed as graphical models, including Markov and
Bayesian networks (Pearl, 1988) and constraint net-
works (Dechter, 2003). A graphical model is a tuple
M = (X,D,F,

⊗
), where X = {Xi : i ∈ V } is a set

of variables indexed by set V and D = {Di : i ∈ V }
is the set of their finite domains of values. F = {fα :
α ∈ F} is a set of discrete functions, where we use
α ⊆ V and Xα ⊆ X to indicate the scope of func-
tion fα, i.e., Xα = var(fα) = {Xi : i ∈ α}. The
set of function scopes implies a primal graph whose
vertices are the variables and which includes an edge
connecting any two variables that appear in the scope
of the same function. The combination operator

⊗ ∈
{∏,

∑
, ⊲⊳} defines the complete function represented

by the graphical model M as C(X) =
⊗

α∈F fα(Xα).
In this work, we focus on max-sum problems, in which
we would like to compute the optimal value C∗ and/or
its optimizing configuration x∗:

C∗ = C(x∗) = max
X

∑

α∈F

fα(Xα) (1)

2.1 MINI-BUCKET ELIMINATION

Bucket elimination (BE) (Dechter, 1999) is a popu-
lar algorithm for solving reasoning tasks over graphical
models. It is a special case of cluster tree elimination
in which the tree-structure upon which messages are
passed is determined by the variable elimination or-
der used. In BE terminology, the nodes of the tree-
structure are referred to as buckets and each bucket is
associated with a variable to be eliminated.

Each bucket is processed by BE in two steps. First, all
functions in the bucket are combined (by summation
in the case of max-sum problem). Then the variable
associated with the bucket is eliminated from the com-
bined function (by maximization in case of max-sum
task). The function resulting from the combination
and elimination steps can be viewed as a “message”
λi and is passed to the parent of the current bucket.
Processing occurs in this fashion, from the leaves of
the tree to the root, one node (bucket) at a time. The
time and space complexity of BE are exponential in
the graph parameter called the induced width w along
the ordering o (Dechter, 1999).

Mini-bucket elimination (MBE) (Dechter & Rish,
2003) is an approximation scheme designed to avoid

X1 X2

X3

f1(x1, x2)

f3(x1, x3) f2(x2, x3)

B1 :

B2 :

B3 :

︷ ︸︸ ︷
f1(x1, x2)︸ ︷︷ ︸

︷ ︸︸ ︷
f3(x1, x3)︸ ︷︷ ︸

f2(x2, x3) λ′
1(x2)︸ ︷︷ ︸

λ3

λ2(x3) λ′′
1(x3)︸ ︷︷ ︸

B′
1 B′′

1

(b)

(a)

X ′
1 X2

X3

f1(x
′
1, x2)

f2(x2, x3)

f3(x
′′
1 , x3)

X ′′
1

(c)

Figure 1: The mini-bucket procedure for a simple
graph. (a) Original graph; (b) the buckets and mes-
sages computed in MBE; (c) interpreting MBE as vari-
able duplication, and message passing on the resulting
junction tree. X1 is duplicated in each of two mini-
buckets q1

1 = {f1(X1, X2)} and q2
1 = {f3(X1, X3)}.

the space and time complexity of BE. Consider a
bucket Bi and an integer bounding parameter z. MBE
creates a z-partition Qi = {q1

i , . . . , qp
i } of Bi, where

each set of functions qj
i ∈ Qi, called a mini-bucket,

includes no more than z + 1 variables. Then each
mini-bucket is processed separately, just as in BE. The
scheme generates an upper bound on the exact optimal
solution and its time and space complexity of MBE is
exponential in z, which is chosen to be less than w,
when w is too large. In general, increasing z tightens
the upper bound, until z = w, in which case MBE finds
the exact solution. The form of mini-bucket makes it
easy to estimate and control both the computational
and storage complexity through a single parameter z.

MBE’s value is not only as a stand-alone bounding
scheme, but also as a mechanism for generating pow-
erful heuristic evaluation functions for informed search
algorithms. Exploration of its potential as a heuris-
tic generation scheme has yielded some of the most
powerful Best-First and Branch and Bound search en-
gines for graphical models, as summarized in (Kask &
Dechter, 2001; Marinescu & Dechter, 2009a,b).

Mini-bucket elimination can also be interpreted using
a junction tree view. The MBE bound corresponds
to a problem relaxation in which a copy Xj

i of vari-

able Xi is made for each mini-bucket qj
i ∈ Qi, and the

resulting messages λj
i correspond to the messages in

a junction tree defined on the augmented model over
the variable copies; this junction tree is guaranteed to
have induced-width z or less. Figure 1 shows a simple
example on three variables. The problems are equiv-
alent if all copies of Xi are constrained to be equal;
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Algorithm 1 Join-Graph Structuring(z)

Input: Graphical model 〈X,D,F,
∑〉, parameter z

Output: Join-graph with cluster size ≤ z + 1
1: Order the variables from X1 to Xn minimizing (heuris-

tically) induced-width
2: Generate an ordered partition of functions F = {fα}

into buckets B1, . . . ,Bn, where Bi is a bucket of vari-
able Xi

3: for i← n down to 1 (Processing bucket Bi) do
4: Partition functions in Bi into Qi = {q1

i , . . . , qp
i };

each qk
i has no more than z + 1 variables.

5: For each mini-bucket qk
i create a new set of variables

Sk
i = {X|X ∈ qk

i }−{Xi} and place it in the bucket
of its highest variable in the ordering

6: Maintain an arc between qk
i and the mini-bucket

(created later) that includes Sk
i

7: end for
8: Associate each resulting mini-bucket with a node in

the join-graph

9: Creating arcs: keep the arcs created in step 6 and

also connect the mini-bucket clusters belonging to the

same bucket (for example, in a chain).

otherwise, the additional degrees of freedom lead to a
relaxed problem and thus an upper bound.

The mini-bucket tree has several desirable properties
(Mateescu et al., 2010), including that it is a join-
graph (satisfies the running intersection property) and
each cluster has at most z+1 variables. The join-graph
construction process is given in Algorithm 1.

2.2 LINEAR PROGRAMMING METHODS

Recently various iterative re-parameterization ap-
proaches have been introduced that are derived by
solving an Linear Programming (LP) relaxation of the
graphical model. Wainwright et al. (Wainwright et al.,
2005) established the connections between LP relax-
ations of integer programming problems and (approxi-
mate) dynamic programming methods using message-
passing in the max-product algebra; subsequent im-
provements in algorithms such as max-product linear
programming (MPLP) include coordinate-descent up-
dates that ensure convergence (Globerson & Jaakkola,
2007; Sontag & Jaakkola, 2009). These methods are
closely related to the mini-bucket bounds; since we
build upon these approaches we introduce some of the
ideas in more detail here.

To match the bulk of the graphical model LP relax-
ation literature, for this section we assume that the
network consists of only pairwise functions fij(Xi, Xj).
A simple bound on the max-sum objective is then
given by maxima of the individual functions:

C∗ = max
X

∑

(ij)∈F

fij(Xi, Xj) ≤
∑

(ij)∈F

max
X

fij(Xi, Xj),

(2)

exchanging the sum and max operators. One can in-
terpret this operation as making an individual copy of
each variable for each function, and optimizing over
them separately.

However, we can also introduce a collection of func-
tions {λij(Xi), λji(Xj)} for each edge (ij), and require

λ ∈ Λ ⇔ ∀i,
∑

j

λij(Xi) = 0

Then, we have

C∗ = max
X

∑

(ij)∈F

fij(Xi, Xj)

= max
X

∑

(ij)∈F

fij(Xi, Xj) +
∑

i

∑

j

λij(Xi)

≤ min
λ∈Λ

∑

(ij)∈F

max
X

(
fij(Xi, Xj) + λij(Xi) + λji(Xj)

)
(3)

by distributing each λij to its associated factor and
applying the inequality (2).

The new functions f̃ij = fij(Xi, Xj) + λij(Xi) +
λji(Xj) define a re-parameterization of the original
distribution, i.e., they change the individual functions
without modifying the complete function C(X). De-
pending on the literature, the λij are interpreted as
“cost-shifting” operations that transfer cost from one
function to another while preserving the overall cost
function (Schiex, 2000; Rollon & Larrosa, 2006), or as
Lagrange multipliers enforcing consistency among the
copies of Xi (Yedidia et al., 2004; Wainwright et al.,
2005). In the former interpretation, the updates are
called “soft arc-consistency” due to their similarity to
arc-consistency for constraint satisfaction (Cooper &
Schiex, 2004). Under the latter view, the bound cor-
responds to a dual decomposition solver for a linear
programming (LP) relaxation of the original problem
(Komodakis & Paragios, 2008; Sontag et al., 2010).

The main distinguishing feature among such dual de-
composition approaches is the way in which the bound
is tightened by updating2 the functions λ, gener-
ally either sub-gradient or gradient approaches (Ko-
modakis & Paragios, 2008; Jojic et al., 2010) or co-
ordinate descent updates that can be interpreted as
“message passing” (Globerson & Jaakkola, 2007; Son-
tag & Jaakkola, 2009). In practice, coordinate descent
updates tend to tighten the bound more quickly, but
can become caught in sub-optimal minima caused by

2We refer to these iterative bound improvement up-
dates as “LP-tightening” updates, although technically we
are tightening the decomposition bound (3) which is the
dual of the LP. This is in contrast to literature that uses
“tightening” to mean the inclusion of additional constraints
(higher-order consistency), e.g., (Sontag et al., 2008).
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Algorithm 2 LP-tightening

Input: Graphical model 〈X,D,F,
∑〉, where fα is a po-

tential defined on variables Xα.
Output: Upper bound on the optimum value
1: Iterate until convergence:
2: for any pair α, β with Xαβ = Xα ∩Xβ 6= ∅ do
3: Compute max-marginals:

γα(Xαβ) = maxXα\Xαβ
fα(Xα)

γβ(Xαβ) = maxXβ\Xαβ
fβ(Xβ)

Update parameterization:
fα(Xα)← fα(Xα) + 1

2

(
γβ(Xαβ)− γα(Xαβ)

)

fβ(Xβ)← fβ(Xβ) + 1
2

(
γα(Xαβ)− γβ(Xαβ)

)

4: end for

the limited number of coordinate directions consid-
ered. Here we give an extremely simple update, most
closely related to the “tree-block” coordinate descent
updates derived in (Sontag & Jaakkola, 2009).

The algorithm is initialized with all λij(Xi) = 0. Let
us re-arrange the terms on right hand side of inequal-
ity 3, grouping together all functions that include a
particular variable Xi in their scope. Consider min-
imizing over a single pair λij(Xi), λik(Xi); since all
other terms are fixed, we minimize

[
max
X

fij + λij

]
+

[
max
X

fik + λik

]

= max
Xi

[
γij(Xi) + λij(Xi)

]
+ max

Xi

[
γik(Xi) + λik(Xi)

]

≥ max
Xi

[
γij(Xi) + λij(Xi) + γik(Xi) + λik(Xi)

]

where we have defined the “max-marginals” γij(Xi) =
maxXj

fij(Xi, Xj), and we require that λij(Xi) +
λik(Xi) = 0 to preserve λ ∈ Λ. Many choices of λij

achieve this minimum; a useful one is

λij =
1

2

(
γik(Xi)− γij(Xi)

)

We can then set fij ← fij+λij and λij = 0 (preserving
λij(Xi) = 0 for all i,j) and repeat, giving a simple
coordinate descent update that can be interpreted as
a max-marginal or “moment”-matching procedure on
the functions fij . The update is easy to extend to
higher-order functions fα(Xα); see Algorithm 2.

Another useful intuition comes from the alternative
choice, λij = γik(Xi) = maxXk

fik(Xi, Xk). In this
case, the contribution of edge (ik)’s term to the bound
becomes zero. The “message” λij is equivalent to the
dynamic program computed on the chain j–i–k. It is
thus easy to see that dynamic programming (or vari-
able elimination) on a tree can also be interpreted
as coordinate descent on the same bound, using the
same set of coordinates, and that this procedure will
exactly optimize any tree-structured graph (Johnson
et al., 2007; Yarkony et al., 2010).

Algorithm 3 Factor graph LP (FGLP)

Input: Graphical model 〈X,D,F,
∑〉, where fα is a po-

tential defined on variables Xα.
Output: Upper bound on the optimum value
1: Iterate until convergence:
2: for each variable Xi do
3: Get factors Fi = {α : i ∈ α} with Xi in their scope
4: ∀α, compute max-marginals:

γα(Xi) = maxXα\Xi
fα(Xα)

5: ∀α, update parameterization:
fα(Xα)← fα(Xα)− γα(Xi) + 1

|Fi|
∑

β∈Fi
γβ(Xi)

6: end for

A well-known LP-tightening algorithm is message-
passing linear programming (MPLP) (Globerson &
Jaakkola, 2007); its generalized version for higher-
order cliques tightens the same bound as Algorithm 2
under descent updates along the same coordinates.
The main distinction is that MPLP is formulated as
sending messages between variable “beliefs” and the
fij . Message-passing has the advantage that sched-
uled updates (e.g., Elidan et al., 2006; Sutton & Mc-
Callum, 2007) are easily applied. However, for cliques
with large separator sets these messages can consume a
noticable fraction of available memory. In contrast, re-
parameterization updates like Algorithm 2 never store
the λ, giving a memory advantage for large cliques.
Although some scheduling approaches, such as those
based on the decoding gap (Tarlow et al., 2011), are
still applicable to pure reparameterization updates,
our implementation used a fixed update ordering.

The original MPLP, soft-arc consistency, and many
other LP algorithms operate directly on the original
functions fα, updating coordinates that consist of sin-
gle variable functions λ(Xi) at each step; this corre-
sponds to message passing on the “factor graph” rep-
resentation of the model. Algorithm 3 (FGLP) gives
a simple extension of the matching update that oper-
ates on this factor graph LP and tightens all fij in-
volved with some Xi simultaneously. FGLP is similar
to the “star-shaped” tree block coordinate descent de-
rived in (Sontag & Jaakkola, 2009), but centered on
separators (variables) rather than cliques (factors); in
practice on our problems we found it faster than other
update methods for this LP.

3 JOIN GRAPH LINEAR
PROGRAMMING

From the perspective of Section 2.2, mini-bucket can
be viewed within the LP-tightening framework. The
mini-bucket procedure defines a join graph represented
as a collection of maximal cliques and separators. The
mini-bucket computations define a downward sweep
of dynamic programming on the join graph with du-
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plicate variables; it is equivalent to running an LP-
tightening procedure to convergence, only messages
along edges of the mini-bucket spanning tree.

Given this view, it is straightforward to consider it-
erative updates on the same set of maximal cliques.
We can construct a join graph using the mini-bucket
relaxation, again assigning the original functions f to
their earliest clique and defining for any mini-bucket
qk
i a function associated with its corresponding clique,

Fqk
i
(Xqk

i
) =

∑

fα∈qk
i

fα(Xα) (4)

We then perform re-parameterization updates to the
functions Fq as in Algorithm 2. The resulting join-
graph linear programming (JGLP) algorithm is shown
in Algorithm 4.

Note that once JGLP converges, re-processing these
new functions using mini-bucket elimination using the
same value of z will not change the choice of cliques
(since no two cliques q, q′ could be joined without
violating the clique size bound, |Xq| ≤ z + 1). Ad-
ditionally, the MBE pass will not change the bound
value, since the MBE dynamic program can be viewed
as a sequence of coordinate-descent updates along a
subset of the edges, all of which must already be tight
if the algorithm has converged. In the sequel, we will
use this property of JGLP when developing heuristic
evaluation functions for search; see Section 5.

MBE vs. LP perspectives. From the LP perspec-
tive, the MBE process can be thought of as a heuristic
for selecting the cliques used to define the LP bound.
This heuristic has the advantage of being very fast
and controlled by a single integer value that is easy
to search over, and it is easy to estimate the mem-
ory requirements of the approximation. In practice
this results in a “top-down” construction, in which
z is set to the induced width and reduced until the
computational resource constraints are met. Existing
heuristics for selecting variable orderings with low in-
duced width (Robertson & Seymour, 1983; Kask et al.,
2011; Bodlaender, 2007; Gogate & Dechter, 2004) can
be easily applied as well. In contrast, most existing
generalized LP solvers work in a “bottom-up” fash-
ion, running the LP to convergence on the original
graph, then proposing slightly larger cliques (for exam-
ple, from among fully connected triplets of variables
(Sontag et al., 2008)) based on some greedy heuris-
tic. However, for problems with small variables and
reasonable resource constraints, it is easy to represent
very large cliques (z = 15 to 25), in which case the
top-down approach can be far more effective.

From the MBE perspective, the LP tightening up-
dates provide an iterative version of mini-bucket that

Algorithm 4 Algorithm JGLP

Input: Graphical model 〈X,D,F,
∑〉; variable order o =

{X1, . . . , Xn}; parameter z.
Output: Upper bound on the optimum value
1: Place each function fα in its latest bucket in o
2: Build mini-bucket join graph (Algorithm 1)
3: Find the function of each mini-bucket as in (4)
4: Iterate to convergence / time-limit:
5: for all pairs qi, qj connected by an edge do
6: Find common variables, S = var(qi) ∩ var(qj)
7: Find the max-marginals of each mini-bucket

qk: γk = maxvar(qk)\S(Fk), k = i, j
8: Update functions in both mini-buckets

qi: Fi ← Fi − 1
2
(γi − γj)

qj : Fj ← Fj + 1
2
(γi − γj)

9: end for

10: Return: Ĉ∗ =
∑

i maxXi Fi(Xi)

attempts to compensate for the variable copying re-
laxation. From this view it is most closely related to
non-iterative cost-shifting procedures during the mini-
bucket construction phase (Rollon & Larrosa, 2006).
Another iterative “relax and compensate” approach
was recently proposed in (Choi & Darwiche, 2009),
but did not explicitly maintain a re-parameterization
or use coordinate descent (thus could fail to converge).

4 MBE-MM

While the iterative nature of JGLP is appealing, it
can have significant additional time and space over-
head compared to MBE. We would thus also like to
consider a single-pass MBE-like algorithm in which
LP tightening is performed only within each bucket.
We call the resulting algorithm mini-bucket with max-
marginal matching, or MBE-MM.

MBE-MM proceeds by following the standard mini-
bucket downward pass. However, when each mini-
bucket qj

i ∈ Qi is processed, eliminating variable Xi,
we first perform an LP-tightening update to the mini-
bucket functions fq. For storage and computational
efficiency reasons, we perform a single update on all
buckets simultaneously, matching their max-marginals
on their joint intersection. See Algorithm 5.

Viewing the matching update as a cost-shifting proce-
dure, our MBE-MM algorithm is closely related to the
work of (Rollon & Larrosa, 2006), who also proposed
several dynamic cost-shifting updates for mini-bucket,
with different update patterns. Their updates corre-
spond to a “dynamic programming”-like heuristic that
shifts all cost into a single function. In our case, we
mimic the “balanced” cost shifting used by optimal it-
erative tightening but restrict our updates to a single
bucket rather than to the whole global problem.

It is worth noting that, although any max-marginal
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Algorithm 5 Algorithm MBE-MM

Input: Graphical model 〈X,D,F,
∑〉; variable order o =

{X1, . . . , Xn}; parameter z.
Output: Upper bound on the optimum value
1: Place each function fα in its latest bucket in o
2: for i← n down to 1 (processing bucket Bi) do
3: Partition functions in Bi into Qi = {q1

i , . . . , qp
i },

where each qk
i has no more than z + 1 variables.

4: Find the set of variables common to all the mini-
buckets: Si = S1

i ∩ · · · ∩ Sp
i , where Sk

i = var(qk
i )

5: Find the function of each mini-bucket
qk

i : Fik ←
∏

f∈qk
i
f

6: Find the max-marginals of each mini-bucket
qk

i : γik = maxvar(qk
i )\Si

(Fik)

7: Update functions of each mini-bucket
qk

i : Fik ← Fik − γik + 1
p

∑
l γil

8: Generate messages λk
i = maxXi Fik and place each

in the latest variable in var(qk
i )’s bucket.

9: end for

10: Return: The buckets and cost bound from B1

matching step strictly tightens the fully decomposed
bound (3) within each bucket, it does not necessarily
tighten the overall solution found by MBE (which cor-
responds to fully optimizing the MBE subtree’s edges);
thus MBE-MM is not guaranteed to be tighter than or-
dinary MBE. However, it is reasonable to expect that
the update will help, and in practice we find that the
bounds are almost always significantly improved (see
the experiments, Section 6).

Like “soft” arc-consistency, our algorithms are also
related to known methods in constraint satisfaction.
MBE(z) and JGLP(z), parameterized by a z-bound,
are analogous to directional z-consistency and full z-
consistency, respectively. Our algorithm MBE-MM
represents an intermediate step between these two,
and is analogous to an improvement of directional i-
consistency with full iterative relational consistency
schemes within each bucket (Dechter, 2003).

5 HEURISTICS FOR SEARCH

Mini-bucket is also a powerful mechanism for generat-
ing heuristics for informed search algorithms (Kask &
Dechter, 2001). The intermediate functions λ recorded
by MBE (see Figure 1(b)) are used to express upper
bounds on the best extension of any partial assign-
ment, and so can be used as admissible heuristics guid-
ing Best-First or Branch and Bound search.

Algorithms JGLP and FGLP do not produce heuris-
tic functions directly; we obtain one by applying MBE
to the modified (re-parameterized) functions output
by the iterative algorithms. As noted in Section 3,
for JGLP constructed with the same clique size bound
z, this additional pass does not change the value of

the bound. In contrast, applying MBE to the (much
smaller) functions re-parameterized by FGLP forms
new clusters and typically tightens the bound, yield-
ing a hybrid heuristic generator “FGLP+MBE”. Be-
ing a straightforward extension of “ordinary” MBE,
the MBE-MM algorithm also directly yields a heuris-
tic function suitable for informed search.

In our experiments (Section 6.2) we apply the output
bounds as admissible heuristics for one of the most
effective informed search approaches: the AND/OR
Branch and Bound (AOBB) algorithm (Marinescu &
Dechter, 2009a). This algorithm explores in a depth-
first manner an AND/OR search space that is defined
using a pseudo-tree arrangement of the problem’s pri-
mal graph and takes advantage of the problem decom-
position. The AND/OR search space is usually much
smaller than the corresponding standard OR search
space. AOBB keeps track of the value of the best so-
lution found so far (a lower bound on the optimal cost)
and uses this value and the heuristic function to prune
away portions of the search space that are guaranteed
not to contain the optimal solution in a typical branch-
and-bound manner. For details on AOBB guided by
MBE see (Marinescu & Dechter, 2009a).

6 EMPIRICAL EVALUATION

We investigate the impact of single-pass and iterative
LP-tightening in conjunction with the MBE scheme
for the task of finding the most probable explana-
tion (MPE) over Bayesian networks. Specifically, we
evaluate the performance of MBE-MM, Factor Graph
LP-Tightening (denoted FGLP) applied to the origi-
nal functions, and Join Graph LP-Tightening (JGLP)
which is applied over the mini-bucket-based join graph.
We compare these three algorithms against each other
and against “pure” MBE, both as stand-alone bound-
ing algorithms (Section 6.1) and as generator of heuris-
tic evaluation functions that guides search algorithms
such as Branch and Bound (Section 6.2).

Our benchmark problems include three sets of in-
stances from genetic linkage analysis networks (Fishel-
son & Geiger, 2002) (denoted pedigrees, type4b and
LargeFam) and grid networks from the UAI 2008 com-
petition (Darwiche et al., 2008). In total we evaluated
10 pedigrees, 10 type4 instances, 40 LargeFam in-
stances and 32 grid networks. The algorithms were
implemented in C++ (64-bit).

6.1 LP-TIGHTENING ALGORITHMS AS
BOUNDING SCHEMES

We compare the upper bounds’ accuracy obtained by
the non-iterative MBE and MBE-MM schemes and
against the iterative FGLP and JGLP schemes. The
iterative schemes ran for 5, 300 and 3600 seconds.
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Figure 2: Upper bound on optimum (log scale) as a function of time (sec). Non-iterative bounds MBE, MBE-MM
are shown for comparison.

Table 1: Upper bound (log scale) and runtime (# seconds) for a typical set of instances, z = 10 and z = 20.
FGLP is not affected by z. Lower values are better. OOM shows that the algorithm ran out of memory (4 Gb).
We report the number of variables n, largest domain size k, and the induced width w along the ordering used.

instance name n k w z MBE MBE-MM FGLP time cut-offs JGLP time cut-offs
5 300 3600 5 300 3600

UB/time UB/time UB UB UB UB UB UB

75-25-5 625 2 34 10
-15.4553/1 -18.4089/1

-16.6853 -16.6854 -16.6854
-20.0289 -20.8364 -20.8364

20 -17.4417/4 -20.0576/4 -20.0576 -20.1278 -20.7067

90-30-5 900 2 42
10 -8.2481/1 -10.2597/1

-10.2450 -10.2705 -10.2705
-11.8469 -12.9594 -13.015

20 -9.7424/7 -11.6004/7 -11.6004 -11.6942 -12.5259

90-34-5 1156 2 48
10 -8.42007/1 -10.3708/1

-9.65003 -9.69458 -9.69458
-12.3469 -13.2262 -13.2883

20 -9.58332/8 -12.3670/9 -12.3670 -12.5621 -13.1538

90-42-5 1764 2 60
10 -12.7401/1 -15.9680/1

-15.2480 -15.3653 -15.3653
-18.4100 -20.7714 -20.8136

20 -14.6136/13 -18.5487/14 -18.5487 -18.7679 -19.9705

largeFam4 11 51 1002 4 40
10 -201.136/1 -211.656/1

-201.582 -201.673 -201.673
-211.671 -216.500 -217.176

20 OOM OOM OOM OOM OOM

largeFam4 11 55 1114 4 38
10 -229.43/1 -242.489/1

-226.075 -226.328 -226.328
-242.657 -249.551 -250.453

20 OOM OOM OOM OOM OOM

largeFam4 12 51 1461 4 56
10 -218.229/2 -239.896/3

-217.564 -217.740 -217.740
-239.896 -245.900 -253.153

20 OOM OOM OOM OOM OOM

pedigree7 867 4 32
10 -105.854/1 -109.569/1

-110.179 -110.187 -110.187
-109.960 -110.810 -111.293

20 -108.011/33 -111.120/42 OOM OOM OOM

pedigree13 888 3 32
10 -69.0973/1 -70.0999/1

-71.8561 -71.8591 -71.8591
-70.4581 -71.9869 -72.0374

20 -69.8890/8 -71.1071/11 -71.1071 -71.1071 -71.3658

pedigree31 1006 5 30
10 -125.032/1 -126.629/1

-126.667 -126.678 -126.678
-126.644 -129.158 -129.277

20 OOM OOM OOM OOM OOM

pedigree41 885 5 33
10 -110.156/1 -114.858/1

-114.681 -114.681 -114.681
-115.050 -118.133 -118.419

20 -112.153/29 -117.638/37 OOM OOM OOM

type4 120 17 4302 5 23
10 -1128.22/1 -1203.08/1

-1049.34 -1049.85 -1049.86
-1203.21 -1221.21 -1223.69

20 -1235.94/18 -1237.95/21 -1237.95 OOM OOM

type4 170 23 6933 5 21
10 -1682.9/1 -1747.18/1

-1509.96 -1511.61 -1511.65
-1747.22 -1769.96 -1772.16

20 -1783.18/7 -1783.76/7 -1783.76 -1783.76 -1783.76

In Table 1 we present a subset of the results obtained
from all 4 instance sets for the z-bound values of z =
10 and z = 20. Results for z = 15 are similar and
are omitted for lack of space. Note, that the value of
z does not influence the results of FGLP, that runs
on the original functions. For every problem instance
described via its parameters (i.e., number of variables
n, largest domain size k, and induced width w), for
each algorithm we report the upper bound obtained
and the CPU time (or time-bound) in seconds.

We observe clearly that for all instances MBE-MM is
superior to pure MBE, since it produces considerably
more accurate bounds in a comparable time. For most
instances the MBE-MM bounds are also better than
pure FGLP (at the comparable point in time), espe-

cially for z = 20, but only if the memory required by
MBE-MM is not too high. As example behavior see
instances 75-25-5 and largeFam4 11 51.

Figure 2 illustrates the anytime performance of the
iterative schemes FGLP and JGLP. (Note that the
single-pass algorithms MBE and MBE-MM do not
change as a function of time.) As we expect, FGLP
improves the bound rapidly, but converges to a subop-
timal solution, while JGLP improves at a slower pace
but eventually produces the most accurate results.

From both the table and the figure we see that given
enough time and memory, JGLP produces the most
accurate bounds eventually. However, when time and
memory are bounded, MBE-MM can present a cost-
effective hybrid of bounded inference (as indicated by
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 pedigree13, n=888, k=3, w=32, h=102, z=10
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Figure 3: Lower bounds by the AOBB as a function of time (sec) for z=10, memory limit 3 Gb, timelimit 24h.

the cluster size) and bounded LP-tightening. Note
that the memory requirement of MBE-MM is slightly
less than the comparable JGLP, since some memory
can be freed by the single-pass algorithm; this behavior
is evidenced in pedigree7 and pedigree41 for z = 20.

6.2 LP-TIGHTENING ALGORITHMS AS
SEARCH GUIDING HEURISTICS

We also evaluated the impact of each of the bound-
ing schemes as a generator of heuristic evaluation
functions for the AOBB algorithm, as described
in Section 5. We tested four schemes: AOBB
guided by heuristics generated by pure MBE (denoted
“AOBB-MBE”), AOBB guided by MBE and max-
marginal matching heuristics (“AOBB-MBE-MM”),
AOBB whose heuristics are generated from FGLP fol-
lowed by MBE (“AOBB-FGLP+MBE”) and AOBB
guided by JGLP-produced heuristics (“AOBB-JGLP).
All the heuristic functions were generated in a pre-
processing phase, prior to search. The iterative FGLP
and JGLP algorithms were run for 30 seconds each.
The total time bound for AOBB with each of the
heuristics was set to 24 hours (including the pre-
processing), memory limit was 3 Gb, and the mini-
bucket z-bound parameters for generating the heuris-
tics was set to z ∈ {10, 15, 20}.
In Table 2 we show some of the results. For space rea-
sons and clarity we pick a representative set from the

full 92 instances. The table reports the total runtime
in seconds and the number of nodes expanded by each
of the AOBB schemes.

We see that, as expected, the heuristic generated
by MBE-MM are more cost-effective compared with
“pure” MBE, both in runtime and nodes expanded.
We see that the two iterative schemes are quite pow-
erful as heuristic generators. For most instances
FGLP+MBE presents a good balance3. But on some
hard instances and as long as memory is available
JGLP is the overall best-performing scheme.

We also observe the impact of the z bounds. As ex-
pected, with larger z we obtain more accurate heuris-
tics, but this increases the memory requirements (see,
for example, AOBB-JGLP on pedigree13).

Figure 3 shows the anytime behaviour of AOBB with
each heuristic, plotting the solution value found over
time (both on log scale) on four typical instances.
Higher values are better. As expected, AOBB-MBE-
MM has a more precise heuristic and consistently out-
puts better solutions faster compared with AOBB-
MBE. Algorithms AOBB-FGLP-MBE and AOBB-
JGLP perform very well as anytime schemes. We see

3We did not test a “pure” FGLP heuristic, since its
performance should be inferior to FGLP-MBE (FGLP fol-
lowed by pure MBE).
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Table 2: Search time (seconds) / # nodes expanded for selected instances. FGLP and JGLP ran for 30 seconds.
“OOM” indicates that search ran out of memory (3Gb) and “— / —” that it ran out of time (24h). In bold we
highlight the best runtime for each instance, italics indicate the smallest search space explored.

Instances

AOBB-MBE(z) AOBB-MBE(z) AOBB-MBE(z)
AOBB-MBE-MM(z) AOBB-MBE-MM(z) AOBB-MBE-MM(z)

AOBB-FGLP+MBE(z) AOBB-FGLP+MBE(z) AOBB-FGLP+MBE(z)
AOBB-JGLP(z) AOBB-JGLP(z) AOBB-JGLP(z)

(n,k,w,h) z-bound=10 z-bound=15 z-bound=20
time / # nodes time / # nodes time / # nodes

pedigree instances
pedigree7 — / — 9404 / 1876188145 OOM

(867, 4, 32, 90) 2171 / 348425451 428 / 78953096 OOM
805 / 140665826 227 / 36619862 OOM
530 / 80597149 286 / 38350755 OOM

pedigree13 — / — 22799 / 5614980160 7229 / 1522450313
(888, 3, 32, 102) 66156 / 11726505961 8150 / 1441111422 704 / 164319080

5658 / 905160506 926 / 182970673 357 / 73658489
5911 / 1015334227 1939 / 366168237 OOM

pedigree31 — / — — / — OOM
(1006, 5, 30, 85) 61382 / 10617627744 3856 / 750931932 OOM

24896 / 3695993630 1033 / 188749113 OOM
2775 / 497649324 2337 / 435238548 OOM

type4 linkage instances
type4b 120 17 — / — — / — — / —

(4072, 5, 24, 319) — / — — / — 33 / 720778
— / — — / — 71 / 1168656
— / — — / — OOM

LargeFam linkage instances
largeFam3 11 53 — / — — / — OOM
(1094, 3, 39, 71) — / — — / — OOM

— / — 44663 / 8080262337 OOM
— / — 10292 / 1878168857 OOM

largeFam3 11 59 — / — — / — OOM
(1119, 3, 33, 73) — / — — / — OOM

— / — 59012 / 8098379409 OOM
— / — 22538 / 3025470612 OOM

binary grid instances
90-30-5 — / — 54415 / 10603123693 5853 / 1299094138

(900, 2, 42, 151) 8601 / 1790747055 423 / 97620783 12 / 1125656
5928 / 1084067942 337 / 67303699 47 / 2101919

350 / 62930133 31 / 28688 48 / 7493
90-42-5 — / — — / — — / —

(1764, 2, 60, 229) — / — 62051 / 8399774202 2471 / 340122171
— / — 17628 / 2349582057 651 / 93715978

40 / 1411953 134 / 13038792 OOM
90-50-5 — / — — / — — / —

(2500, 2, 74, 312) — / — — / — — / —
— / — — / — — / —
— / — 48781 / 4187198638 OOM

that they output the first solution later than the other
two schemes due to initial 30 seconds pre-processing
step. However, if desired, a shorter time bound for
computing heuristic can be used.

In summary, based on our empirical evaluation we
can conclude that some level of LP-tightening can sig-
nificantly improve the power of the MBE heuristics,
yielding an improved search, sometimes by orders of
magnitudes. The question of instance-based balance,
namely tailoring the right level of z-bound and LP-
tightening to the problem instance is clearly a cen-
tral issue and a direction of future research. Overall,
in this study we observed that MBE-MM always im-
proves upon MBE, using comparable time and mem-
ory, while FGLP quickly converges and is less memory-
consuming than the other schemes. On the other hand,
given sufficient time and memory JGLP produces the
tightest bound.

7 CONCLUSION

The paper presents the first systematic combination of
iterative cost-shifting updates with elimination-order

based clustering algorithms and provides extensive
empirical evaluation demonstrating its effectiveness.
Specifically, we present Join Graph Linear Program-
ming, a new bounding scheme for optimization tasks
in graphical models that combines MBE bounds with
LP-based cost-shifting or soft arc-consistency. Empir-
ically, larger clusters improved the iterative updates’
performance in all instances. We also demonstrated
that JGLP can often find better bounds faster than
LP-tightening on the original model, even for relatively
small z. Most importantly, we showed the algorithms’
ability to improve informed search algorithms; without
requiring significantly more computational power (for
fixed z) than classical MBE they can drastically reduce
the search space. Notably, the algorithm that used as
a heuristic generator all three cost-shifting schemes in
a sequence (FGLP+JGLP+MBE-MM) won the first
place in all optimization categories in this year’s Prob-
abilistic Inference Challenge.
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Abstract

We extend the work of Narasimhan and
Bilmes [30] for minimizing set functions
representable as a difference between sub-
modular functions. Similar to [30], our new
algorithms are guaranteed to monotonically
reduce the objective function at every step.
We empirically and theoretically show that
the per-iteration cost of our algorithms is
much less than [30], and our algorithms can
be used to efficiently minimize a difference
between submodular functions under various
combinatorial constraints, a problem not pre-
viously addressed. We provide computational
bounds and a hardness result on the mul-
tiplicative inapproximability of minimizing
the difference between submodular functions.
We show, however, that it is possible to give
worst-case additive bounds by providing a
polynomial time computable lower-bound
on the minima. Finally we show how a
number of machine learning problems can be
modeled as minimizing the difference between
submodular functions. We experimentally
show the validity of our algorithms by testing
them on the problem of feature selection with
submodular cost features.

1 Introduction

Discrete optimization is important to many areas of
machine learning and recently an ever growing num-
ber of problems have been shown to be expressible
as submodular function minimization or maximiza-
tion (e.g., [19, 23, 25, 28, 27, 29]). The class of sub-
modular functions is indeed special since submodu-
lar function minimization is known to be polynomial
time, while submodular maximization, although NP
complete, admits constant factor approximation algo-

rithms. Let V = {1, 2, · · · , n} refer a ground set, then
f : 2V → R is said to be submodular if for sets S, T ⊆
V , f(S)+f(T ) ≥ f(S∪T )+f(S∩T ) (see [10] for details
on submodular, supermodular, and modular functions).
Submodular functions have a diminishing returns prop-
erty, wherein the gain of an element in the context of
bigger set is lesser than the gain of that element in
the context of a smaller subset. This property occurs
naturally in many applications in machine learning,
computer vision, economics, operations research, etc.

In this paper, we address the following problem. Given
two submodular functions f and g, and define v(X) ,
f(X)−g(X), solve the following optimization problem:

min
X⊆V

[f(X)− g(X)] ≡ min
X⊆V

[v(X)]. (1)

A number of machine learning problems involve
minimization over a difference between submodular
functions. The following are some examples:

• Sensor placement with submodular costs:
The problem of choosing sensor locations A from a
given set of possible locations V can be modeled [23,
24] by maximizing the mutual information between
the chosen variables A and the unchosen set V \A
(i.e., f(A) = I(XA;XV \A)). Alternatively, we may
wish to maximize the mutual information between a
set of chosen sensors XA and a fixed quantity of inter-
est C (i.e., f(A) = I(XA;C)) under the assumption
that the set of features XA are conditionally indepen-
dent given C [23]. These objectives are submodular
and thus the problem becomes maximizing a sub-
modular function subject to a cardinality constraint.
Often, however, there are costs c(A) associated with
the locations that naturally have a diminishing re-
turns property. For example, there is typically a
discount when purchasing sensors in bulk. Moreover,
there may be diminished cost for placing a sensor in
a particular location given placement in certain other
locations (e.g., the additional equipment needed to
install a sensor in, say, a precarious environment
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could be re-used for multiple sensor installations in
like environments). Hence, along with maximizing
mutual information, we also want to simultaneously
minimize the cost and this problem can be addressed
by minimizing the difference between submodular
functions f(A)− λc(A) for tradeoff parameter λ.

• Discriminatively structured graphical mod-
els and neural computation: An application
suggested in [30] and the initial motivation for
this problem is to optimize the EAR criterion to
produce a discriminatively structured graphical
model. EAR is basically a difference between two
mutual information functions (i.e., a difference
between submodular functions). [30] shows how
classifiers based on discriminative structure using
EAR can significantly outperform classifiers based
on generative graphical models. Note also that the
EAR measure is the same as “synergy” in a neural
code [2], widely used in neuroscience.

• Feature selection: Given a set of features
X1, X2, · · · , X|V |, the feature selection problem is
to find a small subset of features XA that work well
when used in a pattern classifier. This problem can
be modeled as maximizing the mutual information
I(XA;C) where C is the class. Note that I(XA;C) =
H(XA) −H(XA|C) is always a difference between
submodular functions. Under the näıve Bayes model,
this function is submodular [23]. It is not submodular
under general classifier models such as support vector
machines (SVMs) or neural networks. Certain fea-
tures, moreover, might be cheaper to use given that
others are already being computed. For example, if a
subset Si ⊆ V of the features for a particular informa-
tion source i are spectral in nature, then once a partic-
ular v ∈ Si is chosen, the remaining features Si \ {v}
may be relatively inexpensive to compute, due to
grouped computational strategies such as the fast
Fourier transform. Therefore, it might be more ap-
propriate to use a submodular cost model c(A). One
such cost model might be c(A) =

∑
i

√
m(A ∩ Si)

where m(j) would be the cost of computing feature
j. Another might be c(A) =

∑
i ci min(|A ∩ Si|, 1)

where ci is the cost of source i. Both offer diminishing
cost for choosing features from the same information
source. Such a cost model could be useful even under
the näıve Bayes model, where I(XA;C) is submodu-
lar. Feature selection becomes a problem of maximiz-
ing I(XA;C)−λc(A) = H(XA)−[H(XA|C)+λc(A)],
the difference between two submodular functions.

• Probabilistic Inference: We are given a distribu-
tion p(x) ∝ exp(−v(x)) where x ∈ {0, 1}n and v is a
pseudo-Boolean function [1]. It is desirable to com-
pute argmaxx∈{0,1}n p(x) which means minimizing
v(x) over x, the most-probable explanation (MPE)

problem [33]. If p factors with respect to a graphical
model of tree-width k, then v(x) =

∑
i vi(xC) where

Ci is a bundle of indices such that |C| ≤ k + 1
and the sets {Ci}i form a junction tree, and it
might be possible to solve inference using dynamic
programming. If k is large and/or if hypertree fac-
torization does not hold, then approximate inference
is typically used [38]. On the other hand, defining
x(X) = {x ∈ {0, 1}n : xi = 1 whenever i ∈ X}, if
the set function v̄(X) = v(x(X)) is submodular,
then even if p has large tree-width, the MPE
problem can be solved exactly in polynomial time
[17]. This, in fact, is the basis behind inference
in many computer vision models where v is often
not only submodular but also has limited sized
|Ci|. For example, for submodular v and if |Ci| ≤ 2
then graph-cuts can solve the MPE problem
extremely rapidly [22] and even some cases with v
non-submodular [21]. An important challenge is to
consider non-submodular v that can be minimized
efficiently and for which there are approximation
guarantees, a problem recently addressed in [18]. On
the other hand, if v can be expressed as a difference
between two submodular functions (which it can,
see Lemma 3.1), or if such a decomposition can be
computed (which it sometimes can, see Lemma 3.2),
then a procedure to minimize the difference between
two submodular functions offers new ways to solve
probabilistic inference.

Previously, Narasimhan and Bilmes [30] proposed
an algorithm inspired by the convex-concave proce-
dure [39] to address Equation (1). This algorithm
iteratively minimizes a submodular function by
replacing the second submodular function g by it’s
modular lower bound. They also show that any set
function can be expressed as a difference between two
submodular functions and hence every set function
optimization problem can be reduced to minimizing a
difference between submodular functions. They show
that this process converges to a local minima, however
the convergence rate is left as an open question.

In this paper, we first describe tight modular bounds
on submodular functions in Section 2, including lower
bounds based on points in the base polytope as used
in [30], and recent upper bounds first described in a re-
sult in [15]. In section 2.2, we describe the submodular-
supermodular procedure proposed in [30]. We further
provide a constructive procedure for finding the sub-
modular functions f and g for any arbitrary set function
v. Although our construction is NP hard in general, we
show how for certain classes of set functions v, it is pos-
sible to find the decompositions f and g in polynomial
time. In Section 4, we propose two new algorithms
both of which are guaranteed to monotonically reduce
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the objective at every iteration and which converge to
a local minima. Further we note that the per-iteration
cost of our algorithms is in general much less than [30],
and empirically verify that our algorithms are orders
of magnitude faster on real data. We show that, un-
like in [30], our algorithms can be extended to easily
optimize equation (1) under cardinality, knapsack, and
matroid constraints. Moreover, one of our algorithms
can actually handle complex combinatorial constraints,
such as spanning trees, matchings, cuts, etc. Further
in Section 5, we give a hardness result that there does
not exist any polynomial time algorithm with any poly-
nomial time multiplicative approximation guarantees
unless P=NP, even when it is easy to find or when we
are given the decomposition f and g, thus justifying
the need for heuristic methods to solve this problem.
We show, however, that it is possible to get additive
bounds by showing polynomial time computable upper
and lower bound on the optima. We also provide com-
putational bounds for all our algorithms (including the
submodular-supermodular procedure), a problem left
open in [30].

Finally we perform a number of experiments on the
feature selection problem under various cost models,
and show how our algorithms used to maximize the mu-
tual information perform better than greedy selection
(which would be near optimal under the näıve Bayes
assumptions) and with less cost.

2 Modular Upper and Lower bounds

The Taylor series approximation of a convex function
provides a natural way of providing lower bounds on
such a function. In particular the first order Taylor
series approximation of a convex function is a lower
bound on the function, and is linear in x for a given
y and hence given a convex function φ, we have:

φ(x) ≥ φ(y) + 〈∇φ(y), x− y〉. (2)

Surprisingly, any submodular function has both a tight
lower [6] and upper bound [15], unlike strict convexity
where there is only a tight first order lower bound.

2.1 Modular Lower Bounds

Recall that for submodular function f , the submodular
polymatroid, base polytope and the sub-differential
with respect to a set Y [10] are respectively:

Pf = {x : x(S) ≤ f(S),∀S ⊆ V } (3)

Bf = Pf ∩ {x : x(V ) = f(V )} (4)

∂f(Y ) = {y ∈ RV : ∀X ⊆ V, f(Y )− y(Y ) ≤ f(X)− y(X)}
The extreme points of this sub-differential are easy
to find and characterize, and can be obtained from a

greedy algorithm ([6, 10]) as follows:

Theorem 2.1. ([10], Theorem 6.11) A point y is
an extreme point of ∂f(Y ), iff there exists a chain
∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn with Y = Sj for some j, such
that y(Si \ Si−1) = y(Si)− y(Si−1) = f(Si)− f(Si−1).

Let σ be a permutation of V and define Sσi =
{σ(1), σ(2), . . . , σ(i)} as σ’s chain containing Y , mean-
ing Sσ|Y | = Y (we say that σ’s chain contains Y ). Then

we can define a sub-gradient hfY corresponding to f as:

hfY,σ(σ(i)) =

{
f(Sσ1 ) if i = 1

f(Sσi )− f(Sσi−1) otherwise
.

We get a modular lower bound of f as follows:

hfY,σ(X) ≤ f(X),∀X ⊆ V, and ∀i, hfY,σ(Sσi ) = f(Sσi ),

which is parameterized by a set Y and a permutation
σ. Note h(X) =

∑
i∈X h(i), and hfY,σ(Y ) = f(Y ).

Observe the similarity to convex functions, where a
linear lower bound is parameterized by a vector y.

2.2 Modular Upper Bounds

For f submodular, [31] established the following:

f(Y ) ≤ f(X)−
∑

j∈X\Y
f(j|X\j) +

∑

j∈Y \X
f(j|X ∩ Y ),

f(Y ) ≤ f(X)−
∑

j∈X\Y
f(j|(X∪Y )\j) +

∑

j∈Y \X
f(j|X)

Note that f(A|B) , f(A ∪ B) − f(B) is the gain of
adding A in the context of B. These upper bounds
in fact characterize submodular functions, in that
a function f is a submodular function iff it follows
either of the above bounds. Using the above, two tight
modular upper bounds ([15]) can be defined as follows:

f(Y ) ≤ mf
X,1(Y ) , f(X)−

∑

j∈X\Y
f(j|X\j) +

∑

j∈Y \X
f(j|∅),

f(Y ) ≤ mf
X,2(Y ) , f(X)−

∑

j∈X\Y
f(j|V \j) +

∑

j∈Y \X
f(j|X).

Hence, this yields two tight (at set X) modular upper

bounds mf
X,1,m

f
X,2 for any submodular function f .

For briefness, when referring either one we use mf
X .

3 Submodular-Supermodular Procedure

We now review the submodular-supermodular pro-
cedure [30] to minimize functions expressible as a
difference between submodular functions (henceforth
called DS functions). Interestingly, any set function
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Algorithm 1 The submodular-supermodular (Sub-
Sup) procedure [30]

1: X0 = ∅ ; t← 0 ;
2: while not converged (i.e., (Xt+1 6= Xt)) do
3: Randomly choose a permutation σt whose chain

contains the set Xt.
4: Xt+1 := argminX f(X)− hgXt,σt(X)
5: t← t+ 1
6: end while

can be expressed as a DS function using suitable
submodular functions as shown below. The result was
first shown in [30] using the Lovász extension. We here
give a new combinatorial proof, which avoids Hessians
of polyhedral convex functions and which provides a
way of constructing (a non-unique) pair of submodular
functions f and g for an arbitrary set function v.

Lemma 3.1. [30] Given any set function v, it can
be expressed as a DS functions v(X) = f(X) −
g(X),∀X ⊆ V for some submodular functions f and g.

Proof. Given a set function v, we can define α =
minX⊂Y⊆V \j v(j|X) − v(j|Y )1. Clearly α < 0, since
otherwise v would be submodular. Now consider
any (strictly) submodular function g, i.e., one having
β = minX⊂Y⊆V \j g(j|X)−g(j|Y ) > 0. Define f ′(X) =

v(X) + |α′|
β g(X) with any α′ ≤ α. Now it is easy to

see that f ′ is submodular since minX⊂Y⊆V \j f ′(j|X)−
f ′(j|Y ) ≥ α+|α′| ≥ 0. Hence v(X) = f ′(X)− |α

′|
β g(X),

is a difference between two submodular functions.

The above proof requires the computation of α and
β which has, in general, exponential complexity. Using
the construction above, however, it is easy to find the
decomposition f and g under certain conditions on v.

Lemma 3.2. If α or at least a lower bound on α for
any set function v can be computed in polynomial time,
functions f and g corresponding to v can obtained in
polynomial time.

Proof. Define g as g(X) =
√
|X|. Then β =

minX⊂Y⊆V \j
√
|X|+ 1−

√
|X| −

√
|Y |+ 1 +

√
|Y | =

minX⊂V \j
√
|X|+ 1−

√
|X|−

√
|X|+ 2+

√
|X|+ 1 =

2
√
n− 1 − √n −

√
n− 2. The last inequality follows

since the smallest difference in gains will occur at |X| =
n− 2. Hence β is easily computed, and given a lower
bound on α, from Lemma 3.1 the decomposition can
be obtained in polynomial time. A similar argument
holds for g being other concave functions over |X|.

1We denote j,X, Y : X ⊂ Y ⊆ V \{j} byX ⊂ Y ⊆ V \j.

The submodular supermodular (SubSup) procedure is
given in Algorithm 1. At every step of the algorithm,
we minimize a submodular function which can be per-
formed in strongly polynomial time [32, 35] although
the best known complexity is O(n5η + n6) where η is
the cost of a function evaluation. Algorithm 1 is guar-
anteed to converge to a local minima and moreover
the algorithm monotonically decreases the function
objective at every iteration, as we show below.

Lemma 3.3. [30] Algorithm 1 is guaranteed to
decrease the objective function at every iteration.
Further, the algorithm is guaranteed to converge to a
local minima by checking at most O(n) permutations
at every iteration.

Due to space constraints, we omit the proof of this
lemma which is in any case described in [30, 13].

Algorithm 1 requires performing a submodular function
minimization at every iteration which while polynomial
in n is (due to the complexity described above) not
practical for large problem sizes. So while the algorithm
reaches a local minima, it can be costly to find it. A
desirable result, therefore, would be to develop new
algorithms for minimizing DS functions, where the new
algorithms have the same properties as the SubSup
procedure but are much faster in practice. We give this
in the following sections.

4 Alternate algorithms for minimizing
DS functions

In this section we propose two new algorithms to min-
imize DS functions, both of which are guaranteed to
monotonically reduce the objective at every iteration
and converge to local minima. We briefly describe these
algorithms in the subsections below.

4.1 The supermodular-submodular (SupSub)
procedure

In the submodular-supermodular procedure we itera-
tively minimized f(X) − g(X) by replacing g by it’s
modular lower bound at every iteration. We can instead
replace f by it’s modular upper bound as is done in Al-
gorithm 2, which leads to the supermodular-submodular
procedure.

In the SupSub procedure, at every step we perform
submodular maximization which, although NP com-
plete to solve exactly, admits a number of fast constant
factor approximation algorithms [7, 8]. Notice that we
have two modular upper bounds and hence there are a
number of ways we can choose between them. One way
is to run both maximization procedures with the two
modular upper bounds at every iteration in parallel,
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Algorithm 2 The supermodular-submodular (Sup-
Sub) procedure

1: X0 = ∅ ; t← 0 ;
2: while not converged (i.e., (Xt+1 6= Xt)) do

3: Xt+1 := argminX m
f
Xt(X)− g(X)

4: t← t+ 1
5: end while

and choose the one which is better. Here by better we
mean the one in which the function value is lesser. Al-
ternatively we can alternate between the two modular
upper bounds by first maximizing the expression using
the first modular upper bound, and then maximize
the expression using the second modular upper bound.
Notice that since we perform approximate submodular
maximization at every iteration, we are not guaranteed
to monotonically reduce the objective value at every
iteration. If, however, we ensure that at every iteration
we take the next step only if the objective v does not
increase, we will restore monotonicity at every itera-
tion. Also, in some cases we converge to local optima
as shown in the following theorem.

Theorem 4.1. Both variants of the supermodular-
submodular procedure (Algorithm 2) monotonically re-
duces the objective value at every iteration. More-
over, assuming a submodular maximization procedure
in line 3 that reaches a local maxima of mf

Xt(X)−g(X),
then if Algorithm 2 does not improve under both mod-
ular upper bounds then it reaches a local optima of v.

Proof. For either modular upper bound, we have:

f(Xt+1)− g(Xt+1)
a
≤ mf

Xt(X
t+1)− g(Xt+1)

b
≤ mf

Xt(X
t)− g(Xt)

c
= f(Xt)− g(Xt),

where (a) follows since f(Xt+1) ≤ mf
Xt(X

t+1), and
(b) follows since we assume that we take the next step
only if the objective value does not increase and (c)

follows since mf
Xt(X

t) = f(Xt) from the tightness of
the modular upper bound.

To show that this algorithm converges to a local min-
ima, we assume that the submodular maximization
procedure in line 3 converges to a local maxima. Then
observe that if the objective value does not decrease in
an iteration under both upper bounds, it implies that
mf
Xt(X

t)− g(Xt) is already a local optimum in that

(for both upper bounds) we have mf
Xt(X

t∪ j)−g(Xt∪
j) ≥ mf

Xt(X
t) − g(Xt),∀j /∈ Xt and mf

Xt(X
t\j) −

g(Xt\j) ≥ mf
Xt(X

t) − g(Xt),∀j ∈ Xt. Note that

mf
Xt,1(Xt\j) = f(Xt) − f(j|Xt\j) = f(Xt\j) and

mf
Xt,2(Xt ∪ j) = f(Xt) + f(j|Xt) = f(Xt ∪ j) and

hence if both modular upper bounds are at a local
optima, it implies f(Xt) − g(Xt) = mf

Xt,1(Xt) −
g(Xt) ≤ mf

Xt,1(Xt\j)−g(Xt\j) = f(Xt\j)−g(Xt\j).
Similarly f(Xt) − g(Xt) = mf

Xt,2(Xt) − g(Xt) ≤
mf
Xt,2(Xt ∪ j) − g(Xt ∪ j) = f(Xt ∪ j) − g(Xt ∪ j).

Hence Xt is a local optima for v(X) = f(X)− g(X),
since v(Xt) ≤ v(Xt ∪ j) and v(Xt) ≤ v(Xt\j).

To ensure that we take the largest step at each iter-
ation, we can use the recently proposed tight (1/2)-
approximation algorithm in [7] for unconstrained non-
monotone submodular function maximization — this is
the best possible in polynomial time for the class of sub-
modular functions independent of the P=NP question.
The algorithm is a form of bi-directional randomized
greedy procedure and, most importantly for practical
considerations, is linear time [7]. Lastly, note that this
algorithm is closely related to a local search heuristic
for submodular maximization [8]. In particular, if in-
stead of using the greedy algorithm entirely at every
iteration, we take only one local step, we get a local
search heuristic. Hence, via the SupSub procedure, we
may take larger steps at every iteration as compared
to a local search heuristic.

4.2 The modular-modular (ModMod)
procedure

The submodular-supermodular procedure and the
supermodular-submodular procedure were obtained by
replacing g by it’s modular lower bound and f by it’s
modular upper bound respectively. We can however re-
place both of them by their respective modular bounds,
as is done in Algorithm 3.

Algorithm 3 Modular-Modular (ModMod) procedure

1: X0 = ∅; t← 0 ;
2: while not converged (i.e., (Xt+1 6= Xt)) do
3: Choose a permutation σt whose chain contains

the set Xt.
4: Xt+1 := argminX m

f
Xt(X)− hgXt,σt(X)

5: t← t+ 1
6: end while

In this algorithm at every iteration we minimize only a
modular function which can be done in O(n) time, so
this is extremely easy (i.e., select all negative elements
for the smallest minimum, or all non-positive elements
for the largest minimum). Like before, since we have
two modular upper bounds, we can use any of the vari-
ants discussed in the subsection above. Moreover, we
are still guaranteed to monotonically decrease the objec-
tive at every iteration and converge to a local minima.
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Theorem 4.2. Algorithm 3 monotonically decreases
the function value at every iteration. If the function
value does not increase on checking O(n) different per-
mutations with different elements at adjacent positions
and with both modular upper bounds, then we have
reached a local minima of v.

Proof. Again we can use similar reasoning as the earlier
proofs and observe that:

f(Xt+1)− g(Xt+1) ≤ mf
Xt(X

t+1)− hgXt,σt(Xt+1)

≤ mf
Xt(X

t)− hgXt,σt(Xt)

= f(Xt)− g(Xt)

We see that considering O(n) permutations each with
different elements at σt(|Xt| − 1) and σt(|Xt| + 1),
we essentially consider all choices of g(Xt ∪ j) and
g(Xt\j), since hgXt,σt(S|Xt|+1) = f(S|Xt|+1) and

hgXt,σt(S|Xt|−1) = f(S|Xt|−1). Since we consider both
modular upper bounds, we correspondingly consider
every choice of f(Xt ∪ j) and f(Xt\j). Note that at

convergence we have that mf
Xt(X

t) − hgXt,σt(X
t) ≤

mf
Xt(X)− hgXt,σt(X),∀X ⊆ V for O(n) different per-

mutations and both modular upper bounds. Corre-
spondingly we are guaranteed that (since the expres-
sion is modular) ∀j /∈ Xt, v(j|Xt) ≥ 0 and ∀j ∈
Xt, v(j|Xt\j) ≥ 0, where v(X) = f(X)− g(X). Hence
the algorithm converges to a local minima.

An important question is the choice of the permutation
σt at every iteration Xt. We observe experimentally
that the quality of the algorithm depends strongly on
the choice of permutation. Observe that f(X)−g(X) ≤
mf
Xt(X)−hgXt,σt(X), and f(Xt)−g(Xt) = mf

Xt(X
t)−

hgXt,σt(X
t). Hence, we might obtain the greatest local

reduction in the value of v by choosing permutation
σ∗ ∈ argminσ minX(mf

Xt(X)− hgXt,σt(X)), or the one

which maximizes hgXt,σt(X). We in fact might expect

that choosing σt ordered according to greatest gains of
g, with respect to Xt, we would achieve greater descent
at every iteration. Another choice is to choose the
permutation σ based on the ordering of gains of v (or

even mf
Xt). Through the former we are guaranteed to

at least progress as much as the local search heuristic.
Indeed, we observe in practice that the first two of these
heuristics performs much better than a random permu-
tation for both the ModMod and the SubSup procedure,
thus addressing a question raised in [30] about which
ordering to use. Practically for the feature selection
problem, the second heuristic seems to work the best.

4.3 Constrained minimization of a difference
between submodular functions

In this section we consider the problem of minimiz-
ing the difference between submodular functions sub-
ject to constraints. We first note that the problem of
minimizing a submodular function under even simple
cardinality constraints in NP hard and also hard to
approximate [36]. Since there does not yet seem to
be a reasonable algorithm for constrained submodular
minimization at every iteration, it is unclear how we
would use Algorithm 1. However the problem of sub-
modular maximization under cardinality, matroid, and
knapsack constraints though NP hard admits a number
of constant factor approximation algorithms [31, 26]
and correspondingly the cardinality constraints can be
easily introduced in Algorithm 2. Moreover, since a non-
negative modular function can be easily, directly and
even exactly optimized under cardinality, knapsack and
matroid constraints [16], Algorithm 3 can also easily
be utilized. In addition, since problems such as finding
the minimum weight spanning tree, min-cut in a graph,
etc., are polynomial time algorithms in a number of
cases, Algorithm 3 can be used when minimizing a non-
negative function v expressible as a difference between
submodular functions under combinatorial constraints.
If v is non-negative, then so is its modular upper bound,
and then the ModMod procedure can directly be used
for this problem — each iteration minimizes a non-
negative modular function subject to combinatorial
constraints which is easy in many cases [16, 14].

5 Theoretical results

In this section we analyze the computational and ap-
proximation bounds for this problem. For simplicity we
assume that the function v is normalized, i.e v(∅) = 0.
Hence we assume that v achieves it minima at a neg-
ative value and correspondingly the approximation
factor in this case will be less than 1.

We note in passing that the results in this section
are mostly negative, in that they demonstrate the-
oretically how complex a general problem such as
minX [f(X)−g(X)] is, even for submodular f and g. In
this paper, rather than consider these hardness results
pessimistically, we think of them as providing justifi-
cation for the heuristic procedures given in Section 4
and [30]. In many cases, inspired heuristics can yield
good quality and hence practically useful algorithms
for real-world problems. For example, the ModMod
procedure (Algorithm 3) and even the SupSub proce-
dure (Algorithm 2) can scale to very large problem
sizes, and thus can provide useful new strategies for
the applications listed in Section 1.
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5.1 Hardness

Observe that the class of DS functions is essentially the
class of general set functions, and hence the problem
of finding optimal solutions is NP-hard. This is not
surprising since general set function minimization
is inapproximable and there exist a large class of
functions where all (adaptive, possibly randomized)
algorithms perform arbitrarily poorly in polynomial
time [37]. Clearly as is evident from Theorem 3.1,
even the problem of finding the submodular functions
f and g requires exponential complexity. We moreover
show in the following theorem, however, that this
problem is multiplicatively inapproximable even when
the functions f and g are easy to find.

Theorem 5.1. Unless P = NP, there cannot ex-
ist any polynomial time approximation algorithm for
minX v(X) where v(X) = [f(X) − g(X)] is a posi-
tive set function and f and g are given submodular
functions. In particular, let n be the size of the prob-
lem instance, and α(n) > 0 be any positive polyno-
mial time computable function of n. If there exists
a polynomial-time algorithm which is guaranteed to
find a set X ′ : f(X ′) − g(X ′) < α(n)OPT, where
OPT=minX f(X)− g(X), then P = NP.

The proof of this theorem is in [13]. In fact we show
below that independent of the P = NP question,
there cannot exist a sub-exponential time algorithm
for this problem. The theorem below gives information
theoretic hardness for this problem.

Theorem 5.2. For any 0 < ε < 1, there cannot exist
any deterministic (or possibly randomized) algorithm
for minX [f(X)− g(X)] (where f and g are given sub-
modular functions), that always finds a solution which

is at most 1
ε times the optimal, in fewer than eε

2n/8

queries.

Again the proof of this theorem is in [13]. Essentially
the theorems above say that even when we are
given (or can easily find) a decomposition such that
v(X) = f(X) − g(X), there exist set functions such
that any algorithm (either adaptive or randomized) will
perform arbitrarily poorly and this problem is inapprox-
imable. Hence any algorithm trying to find the global
optimum for this problem [3] can only be exponential.

5.2 Polynomial time lower and upper bounds

The decomposition theorem of [5] shows that any sub-
modular function can be decomposed into a modular
function plus a monotone non-decreasing and totally
normalized polymatroid rank function. Specifically,
given submodular f, g we have f ′(X) , f(X) −∑
j∈X f(j|V \j) and g′(X) , g(X) −∑j∈X g(j|V \j)

with f ′, g′ being totally normalized polymatroid rank

functions. Hence we have: v(X) = f ′(X) − g′(X) +
k(X), with modular k(X) =

∑
j∈X v(j|V \j).

The algorithms in the previous sections are all based on
repeatedly finding upper bounds for v. The following
lower bounds directly follow from the results above.
(The proof of this is in [13])

Theorem 5.3. We have the following two lower bounds
on the minimizers of v(X) = f(X)− g(X):

min
X

v(X) ≥ min
X

f ′(X) + k(X)− g′(V )

min
X

v(X) ≥ f ′(∅)− g′(V ) +
∑

j∈V
min(k(j), 0)

The above lower bounds essentially provide bounds on
the minima of the objective and thus can be used to
obtain an additive approximation guarantee. The algo-
rithms described in this paper are all polynomial time
algorithms (as we show below) and correspondingly
from the bounds above we can get an estimate on how
far we are from the optimal.

5.3 Computational Bounds

We now provide computational bounds for ε-
approximate versions of our algorithms. Note that
this was left as an open question in [30]. Finding the
local minimizer of DS functions is PLS complete since it
generalizes the problem of finding the local optimum of
the MAX-CUT problem [34]. However we show that an
ε-approximate version of this algorithm will converge
in polynomial time.

Definition 5.1. An ε-approximate version of an it-
erative monotone non-decreasing algorithm for min-
imizing a set function v is defined as a version of
that algorithm, where we proceed to step t+ 1 only if
v(Xt+1) ≤ v(Xt)(1 + ε).

Note that the ε-approximate versions of algorithms 1,
2 and 3, are guaranteed to converge to ε-approximate
local optima. W.l.o.g., assume that X0 = ∅. Then we
have the following computational bounds:

Theorem 5.4. The ε-approximate versions of al-
gorithms 1, 2 and 3 have a worst case com-

plexity of O( log(|M |/|m|)
ε T ), where M = f ′(∅) +∑

j∈V min(v(j|V \j), 0)− g′(V ), m = v(X1) and O(T )
is the complexity of every iteration of the algorithm
(which corresponds to respectively the submodular min-
imization, maximization, or modular minimization in
algorithms 1, 2 and 3)..

The proof of this theorem is in [13]

Observe that for the algorithms we use, O(T ) is strongly
polynomial in n. The best strongly polynomial time
algorithm for submodular function minimization is
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O(n5η + n6) [32] (the lower bound is currently un-
known). Further the worst case complexity of the
greedy algorithm for maximization is O(n2) while the
complexity of modular minimization is just O(n). Note
finally that these are worst case complexities and actu-
ally the algorithms run much faster in practice.
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Figure 1: Plot showing the accuracy rates vs. the
number of features on the Mushroom data set.

6 Experiments

We test our algorithms on the feature subset selection
problem in the supervised setting. Given a set of fea-
tures XV = {X1, X2, · · · , X|V |}, we try to find a subset
of these features A which has the most information
from the original set XV about a class variable C under
constraints on the size or cost of A. Normally the num-
ber of features |V | is quite large and thus the training
and testing time depend on |V |. In many cases, how-
ever, there is a strong correlation amongst features and
not every feature is novel. We can thus perform train-
ing and testing with a much smaller number of features
|A| while obtaining (almost) the same error rates.

The question is how to find the most representative set
of features A. The mutual information between the
chosen set of features and the target class C, I(XA;C),
captures the relevance of the chosen subset of features.
In most cases the selected features are not independent
given the class C so the näıve Bayes assumption is
not applicable, meaning this is not a pure submodu-
lar optimization problem. As mentioned in Section 1,
I(XA;C) can be exactly expressed as a difference be-
tween submodular functions H(XA) and H(XA|C).

6.1 Modular Cost Feature Selection

In this subsection, we look at the problem of maximiz-
ing I(XA;C) − λ|A|, as a regularized feature subset
selection problem. Note that a mutual information
I(XA;C) query can easily be estimated from the data
by just a single sweep through this data. Further we
have observed that using techniques such as Laplace
smoothing helps to improve mutual information esti-

mates without increasing computation. In these exper-
iments, therefore, we estimate the mutual information
directly from the data and run our algorithms to find
the representative subset of features.

We compare our algorithms on two data sets, i.e., the
Mushroom data set [12] and the Adult data set [20]
obtained from [9]. The Mushroom data set has 8124 ex-
amples with 112 features, while the Adult data set has
32,561 examples with 123 features. In our experiments
we considered subsets of features of sizes between 5%-
20% of the total number of features by varying λ. We
tested the following algorithms for the feature subset
selection problem. We considered two formulations of
the mutual information, one under näıve Bayes, where
the conditional entropy H(XA|C) can be written as
H(XA|C) =

∑
j∈AH(Xi|C) and another where we do

not assume such factorization. We call these two for-
mulations factored and non-factored respectively. We
then considered the simple greedy algorithm, of iter-
atively adding features at every step to the factored
and non-factored mutual information, which we call
GrF and GrNF respectively. Lastly, we use the new
algorithms presented in this paper on the non-factored
mutual information.

We then compare the results of the greedy algorithms
with those of the three algorithms for this problem,
using two pattern classifiers based on either a linear
kernel SVM (using [4]) or a näıve Bayes (NB) classifier.
We call the results obtained from the supermodular-
submodular heuristic as “SupSub”, the submodular-
supermodular procedure [30] as “SubSup”, and the
modular-modular objective as “ModMod.” In the Sub-
Sup procedure, we use the minimum norm point algo-
rithm [11] for submodular minimization, and in the Sub-
Sup procedure, we use the optimal algorithm of [7] for
submodular maximization. We observed that the three
heuristics generally outperformed the two greedy pro-
cedures, and also that GRF can perform quite poorly,
thus justifying our claim that the näıve Bayes assump-
tion can be quite poor. This also shows that although
the greedy algorithm in that case is optimal, the fea-
tures are correlated given the class and hence model-
ing it as a difference between submodular functions
gives the best results. We also observed that the Sup-
Sub and ModMod procedures perform comparably to
the SubSup procedure, while the SubSup procedure is
much slower in practice. Comparing the running times,
the ModMod and the SupSub procedure are each a
few times slower then the greedy algorithm (ModMod
is slower due computing the modular semigradients),
while the SubSup procedure is around 100 times slower.
The SubSup procedure is slower due to general submod-
ular function minimization which can be quite slow.

The results for the Mushroom data set are shown in
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Figure 1. We performed a 10 fold cross-validation on
the entire data set and observed that when using all the
features SVM gave an accuracy rate of 99.6% while the
all-feature NB model had an accuracy rate of 95.5%.
The results for the Adult database are in Figure 2. In
this case with the entire set of features the accuracy
rate of SVM on this data set is 83.9% and NB is 82.3%.
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Figure 2: Plot showing the accuracy rates vs. the
number of features on the Adult data set.

In the mushroom data, the SVM classifier significantly
outperforms the NB classifier and correspondingly GrF
performs much worse than the other algorithms. Also,
in most cases the three algorithms outperform GrNF.
In the adult data set, both the SVM and NB perform
comparably although SVM outperforms NB. However
in this case also we observe that our algorithms gener-
ally outperform GrF and GrNF.

6.2 Submodular cost feature selection
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Figure 3: Plot showing the accuracy rates vs. the cost
of features for the Mushroom data set

We perform synthetic experiments for the feature subset
selection problem under submodular costs. The cost
model we consider is c(A) =

∑
i

√
m(A ∩ Si). We

partitioned V into sets {Si}i and chose the modular
function m randomly. In this set of experiments, we
compare the accuracy of the classifiers vs. the cost
associated with the choice of features for the algorithms.
Recall, with simple (modular) cardinality costs the
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Figure 4: Plot showing the accuracy rates vs. the cost
of features for the Adult data set

greedy algorithms performed decently in comparison
to our algorithms in the adult data set, where the NB
assumption is reasonable. However with submodular
costs, the objective is no longer submodular even under
the NB assumption and thus the greedy algorithms
perform much worse. This is unsurprising since the
greedy algorithm is approximately optimal only for
monotone submodular functions. This is even more
strongly evident from the results of the mushrooms
data-set (Figure 3)

7 Discussion

We have introduced new algorithms for optimizing the
difference between two submodular functions, provided
new theoretical understanding that provides some jus-
tification for heuristics, have outlined applications that
can make use of our procedures, and have tested in the
case of feature selection with modular and submodular
cost features. Our new ModMod procedure is fast at
each iteration and experimentally does about as well
as the SupSub and SubSup procedures. The ModMod
procedure, moreover, can also be used under various
combinatorial constraints, and therefore the ModMod
procedure may hold the greatest promise as a practical
heuristic. An alternative approach, not yet evaluated,
would be to try the convex-concave procedure [39] on
the Lovász extensions of f and g since subgradients
in such case are so easy to obtain.
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Abstract

We consider Incentive Decision Processes,
where a principal seeks to reduce its costs
due to another agent’s behavior, by offering
incentives to the agent for alternate behav-
ior. We focus on the case where a principal
interacts with a greedy agent whose prefer-
ences are hidden and static. Though IDPs
can be directly modeled as partially observ-
able Markov decision processes (POMDP),
we show that it is possible to directly reduce
or approximate the IDP as a polynomially-
sized MDP: when this representation is ap-
proximate, we prove the resulting policy is
boundedly-optimal for the original IDP. Our
empirical simulations demonstrate the per-
formance benefit of our algorithms over sim-
pler approaches, and also demonstrate that
our approximate representation results in a
significantly faster algorithm whose perfor-
mance is extremely close to the optimal pol-
icy for the original IDP.

1 Introduction

Consider a landlord who pays for her tenant’s heating
bill, or an insurance company that covers an insuree’s
health care bills. These are two instances where a prin-
cipal agent incurs a cost for the behavior of another
agent. In such scenarios the principal may be able to
provide incentives to attempt to change the agent’s be-
havior; however, the principal typically does not know
the preferences of the agent, and these preferences de-
termine which incentives will be accepted by the agent
in return for altered behavior.

We formalize this problem as an instance of sequential
decision making under uncertainty. Despite much AI
interest in this general field, there has been limited re-
search on multi-step decision processes where a princi-
pal agent’s own costs are a function of another agent’s

behavior. We call these processes Incentive Decision
Processes (IDPs) and in this paper we focus on the
case where a principal interacts with a greedy myopic
agent whose preferences are hidden and static. The ob-
jective is to compute a decision policy for the principal
that minimizes its total expected sum of costs over the
horizon of interactions with the agent. Computing this
policy would be trivial if the agent’s preferences were
known to the principal: the principal would simply of-
fer the incentive for an agent action that minimized
the principal’s cost amongst all incentive-action pairs
that would be accepted by the agent. However, the
agent preferences are typically hidden. It is important
to consider the case where a principal cannot simply
ask the agent for its preferences. Naturally a strate-
gic rational agent may wish to misrepresent its stated
preferences in order to gain additional reward, and we
will briefly touch on this issue at the end of the paper.
But our focus will be on agents that act myopically and
therefore truthfully (as we will later prove). We argue
that this model is reasonable for many important situ-
ations where the agent is not adversarial, but is either
unaware or in denial of its own utility function, such as
asking a person about their preference for consuming
healthy food or exercising different amounts, or where
it is impossible for the agent to directly respond (such
as teaching a baby a new behavior).

Our work is most closely related to the research of
Zhang and colleagues [12, 13, 4] on environment de-
sign. However, Zhang et al.’s work primarily addresses
inducing the agent to follow a particular policy within
a short number of interactions, whereas our research
focuses on how to provide incentives to minimize the
total cost incurred by the principal over many interac-
tions with the agent. We believe our objective is likely
to be particularly relevant in multiple real-world do-
mains, where the cost of any diagnostic steps to reveal
the hidden preferences of the agent, such as a tenant,
office employee, or insuree, must be balanced with the
expected benefit of that information in reducing the
cost to the principal. In this sense our algorithms will
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address the exploration versus exploitation tradeoff in
the context of Incentive Decision Processes.

We will show constructing a policy for the principal
in an IDP may be modeled as a partially observable
Markov decision process (POMDP) planning problem.
However we will demonstrate that we can leverage the
significant structure in IDPs to achieve much more ef-
ficient optimal or boundedly-optimal algorithms. Our
first contribution is to prove that if there are only two
different actions that the agent may choose, then the
incentive decision process can be reduced to a poly-
nomially sized MDP. We will also describe a similar
approximate mapping for multiple action incentivized
decision processes, and also present formal bounds on
the quality of policies for the approximate representa-
tion. Our empirical simulations demonstrate the per-
formance benefit of our sequential decision-theoretic
algorithms over simpler approaches. We will finish
by briefly discussing multiple extensions to our model,
including dynamic agent preferences and strategically
rational agents. When proofs are omitted, they are
provided in the appendix.

2 Background

A Markov decision process (MDP) is described by a
tuple 〈S,A, p(s′|s, a), C, γ〉. S is a set of states, A is
a set of actions, and p(s′|s, a) is the transition model
and stores for each state s and action a the probability
of transitioning to any state s′. C is the cost model
and represents the cost of taking action a in state s
and transitioning to state s′. γ ∈ [0, 1] is a discount
factor. A stationary policy π : S → A is a mapping
from states to actions.1 The value of a policy π for a
horizon H from state s is the expected sum of costs
over H steps when following the policy from state s,

V H
π (s) =

∑

s′

p(s′|s,π(s))[c(s,π(s), s′) + γV H−1
π (s′)]

This equation is also known as the Bellman equa-
tion [1]. In a slightly modified form (known as a Bell-
man update) it can be used to iteratively compute the
optimal value function and optimal policy. If the hori-
zon is infinite, then the value function is independent
of the time step. The optimal policy is the policy that
has the lowest value.

Partially observable MDPs (POMDPs) [10, 6] are of-
ten used to describe decision processes where the state
is not directly observable. POMDPs are represented
by a tuple 〈S,A,O, p(s′|s, a), p(o|s′, a), C, γ〉. Here O
is a set of observations, and p(o|s′, a) is the probability
of observing o after taking action a and transitioning
to state s′. A belief b is a probability distribution over

1The policy can also depend on the time step.

the possible world states, given the prior history of ac-
tions taken and observations received. b is a sufficient
statistic for the history, and can be updated as new
actions are taken, and new observations are received,
using a Bayes filter. In POMDP planning the objec-
tive is to compute a policy π : b → a that maximizes
the expected sum of future rewards.

3 Related Work

Since the agent’s preferences are unknown to the prin-
cipal, our work is loosely related to research on pref-
erence elicitation [3]. However, preference elicitation
only focuses on identifying an agent’s hidden reward
model, or identifying it sufficiently to make a single de-
cision. In contrast, in our work the principal seeks to
minimize its expected sum of costs. Similarly, inverse
reinforcement learning [9] seeks to identify an agent’s
hidden reward model given the agent’s behavior, but
our focus is on minimizing the cost to a principal by
altering the agent’s behavior through the offering of
incentives, which may not involve fully identifying the
agent’s hidden reward model.

Research on multiple agents interacting includes so-
phisticated models for representing and updating each
agent’s internal estimate of the state of the other
agent. Such representations can lead to infinite nest-
ings of state estimates [11]. Interactive POMDPs
(I-POMDPs) are used to represent such problems,
and use a finite representation of each agent’s state
for tractability [5]. Such rich representations remain
very expressive, but at the price of computational in-
tractability for all but very small domains.

The closest work to our own is that of Zhang and col-
leagues [12, 14, 13, 4] on policy teaching and environ-
ment design. Their earliest work [12] focuses on find-
ing a set of incentives for the agent that minimizes the
principal’s expected cost. Their setting is quite gen-
eral: the agent acts in a MDP and the principal pro-
vides a set of incentives over the MDP states. Zhang
et al. provide an algorithm for identifying the optimal
incentives to provide within a finite (but unknown)
number of episodes, where in each multi-step episode
the agent follows their optimal policy given their (hid-
den) reward function plus the provided incentives. Our
presented work focuses on a more restrictive setting of
a greedy agent selecting among a fixed set of actions
at each step, but within this context we provide for-
mal guarantees of our algorithm’s performance over a
single multi-step episode as the principal and agent in-
teract. Our IDP model is most similar to Zhang et al.’s
recent work [4] on an incentivized multi-armed bandit.
However, this work focuses on inducing a particular ac-
tion selection by the agent given some budget, whereas
our focus is on minimizing the total expected cost for
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the principal. Also, we are interested in long horizon
decision processes, versus their algorithmic work only
considers short (≤ 3 step) horizons.

4 Incentive Decision Process Model

Consider a principal interacting multiple times with
an agent. At each time step the agent chooses
an action from a set of agent actions A =
{a1, a2, · · · , aN , aN+1}. We assume that the agent has
an internal reward Ran

for every action an such that
Rai

> Raj
if i > j. Therefore aN+1 will yield the high-

est reward for the agent, and so we define aN+1 as the
default agent action that the agent will select if no in-
centives are provided. All other actions a1, · · · , aN will
be referred to as alternate agent actions. The agent’s
rewards are hidden from the principal, but due to the
assumed structure, the principal does know that ac-
tion aN+1 is the agent’s default action. Each agent
action ai is also associated with a particular cost ci

to the principal and the costs are such that ci < cj if
i < j. Therefore by definition the default agent action
aN+1 is of highest cost to the principal.

At each time step the principal offers an incentive δ
for a particular action an (n ∈ (1, N)) to the agent if
the agents chooses action an on this time step. The
offered incentive is selected from a set of K incentives
∆ = {δ1, · · · , δK} where δi < δj if i < j. We assume
that the agent acts to maximize its immediate reward,
and will accept the offered incentive and take action
an if doing so yields a higher reward than the default
action, Ran

+ δ > RaN+1
. Otherwise the agent will

reject the incentive and take the default action aN+1

and receive reward RaN+1
. If the agent accepts the of-

fered incentive for action an, the principal will incur an
immediate cost of cn +δ; otherwise, the principal’s im-
mediate cost is cN+1. We will assume that the cost of
each alternate agent actions, plus the maximum possi-
ble incentive, is always less than the cost of the default
agent action: cN + δK < cN+1. This implies that the
principal would always prefer the agent to accept an
incentive and take one of the alternate agent actions.
We also assume that for each alternate agent action
an, there exists an incentive in ∆ such that if that in-
centive is offered, the agent would prefer to accept that
incentive and take the alternate agent action instead
of the default action. Let tn = RaN+1

− Ran
∈ ∆ be

the least incentive for which the agent prefers action
an to the default agent action aN+1. Observe that
lower indexed actions have lower rewards to the agent,
and therefore will require incentives equal or greater
than higher indexed rewards, ti ≥ tj for i < j. We use
I = (t1, · · · , tN ) to denote the tuple of true incentives
for the N alternate agent actions. These incentives
are initially unknown to the principal. The principal
is provided with an initial joint probability distribu-

tion P0 which gives the probability that ti = δk for all
n ∈ {1, · · · , N} and k ∈ {1, · · · , K}.

Note the set of alternate actions and set of possible in-
ternal rewards for each action for the agent is common
knowledge. The agent’s actual reward for each alter-
nate action is prive knowledge to the agent. Since the
agent is assumed to act in a myopic fashion, it does
not matter if the principal’s costs for each alternate
action, and its set of possible incentives, are private or
common knowledge.

The objective of the principal is to minimize its ex-
pected sum of costs over H interactions with the agent.
The costs may be multiplied by a discount factor
γ ∈ [0, 1]. We will consider both the finite horizon
case and the discounted infinite horizon case (H = ∞).
In this paper we will design tractable algorithms that
compute a decision policy to achieve the principal’s
objective.

For example, the landlord-tenant scenario can be mod-
eled as an IDP where the tenant’s (agent’s) default
temperature setting is the default action, and other
temperatures correspond to alternate agent actions.
Each temperature maps to a cost to the landlord (prin-
cipal). At each step the principal offers an incentive
to the agent if the agent sets the thermostat to an
alternate temperature that the principal specifies.

An IDP can also be modeled as a POMDP. In the
IDP POMDP the state is the agent’s hidden tn for all
n ∈ {1, · · · , N}, the actions are the cross product of
all alternate agent actions with the possible incentives
∆ (since the principal can offer any incentive paired
with any alternate agent action), and the observations
are the binary accept or reject response of the agent.
For most of this paper we assume that the agent’s hid-
den preferences are static, and so the state transition
model is a delta function. The observation model is
that an agent’s acceptance of an offer of δk for alter-
nate action an indicates that tn ≤ δk (since an agent
will accept any incentive equal or greater than tn for al-
ternate action an), and a reject indicates that tn > δk.
Note that the observation model depends on how we
assume the agent acts, which is a function of its in-
ternal hidden reward and the offered incentive. Since
we assumed that the agent is myopically greedy, the
agent will accept an incentive if the sum of offered in-
centive and the agent’s internal reward is greater than
the agent’s hidden reward for its default action choice.
The initial belief in the POMDP is given by P0. Com-
puting the optimal policy for this POMDP will enable
the principal to optimally offer (an, δk) pairs that bal-
ance reducing the uncertainty over the agent’s hidden
true incentives I with minimizing the expected cost
to the principal, given the current belief state over I.
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However, computing an optimal policy for a POMDP
can take doubly exponential time and existing meth-
ods often struggle to scale to large state or action
spaces or long time horizons, all of which can feature
in IDPs.

Fortunately there is significant structure in IDPs. We
will now show how we can leverage this structure to
reduce the problem to simpler decision processes, and
we will present efficient algorithms for computing ex-
act or boundedly-optimal policies.

5 Single Alternate Agent Action IDPs

We first consider IDPs when there is a single alternate
action a1. It is known that a POMDP can be reduced
to a continuous state MDP where each state repre-
sents a belief: note that since the states are probabil-
ity distributions, the MDP has an infinite state space.
Here we show the surprising result that a single alter-
nate agent action IDP can be reduced to a polynomi-
ally sized MDP, which means they can be solved much
more efficiently than standard POMDPs.

We first describe how to perform belief updating in
a single alternate agent action IDP. Let the possi-
ble range of incentives for alternate agent action a1

be S1 = [s1, e1] if and only if δs1
≤ t1 ≤ δe1

.
S = [S1, · · · , SN ] are the incentive ranges for all al-
ternate agent actions; for N = 1, S = S1. We are
interested in maintaining the probability that t1 = δi
for all δi ∈ ∆. Given the initial probability distribu-
tion P0, we can directly compute the initial incentive
range S1. The initial probability that t1 = δi is

p1,S(δi) =
P0(δi)1(δi, S)

∑K
k=1 P0(δk)1(δk, S)

, (1)

where 1(δi, S) = 1 if δs1
≤ δi ≤ δe1

(if incentive δi
is within the possible incentive range), and, with a
slight abuse of notation, we use P0(δi) to represent the
initial probability that the agent’s t1 = δi. Note that
initially the denominator will be 1, because the range
will cover all incentives δi for which P0(δi) > 0. On
the first time step the principal will offer the agent an
incentive δi to take the alternate agent action a1. If the
agent accepts, the principal knows that t1 ≤ δi, due to
the assumed monotonic structure of the incentives and
the greedy myopic agent behavior. Therefore the new
possible incentive range if the agent accepts δi is S1 =
[s1, i], since the upper bound on the possible index is
at most i. If the agent rejects the offered incentive,
then t1 > δi and so the new incentive range must be
S1 = [i+1, e1]. In either case the new probability of the
agent accepting a particular incentive δj is identical to
Equation 1 using the updated incentive range S1.

Each offered incentive, and associated agent response,
can set the probability of some incentives to zero.

Since t1 is static, we prove it is sufficient to main-
tain and update S1 in order to compute the cur-
rent p1,S(δj) given the history of offered incentives
and agent responses. Therefore, the belief state over
the agent’s incentive t1 will be of the form B1

i,j =

(0, · · · , 0, p1
i,S , · · · , p1

j,S , 0, · · · , 0) where S1 = (i, j) and

p1
j,S = p1,S(δj). We will shortly prove that there are

only O(K2) possible such states.

Before we do so, we first note that an IDP-MDP is
an instance of a deterministic POMDP, since the ob-
servations are a deterministic function of the underly-
ing agent’s preferences, and the transition model is a
delta function because these preferences are assumed
to be static. Prior work [7, 2] has proved that a de-
terministic POMDP with Ns states can be converted
to a finite-state MDP with a number of states that is
an exponential function ((1 + Ns)

Ns) of the number
of POMDP states. This is significantly smaller MDP
than generic POMDPs which map to a MDP with an
infinite number of states. However, we will show that
an IDP with N = 1 can be mapped to a MDP with B1

i,j

as the MDP states. We now prove that the resulting
MDP has a number of states that is only a polynomial
function of the number of POMDP states (K).

Theorem 5.1. An IDP with N = 1 alternate agent
actions is equivalent to an MDP with O(K2) states.

Proof. We see that B1
1,K is the initial state of the

IDP-MDP. Suppose B1
i,j is the current state. Con-

sider the case where incentive δk is offered. The agent
might either accept or reject the incentive. As stated,
the agent’s response to each offer can eliminate cer-
tain range of the incentives but the ratio amongst the
remaining ones does not change. If the agent accepts
the incentive, the new probability vector will be B1

i,k

since the response indicates that t1 ∈ [δi, δk], otherwise
if the agent rejects the incentive, the new probability
vector will be B1

k+1,j , since t1 ∈ [δk+1, δj ]. Hence, by

induction, at the tth step, the probability vector is of
the form B1

i,j and only states of this form are reach-
able from the initial probability vector. Now i and j
can each take on at most K values, so the maximum
number of possible B1

i,j is at most O(K2). Therefore

the number of belief states is bounded by O(K2) and
therefore the IDP with one alternate agent action can
be reduced to a MDP with O(K2) states.

We now define the IDP-MDP for a single alternate
agent action. We use v(l) to denote the l-th element
of a vector v. The state space is the B1

i,j vectors just
described. The action space is the incentive space ∆.
The MDP transition model is the probability of tran-
sitioning from one B1

i,j to other belief states after the
principal offers the agent an incentive. For a given
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Algorithm 1 ValH1

1: Input: IDP-MDP M , state B1
i,j , matrix V of

horizon-values, matrix π of horizon-policy, h
2: if h = 0 then
3: V h(B1

i,j) = 0 {no more time steps}
4: else
5: for k = i : j − 1 do
6: if V h−1(B1

i,k) = Ø then

7: [V h−1(B1
i,k), V,π]=ValH1(M ,B1

i,k,V ,π,h−1)
{Calc. value if agent accepts δk}

8: end if
9: if V h−1(B1

k+1,j) = Ø then

10: [V h−1(B1
k+1,j), V,π]=ValH1(M ,B1

k+1,j ,V ,π,h−
1) {Calc. value if agent rejects δk}

11: end if
12: Qh(B1

i,j , δk)=p(B1
i,k|B1

i,j , δk)(δk+V h−1(B1
i,k))+

p(B1
k+1,j |B1

i,j , δk)(c2+V h−1(B1
k+1,j))

13: end for
14: Qh(B1

i,j , δj) = δjh

15: V h(B1
i,j) = min Qh(B1

i,j , ·)
16: πh(B1

ij) = arg min Qh(B1
i,j , ·)

17: end if
18: Return [V h(B1

i,j), V,π]

state B1
i,j , and a given offered incentive δk, with prob-

ability
∑

i≤l≤k B1
i,j(l) the agent will accept the offer

and the new state will be B1
i,k, and with probabil-

ity 1 − ∑
i≤l≤k B1

i,j(l) the agent will reject the offer,

and the new state will be B1
k+1,j . The cost model of

the MDP takes the form c(B1
i,j , δk, B1

i,k) = δk + c1 for
transitions where the agent accepts the incentive, and
c(B1

i,j , δk, B1
k+1,j) = c2 when the agent rejects.

We now show the special structure of this problem al-
lows us to introduce more efficient planning algorithms
that require only O(K3) and O(min(H,K) K3) com-
putation time for the infinite and finite horizon case,
respectively. First note that the principal only needs
to consider offering incentives δk within the range of
i ≤ k ≤ j for a state B1

i,j , as other incentives will be
automatically rejected (or accepted but at higher cost
than necessary for the principal). We start by consid-
ering the infinite horizon case. Let the expected sum
of discounted costs of state B1

i,j be V (B1
i,j). We de-

fine a MDP state s to be non-recurring with respect
to a policy π if the state can only be reached once
while executing the π. A state s of the MDP is called
self-absorbing if executing π from s results in a self-
transition to state s with probability 1. A policy π is
NonRecur-Absorb if each MDP state is either non-
recurring or self-absorbing with respect to π.

First recall that for an infinite horizon MDP, there al-

ways exists an optimal policy that is stationary (the
decision depends on only the current state and is in-
dependent of the time step). Therefore we will con-
sider only stationary policies. Next note that for an
infinite horizon IDP-MDP, if incentive δj is offered
in state B1

i,j , then the MDP remains in same state

B1
i,j . If one of the other possible actions (offering

incentives δi, · · · , δj−1) is taken, then the MDP will
transition to a new state, and will never return to the
state B1

i,j since the number of non-zero entries in the

probability vector B1
i,j monotonically decreases. This

implies all infinite-horizon policies for an IDP-MDP
are NonRecur-Absorb. As each state can only be
reached once (or is an absorbing state) during execu-
tion, we only need to compute a Bellman backup for
the state-action values Q once for each state-action
pair. We compute a decision policy by computing the
state-action values of the initial state by recursively
computing the value of each reachable state. The
values of subsequent states are stored and cached so
that they can be re-used if the same state is reached
through a different trajectory of offered incentives and
responses. There are O(K2) MDP states and O(K)
actions for each state, so there are O(K3) state-action
pairs. The cost of computing the Bellman backup for
a given state-action pair can be done in constant time
given the values of the possible next states (since there
are only at most 2 possible next states). Therefore the
algorithm takes O(K3) time. Note this is significantly
faster than value iteration on generic MDPs with Ns

states and Na actions which requires O(
NaN2

s

1−γ ) time to
compute a near-optimal policy.

For the finite horizon case, let V h(B1
i,j) denote the ex-

pected sum of costs to the principal for state B1
i,j for a

horizon of h future interactions with the agent. Every
policy is not NonRecur-Absorb because the prin-
cipal could offer the same incentive for multiple time
steps (staying in the same state) and then offer a new
incentive and transition to another state. However, we
can prove the following result:

Theorem 5.2. There exists an optimal policy for an
IDP-MDP with N = 1 that is NonRecur-Absorb.

The proof intuition is that we can always re-order an
optimal policy so that it only offers incentives that
keep the MDP in the same state at the final time steps.

The algorithm for the finite horizon case is displayed
in Algorithm 1. Here the state’s value and policy
will depend on the time step. Each time the hori-
zon decreases, either a state becomes self-absorbing
with a cost of δjh or least one non-zero element of
the probability vector B1

i,j becomes zero. Since the

initial state B1
1,K has K non-zero elements, it will

take at most K time steps until a state is reached
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which is self-absorbing (as all single-element beliefs
are self-absorbing). Therefore, the algorithm takes
O(min(H,K) K3) running time

6 Multiple Alternate Action IDPs

We next consider IDPs with multiple alternate agent
actions, namely N > 1. We now need to maintain a
belief state over the joint of the alternate agent actions
crossed with the incentives. As stated in the definition
of the IDP, we assume we are provided with an initial
probability distribution over the true incentives tn for
each alternate action an, P0. We know from the prior
section that all beliefs for an N = 1 IDP are of the form
B1

i,j = (0, · · · , 0, p1
i,S , · · · , p1

j,S , 0, · · · , 0) where S1 =
(i, j). We now extend the model to handle multiple ac-
tions. Let BS = (Bn

S) |Nn=1 where Bn
S denotes the prob-

ability vector (0, · · · , 0, pn
i,S , · · · , pn

j,S , 0, · · · , 0) where
Sn = (i, j) and pn

i,S is the probability that tn = δi
given the initial joint distribution P0 and the possible
incentive ranges Sn for each alternate agent action.
Sn = (sn, en), for all n ∈ {1, · · · , N}.

Theorem 6.1. The number of states of IDP-MDP
for N > 1 is O(K2N ) states.

Proof. Assume that the current state is BS , where
Sn = (sn, en) for 1 ≤ n ≤ N . Consider the case
where incentive δi is offered for action an. The agent
will accept this offer with the probability that its true
incentive tn for an is ≤ δi, which is equal to

∑
j≤i pn

j,S .
If the offer is accepted, then sn ≤ tn ≤ i, which implies
Sn = (sn, i). In addition, all alternate agent actions
m > n with higher agent reward than alternate agent
action an will also all accept tn, so the incentive range
of all such actions will also be updated Sm = (sm, i) for
all m > n. This defines a new S, which together with
P0, completely defines the new distribution over the
probability of each incentive for each alternate agent
action. If the agent rejects the offered incentive, then
sn ≥ i + 1, and so Sn = (i + 1, en). All alternate
agent actions m < n with a lower agent reward than
action an will also reject the reward, which results in
Sm = (i + 1, em) for all m < n. There are N alternate
agent actions, and we know from Theorem 5.1 that
there are at O(K2) states per individual action, there-
fore there are at most O(K2N ) possible states. Due to
the relationship among the agent costs and rewards,
this number will often be much lower.

An IDP with N > 1 alternate agent actions has many
of the same properties as an IDP with N = 1 ac-
tions, and therefore we can use algorithms similar to
those described in the prior section (see the text and
Algorithm 1) to solve the IDP-MDP with N > 1.
Excluding the cost for the belief updates, this re-
quires O(NK2N+1) and O(min(H,NK)K2N+1) com-
putation time for the infinite and finite horizon case,

respectively. While this is computationally tractable
for small N , this scales poorly as N increases.

To address this, we will now provide efficient approx-
imate algorithms for computing a decision policy in
IDPs with large N . Note that computing the probabil-
ity of the next possible states, given an offered incen-
tive δk for alternate agent action an involves comput-
ing the marginal probabilities pn

k,S that tn = δk given

the current S. This is an O(KN ) operation due to
summing over all other action-incentive probabilities.
Hence, any approximation algorithm will take at least
O(KN ) time due to the bottleneck of belief updating.
This cost can be reduced by assuming structure in the
joint probability distribution, such as using graphical
models with bounded treewidth. We leave further ex-
ploration of this issue for future work.

We now define a new special form of a Markov deci-
sion process. Let a SEQ-MDP be an IDP-MDP with
N > 1 with the following additional restrictions on the
allowable principal’s actions at different states:

1. For the initial state, the principal can offer any
incentive for only alternate agent action a1 (as-
suming that initially S1 = (s1, e1) and s1 )= e1).

2. For any other state, the principal can offer any
incentive for alternate agent action an, only when
Si = (si, ei) and ei = si for all i < n. In other
words, ti must be known for all alternate agent
actions i < n before the principal can offer an
incentive for an.

A SEQ-MDP restricts the possible decision policy set
Π to policies that only provide incentives for alternate
agent actions with higher cost to the principal only af-
ter finding the true incentive for the lower cost actions.
Note that the SEQ-MDP policy may not identify the
true incentive for all actions, but can decide to stick
with a previously identified an, δk pair.

We now analyze the number of states in a SEQ-MDP.
Consider that at the present state the principal is offer-
ing incentives for alternate agent action an. We know
that Si = (si, ei) for i > n and si = ei for i < n.
Define ci + δj as the minimum action cost + true in-
centive across all i < n. Since we would never take
any other i′ < n with a higher cost, ci + δj is suffi-
cient to summarize all useful information from prior
offered actions. Therefore we can represent a state in
the SEQ-MDP as the tuple (ai, δj , BSn

). For each
offered alternate agent action, there can be O(K2)
states, as in the IDP-MDP with N = 1. We also
must track the current minimal cost alternate agent
action and offered incentives, and there are O(NK)
such combinations. Finally we also have to monitor
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the current alternate agent action, and there are O(N)
possibilities. The product of these quantities yields a
state space of O(N2K3). For similar arguments as
given in Section 5, we can construct optimal policies
that are NonRecur-Absorb for SEQ-MDP and use
planning methods similar to those described in Section
5. There are O(K) possible actions for each state in a
SEQ-MDP. Therefore, again excluding costs for com-
puting the marginal probabilities, the computational
cost of computing an optimal infinite-horizon policy
for a SEQ-MDP is O(N2K4), and the finite horizon
H cost is O(min(H,NK)N2K4).

We now prove that computing the optimal policy for a
SEQ-MDP yields a boundedly-optimal policy for the
original IDP-MDP with N > 1.

Theorem 6.2. An optimal policy for a SEQ-MDP
that is a transformation of an IDP-MDP with N > 1,
has an expected cost V seq which is bounded by V seq =
V ∗ +

∑K
k=1(δk − δ1) + N(cN+1 − c1), where V ∗ is the

optimal value for the IDP-MDP.

Proof. We will make a constructive argument by pro-
viding a policy π ∈ Π that realizes the bound V seq.
Consider a policy π that starts with the lowest cost ac-
tion, and offers the highest possible incentive. The pol-
icy proceeds by sequentially decreasing the offered in-
centive δk for alternate agent action a1 until the agent
rejects the offered incentive. Let this highest incentive
at which the agent rejects be δj−1. That means that
the true incentive t1 for alternate agent action a1 is
δj . Since a1 is the lowest cost and lowest reward al-
ternate action, we know that δj will be accepted for
all other alternate agent actions i > 1, since all such
actions yield higher reward to the agent. Therefore
we need not offer δj for any other agent actions. The
policy then moves on to offering incentives for alter-
nate agent action a2, starting with offering δj−1. The
policy again continues to incrementally decrease the
offered incentive until it reaches a reject, at which it
then starts to provide incentives for a3, and so on. The
policy is similarly defined for all subsequent alternate
agent actions. The defined policy π operates only on
the SEQ-MDP version of the IDP-MDP.

Note that after the principal makes an offer, either
an incentive for a particular action, or a particular
incentive for all actions can be eliminated. Since there
can at most be K accepts, and at most N rejects (as at
most one offer can be rejected for each action), there
are at most K + N steps.

Each of the at most N rejected offers will cause the
algorithm to incur at most cN+1 − c1 additional cost
compared to the optimal policy, since the principal will
pay the cost of the default action cN+1. Each offer
that was accepted that is above the true incentive will

result in an additional cost of at most δi−δ1. Note that
each incentive δi is offered only once if it is accepted for
an action an. Therefore, the total cost is bounded by
V seq = V ∗+N(cN+1−c1)+

∑K
k=1(δk−δ1). This is true

irrespective of the distribution over incentives. It can
be easily seen that the policy π ∈ Π, as required.

This bound does not use any information about the
probability distribution. A tighter bound using the
probability distribution can be obtained but is not
presented here for ease of exposition. Also, an al-
ternate algorithm with bound V ∗ + K(cN+1 − c1) +∑N

i=1(cN − ci) is possible by starting from action aN

rather than a1 and progressing to lower cost actions
only after identifying the true incentive for the higher
cost actions. An argument similar to the one made in
Theorem 6.2 can be used to prove this bound. In next
section, our empirical results show the optimal policy
for a SEQ-MDP performs well in practice.

7 Experiments

We now empirically evaluate our algorithms.

In our simulations the cost of the default agent action
was set to cN+1 = 2. For N alternate agent actions,
the cost to the principal of the agent taking action an

was set to cn =
(

n
N

)η
where η is a constant. For K in-

centives, the value of the k-th incentive was δk = k/K.
Note the maximum cost of the alternate agent actions
is 1, and the maximum incentive is 1. Therefore the
cost to the principal of an agent accepting an incentive
cn + δk is always less than or equal than the cost to
the principal of the agent’s default action cN+1, as our
IDP model assumed (Section 4). The initial belief was
set to a uniform joint distribution over the possible
incentive-alternate agent action space: recall that this
distribution must always respect the constraints that
ti ≥ tj for i < j since Rai

< Raj
. In each experimental

run we fixed K,N ,η and the horizon H, and sampled a
true hidden vector of incentives for the agent from the
initial belief. We then executed the policy of each al-
gorithm and recorded the total cost accumulated over
H steps. We simulated 1000 runs and averaged over
each run’s total sum of costs. We repeated this for 10
rounds (each of 1000 runs) and computed the standard
deviation error bars for the average total cost.

We compare the performance of our algorithms to two
natural methods. The first is a greedy algorithm. In
the greedy algorithm, given a current state BS (with
Sn = (sn, en)), the principal offers the incentive δk
for alternate action an that minimizes the expected
immediate cost to the principal,

[δk, an] = argmin
δk,an

k∑

k′=sn

pn
k′,S(δk+cn) +

en∑

k′=k+1

pn
k′,S(cN+1).
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(a) Avg total cost over H (w/1 std. error bars).N = 3, K = 5.
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(b) Ratio of avg. total cost to optimal. N = 3, K = 5.
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Figure 1: Average total cost for varying horizons H.

The second method first uses a binary-search-like pro-
cedure, starting from a1, to identify the true incentive
for each alternate agent action. It then selects the al-
ternate agent action, and incentive, with the lowest
immediate cost, and then offers that for all remain-
ing steps. We label this algorithm “diagnose-and-act
(DAA).” It should be noted that DAA can be viewed
as a first running a simple inverse reinforcement learn-
ing approach.

Figure 1(a) displays the average total cost incurred
for different horizons for N = 3 alternate agent ac-
tions, and K = 5 incentives. Here we set η = 1 and
N ≤ 5 but results from varying η (from 0.75 to 1.25)
and N yielded similar results. As expected, the op-
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Figure 2: Planning time (sec) as a function of K or N
for the optimal algorithm and SEQ-MDP.

timal policy performs best for all horizons. To bet-
ter explore the difference between the algorithms, we
replotted the results by dividing by the optimal algo-
rithm’s average total cost at each horizon H, resulting
in a figure where the optimal algorithm is always 1,
and all other algorithms are displayed as their ratio
to the optimal performance (see Figure 1(b)). For low
horizons the greedy algorithm performs very close to
optimal, because there is little benefit to gathering in-
formation to find a lower cost alternate since there is
little time to use such information. However, as H in-
creases, greedy performs significantly worse than the
optimal algorithm. DAA algorithm performs poorly
at low horizons because it tries to identify the optimal
incentive for each action, and this can take longer than
the available horizon to accomplish. At larger horizons
DAA performs better. For very large horizons we ex-
pect that DAA would converge to the performance of
the optimal policy: in such cases the loss incurred from
not identifying the best action-incentive pair will likely
become very high, meaning that it will be optimal to
identify the minimal cost incentive.

The SEQ-MDP approach has very good performance.
Indeed it is was visually and statistically indistinguish-
able from the optimal algorithm for all horizons H for
K = 5, N = 3. SEQ-MDP is not always identical to
the optimal algorithm’s performance: for example, in
Figure 1(c) we display results for K = 3 and N = 5.
Here there are a larger number of possible incentive-
action combinations (35) relative to the available hori-
zon, and so consecutively stepping through the alter-
nate agent actions may not be the optimal strategy.

However SEQ-MDP performs very close to the optimal
algorithm’s performance, and it is significantly better
than other approaches. The SEQ-MDP approxima-
tion also requires much less computation time than
the optimal algorithm. Figures 2(a) and 2(b) compare
the average computational time to execute a single run
(H = 20). Figure 2(a) fixes the number N = 3 of al-
ternate agent actions, and varies the number of offered
incentives K, and Figure 2(b) fixes K = 4 and varies
N . The SEQ-MDP algorithm scales much better than
the optimal algorithm in both cases.
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8 Discussion and Extensions

So far we have focused on Incentive Decision Processes
where a principal interacts with a myopic greedy agent
whose preferences are hidden and static. Here we
briefly consider two extensions of this model.

Dynamic Preferences: In many real applications
the agent’s preferences will change over time, and the
principal may not know if the agent’s preferences have
changed. This significantly complicates the decision
problem. One important common class of dynamic
changes is where the preferences change locally. For
example, a tenant’s thermal preferences may locally
shift during seasonal changes. Let us assume that if
true incentive tn for alternate agent action an is δk,
then tn remains the same with probability λ0, shifts
to δk+d with probability λ1, and shifts to δk−d with
probability λ2 after each potential preference change2.
We will restrict our attention to the case where the
maximum number of times the agent might change
its preferences is at most L. For simplicity we will
also assume that we know the time epochs at which
changes can occur, but our results also apply when we
do not have prior information about these time epochs.
Similarly, we will state our results for N = 1 but these
results can be extended to N > 1.

Such dynamic preference IDPs can be represented as
a POMDP with O(K3) states: in a static IDP there
are O(K2) belief states; a change in preference shifts
the non-zero elements of the belief state; there are
at most O(K) possible shifts; and as we don’t know
whether a shift occurs or not, this becomes the hidden
state of our POMDP. Interestingly, we can reduce this
POMDP to a finite state MDP:

Theorem 8.1. A dynamic preference IDP (N=1) can
be represented as a MDP with O(K2(L+1)) states.

This result is significant because we have mapped
a non-deterministic POMDP to a finite state MDP.
While a similar result is known to hold for determin-
istic POMDPs, it does not hold for general POMDPs,
which typically map to a MDP with an infinite number
of states. It is important to emphasize that this result
holds for infinite horizon dynamic preference IDPs.

We believe that substantial further reductions in the
state space may be possible with minimal performance
loss since each possible change is local and small.

Rational Strategic Agents: Often the agent itself
will seek to optimize its long term expected sum of
rewards, reasoning about the potential future incen-
tives the principal might provide if the agent chooses
to accept or reject different offers. In such situations,

2λ0 + λ1 + λ2 = 1.

the previous reduction to a MDP will no longer hold
because the principal cannot trust that the agent’s re-
sponses reflect its true hidden incentives.

Many of the policies we have considered so far will
provide a higher incentive when an offer is rejected,
and a lower incentive if the offer is accepted. Let us
denote such policies πsimple. Such policies are strategy
proof for a horizon of H = 1:

Theorem 8.2. The agent will act truthfully for H =1.

Indeed it is fairly easy to see that acting truthfully
will always maximize the agent’s immediate reward.
However, this does not hold for longer horizons.

Theorem 8.3. πsimple is not a strategy proof policy
for arbitrary horizons.

The proof provides an example of a H = 2 IDP where
the agent can increase its reward by acting in discord
with its true preferences. In the future we intend to de-
velop algorithms for automatically constructing equi-
librium decision policies for the principal and agent,
and to design strategy proof policies.

Other directions: There are multiple other exten-
sions to the Incentive Design Problems we have con-
sidered in this paper. Another interesting variant is
when there are multiple agents (say U), and the prin-
cipal can only provide incentives to 1 agent at each
time step. It can be shown that an approach similar
to binary search will lead to an O((c2−c1)U log K) ad-
ditive bound with respect to the optimal algorithm in
case of single alternate action. Interestingly, this prob-
lem can also be reduced to multi-arm bandit (MAB)
problem with superprocesses [8]. Though computing
optimal policies for superprocess MABs is generally
difficult, it may be possible to leverage the IDP struc-
ture to compute efficient algorithms. We also plan to
use IDPs to construct personalized adaptive incentives
for reducing energy consumption.

9 Conclusion

We have introduced Incentive Decision Processes,
where the objective is to compute a decision policy for
a principal to minimize its expected sum of costs by
providing incentives to a myopic agent. If the agent’s
hidden preferences are static, then we can represent
an IDP (either exactly for 1 alternate action, or ap-
proximately for multiple actions) as a polynomially-
sized Markov decision process, instead of as a standard
POMDP. Our empirical results showed our sequential
decision theoretic techniques significantly outperform
simpler comparison algorithms.
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Abstract

In standard passive imitation learning, the
goal is to learn a target policy by passively
observing full execution trajectories of it.
Unfortunately, generating such trajectories
can require substantial expert effort and be
impractical in some cases. In this paper, we
consider active imitation learning with the
goal of reducing this effort by querying the
expert about the desired action at individual
states, which are selected based on answers
to past queries and the learner’s interactions
with an environment simulator. We intro-
duce a new approach based on reducing ac-
tive imitation learning to i.i.d. active learn-
ing, which can leverage progress in the i.i.d.
setting. Our first contribution, is to analyze
reductions for both non-stationary and sta-
tionary policies, showing that the label com-
plexity (number of queries) of active imita-
tion learning can be substantially less than
passive learning. Our second contribution, is
to introduce a practical algorithm inspired by
the reductions, which is shown to be highly
effective in four test domains compared to a
number of alternatives.

1 Introduction

Traditionally, passive imitation learning involves
learning a policy that performs nearly as well as an
expert’s policy based on a set of trajectories of that
policy. However, generating such trajectories is often
tedious or even impractical for an expert (e.g. real-
time low-level control of multiple game agents). In or-
der to address this issue, we consider active imitation
learning where full trajectories are not required, but
rather the learner asks queries about specific states,
which the expert labels with the correct actions. The
goal is to learn a policy that is nearly as good as the
expert’s policy using as few queries as possible.

The active learning problem for i.i.d. supervised learn-
ing has received considerable attention both in theory
and practice (Settles, 2009), which motivates attempt-
ing to leverage that work for active imitation learning.
However, the direct application of i.i.d. approaches
to active imitation learning can be problematic. This
is because i.i.d. active learning algorithms assume ac-
cess to either a target distribution over unlabeled input
data (in our case states) or a large sample drawn from
it. The goal then is to select the most informative
query to ask, usually based on some combination of
label (in our case actions) uncertainty and unlabeled
data density. Unfortunately, in active imitation learn-
ing, the learner does not have direct access to the tar-
get state distribution, which is the state distribution
induced by the unknown expert policy.

In principle, one could approach active imitation learn-
ing by assuming a uniform or an arbitrary distribution
over the state space and then apply an existing i.i.d.
active learner. However, such an approach can per-
form very poorly. This is because if the assumed dis-
tribution is considerably different from that of the ex-
pert, then the learner is prone to ask queries in states
rarely or even never visited by the expert. For ex-
ample, consider a bicycle balancing problem. Clearly,
asking queries in states where the bicycle has entered
an unavoidable fall is not very useful because no ac-
tion can prevent a crash. However, i.i.d. active learn-
ing technique will tend to query in such uninformative
states, leading to poor performance, as shown in our
experiments. Furthermore, in the case of a human
expert, a large number of such queries poses serious
usability issues, since labeling such states is clearly a
wasted effort from the expert’s perspective.

In this paper, we consider the problem of reducing ac-
tive imitation learning to i.i.d. active learning both
in theory and practice. Our first contribution is to
analyze the PAC label complexity (number of expert
queries) of a reduction for learning non-stationary poli-
cies, which requires only minor modification to exist-
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ing results for passive learning. Our second contribu-
tion is to introduce a reduction for learning stationary
policies resulting in a new algorithm Reduction-based
Active Imitation Learning (RAIL) and an analysis of
the label complexity. The resulting complexities for
active imitation learning are expressed in terms of the
label complexity for the i.i.d. case and show that there
can be significant query savings compared to existing
results for passive imitation learning. Our third contri-
bution is to describe a new practical algorithm, RAIL-
DW, inspired by the RAIL algorithm, which makes a
series of calls to an i.i.d. active learning algorithm. We
evaluate RAIL-DW in four test domains and show that
it is highly effective when used with an i.i.d. algorithm
that takes the unlabeled data density into account.

2 Related Work

Active learning has been studied extensively in the
i.i.d. supervised learning setting (Settles, 2009) but
to a much lesser degree for sequential decision mak-
ing, which is the focus of active imitation learning.
Several studies have considered active learning for re-
inforcement learning (RL) (Clouse, 1996; Mihalkova
and Mooney, 2006; Gil et al., 2009; Doshi et al., 2008),
where learning is based on both autonomous explo-
ration and queries to an expert. Rather, in our imita-
tion learning framework, we do not assume a reward
signal and learn only from expert queries. Other prior
work (Shon et al., 2007) studies active imitation learn-
ing in a multiagent setting where the expert is itself
a reward seeking agent and hence is not necessarily a
helpful expert. Here we consider only helpful experts.

One approach to imitation learning is inverse RL
(IRL) (Ng and Russell, 2000), where a reward function
is learned based on a set of target policy trajectories.
The learned reward function and transition dynamics
are then given to a planner to obtain a policy. There
has been limited work on active IRL. This includes a
Bayesian approach (Lopes et al., 2009), where a poste-
rior over reward functions is used to select a “most in-
formative” query. Another Bayesian approach (Cohn
et al., 2010) models uncertainty about the entire MDP
model and uses Expected Myopic Gain (EMG) to se-
lect a query about transition dynamics and rewards.
While promising, the scalability of these approaches is
hindered by the assumptions made by IRL and have
only been demonstrated on small problems. In par-
ticular, they require that the exact domain dynamics
are provided or can be learned and that an efficient
planner is available.

To facilitate scalability, rather than follow an IRL
framework we consider a direct imitation framework
where we attempt to directly learn a policy instead of
the reward function and/or transition dynamics. Un-

like inverse RL, this framework does not require an
exact dynamic model nor an efficient planner. Rather,
our approach requires only a simulator of the envi-
ronment dynamics that is able to generate trajectories
given a policy. Such a simulator is often available, even
when a compact description of the transition dynamics
and/or a planner are not.

Recent active learning work in the direct imitation
framework includes confidence based autonomy (Cher-
nova and Veloso, 2009), and the related dogged learn-
ing framework (Grollman and Jenkins, 2007), where a
policy is learned as it is executed. When the learner
is uncertain about what to do at a state, the policy
is paused and the expert is queried about what ac-
tion to take, resulting in a policy update. One diffi-
culty in applying this approach is setting the uncer-
tainty threshold for querying the expert. While an
automated threshold selection approach is suggested
(Chernova and Veloso, 2009), our experiments show
that it is not always effective. Like our work, this ap-
proach requires a dynamics simulator.

Recently, Ross and Bagnell (2010); Ross et al. (2011)
proposed algorithms for imitation learning that are
able to actively query the expert at particular states
during policy execution. They show that under cer-
tain assumptions these algorithms have better theo-
retical performance guarantees than pure passive imi-
tation learning. Unfortunately, these algorithms query
the expert quite aggressively making them impractical
for human experts or computationally expensive with
automated experts. In contrast, our work focuses on
active querying for the purpose of minimizing the ex-
pert’s labeling effort. Like our work, they also require
a dynamics simulator to help select queries.

3 Problem Setup and Background

We consider imitation learning in the framework of
Markov decision processes (MDPs). An MDP is a tu-
ple 〈S,A, T,R, I〉, where S is the set of states, A is the
finite set of actions, T (s, a, s′) is the transition func-
tion denoting the probability of transitioning to state
s′ upon taking action a in state s, R(s) ∈ [0, 1] is the
reward function giving the immediate reward in state
s, and I is the initial state distribution. A station-
ary policy π : S 7→ A is a deterministic mapping from
states to actions such that π(s) indicates the action to
take in state s when executing π. A non-stationary
policy is a tuple π = (π1, . . . , πT ) of T stationary poli-
cies such that π(s, t) = πt(s) indicates the action to
take in state s and at time t when executing π, where
T is the time horizon. The expert’s policy, which we
assume is deterministic, is denoted as π∗.

The T -horizon value of a policy V (π) is the expected
total reward of trajectories that start in s1 ∼ I at
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time t = 1 and then execute π for T steps. We use dtπ
to denote the state distribution induced at time step
t by starting in s1 ∼ I and then executing π. Note
that d1π = I for all policies. We use dπ = 1

T

∑T
t=1 d

t
π

to denote the state distribution induced by policy π
over T time steps. To sample an (s, a) pair from dtπ,
we start in s1 ∼ I, execute π to generate a trajectory
T = (s1, a1, . . . , sT , aT , sT+1) and set (s, a) = (st, at).
Similarly, to sample from dπ, we first sample a random
time step t ∈ {1, . . . , T}, and then sample an (s, a) pair
from dtπ. Note that in order to sample from dπ∗ (or
dtπ∗), we need to execute π∗. Throughout the paper,
we assume that the only way π∗ can be executed is by
querying the expert for an action in the current state
and executing the given action, which puts significant
burden on the expert.

The regret of a policy π with respect to an expert pol-
icy π∗ is equal to V (π∗)−V (π). In imitation learning,
the goal is to learn a policy π from a hypothesis class
H (e.g. linear action classifiers), that has a small re-
gret. In the passive setting of imitation learning, the
learner is provided with a training set of full execu-
tion trajectories of π∗ and the state-action pairs (or
a sample of them) are passed to an i.i.d. supervised
learning algorithm. To help avoid the cost of gener-
ating full trajectories, active imitation learning allows
the learner to pose action queries. In an action query,
a state s is presented to the expert and the expert
returns the desired action π∗(s).

In addition to having access to the expert for answer-
ing queries, we assume that the learner has access to
a simulator of the MDP. The input to the simulator
is a policy π and a horizon T . The simulator out-
put is a state trajectory that results from executing π
for T steps starting in the initial state. The learner
is allowed to interact with this simulator as part of
its query selection process. The simulator is not as-
sumed to provide a reward signal, which means that
the learner cannot find π by pure reinforcement learn-
ing.

Since our analysis in the next two sections is based
on reducing to i.i.d. active learning and comparing to
i.i.d. passive learning, we briefly review the Probably
Approximately Correct (PAC) (Valiant, 1984) learn-
ing formulation for the i.i.d. setting. Here we consider
the realizable PAC setting, which will be the focus of
our initial analysis. Section 4.3, extends to the non-
realizable, or agnostic setting. In passive i.i.d. super-
vised learning, N i.i.d. data samples are drawn from
an unknown distribution DX over an input space X
and are labeled according to an unknown target clas-
sifier f : X 7→ Y, where Y denotes the label space. In
the realizable PAC setting it is assumed that f is an
element of a known class of classifiers H and given a

set of N examples a learner then outputs a hypothesis
h ∈ H. Let ef (h,DX ) = Ex∼DX [h(x) 6= f(x)] de-
note the generalization error of the returned classifier
h. Standard PAC learning theory provides a bound on
the number of labeled examples that are sufficient to
guarantee that for any distribution DX , with proba-
bility at least 1−δ, the returned classifier h will satisfy
ef (h,DX ) ≤ ε. We will denote this bound by Np(ε, δ),
which corresponds to the label/query complexity of
i.i.d. passive supervised learning for a class H. We
will also denote a passive learner that achieves this
label complexity as Lp(ε, δ).

In i.i.d. active learning, the learner is given access to
two resources rather than just a set of training data:
1) A “cheap” resource (Sample) that can draw an un-
labeled sample from DX and provide it to the learner
when requested, 2) An “expensive” resource (Label)
that can label a given unlabeled sample according to
target concept f when requested. Given access to
these two resources, an active learning algorithm is
required to learn a hypothesis h ∈ H while posing as
few queries to Label as possible. It can, however, pose
a much larger number of queries to Sample (though
still polynomial) as it is cheap. We use Na(ε, δ) to
denote the label complexity (i.e. number of calls to
Label) that is sufficient for an active learner to return
an h that for any DX with probability at least 1 − δ
satisfies ef (h,DX ) ≤ ε. Similarly, we will denote an
active learner that achieves this label complexity as
La(ε, δ,D), where the final argument D indicates that
the Sample function used by La samples from distribu-
tion D. It has been shown that often Na can be expo-
nentially smaller than Np for hypothesis classes with
bounded complexity (e.g. VC-dimension). In partic-
ular, in the realizable case, ignoring δ, Np = O( 1

ε )
whereas Na = O(log( 1

ε )) giving exponential improve-
ment in label complexity over passive learning.

4 Reductions for Active Imitation
Learning

We now consider reductions from active imitation
learning to active i.i.d. learning for the cases of de-
terministic non-stationary and stationary policies.

4.1 Non-Stationary Policies

Syed and Schapire (2010) analyze the traditional re-
duction from passive imitation learning to passive i.i.d.
learning for non-stationary policies. The algorithm
uses queries to sample N expert trajectories, noting
that the state-action pairs at time t can be viewed
as i.i.d. draws from distribution dtπ∗ . The algo-
rithm, then returns the non-stationary policy π̂ =
(π̂1, . . . , π̂T ), where π̂t is the policy returned by run-
ning the learner Lp on examples from time t. Let
εt = eπ∗t (π̂t, d

t
π∗) be the generalization error at time
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t. Lemma 31 in (Syed and Schapire, 2010) shows that
if for each time step εt ≤ ε, then V (π̂) ≥ V (π∗)− εT 2.
Hence, if we are interested in learning a π̂ whose over-
all regret is no more than ε, then we need to provide at
least Np(

ε
T 2 ,

δ
T ) examples to Lp to ensure that εt ≤ ε

T 2

holds at all time steps with probability at least 1− δ.
Therefore, the passive label complexity of this algo-
rithm is T ·Np( ε

T 2 ,
δ
T ).

Our goal now is to provide a reduction from active imi-
tation learning to i.i.d. active learning that can achieve
an improved label complexity. This is not as simple as
replacing the calls to Lp in the above approach with
calls to an active learner La. This is because the ac-
tive learner at time step t would require the ability to
sample from the unlabeled distribution dtπ∗ , which re-
quires executing the expert policy for t steps, which in
turn requires t label queries to the expert that would
count against the label complexity.

It turns out that for a slightly more sophisticated re-
duction to i.i.d. passive learning introduced by Ross
and Bagnell (2010), it is possible to simply replace
Lp with La and maintain the potential benefit of ac-
tive learning. Ross and Bagnell (2010) introduced the
forward training algorithm for non-stationary policies,
which trains a non-stationary policy in a series of T
iterations. In particular, iteration t trains policy π̂t
by calling a passive learner Lp on a labeled data set
drawn from the state distribution induced at time t
by the non-stationary policy π̂t−1 = (π̂1, . . . , π̂t−1),
where π̂1 is learned on states drawn from the initial
distribution I. The motivation for this approach is to
train the policy at time step t based on the same state-
distribution that it will encounter when being run after
learning. By doing this, Ross and Bagnell (2010) show
that the algorithm has a worst case regret of T 2ε and
under certain assumptions can achieve a regret as low
as O(Tε).

Importantly, the state-distribution used to train π̂t
given by dtπ̂t−1 is easy for the learner to sample from
without making queries to the expert. In particular,
to generate a sample the learner can simply simulate
π̂t−1, which is available from previous iterations, from
a random initial state and return the state at time t.
Thus, we can simply replace the call to Lp at itera-
tion t with a call to La with unlabeled state distribu-
tion dtπ̂t−1 as input. More formally, the active forward
training algorithm is given by the following iteration:
π̂t = La(ε, δT , D

t), where D1 = I and Dt = dtπ̂t−1 .

Theorem 3.1 in (Ross and Bagnell, 2010) gives the

1The main result of (Syed and Schapire, 2010) holds
for stochastic expert policies and requires a more compli-
cated analysis that results in a looser bound. Lemma 3
is strong enough for deterministic expert policies, which is
the assumption made in our work.

worst case bound on the regret of the forward train-
ing algorithm which assumes the generalization error
at each iteration is bounded by ε. Since we also main-
tain that assumption when replacing Lp with La (the
active variant) we immediately inherit that bound.

Proposition 1. Given a PAC i.i.d. active learning
algorithm La, if active forward training is run by giv-
ing La parameters ε and δ

T at each step, then with
probability at least 1−δ it will return a non-stationary
policy π̂T such that V (π̂T ) ≥ V (π∗)− εT 2.

Note that La is run with δ
T as the reliability param-

eter to ensure that all T iterations succeed with the
desired probability. Proposition 1 shows that the over-
all label complexity of active forward training in or-
der to achieve a regret less than ε with probability at
least 1 − δ is T ·Na( ε

T 2 ,
δ
T ). Comparing to the corre-

sponding label complexity of passive imitation learning
T ·Np( ε

T 2 ,
δ
T ) we see that an improved label complex-

ity of active learning in the i.i.d. case translates to
improved label complexity of active imitation learn-
ing. In particular, in the realizable learning case, we
know that Na can be exponentially smaller than Np in
terms of its dependence on 1

ε .

4.2 Stationary Policies

A drawback of active forward training is that it is im-
practical for large T and the resulting policy cannot be
run indefinitely. We now consider the case of learning
stationary policies, first reviewing the existing results
for passive imitation learning.

In the traditional approach, a stationary policy π̂ is
trained on the expert state distribution dπ∗ using a
passive learning algorithm Lp returning a stationary
policy π̂. Theorem 2.1 in (Ross and Bagnell, 2010)
states that if the generalization error of π̂ with respect
to the i.i.d. distribution dπ∗ is bounded by ε then
V (π̂) ≥ V (π∗) − εT 2. Since generating i.i.d. samples
from dπ∗ can require up to T queries (see Section 3)
the passive label complexity of this approach for guar-
anteeing a regret less than ε with probability at least
1− δ is T ·Np( ε

T 2 , δ).

The above approach cannot be converted into an ac-
tive imitation learner by simply replacing the call to
Lp with La, since again we cannot sample from the un-
labeled distribution dπ∗ without querying the expert.
To address this issue, we introduce a new algorithm
called RAIL (Reduction-based Active Imitation Learn-
ing) which makes a sequence of T calls to an i.i.d.
active learner, noting that it is likely to find a use-
ful stationary policy well before all T calls are issued.
RAIL is an idealized algorithm intended for analysis,
which achieves the theoretical goals but has a number
of inefficiencies from a practical perspective. Later in
Section 5 we describe the practical instantiation that
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is used in our experiments.

RAIL is similar in spirit to active forward training,
though its analysis is quite different and more involved.
Like forward-training RAIL iterates for T iterations,
but on each iteration, RAIL learns a new stationary
policy π̂t that can be applied across all time steps. It-
eration t + 1 of RAIL learns a new policy π̂t+1 that
achieves a low error rate at predicting the expert’s
actions with respect to the state distribution of the
previous policy dπ̂t . More formally, given an i.i.d. ac-
tive learner La, the RAIL algorithm is defined by the
following iteration:

• (Initialize) π̂0 is an arbitrary policy, possibly
based on prior knowledge or existing data,

• (Iterate t = 1 · · · , T ) π̂t = La(ε, δT , dπ̂t−1).

Thus, similar to active forward training, RAIL makes
a sequence of T calls to an active learner. Unlike for-
ward training, however, the unlabeled data distribu-
tions used at each iteration contains states from all
time points within the horizon, rather than being re-
stricted to a states arising at a particular time point.
Because of this difference, the active learner is able to
ask queries across a range of time point and we might
expect policies learned in earlier iterations to achieve
non-trivial performance throughout the entire horizon.
In contrast, at iteration t the policy produced by for-
ward training is only well defined up to time t.

The complication faced by RAIL, however, compared
to forward training, is that the distribution used to
train π̂t+1 differs from the state distribution of the
expert policy dπ∗ . This is particularly true in early
iterations of RAIL since π̂0 is initialized arbitrarily.
We now show that as the iterations proceed, we can
bound the similarity between the state distributions of
the learned policy and the expert, which allows us to
bound the regret of the learned policy. We first state
the main result which we prove below.

Theorem 1. Given a PAC i.i.d. active learning al-
gorithm La, if RAIL is run with parameters ε and δ

T
passed to La at each iteration, then with probability at
least 1 − δ it will return a stationary policy π̂T such
that V (π̂T ) ≥ V (π∗)− εT 3.

From this we see that the impact of moving from non-
stationary to stationary policies in the worst case is a
factor of T in the regret bound. Similarly the bound is
a factor of T worse than the comparable result above
for passive imitation learning, which suffered a worst-
case regret of εT 2. From this we see that the total label
complexity for RAIL required to guarantee a regret of
ε with probability 1 − δ is T · Na( ε

T 3 ,
δ
T ) compared

to the above label complexity of passive learning T ·

Np(
ε
T 2 , δ). Thus, for a given policy class, if the label

complexity of i.i.d. active learning is substantially less
than the label complexity of passive learning, then our
reduction can leverage those savings. For example, in
the realizable learning case, ignore the dependence on
δ (which is only logarithmic), we get an active label

complexity of T · O(log T 3

ε ) versus the corresponding

passive complexity of T ·O(T
2

ε ).

For the proof we introduce the quantity P tπ(M), which
is the probability that a policy π is consistent with a
length t trajectory generated by the expert policy π∗

in MDP M . It will also be useful to index the state
distribution of π by the MDP M , denoted by dπ(M).
The main idea is to show that at iteration t, P tπ̂t(M)
is not too small, meaning that the policy at iteration
t mostly agrees with the expert for the first t actions.
We first state two lemmas, which are useful for the
final proof. First, we bound the regret of a policy in
terms of PTπ (M).

Lemma 1. For any policy π, if PTπ (M) ≥ 1− ε, then
V (π) ≥ V (π∗)− εT .

Proof. Let Γ∗ and Γ be all state-action sequences of
length T that are consistent with π∗ and π respectively.
If R(T ) is the total reward for a sequence T then we
get the following:

V (π) =
∑

T ∈Γ

Pr(T | M,π)R(T )

≥
∑

T ∈Γ∩Γ∗
Pr(T | M,π)R(T )

=
∑

T ∈Γ∗
Pr(T | M,π∗)R(T )−

∑

T ∈Γ∗−Γ

Pr(T | M,π∗)R(T )

= V (π
∗
)−

∑

T ∈Γ∗−Γ

Pr(T | M,π∗)R(T )

≥ V (π
∗
)− T ·

∑

T ∈Γ∗−Γ

Pr(T | M,π∗)

≥ V (π
∗
)− εT

The last two inequalities follow since the reward for a
sequence must be no more than T and our assumption
about PTπ (M).

Next, we show how the value of P tπ(M) changes across
one iteration of learning.

Lemma 2. For any policies π and π̂ and 1 ≤ t < T ,
if eπ∗(π̂, dπ(M)) ≤ ε, then P t+1

π̂ (M) ≥ P tπ(M)− Tε.

Proof. We define Γ̂ to be all sequences of state-action
pairs of length t + 1 that are consistent with π̂. Also
define Γ to be all length t + 1 state-action sequences
that are consistent with π on the first t state-action
pairs (so need not be consistent on the final pair). We
also define M̂ to be an MDP that is identical to M ,
except that the transition distribution of any state-
action pair (s, a) is equal to the transition distribution
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of action π(s) in state s. That is, all actions taken in
a state s behave like the action selected by π in s.

We start by arguing that if eπ∗(π̂, dπ(M)) ≤ ε then

P t+1
π̂ (M̂) ≥ 1 − Tε, which relates our error assump-

tion to the MDP M̂ . To see this note that for MDP
M̂ , all policies including π∗, have state distribution
given by dπ. Thus by the union bound 1−P t+1

π̂ (M̂) ≤∑t+1
i=1 εi, where εi is the error of π̂ at predicting π∗

on distribution diπ. This sum is bounded by Tε since

eπ∗(π̂, dπ(M)) = 1
T

∑T
i=1 εi. Using this fact we can

now derive the following:

P
t+1
π̂ (M) =

∑

T ∈Γ̂

Pr(T | M,π∗)

≥
∑

T ∈Γ∩Γ̂

Pr(T | M,π∗)

=
∑

T ∈Γ

Pr(T | M,π∗)−
∑

T ∈Γ−Γ̂

Pr(T | M,π∗)

= P
t
π(M)−

∑

T ∈Γ−Γ̂

Pr(T | M,π∗)

= P
t
π(M)−

∑

T ∈Γ−Γ̂

Pr(T | M̂, π
∗
)

≥ P
t
π(M)−

∑

T 6∈Γ̂

Pr(T | M̂, π
∗
)

≥ P
t
π(M)− Tε

The equality of the fourth line follows since Γ contains
all sequences whose first t actions are consistent with π
with all possible combinations of the remaining action
and state transition. Thus, summing over all such se-
quences yields the probability that π∗ agrees with the
first t steps. The equality of the fifth line follows be-
cause Pr(T | M,π∗) = Pr(T | M̂, π∗) for any T that
is in Γ and for which π∗ is consistent (has non-zero
probability under π∗). The final line follows from the
above observation that P t+1

π̂ (M̂) ≥ 1− Tε.
We can now complete the proof of the main theorem.

Proof of Theorem 1. Using failure parameter δ
T en-

sures that with at least probability 1 − δ that for all
1 ≤ t < T we will have eπ∗(π̂

t+1, dπ̂t(M)) ≤ ε. As a
base case, we have P 1

π̂1 ≥ 1 − Tε, since the the error
rate of π̂1 relative to the initial state distribution at
time step t = 1 is at most Tε. Combining these facts
with Lemma 2 we get that PTπ̂T ≥ 1− εT 2. Combining
this with Lemma 1 completes the proof.

4.3 Agnostic Case

Above we considered the realizable setting, where the
expert’s policy was assumed to be in a known hypoth-
esis class H. In the agnostic case, we do not make
such an assumption. The learner still outputs a hy-
pothesis from a class H, but the unknown policy is
not necessarily in H. The agnostic i.i.d. PAC learning
setting is defined similarly to the realizable setting, ex-
cept that rather than achieving a specified error bound
of ε with high probability, a learner must guarantee an

error bound of infπ∈H ef (π,DX ) + ε with high prob-
ability (where f is the target), where DX is the un-
known data distribution. That is, the learner is able
to achieve close to the best possible accuracy given
class H. In the agnostic case, it has been shown that
exponential improvement in label complexity with re-
spect to 1

ε is achievable when infπ∈H ef (π,DX ) is rela-
tively small compared to ε (Dasgupta, 2011). Further,
there are many empirical results for practical active
learning algorithms that demonstrate improved label
complexity compared to passive learning.

It is straightforward to extend our above results for
non-stationary and stationary policies to the agnostic
case by using agnostic PAC learners for Lp and La.
Space precludes full details and here we outline the
extension for RAIL. Note that the RAIL algorithm
will call La using a sequence of unlabeled data dis-
tributions, where each distribution is of the form dπ
for some π ∈ H and each of which may yield a differ-
ent minimum error given H. For this purpose, we de-
fine ε∗ = supπ∈H inf π̂∈H eπ∗(π̂, dπ) to be the minimum
generalization error achievable in the worst case con-
sidering all possible state distributions dπ that RAIL
might possibly encounter. With minimal changes to
the proof of Theorem 1, we can get an identical result,
except that the regret is (ε∗+ε)T 3 rather than just εT 3.
A similar change in regret holds for passive imitation
learning. This shows that in the agnostic setting we
can get significant improvements in label complexity
via active imitation learning when there are significant
savings in the i.i.d. case.

5 Practical Instantiation of RAIL

Despite the theoretical guarantees, a potential draw-
back of RAIL is that the unlabeled state distributions
used at early iterations may be quite different from
dπ∗ . In particular, at iteration t, the distributions at
times t′ > t have no guarantees with respect to dt

′
π∗ .

Thus, early iterations may focus substantial query ef-
fort on parts of the state-space that are not relevant to
π∗. Another issue is that the idealized version does not
share data across iterations, which is potentially waste-
ful. We now describe our practical instantiation of
RAIL, called RAIL-DW (for density weighted), which
addresses these issues in several ways.

First, we use an incremental version of RAIL that
asks only one query per iteration and accumulates
data across iterations. This allows rapid updating of
state distributions and prevents RAIL from wasting its
query budget on earlier inaccurate distributions but
rather focus on later more accurate distributions.

Second, recall that at iteration t+1, RAIL learns using
an unlabeled data distribution dπ̂t , where π̂t is the pol-
icy learned at iteration t. In order to help improve the
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accuracy of this unlabeled distribution (with respect to
dπ∗), instead of using a point estimate for π̂t, we treat
π̂t as a Bayesian classifier for purposes of defining dπ̂t .
In particular, at iteration t let Dt be the set of state-
action pairs collected from previous iterations. We use
this to define a posterior P (π̂|D) over policies in our
policy class H. This, in turn, defines a posterior unla-
beled state distribution dDt = Eπ̂∼P (π̂|D)[dπ̂(s)] which
is used in place of dπ̂t in RAIL. Note that we can sam-
ple from this distribution by first sampling a policy π̂
and then sampling a state from dπ̂, all of which can be
done without interaction with the expert. We observe
that in practice dDt is a significantly more useful es-
timate of dπ∗ than the point estimate, since its more
highly weighted states tend to carry significant weight
according to dπ∗ .

To summarize, iteration t of RAIL-DW carries out the
following steps, adding one state-action pair to the
data set: (D1 is the initial, possibly empty, data set)

1. Run active learner La using unlabeled data dis-
tribution dDt to select a single query state s.

2. Query the expert about s to obtain action π∗(s)
and let Dt+1 = Dt ∪ {(s, π∗(s))}.

The iteration repeats until the query budget is ex-
ceeded. It remains to specify the specific i.i.d. active
learning algorithm that we use and how we sample
from dDt .

Since it is important that the i.i.d. active learner be
sensitive to the unlabeled data distribution, we employ
a density-weighted learning algorithm (hence the name
RAIL-DW). In particular, we use density-weighted
query-by-committee (McCallum and Nigam, 1998) in
our implementation. Given a sample of unlabeled data
points, this approach uses bagging (Breiman, 1996) to
generate a committee for query selection and also uses
a density estimator to estimate the density of the unla-
beled data points. The selected query is the state that
maximizes the product of state density and committee
disagreement. We use the entropy of the vote distribu-
tion (Dagan and Engelson, 1995) as a typical measure
of committee disagreement. We use a committee of
size 5 in our experiments and estimate density of un-
labeled points via simple distance based binning.

Finally, for sampling we assume a class of linear para-
metric policies and assume a uniform prior over the
parameters. We approximate sampling from dDt via
bagging: where we generate K bootstrap samples of
Dt and a policy is learned from each using a supervised
learner. This produces a set of K policies and each is
executed to generate K trajectories. The states on
those trajectories are given to the active learner as the
unlabeled data set. We set K = 5 in our experiments.

6 Experiments

We empirically evaluate RAIL-DW on four domains:
1) Cart-pole, 2) Bicycle, 3) Wargus and 4) The struc-
tured prediction domain NETtalk. We compare RAIL-
DW against the following baselines: 1) Passive, which
simulates the traditional approach by starting at the
initial state and querying the expert about what to do
at each visited state, 2) unif-QBC, which views all the
states as i.i.d. according to the uniform distribution
and applies the standard query-by-committee (QBC)
(Seung et al., 1992) active learning approach. Intu-
itively, this approach will select the state with high-
est action uncertainty according to the current data
set and ignore the state distribution, 3) unif-RAND,
which selects states to query uniformly at random, and
4) Confidence based autonomy (CBA) (Chernova and
Veloso, 2009), which, starting at the initial state, exe-
cutes the current policy until the learner’s confidence
falls below an automatically determined threshold at
which point it queries the expert for an action. CBA
may decide to stop asking queries once the confidence
exceeds the threshold in all states. We use the exact
automated threshold adjustment strategy proposed in
(Chernova and Veloso, 2009). For all of these meth-
ods, we employed the SimpleLogistic classifier in Weka
(Hall et al., 2009) to learn policies.

Cart-Pole. Cart-pole is an RL benchmark where a
cart must balance an attached vertical pole by ap-
plying left or right forces to the cart. An episode
ends when either the pole falls or the cart goes out
of bounds. There are two actions, left and right, and
four state variables describing the position and veloc-
ity of the cart and the angle and angular velocity of the
pole. We made slight modifications to the usual set-
ting where we allow the pole to fall down and become
horizontal and the cart to go out of bounds (we used
default [-2.4, 2.4] as the bounds for the cart). We let
each episode run for a fixed length of 5000 time steps.
This opens up the possibility of generating several “un-
desirable” states where either the pole has fallen or the
cart is out of bounds that are rarely or never gener-
ated by the expert’s state distribution. The expert
policy was a hand-coded policy that can balance the
pole indefinitely. For each learner, we ran experiments
from 30 random initial states close to the equilibrium
start state, generating learning curves for each one and
averaging the results. We report total reward with a
reward function (unknown to the learner) that is +1
for each time step where the pole is balanced and the
cart is in bounds and -1 otherwise.

Figure 1(a) shows the results for cart-pole. We observe
that RAIL learns quickly and achieves optimal perfor-
mance with only 30-35 queries. Passive, on the other
hand, takes 100 queries to get close to the optimal per-
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Figure 1: Active imitation learning results: (a) Cart-pole (b) Bicycle balancing (c) Wargus (d) NETtalk.
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Figure 2: Performance of RAIL with different base
active learners on (a) Cart-pole (b) Bicycle balancing.

formance. The reason for this difference is clear when
one visualizes the states queried by RAIL versus Pas-
sive (not shown for space reasons). The queries posed
by RAIL tend to be close to the decision boundary of
the expert policy, while passive asks many uninforma-
tive queries that are not close to the boundary. How-
ever, a naive reduction to active learning can be dan-
gerous, as demonstrated by the poor performance of
unif-QBC. Further, RAIL performs much better than
random query selection as demonstrated by the per-
formance of unif-RAND. By ignoring the real data
distribution altogether and incorrectly assuming it to
be uniform, these naive methods end up asking many
queries that are not relevant to learning the expert
policy (e.g. states where the pole is in an unrecover-
able fall or the cart is out of bounds). CBA, like RAIL,
learns quickly but settles at a suboptimal performance.
This is because it becomes confident and stops ask-
ing queries prematurely. This shows that CBA’s auto-
matic threshold adjustment mechanism did not work
well in this domain. We did try several adjustments to
the threshold adjustment strategy, but were unable to
find one that was robust across our four domains and
thus we report results for the original strategy.

We also conducted experiments to study the effects of
using i.i.d. active learners that ignore the data dis-
tribution in RAIL. Figure 2(a) shows the performance
of RAIL with three different base active learners, the
density-weighted QBC, the standard QBC (without
density weighting), and random selection of unlabeled
data points. We see that RAIL-DW performs better
than both RAIL-QBC and RAIL-RAND. This shows

that it is critical for the i.i.d. active learner to ex-
ploit the state density information that is estimated
by RAIL at each iteration.

Bicycle Balancing. Bicycle balancing is a variant
of the Bicycle RL benchmark (Randløv and Alstrøm,
1998). The goal is to balance a bicycle moving at a
constant speed for 1000 time steps. If the bicycle falls,
it remains fallen for the rest of the episode. The state
space is described using nine variables measuring var-
ious angles, angular velocities, and positions of the bi-
cycle. There are five possible actions each specifying
a particular handle-bar torque and rider displacement.
The learner’s policy is represented as a linear logistic
regression classifier over features of state-action pairs.
A feature vector is defined as follows: Given a state s,
a set of 20 basis functions is computed. This set is re-
peated for each of the 5 actions giving a feature vector
of length 100. The expert policy was hand coded and
can balance the bicycle for up to 26K time steps.

We used a similar evaluation procedure as for Cart-
pole giving +1 reward for each time step where the
bicycle is kept balanced and -1 otherwise. Figure 1(b)
compares each approach. The results are similar to
those of Cart-pole with RAIL-DW being the top per-
former. Unif-RAND and Unif-QBC show notably poor
performance in this domain. This is because bicycle
balancing is a harder learning problem than cart-pole
with many more uninformative states (an unrecover-
able fall or fallen state). Similarly, 2(b) shows very
poor performance for versions of RAIL that use distri-
bution unaware active learners.

Wargus. We consider controlling a group of 5 friendly
close-range military units against a group of 5 enemy
units in the real-time strategy game Wargus, similar
to the setup in (Judah et al., 2010). The objective is to
win the battle while minimizing the loss in total health
of friendly units. The set of actions available to each
friendly unit is to attack any one of the remaining units
present in the battle (including other friendly units,
which is always a bad choice). In our setup, we allow
the learner to control one of the units throughout the
battle whereas the other friendly units are controlled
by a fixed “reasonably good” policy. This situation
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would arise when training the group via coordinate
ascent on the performance of individual units. The
expert policy corresponds to the same policy used by
the other units. Note that poor behavior from even a
single unit generally results in a huge loss. Providing
full demonstrations in real time in such tactical bat-
tles is very difficult for human players and quite time
consuming if demonstrations are done in slow motion,
which motivates state-based active learning.

We designed 21 battle maps differing in the initial
unit positions, using 5 for training and 16 for testing.
We average results across five learning trials. Passive
learns along the expert’s trajectory in each map on all
5 maps considered sequentially according to a random
ordering. For RAIL, in each iteration a training map is
selected randomly and a query is posed in the chosen
map. For CBA, a map is selected randomly and CBA
is allowed to play an episode in it, pausing and query-
ing as and when needed. If the episode ends, another
map is chosen randomly and CBA continues to learn
in it. After each query, the learned policy is tested on
the 16 test maps. We use the difference in the total
health of friendly and enemy units at the end of the
battle as the performance metric (which is positive for
a win). We did not run experiments for unif-QBC and
unif-RAND because it is difficult to define the space
of feasible states over which to sample uniformly.

The results are shown in figure 1(c). We see that al-
though Passive learns quickly for the first 10 queries,
it fails to improve further. This shows that the states
located in this initial prefix of the expert’s trajectory
are very useful, but thereafter Passive gets stuck on
the uninformative part of the trajectory till its query
budget is over. On the other hand, RAIL and CBA
continue to improve beyond Passive, with RAIL being
slightly better, which indicates that they are able to
locate and query more informative states.

NETTalk. We evaluate RAIL on a structured pre-
diction task of stress prediction in the NETtalk data
set (Dietterich et al., 2008). Given a word, the goal
is to assign one of the five stress labels to each letter
of the word in the left to right order. It is straightfor-
ward to view structured prediction as imitation learn-
ing (see for example Ross and Bagnell, 2010) where
at each time step (letter location), the learner has to
execute the correct action (i.e. predict correct stress
label) given the current state. The state consists of
features describing the input (the current letter and
its immediate neighbors) and previous L predictions
made by the learner (the prediction context). In our
experiments, we use L = 1, 2 and show results only for
L = 2 noting that L = 1 was qualitatively similar.

We use character accuracy as a measure of perfor-

mance. Passive learns along the expert’s trajectory
on each training sequence considered in the order it
appears in the training set. Therefore, Passive always
learns on the correct context, i.e. previous L charac-
ters correctly labeled. RAIL and Unif-QBC can select
the best query across the entire training set. CBA, like
Passive, considers training sequences in the order they
appear in the training set and learns on each sequence
by querying at each sequence position. In order to
minimize the impact of the ordering of training exam-
ples on Passive and CBA, we ran five learning trials for
each learner, each with a randomized ordering. We re-
port final performance as the learning curves averaged
across all five trials.

Figure 1(d) presents the NETtalk results. The re-
sults are qualitatively similar to Cart-Pole, except that
Unif-QBC and Unif-RAND do quite well in this do-
main but not as well as RAIL-DW. Again we see that
CBA performs poorly because in all five trials it pre-
maturely stops asking queries, showing its sensitivity
to its threshold adjustment mechanism.

Overall Observations. Overall, we can draw a num-
ber of conclusions from the experiments. First, RAIL-
DW proved to be the most robust and effective ac-
tive imitation learning approach in all of our domains.
Second, the choice of the i.i.d. active learner used for
RAIL is important. In particular, performance can
be poor when the active learning algorithm does not
take density information into account. Using density
weighted query-by-committee was effective in all of our
domains. Third, we found that CBA is quite sensitive
to the threshold adjustment mechanism and we were
unable to find an alternative mechanism that works
across our domains. Fourth, we showed that a more
naive application of i.i.d. active learning in the imita-
tion setting is not effective.

7 Summary

We considered reductions from active imitation learn-
ing based on i.i.d. active learning, which allow for
advances in the i.i.d. setting to translate to imitation
learning. First, we analyzed the label complexity of re-
ductions for both non-stationary and stationary poli-
cies, showing that the complexity of active imitation
learning can be significantly less than passive learning.
Second, we introduced RAIL-DW, a practical variant
of the reduction for stationary policies, and showed
empirically in four domains that it is highly effective
compared to a number of alternatives.
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Abstract

Stochastic Shortest Path (SSP) MDPs is a prob-
lem class widely studied in AI, especially in
probabilistic planning. They describe a wide
range of scenarios but make the restrictive as-
sumption that the goal is reachable from any
state, i.e., that dead-end states do not ex-
ist.Because of this, SSPs are unable to model var-
ious scenarios that may have catastrophic events
(e.g., an airplane possibly crashing if it flies into a
storm). Even though MDP algorithms have been
used for solving problems with dead ends, a prin-
cipled theory of SSP extensions that would allow
dead ends, including theoretically sound algo-
rithms for solving such MDPs, has been lacking.
In this paper, we propose three new MDP classes
that admit dead ends under increasingly weaker
assumptions. We present Value Iteration-based
as well as the more efficient heuristic search al-
gorithms for optimally solving each class, and
explore theoretical relationships between these
classes. We also conduct a preliminary empir-
ical study comparing the performance of our al-
gorithms on different MDP classes, especially on
scenarios with unavoidable dead ends.

1 Introduction

Stochastic Shortest Path (SSP) MDPs [Bertsekas, 1995] is
a class of probabilistic planning problems thoroughly stud-
ied in AI. They describe a wide range of scenarios where
the objective of the agent is to reach a goal state in the least
costly way in expectation from any non-goal state using ac-
tions with probabilistic outcomes.

While SSPs are a popular model, they have a serious limi-
tation. They assume that a given MDP has at least one com-
plete proper policy, a policy that reaches the goal from any
state with 100% probability. Basic algorithms for solving
SSP MDPs, such as Value Iteration (VI) [Bellman, 1957],
fail to converge if this assumption does not hold. In the

meantime, this requirement effectively disallows the exis-
tence of dead ends, states from which reaching the goal
is impossible, and of catastrophic events that lead to these
states. Such catastrophic failures are a possiblity to be
reckoned with in many real-world planning problems, be
it sending a rover on Mars or navigating a robot in a build-
ing with staircases. Thus, insisting on the absence of dead
ends significantly limits the applicability of SSPs. More-
over, verifying that a given MDP has no dead ends can be
nontrivial, further complicating the use of this model.

Researchers have realized that allowing dead ends in
goal-oriented MDPs would break some existing methods
for solving them [Little and Thiebaux, 2007]. They have
also suggested algorithms that are aware of the possi-
ble presence of dead-end states [Kolobov et al., 2010]
and try to avoid them when computing a policy
[Keyder and Geffner, 2008, Bonet and Geffner, 2005].
However, these attempts have lacked a theoretical analysis
of how to incorporate dead ends into SSPs in a principled
way, and of what the optimization criteria in the presence
of dead ends should be. This paper bridges the gap by
introducing three new MDP classes with progressively
weaker assumptions about the existence of dead ends,
analyzing their properties, and presenting optimal VI-like
and the more efficient heuristic search algorithms for them.

The first class we present, SSPADE, is a small extension
of SSP that has well-defined easily-computable optimal so-
lutions if dead ends are present but are avoidable provided
that the process starts at a known initial state s0.

The second and third classes introduced in this paper admit
that dead ends may exist and the probability of running into
them from the initial state may be positive no matter how
hard the agent tries. If the chance of a catastrophic event
under any policy is nonzero, a key question is: should we
prefer policies that minimize the expected cost of getting to
the goal even at the expense of an increased risk of failure,
or those that reduce the risk of failure above all else?

The former criterion characterizes scenarios where entering
a dead end, while highly undesirable, has a finite “price”.
For instance, suppose the agent buys an expensive ticket
for a concert of a favorite band in another city, but remem-
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bers about it only on the day of the event. Getting to the
concert venue requires a flight, either by hiring a business
jet or by a regular airline with a layover. The first option is
very expensive but almost guarantees making the concert
on time. The second is much cheaper but, since the con-
cert is so soon, missing the connection, a somewhat proba-
ble outcome, means missing the concert. Nonetheless, the
cost of missing the concert is only the price of the ticket,
so a rational agent would choose to travel with a regular
airline. Accordingly, one of the MDP classes we propose,
fSSPUDE, assumes that the agent can put a price (penalty)
on ending up in a dead end state and wants to compute a
policy with the least expected cost (including the possible
penalty). While seemingly straightforward, this intuition is
tricky to operationalize because of several subtleties. We
overcome these subtleties and show how fSSPUDE can be
solved with easy modifications to existing SSP algorithms.

In the third MDP class we introduce, iSSPUDE, not only
are dead ends unavoidable, but the cost of hitting one is
assumed to be infinitely large. Consider, for example, the
task of planning an ascent to the top of Mount Everest for a
group of human alpinists. Such an ascent is fraught with in-
herent lethal risks, and to any human, the price of their own
life can be taken as infinite. Note the conceptual difficulty
with this setting: since every policy reaches an infinite-
cost state, the expected cost of any policy is also infinite.
This makes SSP’s cost-minimization criterion uninforma-
tive. Instead, for an undertaking as above, a natural pri-
mary objective is to maximize the probability of getting to
the goal (i.e., to minimize the chance of getting into a lethal
accident, a dead-end state). However, of all policies maxi-
mizing this chance, we would prefer the least costly one (in
expectation). This is exactly the multiobjective criterion we
propose for this class of MDPs. Solving iSSPUDE is much
more involved than handling the previous two classes, and
we introduce two novel algorithms for it.

Intuitively, the objectives of fSSPUDE and iSSPUDE
MDPs are related — as fSSPUDE’s dead-end penalty gets
bigger, the optimal policies of the two classes coincide.
We provide a theoretical and an empirical analysis of this
insight, showing that solving fSSPUDE yields an optimal
policy for iSSPUDE if the dead-end penalty is high enough.

Thus, the paper makes four contributions: (1) three new
goal-oriented MDP models that admit the existence of
dead-end states; (2) optimal VI and heuristic search al-
gorithms for solving them; (3) theoretical results describ-
ing equivalences among problems in these classes; and (4)
an empirical evaluation tentatively answering the question:
which class should be used when modeling a given scenario
involving unavoidable dead ends?

2 Background and Preliminaries

SSP MDPs. In this paper, we extend an MDP class
known as the Stochastic Shortest Path (SSP) problems
with an optional initial state, defined as tuples of the form
〈S,A, T , C,G, s0〉, where S is a finite set of states, A is a

finite set of actions, T is a transition function S×A×S →
[0, 1] that gives the probability of moving from si to sj by
executing a, C is a map S × A → R that specifies action
costs, G is a set of (absorbing) goal states, and s0 is an
optional start state. For each g ∈ G, T (g, a, g) = 1 and
C(g, a) = 0 for all a ∈ A, which forces the agent to stay in
g forever while accumulating no reward.

An SSP must also satisfy two conditions: (1) It must have
at least one complete proper policy, a rule prescribing an
action for every state with which an agent can reach a goal
state from any state with probability 1. (2) Every improper
policy must incur the cost of∞ from all states from which
it cannot reach the goal with probability 1.

When the initial state is unknown, solving an SSP MDP
means finding a policy whose execution from any state al-
lows an agent to reach a goal state while incurring the least
expected cost. We call such a policy complete optimal, and
denote any complete policy as π. When the initial state is
given, we are interested in computing an optimal (partial)
policy rooted at s0, i.e., one that reaches the goal in the
least costly way from s0 and is defined for every state it
can reach from s0 (though not necessarily for other states).

To make the notion of policy cost more concrete, we define
a cost function as a mapping J : S → R ∪ {∞} and let
random variables St and At denote, respectively, the state
of the process after t time steps and the action selected in
that state. Then, the cost function Jπ of policy π is

Jπ(s) = Eπs

[ ∞∑

t=0

C(St, At)
]

(1)

In other words, the cost of a policy π at a state s is the ex-
pectation of the total cost the policy incurs if the execution
of π is started in s. In turn, every cost function J has a
policy πJ that is J-greedy, i.e., that satisfies

πJ(s) = arg min
a∈A

[
C(s, a) +

∑

s′∈S
T (s, a, s′)J(s′)

]
(2)

Optimally solving an SSP MDP means finding a policy that
minimizes Jπ . Such policies are denoted π∗, and their cost
function J∗ = Jπ

∗
, called the optimal cost function, is

defined as J∗ = minπ J
π . J∗ also satisfies the following

condition, the Bellman equation, for all s ∈ S:

J(s) = min
a∈A

[
C(s, a) +

∑

s′∈S
T (s, a, s′)J(s′)

]
(3)

Value Iteration for SSP MDPs. The Bellman equation
suggests a dynamic programing method of solving SSPs,
known as Value Iteration (VISSP ) [Bellman, 1957]. VISSP
starts by initializing state costs with an arbitrary heuristic
cost function Ĵ . Afterwards, it executes several sweeps of
the state space and updates every state during every sweep
by using the Bellman equation (3) as an assignment opera-
tor, the Bellman backup operator. Denoting the cost func-
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tion after the i-th sweep as Ji, it can be shown that the
sequence {Ji}∞i=1 converges to J∗. A complete optimal
policy π∗ can be derived from J∗ via Equation 2 .

Heuristic Search for SSP MDPs. Because it stores and
updates the cost function for the entire S, VISSP can be
slow and memory-inefficient even on relatively small SSPs.
However, if the initial state s0 is given we are interested in
computing π∗s0 , an optimal policy from s0 only, which typ-
ically does not visit (and hence does not need to be defined
for) all states. This can be done with a family of algo-
rithms based on VI called heuristic search. Like VI, these
algorithms need to be initialized with a heuristic Ĵ . How-
ever, if Ĵ is admissible, i.e., satisfies Ĵ(s) ≤ J∗(s) for
all states, then heuristic search algorithms can often com-
pute J∗ for the states relevant to reaching the goal from
s0 without updating or even memoizing costs for many
of the other states. At an abstract level, the operation of
any heuristic search algorithm is represented by the FIND-
AND-REVISE framework [Bonet and Geffner, 2003a]. As
formalized by FIND-AND-REVISE, any heuristic search
algorithm starts with an admissible Ĵ and explicitly or
implicitly maintains the graph of a policy greedy w.r.t.
the current J , updating the costs of states only in this
graph via Bellman backups. Since the initial Ĵ makes
many states look “bad” a-priori, they never end up in
the greedy graph and hence never have to be stored or
updated. This makes heuristic search algorithms, e.g.,
LRTDP [Bonet and Geffner, 2003b], work more efficiently
than VI and still produce an optimal π∗s0 .

GSSP and MAXPROB MDPs. Unfortunately, many in-
teresting probabilistic planning scenarios fall outside of
the SSP MDP class. One example is MAXPROB MDPs
[Kolobov et al., 2011], goal-oriented problems where the
objective is to maximize the probability of getting to the
goal, not minimize the cost. To discuss MAXPROB, we
need the following definition:

Definition For an MDP with a set of goal states G ⊂ S,
the goal-probability function of a policy π, denoted Pπ ,
gives the probability of reaching the goal from any state s.
Mathematically, letting Sπst be a random variable denoting
a state the MDP may end up if policy π is executed starting
in state s for t time steps,

Pπ(s) =

∞∑

t=1

P [Sπst = g ∈ G, Sπst′ = s /∈ G ∀ 1 ≤ t′ < t] (4)

Each term in the above summation denotes the probability
that, if π is executed starting at s, the MDP ends up in a
goal state at step t and not earlier. Once the system enters
a goal state, it stays in that goal state forever, so the sum of
all such terms is the probability of the system ever entering
a goal state under π.

To introduce MDPs with dead ends, we will only need the
following informal definition of MAXPROB MDPs. A
MAXPROB MDP is a problem that can be derived from

any goal-oriented MDP (e.g., an SSP) by disregarding the
cost function C and maximizing the probability of reach-
ing the goal instead of the expected cost. More specif-
ically, solving a MAXPROB means finding the optimal
goal-probability function from the above definition, one
that satisfies P ∗(s) = arg maxπ P

π(s) for all states. Al-
ternatively, 1 − P ∗(s) can be interpreted as the smallest
probability of running into a dead end from s for any policy.
Thus, solving a MAXPROB derived from a goal-oriented
MDP by discarding action costs can be viewed as a way to
identify dead ends:

Definition For a goal-oriented MDP, a dead-end state (or
dead end, for short) is a state s for which P ∗(s) = 0.

MAXPROBs, SSPs themselves, and many other MDPs
belong to the broader class of Generalized SSP MDPs
(GSSPs) [Kolobov et al., 2011]. GSSPs are defined as tu-
ples 〈S,A, T , C,G, s0〉 of the same form as SSPs, but relax
both of the additional conditions in the SSP definition. In
particular, they do not require the existence of a complete
proper policy as SSPs do. To state the main results of this
paper, we will not need the specifics of GSSP’s technical
definition, and will only refer to the GSSP properties and
algorithms described below.

Value Iteration for GSSP MDPs. In the case of SSPs,
VISSP yields a complete optimal policy for these MDPs
independently of the initializing heuristic Ĵ . For a GSSP
MDP, such a policy need not exist, so there is no analog of
VISSP that works for all problems in this class. However,
for MAXPROB, a subclass of GSSP particularly important
to us in this paper, such an algorithm, called VIMP , can
be designed. Like VISSP , VIMP can be initialized with
an arbitrary heuristic function, but instead of the Bellman
backup operator it uses its generalized version that we call
Bellman backup with Escaping Traps (BET) in this paper.
BET works by updating the initial heuristic function with
Bellman backup, until it arrives at a fixed-point function
P×. For SSPs, Bellman backup has only one fixed point,
the optimal P ∗, so if we were working with SSPs, we
would stop here. However, for GSSPs (and MAXPROB
in particular) this is not the case — P ∗ is only one of Bell-
man backup’s fixed points, and the current fixed point P×
may not be equal to P ∗. Crucially, to check whether P×
is optimal, BET applies the trap elimination operator to it,
which involves constructing the transition graph that uses
actions of all policies greedy w.r.t. P×. If P× 6= P ∗,
trap elimination generates a new, non-fixed-point P×

′
, on

which BET again acts with Bellman backup, and so on.
The fact that VIMP and FRET, the heuristic search frame-
work for GSSPs considered below, sometimes need to build
a greedy transition graph w.r.t. a cost function is important
for analyzing the performance of algorithms introduced in
this paper (Section 8).

VIMP ’s main property, whose proof is a straight-
forward extension of the results in the GSSP paper
[Kolobov et al., 2011], is similar to VISSP ’s:
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Theorem 1. On MAXPROB MDPs, VIMP converges to the
optimal goal-probability function P ∗ independently of the
initializing heuristic function Ĵ .

Heuristic Search for GSSP MDPs. Although a complete
optimal policy does not necessarily exist for a GSSP, one
rooted at s0 always does and can be found by any heuristic
search algorithm conforming to an FIND-AND-REVISE
analogue for GSSPs, FRET [Kolobov et al., 2011]. Like
FIND-AND-REVISE on SSPs, FRET guarantees conver-
gence to π∗s0 if the initializing heuristic is admissible.

3 MDPs with Avoidable Dead Ends

All definitions of the SSP class in the litera-
ture [Bertsekas, 1995, Bonet and Geffner, 2003a,
Kolobov et al., 2011] require that the goal be reach-
able with 100%-probability from every state in the state
space, even when initial state s0 is known and the objective
is to find an optimal policy rooted only at that state. We
first extend SSPs to the easiest case — when dead ends
exist but can be avoided entirely from s0.

Definition A Stochastic Shortest Path MDP with Avoid-
able Dead Ends (SSPADE) is a tuple 〈S,A, T , C,G, s0〉
where S,A, T , C,G, and s0 are as in the SSP MDP defi-
nition, under the following conditions:

• The initial state s0 is known.
• There exists at least one proper policy rooted at s0.
• Every improper policy has Jπ(s0) =∞.

Solving a SSPADE MDP means finding a policy π∗s0 rooted
at s0 that satisfies π∗(s0) = arg minπ J

π(s0).

SSPADE has only two notable differences from SSP — the
former assumes the initial state to be known, and only re-
quires the existence of a partial proper policy. However,
even such small departures from the SSP definition prevent
some SSP algorithms from working on SSPADE, as we are
about to see.

Value Iteration: Even though dead ends may be avoided
from s0 with an optimal policy, they are still present in the
state space. Thus, VISSP , which operates on the entire
state space, does not converge on SSPADEs, since the op-
timal costs for dead ends are infinite. One might think that
we may be able to adapt VISSP to SSPADE by restrict-
ing computation to the subset of states reachable from s0.
However, even this is not true, because SSPADE require-
ments do not preclude dead ends reachable from s0. Over-
all, for VISSP to work on SSPADEs, we need to detect
divergence of state cost sequences – an unsolved problem,
to our knowledge.

Heuristic Search: Although VI does not terminate for
SSPADE, heuristic search algorithms do. This is because:
Theorem 2. SSPADE ⊂ GSSP .

Proof sketch. SSPADE directly satisfies all requirements of
the GSSP definition [Kolobov et al., 2011].

In fact, we can also show that heuristic search for SS-
PADE only needs the regular Bellman backup operator
(instead of the BET operator). That is, the FIND-AND-
REVISE framework applies to SSPADE without modifi-
cation. In particular, FIND-AND-REVISE starts with ad-
missible state costs, i.e., underestimates of their optimal
costs. As FIND-AND-REVISE updates them, costs of
dead ends grow without bound, while costs of other states
converge to finite values. Thus, dead ends become unattrac-
tive and drop out of the greedy policy graph rooted at s0,
leaving FIND-AND-REVISE with an optimal, proper pol-
icy.

At the same time, some of the specific heuristic search
algorithms for SSP that implement the FIND-AND-
REVISE template may fail to terminate on SSPADE. For
instance, LAO∗ and LRTDP may try to update values of
dead ends until convergence, which can never be reached.
However, each of them can be easily amended to halt on
SSPADE problems with an optimal solution. Thus, the
existing heuristic search techniques carry over to SSPADE
with little adaptation.

4 MDPs with Unavoidable Dead Ends

In this section, our objective is threefold: (1) to motivate
the semantics of SSP extensions that admit unavoidable
dead ends; (2) to state intuitive policy evaluation criteria
and thereby induce the notion of optimal policy for models
in which the agent pays finite and infinite penalty for visit-
ing dead ends; (3) to formally define MDP class SSPUDE
with subclasses fSSPUDE and iSSPUDE that model such
finite- and infinite-penalty scenarios.

As a motivation, consider an improper SSP MDP, one that
conforms to the SSP definition except for the requirement
of proper policy existence, and hence has unavoidable dead
ends. In such an MDP, the objective of finding a policy that
minimizes the expected cost of reaching the goal becomes
ill-defined. It implicitly assumes that for at least one pol-
icy, the cost incurred by all of the policy’s trajectories is
finite; however, this cost is finite only for proper policies,
all of whose trajectories terminate at the goal. Thus, all
policies in an improper SSP may have an infinite expected
cost, making the cost criterion unhelpful for selecting the
“best” policy.

We suggest two ways of amending the optimization crite-
rion to account for unavoidable dead ends. The first is to
assign a finite positive penalty D for visiting a dead end.
The semantics of an improper SSP altered this way would
be that the agent paysD when encountering a dead end, and
the process stops. However, this straightforward modifica-
tion to the MDP cannot be directly operationalized, since
the set of dead-ends is not known a-priori and needs to be
inferred while planning. Moreover, this definition also has
a caveat – it may cause non-dead-end states that lie on po-
tential paths to a dead end to have higher costs than dead
ends themselves. For instance, imagine a state s whose
only action leads with probability (1 − ε) to a dead end,
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with probability ε > 0 to the goal, and costs ε(D + 1). A
simple calculation shows that J∗(s) = D + ε > D, even
though reaching the goal from s is possible. Moreover, no-
tice that this semantic paradox cannot be resolved just by
increasing the penalty D, because the cost of s will always
exceed the dead-end penalty by ε.

Therefore, we change the semantics of the finite-penalty
model as follows. Whenever the agent reaches any state
with the expected cost of reaching the goal equaling D or
greater, the agent simply pays the penalty D and “gives
up”, i.e., the process stops. Intuitively, this setting de-
scribes scenarios where the agent can put a price on how
desirable reaching the goal is. For instance, in the example
from the introduction involving a concert in another city,
paying the penalty corresponds to deciding not to go to the
concert, i.e., foregoing the pleasure the agent would have
derived from attending the performance.

The benefit of putting a “cap” on any state’s cost as de-
scribed above is that the cost of a state under any policy
becomes finite, formally defined as

JFπ(s) = min
π

{
D,E

[ ∞∑

t=0

C(Sπst , Aπst )

]}
(5)

It can be shown that for an improper SSP, there exists an
optimal policy π∗ 1, one that satisfies

π∗(s) = argmin
π

JFπ(s) ∀ s ∈ S (6)

As we show shortly, we can find such a policy using
the expected-cost analysis similar to that for ordinary
SSP MDPs. The intuitions just described motivate the
fSSPUDE MDP class, defined at the end of this section.

The second way of dealing with dead ends we consider in
this paper is to view them as truly irrecoverable situations
and assign D = ∞ for visiting them. As a motivation, re-
call the example of planning a climb to the top of Mount
Everest. Since dead ends here cannot be avoided with cer-
tainty and the penalty of visiting them is ∞, comparing
policies based on the expected cost of reaching the goal
breaks down — they all have an infinite expected cost. In-
stead, we would like to find a policy that maximizes the
probability of reaching the goal and whose expected cost
over the trajectories that reach the goal is the smallest.

To describe this policy evaluation criterion more precisely,
let Sπs+t be a random variable denoting a distribution over
states s′ for which Pπ(s′) > 0 and in which the MDP may
end up if policy π is executed starting from state s for t
steps. That is, Sπs+t differs from the variable Sπst used pre-
viously by considering only states from which π can reach
the goal. Using the Sπs+t variables, we can mathematically
evaluate π with two ordered criteria by defining the cost of

1We implicitly assume that one of the optimal policies is deter-
ministic Markovian — a detail we can actually prove but choose
to gloss over in this paper for clarity.

a state as an ordered pair

JIπ(s) = (Pπ(s), [Jπ|Pπ](s)) (7)

where [Jπ|Pπ](s) = E

[ ∞∑

t=0

C(Sπs+
t ,Aπs

t )

]
(8)

Specifically, we write π(s) ≺ π′(s), meaning π′ is prefer-
able to π at s, whenever JIπ(s) ≺ JIπ

′
(s), i.e., when either

Pπ(s) < Pπ
′
(s), or Pπ(s) = Pπ

′
(s) and [Jπ|Pπ](s) >

[Jπ
′ |Pπ′ ](s). Notice that the second criterion is used

conditionally, only if two policies are equal in terms of
the probability of reaching the goal, since maximizing
this probability is the foremost priority. Note also that
if Pπ(s) = Pπ

′
(s) = 0, then both [Jπ|Pπ](s) and

[Jπ
′ |Pπ′ ](s) are ill-defined. However, since that means

that neither π nor π′ can reach the goal from s, we define
[Jπ|Pπ](s) = [Jπ

′ |Pπ′ ](s) = 0 for such cases, and hence
JIπ(s) = JIπ

′
(s).

As in the finite-penalty case, we can demonstrate that there
exists a policy π∗ that is at least as large as all others at all
states under the ≺-ordering above, and hence optimal, i.e.

π∗(s) = argmax
≺π

JIπ(s) ∀ s ∈ S (9)

We are now ready to capture the above intuitions in a
definition of the SSPUDE MDP class and its subclasses
fSSPUDE and iSSPUDE:

Definition An SSP with Unavoidable Dead Ends
(SSPUDE) MDP is a tuple 〈S,A, T , C,G, D, s0〉, where
S,A, T , C,G, and s0 are as in the SSP MDP definition,
D ∈ R+ ∪ {∞} is a penalty incurred if a dead-end state is
visited. In a SSPUDE MDP, every improper policy must
incur an infinite expected cost as defined by Eq. 1 at all
states from which it can’t reach the goal with probability 1.

If D < ∞, the MDP is called an fSSPUDE MDP, and
its optimal solution is a policy π∗ satisfying π∗(s) =
minπ JFπ(s) for all s ∈ S.

If D = ∞, the MDP is called an iSSPUDE MDP, and
its optimal solution is a policy π∗ satisfying π∗(s) =
max≺π JIπ(s) for all s ∈ S.

Our iSSPUDE class is related to multi-objective MDPs,
which model problems with several competing objectives,
e.g., total time, monetary cost, etc. [Chatterjee et al., 2006,
Wakuta, 1995]. Their solutions are Pareto-sets of all non-
dominated policies. Unfortunately, such solutions are im-
practical due to high computational requirements. More-
over, maximizing the probability of goal achievement con-
verts the problem into a GSSP and hence cannot be easily
included in those models. A related criterion has also been
studied in robotics [Koenig and Liu, 2002].

5 The Case of a Finite Penalty

Equation 5 tells us that for an fSSPUDE instance, the cost
of any policy at any state is finite. Intuitively, this implies
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that fSSPUDE should be no harder to solve than SSP. This
intuition is confirmed by this following result:
Theorem 3. fSSPUDE = SSP.

Proof sketch. To show that every fSSPUDE MDP
MfSSPUDE can be converted to an SSP MDP, we aug-
ment the action set A of fSSPUDE with a special action
a′ that causes a transition to a goal state with probability
1 and that costs D. This MDP is an SSP, since reaching
the goal with certainty is possible from every state. At the
same time, the optimization criteria of fSSPUDE and SSP
clearly yield the same set of optimal policies for it.

To demonstrate that every SSP MDP MSSP is also an
fSSPUDE MDP, for every MSSP we can construct an
equivalent fSSPUDE MDP by setting D = J∗(s). The
set of optimal policies of both MDPs will be the same.
(Note, however, that the conversion procedure is imprac-
tical, since it assumes that we know J∗(s) before solving
the MDP.)

The above conversion from fSSPUDE to SSP immediately
suggests solving fSSPUDE with modified versions of stan-
dard SSP algorithms, as we describe next.

Value Iteration: Theorem 3 implies that JF∗, the opti-
mal cost function of an fSSPUDE MDP, must satisfy the
following modified Bellman equation:

J(s) = min

{
D,min

a∈A

[
C(s, a) +

∑

s′∈S
T (s, a, s′)J(s′)

]}
(10)

Moreover, it tells us that π∗ of an fSSPUDE must be greedy
w.r.t. JF∗. Thus, an fSSPUDE can be solved with arbitrarily
initialized VISSP that uses Equation 10 for updates.

Heuristic Search: By the same logic as above, all FIND-
AND-REVISE algorithms and their guarantees apply to
fSSPUDE MDPs if they use Equation 10 in lieu of Bell-
man backup. Thus, all heuristic search algorithms for SSP
work for fSSPUDE.

We note that, although this theoretical result is new,
some existing MDP solvers use Equation 10 implicitly
to cope with goal-oriented MDPs that have unavoid-
able dead ends. One example is the miniGPT package
[Bonet and Geffner, 2005]; it allows the user to specify a
value D and then uses it to implement Equation 10 in sev-
eral algorithms including VISSP and LRTDP.

6 The Case of an Infinite Penalty

In contrast to fSSPUDE MDPs, no existing algorithm can
solve iSSPUDE problems either implicitly or explicitly, so
all algorithms for tackling these MDPs that we present in
this section are completely novel.

6.1 Value Iteration for iSSPUDE MDPs
As for the finite-penalty case, we begin by deriving a Value
Iteration-like algorithm for solving iSSPUDE. Finding a
policy satisfying Eq. 9 may seem hard, since we are effec-
tively dealing with a multicriterion optimization problem.

Note, however, the optimization criteria are, to a certain
degree, independent — we can first find the set of policies
whose probability of reaching the goal from s0 is optimal,
and then select from them the policy minimizing the ex-
pected cost of goal trajectories. This amounts to finding the
optimal goal-probability function P ∗ first, then computing
the optimal cost function [J∗|P ∗] conditional on P ∗, and
finally deriving an optimal policy from [J∗|P ∗]. We con-
sider these subproblems in order.

FindingP ∗. The task of finding, for every state, the highest
probability with which the goal can be reached by any pol-
icy in a given goal-oriented MDP has been studied before
— it is the MAXPROB problem mentioned in the Back-
ground section. Solving a goal-oriented MDP according to
the MAXPROB criterion means finding P ∗ that satisfies

P ∗(s) = 1 ∀s ∈ G (11)

P ∗(s) = max
a∈A

∑

s′∈S
T (s, a, s′)P ∗(s′) ∀s /∈ G

As already discussed, this P ∗ can be found by the VIMP

algorithm with an arbitrary initializing heuristic.

Finding [J∗|P ∗]. We could derive optimality equations
for calculating [J∗|P ∗] from first principles and then de-
velop an algorithm for solving them. However, instead we
present a more intuitive approach. Essentially, given P ∗,
we will build a modification MP∗ of the original MDP
whose solution is exactly the cost function [J∗|P ∗]. MP∗

will have no dead ends, have only actions greedy w.r.t. P ∗,
and have a transition function favoring transitions to states
with higher probabilities of successfully reaching the goal.
Crucially, MP∗ will turn out to be an SSP MDP, so we will
be able to find [J∗|P ∗] with SSPs’ familiar machinery.

To constructMP∗ , observe that an optimal policy π∗ for an
iSSPUDE MDP, one whose cost function is [J∗|P ∗], must
necessarily use only actions greedy w.r.t. P ∗, i.e., those
maximizing the right-hand side of Eq. 11. For each state
s, denote the set of such actions as AP∗s . We focus on non-
dead ends, because for dead ends [J∗|P ∗](s) = 0, and they
will not be part of MP∗ . By Eq. 11, for each such s, each
a∗ ∈ AP∗s satisfies P ∗(s) =

∑
s′∈S T (s, a∗, s′)P ∗(s′).

Note that this equality expresses the following relationship
between event probabilities:

P

(
Goal was reached

from s via optimal policy

)

=
∑

s′∈S
P

(
a∗ caused

s→ s′ transition
∧ Goal was reached

from s via optimal policy

)
,

or, in a slightly rewritten form,

∑

s′∈S
P

(
a∗ caused

s→ s′ transition

∣∣∣∣∣
Goal was reached

from s via optimal policy

)
= 1,
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where P

(
a∗ caused

s→ s′ transition

∣∣∣∣∣
Goal was reached

from s via optimal policy

)
=

T (s,a∗,s′)P∗(s′)
P∗(s) .

These equations essentially say that if a∗ was executed in s
and, as a result of following an optimal policy π∗ the goal
was reached, then with probability T (s,a∗,s1)P

∗(s1)
P∗(s) action

a∗ must have caused a transition from s to s1, with prob-
ability T (s,a∗,s2)P

∗(s2)
P∗(s) it must have caused a transition to

s2, and so on. This means that if we want to find the vec-
tor [J∗|P ∗] of expected costs of goal-reaching trajectories
under π∗, then it is enough to find the optimal cost func-
tion of MDP MP∗ = 〈SP∗ ,AP∗ , T P∗ , CP∗ ,GP∗ , sP∗0 〉,
where GP∗ and sP

∗
0 (if known) are the same as G and s0

for the iSSPUDE M that we are trying to solve; SP∗ is the
same as S forM but does not include dead ends, i.e., states
s for which P ∗(s) = 0; AP∗ = ∪s∈SAP

∗
s , i.e., the set

of actions consists of all P ∗-greedy actions in each state;
for each a∗ ∈ AP∗s , T P∗(s, a∗, s′) = T (s,a∗,s′)P∗(s′)

P∗(s) , as

above, and a∗ is “applicable” only in s; and CP∗(s, a) is
the same as C forM , except it is defined only for a ∈ AP∗ .
As it turns out, we already know how to solve MDPs such
as MP∗ :
Theorem 4. For an iSSPUDE MDP M with P ∗(s0) > 0,
MDP MP∗ constructed from M as above is an SSP MDP.

Proof sketch. Indeed, MP∗ is “almost” like the original
iSSPUDE MDP, but has at least one proper policy because,
by construction, it has no dead ends.

Now, as we know [Bertsekas, 1995], J∗ for the
SSP MP∗ satisfies J∗(s) = mina∈AP∗ CP

∗
(s, a) +∑

s′∈S T P
∗
(s, a, s′)J∗(s′). Therefore, by plugging in

T (s,a,s′)P∗(s′)
P∗(s) in place of T P∗(s, a, s′) and [J∗|P ∗] in

place of J∗, we can state the following theorem for the
original iSSPUDE MDP M :
Theorem 5. For an iSSPUDE MDP with the optimal goal-
probability function P ∗, the optimal cost function [J∗|P ∗]
characterizing the minimum expected cost of trajectories
that reach the goal satisfies

[J
∗|P∗](s) = 0 ∀s s.t. P∗(s) = 0 (12)

[J
∗|P∗](s) = min

a∈AP∗



C(s, a) +

∑

s′∈S

T (s, a, s′)P∗(s′)

P∗(s)
[J
∗|P∗](s′)





Putting It All Together. Our construction not only let us
derive the optimality equation for [J∗|P ∗], but also im-
plies that [J∗|P ∗] can be found via VI, as in the case of
SSP MDPs [Bertsekas, 1995], over P ∗-optimal actions and
non-dead-end states. Moreover, since the optimal policy
for an SSP MDP is greedy w.r.t. the optimal cost function
and solving an iSSPUDE MDP ultimately reduces to solv-
ing an SSP, the following important result holds:
Theorem 6. For every iSSPUDE MDP, there exists a
Markovian deterministic policy π∗ that can be derived from

P ∗ and [J∗|P ∗] for non-dead-end states using

π
∗
(s) = arg min

a∈AP∗



C(s, a) +

∑

s′∈S

T (s, a, s′)P∗(s′)

P∗(s)
[J
∗|P∗](s′)





(13)

Combining optimality equations 11 and 12 for P ∗ and
[J∗|P ∗] respectively with Equation 13, we present a VI-
based algorithm for solving iSSPUDE MDPs, called IVI
(Infinite-penalty Value Iteration) in Algorithm 1.

Input: iSSPUDE MDP M
Output: Optimal policy π∗ for non-dead-end states of M

1. Find P ∗ using arbitrarily initialized VIMP .

2. Find [J∗|P ∗] using arbitrarily initialized VISSP over MP∗

with update equations 12

Return π∗ derived from P ∗ and [J∗|P ∗] via Equation 13
Algorithm 1: IVI

6.2 Heuristic Search for iSSPUDE MDPs

Input: iSSPUDE MDP M
Output: Optimal policy π∗s0 for non-dead-end states of M
rooted at s0

1. Find P ∗s0 using FRET initialized with an admissible
heuristic P̂ ≥ P ∗

2. Find [J∗|P ∗]s0 using FIND-AND-REVISE over MP∗

with optimality equations 12, initialized with an admissible
heuristic Ĵ ≤ [J∗|P ∗].

Return π∗s0 derived from P ∗s0 and [J∗|P ∗]s0 via Equation 13

Algorithm 2: SHS

As we established, solving an iSSPUDE MDP with VI is
a two-stage process, whose first stage solves a MAXPROB
MDP and whose second stage solves an SSP MDP. In the
Background section we mentioned that both of these kinds
of MDPs can be solved with heuristic search; MAXPROB
— with the FRET framework, and SSP — with the FIND-
AND-REVISE framework. This allows us to construct
a heuristic search schema called SHS (Staged Heuristic
Search) for iSSPUDE MDPs, presented in Algorithm 2.

There are two major differences between Algorithms 1 and
2. The first one is that SHS produces functions P ∗s0 and
[J∗|P ∗]s0 that are guaranteed to be optimal only over the
states visited by some optimal policy π∗s0 starting from the
initial state s0. Accordingly, the SHS-produced policy π∗s0
specifies actions only for these states and does not prescribe
any for other states. Second, SHS requires two admissible
heuristics to find an optimal (partial) policy, one (P̂ ) be-
ing an upper bound on P ∗ and the other (Ĵ) being a lower
bound on [J∗|P ∗].
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7 Equivalences of Optimization Criteria

The presented algorithms for MDPs with unavoidable dead
ends are significantly more complicated than those for
MDPs with unavoidable ones. Nonetheless, intuition tells
us that for a given tuple 〈S,A, T , C,G, D, s0〉, solving it
under the infinite-penalty criterion (i.e., as an iSSPUDE)
should yield the same policy as solving it under the finite-
penalty criterion (i.e., as an fSSPUDE) if in the latter case
the penaltyD is very large. This can be stated as a theorem:

Theorem 7. For iSSPUDE and fSSPUDE MDPs over the
same domain, there exists the smallest finite penaltyDthres

s.t. for all D > Dthres the set of optimal policies of
fSSPUDE (with penalty D) is identical to the set of opti-
mal policies of iSSPUDE.

Proof sketch. Although the full proof is technical, its main
observation is simple — as D increases, it becomes such
a large deterrent against hitting a dead end that any pol-
icy with a probability of reaching the goal lower than the
optimal P ∗ starts having a higher expected cost of reach-
ing the goal than policies optimal according to iSSPUDE’s
criterion.

As a corollary, if we choose D > Dthres, we can be sure
that at any given state s, all optimal (JF∗-greedy) policies
of the resulting fSSPUDE will have the same probability of
reaching the goal, and this probability is P ∗(s) according
to the infinite-penalty optimization criterion (and therefore
will also have the same conditional expected cost [J∗|P ∗])
This prompts a question: what can we say about the proba-
bility of reaching the goal of JF∗-greedy policies if we pick
D ≤ Dthres? Unfortunately, in this case different greedy
policies may not only be suboptimal in terms of this prob-
ability, but even for a fixed D each may have a different,
arbitrarily low chance of reaching the goal. For example,
consider an MDP with three states, s0 (the initial state), d
(a dead end), and g (a goal). Action ad leads from s0 to d
with probability 0.5 and to g with probability 0.5 and costs
1 unit. Action ag leads from s0 to g also with probability 1,
and costs 3 units. Finally, suppose we solve this MDP as an
fSSPUDE with D = 4. It is easy to see that both policies,
π(s0) = ad and π(s0) = ag , have the same expected cost,
3. However, the former reaches the goal with probability
0.5, while the latter always reaches it. The ultimate reason
for this discrepancy is that the policy evaluation criterion of
fSSPUDE is oblivious to policy’s probability of reaching
the goal, and optimizes for this parameter only indirectly,
via policy’s expected cost.

To summarize, we have two ways of finding an optimal
policy in the infinite-penalty case, either by directly solving
the corresponding iSSPUDE instance, or by choosing a suf-
ficiently large D and solving the finite-penalty fSSPUDE
MDP. We do not know of a principled way to chooseD, but
it is typically easy to guess by inspecting the MDP. Thus,
although the latter method gives no a-priori guarantees, it
often yields a correct answer in practice.

8 Experimental Results

The objective of our experiments was to find out the most
practically efficient way of finding the optimal policy in
the presence of unavoidable dead ends and infinite penalty
for visiting them, by solving an iSSPUDE MDP or an
fSSPUDE MDP with a largeD. To make a fair comparison
between these methods, we employ very similar algorithms
to handle them. For both classes, the most efficient optimal
solution methods are heuristic search techniques, so in our
experiments we assume knowledge of the initial state and
use only algorithms of this type.

To solve an fSSPUDE, we use the implementation of
the LRTDP algorithm, an instance of the FIND-AND-
REVISE heuristic search framework for SSPs, avail-
able in the miniGPT package [Bonet and Geffner, 2005].
As a source of admissible heuristic state costs/goal-
probability values, we choose the maximum of atom-min-
forward heuristic [Haslum and Geffner, 2000] and Sixth-
Sense [Kolobov et al., 2011]. The sole purpose of the latter
is to soundly identify many of the dead ends and assign the
value of D to them. (Identifying a state as a dead end may
be nontrivial if the state has actions leading to other states.)

Since solving iSSPUDE involves tackling two MDPs,
a MAXPROB and an SSP, to instantiate the SHS
schema (Algorithm 2) we use two heuristic search algo-
rithms. For the MAXPROB component, we use a spe-
cially adapted version [Kolobov et al., 2011] of miniGPT’s
LRTDP, equipped with SixthSense (note that the atom-min-
forward heuristic is cost-based and does not apply to MAX-
PROB MDPs). For the SSP component, we use miniGTP’s
LRTDP, as for fSSPUDE, with atom-min-forward; Sixth-
Sense is unnecessary because SSP has no dead ends.

Our benchmarks were problems 1 through 6 of the
Exploding Blocks World domain from IPPC-2008
[Bryce and Buffet, 2008] and problems 1 through 15 of the
Drive domain from IPPC-06 [Buffet and Aberdeen, 2006].
Most problems in both domains have unavoidable dead
ends. To set the D penalty for the fSSPUDE model, we
examined each problem and tried to come up with an
intuitive, easily justifiable value for it. For all problems,
D = 500 yielded a policy that was optimal under both the
finite-penalty and infinite-penalty criterion.

Solving the fSSPUDE with D = 500 and iSSPUDE ver-
sions of each problem with the above implementations
yielded the same qualitative outcome on all benchmarks.
In terms of speed, solving fSSPUDE was at least an order
of magnitude faster than solving iSSPUDE. The difference
in used memory was occasionally smaller, but only because
both algorithms visited nearly the entire state space reach-
able from s0 on some problems. Moreover, in terms of
memory as well as speed the difference between solving
fSSPUDE and iSSPUDE was the largest (that is, solving
iSSPUDE was comparatively the least efficient) when the
given MDP had P ∗s0(s) = 1, i.e. the MDP had no dead
ends at all or had only avoidable ones.
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Although seemingly surprising, these performance patterns
have a fundamental reason. Recall that FRET algorithms,
used for solving the MAXPROB part of an iSSPUDE, use
the BET operator. BET, for every encountered fixed point
P× of the Bellman backup operator needs to traverse the
transition graph involving all actions greedy w.r.t. P×,
starting from s0. Also, FRET needs to be initialized with
an admissible heuristic, in our experiments – SixthSense,
which assigns the value of 0 to states it believes to be dead
ends and 1 to the rest.

Now, consider how FRET operates on a MAXPROB cor-
responding to an iSSPUDE instance that does not have any
dead ends, i.e. on the kind of iSSPUDE MDPs that, as our
experiments show, is most problematic. For such a MAX-
PROB, there exists only one admissible heuristic function,
P̂ (s) = 1 for all s, because P ∗(s) = 1 for all s and an
admissible P̂ needs to satisfy P̂ (s) ≥ P ∗(s) everywhere.
Thus, the heuristic FRET starts with is actually the opti-
mal goal-probability function, and as a consequence, is a
fixed point of the Bellman backup operator. Therefore, to
conclude that P̂ is optimal, FRET needs to build its greedy
transition graph. Observe, however, that since P̂ is 1 every-
where, this transition graph includes every state reachable
from s0, and uses every action in the MDP! Building and
traversing it is very expensive.

The same performance bottleneck, although to a lesser
extent, can also be observed on iSSPUDE instances that
do have unavoidable dead ends. Building large transition
graphs significantly slows down FRET (and hence, SHS)
even when P ∗ is far from being 1 everywhere.

The above reasoning may explain why solving iSSPUDE is
slow, but by itself does not explain why solving fSSPUDE
is fast in comparison. For instance, we might expect
the performance of FIND-AND-REVISE algorithms on
fSSPUDE to suffer in the following situations. Suppose
state s is a dead end not avoidable from s0 by any policy.
This means that J∗(s) = D under the finite-penalty opti-
mization criterion, and that s is reachable from s0 by any
optimal policy. Thus, FIND-AND-REVISE will halt no
earlier than the cost of s under the current cost function
reaches D. Moreover, suppose that the heuristic Ĵ initial-
izes the cost of s to 0 — this is one of the possible ad-
missible costs for s. Finally, assume that all actions in s
lead back to s with probability 1 and cost 1 unit. In such a
situation, an FIND-AND-REVISE algorithm will need to
update the cost of s D times before convergence. Clearly,
this will make the performance of FIND-AND-REVISE
very bad if the chosen value of D is very large. This raises
the question: was solving fSSPUDE in the above experi-
ments so much more efficient than solving iSSPUDE due
to our choice of (a rather small) value for D?

To dispel these concerns, we solved fSSPUDE instances of
the aforementioned benchmarks withD = 5·108 instead of
500. On all of the 21 problems, the increase in speed com-
pared to the case of fSSPUDE with D = 500 was no more
than a factor of 1.5. The reason for such a small discrep-

ancy is the fact that, at least on our benchmarks, FIND-
AND-REVISE almost never runs into the pathological case
described above thanks to the atom-min-forward and Sixth-
Sense heuristics. They identify the majority of dead ends
encountered by LRTDP and immediately set their costs to
D. Thus, instead of spending many updates on such states,
LRTDP gets their optimal costs in just one step. To test
this explanation, we disabled these heuristics and assigned
the cost of 0 to all states at initialization. As predicted, the
solution time of the fSSPUDE instances skyrocketed by or-
ders of magnitude.

The presented results appear to imply an unsatisfying fact
— on iSSPUDE MDPs that are SSPs, the presented al-
gorithms for solving iSSPUDE are not nearly as efficient
as algorithmic schema for SSPs, such as FIND-AND-
REVISE. The caveat, however, is that the price SSP al-
gorithms pay for efficiency is assuming the existence of
proper solutions. iSSPUDE algorithms, on the other hand,
implicitly prove the existence of such a solution, and are
therefore theoretically more robust.

9 Conclusion

A significant limitation of SSP MDPs is their inability to
model dead-end states, consequences of catastrophic action
outcomes that make reaching the goal impossible. While
attempts to incorporate dead ends into SSP have been made
before, a principled theory of goal-oriented MDPs with
dead-end states has been lacking.

In this paper, we present new general MDP classes that
subsume SSP and make increasingly weaker assumptions
about the presence of dead ends. SSPADE assumes that
dead ends are present but an agent can avoid them if it acts
optimally from the initial state. fSSPUDE admits unavoid-
able dead ends but expects that an agent can put a finite
price on running into a dead end. iSSPUDE MDPs model
scenarios in which entering a dead end carries an infinite
penalty and is to be avoided at all costs.

For these MDP classes, we present VI-based and heuris-
tic search algorithms. We also study the conditions under
which they have equivalent solutions. Our empirical results
show that, in practice, solving fSSPUDE is much more ef-
ficient and yields the same optimal policies as iSSPUDE.

In the future, we hope to answer the question: are iS-
SPUDE MDPs fundamentally harder than fSSPUDE, or
can we invent more efficient heuristic search algorithms for
them? Besides, as we found out after submitting this arti-
cle, a more general class of MDPs than iSSPUDE, called
S3P, has been proposed in the literature but not completely
solved [Teichteil-Königsbuch, 2012]. Deriving algorithms
for it will be our next research objective.
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Abstract

Orienteering problems (OPs) are a variant
of the well-known prize-collecting traveling
salesman problem, where the salesman needs
to choose a subset of cities to visit within
a given deadline. OPs and their extensions
with stochastic travel times (SOPs) have
been used to model vehicle routing problems
and tourist trip design problems. However,
they suffer from two limitations – travel times
between cities are assumed to be time in-
dependent and the route provided is inde-
pendent of the risk preference (with respect
to violating the deadline) of the user. To
address these issues, we make the following
contributions: We introduce (1) a dynamic
SOP (DSOP) model, which is an extension of
SOPs with dynamic (time-dependent) travel
times; (2) a risk-sensitive criterion to allow
for different risk preferences; and (3) a local
search algorithm to solve DSOPs with this
risk-sensitive criterion. We evaluated our al-
gorithms on a real-world dataset for a theme
park navigation problem as well as synthetic
datasets employed in the literature.

1 Introduction

An orienteering problem (OP) is a planning problem
where the goal is to find a sequence of vertices in a
graph that maximizes the sum of rewards from those
vertices subject to the constraint that the sum of edge
lengths along that sequence is no larger than a thresh-
old [34]. It was motivated by competitive orienteering

∗ This research is supported by the Singapore National
Research Foundation under its International Research Cen-
tre @ Singapore Funding Initiative and administered by the
IDM Programme Office. We also thank Ajay S. Aravamud-
han for his help with our experimental evaluations.

sports where competitors start and end at specified
locations and try to accumulate as much reward as
possible from visiting checkpoints within a given dead-
line. Aside from this problem, researchers have also
used OPs to model other problems like vehicle rout-
ing [11], production scheduling [2] and, more recently,
tourist trip design problems [35].

One of the limitations of OPs is that it assumes that
edge lengths are deterministic, which can be an in-
accurate assumption in applications with uncertainty.
Using vehicle routing problems as an example, the
travel time between cities, which are modeled with
edge lengths, depends on road congestion and is thus
not deterministic. Thus, researchers have extended
OPs to Stochastic OPs (SOPs), where edge lengths
are now random variables that follow a given distri-
bution and the goal is now to find a sequence that
maximizes the sum of expected utilities from vertices
in the sequence [6].

Although SOPs more accurately model applications
with uncertainty, there are two assumptions that limit
its applicability. Firstly, the assumption that the dis-
tribution of the random variables is time independent
can still be inaccurate. Using the vehicle routing prob-
lem again as an example, the level of congestion of a
road can change throughout the day – roads are more
likely to be congested during commuting hours and less
likely to be congested in the middle of the night. Thus,
the distribution of travel times on the road should also
change throughout the day. Therefore, in this paper,
we extend SOPs to Dynamic SOPs (DSOPs).

Secondly, the expected utilities do not capture the
risk preference of the user (with respect to violating
the deadline) who will be employing the solution. In
other words, the solution returned for a user with a
hard deadline is the same as the one for a user with
a soft deadline. Intuitively, the solution for the user
with a soft deadline should be longer, and thus more
rewarding, but riskier than the solution for the user
with a hard deadline. To address this issue, we intro-
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duce a risk-sensitive criterion that captures this risk
preference. To illustrate the applicability of DSOPs,
we evaluated our algorithms on a real-world dataset for
a theme park navigation problem as well as synthetic
datasets employed in the literature.

2 Motivating Domain

Ubiquitous computing has made substantial progress
in recent years, particularly fueled by the increased
prevalence of “smart” devices like smart phones. The
widespread use of such devices presents a unique op-
portunity for the delivery of real-time contextualized
and personalized information to users. For instance,
operators of theme parks have now deployed smart
phone applications that allow users to access real-time
information like current queueing times at various at-
tractions so that they can better plan their itinerary
in the park.1 Unfortunately, access to current queue-
ing times only allows users to plan myopically, that is,
to choose which attraction to go to next. If users also
had access to predicted future queueing times, which
park operators should be able to provide based on his-
torical data, then the users might be able to make
longer term plans that take that information into ac-
count. Our research is motivated by this exact prob-
lem, where a visitor to a theme park likes to choose
(or be recommended) a sequence of attractions that
optimizes his/her visitor experience subject to the con-
straint that the total travel and queueing time in the
park is no larger than a threshold. In this paper, we
conduct experiments on a real-world dataset for this
problem.

3 Background

We now provide a brief description of OPs and SOPs.

3.1 OPs

The orienteering problem (OP) [34] is defined by a tu-
ple 〈G,T,R, v1, vn, H〉. G = 〈V,E〉 is a graph with sets
of vertices V and edges E; T : vi× vj → R+ ∪{0,∞}
specifies a finite non-negative travel time between ver-
tices vi and vj if eij ∈ E and ∞ otherwise; and
R : vi → R+ ∪ {0} specifies a finite non-negative re-
ward for each vertex vi ∈ V . A solution in an OP is
a Hamiltonian path over a subset of vertices includ-
ing start vertex v1 and end vertex vn and whose total
travel time is no larger than H. Solving OPs optimally
means finding a solution that maximizes the sum of re-
wards of vertices in its path. Researchers have shown
that solving OPs optimally is NP-hard [11]. In this

1http://disneyparksmobile.com/ is one such example.

paper, we assume that the end vertex can be any ar-
bitrary vertex.

A simplified version of our motivating theme park nav-
igation problem, where travel and queueing times are
deterministic and static, can be modeled as an OP:
v1 corresponds to the entrance of the park, vn corre-
sponds to the exit of the park, other vertices vi cor-
respond to attractions in the park, and travel times
T (vi, vj) correspond to the sum of the travel time be-
tween attractions vi and vj and the queueing time at
attraction vj .

The start and end vertices in OPs are typically distinct
vertices. In the special case where they are the same
vertex, the problem is called a orienteering tour prob-
lem (OTP) [27]. The difference between both formu-
lations is small. It is always possible to add a dummy
edge with zero travel time between the start and end
vertices to convert an OP to an OTP.

Researchers have proposed several exact branch-and-
bound methods to solve OPs [18] including optimiza-
tions with cutting plane methods [20, 9]. However,
since OPs are NP-hard, exact algorithms often suf-
fer from scalability issues. Thus, constant-factor ap-
proximation algorithms [4] are necessary for scalabil-
ity. Researchers also proposed a wide variety of heuris-
tics to address this issue including sampling-based al-
gorithms [34], local search algorithms [11, 7], neu-
ral network-based algorithms [38] and genetic algo-
rithms [32]. More recently, Schilde et al. developed
an ant colony optimization algorithm to solve a bi-
objective variant of OPs [29].

3.2 Stochastic OPs

The assumption of deterministic travel times is un-
realistic in many real-world settings. Using our mo-
tivating theme park navigation problem as an exam-
ple, the travel time of a patron depends on factors
like fatigue. Thus, researchers have extended OPs to
Stochastic OPs (SOPs) [6], where travel times are now
random variables that follow a given distribution, and
the goal is to find a path that maximizes the sum of
expected utilities from vertices in the path. The ran-
dom variables are assumed to be independent of each
other. The expected utility of a vertex is the difference
between the expected reward and expected penalty of
the vertex. The expected reward (or penalty) of a ver-
tex is the reward (or penalty) of the vertex times the
probability that the travel time along the path thus
far is no larger (or larger) than H. More formally, the
expected utility U(vi) of a vertex vi is

U(vi) = P (ai ≤ H)R(vi)− P (ai > H)C(vi)

where the random variable ai is the arrival time at
vertex vi (that is, the travel time from v1 to vi), R(vi)
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is the reward of arriving at vertex vi before or at H
and C(vi) is the penalty of arriving at vertex vi after
H. Campbell et al. have extended OP algorithms
to solve SOPs including an exact branch-and-bound
method and a local search method based on variable
neighborhood search [6]. Gupta et al. introduced a
constant-factor approximation algorithm for a special
case of SOPs, where there is no penalty for arriving at
a vertex after H [12].

4 Dynamic Stochastic OPs

Stochastic OPs (SOPs) assume independence of travel
time distributions across different edges. However, in
many problems, there is a considerable dependence of
travel times on the arrival time at a vertex. Using
our motivating theme park navigation problem again
as an example, the travel time of a user depends on
factors like fatigue, and the level of fatigue of a patron
increases as they spend more time in the park.

To capture dependencies between travel time distribu-
tions, we introduce an extension to SOPs called Dy-
namic SOPs (DSOPs). The key difference from SOPs
is that the travel time distribution in DSOPs for mov-
ing from vertex vi to vj is dependent on the arrival
time ai at vertex vi. In this paper, we will assume
Ti,j to be a discrete set of distributions, where each
element of the set corresponds to a range of values for
ai. Therefore, the travel time distribution for an ar-
rival time of ai is represented as T aii,j and hence the
probability that travel time is m is given by T aii,j(m).

4.1 Risk-Sensitive Criterion

While expected utility is a good metric in general, the
approach by [6] suffers from many limitations. Firstly,
it is a point estimate solution which does not consider
the “risk” profile of the user. By “risk”, we do not
refer to the term used in a financial sense, but rather
the level of conservativeness measured in terms of the
probability of completing the path within the deadline.
In other words, a risk-seeking user will be prepared to
choose a sequence of attractions that have a large util-
ity, but with a higher probability of not completing the
path within the deadline, compared to a risk-averse
user who might choose a more “relaxed” path with
lower utility. Secondly, the underlying measurement
of expected utility is not intuitive in the sense that a
utility value accrued at each attraction does not usu-
ally depend on the probability that the user arrives at
the attraction by a certain time; but rather, the utility
is accrued when the attraction is visited, and the user
is concerned with visiting all the attractions (i.e. sum
of utilities) within a certain time threshold.

Given the above consideration, we are interested in

the problem that allows the user to tradeoff between
the level of conservativeness (or risk) against the total
utility. More precisely, given a value 0 ≤ ε ≤ 1, we are
interested in obtaining a path, where the probability
of completing the entire path within a deadline H is
at least 1− ε. Or more precisely,

P (an ≤ H) ≥ 1− ε (1)

where an is the arrival time at the last vertex of the
path. The objective value is therefore inversely pro-
portional to the value of ε.

5 Completion Probability
Approximations

In this section, we describe two ways of approximating
the completion probability P (an ≤ H), which is used
in Equation 1. Given the order π = 〈v1, v2, . . . , vk, vn〉,
we can use the following expression to compute the
completion probability:

P (an ≤ H) =
∫ an≤H

an=0

∫ ak=an

ak=0

∫ ak−1=ak

ak−1=0

· · ·
∫ a1=a2

a1=0

T akk,n(an − ak)T
ak−1

k−1,k(ak − ak−1) · · ·T a11,2(a2 − a1)

d(a1) d(a2) . . . d(ak) d(an) (2)

where an is the arrival time at the exit node, and we
capture the dependencies on arrival times at each of
the vertices by reducing the range of feasible arrival
times (for the integrals) based on the previous activi-
ties in the order of vertices. Unfortunately, the compu-
tation of the expression is expensive since the integrals
have to be computed sequentially. To provide an in-
tuition for the time complexity, computing triple inte-
grals take around 30 minutes with an exponential dis-
tribution (most scalable of all distributions with inte-
gration) on our machine using the Matlab software. To
address this issue of scalability, we introduce two ap-
proximation approaches, a sampling-based approach
and a matrix-based approach.

5.1 Sampling-based Approach

One can approximate the completion probability
P (an ≤ H) of a path by randomly sampling the travel
time distributions for each edge along the path, and
checking if the arrival time an at the last vertex ex-
ceeds H. For example, assume that we want to com-
pute P (an ≤ H) for the path π = 〈v1, v2, . . . , vk, vn〉.
Using the starting time a1, we generate a travel time
sample from the distribution T a11,2 to represent the
travel time from vertex v1 to vertex v2, which is also
the arrival time a2 at vertex v2. We then generate a
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travel time sample from the distribution T a22,3 to repre-
sent the travel time from vertex v2 to vertex v3. The
arrival time a3 at vertex v3 is thus the sum of both
travel times. We continue this process until we gener-
ate a travel time sample to represent the travel time
from vertex vk to vertex vn, and the arrival time an is
thus the sum of all travel times. We count this entire
process as a single sample. We can then approximate

P (an ≤ H) ≈ P̂ (an ≤ H) =
N+

N
(3)

where N+ is the number of samples whose arrival time
an ≤ H is no larger than the deadline H and N is
the total number of samples. Unfortunately, this ap-
proach does not provide any theoretical guarantees on
whether Equation 1 is truly satisfied. However, as we
increase the number of samples, the approximation for
the actual distribution becomes tighter.

5.2 Matrix-based Approach

Alternatively, one can exploit the fact that the depen-
dencies are primarily due to arrival time at a vertex
and not on the entire order of vertices before the cur-
rent vertex. At a higher level, it implies that the un-
derlying problem is Markovian and hence we can de-
compose the expression of Equation 2. We also make
conservative estimates of the probability such that we
can provide theoretical guarantees on whether Equa-
tion 1 is truly satisfied.

The key ideas here are (1) to divide the possible ar-
rival times ai at vertex vi into a finite number of ranges
ri,1, ri,2, . . . , ri,k, where ri,j is the j-th range of arrival
time at vertex vi and (2) to pre-compute for all pairs

of vertices vi and vj a conservative estimate P̂ (aj ∈
rj,q|ai ∈ ri,p) of the probability P (aj ∈ rj,q|ai ∈ ri,p)
of transitioning between ranges of arrival times ri,p
and rj,q. Thus, we can now decompose the expres-
sion of Equation 2 to an expression that exploits the
Markovian property along with ranges of arrival times:

P (an ≤ H) =
∑

i

P (a1 ∈ r1,i) ·
∑

j

P (a2 ∈ r2,j |a1 ∈ r1,i)

· · ·
∑

y

P (ak ∈ rk,y|ak−1 ∈ rk−1,x)

·
∑

z

P (an ∈ rn,z|ak ∈ rk,y)

and conservatively approximate it by

P̂ (an ≤ H) =
∑

i

P̂ (a1 ∈ r1,i) ·
∑

j

P̂ (a2 ∈ r2,j |a1 ∈ r1,i)

· · ·
∑

y

P̂ (ak ∈ rk,y|ak−1 ∈ rk−1,x)

·
∑

z

P̂ (an ∈ rn,z|ak ∈ rk,y)

It is clear that P̂ (an ≤ H) ≤ P (an ≤ H) is a

conservative estimate if P̂ (aj ∈ rj,q|ai ∈ ri,p) ≤
P (aj ∈ rj,q|ai ∈ ri,p) are all conservative estimates.

P̂ (a1 ∈ r1,i) depends on the starting time at vertex v1,
which is provided as an input. We now describe how to
compute the other probabilities P̂ (aj ∈ rj,q|ai ∈ ri,p).
If the range ri,p contains only a single point ai, then

P (aj ∈ rj,q|ai ∈ ri,p) =P (aj ∈ rj,q|ai)

=

∫

aj∈rj,q
T aii,j(aj − ai) d(aj)

(4)

However, the realization of the random variable ai
only occurs at runtime, and computing the integral
in Equation 4 at runtime is expensive. Thus, we
would like to compute a conservative estimate P̂ (aj ∈
rj,q|ai ∈ ri,p) of probability P (aj ∈ rj,q|ai ∈ ri,p) for
all possible realizations of ai ∈ ri,p. We thus compute
them as follows:

P̂ (aj ∈ rj,q|ai ∈ ri,p) =

min
ai∈ri,p

∫

aj∈rj,q
T aii,j(aj − ai) d(aj) (5)

The value in the integral is the probability of the ar-
rival time aj to be in the range rj,q for a given value
of ai. Thus, by taking the minimum of these proba-
bilities over all possible values of ai in the range ri,p,

the conditional probability P̂ (aj ∈ rj,q|ai ∈ ri,p) ≤
P (aj ∈ rj,q|ai ∈ ri,p) is a conservative estimate of the
true probability.

Once all the probabilities are pre-computed, they form
transition matrices

Pi,j =
(

P̂ (aj ∈ rj,1)|ai ∈ ri,1) P̂ (aj ∈ rj,2)|ai ∈ ri,1) · · ·
P̂ (aj ∈ rj,1)|ai ∈ ri,2) P̂ (aj ∈ rj,2)|ai ∈ ri,2) · · ·

· · · · · · · · ·

)

(6)

which represent the transition probabilities from ver-
tices vi to vj . Finally, to compute P̂ (an ≤ H),
we compute the multiplication of matrices P1 · P1,2 ·
P2,3 · · ·Pk−1,k ·Pk,n and in the resultant matrix, sum
up all the probabilities for ranges of arrival times an
that are less than or equal to the deadline H.
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Algorithm 1: Local Search Algorithm

/* Generate Initial Solution */
1 currentPath = ConstructionHeuristic()

/* Make Local Improvements */
2 bestPath = currentPath
3 numIterNoImprove = 0
4 currentMetric = random metric
5 T = starting temperature

6 for iterations = 1 to maxIterations do
7 T = T ·∆T
8 Z = numIterNoImprove

2·maxIterNoImprove

/* Perform 2-Opt Operation on currentPath */
9 currentPath = 2-Opt(currentPath)

/* Remove Vertices from currentPath */
10 while currentPath is infeasible OR rand() ≤ Z do
11 remove the second last vertex from currentPath
12 end

/* Insert Vertices to currentPath */
13 neighborPath = Insert(currentPath, currentMetric)

/* Update currentPath and bestPath */
14 ∆R = neighborPath.reward− currentPath.reward
15 if ∆R > 0 OR rand() ≤ e∆R/T then
16 currentPath = neighborPath
17 end
18 if currentPath.reward > bestPath.reward then
19 bestPath = currentPath
20 numIterNoImprove = 0
21 else
22 numIterNoImprove = numIterNoImprove + 1
23 if numIterNoImprove > maxIterNoImprove then
24 currentMetric = new random metric
25 numIterNoImprove = 0
26 end
27 end
28 end
29 return bestPath

6 DSOP Algorithms

In this section, we describe a branch-and-bound algo-
rithm and a local search algorithm that solves DSOPs.

6.1 Branch-and-Bound Algorithm

We provide a depth-first branch-and-bound algorithm,
where the root of the search tree is the start vertex and
the children of a vertex are all the unvisited vertices
minus the exit vertex. The branch of an arbitrary
vertex thus represents the path from the start vertex to
that vertex. The value of a vertex is the sum of rewards
of all vertices along its branch. The algorithm prunes
the subtree of a vertex if it fails to satisfy our risk-
sensitive criterion. For example, assume that a vertex
vk is on the branch π = 〈v1, v2, . . . , vk〉, where vertex
vi is on the i-th position on the branch. The algorithm
prunes the subtree rooted at vertex vk if the condition
in Equation 1 is not satisfied if one appends the exit

vertex to the end of the path. The algorithm returns
the vertex with the largest value and the branch of
that vertex with the exit vertex appended at the end
of the path as the best solution that satisfies the risk-
sensitive criterion.

6.2 Local Search Algorithm

Unfortunately, the branch-and-bound algorithm suf-
fers from scalability issues as the size of the search
tree is exponential in the number of vertices in the
graph. We thus introduce a local search algorithm
that is based on the standard two-phase approach –
a construction heuristic to generate an initial solution
followed by local improvements on that solution.

6.2.1 Construction Heuristic

The construction heuristic is a greedy insertion algo-
rithm that greedily inserts the best unvisited vertex
at the best position in the current path according to
a given metric. The algorithm begins with the path
that starts at the start vertex and immediately exits
at exit vertex, and it terminates when it can no longer
insert any attraction at any position without violating
the condition in Equation 1.

In this paper, we use the following metric to evaluate
the value of inserting vertex vi at position p: ∆R

1+∆P ,
where ∆R and ∆P is the gain in reward and proba-
bility, respectively, for inserting vertex vi at position
p. Thus, ∆R = R(vi), which is the reward of ver-

tex vi, and ∆P = P̂ (an ≤ H) − P̂ ′(an ≤ H), where

P̂ ′(an ≤ H) and P̂ (an ≤ H) is the probability of ar-
riving at the exit vertex before and after insertion, re-
spectively. We use the same approach of multiplying
transition matrices described in Section 6.1 to speed
up the computation of the probabilities. Finally, we
add 1 to the gain in probabilities such that the denom-
inator is greater than 0.

This metric is motivated by similar metrics in knap-
sack problems, namely the utility of an item is the ratio
between the reward and size of that item [23]. We have
also tried 4 other variants of the above metric, namely

(1) 1
1+∆P , (2) ∆R, (3) (∆R)2

1+∆P , (4) ∆R√
1+∆P

, where we ig-

nored the effects of rewards in (1) and probabilities in
(2), and we amplified the effects of rewards in (3) and
probabilities in (4). However, our chosen metric was
shown to outperform these 4 variants empirically.

6.2.2 Local Improvements

We use a hybrid approach that consists of a variable
neighborhood search combined with simulated anneal-
ing to locally improve our initial solution found by the
construction heuristic. Algorithm 1 shows the pseu-
docode of this algorithm. After constructing the ini-
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tial solution (line 1), the algorithm iteratively runs the
following four phases until the maximum number of it-
erations is reached (line 6):

Phase 1: If the path contains at least two vertices
(not including the start and end vertices), then the
algorithm performs a 2-Opt operation, that is, it
randomly swaps two of these vertices (line 9).

Phase 2: If the path is not feasible, that is, it does not
satisfy Equation 1, then the algorithm repeatedly
removes the second last vertex until the path is
feasible. (The algorithm does not remove the last
vertex because it is the exit vertex.) Once the path
is feasible, the algorithm repeatedly removes the
second last vertex probabilistically (lines 10-12).2

Phase 3: The algorithm repeatedly inserts unvisited
vertices greedily similar to the construction heuris-
tic (line 13). The difference here is that the met-
ric used can be one of five different metrics, ei-
ther the metric chosen for the construction heuris-
tics or one of its four variants described above.
The algorithm starts by choosing one of the five
metrics randomly (line 4). If there are no im-
provements in maxIterNoImprove iterations, the al-
gorithm chooses a new different metric randomly
(lines 25-26). These different metrics correspond
to the different “neighborhoods” in our variable
neighborhood search.

Phase 4: The algorithm then updates the current
path to the new neighboring path, which is a re-
sult from inserting unvisited vertices in Phase 3, if
the new path is a better path or with a probability
that depends on the simulated annealing tempera-
ture (lines 14-17).

Reusing Matrix Computations: We re-compute
the completion probability P̂ (an ≤ H) whenever we
make a local move during the search, that is, when
(a) two vertices are swapped, (b) a vertex is removed,
and/or (c) a vertex is inserted. To compute these prob-
abilities efficiently, we store the results of the products
of transition matrices for subsets of vertices. For ex-
ample, in a path π = 〈v1, v2, . . . , vi, . . . , vj , . . .〉, if we
swap vertices vi and vj , then the product of transition
matrices for the vertices before vi, the product of ma-
trices for the vertices between vi+1 and vj−1, and the
product of matrices for the vertices after vj+1 remain
unchanged. By storing all of these intermediate re-
sults, it is possible to make the computation of proba-
bilities very efficient. However, it requires a significant
amount memory for larger problems. In this paper, we
store only the products of matrices for the vertices be-
tween the start vertex and every subsequent vertex in
the path except for the exit vertex. For example, for a
path π = 〈v1, v2, v3, vn〉, we store the product of matri-

2The rand() function returns a random number in [0,1].

ces for vertices v1 and v2, which is P̂ (a2 ≤ H), and the
product of matrices for vertices v1, v2 and v3, which
is P̂ (a3 ≤ H). While this is not the most efficient ap-
proach, it provides a good tradeoff between memory
requirement and efficiency.

7 Experimental Results

We now empirically demonstrate the scalability of our
approaches on synthetic datasets employed in the lit-
erature as well as a real-world dataset for a theme
park navigation problem. We run our experiments on
a 3.2GHz Intel i5 dual-core CPU with 12GB mem-
ory, and we set the parameters for the local search
algorithm as follows: we set maxIterNoImprove to 50,
maxIterations to 1500, T to 0.1 and ∆T to 0.99. We
divide each travel time distribution to 100 ranges for
the matrix-based computations and use 1000 samples
for the sampling-based computations.

7.1 Synthetic Dataset Results

Our synthetic dataset is based on the dataset pro-
vided in [34] with 32 vertices. We assume that the
total travel time of each edge is the sum of the travel
time between the two vertices connected by that edge
and the queueing time at the target vertex of that
edge. As in [6], we assume that the total travel time
of each edge is a gamma distribution, whose mean is
the Euclidean distance between the vertices connected
by that edge. We vary the shape parameter 2 ≤ k ≤ 9
and scale parameter 1 ≤ θ ≤ 4 such that the mean of
the values µ ≈ kθ is approximately equal to the prod-
uct of the shape parameter k and the scale parameter
θ. A gamma distribution with k = 1 is an exponen-
tial distribution. As we wanted a more normal-like
distribution, we did not include this value of k in our
experiments. We also bound the possible values of k
such that shape of the distributions across time ranges
do not vary significantly, and we use the same bound
on the possible values of θ as in [6]. Lastly, we set
rewards for each vertex to a random number between
1 and 100.

Table 1 shows our results for the construction heuris-
tic algorithm (labeled CH) and local search algorithm
(labeled LS), where we calculate the completion prob-
ability of a path (see Equation 1) using both the
matrix-based approach (see Equations 5 and 6) and
the sampling-based approach (see Equation 3). We re-
port the completion probability of the best path found
by the local search algorithm using the matrix-based
approach (labeled PM ) and the sampling-based ap-
proach (labeled PS). We also report the the percent-
age of improvement in the reward of the path found
by the local search algorithm compared to the path
found by the construction heuristic algorithm (denoted
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(a) Results averaged across all deadlines H and risk parameters ε

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s) Rewards Runtimes (s)

CH LS CH LS CH LS CH LS
θ = 1 87 88 (0.50) 0.5 568 876 1033 (18.75) 5.3 2443
θ = 2 129 134 (1.65) 0.8 987 695 792 (17.03) 2.7 1477
θ = 3 123 133 (3.97) 0.8 904 533 569 (6.63) 1.3 716
θ = 4 140 140 (0.00) 0.8 864 406 428 (6.39) 0.7 388

(b) Results averaged across all scale parameters θ and risk parameters ε

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s) Rewards Runtimes (s)

CH LS CH LS CH LS CH LS
H = 20 28 28 (0.00) 0.2 238 193 220 (12.71) 0.2 221
H = 40 94 94 (0.11) 0.5 520 432 498 (15.00) 0.8 690
H = 60 138 141 (1.43) 0.8 862 657 732 (11.10) 2.0 1303
H = 80 155 160 (2.00) 0.9 1050 847 952 (11.35) 3.7 1858
H = 100 185 196 (4.12) 1.3 1485 1008 1126 (10.84) 5.7 2208

(c) Results averaged across all deadlines H and scale parameters θ

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s)

PM PS
Rewards Runtimes (s)

PM PSCH LS CH LS CH LS CH LS
ε = 0.1 1 1 (0.00) 0.1 168 1.00 1.00 507 605 (18.48) 1.7 1077 0.17 0.90
ε = 0.2 46 46 (0.00) 0.2 332 0.90 0.99 585 669 (13.98) 2.1 1186 0.15 0.81
ε = 0.3 113 119 (3.38) 0.6 768 0.79 0.99 643 711 (10.03) 2.6 1270 0.13 0.73
ε = 0.4 194 197 (1.23) 1.1 1248 0.66 0.97 679 757 (10.81) 2.8 1376 0.09 0.63
ε = 0.5 246 256 (3.05) 1.6 1640 0.54 0.95 725 785 (7.71) 3.3 1371 0.07 0.55

Table 1: Experimental Results for Simpler Synthetic Datasets

in parentheses beside the local search rewards). The
branch-and-bound algorithm successfully terminated
for problems with small deadlines H and risk param-
eters ε only. Therefore, we did not tabulate its results
as it is unfair to only consider successful runs in com-
puting them. (We do not know the rewards and com-
pletion probabilities for unsuccessful runs.) We make
the following observations:

• Table 1(a) shows that for the matrix-based ap-
proach, the solution rewards increase between
θ = 1 and θ = 2, and remain relatively un-
changed for larger values of θ. As θ increases,
the variance of the gamma distributions increases
as well. When θ = 1, only very few ranges have
non-zero transition probabilities computed with
Equation 5. As a result, adding an additional edge
to a solution can result in a significant decrease
in completion probability. With larger values of
θ, more ranges have non-zero transition proba-
bilities, but the number of ranges and transition
probabilities do not change much with increasing
values of θ. Thus, the path length and, conse-
quently, reward and runtime, typically increases
as θ increases from 1 to 2, but remains relatively
unchanged for larger values of θ. The runtime de-
pends on the path length because the number of

positions to check to find the best position to in-
sert a vertex, which is done by the construction
heuristic algorithm and phase 3 in the local im-
provement phase, depends on the path length.

On the other hand, for the sampling-based ap-
proach, the solution rewards decrease as θ in-
creases. Since the sampling probabilities are rel-
atively accurate representations of the true prob-
abilities, as the variance increases, adding an ad-
ditional edge to a solution can result in a signif-
icant decrease in completion probability. Thus,
the path length and, consequently, reward and
runtime, typically decreases as θ increases.

• Table 1(a) also shows that as θ increases, for
the sampling-based approach, the improvement
of the local search algorithm over the construc-
tion heuristic algorithm decreases. The reason is
that as the variance of the gamma distributions
increases, there is less distinction between the dif-
ferent gamma distributions. Thus, many of the
neighboring solutions are very similar to the so-
lution found by the construction heuristic algo-
rithm. For the matrix-based approach, the im-
provements are all negligible. The path lengths
are short (with 1-3 vertices excluding the start
and end vertices), and thus there is no much room
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(a) Results averaged across all risk parameters ε

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s) Rewards Runtimes (s)

CH LS CH LS CH LS CH LS
H = 20 29 29 (0.00) 0.2 262 430 537 (30.35) 0.9 1115
H = 40 102 103 (0.43) 0.5 571 864 1052 (22.27) 3.8 4526
H = 60 147 160 (6.77) 0.7 915 1156 1394 (20.92) 7.5 8255
H = 80 181 183 (0.44) 1.1 1326 1503 1588 (5.73) 13.6 9339
H = 100 247 263 (5.11) 1.8 2004 1579 1644 (4.14) 15.3 7716

(b) Results averaged across all deadlines H

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s)

PM PS
Rewards Runtimes (s)

PM PSCH LS CH LS CH LS CH LS
ε = 0.1 16 16 (0.00) 0.1 215 0.98 1.00 1004 1162 (24.68) 6.9 6165 0.00 0.90
ε = 0.2 83 83 (0.00) 0.4 500 0.87 0.97 1071 1222 (19.87) 8.2 6237 0.00 0.81
ε = 0.3 141 144 (1.37) 0.7 975 0.78 0.97 1109 1255 (18.38) 8.1 6561 0.00 0.73
ε = 0.4 204 224 (9.17) 1.2 1448 0.61 0.95 1144 1264 (11.25) 8.5 6054 0.00 0.64
ε = 0.5 264 272 (2.23) 1.8 1940 0.55 0.87 1205 1311 (9.24) 9.6 5934 0.00 0.56

Table 2: Experimental Results for More Difficult Synthetic Datasets

Rewards (Peak Days) Rewards (Non-Peak Days)
H = 2 H = 4 H = 6 H = 8 H = 10 H = 2 H = 4 H = 6 H = 8 H = 10

ε = 0.1 474 485 488 508 558 579 579 579 579 579
ε = 0.2 474 485 488 508 558 579 579 579 579 578
ε = 0.3 474 485 507 508 557 620 620 620 621 624
ε = 0.4 474 485 505 549 558 620 627 627 634 634
ε = 0.5 474 485 507 549 557 646 649 646 644 646

Table 3: Experimental Results for Real-World Theme Park Dataset

for improvement. We confirm this result with the
branch-and-bound algorithm, where it found sim-
ilar paths to those found by the local search al-
gorithm for problems where it successfully termi-
nated.

• Tables 1(b) and 1(c) show that asH or ε increases,
the solution reward increases for both matrix- and
sampling-based approaches, which is to be ex-
pected. Similarly, the runtime also increases since
the number of positions to check to find the best
position to insert a vertex also increases.

• Table 1(c) shows that the completion probabili-
ties PM and PS are all no less than 1 − ε for the
matrix- and sampling-based approaches, respec-
tively, which is to be expected.

We observe that the problems in this dataset are rel-
atively easy as all gamma distributions have the same
scale parameter and their means satisfy the triangle
inequality. Thus, we modified the dataset to increase
its difficulties in the following ways: (a) we choose the
scale parameter θ of the gamma distributions for each
edge randomly between 1 and 4 such that not all edges
have distributions with the same scale parameter, and
(b) we change the shape parameter k of the gamma

distributions for some subset of edges such that their
means no longer satisfy the triangle inequality. Ta-
ble 2 shows our results for this more difficult synthetic
dataset. We make the same observations here as in the
simpler dataset with the exception that the improve-
ments of the local search algorithm over the construc-
tion heuristic algorithm is now up to 30% as opposed
to 18% earlier.

Overall, using the sampling-based approach, the lo-
cal search algorithm provides reasonably better so-
lutions compared to the construction heuristic algo-
rithm. However, it is not guaranteed that these so-
lutions are feasible, that is, they satisfy Equation 1.
However, the feasibility likelihood increases with the
number of samples. Thus, this approach is better
suited for users without strict feasibility requirements.
On the other hand, solution feasibility is guaranteed
for algorithms using the matrix-based approach. Un-
fortunately, the local search algorithm fails to rea-
sonably improve on the solutions found by the con-
struction heuristic algorithm. Thus, the construction
heuristic algorithm using the matrix-based approach
is better suited for users with strict feasibility require-
ments.
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7.2 Real-World Dataset Results

For our real-world theme park dataset, the total travel
time of each edge is also a gamma distribution. We
choose the scale parameter θ and shape parameter k
such µ ≈ kθ and σ2 ≈ kθ2, where µ and σ2 is the mean
and variance, respectively, of our data points (across
several months) for the sum of travel time and queue-
ing time. Similar to the synthetic datasets, we also set
rewards for each vertex to a random number between 1
and 100. However, we do not bound the possible values
of the scale and shape parameters θ and k such that
the gamma distributions approximate the data points
as accurately as possible. Lastly, we segment our data
points into two categories, peak days and non-peak
days,3 and present results for both categories.

Table 3 shows our results for the local search algo-
rithm using the sampling-based approach to compute
the completion probabilities; the deadline H is mea-
sured in hours. We only show the solution rewards as
the other trends are similar to those observed for the
synthetic datasets. Similar to the synthetic datasets,
as H and ε increase, the solution reward also typically
increases. Additionally, the solution rewards for non-
peak days are larger than those for peak days. The
reason is that the queueing time at an attraction is
smaller on non-peak days than on peak days. Thus, it
is possible to visit more attractions, and thus accrue
more rewards, on non-peak days than on peak days.

8 Related Work

OPs have a long history and has been known by a
variety of other names including selective TSPs [18],
maximum collection problems [16] and bank robber
problems [1]. Vansteenwegen et al. recently presented
a broad overview of the problem, its variants and asso-
ciated solution methods [36]. In contrast, to the best
of our knowledge, there has not been much work in
stochastic variants of OP thus far. Aside from the
work on SOPs [6], two closely related problems with
stochastic travel times are time-constrained TSPs with
stochastic travel and service times [33] and stochastic
selective TSPs [31]. These problems assume that the
traveling time distributions are time independent, un-
like our dynamic SOPs. Lastly, aside from travel time,
researchers have also investigated stochasticity in the
reward values of vertices [15].

SOPs also bear some similarity with Markov random
fields (MRFs) [37] and Bayesian networks [28]. They
are both graphical models, where nodes in a graph
correspond to random variables and edges in a graph
correspond to potential functions between pairs of ran-

3Peak days are Fridays, Sundays and Mondays accord-
ing to our theme park operator.

dom variables. While MRF graphs can be cyclic,
Bayesian network graphs are strictly acyclic. The goal
in these two models is to compute the maximum a pos-
teriori (MAP) assignment, which is the most probable
assignment to all the random variables of the under-
lying graph in MRFs [37, 17, 30] and Bayesian net-
works [24, 14, 39]. Thus, the main difference between
MAP assignment problems and SOPs is that MAP as-
signment problems are inference problems while SOPs
are planning problems. DSOPs can potentially be rep-
resented using the TiMDP model [5]. However, the
objective in TiMDPs is to maximize expected reward,
which is unlike in DSOPs, where we also consider the
robustness criterion.

With respect to modeling and accounting for dif-
ferent risk preferences, there are generally the fol-
lowing three approaches: (1) Stochastic dominance,
whose theory was developed in statistics and eco-
nomics [19, 13]. Stochastic dominance defines par-
tial orders on the space of random variables and allow
for pairwise comparison of different random variables.
(2) Mean-risk analysis, whose models originate from
finance. They include the well known mean-variance
optimization model in portfolio optimization, where
the variance of the return is used as the risk func-
tional [21]. (3) Chance constraints or percentile opti-
mization, whose models were initiated and developed
in operations research [22, 25]. Recently, researchers
have provided a thorough overview of the state-of-
the-art of the optimization theory with chance con-
straints [26]. Our approach of defining a risk-sensitive
measure that allows the user to specify a level of risk
(failure tolerance) is along the lines of using chance
constraints to model and account for different risk pref-
erences. While it has been applied to solve planning
and scheduling problems [3, 8, 10], to the best of our
knowledge, it has yet to be applied to solve OPs.

9 Conclusions

Researchers have used OPs to model vehicle routing
and tourist trip design problems. However, OPs as-
sume that the travel times are independent of the time
of day and the route returned is independent of the
risk preference of the user. Therefore, we make the
following contributions in this paper: (1) we introduce
a dynamic and stochastic OP (DSOP) model that al-
low for time-dependent travel times; (2) we propose a
risk-sensitive criterion that allow for different risk pref-
erences; and (3) we develop a local search algorithm
to solve DSOPs with this risk-sensitive criterion. We
also empirically show that this approach is applicable
on a real-world theme park navigation problem. We
anticipate that such user-centric route guidance will
be more widely used as users carry smart devices and
use mobile applications with increasing intensity.
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Abstract

We introduce a novel framework for comput-
ing optimal randomized security policies in
networked domains which extends previous
approaches in several ways. First, we ex-
tend previous linear programming techniques
for Stackelberg security games to incorporate
benefits and costs of arbitrary security config-
urations on individual assets. Second, we of-
fer a principled model of failure cascades that
allows us to capture both the direct and in-
direct value of assets, and extend this model
to capture uncertainty about the structure
of the interdependency network. Third, we
extend the linear programming formulation
to account for exogenous (random) failures
in addition to targeted attacks. The goal of
our work is two-fold. First, we aim to de-
velop techniques for computing optimal se-
curity strategies in realistic settings involv-
ing interdependent security. To this end,
we evaluate the value of our technical con-
tributions in comparison with previous ap-
proaches, and show that our approach yields
much better defense policies and scales to
realistic graphs. Second, our computational
framework enables us to attain theoretical in-
sights about security on networks. As an ex-
ample, we study how allowing security to be
endogenous impacts the relative resilience of
different network topologies.

∗Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corpora-
tion, for the U.S. Department of Energy’s National Nu-
clear Security Administration under contract DE-AC04-
94AL85000.

1 Introduction

Game theoretic approaches to security have received
much attention in recent years. There have been
numerous attempts to distill various aspects of the
problem into a model that could be solved in closed
form, particularly accounting for interdependencies of
security decisions (e.g., Kunreuther and Heal [2003],
Grossklags et al. [2008]). Numerous others offer tech-
niques based on mathematical programming to solve
actual instances of security problems. One important
such class of problems is network interdiction [Cormi-
can et al., 1998], which models zero-sum encounters
between an interdictor, who attempts to destroy a por-
tion of a network, and a smuggler, whose goal typically
involves some variant of a network flow problem (e.g.,
maximizing flow or computing a shortest path).

Our point of departure is another class of optimization-
based approaches in security settings: Stackelberg se-
curity games [Paruchuri et al., 2008]. These are two-
player games in which a defender aims to protect a
set of targets using a fixed set of limited defense re-
sources, while an attacker aims to assail a target that
maximizes his expected utility. A central assumption
in the literature on Stackelberg security games is that
the defender can commit to a probabilistic defense
(equivalently, the attacker observes the probabilities
with which each target is covered by the defender, but
not the actual defense realization).

Much of the work on Stackelberg security games fo-
cuses on building fast, scalable algorithms, often in
restricted settings [Kiekintveld et al., 2009, Jain et al.,
2010, Shieh et al., 2012]. One important such restric-
tion is to assume that targets exhibit independence:
that is, the defender’s utility only depends on which
target is attacked and the security configuration at
that target. Short of that restriction, one must, in
principle, consider all possible combinations of secu-
rity decisions jointly for all targets, making scalable
computation elusive. Many important settings, how-
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ever, exhibit interdependencies between potential tar-
gets of attack. These may be explicit, as in IT and sup-
ply chain network security, or implicit, as in defending
critical infrastructure (where, for example, successful
delivery of transportation services depends on a highly
functional energy sector, and vice versa), or in securing
complex software systems (with failures at some mod-
ules having potential to adversely affect other mod-
ules). While in such settings the assumption of inde-
pendence seems superficially violated, we demonstrate
below that under realistic assumptions about the na-
ture of interdependencies, we can nevertheless leverage
the highly scalable optimization techniques which as-
sume independence.

In all, we offer the following contributions. (1) We
modify and extend the previous linear programming
techniques for Stackelberg security games to allow for
an arbitrary set of security configurations (rather than
merely to cover a target, or not), as well as to account
for both random and targeted failures, and replace
hard constraints on defense resources with costs associ-
ated with specific security configurations (Section 3).
(2) We present and justify a crucial assumption on
the nature of interdependencies that allows us to use
our LP formulations which fundamentally assume in-
dependence between targets (Section 4.1). We then
offer a simple model of interdependencies based on
probabilistic failure cascades satisfying this assump-
tion. Our model makes an explicit distinction between
an intrinsic and indirect value of assets, the latter be-
ing due entirely to interdependencies. This allows an
economically meaningful extension of a well-known in-
dependent cascade approach to modeling the spread of
infectious diseases or ideas (Section 4). (3) We demon-
strate that for trees we can compute expected utilities
for all targets in linear time (Section 4). (4) We extend
our model to capture uncertainty about network struc-
ture, and experimentally study the impact of such un-
certainty (Sections 4.5 and 6.1). (5) We show that our
approach is both scalable to realistic security settings
and offers much better solutions than state-of-the-art
alternatives (Sections 5.2 and 5.2). (6) We experimen-
tally study the properties of optimal defense configu-
rations in real and generated networks (Section 6).

2 Stackelberg Security Games

A Stackelberg security game consists of two players,
the leader (defender) and the follower (attacker), and
a set of possible targets. The leader can decide upon
a randomized policy of defending the targets, possi-
bly with limited defense resources. The follower (at-
tacker) is assumed to observe the randomized policy of
the leader, but not the realized defense actions. Upon
observing the leader’s strategy, the follower chooses a

target so as to maximize its expected utility.

In past work, Stackelberg security game formulations
focused on defense policies that were costless, but re-
source bounded. Specifically, it had been assumed
that the defender has K fixed resources available with
which to cover targets. Additionally, security decisions
amounted to covering a set of targets, or not. While in
numerous settings to which such work has been applied
(e.g., airport security, federal air marshal scheduling)
this formulation is very reasonable, in other settings
one may choose among many security configurations
for each valued asset, and, additionally, security re-
sources are only available at some cost. For example,
in cybersecurity, protecting computing nodes could in-
volve configuring anti-virus and/or firewall settings,
with stronger settings carrying a benefit of better pro-
tection, but at a cost of added inconvenience, lost pro-
ductivity, as well as possible licensing costs. Indeed,
costs on resources may usefully replace resource con-
straints, since such constraints are often not hard, but
rather channel an implicit cost of adding further re-
sources.

While security games as described above naturally en-
tail an attacker, most systems exhibit failures that are
not at all a deliberate act of sabotage, but are due en-
tirely to inadvertent errors. Even though such failures
are generally far more common than attacks, the vast
majority of work in security games posits an attacker,
but ignores such failures entirely; essentially the lone
exception is a paper by Zhuang and Bier [2007] which
offers an analytic treatment of a simple model making
explicit the distinction between attacks and natural
disasters. Our formulation below is, to our knowledge,
the first to explicitly model both attacks and random
failures in the Stackelberg security game literature.

To formalize, suppose that the defender can choose
from a finite set O of security configurations for each
target t ∈ T , with |T | = n. A configuration o ∈ O for
target t ∈ T incurs a cost co,t to the defender. If the
attacker happens to attack t while configuration o is in
place, the expected value to the defender is denoted by
Uo,t, while the attacker’s value is Vo,t. A key assump-
tion in Stackelberg security games is that the targets
are completely independent: that is, player utilities
only depend on the target attacked and its security
configuration [Kiekintveld et al., 2009]. We revisit this
assumption below when we turn to networked (inter-
dependent) settings. We denote by qo,t the probability
that the defender chooses o at target t. Finally, let r
be the prior probability of the defender that a failure
will happen due to a deliberate attack. If no attack is
involved, any target can fail; the defender’s belief that
target t randomly fails (conditional on the event that
no attack is involved) is gt, with

∑
t gt = 1.
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3 Computing Optimal Randomized
Security Configurations

Previous formulations of Stackelberg security games
involved a fixed collection of defender resources, and
in most cases a binary decision to be made for each
target: to cover it, or not. To adapt these to our
domains of interest, we first modify the well-known
multiple linear program (henceforth, multiple-LP) for-
mulation that assumes target independence to incor-
porate an arbitrary set of security configurations, to-
gether with their corresponding costs of deployment.
In the multiple-LP formulation, each linear program
solves for an optimal randomized defense strategy
given that the attacker attacks a fixed target t̂, with
the constraint that t̂ is an optimal choice for the at-
tacker. The defender then chooses the best solution
from all feasible LPs as his optimal randomized defense
configuration. The independence assumption becomes
operational here because we treat defense configura-
tions qo,t for each target in isolation, as this assump-
tion obviates the need to randomize over joint defense
schedules for all targets. The LP formulation for a
representative target t̂ is shown in Equations 1a-1d.

max r

(∑

o

Uo,t̂q
t̂
o,t̂

)
+ (1− r)

(∑

t,o

gtUo,tq
t̂
o,t

)

−
∑

t

∑

o

co,tq
t̂
o,t. (1a)

s.t.

∀o,t qt̂o,t ∈ [0, 1] (1b)

∀t
∑

o

qt̂o,t = 1 (1c)

∀t
∑

o

Vo,tq
t̂
o,t ≤

∑

o

Vo,t̂q
t̂
o,t̂

(1d)

The intuition behind the multiple-LP formulation is
that in an optimal defense configuration, the attacker
must (weakly) prefer to attack some target, and, con-
sequently, one of these LPs must correspond to an op-
timal defense policy.

Notice that we can easily incorporate additional linear
constraints. For example, it is often useful to add a
budget constraint of the form:

∀t̂,t
∑

o

co,tq
t̂
o,t ≤ B.

4 Incorporating Network Structure

4.1 A General Model of Interdependencies

Thus far, a key assumption has been that the utility
of the defender and the attacker for each target de-

pends only on the defense configuration for that tar-
get, as well as whether it is attacked or not. In many
domains, such as cybersecurity and supply chain se-
curity, assets are fundamentally interdependent, with
an attack on one target having potential consequences
for others. In this section, we show how to transform
certain important classes of problems with interdepen-
dent assets into a formulation in which targets become
effectively independent, for the purposes of our solu-
tion techniques.

Below we focus on the defender’s utilities; attacker is
treated identically. Let wt be an intrinsic worth of
a target to the defender, that is, how much loss the
defender would suffer if this target were to be com-
promised with no other target affected (i.e., not ac-
counting for indirect effects). In doing so, we assume
that these worths are independent for different targets.
Let s = {o1, . . . , on} be the security configuration on
all nodes. The probability that a given t′ is affected
depends on s and the target t chosen by the attacker.
Let zs,t′(t) be the marginal probability that target t′ is
affected when the attacker attacks target t. Assuming
that the utility function is additive in target-specific
worths and the attacker can only attack a single target,
the defender’s expected utility from choosing s when t
is attacked is

Ut(s) = E

[∑

t′

wt′1(t′ affected | s, t)

]
=
∑

t′

wt′zs,t′(t),

where 1(·) is an indicator function. This expression
makes apparent that in general Ut(s) depends on de-
fense configurations at all targets, making the problem
intractable. We now make the crucial assumption that
enables fast computation of defender policies by recov-
ering inter-target independence.

Assumption 1. For all t and t′, zs,t′(t) = zot,t′(t).

In words, the probability that a target t′ is affected
when t is attacked only depends on the security con-
figuration at the attacked target t. Below, we use o
instead of ot where t is clear from context.

A way to interpret our assumption is that security
against external threats is not very efficacious once an
attack has found a way into the system. Alternatively,
if the utility of nodes is derived from their contribu-
tion to overall connectivity (e.g., in communication
networks, where removing a node can, for example,
increase latency), it is quite natural to assume that
removal of a node impacts global connectivity regard-
less of security policies on other nodes. Our assump-
tion was also operational in other work on interde-
pendent security [Kunreuther and Heal, 2003], where
a justification is through a story about airline bag-
gage screening: baggage that is transferred between
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airlines is rarely thoroughly screened, perhaps due to
the expense. Thus, even while an airline may have
very strong screening policies, it is poorly protected
from luggage entering its planes via transfers. Cy-
bersecurity has similar shortcomings: defense is often
focused on external threats, with little attention paid
to threats coming from computers internal to the net-
work. Thus, once a computer on a network is compro-
mised, the attacker may find it much easier to com-
promise others on the same network.

Under the above assumption, the defender utility when
t is attacked under security configuration o is:

Uo,t = zo,t(t)wt +
∑

t′ 6=t
zo,t′(t)wt′ .

By a similar argument and an analogous assumption
for the attacker’s utility, we thereby recover target in-
dependence required by the linear programming for-
mulations above.

4.2 Cascading Failures Model

In general, one may use an arbitrary model to compute
or estimate zo,t′(t). Here, we offer a specific model of
interdependence between targets that is simple, natu-
ral, and applies across a wide variety of settings.

Suppose that dependencies between targets are repre-
sented by a graph (T,E), with T the set of targets
(nodes) as above, and E the set of edges (t, t′), where
an edge from t to t′ (or an undirected edge between
them) means that target t′ depends on target t (and,
thus, a successful attack on t may have impact on
t′). Each target has associated with it a worth, wt
as above, although in this context this worth is in-
curred only if t is affected (e.g., compromised, broken).
The security configuration determines the probability
zo,t(t) that target t is affected if the attacker attacks it
directly and the defense configuration is o. We model
the interdependencies between the nodes as indepen-
dent cascade contagion, which has previously been
used primarily to model diffusion of product adoption
and infectious disease [Kempe et al., 2003, Dodds and
Watts, 2005]; Mounzer et al. [2010] is a rare excep-
tion (a similar model was also proposed by Tsai et al.
[2012], but involves both a defender and an attacker
maximizing impact of information diffusion through
cascades). The contagion proceeds starting at an at-
tacked node t, affecting its network neighbors t′ each
with probability pt,t′ ; the contagion then spreads from
the newly affected nodes t′ to their neighbors, and so
on. The contagion can only occur once along any net-
work edge, and once a node is affected, it stays affected
through the diffusion process. An equivalent way to
model this process is to start with the network (T,E)

and remove each edge (t, t′) with probability (1−pt,t′).
The entire connected component of an attacked node
is then deemed affected.

4.3 Computing Expected Utilities

Given the independent cascade model of interdepen-
dencies between targets, we must compute expected
utilities, Uo,t and Vo,t, of the defender and the attacker
respectively (note that these are expectations only over
the cascades, but not the defender’s mixed strategy).
In general, we can do so by simulating cascades start-
ing at every node t (using breadth-first search), with
expected utility of defender/attacker estimated as a
sample average over K simulated cascades (expecta-
tion in this case is with respect to random realizations
of attack success for specific targets as well as edges
that become a part of the failure contagion). In several
special cases, however, we can either compute these
exactly and efficiently, or speed up utility estimation.
We now address these special cases.

4.3.1 Cascades on Trees

It is intuitive that when the dependency graph is a
tree, expected utilities can be computed efficiently. A
naive algorithm can do it in linear time for each target
t, yielding quadratic time in total (since we must re-
peat the process for all targets). In fact, we can do it
in linear time for all targets, as the following theorem
asserts.

Theorem 1. If (T,E) is an undirected tree we can
compute expected utilities for at targets in O(|T |) time.

The proofs of this and other results can be found in
the online supplement.

4.3.2 Cascades on Undirected Graphs

In general undirected graphs, we can apply a very sim-
ple optimization in the way we sample cascades to
obtain substantial speedups when the graph is dense.
First, observe that rather than determining live edges
as the cascade unfolds, we can instead flip the biased
coin for each edge to determine whether it is live or
not during a particular cascade prior to propagating
the failure. The resulting graph contains a subset of
edges from the original graph. At this point, observe
that each potential target in a given connected compo-
nent will result in the same defender/attacker utility.
We therefore only need to compute the expected loss
once for each connected component. When the size
of the largest connected component is O(|T |), a likely
scenario in dense graphs, this optimization results in
an O(|T |) speedup.

462



4.4 The Significance of Capturing
Interdependence

An obvious question that may arise upon pondering
the complexities of our framework is whether they are
worthwhile: it may well be that previous approaches
which assume target independence offer satisfactory
approximation. We now show theoretically, and later
experimentally, that our approach improves dramati-
cally as compared to one which assumes independence.

Proposition 1. There exists a family of problem in-
stances for which the independence assumption yields
a solution that is a factor of O(n) worse than optimal.

4.5 Incorporating Uncertainty about the
Network

Applying our framework in real-world networked se-
curity settings requires an accurate understanding of
the interdependencies. Thus far, we assumed that the
actual network over which cascading failures would
spread is perfectly known. A natural question is: what
if our network model is inaccurate?

Formally, we model the uncertainty about the network
as a parameter ε which represents the probability of
incorrectly estimating the relationship between a pair
of targets. Thus, if there is an edge between t and t′,
we now let this edge be present with probability 1− ε.
On the other hand, if t and t′ are not connected in the
graph given to us, we propose that they are, in fact,
connected with probability ε. Thus, when the graph
is large, even a small amount noise will cause us to err
about a substantial number of edges.1

Note that there is a natural way to incorporate this
model of uncertainty into our framework. Let us in-
terpret pt,t′ as the probability of a cascade from t to t′

conditional on an edge from t to t′. Then, if t and t′

are connected, we modify cascade probabilities to be
p̂t,t′ = pt,t′(1 − ε), whereas if they are not connected,
the cascade probability is p̂t,t′ = pt,t′ε.

5 Experiments

The goal of this section is to illustrate the value of our
framework as a computational tool for designing se-
curity in interdependent settings. Specifically, we aim
to demonstrate that our approach clearly improves on
state-of-the-art alternatives, and offers a scalable solu-
tion for realistic security problems. We pursue this aim

1We assume here that both the defender and attacker
share the same uncertainty about the network. An al-
ternative model could consider an attacker that has more
(or exact) information about the network. The resulting
defender problem would become a Bayesian Stackelberg
game.

by randomly constructing dependency graphs using
Erdos-Renyi (ER) and Preferential Attachment (PA)
generative models [Newman, 2010], as well as using a
graph representing a snapshot of Autonomous System
(AS) interconnections generated using Oregon route-
views [of Oregon Route Views Project]; this graph con-
tains 6474 targets and 13233 edges and thus offers a
reasonable test of scalability. In the ER model every
directed link is made with a specified and fixed prob-
ability p; we refer to it as ER(p). The PA model adds
nodes in a fixed sequence, starting from an arbitrary
seed graph with at least two vertices. Each node i is
attached to m others stochastically (unless i ≤ m, in
which case it is connected to all preceding nodes), with
probability of connecting to a node j proportional to
the degree of j, dj .

For the randomly generated networks, all data pre-
sented is averaged over 100 graph samples. Since we
generate graphs that may include undirected cycles, we
obtain expected utilities for all nodes on a given graph
using 10,000 simulated cascades (below we show that
this is more than sufficient). Intrinsic worths wt are
generated uniformly randomly on [0, 1]. Cascade prob-
abilities pt,t′ were set to 0.5 unless otherwise specified.
In the sequel, we restrict the defender to two security
configurations at every target, one with a cost of 0
which stops attacks with probability 0 and one with a
cost of c which prevents attacks with probability 1.

5.1 Sampling Efficiency

Throughout our experiments we use 10,000 samples to
evaluate the expected utilities of players. A natural
question is: are we taking enough samples? To an-
swer this, we systematically varied the number of sam-
ples between 0 (i.e., letting Uo,t = −wt) and 100,000.
Our results offer strong evidence that 10,000 samples
is more than enough: the expected utility (evaluated
using 100,000 samples) of the resulting defense con-
figurations becomes flat already when the number of
samples is 1000.

5.2 Scalability

An important question given the complexity of our
framework is whether it can scale to realistic defense
scenarios. To test this, we ran our framework on the
AS graph consisting of 6474 targets and 13233 edges.
Since this is a large undirected graph containing cy-
cles, a sampling approach was required, but the to-
tal running time (including both sampling and solving
linear programs) amounted to less than 1 hour. Given
the importance of security, and the fact that distri-
butions of security settings are computed once (or at
least infrequently, as long as significant changes to the
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Figure 1: Left: Comparison between our approach (“with graph info”) and one assuming independence (“without
graph info”) using the ER(0.1) generative model. Middle: Comparison to the degree-based heuristic on PA
graphs. Right: Comparison to the degree-based heuristic on the AS graph.

interdependency structure are not very frequent), this
seems a relatively small computational burden.

5.3 Comparison to State-of-the-Art
Alternatives

There are two prime computational alternatives to our
framework. The first is to assume that targets are in-
dependent. While we showed above that in the worst
case this can be quite a poor approximation, we offer
empirical support to the added value of our approach
below. The second is to use a well-known heuristic de-
veloped in the context of vaccination strategies on net-
works. This latter heuristic would in our case defend
nodes in order of their connectivity (degree), until the
defense budget is exhausted. Figure 1 compares our
approach first to the former (left) and then to the lat-
ter (right). In both cases, computing optimal defense
strategies using our framework yields much higher util-
ity to the defender than the alternatives.

Aside from interdependencies, two other important as-
pects of our model are the fact that it allows an ar-
bitrary number of security configurations, instead of
simply allowing the defender to defend, or not, each
target, and its ability to optimize with respect to both
intelligent attackers and inadvertent failures. We now
show that both of these can add substantial value.
Figure 2 (top) shows a comparison between a solu-
tion which only allows two configurations (defend and
do not defend) and two solutions which also allow for
a third configuration, which is less effective than full
defense, but also less costly. We consider two poten-
tial third options, one providing 50% defense at 12.5%
of the cost of full defense (1/2 – 1/8) and one pro-
viding 75% defense at 12.5% cost (3/4 – 1/8). It is
clear from this graph that considering the third con-
figuration adds considerable value. Figure 2 (bottom)
assumes that all (or nearly all) failures arise randomly,
and compares a solution which posits an attacker to
an optimal solution. Again, the value of solving the
problem optimally is clear. This plot actually shows

an interesting pattern, as the expected utility of the
defender is non-monotonic in cost when the solution
is suboptimal. This is because the differences between
the two solutions are most important when costs are
intermediate; with low costs, nearly everything is fully
defended, while high costs imply almost no defense.

 0

 2

 4

 6

 8

 10

 12

 14

 0.001  0.01  0.1  1  10  100

T
ot

al
 e

xp
ec

te
d 

lo
ss

Defense cost per node

100 Node graphs with E[degree]=1

PA -- 2 Options
PA -- 3 Options (1/2 -- 1/8)
PA -- 3 Options (3/4 -- 1/8)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.001  0.01  0.1  1  10  100

T
ot

al
 e

xp
ec

te
d 

lo
ss

Defense cost per node

100 Node PA graphs with E[degree]=1

100% random -- 0% random solution
100% random -- Optimal solution

Figure 2: Top: Comparison between assuming only
two configurations, and allowing the defender to con-
sider three alternatives. Bottom: Comparison between
a solution which assumes that failures are only due to
attacks, and an optimal solution, when failures are ac-
tually random. Comparisons use PA graphs.

6 Applications to Interdependent
Security Analysis

In this section we apply our framework to several net-
work security domains. For simplicity, we restrict at-
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tention to zero-sum security games, unless otherwise
specified. As above, we consider ER and PA genera-
tive models, although we utilize a generalized version
of PA. In a generalized PA model, connection proba-

bilities are (di)
µ

∑
j(dj)

µ , such that when µ = 0 the degree

distribution is relatively homogeneous, just as in ER,
µ = 1 recovers the “standard” PA model, and large
values of µ correspond to highly inhomogeneous de-
gree distributions. Throughout, we use µ = 1 unless
otherwise specified. All parameters are set as in the
experiments section, unless otherwise specified.

In addition to generative models of networks, we ex-
plore two networks derived from real security set-
tings: one with 18 nodes that models dependencies
among critical infrastructure and key resource sectors
(CIKR), as inferred from the DHS and FEMA web-
sites, and the second with 66 nodes that captures pay-
ments between banks in the core of the Fedwire net-
work [Soramaki et al., 2007].

For the CIKR network, each node was assigned a low,
medium, or high worth of 0.2, 0.5, or 1, respectively,
based on perceived importance (for example, the en-
ergy sector was assigned a high worth, while the na-
tional monuments and icons sector a low worth). Each
edge was categorized based on the importance of the
dependency (gleaned from the DHS and FEMA web-
sites) as “highly” or “moderately” significant, with
cascade probabilities of 0.5 or 0.1 respectively. For
the Fedwire network, all nodes were assigned an equal
worth of 0.5, and cascade probabilities were discretely
chosen between 0.05 and 0.5 in 0.05 increments de-
pending on the weight of the corresponding edges
shown in Soramaki et al. [2007].

6.1 The Impact of Uncertainty

Our framework offers a natural way to incorporate un-
certainty about the network into the analysis. An im-
portant question is: how much impact on defender de-
cision does uncertainty about the network have? Fig-
ure 3 quantifies the impact of uncertainty on the qual-
ity of defense if the observed graph is the PA network
with average degree of 2. When cascade probabili-
ties are relatively high (pt,t′ = 0.5 for all edges, top
plot), even if the amount of noise is relatively small
(ε = 0.01), the resulting increase in the number of
possible cascade paths in the network makes the de-
fender much more vulnerable. With smaller cascade
probabilities (pt,t′ = 0.1, bottom plot), however, noise
has relatively little impact. It can thus be vital for
the defender to obtain an accurate portrait of the true
network over which failures may cascade when the in-
terdependencies among the components are strong.
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Figure 3: The impact of noise on PA networks. Top:
when pt,t′ = 0.5; Bottom: when pt,t′ = 0.1.

6.2 The Impact of Marginal Defense Cost

Our next analysis deals with the impact of marginal
defense cost c on defender expected losses, his total
costs, and the sum of these (i.e., negative expected
utility). The results for ER and BA (both with 100
nodes and average degree of 2), as well as CIKR and
Fedwire networks are shown in Figure 4. All the plots
feature a clear pattern: expected loss and (negative)
utility are monotonically increasing, as expected, while
total costs start at zero, initially rise, and ultimately
fall (back to zero in 3 of the 4 cases). It may at first
be surprising that total costs eventually fall even as
marginal costs continue to increase, but this clearly
must be the case: when c is high enough, the defender
will not wish to invest in security at all, and total costs
will be zero. What is much more surprising is the pres-
ence of two peaks in PA and Fedwire networks. Both of
these networks share the property that there is a non-
negligible fraction of nodes with very high connectiv-
ity [Newman, 2010, Soramaki et al., 2007]. When the
initial peak is reached, the network is fully defended,
and as marginal costs rise further, the defender begins
to reduce the defense resources expended on the less
important targets. At a certain point, only the most
connected targets are protected, and since these are so
vital to protect, total costs begin increasing again. Af-
ter the second peak is reached, c is finally large enough
to discourage the defender from fully protecting even
the most important targets, and the subsequent fall of
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Figure 4: Expected loss, cost, and their sum in (a) 100-node ER(0.2), (b) 100-node PA, (c) 18-node critical
infrastructure, and (d) 66-node core of the Fedwire networks as defense cost increases. The results for ER and
PA are averages over 100 stochastic realizations of these networks.

total costs is no longer reversed.

6.3 Resilience to Targeted Attacks: Impact
of Network Structure

One of the important streams in the network science
literature is the question of relative resilience of differ-
ent network topologies to failures, random or targeted.
A central result, replicated in a number of contexts, is
that network topology is a vital factor in determining
resilience [Albert et al., 2000, Newman, 2010]. Of par-
ticular interest to us is the observation that scale-free
networks such as PA exhibit poor tolerance to targeted
attacks as compared to ER [Albert et al., 2000], which
is precisely the context that we consider.

In Figure 5 (top) we show the defender’s utility for
three different network topologies, PA, ER, and Fed-
wire as a function of cost c. Remarkably, there is es-
sentially no difference between PA and ER (and not
much between these and Fedwire) until c is quite high,
at which point they begin to diverge. This seems to
contradict essentially all the previous findings in that
network topology seems to play little role in resilience
in our case! A superficial difference here is that we
consider a cascading failure model, while most of the
previous work on the subject focused on diminished

connectivity due to attacks. We contend that the most
important distinction, however, is that previous work
studying resilience did not account for a simple ob-
servation that most important targets are also most
heavily defended; indeed, there was no notion of en-
dogenous defense at all. In scale-free graphs, there
are well connected nodes whose failure has global con-
sequences. These are the nodes which are most im-
portant, and are heavily defended in optimal decisions
prescribed by our framework. Once the defense deci-
sion becomes endogenous, differences in network topol-
ogy disappear. Naturally, once c is high enough, de-
fense of important targets weakens, and eventually we
recover the standard result: for high c, PA is consid-
erably more vulnerable than ER.

To investigate the impact of network topology on re-
silience further, we consider the generalized PA model
in which we systematically vary the homogeneity of
the degree distribution by way of the parameter µ.
The results are shown in Figure 5 (bottom). In this
graph, we do observe clear variation in resilience as
a function of network topology, but the operational
factor in this variation is homogeneity in the distri-
bution of expected utilities, rather than degrees: in-
creasing homogeneity of the utility distribution lowers
network resilience. This seems precisely the opposite
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of the standard results in network resilience, but the
two are in fact closely related, as we now demonstrate.
Superficially, the trend in the figure seems to follow
the common intuition in the resilience literature: as
the degree distribution becomes more inhomogeneous
(more star-like), it becomes more difficult to defend.
Observe, however, that ER is actually more difficult
to defend than PA with µ = 0. The lone difference of
the latter from ER is the fact that nodes that enter
earlier are more connected and, therefore, the degree
distribution in the PA variant should actually be more
inhomogeneous than ER! The answer is that random
connectivity combined with inhomogeneity of degrees
actually makes the distribution of utilities less homo-
geneous in PA with µ = 0, and, as a result, fewer
nodes on which defense can focus as compared to ER.
On the other hand, as the graph becomes more star-
like, the utilities of all nodes become quite similar; in
the limiting case, all nodes are only two hops apart,
and attacking any one of them yields a loss of many
as a result of cascades.

There is another aspect of network topology that has
an important impact on resilience: network density.
Figure 6 shows a plot of an Erdos-Renyi network with
the probability of an edge varying between 0.0025 to
0.08 (average degree between .25 and 8) and cost c
fixed at 0.04. Clearly, expected utility and loss of the
defender are increasing in density, but it is rather sur-
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prising to observe how sharply they jump once average
degree exceeds 1 (the ER network threshold for a large
connected component); in any case, network density
has an unmistakable impact. The reason is intuitive:
increased density means more paths between targets,
and, consequently, greater likelihood of large cascades
in the event that a target is compromised. Total cost
initially increases in response to increased density, in
part to compensate for the increased vulnerability to
attacks, but eventually falls, since it is too expensive
to protect everything, and anything short of that is
largely ineffective.

7 Conclusion

We presented a framework for computing optimal ran-
domized security policies in network domains, extend-
ing previous linear programming approaches to Stack-
elberg security games in several ways. First, we ex-
tended previous linear programming techniques to in-
corporate benefits and costs of arbitrary security con-
figurations on individual assets. Second, we offered a
principled model of failure cascades that allows us to
capture both the direct and indirect value of assets,
and showed how to extend this model to capture un-
certainty about the structure of the interdependency
network. Third, we allowed the defender to account
for failures due to actual attacks, as well as those that
are a result of exogenous failures. Our results demon-
strate the value of our approach as compared to alter-
natives, and show that it is scalable to realistic security
settings. Furthermore, we used our framework to an-
alyze four models of interdependencies: two based on
random graph generation models, a simple model of in-
terdependence between critical infrastructure and key
resource sectors, and a model of the Fedwire interbank
payment network.
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Abstract

A tree-based dictionary learning model is
developed for joint analysis of imagery and
associated text. The dictionary learning
may be applied directly to the imagery from
patches, or to general feature vectors extract-
ed from patches or superpixels (using any ex-
isting method for image feature extraction).
Each image is associated with a path through
the tree (from root to a leaf), and each of
the multiple patches in a given image is as-
sociated with one node in that path. Nodes
near the tree root are shared between multi-
ple paths, representing image characteristic-
s that are common among different types of
images. Moving toward the leaves, nodes be-
come specialized, representing details in im-
age classes. If available, words (text) are also
jointly modeled, with a path-dependent prob-
ability over words. The tree structure is in-
ferred via a nested Dirichlet process, and a
retrospective stick-breaking sampler is used
to infer the tree depth and width.

1 Introduction

Statistical topic models, such as latent Dirichlet allo-
cation (LDA) (Blei et al., 2003b), were originally de-
veloped for text analysis, but they have been recently
transitioned successfully for the analysis of imagery. In
most such topic models, each image is associated with
a distribution over topics, and each topic is charac-
terized by a distribution over observed features in the
image. In this setting researchers typically represent
an image as a bag of visual words (Fei-Fei & Perona,
2005; Li & Fei-Fei, 2007). These methods have been
applied to perform unsupervised clustering, classifica-
tion and annotation of images, using image features

as well as auxiliary data such as image annotation-
s (Barnard et al., 2003; Blei & Jordan, 2003; Blei &
MaAuliffe, 2007; Wang et al., 2009; Li et al., 2009).

In such work feature extraction is performed as a
pre-processing step, and local image descriptors, e.g.,
scale-invariant feature transform (SIFT) (Lowe, 1999),
and other types of features (Arbelaez & Cohen, 2008),
are commonly used to extract features from local
patches (Fei-Fei & Perona, 2005; Li & Fei-Fei, 2007;
Bart et al., 2008; Sivic et al., 2008; Wang et al., 2009),
segments (Li et al., 2009; Yang et al., 2010), or super-
pixels (Du et al., 2009). Different images are related to
one another by their corresponding distributions over
topics.

There are several limitations with most of this previ-
ous work. First, vector quantization (VQ) is typically
applied to the image features (Fei-Fei & Perona, 2005),
and the codes play the role of “words” in traditional
topic modeling. There is a loss of information in this
quantization step, and one must tune the number of
codes (the proper codebook may change with different
types of images, and as new imagery are observed).
Secondly, feature design is typically performed sepa-
rately from the subsequent image topic modeling. Fi-
nally, most of the image-based topic modeling is per-
formed at a single scale or level (Wang et al., 2009;
Li et al., 2009; Du et al., 2009), thereby not account-
ing for the hierarchical characteristics of most natural
imagery.

In recent work, there have been papers that have ad-
dressed particular aspects of the above limitations,
but none that has addressed all. For example, in
Li et al. (2011) the authors employed a dictionary-
learning framework, eliminating the need to perform
VQ. This dictionary learning could be applied to tra-
ditional features pre-computed from the image, or it
could be applied directly to patches of raw imagery,
thereby ameliorating the requirement of separating the
feature-design and topic-modeling steps. However, Li
et al. (2011) did not consider the hierarchical charac-
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ter of imagery. Recently Li et al. (2010) employed a
nested Chinese restaurant process (nCRP) to infer a
hierarchical tree representation for a corpus of images
and (if available) accompanying text; however, in that
work the VQ step was still employed, and therefore
a precomputation of features was as well. Further,
in Li et al. (2010), while the tree width was inferred,
the depth was set. Finally, the nCRP construction in
Li et al. (2010) has the disadvantage of only updat-
ing parent-child-transition parameters from one node
of the tree at a time, in a sampler, yielding poor mix-
ing relative to a stick-breaking Dirichlet process (DP)
implementation (Ishwaran & James, 2001). Related
but distinct dictionary learning with the nCRP was
considered in Zhang et al. (2011).

Motivated by these recent contributions, and the lim-
itations of most existing topic models of imagery and
text, this paper makes the following contributions:

• A nested DP (nDP) model is developed to learn a
hierarchical tree structure for a corpus of imagery
and text, with a stick-breaking construction em-
ployed; we infer both the tree depth and width,
using a retrospective stick-breaking construction
(Papaspiliopoulos & Roberts, 2008).

• A beta-Bernoulli dictionary learning framework
(Zhou et al., 2011b) is adapted to such a hier-
archical model, removing the VQ step, and al-
lowing one to perform topic modeling directly on
image patches, thereby integrating feature design
and topic modeling. However, if desired, the dic-
tionary learning may also be applied to features
pre-computed from the image, using any existing
method for feature design, and again removing the
limitations of VQ.

2 Modeling Image Patches

We wish to build a hierarchical model to arrange M
images and their associated annotations (when avail-
able); the vocabulary of such annotations is assumed
to be of dimension Nv. The vector xmi represents the
pixels or features associated with the ith patch in im-
age m, and ym = (ym1, . . . , ymNv )T represents a vec-
tor of word counts associated with that image, when
available (ymn represents the number of times word
n ∈ {1, . . . , Nv} is present in the annotation).

The mth image is divided into Nm patches (or super-
pixels (Li et al., 2010)), and the data for the ith patch
is denoted xmi ∈ RP with i = 1, . . . , Nm. The vector
xmi may represent raw pixel values, or a feature vector
extracted from the pixels (using any available method
of image feature extraction, e.g., SIFT (Lowe, 1999)).

Each xmi is represented as a sparse linear combination
of learned dictionary atoms. Further, each patch is
assumed associated with a “topic”; the probability of
which dictionary atoms are employed for a given patch
is dictated by the topic it is associated with.

Specifically, each patch is represented as xmi =
D(zmi � smi) + emi, where � represents the element-
wise/Hadamard product, D = [d1, · · · ,dK ] ∈ RP×K ,
K is the truncation level on the possible number of
dictionary atoms, zmi = [zmi1, · · · , zmiK ]T , smi =
[smi1, · · · , smiK ]T , zmik ∈ {0, 1} indicates whether
the kth atom is active within patch i in image m,
smik ∈ R+, and emi is the residual. Note that zmi
represents the specific sparseness pattern of dictionary
usage for xmi. The hierarchical form of the model is

xmi ∼ N (D(zmi � smi), γ−1e IP )

dk ∼ N (0,
1

P
IP )

smi ∼ N+(0, γ−1s IK)

zmi ∼
K∏

k=1

Bernoulli(πhmik) (1)

where gamma priors are placed on both γe and γs.
Positive weights smi (truncated normal, N+(·)) are
imposed, which we have found to yield improved re-
sults.

The indicator variable hmi defines the topic associated
with xmi. The K-dimensional vector πh defines the
probability that each of the K columns of D is em-
ployed to represent topic h, where the kth component
of πh is πhk. These probability vectors are drawn

πh ∼ G0, G0 =
K∏

k=1

Beta(a0/K, b0(K − 1)/K) (2)

where πhk represents the probability of using dk for ob-
ject type h, and the introduction of G0 is for discus-
sions below. This representation for πh correspond-
s to an approximation to the beta-Bernoulli process
(Thibaux & Jordan, 2007; Paisley & Carin, 2009; Zhou
et al., 2011a,b), which also yields an approximation to
the Indian buffet process (IBP) (Griffiths & Ghahra-
mani, 2005; Teh et al., 2007).

3 Tree Structure via nDP

The nested Dirichlet process (nDP) tree construction
developed below is an alternative means of constitut-
ing the same type of tree manifested by the nested
Chinese restaurant process (Blei et al., 2003a; Li et al.,
2010). We emphasize the nDP construction because of
the stick-breaking implementation we employ, which
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allows block updates, and therefore often manifest-
s better mixing than the nCRP-type implementation
(Ishwaran & James, 2001). Related work was consid-
ered in Wang & Blei (2009), but VB inference was em-
ployed and the tree size was therefore not inferred (a
fixed truncation was imposed). The retrospective sam-
pler developed below allows inference of both the tree
depth and width (Papaspiliopoulos & Roberts, 2008).

Consider a draw from a DP, G ∼ DP(γ,G0), where
γ > 0 is an “innovation” parameter, with G0 de-
fined in (2). Then the DP draw (Ishwaran & James,
2001) may be expressed as G =

∑∞
n=1 λnδφn , where

λn = νn
∏
l<n(1 − νl), νl ∼ Beta(1, γ), and φn ∼ G0;

each φn corresponds to a topic, as in (2). Letting
λ = (λ1, λ2, . . . )

T , we denote the draw of λ as λ ∼
Stick(γ).

3.1 Tree width

Using notation from Adams et al. (2010), let ε repre-
sent a path through the tree, characterized by a se-
quence of parent-child nodes, and let |ε| be the length
of this path (total number of layers traversed). In ad-
dition to representing a path through the tree, ε identi-
fies a node at layer |ε|, i.e., the node at the end of path
ε. For node ε, let εεi, i = 1, 2, . . . , denote the children
of ε, at level |ε|+ 1. To constitute a distribution over
the children nodes, we draw Gε ∼ DP(γ,G0), yielding

Gε =
∑∞
i=1 λεεiδφεεi

, where λεεi = νεεi
∏i−1
j=1(1−νεεj ),

νεεj ∼ Beta(1, γ), and φεεi ∼ G0, with G0 defined
in (2); λε = (λεε1 , λεε2 , . . . )

T is denoted as drawn
λε ∼ Stick(γ). The probability measure Gε consti-
tutes in principle an infinite set of children nodes, with
λεεi defining the probability of transiting from node ε
to child εi; φεεi constitutes the topic-dependent prob-
ability of dictionary usage at that child node.

The process continues in principle to an infinite num-
ber of levels, with each child node spawning an infinite
set of subsequent children nodes, manifesting a tree of
infinite depth and width. However, note that a draw
λε will typically only have a relatively small number of
components with appreciable amplitude. This means
that while Gε constitutes in principle an infinite num-
ber of children nodes, only a small fraction will be
visited with appreciable probability.

Let cm = (c1m, c
2
m, . . . )

T represent the path associ-
ated with image m, where clm corresponds to the
node selected at level l. For conciseness we write
cm ∼ nCRP(γ) (Blei et al., 2003a), emphasizing that
the underlying transition probabilities λε, controlling
the probabilistic path through the tree, are a function
of parameter γ.

3.2 Tree depth

We also draw an associated probability vector θm ∼
Stick(α). Patch xmi is associated with level lmi in path
cm, where lmi ∼

∑∞
l=1 θmlδl. Since θm typically only

has a small number of components with appreciable
amplitude, the tree depth is also constrained.

3.3 Modeling words

In Section 2 we developed topic (node) dependent
probabilities of atom usage; we now extend this to
words (annotations), when available. A distribution
over words may be associated with each topic (tree n-
ode) h. For topic h we may draw (Blei et al., 2003b)

ψh ∼ Dir(
η

Nv
, . . . ,

η

Nv
) (3)

where ψh is the distribution over words for topic h.

Recall that each image/annotation is associated with a
path cm through a tree, and θm controls the probabil-
ity of employing each node (topic) on that path. Let
θmh represent the probability that node h is utilized,
with h ∈ cm. Then the “collapsed” probability of word
usage on this path, marginalizing out the probability
of node selection, may be expressed as

ψcm =
∑

h∈cm
θmhψh (4)

A probability over words ψcm is therefore associat-
ed with each path cm. One may argue that the θm
used to control node usage for image patches should
be different from that used to represent words; this
is irrelevant in the final model, as a path-dependent
ψcm is drawn directly from a Dirichlet distribution
(discussed below), and therefore (4) is only illustra-
tive/motivating.

3.4 Retrospective sampling

The above discussion indicated that while the width
and depth of the tree is infinite in principle, a fi-
nite tree is manifested given finite data, which mo-
tivates adaptive inference of the tree size. In a ret-
rospective implementation of a stick-breaking process,
we constitute a truncated stick-breaking process, de-
noted w ∼ StickL(γ), with wn = Vn

∏
l<n(1 − Vl),

Vn ∼ Beta(1, γ) for n < L, and VL = 1; here there is an
L-stick truncation, yielding w = (w1, . . . , wL)T , with
wL representing the probability of selecting a stick oth-
er than sticks 1 through L− 1.

In a retrospective sampler (Papaspiliopoulos &
Roberts, 2008), each of the aforementioned sticks is
truncated as above. When drawing children nodes and
levels, if the last stick (the Lth above) is selected, this
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implies that a new child/level must be added, since the
first L − 1 sticks are not enough to capture how the
data are clustered. If stick L is selected, then a new
node/level is constituted (a new child is added), by
drawing a new VL ∼ Beta(1, γ), and then VL+1 = 1,
thereby now constituting an (L+ 1)-dimensional stick
representation; the associated node-dependent statis-
tics are constituted as discussed in Section 2 (drawing
new probabilities over dictionary elements). The mod-
el therefore infers “in retrospect” that the L-level trun-
cation was too small, and expands adaptively. The
model also has the ability to shrink the number of
sticks used at any component of the model, if less than
the associated truncated level is needed to define the
number of children/levels are actually utilized.

3.5 Generative Process

The generative process for the model is summarized as
follows:

1. Draw dictionary D ∼∏K
k=1N (0, 1

P IP )

2. Draw γ, α, γe and γs from respective gamma dis-
tributions

3. For each image m ∈ {1, 2, ...,M}

(a) Draw cm ∼ nCRP(γ)

(b) For each newly utilized node ε in the tree,
draw dictionary usage probabilities πε ∼∏K
k=1 Beta(a0/K, b0(K − 1)/K)

(c) Draw θm ∼ Stick(α)

(d) For the ith patch or feature vector

i. Draw level index lmi ∼
∞∑
l=1

θmlδl, which along

with cmi defines node hmi

ii. Draw zmi ∼
∏K
k=1 Bernoulli(πhmik), and

smi ∼ N+(0, γ−1s IK)

iii. Draw xmi ∼ N (D(zmi � smi), γ−1e IP )

4. For each unique tree path p, draw ψp ∼
Dir( β

NV
, . . . , β

NV
)

5. If annotations are available for image m, ym ∼
Mult(|ym|,ψcm), where |ym| is the total number
of words in ym

In Step 3(b), new nodes (topics) are added “in retro-
spect”, as discussed in the previous subsection (nodes
may also be pruned with this sampler). After com-
pleting Step 3, the tree size is constituted, which al-
lows Step 4, imposition of a distribution over words
for each path.

Algorithm 1 Retrospective Sampling for lmi
Input: Lm, z, l, a0, b0
Output: lmi, Lm
for m = 1 to M and i = 1 to Nm do

Sample µm|ε|, πε from the conditional posterior
for |ε| ≤ Lm, and from the prior for |ε| > Lm;

θm|ε| = µm|ε|
∏|ε|−1
s=1 (1− µms)

Sample Umi ∼ Uniform[0, 1]

if
∑j−1
s=1 q(lmi = s) < Umi ≤

∑j
s=1 q(lmi = s)

then
Set lmi = j with probability κmi(j), otherwise,
leave lmi unchanged

else
Lm = Lm + 1, set lmi = Lm with probability
κmi(Lm), otherwise, leave lmi unchanged

end if
end for

4 Model Inference

A contribution of this paper concerns use of retrospec-
tive sampling to infer the tree width and depth. To
save space for an extensive set of experimental results,
we here only discuss updates associated with inferring
the tree depth. A complete set of update equations are
provided in Supplementary Material, where one may
also find a summary of all notation.

To sample lmi from the conditional posterior, we first
need to specify the likelihood that {ε ∈ cm}:

p(zmi|πε, cm) =

K∏

k=1

πzmikεk (1− πεk)1−zmik

and the prior distribution, which is specified by a stick-
breaking draw θm for each image m. Although lmi can
be sampled from a closed form posterior for a fixed
Lm, here to learn Lm adaptively we instead use an
Metropolis-Hastings step, where the proposal distri-
bution is defined as

q(lmi = j) ∝
{
θmjp(zmi|πj , cm), j ≤ Lm
θmjMmi(Lm), j > Lm

where Mmi(Lm) = max
1≤|ε|≤Lm

{p(zmi|πε, cm)}. Note

that the sampled value of lmi is allowed to be larger
than the truncation level Lm, consequently Lm and the
depth of the tree is learned adaptively. The acceptance
probability κmi(j) for lmi = j is





1, j ≤ Lm & L′m = Lm

min{1, c̃mi(Lm)Mmi(L
′
m)

c̃mi(L′
m)p(zmi|πhmi ,cm)}, j ≤ Lm & L′m < Lm

min{1, c̃mi(Lm)p(zmi|πj ,cm)
c̃mi(L′

m)Mmi(Lm) }, j > Lm

where the normalizing constant is defined as
c̃mi(Lm) =

∑Lm
|ε|=1 θm|ε|p(zmi|πε, cm)+Mmi(Lm)(1−
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∑Lm
|ε|=1 θm|ε|). The retrospective sampling procedure

for lmi is summarized in Algorithm 1.

5 Experiments

We test the proposed model with five datasets: (i) a
simulated, illustrative example that examines the a-
bility to learn the tree structure; (ii) a subset of the
MNIST digits data, (iii) face data (Tenenbaum et al.,
2000); (iv) the Microsoft (MSRC) image database; and
(v) the LabelMe data. In the case of (iv) and (v), the
images are supplemented by annotations. For (ii)-(v),
we process patches from each image. For the MNIST
and face data, we randomly select 50 partially overlap-
ping patches in each image, with 15× 15 and 40× 40
patch sizes, respectively (placement of patches was not
tuned, selected uniformly at random, with partial over-
lap). For the MSRC and LabelMe data, we collect all
32×32×3 non-overlapping patches from the color im-
ages (we also consider overlapping patches in this case,
but it was found unnecessary). Recall that xmi ∈ RP ,
with P the number of pixels in each patch (P = 225
for MNIST, P = 1600 for the face data, and P = 3072
for MSRC and LabelMe data).

We have examined different methods for initializing
the dictionary, including random draws from the pri-
or and various fixed redundant bases, such as the
over-complete DCT. Alternatively, we may use exist-
ing dictionary-learning methods (independent of the
topic model); for this purpose, we use the covariate-
dependent hierarchical beta process (with the covari-
ates linked to the relative locations between patches)
to learn an initial set of dictionary atoms (Zhou et al.,
2011b). Additionally, in examples (ii)-(v), we initialize
the tree with 4 levels. In this initialization, four nodes
are present beneath the root node, and each subse-
quent node has two children, down four levels; nested
K-means clustering is used to initialize the data among
the clusters (nodes) at the respective levels.

In all experiments, the hyperparameters were set a0 =
b0 = 1, c0 = d0 = e0 = f0 = 10−6, α = 1 and γ = 1,
and the truncation level (upper bound) on the number
of dictionary elements was K = 400; many related
settings of these parameters yield similar results, and
no tuning was performed.

5.1 Inferring the tree: simulated data

We first illustrate that the proposed model is able to
infer both the depth and width of the tree, using syn-
thesized data for which the tree that generates the
data is known; the data are like (but distinct from)
that considered in Figure 2 of Blei et al. (2003a). In
this simple example we wish to isolate the component

Figure 1: Example with synthesized images. Left: Exam-
ple images. Middle: The ground truth for the underlying
model. Right: The inferred model from the maximum-
likelihood collection sample.

of the model that infers the tree, so there is no dic-
tionary learning. The data consists of a 25-element
alphabet, arranged as 5×5 blocks on a grid; each top-
ic is characterized by the probability of using each of
the 25 elements (there is a probability πhk for using
element k ∈ {1, . . . , 25}, for each topic/node h). For
each topic h the “truth” (middle in Figure 1) has prob-
abilities 0 (blue), 0.1 (cyan blue), and 0.5 (red). The
generative process for image m corresponds to first
drawing a path cm through the tree, and then 1000
times a node on this patch is drawn from θm, and
finally each of the 25 alphabet members are drawn
Bernoulli, with the associated topic-dependent proba-
bilities (this is the proposed model, without dictionary
learning). The final data (“image”) consists of a coun-
t of the number of times each of the 25 elements was
used, across the 1000 draws (example data at left in
Figure 1). A total of 100 5×5 “images” were drawn in
this manner to constitute the data. The right part of
Figure 1 corresponds to the recovered tree, based upon
the maximum-likelihood collection sample. Of course,
the order of the branches and children is arbitrary; the
inferred tree in Figure 1 (right) was arranged a pos-
teriori to align with the “truth” (middle), to clarify
presentation.

In this example the tree was initialized with 3 paths,
each with three 3 layers (note in truth there are four
paths, with variable number of layers). We also ini-
tialized the tree with 4 and 5 paths, under the same
experimental setting, and similar recovery is achieved.
If we initialized with less than 3 paths or more than 5,
the recovered tree was still reasonable (close), but not
as good. However, the inference of the topic-dependent
usage probabilities πh was very robust to numerous d-
ifferent settings. These results are based on 2000 sam-
ples, 1000 discarded as burn-in.

5.2 Model fit

For the MNIST handwritten digit database, we ran-
domly choose 100 images per digit (digits 0 through
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9), and therefore M = 1000 images are considered in
total; the images are of size 28× 28. The face dataset
(Tenenbaum et al., 2000) contains M = 698 faces, each
of size 64 × 64. Concerning the inferred trees, for the
MNIST data, the maximum-likelihood collection sam-
ple had 168 paths and each path was typically 5 layers
deep; for the face data 80 paths were inferred, and each
was typically 5 layers. To quantitatively compare the
ability of the hierarchical dictionary construction to fit
the data, we consider reconstruction error for the da-
ta, comparing with the single-layer (“flat”) model in
Li et al. (2011); results are summarized in Table 1, cor-
responding to ‖xmi−D(zmi�smi)‖22, averaged across
all images m and patches i. In addition to results for
MNIST and faces data, we show results for the MSRC
and LabelMe data sets (analyzed in this case without
annotations).

We also performed experiments to investigate how ini-
tialization affects the performance. In Table 1, instead
of initializing the dictionary via the hierarchical beta
process (hBP), they are initialized at random. While
there is a slight degradation in performance with ran-
dom initialization, it is not marked, and the results are
still better than those produced by Li et al. (2011).
Similar improvements in hBP initialization were ob-
served for the classification task discussed below; hBP
helps, but random initialization is still good.

Table 1: Reconstruction error comparison (mean
square error multiplied by 103, and ± one standard
deviation) on MNIST, Face, MSRC and LabelMe
datasets. ‘nDP+hBP’ and ‘nDP+random’ correspond
to the proposed model with the dictionary initialized
by hBP and randomly, respectively, while the “flat”
(single layer) model corresponds to Li et al. (2011).

MNIST Face MSRC LabelMe

flat model 11.10 ± 0.32 8.18 ± 0.17 10.27 ± 0.54 12.16 ± 0.30

nDP+hBP 10.42 ± 0.21 7.64 ± 0.12 8.64 ± 0.36 10.21 ± 0.27

nDP+random 10.85 ± 0.35 7.91 ± 0.20 9.25 ± 0.41 11.53 ± 0.50

The proposed model fits the data better than the “flat”
model in Li et al. (2011); the gains are more evident
when considering real and sophisticated imagery (the
MSRC and LabelMe data). It is important to note
that the proposed model is effectively no more compli-
cated than the model in Li et al. (2011). Specifically,
in Li et al. (2011) and in the proposed model, each
image is put in a cluster, where in Li et al. (2011)
a single-layer Dirichlet process was used to perform
clustering, where here paths through the tree define
clusters. In Li et al. (2011) and here each cluster/path
is characterized by a distribution over topics, and in
both models each topic is characterized by probabili-
ties of atom usage (and each model has a truncation
level on the dictionary of the same size). The differ-

ence is that in Li et al. (2011) the probabilities of topic
usage for each cluster are drawn independently, where
here the tree structure, and shared nodes between dif-
ferent paths, manifest statistical dependencies between
the probability of topic usage in different paths with
shared nodes.

In these examples a total of 250 Gibbs samples were
run, with 150 discarded as burn-in. The results of the
model correspond to averaging across the collection
samples. In all examples useful results were found with
a relatively small number of Gibbs samples.

5.3 Organizing MSRC data

We use the same settings of images and annotation-
s from the MSRC data1 as considered in Du et al.
(2009), to allow a direct comparison. We choose 320
images from 10 categories of images with manual an-
notations available. The categories are “tree”, “build-
ing”, “cow”, “face”, “car”, ”sheep”, “flower”, “sign”,
“book” and “chair”. The numbers of images are 45
and 35 in the “cow” and “sheep” classes, respectively,
and 30 in all the other classes. Each image has size
213 × 320 or 320 × 213. For annotations, we remove
all words that occur less than 8 times (approximately
1% of words), and obtain 15 unique annotation-words,
thus Nv = 15.

The full tree structure inferred is shown in Figure 2,
with its maximum depth inferred to be 6 (maximum-
likelihood collection sample depicted, from 100 collec-
tion samples). On the second level, it is clearly ob-
served that images are clustered in several main sub-
genres, e.g., one with images containing grass, one
with flowers, and another with urban construction, in-
cluding cars and buildings, etc. For each path, we
depict up to the 8 most-probable images assigned to it
(fewer when less than 8 were assigned).

To further demonstrate the form of the model, two
pairs of example images are shown in Figure 3. The
pairs of images were assigned to two distinct paths,
that shared nodes near the root (meaning the model
infers shared types of patches between the images, as-
signed to these shared nodes). For each node, three ex-
ample patches that are assigned to it are selected, from
each of the two images. For the pair of example images
from the “sheep” and “cow” classes, patches of grass
and legs are shared on the top nodes, while distinct
patches manifesting color and texture are separately
assigned to nodes at bottom levels. The two images
from the “building” class show the diversity of this cat-
egory. It is anticipated that the “building” category
will be diverse, with common patches shared at nodes
near the root, and specialized patches near the leaves

1http://research.microsoft.com/en-us/projects/
objectclassrecognition/
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Figure 2: The full tree structure inferred from MSRC
data. For each path, up to 8 images assigned to it are
shown.

Figure 3: Two pairs of example images, and the paths
they were assigned to. Between the images is shown the
splitting paths. At top are the example images, and for
each image we depict three example patches assigned to a
respective node.

(for different types of buildings/structures). These
typical examples illustrate that ubiquitous patches are
shared at nodes near the root, with nodes toward the
leaves describing details associated with specialized
classes of images. It is this hierarchical structure that
is missed by the model in Li et al. (2011), and that also
apparently manifests the better model fit, as summa-
rized in Table 1.

Another product of the model is a distribution over
words for each path in the tree (not shown, for brevi-
ty). We illustrate this component of the model for the
LabelMe data, considered next.

5.4 Organizing LabelMe data

The LabelMe data2 contain 8 image classes: “coast”,
“forest”, “highway”, “inside city”, “mountain”, “open
country”, “street” and “tall building”. We use the
same settings of images and annotations as Wang et al.
(2009): we randomly select 100 images for each class,
thus the total number of images is 800. Each image
is resized to be 256× 256 pixels. For the annotations,
we remove terms that occur less than 10 times, and
obtain a vocabulary of 99 unique words, thus Nv =
99. There are 5 terms per annotation in the LabelMe
data on average. Figure 6 visualizes 7 sub-trees of the
inferred tree structure; there are 7 nodes inferred on
the second level, and each node represents one sub-
tree. Class “street” and class “insidecity” share the
same root node, labeled 5 in Figure 6.

Based on the learned posterior word distribution ψp
for the pth image class, we can further infer which
words are most probable for each path. Figure 4 shows
the ψp for 8 example paths (maximum-likelihood sam-
ple, from 100 collection samples), with the five largest-
probability words displayed; the capital letters associ-
ated with each histogram in Figure 4 have associated
paths through the tree as indicated in Figure 6. A
good connection is manifested between the words and
paths (examine the images and words associated with

2http://www.cs.princeton.edu/~chongw/
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Figure 4: Inferred distributions over words for LabelMe
data, as a function of inferred image category. The letters
correspond to paths in Figure 6.

each path).

We evaluate the proposed model on the image-
classification task, similar to as considered in Li et al.
(2010). A set of 800 randomly selected images are held
out as testing images from the 8 classes, each class with
100 testing images. Each image is represented by the
estimated distribution over all the nodes in the entire
hierarchy. Only nodes that are associated to the image
have nonzero values in the distribution. We calculate
the χ2-distances between the node distribution of the
testing images and those of the training images. The
KNN algorithm (K is set to be 50) is then applied to
obtain the class label.

Figure 5(a) shows the confusion matrix of classifica-
tion, with an average classification accuracy of 78.3%,
compared with 76% in Li et al. (2011). In all of the
above examples the dictionary learning was applied
directly to the observed pixel values within a given
patch, with no a priori feature extraction. Alterna-
tively, the patch-dependent data xmi may correspond
to features extracted using any image feature extrac-
tion algorithm. To illustrate this, we now let xmi cor-
respond to SIFT features (Lowe, 1999) on the same
patches; in this experiment the dictionary learning re-
places the VQ step in models like Wang et al. (2009).
In Figure 5(b) we show the confusion matrix of the
model based on SIFT features, with an average accu-
racy of 76.9%, slightly better than the results reported
in Wang et al. (2009) (but here there is no need to tune
the number of VQ codes). This also demonstrates that
performing dictionary learning directly on the patch-
es, rather than via a state-of-the-art feature extraction
method, yields highly competitive results.

We now compare the proposed hierarchical model with
the hierarchical model in Li et al. (2010), in which of-
fline SIFT feature extraction and VQ are employed.
Based on related work in Wang et al. (2009), we used
a codebook of size 240, and achieved an average clas-
sification accuracy of 77.4%, compared with 79.6% re-
ported above for our algorithm. Note, however, that
we found the model in Li et al. (2010) to be very sen-
sitive to the codebook size, with serious degradation
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Figure 5: For the 800 testing images from LabelMe data,
(a): Confusion Matrix on original patches with the average
accuracy of 78.3%. (b): Confusion Matrix on SIFT features
with the average accuracy of 76.9%.

in performance manifested with 150 or 400 codes, for
example. To further test the proposed model, we con-
sidered the same classification experiment on MSRC
data, which is characterized by 10 classes. Five im-
ages per class were randomly chosen as testing data,
and the remaining images are treated as training data
to learn a hierarchical structure. An average accura-
cy of 64% is obtained with the proposed model, com-
pared with 60% using that in Li et al. (2010), where
the codebook size is set to be 200. These experiments
indicate that the proposed model typically does better
than that in Li et al. (2010) for the classification task,
even when we optimize the latter with respect to the
number of codes.

The experiments above have been performed in 64-
bit Matlab on a machine with 2.27 GHz CPU and
4 Gbyte RAM. One MCMC sample of the proposed
model takes approximately 4, 2, 8 and 10 minutes re-
spectively for the MNIST, Face, MSRC and LabelMe
experiments (in which we simultaneously analyzed re-
spectively 1000, 698, 320, and 800 total images). Note
that while these model learning times are relatively ex-
pensive, model testing (after the tree and dictionary
are learned) is very fast, this employed for the afore-
mentioned classification task. To scale the model up
to larger numbers of training images, we may perform
variational Bayesian inference rather than sampling,
and employ online-learning methods (Hoffman et al.,
2010; Carvalho et al., 2010).

6 Conclusions
The nested Dirichlet process has been integrated with
dictionary learning to constitute a new hierarchical
topic model for imagery. The dictionary learning may
be employed on the original image pixels, or on fea-
tures from any image feature extractor. If words are
available, they may be utilized as well, with word-
dependent usage probabilities inferred for each path
through the tree. The model infers both the tree depth
and width. Encouraging qualitative and quantitative
results have been demonstrated for analysis of many of
the traditional datasets in this field, with comparisons
provided to other related published methods.
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Abstract

We introduce a method to learn a mixture
of submodular “shells” in a large-margin set-
ting. A submodular shell is an abstract sub-
modular function that can be instantiated
with a ground set and a set of parameters to
produce a submodular function. A mixture
of such shells can then also be so instanti-
ated to produce a more complex submodular
function. What our algorithm learns are the
mixture weights over such shells. We pro-
vide a risk bound guarantee when learning in
a large-margin structured-prediction setting
using a projected subgradient method when
only approximate submodular optimization is
possible (such as with submodular function
maximization). We apply this method to the
problem of multi-document summarization
and produce the best results reported so far
on the widely used NIST DUC-05 through
DUC-07 document summarization corpora.

1 Introduction

Submodular functions [10] are those that satisfy the
property of diminishing returns: given a finite ground
set V , for any A ⊆ B ⊆ V \v, a submodular function f
must satisfy f(A∪{v})−f(A) ≥ f(B∪{v})−f(B), i.e.,
the incremental “value” of v decreases as the context in
which v is considered grows from A to B. Submodular
functions share a number of properties in common with
convex and concave functions [29], including their wide
applicability, their generality, their multiple options
for their representation, and their closure under a
number of common operators (including mixtures,
truncation, complementation, and certain convolu-
tions). For example, the weighted sum of a collection
of submodular functions {fi}i, f =

∑
i wifi where wi

are nonnegative weights, is also submodular. While
they have a long history in operations research, game
theory, econometrics, and electrical engineering, they
are still beginning to be studied in machine learning for
a variety of tasks including sensor placement [19, 20],
structure learning of graphical models [34], document
summarization [27, 28] and social networks [18].

The problem of learning submodular functions has
also recently been addressed. For example, in [15], it is
asked “can one make only polynomial number of queries
to an unknown submodular function f and constructs
a f̂ such that f̂(S) ≤ f(S) ≤ g(n)f̂(S) where n is the
ground set size and for what function g : N→ R is the
possible?”. Among many results, they show that even
with adaptive queries and monotone functions, one can-
not learn better than an Ω(

√
n/ log n) approximation

of a given fixed submodular function. Similarly, [1]
addressed the submodular function learning problem
from a learning theory perspective, given a distribution
on subsets. They provide strong negative results in-
cluding that one can not approximate in this setting to
within a constant factor. In general, therefore, learning
submodular functions is hard.

While learning over all possible submodular functions
may be hard, this does not preclude learning submod-
ular functions with known forms with unknown pa-
rameters. For example, given a finite set of M fixed
submodular components {fi}Mi=1 where fi : 2V → R is
submodular over V , then learning a conical mixture∑M
i=1 wifi, where (w1, w2, . . . , wM ) = www ∈ RM+ , has

not in the above been ruled out to have approximate
guarantees. Such mixtures might span a very large set
of submodular functions, depending on the diversity of
the component set. We call such a problem “learning
submodular mixtures.”

In this paper we extend this one step further, to an ap-
proach we call learning “submodular shells.” An instan-
tiated submodular shell is a function fα,(V,β) : 2V → R
indexed by a pair of parameter vectors α, β and a
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ground set V . The parameters β are associated with a
particular ground set V but the parameters α of the
shell apply to any ground-set vector pair (V ,β). A
shell has the form fᾱ,(·,·), which does not have (V ,β)
instantiated. We might learn, for example, that a par-
ticular value ᾱ produces a good shell fᾱ,(·,·) for any
instantiation of that shell with a particular (V, β). In
this sense, a submodular shell might be seen as a form
of “structured submodularity.” Moreover, we might
learn www in a mixture of such shells

∑
i wifαi,(·,·) based

on data consisting only of training tuples of the form
{((V (t), β(t)), S(t))}t where S(t) ⊆ V (t) and which can
be used in an objective that involves the instantiated
mixture of shells. Note that here, training tuples may
consist of a sequence of different ground sets, and the
goal is from these training tuples, and given a finite
and fixed set of shells parameterized by {αi}, identify
the conical weights www that optimize an objective. Of
course, if all training ground sets are identical, then
learning submodular shell mixtures reduces to learn-
ing submodular mixtures. In practice, however, the
training ground sets are not usually identical. E.g., in
extractive document summarization, the training data
could be a set of documents and the corresponding
human summaries, where the ground sets, those sen-
tences that constitute the documents, are not identical
between training samples. In particular, for a docu-
ment t, the ground set V (t) = {1, · · · , nt} where nt is
the number of sentences in document t, and β(t) could
be the term-frequency vectors for the sentences (see
Section 5.2 for more instances of this).

We introduce a method whereby submodular shell
mixtures may be learnt in a max-margin structured-
prediction setting, and provide a risk-bound guarantee
under approximate submodular maximization (Theo-
rem 1). We apply our method to the extractive doc-
ument summarization problem and, as mentioned in
the abstract, this yields extremely good results.

2 Structured Prediction

A main goal of learning is to identify a function h :
X → Y, that maps from an input domain X to an
output domain Y. Structured prediction problems
[51, 50, 14] are those where these domains may consist
of combinatorial structures. Often, given an input
xxx ∈ X , only a subset of Y, say Yxxx, is valid. For
example, if xxx is a sentence, and Y is the set of all parse
trees, than only a subset of possible parse trees Yxxx
might be valid. This offers little solace, however, as Yxxx
is typically still exponentially large. Usually, one forms
a score function s : X × Y that measures how good an
output yyy is for a given input xxx. The decision problem
is, given an xxx, find one of the outputs with the highest
score, i.e., yyy∗ ∈ argmaxyyy∈Yxxx s(xxx,yyy).

One of the primary challenges of structured prediction
is that one needs to handle Yxxx, whose cardinality is fi-
nite but exponentially large. A common way to address
this issue is to make assumptions on both Y and s. For
instance, if s decomposes over the parts of Y and more-
over only depends on “local” parts, one could employ
dynamic programming or integer programming algo-
rithm to find the optimal solution. Another approach is
to explore combinatorial structures upon which efficient
algorithms are available. Examples of this sort include
the Hungarian method [21] for maximum weighted bi-
partite matching and the Chu-Liu-Edmonds algorithm
[6, 9] for optimal branchings. Alternatively, as we do in
the sequel, one could resort to approximate solutions
with approximation guarantees.

3 Submodular Shell Scores

In this paper, we propose to explore the structured pre-
diction problem using submodular shell score functions.
That is, given xxx, s(xxx, ·) : Yxxx → R is a submodular
function where Yxxx is considered to be the finite ground
set associated with xxx — there is a finite ground set Vxxx
associated with xxx where Yxxx ⊆ 2Vxxx . There are at least
two benefits of using such submodular score functions.
First, submodular functions are natural and expressive
with the capability of modeling decisions beyond local
or linear interactions among parts. That is, submodular
functions may allow for global direct interactions over
a structured object unlike score functions that must
decompose in some way. Second, this expressive power
does require prohibitive computation as would an arbi-
trary score function. The reason is that the submodular
maximization problem, even under many constrained
settings, can be solved efficiently and near-optimally
with rigorous performance guarantees [36, 13, 25, 2, 11].

The hypothesis function we consider takes the following
linear discriminant form:

h(xxx;www) = argmax
yyy∈Yxxx

s(xxx,yyy) = argmax
Y ∈Yxxx

www>fffxxx(Y )

= argmax
Y ∈Yxxx

∑

i

wifαi,(Vxxx,βxxx)(Y )

where www ∈ R+ is a non-negative weight vector, and
fα,(V,β) : 2V → R is submodular over subsets of V for
every valid value of α and (V, β). Since the weights
are non-negative, the score function is also submodular.
We call fα,(V,β) a submodular shell, abstracting a set
of submodular functions characterized by some α, β
and a ground set V . The score function is called a
submodular shell mixture, and each fαi,(V,β) is a shell
component of the mixture. Note that the parameters β
are associated with a particular ground set V but the
parameters α of the shell apply to any pair of ground
set V and β value.
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While we discuss our learning process in Section 4,
we introduce the learning problem here to improve
clarity. We are given a set of training instances S =
{(xxx(t), yyy(t))}Tt=1 drawn independently from a distribu-
tion D over pairs (xxx,yyy) ∈ X×Y restricted in such a way
that yyy ∈ Yxxx for any pair (xxx,yyy). xxx(t) corresponds to a
finite ground set Vxxx(t) and a set of parameters βxxx(t) and
so we say that xxx(t) = (Vxxx(t) , βxxx(t)). We also have a finite
collection of M submodular shells {fαi,(·,·)}Mi=1 each of
which is instantiated into a submodular function for any
xxx ∈ X . That is, fαi,xxx(t) : 2Vxxx(t) → R is a submodular
function. We are also given a loss function and `xxx,yyy(ŷyy)
that measures the loss of predicting ŷyy ∈ Yxxx when the
true label is yyy ∈ Yxxx. The empirical risk minimization
problem then is to find a conical mixture www ∈ RM+ such
that the risk E(xxx,yyy)∼D[`xxx,yyy(h(xxx;www))] is minimized. It is
important to realize that what is learnt is the mixture
coefficients www over a set of shells that may be instan-
tiated into a weighted sum of submodular functions.

Before we discuss learning in detail, we consider the
expressive power of mixtures of such submodular shells.

3.1 Submodular Shell Mixtures

A fairly rich subclass of submodular functions can be
instantiated from submodular shell mixtures with com-
ponents being simpler submodular shells. Consider,
for example, truncation functions, mixtures of which
can represent many submodular functions of interest.
Given a modular function1 c : 2V → R, define a trun-
cation function tα,(V,c) : 2V → R as

tα,(V,c)(A) = min

{
c(A), αmax

B⊆V
c(B)

}
,

which is submodular, where α ∈ R is the truncation
threshold. A modular function can also be written
as a truncation function with α = ∞. We note that
(V, β) above takes the form (V, c) here, and we might
have a collection of such functions {tαi,(V,c)}i, and
learning a mixture www would mean that wi indicates the
importance of truncation threshold αi.

In fact, many submodular functions can be written as
mixtures of truncation functions. For example, cover-
age type functions, canonical examples of submodular
functions, can be written as submodular mixtures. Pre-
cisely, let a collection of sets be {Ai}i∈{1,··· ,|V |} on a
ground set E. Then the set cover function becomes

f : 2V → R+, f(B) =

∣∣∣∣∣
⋃

i∈B
Ai

∣∣∣∣∣ .

We can define costs ci,j = 1 if Ai contains j ∈ E and

1f is modular if both f and −f are submodular.

ci,j = 0 otherwise. We then have

f(B) =

∣∣∣∣∣
⋃

i∈B
Ai

∣∣∣∣∣ =

|E|∑

j=1

min

{∑

i∈B
ci,j , 1

}
,

which is a mixture of truncation functions. Moreover
sums of concave functions applied to cardinality func-
tions [47] can be represented as mixtures of truncation
functions — any sum of such functions can be expressed
as a sum of a modular function and nonnegative linear
combinations of truncation functions.

Another interesting class is weighted matroid rank
functions [32]. Given matroids [56, 38] Mi = (V, Ii),
and modular functions mi : 2V → R+, we get:

M∑

i=1

wif
i
mi,(V,Mi)

=
M∑

i=1

wi max{mi(I) : I ⊆ S, I ∈ Ii}

which includes cover-like functions and many others.

The submodular functions introduced in [28] for docu-
ment summarization can also been seen as a mixture of
submodular shells, with components being either the
coverage or the diversity shell that can be instantiated
for a particular document.

In general, by using rich enough families of shell com-
ponents, a submodular shell mixture could be very
expressive, representing a very large family of submod-
ular functions. Moreover, another advantage of using
submodular shell mixture representations is that, since
we assume each component is given and only the com-
ponent weights are unknown, the learning problem
can be addressed by using well-established methods.
And by learning shell mixtures, we can then apply
the learnt mixture to structured problems even over
different underlying ground sets.

4 Learning Submodular Shell
Mixtures

While there might be many ways of learning shell mix-
tures, in this paper we take a large-margin approach,
standard in structured prediction. In other words, we
want to minimize the risk of making predictions (deci-
sions) when using the submodular shell mixture as a
score function. Of course, the standard maximization
in learning structured prediction is only approximate
in this case, since maximizing submodular functions
in NP-hard (although constant-factor approximable).
Moreover, we need to identify a valid loss function that
dose not violate submodularity. We wish also to en-
sure that the learnt parameters have quality guarantees
(e.g., a risk bound). All of this is done in the below.
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4.1 Large Margin Learning

We consider the learning problem defined in Section 3.
For concision, we denote

Yt , Yxxx(t) , fff t(yyy) , fffxxx(t)(yyy), and `t(yyy) , `xxx(t),yyy(t)(yyy).

We follow the maximum margin approach [51] to learn
the component weights www, where the goal is to find
a score function that scores yyy(t) higher than all other
yyy ∈ Y \ yyy(t) by some margin. Formally, the learning
problem is as follows:

min
www≥0

1

T

T∑

t=1

ˆ̀
t(www) +

λ

2
‖www‖2, (1)

where the generalized hinge loss

ˆ̀
t(www) , max

yyy∈Yt

(
www>fff t(yyy) + `t(yyy)

)
−www>fff t(yyy(t)) (2)

and a quadratic regularizer is minimized.

Algorithm 1: Projected subgradient descent for learn-
ing submodular shell mixtures.

Input : S = {(xxx(t), yyy(t))}Tt=1 and a learning rate
sequence {ηt}Tt=1.

www0 = 0;
for t = 1, · · · , T do

Approximate loss augmented inference:
ŷyyt ≈ argmaxyyy∈Yt www

>
t−1fff t(yyy) + `t(yyy);

Compute the subgradient:
gggt = λwwwt−1 + fff t(ŷyyt)− fff t(yyy(t));
Update the weights with projection:
wwwt = max(000,wwwt−1 − ηtgggt);

Return : the averaged parameters 1
T

∑
twwwt.

Many algorithms have been proposed for the large
margin learning problem, including those based on the
exponentiated gradient method [7], the dual extragadi-
ent method [52], the cutting-plane algorithm [54], and
the subgradient descent method [42, 43]. We adopt
a subgradient descent algorithm to learn submodular
shell mixtures, as illustrated in Algorithm 1, where
max of two vectors takes dimension-wise maximum,
i.e. max{aaa,bbb} = (max(a1, b1), · · · ,max(an, bn)) where
aaa,bbb ∈ Rn.

Note, to preserve submodularity, the component
weights must be non-negative. We thus simply project
the weights to the non-negative orthant whenever doing
the updates, and it is easy to show that updates fol-
lowed by projection onto a non-negative region do not
affect the convergence or correctness of the algorithm
as when a point is projected back into the convex set,
it is moved closer to every point in the set including
the optimal points.

Second, whether the learning can be done efficiently
depends on whether the so called loss augmented in-
ference (LAI) problem,

max
yyy∈Yt

www>fff t(yyy) + `t(yyy), (3)

can be solved efficiently. The LAI problem has a term
that precisely matches the prediction problem whose
parameters we are trying to learn but also has an
additional term corresponding to the loss. Tractability
of LAI therefore not only depends on the tractability
of the prediction problem but also on the form of loss
functions. When using submodular shell mixtures as
the score function, we use approximate inference with
a performance guarantee. Therefore, we must perform
approximate inference for the LAI problem as well. We
thus in general refer to this as approximate learning.

4.2 Approximate learning

Since some form of inference is a dominant subroutine
in many learning algorithms for structured prediction,
it is natural to use good approximate inference tech-
niques to make the learning problem tractable. When
learning submodular shell mixtures, we inevitably must
use approximate learning since, by using a more expres-
sive class of score functions that need not decompose,
the inference problem is intractable to do exactly. Us-
ing approximate inference as a drop-in replacement for
exact inference in learning, however, could mislead the
learning algorithm and result in poorly learnt models.
This is analyzed in [24], where it is pointed out that ap-
proximate learning could fail even with an approximate
inference method having approximation guarantees. In
general, therefore, it is problematic to assume that
an arbitrary choice of approximate inference method
will lead to useful results when the learning method
expects exact feedback. Choosing compatible inference
and learning procedures is therefore crucial.

In the following, we aim to leverage the approximation
guarantees of submodular optimization such that the
performance of approximate learning of submodular
shell mixtures can be bounded in some way. One
possible way of bounding is to investigate the degree to
which we can approximate the parameterswww that would
be obtained by exact learning, since the parameters
themselves offer little utility if good prediction cannot
be made from them. Alternatively, we can focus on the
quality of prediction obtained from an approximately
learned model. In particular, we seek to bound the
risk gap. That is, the difference between the expected
loss of predictions from an approximate (but efficient)
scheme and from exact (but intractable) methods.
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4.3 Analysis

Hence, we must further analyze whether using
good approximate inference will lead us to good
approximate learning in our case. Before doing so,
we note that there are two types of approximation
inference algorithms, namely undergenerating and
overgenerating approximations.

Consider a maximization problem

max
yyy∈Y

f(yyy) , f∗.

Undergenerating approximation algorithm always find
a solution yyy ∈ Y such that f(yyy) ≤ f∗, while overgener-
ating approximation algorithm always find a solution
yyy ∈ Ȳ ⊇ Y such that f(yyy) ≥ f∗. A greedy algo-
rithm or the loopy belief propagation [40] are instances
of undergenerating approximation algorithms. Relax-
ation methods, e.g. linear programming relaxation,
are overgenerating approximation algorithms. Note
that undergenerating algorithms usually produce solu-
tions that are within the feasible region of the problem.
Overgenerating algorithms, on the other hand, gener-
ate solutions that might lie outside this feasible region.
Therefore, solutions found by overgenerating algorithms
sometimes need to be mapped back to the feasible re-
gion (e.g., rounding of linear programming produced
solutions) in order to produce a feasible solution, dur-
ing which the approximation guarantee no longer holds
in some cases [44]. For learning submodular shell mix-
tures, we are particularly interested in undergenerating
algorithms since the greedy algorithm, one of the un-
dergenerating algorithms, offers near-optimal solutions
for submodular maximization under certain (e.g., car-
dinality, budget, and matroid) constraints [36, 13].

Generalization bounds for approximate learning with
cutting-plane algorithms, with either undergenerating
or overgenerating inferences, have been shown in [12].
For subgradient descent methods, generalization anal-
ysis is available, but only for overgenerating cases, in
[30, 22]. As far as we know, no generalization analyses
are available for approximate learning with undergen-
erating subgradient methods. We fill this gap and offer
risk bounds for approximate learning with undergener-
ating subgradient methods.

We need two definitions before moving on.

Definition 1 (ρ-approximate algorithm). Given f :
Y → R+ and a maximization problem maxyyy∈Y f(yyy) ,
f∗, we call an (undergenerating) algorithm a ρ-
approximate algorithm if it finds a solution yyy ∈ Y
such that f(yyy) ≥ ρf∗, where 0 ≤ ρ ≤ 1.

Definition 2 (γ-approximate subgradient). Given f :
RM → R, a vector ggg ∈ RM is called a γ-subgradient of
f at www if for all www′, f(www′) ≥ f(www)+ggg>(www′−www)−γf(www)
where 0 ≤ γ ≤ 1 and www,www′ ∈ RM .

In Algorithm 1, one needs to solve the LAI in Eqn (3).
Note that if ` is modular (e.g. hamming loss) or sub-
modular (e.g. see Section 5.3), a ρ-approximate infer-
ence algorithm can also apply to this loss augmented
inference to find a near-optimal solution efficiently.
However, as mentioned above, when an approximate
inference algorithm is used in a learning algorithm, a
good approximation of the score might not be sufficient,
and it is possible that the learning can fail even with
rigorous approximate guarantees [24]. On the other
hand, Ratliff et al. [43] show that the subgradient al-
gorithm is robust under approximate settings, and the
risk experienced during training with γ-approximate
subgradients can be bounded.

Note that a ρ-approximate LAI does not necessary im-
ply any γ-subgradient because the approximate ratio
does not apply to the term −www>ft(yyy(t)). To analyze
the actual impact of ρ-approximate LAI in the learn-
ing procedure when compared with the exact formula-
tion, then, we provide risk bounds for the approximate
learner in Theorem 1.

Theorem 1. Assume wi, fi, i = 1, · · · ,M are all
upper-bounded by 1, ˆ̀

t(www) ≤ B, and ‖gggt‖ ≤ G. Let www∗

and ŵww be the solutions returned by Algorithm 1 using
exact and ρ-approximate LAI, respectively, with learn-

ing rate ηt = 2
λt and λ = G

M

√
2(1+log T )

T . Then for any

δ > 0 with probability at least 1− δ,

E(xxx,yyy)∼D[`yyy(h(xxx; ŵww))] ≤ 1

ρ

(
1

T

T∑

t=1

ˆ̀
t(www
∗)

)
+ S(T ),

where

S(T ) =
MG

ρ

√
2(1 + log T )

T
+B

√
2

T
log

1

δ
+

1− ρ
ρ

M.

The proof is given in the supplementary material. Note
that there are three terms in S(T ). While the first
two terms vanish as T →∞, the third term does not.
Therefore, the additional risk incurred due to the use
of ρ-approximate LAI for learning is (R∗+(1−ρ)M)/ρ,

where R∗ = limT→∞ 1
T

∑T
t=1

ˆ̀
t(www
∗) and can be seen as

the risk of predictions using models learnt with exact
inference. Thus, the better (larger ρ) the approxima-
tion, the less the additional risk there will be when
using an approximate LAI. And when exact inference is
used (ρ = 1), the additional risk shrinks to zero. Note
that Theorem 1 applies to any loss function and any
score function which is not necessary to be submodular.
When addition assumptions are made (e.g., assumption
that the loss function is linearly realizable as in [57]),
a better bound might be possible where the additional
risk shrinks to zero as T grows. On the other hand,
when the LAI objective is monotone submodular, a
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simple and efficient greedy algorithm performs near-
optimally with approximation factor 1− 1/e [36]. In
practice, moreover, as the approximation factor of the
greedy algorithm on submodular maximization is usu-
ally very close to 1 [27], one could expect very little
additional risk when using Algorithm 1 with approxi-
mate inference on learning submodular shell mixtures.

To the best of our knowledge, Theorem 1 is the first
approximate learning bound for subgradient algorithms
with undergenerating (greedy) inference.

5 Application to Document
Summarization

Submodular mixtures could be applied to many struc-
tured prediction problems of practical interest. In this
paper, we apply submodular shell mixture learning to
extractive document summarization as a case study.

5.1 Submodularity in Document
Summarization

Extractive document summarization can be seen as a
subset selection problem [27]. Given a ground set of
sentences V , the task of extractive document summa-
rization is selecting a subset of sentences, say S, that
best represents the whole document. In other words,
we want to find A ⊆ V such that

A ∈ argmax
B⊆V

f(B) subject to:
∑

i∈B
ci ≤ b, (4)

where ci ∈ R+ is the cost of sentence i (e.g., it could
be the number of words in the sentence), b ∈ R+ is the
total budget (e.g., it could the largest number of words
allowed in a summary), and f : 2V → R is a set function
that models the quality of a summary. Eqn (4) is known
as the problem of submodular maximization subject
to knapsack constraints [31] which NP-complete [35].
However, when f is monotone submodular, Eqn (4)
can be solved efficiently and near-optimally with a
theoretical guarantee via greedy algorithms [48, 27].

One can always force f to be submodular, leading
to an objective function that can be optimized well
but might on the other hand poorly represent a given
problem. One attractive property of submodularity,
like convexity in continuous domain, is that it arises
naturally in many applications. One such applications
is document summarization. As pointed out in [28],
many well-established methods, including the widely
used maximum margin relevance method [3], actually
correspond to submodular optimization. Moreover, it
is shown that the commonly used ROUGE score [26] for
automatic summarization evaluation is monotone sub-
modular [28], giving further evidence that submodular

functions are natural for document summarization.

In this paper, we further show that not only is the
ROUGE score submodular, the score used in the Pyra-
mid method [37], one of the manual evaluation metrics
that has been used in recent TAC summarization track2,
is also monotone submodular.

Theorem 2. The modified score in Pyramid method
is monotone submodular.

The proof is in Appendix C in the supplement.

The remaining question is how to design (or ideally
learn) a good submodular function for summarization.
Lin and Bilmes [28] proposed a class of submodular
functions that models the coverage as well as the diver-
sity of summary. In this paper, we further generalize
their class of submodular functions and propose to use
submodular shell mixtures for document summarization.

5.2 Submodular shells for summarization

Diversity shell components

We define a diversity shell component as

fdiversity
(a,K,A),(V,rrr)(S) =

∑K
k=1

(∑
i∈S∩Pk ri

)a
∑K
k=1

(∑
i∈Pk ri

)a , (5)

where 0 ≤ a ≤ 1 is the curvature, K ∈ Z+ is the num-
ber of clusters (partitions), A is a clustering algorithm,
and {Pk}k=1,··· ,K is a partition of the ground set V

generated by A, and rrr = {ri}|V |i=1 with ri ∈ [0, 1] is
the vector of singleton reward of element i ∈ V . The
diversity component models the diversity of a summary
set S, by diminishing the benefit of choosing elements
from the same cluster.

Note that the α parameter of a submodular shell here
takes the form (a,K,A). By using different values of
a and K, and different clustering algorithms A, we
can produce a variety of submodular shells. The (V, β)
parameter of a submodular shell takes the form of (V,rrr).
When a document (ground set) is given, rewards of each
sentence (i.e., ri) can be computed, and the diversity
shell component is then instantiated into a submodular
function that measures the diversity of a summary for
this particular document.

Clustered facility location shell components

We define clustered facility-location like components as

f c-facility
(K,A),(V,rrr)(S) =

1

K

K∑

k=1

max
i∈S∩Pk

ri, (6)

2http://www.nist.gov/tac/2011/Summarization/

484



where K ∈ Z+ is the number of clusters (partitions), A
is a clustering algorithm, and ri ∈ [0, 1] is the singleton
reward of element i ∈ V . This function has a similar
form to the well known submodular facility location
function, but defined on a partition of the ground set.
We thus call it clustered facility location. If a summary
contains multiple elements from a same cluster, the ele-
ment with largest singleton reward will be regarded as
the “representative” of this cluster, and only the reward
of this representative will be counted into the final score.
This again diminishes returns of choosing elements from
the same cluster and therefore f c-facility is submodular.

Fidelity shell components

Given a ground set V , we define fidelity components as

ffidelity

α,
(
V,{Ci}|V |i=1

)(S) =
1

|V |
∑

i∈V
min

{ Ci(S)

Ci(V )
, α

}
, (7)

where 0 < α ≤ 1 is a saturation threshold and
Ci : 2V → R is a monotone submodular function model-
ing how S covers the information contained in i. This
function is the normalized version of the coverage func-
tion defined in [28]. Basically, the saturation threshold
controls how much of a given element i ∈ V should be
covered; once Ci(S) is large enough such that the ratio
of it over its largest possible value (Ci(V )) is above
threshold, covering more of i does not further increase
the function value. Therefore, a larger value of ffidelity

tends to have more i ∈ V well covered. When a docu-
ment is given, we can instantiate different submodular
shells using a variety of Ci.

5.3 A Submodular Loss Function

The most widely used evaluation criteria for summa-
rization is the ROUGE score, which is basically a sub-
modular function that counts n-gram recall rate over
human summaries. Let S be the candidate summary
(a set of sentences extracted from the ground set V ),
ce : 2V → Z+ be the number of times n-gram e occurs
in summary S, and Ri be the set of n-grams contained
in the reference summary i (suppose we have K refer-
ence summaries, i.e., i = 1, · · · ,K). Then ROUGE-N
[26] can be written as the following set function:

fROUGE-N(S) ,
∑K
i=1

∑
e∈Ri min(ce(S), re,i)∑K
i=1

∑
e∈Ri re,i

,

where re,i is the number of times n-gram e occurs in
reference summary i. fROUGE-N(S) is submodular, as
shown in [28], but cannot be used as a loss function
since it basically measures “accuracy” rather than loss.

An alternative is to use 1 − fROUGE-N(S) as a loss
function, but this is supermodular. Note that in order

to have the risk of the approximated learned model
bounded, performance guarantees are required for the
approximation algorithms used in loss augmented in-
ference. When using 1 − fROUGE-N, which is super-
modular as a loss function, in the objective function
for loss augmented inference (Eqn. (3)) along with a
submodular shell mixture as the score function, the
resulting objective function for LAI is then a submod-
ular function plus a supermodular function. While an
algorithm (e.g., submodular-supermodular procedure
[33, 17]) is available to approximately optimize the sum
of a submodular function and a supermodular function,
performance guarantees usually do not exist for these
algorithms (although this strategy might work well in
practice and should ultimately be tested). Therefore,
when using one-minus-ROUGE as the loss function,
the greedy algorithm no longer provides a near-optimal
solution when applied to the non-submodular objective,
and the risk bound shown in Theorem 1 no longer holds.

To address this issue, we propose a ROUGE-like loss
function that measures the “complement recall”:

`ROUGE(S) ,
∑
e∈R̄ ωece(S)∑
e∈R̄ ωere

, (8)

where R̄ = N\⋃iRi, and N is the set of all the
n-grams occur in the set of documents, and re = ce(V )
is the number of times n-gram e occurs in all the
documents, ωe is a non-negative weight for e, and R̄ is
the set of n-grams that are not covered by any human
reference summary. Instead of counting with respect
to a reference summary, `ROUGE counts the n-grams
of a candidate summary S w.r.t. the complement of
reference summaries.

Intuitively, we want a summary S to cover as many
reference n-grams as possible so that it will get a high
ROUGE-score; this is similar to having S be large and
overlapping as little as possible with the n-grams that
are not in human references. In this sense, `ROUGE

measures the portion of how many n-grams in the
complement of the reference n-grams set are covered,
and when comparing summaries with the same size, the
smaller `ROUGE is, the better. The best case, i.e., the
human reference itself, will have `ROUGE equal to 0.

Obviously, a poor summary that would also have
`ROUGE equal to 0 is an empty summary. It is worth
noting that `ROUGE only makes sense when comparing
summaries that are close to the same budget. Fortu-
nately, most summarization algorithms try to consume
every bit of the budget in order to consume as much in-
formation as possible under the budget constraint. For
summaries produced in this way, `ROUGE offers a fair
indicator of their quality: the smaller the loss value,
the larger the number of reference n-gram overlaps
there are, and therefore the better the summary. We
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use the greedy algorithm for solving the summarization
problems (Eqn. (4)). Due to its greedy nature, the
algorithm always outputs summary candidates whose
costs are close to the budget, and therefore `ROUGE can
serve as a reasonable surrogate loss function for learning
submodular shell mixtures for summarization tasks.

The major advantage of using `ROUGE as a loss
function, of course, is algorithmic. The submodular
learning analysis in Theorem 1 relies on the fact that
a ρ-approximation algorithm is available for the loss
augmented information. Since we use a submodular
score function for summarization, the above objective
will be submodular if the loss function is submodular.
Fortunately, similar to fROUGE-N, the proposed loss for
summarization, `ROUGE, is also monotone submodular
(in fact modular). Therefore, the LAI in submodular
shell mixture learning for summarization is exactly
the budgeted submodular maximization problem
(Eqn (4)), and efficient and near-optimal algorithms
are then available. Consequently, all the theoretical
analyses in Section 4.3 apply.

We will soon see (Section 7) that using the ROUGE-like
loss function proposed here empirically outperforms
using 1− fROUGE as a loss functions.

6 Related work

Recently, Yue and Guestrin [57] studied a linear sub-
modular bandits problem in an online learning setting
for optimizing a general class of feature-rich submod-
ular utility models in diversified retrieval, and their
theoretical result is based on the assumption that the
award function has a special (linear) form. Raman
et al. [41] also propose an online learning model and al-
gorithm for learning rankings that exploiting feedback
to maximize any submodular utility measure. While
our approach and analysis could also be applied to the
online setting, the focus and analysis in this paper are
more on the batch learning. The submodular utility
models in [57, 41], however, can both be seen as special
instances of submodular shell mixtures.

More closely related to our work is that of [46] where
large-margin learning of submodular score functions
for extractive document summarization is studied. The
representation of a submodular score function in [46],
again, turns out to be a special case of a submodular
shell mixture. Moreover, our submodular shell mixture
framework is more general and flexible than the frame-
work proposed in [46]. Although the authors claim
that their approach applies to all submodular summa-
rization models, there are many submodular functions
useful for summarization that are not linear on either
pairwise similarity or singleton importance. For exam-
ple, in the diversity reward function, we have a concave

function over the sums of singleton rewards, and even
if using linear model for singleton rewards, the score
function is non-linear over parameters since the weights
can not be linearly extracted, and thus the algorithms
in [46] do not apply. Viewing each feature as input to
a submodular component, on the other hand, preserves
the linearity on the parameters, whereas Algorithm 1
applies. Moreover, representing a score function using
a submodular shell mixture is expressive, as we have
shown in Section 3.1.

In [46], a cutting plane algorithm with one-minus-
ROUGE F-measure as loss function was used to
learn model weights. When doing the loss augmented
inference, they use the greedy algorithm introduced
in [27] to approximately optimize the objective. Their
objective function, however, is not submodular, due to
the non-submodular loss function they use. Therefore,
the LAI inference is no longer guaranteed to be
near-optimal, and the performance of approximate
learning with their cutting plane algorithm is no longer
guaranteed [12]. Also, Sipos et al. [46] apparently
neglect the fact that the learned similarity (or impor-
tance) should be non-negative, which is a necessary
ingredient to preserve the submodularity of the learned
score function. One simple way to ensure this is to
constrain the weights to be non-negative, as we do for
submodular shell mixtures by project the weights to
the non-negative orthant (Algorithm 1).

7 Experiments

We evaluated our approach on NIST’s DUC3 data 2003-
2007, and demonstrate results on both generic and
query-focused summarization. DUC data were created
by national institution of standard technology (NIST).
The DUC evaluation is one of the standardized bench-
mark evaluations for document summarization and re-
searchers continue to publish results on these data sets.

7.1 Query-independent summarization

Table 1: ROUGE-1 recall (R) and F-measure (F) results
(%) on DUC-04. DUC-03 was used as development set.

DUC-04 R F

Takamura and Okumura [49] 38.50 -
Wang et al. [55] 39.07 -

Lin and Bilmes [27] - 38.39
Lin and Bilmes [28] 39.35 38.90

Kulesza and Taskar [23] 38.71 38.27
Best system in DUC-04 (peer 65) 38.28 37.94

Submodular Shell Mixture 40.43 39.78

The summarization tasks in DUC-03 and DUC-04 are

3http://duc.nist.gov/
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generic summarization tasks. We used DUC-03 as
the training set for submodular shell mixture learning.
There are in total 60 document clusters in the DUC-03
task, therefore we have 60 training examples in total.
We used a submodular shell mixture with 15 fidelity
components for this task. In particular, the Ci function
we used is Ci(S) =

∑
j∈V δi,j , where δi,j is the pairwise

sentence similarity between sentence i and j. We used
three types of sentence similarities. The first two are
cosine similarities with unigram and bigram TF-IDF
vectors respectively. The third similarity is again cosine
similarity but on the vector generated by latent seman-
tic analysis. For each of the similarity measures, we use
five different saturation thresholds (α = 0.01, · · · , 0.05),
and thus we have 15 fidelity components in total. We
used Algorithm 1 with the ROUGE-like loss (Eqn. (8))
with ωe = 1 for all e to learn this submodular shell mix-
ture. The ROUGE-1 results are shown in Table 1. As
we can see, the result of the learned submodular shell
mixture significantly outperforms all other previous
reported results. Note that the experiment in [46] used
a non-standard setup where DUC-04 data were divided
into training, development, and test sets with only 5
documents in their test set. Therefore, results reported
in [46] are not directly comparable to other results (e.g.,
our results) that follow standard DUC evaluation setup.

7.2 Query-focused summarization

Table 2: ROUGE-2 recall (R) and F-measure (F) results
on DUC-05 (%). We used DUC-06 and DUC-07 as
training sets.

DUC-05 R F
Daumé III and Marcu [8] 6.98 -

Lin and Bilmes [28] 7.82 7.72
Best system in DUC-05 (peer 15) 7.44 7.43

Submodular Shell Mixture 8.44 8.39

Table 3: ROUGE-2 recall (R) and F-measure (F) results
(%) on DUC-06, where DUC-05 and DUC-07 were used
as training sets.

DUC-06 R F
Celikyilmaz and Hakkani-tür [4] 9.10 -

Shen and Li [45] 9.30 -
Lin and Bilmes [28] 9.75 9.77

Best system in DUC-06 (peer 24) 9.51 9.51

Submodular Shell Mixture 9.92 9.93

Since 2004, DUC summarization evaluations have con-
centrated on query-focused summarization. We tested
our approach for summarization on DUC-05, DUC-06
and DUC-07 data. In particular, we used DUC-06,07
as the training set for the DUC-05 task, DUC-05,07 as
the training set for the DUC-06 task, and DUC-05,06
as the training set for the DUC-07 task.

Table 4: ROUGE-2 recall (R) and F-measure (F) results
(%) on DUC-07. DUC-05 and DUC-06 were used as
training sets. Note that the peer 15 system in DUC-
07 used commercial web search engine to expand the
queries.

DUC-07 R F
Toutanova et al. [53] 11.89 11.89

Haghighi and Vanderwende [16] 11.80 -
Celikyilmaz and Hakkani-tür [4] 11.40 -

Lin and Bilmes [28] 12.38 12.33
Best system in DUC-07 (peer 15) 12.45 12.29

Submodular Shell Mixture 12.51 12.40

We used diversity components, clustered facility loca-
tion components, and fidelity components to form the
submodular shell mixture for query-focused summariza-
tion. Three clusterings with different numbers of clus-
ters were created (K = 0.1|V |, 0.2|V |, 0.3|V |). As for
the singleton rewards, we used both query-independent
and query-dependent singleton rewards. The query-
independent reward for i is simply the summation of
the pairwise similarities of other elements in V to i.
For the query-dependent reward, we simply used the
number of terms (up to a bi-gram) that sentence j over-
laps the query Q, where the IDF weighting is not used
(i.e., every term in the query, after stop word removal,
was treated as equally important). Therefore, in total,
we have 6 clustered facility location components. We
further used three curvatures in diversity components
(α = 0.5, 0.6, 0.7), which gives 18 diversity components
in total. With one additional fidelity component, we
have 25 components in total. Compared to other results
reported in the literature (Table 2, Table 3 and Table 4),
as far as we know, our approach achieves the best re-
sults reported so far on DUC-05, DUC-06, and DUC-07.

8 Conclusions

In this paper, we propose the notion of learning sub-
modular shells, which abstract a set of submodular
functions that can be instantiated into submodular
functions given the input of a structured prediction
task. Given a set of training instances, we use subgradi-
ent descent to learn the mixture coefficients over a set
of submodular shells that may be instantiated into a
weighted sum of submodular functions. We show that
the submodular shell mixture is very expressive, and
the risk of learning can be bounded when only approx-
imate inference in possible. When applied to the task
of document summarization, our approach achieves the
best results reported so far on standardized benchmark
takes for query-focused extractive summarization tasks.
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Abstract

To ensure quality results from crowdsourced
tasks, requesters often aggregate worker re-
sponses and use one of a plethora of strate-
gies to infer the correct answer from the
set of noisy responses. However, all current
models assume prior knowledge of all pos-
sible outcomes of the task. While not an
unreasonable assumption for tasks that can
be posited as multiple-choice questions (e.g.
n-ary classification), we observe that many
tasks do not naturally fit this paradigm, but
instead demand a free-response formulation
where the outcome space is of infinite size
(e.g. audio transcription). We model such
tasks with a novel probabilistic graphical
model, and design and implement LazySu-
san, a decision-theoretic controller that dy-
namically requests responses as necessary in
order to infer answers to these tasks. We
also design an EM algorithm to jointly learn
the parameters of our model while inferring
the correct answers to multiple tasks at a
time. Live experiments on Amazon Me-
chanical Turk demonstrate the superiority of
LazySusan at solving SAT Math questions,
eliminating 83.2% of the error and achieving
greater net utility compared to the state-of-
the-art strategy, majority-voting. We also
show in live experiments that our EM algo-
rithm outperforms majority-voting on a visu-
alization task that we design.

1 Introduction

Crowdsourcing marketplaces (e.g., Amazon Mechani-
cal Turk) continue to rise in popularity. Hundreds of
thousands of workers produce a steady stream of out-
put for a wide range of jobs, such as product cate-
gorization, audio-video transcription and interlingual

translation. Unfortunately, these workers also come
with hugely varied skill sets and motivation levels. En-
suring high quality results is a serious challenge for all
requesters.

Researchers have studied quality control extensively
for the case of simple binary choice (or multiple
choice) questions. A common practice is to ask mul-
tiple workers and aggregate responses by a major-
ity vote [Snow et al., 2008]. Several extensions have
been proposed that track the ability of individ-
ual workers while estimating the inherent difficulty
of questions [Dai et al., 2010, Whitehill et al., 2009].
These methods typically outperform majority vote and
achieve a much higher accuracy.

A key drawback of prior decision-theoretic approaches
to quality control is the restriction to multiple choice
questions, i.e., jobs where every alternative answer is
known in advance and the worker has to simply se-
lect one. While many tasks can be formulated in a
multiple-choice fashion (e.g. n-ary classification), there
a large number of tasks with an unbounded number of
possible answers. A common example is completing
a database with workers’ help, e.g., asking questions
such as “Find the mobile phone number of Acme Cor-
poration’s CEO.” Since the space of possible number
of answers is huge (possibly infinite), the task interface
cannot explicitly enumerate them for the worker. We
call these tasks open questions.

Unfortunately, adapting multiple-choice models for
open questions is not straightforward, because of the
difficulty with reasoning about unknown answers. Re-
questers, therefore, must resort to using a majority-
vote, a significant hindrance to achieving quality re-
sults from these more general open questions.

Our paper tackles this challenging problem of model-
ing tasks where workers are free to give any answer.
As a first step, we restrict these tasks to those which
have exactly one correct answer. We make the follow-
ing contributions:
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• We propose a novel, probabilistic model relat-
ing the accuracy of workers and task difficulty
to worker responses, which are generated from a
countably infinite set.

• We design a decision-theoretic controller, Lazy-
Susan, to dynamically infer the correct answer
to a task by only soliciting more worker responses
when necessary. We also design an Expectation-
Maximization (EM) algorithm to jointly learn the
parameters of our model while inferring the cor-
rect answers to multiple tasks at a time.

• We evaluate variations of our approach first in a
simulated environment and then with live experi-
ments on Amazon Mechanical Turk. We show that
LazySusan outperforms majority-voting, achiev-
ing 83.2% error reduction and greater net utility
for the task of solving SAT Math questions. We
also show in live experiments that our EM algo-
rithm outperforms majority-voting on a visualiza-
tion task that we design.

2 Background

There exist many models that tackle the problem of in-
ferring a correct answer for a task with a finite number
of possible answers. Our work is based on the model
of of Dai et al. [Dai et al., 2010], which we now re-
view. Their model assumes that there are exactly 2
possible answers (binary classification). Let d ∈ [0, 1]
denote the inherent difficulty of completing a given
task, and let γw ∈ [0,∞) be worker w’s innate prone-
ness to error. The accuracy of a worker on a task,
a(d, γw), is defined to be the probability that she pro-
duces the correct answer using the following model:
a(d, γw) = 1

2 (1 + (1− d)γw). As d and γ increase, the
probability that the worker produces the correct an-
swer approaches 0.5, suggesting that she is guessing
randomly. On the other hand, as d and γ decrease, a
approaches 1, when the worker will deterministically
produce the correct answer.

Dai et al. couple this model with a utility function,
which describes the worth of a correct answer, to
define a Partially Observable Markov Decision Pro-
cess (POMDP) that outputs a policy for TurKon-
trol, their decision-theoretic controller for crowd-
sourced tasks. A significant limitation of this model
is its inability to handle tasks with an infinite number
of possible answers.

In order to address this limitation, we use the Chi-
nese Restaurant Process [Aldous, 1985], a discrete-
time stochastic process that generates an infinite num-
ber of labels (“tables”). Intuitively, the process may be
thought of as modeling sociable customers who, upon
entering the restaurant, decide between joining other

diners at a table or starting a new table. The greater
the number of customers sitting at a table, the more
likely new customers will join that table.

Formally, a Chinese Restaurant R = (T, f, θ) is a set
of occupied tables T = {t1, . . . , tn|ti ∈ N}, a function
f : T → N that denotes the number of customers at
each table ti, and a parameter θ ∈ R+. Imagine that
a customer arrives at the restaurant. He can either
choose to sit at one of the occupied tables, or at a new
empty table. The probability that he chooses to sit at
an occupied table t ∈ T is

CR(t) =
f(t)

N + θ

where N =
∑
t∈T f(t) is the total number of customers

in the restaurant. The probability that he chooses to
begin a new table, or, equivalently, the probability that
he chooses not to sit at an occupied table is

NTR =
θ

N + θ

Note that this probability is not equivalent to the prob-
ability that the new customer chooses to sit at a spe-
cific unoccupied table t ∈ N \ T . Since there are an
infinite number of unoccupied tables, the total sum of
these probabilities, should they be defined this way,
would be unbounded.

θ is a parameter that defines how attractive unoccu-
pied tables are at this restaurant. As θ grows, a new
customer becomes more likely to sit by himself at a
new empty table.

3 Probabilistic Model

We seek to develop a probabilistic model of workers on
tasks that have a countably infinite solution space. As
a first step, we focus on tasks that have exactly one
correct answer (e.g. the examples mentioned in the
introduction). We also assume that given the correct
answer and problem difficulty, the worker’s capability
to produce the correct answer is independent of all
the previous workers’ responses. However, even when
conditioning on v and d, wrong answers are depen-
dent on previous workers’ responses (because common
mistakes are often repeated). Finally, we assume that
workers are not adversarial and do not collaborate with
each other.

Dai et al.’s model is unable to solve this problem.
When one tries to extend their model to tasks with
an infinite number of possible solutions, several issues
arise from the difficulty of assigning an infinite number
of probabilities. For instance, since their model assigns
a probability to each possible solution, the naive ex-
tension of attempting to place a uniform distribution
over the space of solutions is impossible.
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Additionally, a good model must consider correlated
errors [Grier, 2011]. For instance, consider a task that
asks a worker to find the mobile phone number of a
company’s CEO. We can reasonably guess that the
worker might Google the company name, and if one
examined a histogram of worker responses, it would
likely be correlated with the search results. A common
error might be to return the company’s main number
rather than the CEO’s mobile. Not all possible answers
are equally likely, and a good model must address this
fact.

The Chinese Restaurant Process meets our desiderata.
Let tables correspond to possible incorrect solutions
to the task (Chinese restaurant); a new worker (diner)
is more likely to return a common solution (sit at a
table with more people) than a less common solution.
We now formally define our extension of Dai et al.’s
model to the case of unbounded possible answers.

We redefine the accuracy of a worker for a given task,
a(d, γw), to be:

a(d, γw) = (1− d)γw

As a worker’s error parameter and/or the task’s dif-
ficulty increases, the probability the worker produces
the correct answer approaches 0. On the other hand, as
the stated parameters decrease, a approaches 1, mean-
ing the worker always produces the correct answer.

In addition to the difficulty d and the worker error γw,
let θ ∈ R+ denote the task’s bandwagon coefficient.
The parameter θ encodes the concept of the “tendency
towards a common wrong answer.” If θ is high, then
workers who answer incorrectly will tend to provide
new, unseen, incorrect answers, suggesting that the
task does not have “common” wrong answers. Con-
trastingly, if θ is low, workers who answer incorrectly
will tend toward the same incorrect answer, suggesting
that the task lends itself to the same mistakes.

Figure 1 illustrates our generative model, which en-
codes a Bayes Net for responses made by W workers
on a given task. xi is a binary random variable that
indicates whether or not the ith worker answers cor-
rectly. It is influenced by the correct answer v, the
difficulty parameter d, and the error parameter γi. bi,
the answer that is provided by the ith worker, is de-
termined by xi and all previous responses b1, . . . , bi−1.
Only the responses are observable variables.

Let Bi = {b1, . . . , bi} be the multiset of answers that
workers w1, . . . , wi provide. Let Ai = {a1, . . . , ak} be
the set of unique answers in Bi. The probability that
the i+1th worker produces the correct answer is simply
the worker’s accuracy for the given task:

P (xi = T |d, v) = a(d, γi+1)

P (xi = F |d, v) = 1− a(d, γi+1)

Then, the probability that the worker’s ballot is cor-
rect is defined as

P (bi+1 = v|d, v,Bi) = P (xi = T |d, v)

To define the probability space of wrong answers we
use the Chinese Restaurant Process. Let f(a) = |{b ∈
Bi|b = a}|, and let Ri,v = (Ai \ {v}, f, θ) be a Chi-
nese Restaurant Process. Then, the probability that
the worker returns a previously seen incorrect answer,
y ∈ Ai \ {v} is

P (bi+1 = y|d, v,Bi) = P (xi = F |d, v)CRi,v (y)

Finally, the probability that the worker returns an un-
seen answer is

P (bi+1 = u|d, v,Bi) = P (xi = F |d, v)NTRi,v

Here, u represents whatever the worker returns as long
as u /∈ Ai. More formally, u ∈ U where U is the single-
ton set {x|bi+1 = x ∧ bi+1 /∈ Ai}. We abuse notation
to simplify and elucidate:

P (bi+1 /∈ Ai|d, v,Bi) := P (bi+1 = u|d, v,Bi)

The model cares only about whether it has seen a
worker’s answer before, not what it actually turns out
to be.

3.1 Model Discussion

We now make several subtle and important observa-
tions.

First, our model is dynamic in the following sense. As
more workers provide answers, the probabilities that
govern the generation of an incorrect answer change.
In particular, the parameter θ becomes less and less
significant as more and more workers provide answers.
In other words, as i goes to infinity, the probability
that a new worker provides an unseen answer, θ/(θ+i),
goes to 0. As workers provide answers, the probabil-
ity mass that used to dictate the generation of a new
unseen answer is slowly shifted to that which deter-
mines the generation of seen answers. See Section 5.4
for a consequence of this behavior. Although we do not
believe these model dynamics completely reflect the
real-world accurately, we believe our model is a good
first approximation with several desirable aspects. In
fact, the model dynamics we just described are able to
capture the intuition that as more and more answers
arrive, we should expect to see fewer and fewer new
answers.

Second, certain areas of parameter space cause our
model to produce adversarial behavior. In other words,
there are settings of d and θ for a task such that
the probability a worker produces a particular incor-
rect answer is greater than the probability a worker
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Figure 1: Whether or not worker i gets it right, xi, depends on his error parameter γi and the difficulty of the
task d. Worker i’s answer bi depends on xi, the question’s true answer v, and all the previous workers’ answers
b1, . . . , bi−1. Ri is a Chinese Restaurant Process defined by Bi. This figure shows 4 workers. The bi are the only
observed variables.

provides the correct answer, on average. The follow-
ing theorem, proven in the supplementary materials,
makes this observation.

Theorem. Suppose the difficulty, d, is fixed and all

workers’ γ are equal. Then, θ < 1−2(1−d)γ
(1−d)γ if and only

if the expected probability the next worker returns the
first-seen incorrect answer is greater than the probabil-
ity the next worker returns the correct answer.

We note that the theorem only considers the first-
seen incorrect answer since the behavior of the Chinese
Restaurant Process is such that the first-seen incorrect
answer is generated with the highest expected proba-
bility. Thus, if the expected probability of generating
the correct answer exceeds that of the first-seen in-
correct answer, the model will not produce adversarial
behavior.

Finally, while the purpose of this paper is to address
open questions with infinite answer spaces, we note
that Polya’s Urn Scheme, the finite version of the Chi-
nese Restaurant Process, applies equally well to finite
answer spaces with many answer choices (multiple-
choice tasks).

4 A Decision-Theoretic Agent

We now discuss the construction of our decision-
theoretic controller, LazySusan. Our control problem
is as follows. Given an open question as input, the goal
is to infer the correct answer. At each time-step, an
agent can choose one of two actions. It can either stop

and submit the most likely answer, or it can create
another job and receive another response to the task
from another crowdsourced worker. The question is:
How do we determine the agent’s policy?

To solve this problem, first we define the world state of
LazySusan to be the pair (v, d), where v ∈ N is the
correct answer of the task and d is the difficulty of the
task. The space of world states is infinitely large, and
LazySusan cannot directly observe the world state,
so it has an agent state S, which at time i, is the set of
tuples, S = {(v, d)|v ∈ Ai ∪ {⊥} ∧ d ∈ [0, 1]}. Here, ⊥
represents the case when the true answer has not been
seen by the agent so far. In order to keep track of what
it believes to be the correct answer v, it maintains a
belief, which is a probability distribution over S.

The agent state allows us to fold an infinite number of
probabilities into one, since to compute the belief, one
only needs to calculate P (v =⊥, d|Bi), the probability
that no workers have provided the correct answer yet
given Bi, instead of P (v = u, d|Bi) for all possible
unseen answers u ∈ N \Ai.

4.1 Belief Update

We now describe specifically how LazySusan updates
its posterior belief P (v, d|Bi; i, k) after it receives its
ith ballot bi. Here, k = |Ai| is the number of unique
responses it has received. By Bayes’ Rule, we have

P (v, d|Bi; i, k) ∝ P (Bi|v, d; i, k)P (v, d; i, k)
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Symbol Meaning

Ai The set of unique responses made by workers 1, . . . , i.
Bi The multiset of responses made by workers 1, . . . , i ({b1, . . . , bi})
bi Worker i’s response to the task
CC The value of a correct answer

CRi,v (y) The probability of a worker producing incorrect answer y in restaurant Ri,v.
CW The value of an incorrect answer
d Difficulty of task
γi Worker i’s error parameter
θ A task’s bandwagon coefficient; Chinese Restaurant Process parameter
k The number of unique worker responses (|Ai|)
i Number of ballots received so far

Q(Bi, action) The utility of taking action with belief Bi

NTRi,v The probability of a worker producing an unseen answer in restaurant Ri,v.
Ri,v An instance of the Chinese Restaurant Process instantiated using Bi and correct answer v.
U(Bi) The utility of a belief derived from Bi.
V (a) The value of an answer a
v Correct answer of task
xi Did worker i answer the task correctly

Table 1: Summary of notation used in this paper

The likelihood of the worker responses P (Bi|v, d; i, k)
is easily calculated using our generative model:

P (Bi|v, d; i, k) =
i∏

j=1

P (bj |v, d,Bj−1)

The prior on the correct answer and difficulty can be
further reduced:

P (v, d; i, k) = P (v|d; i, k)P (d; i, k)

The prior we must compute describes the joint prob-
ability of the correct answer and difficulty given i re-
sponses and k distinct responses. Notice that for all
a ∈ Ai, we do not know P (v = a|d; i, k). However,
they must be all the same, because knowing the dif-
ficulty of the task gives us no information about the
correct answer. Therefore, we must only determine the
probability the correct answer has yet to be seen given
d, i, and k. We propose the following model:

P (v =⊥ |d; i, k) = di

This definition is reasonable since intuitively, as the
difficulty of the task increases the more likely workers
have not yet provided a correct answer. On the other
hand, as the number of observations increases, we be-
come more certain that the correct answer is in Ai.

Finally, we model P (d; i, k). Consider for the moment
that workers tend to produce answers that LazySu-
san has seen before (θ is low). Intuitively, as k ap-
proaches i, the difficulty should grow, because the
agent is seeing a lot of different answers when it
shouldn’t, and as k approaches 1, the difficulty should

become smaller, because everyone is agreeing on the
same answer.

We choose to model P (d; i, k) ∼ Beta(α, β) and define
α ≥ 1 and β ≥ 1 as

α =

(
(i− 1)

k

i
+ 1

) 1
θ

β =

(
(1− i)k

i
+ i

)θ

First note that the bulk of a Beta distribution’s den-
sity moves toward 1 as α increases relative to β, and
toward 0 as β increases relative to α. Thus, as β in-
creases, difficulty decreases, and as α increases, diffi-
culty increases. Consider the case when θ = 1. As k
approaches i, α approaches i and β approaches 1, caus-
ing LazySusan to believe the difficulty is likely to be
high, and as k approaches 1, LazySusan believes the
difficulty is likely to be low. This behavior is exactly
what we desire.

Now we consider the effect of θ. Fix i and k. As θ
grows, β increases and α decreases. Therefore, for a
fixed multiset of observations, as people become more
likely to provide unseen answers, the probability that
the difficulty is low becomes greater. In other words,
LazySusan needs to see a greater variety of answers
to believe that the problem is difficult if θ is high.

Let θ1 > θ2 and consider the following scenarios: Sup-
pose k is close to i, so LazySusan believes, before fac-
toring in θ, that the task is difficult. If θ = θ2, Lazy-
Susan believes with more certainty that the task is
difficult than if θ = θ1. This behavior makes sense be-
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cause LazySusan should expect a small k if θ is small.
If θ = θ2, LazySusan should see a smaller k than if
θ = θ1. If it sees a k that is larger than it expects,
it correctly deduces that more people are getting the
question wrong, and concludes the task is more dif-
ficult. Similarly, if k is close to 1, and θ = θ1, then
LazySusan believes with more certainty that the task
is easy than if θ = θ2, since even though workers tend
to produce more random answers, k is small.

4.2 Utility Estimation

To determine what actions to take, LazySusan needs
to estimate the utility of each action. The first step is
to assign utilities to its beliefs. Since Bi solely deter-
mines its belief at time i, we denote U(Bi) to be utility
of its current belief. Next, LazySusan computes the
utilities of its two possible actions. Let Q(Bi, submit)
denote the utility of submitting the most likely answer
given its current state, and let Q(Bi, request) denote
the utility of requesting another worker to complete
the task and then performing optimally. Then

U(Bi) = max{Q(Bi, submit),

Q(Bi, request)}

Q(Bi, submit) =
∑

a∈Ai

V (a)

∫

d

P (v = a, d|Bi; i, k)dd

Q(Bi, request) = c+
∑

a∈Ai

P (bi+1 = a|Bi)U(Bi+1)

+ P (bi+1 /∈ Ai|Bi)U(Bi+1)

where c is the cost of creating another job and
P (bi+1|Bi) =

∑

a∈Ai

∫

d

P (bi+1|v = a, d,Bi)P (v = a, d|Bi)dd

LazySusan takes as inputs CC , the utility of a correct
answer, and CW , the utility of an incorrect answer.
These values are provided by the requester to man-
age tradeoffs between accuracy and cost. LazySusan
uses its own estimate of the correct answer to calculate
V (a):

a∗ = argmax
a∈Ai

∫

d

P (v = a, d|Bi; i, k)dd

V (a) =

{
CC if a = a∗
CW otherwise

4.3 Worker Tracking

After submitting an answer, LazySusan updates its
records about all the workers who participated in the
task using a∗. We follow the approach of Dai et al.
[Dai et al., 2010], and use the following update rules:

1) γw ← γw − dε should the worker answer correctly,
and 2) γw ← γw + (1 − d)ε, should the worker an-
swer incorrectly, where ε is a decreasing learning rate.
Any worker that LazySusan has not seen previously
begins with some starting γ.

4.4 Decision Making

We note that the agent’s state space continues to grow
without bound as new answers arrive from crowd-
sourced workers. This poses a challenge since existing
POMDP algorithms do not handle infinite-horizon
problems in dynamic state spaces where there is no
a-priori bound on the number of states. Indeed, the
efficient solution of such problems is an exciting prob-
lem for future research. As a first step, LazySusan
selects its actions at each time step by computing an
l-step lookahead by estimating the utility of each pos-
sible sequence of l actions. If the lth action is to request
another response, then it will cut off the computation
by assuming that it submits an answer on the l + 1th

action.

In many crowdsourcing platforms, such as Mechani-
cal Turk, we cannot preselect the workers to answer a
job. However, in order to conduct a lookahead search,
we need to specify future workers’ parameters for our
generative model. To simplify the computation, we as-
sume that every future worker has γ = γ.

4.5 Joint Learning and Inference

We now describe an EM algorithm that can be used
as an alternative to the working-tracking scheme from
above. Given a set of worker responses from a set of
tasks, b, EM jointly learns maximum-likelihood esti-
mates of γ,d, and θ, while inferring the correct an-
swers v. Thus, in this approach, after LazySusan sub-
mits an answer to a task, it can recompute all model
parameters before continuing with the next task.

We treat the variables d,γ, and θ as parameters.
In the E-step, we keep parameters fixed to compute
the posterior probabilities of the hidden true answers:
p(vt|b,d,γ,θ) for each task t. The M-step uses these
probabilities to maximize the standard expected com-
plete log-likelihood L over d,γ, and θ:

L(d,γ,θ) = E[ln p(v,b|d,γ,θ)]

where the expectation is taken over v given the old
values of γ,d,θ.

5 Experiments

This section addresses the following three questions: 1)
How deeply should the lookahead search traverse? 2)
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Figure 2: LazySusan’s decisions when executing a
task.

How robust is LazySusan on different classes of prob-
lems? 3) How well does LazySusan work in practice?
and 4) How well does our EM algorithm work in prac-
tice?

To answer the first question, we compare LazySusan
at different settings of lookahead depth. Then, to an-
swer the second question, we test the robustness of
LazySusan by applying it to various kinds of prob-
lems in simulation. Next, to answer the third ques-
tion, we compare LazySusan to an agent that uses
majority-voting with tasks that test the workers of
Amazon Mechanical Turk on their SAT Math skills.
Finally, to answer the fourth question, we compare our
EM algorithm to a majority-voting strategy on a visu-
alization task.

5.1 Implementation

Since numerical integration can be challenging, we dis-
cretize difficulty into nine equally-sized buckets with
centers of 0.05, 0.15, . . . , 0.85, and 0.95.

For the purposes of simulation only, each response that
LazySusan receives also contains perfect information
about the respective worker’s γ. Thus, LazySusan
can update its belief state with no noise, which is the
best-case scenario.

In all cases, we set the learning rate ε = 1
mw+1 , where

mw is the number of questions a worker w has an-
swered so far. We also set the value of a correct an-
swer to be CC = 0. Finally, we set γ = 1, and the
bandwagon coefficient θ = 1 for all tasks.

5.2 Best Lookahead Depth

We first determine the best lookahead depth among
2, 3, and 4 with simulated experiments. We evaluate
our agents using several different settings of the value
of an incorrect answer: CW ∈ {−10,−50,−100}. Each
difficulty setting is used 10 times, for a total 90 sim-
ulations per utility setting. (9 difficulty settings × 10
= 90). We set the cost of requesting a job, c, from a
(simulated) worker to −1. Our simulated environment
draws worker γ ∈ (0, 2) uniformly.

Figure 3 shows the results of our simulation. Lazy-
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Figure 3: In simulation, our lookahead search does well
at all depths.

Susan(l) denotes a lookahead depth of l. We also ex-
amine an agent that uses a majority-of-7-vote strat-
egy, MV. Expectedly, as the utility of an incorrect an-
swer decreases, the average net utility achieved by each
agent drops. We find that for all settings of lookahead
depth, LazySusan dramatically outperforms MV. We
also see that LazySusan(3) and LazySusan(4) both
achieve small, but sure gains over LazySusan(2).
However, LazySusan(3) and LazySusan(4) seem to
do about the same. Since LazySusan(4) runs signif-
icantly slower, we decide to use LazySusan(3) in all
future experiments, and refer to it as LazySusan.

5.3 Noisy Workers

We examine the effect of poor workers. We compare
two simulation environments. In the first, we draw
workers’ γ ∈ (0, 1) uniformly and in the second, we
draw workers’ γ ∈ (0, 2) uniformly. Recall that γ is
the worker error parameter. Thus, the first environ-
ment has workers that are much more competent than
those in the second. All other parameters remain as
before. Each difficulty setting is simulated 100 times,
for a total of 900 simulations per environment. The
results of this experiment are shown in Table 2. When
the workers are competent, LazySusan makes small
gains over MV, reducing the error by 34.3%. However,
when there exist noisier workers in the pool, Lazy-
Susan more decisively outperforms MV, reducing the
error by 48.6%. In both cases, LazySusan spends less
money than MV, netting average net utility gains of
55% and 75.9%.

5.4 Tasks with Correlated Errors

Next, we investigate the ability of LazySusan to deal
with varying θ and d in the worst case — when all
the workers are equally skilled. Recall that a high θ
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γ ∈ (0, 1) γ ∈ (0, 2)

LazySusan MV LazySusan MV

Avg Accuracy (%) 88.7 82.8 83.3 67.5
Avg Cost 3.472 5.7 4.946 6.01

Avg Net Utility -14.772 -22.9 -21.646 -38.51

Table 2: Comparison of average accuracies, costs, and net utilities of LazySusan and MV when workers either
have γ ∈ (0, 1) or γ ∈ (0, 2)

What is the largest odd number that is a factor of 860? 

Please answer the following math question. The solution is an 
integer. Please enter your solution in its simplest form. (If the 
solution is 5, enter 5, not 5.0, and not 10/2) 

Answer: 

Figure 4: An example of an SAT Math Question task
posed to workers for live experiments on Mechanical
Turk.

means that workers who answer incorrectly will tend
to produce previously unseen answers. We consider the
following variations of tasks: 1) Low difficulty, 2) High
difficulty, high θ, and 3) High difficulty, low θ. In the
first two cases, we see expected behavior. LazySusan
is able to use its model to infer correct answers.

However, in the third case, we see some very inter-
esting behavior. Since the difficulty is high, workers
more often than not produce the wrong answer. Addi-
tionally, since θ is low, they also tend to produce the
same wrong answer, making it look like the correct an-
swer. If the ratio is large enough, we find that Lazy-
Susan is unable to infer the correct answer, because
of the unfortunate ambiguity between high difficulty,
low θ problems and low difficulty problems. In fact, as
LazySusan observes more ballots, it becomes more
convinced that the common wrong answer is the right
answer, because of the model dynamics we mention
earlier (Section 3.1). This problem only arises, how-
ever, if the model produces adversarial 0, and we see
in practice that workers on Mechanical Turk generally
do not exhibit such behavior.

5.5 Experiments on Mechanical Turk

Next, we compare LazySusan to an agent using
majority-vote (MV) using real responses generated by
Mechanical Turk workers. We test these agents with
134 math questions with levels of difficulty compara-
ble to those found on the SAT Math section. Figure 4
is an example of one such task and the user interface
we provided to workers. We set the utility for an incor-
rect answer, CW , to be −100, because with this utility
setting, LazySusan requests about 7 jobs on aver-
age for each task, and a simple binary search showed

Figure 5: An example of a “triangle” task posed to
workers for live experiments on Mechanical Turk. The
area of this triangle, rounded down, is 38.

LazySusan MV

Avg Accuracy (%) 99.25 95.52
Avg Cost 5.17 5.46

Avg Net Utility -5.92 -9.94

Table 3: Comparisons of average accuracies, costs, and
net utilities of LazySusan and MV when run on Me-
chanical Turk.

this number to be satisfactorily optimal for MV. We
find that the workers on Mechanical Turk are surpris-
ingly capable at solving math problems. As Table 3
shows, LazySusan almost completely eliminates the
error made by MV. Since the two agents cost about the
same, LazySusan achieves a higher net utility, which
we find to be statistically significant using a Student’s
t-test (p < 0.0002).

We examine the sequence of actions LazySusan made
to infer the correct answer to the task in Figure 4. In
total, it requested 14 ballots, and received the follow-
ing responses: 215, 43, 43, 43, 5, 215, 43, 3, 55, 43, 215,
215, 215, 215. Since MV takes the majority of 7 votes,
it infers the answer incorrectly to be 43. LazySusan
on the other hand, uses its knowledge of correlated
answers as well as its knowledge from previous tasks
that the first three workers who responded with 43
were all relatively poor workers compared to the first
two workers who claimed the answer is 215. So even
though a clear majority of workers preferred 43, Lazy-
Susan was not confident about the answer. While it
cost twice as much as MV, the cost was a worthy sac-
rifice with respect to the utility setting.

Finally, we compare our EM algorithm to MV, using
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real responses generated by Mechanical Turk workers.
We develop a “triangle” task (Figure 5) that presents
workers with a triangle drawn on a grid, and asks them
to find the area of the triangle, rounded down. We
posted 200 of these tasks and solicited 5 responses for
each. These tasks are difficult since many of the re-
sponses are off by 1. Our EM algorithm achieves an
accuracy of 65.5% while MV achieves an accuracy of
54.1%.

6 Related Work

Modeling repeated labeling in the face of noisy work-
ers when the label is assumed to be drawn from a
known finite set has received significant attention.
Romney et al. [Romney et al., 1986] are one of the
first to incorporate a worker accuracy model to im-
prove label quality. Sheng et al. [Sheng et al., 2008]
explore when it is necessary to get another label
for the purpose of machine learning. Raykar et al.
[Raykar et al., 2010] propose a model in which the
parameters for worker accuracy depend on the true
answer. Whitehill et al. [Whitehill et al., 2009] and
Dai et al. [Dai et al., 2010] address the concern that
worker labels should not be modeled as indepen-
dent of each other unless given problem difficulty.
Welinder et al. [Welinder et al., 2010] design a mul-
tidimensional model for workers that takes into ac-
count competence, expertise, and annotator bias. Ka-
mar et al. [Kamar et al., 2012] extracts features from
the task at hand and use Bayesian Structure Learn-
ing to learn the worker response model. Parameswaran
et al. [Parameswaran et al., 2010] conduct a policy
search to find an optimal dynamic control policy with
respect to constraints like cost or accuracy. Karger
et al. [Karger et al., 2011] develop an algorithm based
on low-rank matrix approximation to assign tasks to
workers and infer correct answers, and analytically
prove the optimality of their algorithm at minimiz-
ing a budget given a reliability constraint. Snow et al.
[Snow et al., 2008] show that for labeling tasks, a small
number of Mechanical Turk workers can achieve an ac-
curacy comparable to that of an expert labeler. None
of these works consider tasks that have an infinite num-
ber of possible solutions.

For more complex tasks that have an infinite
number of possible answers, innovative workflows
have been designed, for example, an iterative im-
provement workflow for creating complex artifacts
[Little et al., 2009], find-fix-verify for an intelligent ed-
itor [Bernstein et al., 2010], and others for counting
calories on a food plate [Noronha et al., 2011].

An AI agent makes an efficient controller for these
crowdsourced workflows. Dai et al. [Dai et al., 2010,
Dai et al., 2011] create a POMDP-based agent to

control an iterative improvement workflow. Shahaf
and Horvitz [Shahaf and Horvitz, 2010] develop a
planning-based task allocator to assign subtasks to
specific humans or computers with known abilities. We
[Lin et al., 2012] create a POMDP-based agent to dy-
namically switch between workflows.

Weld et al. [Weld et al., 2011] discuss a broad vision
for the use of AI techniques in crowdsourcing that in-
cludes workflow optimization, interface optimization,
workflow selection and intelligent control for general
crowdsourced workflows. Our work provides a more
general method for intelligent control.

7 Conclusion & Future Work

This paper introduces LazySusan, an agent that
takes a decision-theoretic approach to inferring the
correct answer of a task that can have a countably infi-
nite number of possible answers. We extend the prob-
abilistic model of [Dai et al., 2010] using the Chinese
Restaurant Process and use l-step lookahead to ap-
proximate the optimal number of crowdsourcing jobs
to submit. We also design an EM algorithm to jointly
learn the parameters of our model while inferring the
correct answers to multiple tasks at a time. Live ex-
periments on Mechanical Turk demonstrate the effec-
tiveness of LazySusan. At comparable costs, it yields
an 83.2% error reduction compared to majority vote,
which is the current state-of-the-art technique for ag-
gregating responses for tasks of this nature. Live ex-
periments also show that that our EM algorithm out-
performs majority-voting on “triangle” tasks.

In the future, we would like to address the ambiguity
between high difficulty, low θ problems and low diffi-
culty problems. We also hope to develop a generative
model that does not change as responses are gathered
from workers. We also hope to extend the ability of
LazySusan to solving tasks that have multiple cor-
rect answers. Indeed, workers oftentimes provide the
same answer in different forms (e.g., in different units).
Other questions may have several answers (e.g., top
executives often carry two mobiles). While multiple
correct answers may be reduced with crisply-written
instructions, an improved model may also prove use-
ful.
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Abstract

Previous work on recommender systems
mainly focus on fitting the ratings provided
by users. However, the response patterns,
i.e., some items are rated while others not,
are generally ignored. We argue that failing
to observe such response patterns can lead to
biased parameter estimation and sub-optimal
model performance. Although several pieces
of work have tried to model users’ response
patterns, they miss the effectiveness and in-
terpretability of the successful matrix factor-
ization collaborative filtering approaches. To
bridge the gap, in this paper, we unify ex-
plicit response models and PMF to estab-
lish the Response Aware Probabilistic Ma-
trix Factorization (RAPMF) framework. We
show that RAPMF subsumes PMF as a spe-
cial case. Empirically we demonstrate the
merits of RAPMF from various aspects.

1 Introduction

Recently, online music and video streaming services
have seen an explosive growth. As the user base and
contents expanding tremendously, recommender sys-
tems become crucial for service providers. Cloud-
based music streaming services such as iTunes Match,
Google Music, Yahoo! Music, Pandora, Songify, etc.
make it easier than ever to rate songs and buy new
music. With the rocketing growth of the number of
users, their explicit ratings become more and more ac-
cessible. Effective usage of these ratings can lead to
high quality recommendation, which is vital for the
cloud-based online streaming services. This is because
most services charge very little subscription fee, if not
none. The main income comes from the selling of mu-
sic. Nowadays, online streaming services often have a
large user base, so even if a small change in recommen-

dation quality may have dramatic effect on sales.

Due to immense market value, various recommen-
dation techniques have been proposed. Generally,
these approaches can be classified into neighborhood-
based methods and model-based methods. Typical
neighborhood-based approaches includes user-based
methods [1, 4] and item-based methods [3, 11, 25].
The state-of-the-art model-based methods include re-
stricted Boltzmann machines [24], SVD++ [8, 9],
Probabilistic Matrix Factorization (PMF) [22], and
multi-domain collaborative filtering [32], graphical
models [7], pair-wise tensor factorization [21], and ma-
trix factorization with social regularization [14], etc.

However, in real-world rating systems, users’ ratings
carry twofold information. Firstly the rating value in-
dicates a user’s preference on a particular item as well
as an item’s inherent features. The scores that a user
assigns to different items convey information on what
the user likes and what the user dislikes. The rat-
ing values that an item received from different users
also carry information on intrinsic properties of the
item. Second, the ratings also reveal users’ response
patterns, i.e., some items are rated while others not.
This information can be utilized to improve the model
performance. However, previously proposed methods
usually assume that all the users would rate all the in-
spected items, or more generally, randomly select in-
spected items to rate. These methods fit the users’
ratings directly and ignore the key factor, users’ re-
sponse patterns. The ignorance will degrade the model
performance. In this paper, we explore previously ig-
nored response information to further boost recom-
mender system’s quality.

Practically, the assumption of all inspection or ran-
domly rate is not true in real-world rating systems.
Users are unlikely to rate all the inspected items or
randomly select the inspected items to rate. Shown in
Figure 1(a) is the rating value distribution of the items
that users choose to rate, while Figure 1(b) shows
the distribution of ratings for randomly selected songs
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(b) Randomly selected rat-
ings

Figure 1: Distribution of ratings in a music web-
site [16].

from the same group of users. Clearly these two distri-
butions are very different. In the user selected ratings,
there are far more items with high ratings than that
in the randomly selected songs. This is compelling ev-
idence showing that the assumption that all the users
would rate all the inspected items or select random
items to rate is unlikely to be true. The investigation
of the Yahoo!LaunchCast data indicates that users are
more likely to rate items they do love and hate, but
not neutral [16, 26].

To further demonstrate the risk of incorrect parame-
ter estimation and biased rating prediction when ig-
noring the response information, we show an intu-
itive example of five users’ rating on five items in Ta-
ble 1, where the ratings are skewed to either 4 or 5.
Clearly, user-based approaches [1, 4] and item-based
approaches [3, 11, 25] are more likely to predict rat-
ing values in the range of 4 to 5. Similarly, ignoring
response information will cause the one-class issue for
model-based approaches [10, 17, 18]. In a real-world
recommender system, the case may not be as extreme
as is in Table 1. Nevertheless, the effect is similar.
By ignoring the response information, we will learn a
model that has bias.

Currently, there are two main streams of work try-
ing to solve the above response ignorance problem.
One line of work try to model the above phenomena
as a one-class collaborative filtering task [10, 17, 18].
A heuristic weight in the range of 0 to 1 is intro-
duced to calibrate the loss on those unseen ratings,
where the rating scores are set to zeros [17, 18]. Em-

Table 1: Skewed ratings on 5 items from 5 users

item1 item2 item3 item4 item5

user1 5 4
user2 5 4
user3 4 4
user4 5 5
user5 4 5

bedding user information is also adopted to optimize
the weight on the unseen ratings via users’ simi-
larity [10]. However, these methods do not model
the users’ missing response information together with
the ratings. The other line of work model the re-
sponse ignorance through missing data theory [13].
The multinomial mixture model is adopted to model
the non-random response [16]. The work is also ex-
tended for collaborative ranking [15]. These methods
model users’ response patterns and ratings via multi-
nomial mixture model, but they discard the effective-
ness and interpretability of the matrix factorization
approaches [8, 22].

To bridge this gap, we are the first to integrate
the users’ response patterns into PMF to establish
a unified framework, which we refer to as Response
Aware PMF (RAPMF). The response models we pro-
pose include the rating dominating response model,
and a generalized one, the context-aware response
model. We demonstrate the advantages of our pro-
posed RAPMF through detailed and fair experimental
comparison.

The rest of the paper is organized as follows. In Sec-
tion 2, we motivate the explicit modeling of user re-
sponses from a probabilistic point of view. In Sec-
tion 3, we present how to incorporate response models
into PMF and elaborate the proposed RAPMF model.
Empirical study and comparison with previous work is
conducted in Section 4. The paper is concluded in Sec-
tion 5.

2 Response and Missing Theory

Modeling response patterns have a strong incentive
from statistical missing data theory [13]. The response
patterns can be hidden [2, 6] or explicit. In recom-
mender system case, it is explicit. In the following,
we show that without modeling the response patterns
properly, we may learn a bias model.

2.1 Setup and Notation

Assume that we are given a partially observed N ×M
matrix X, where N is the number of users and M is
the number of items, the (i, j) element of X denotes
the rating assigned by user i to item j in the scale
of 1 to D. Collaborative filtering approaches try to
recover the original full matrix Xfull to predict users’
preferences.

In the matrix X, an unobserved entry is denoted by 0.
Alternatively, we denote all the observations as a set
of triplets (i, j, x) ∈ Q. Moreover, we define a com-
panion response indicator matrix R to denote whether
the corresponding rating is observed in X. If Xij 6= 0,
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i.e., we have observed user i’s rating on item j, then
Rij = 1. Otherwise Rij = 0. Note that X is partially
observed while R is fully observed.

2.2 Missing Data Theory

Following missing data theory in [13], we model the
collaborative filtering data as a two-step procedure.
First, a data model P (X|θ) generates the full data
matrix Xfull. Then, a response model P (R|X,µ) de-
termines which elements in Xfull are observed. Hence,
we can take a parametric joint distribution on the ob-
served data matrix X and the response matrix R, con-
ditioned on the model parameters, θ and µ.

P (R,X|µ, θ) = P (R|X,µ, θ)P (X|µ, θ) (1)

= P (R|X,µ)P (X|θ), (2)

where P (R|X,µ) is also referred to as the missing data
model. In the following, we use response model and
missing data model interchangeably.

According to the missing data theory [13], there are
three kinds of missing data assumptions: 1) Miss-
ing Completely At Random (MCAR); 2) Missing
At Random (MAR), and 3) Not Missing At Ran-
dom (NMAR). MCAR has the strongest independence
assumption. Under the MCAR assumption, the miss-
ing mechanism cannot depend on the data in any way.
Whether we will observe a response is fully determined
by the parameter µ and is irrelevant to the users’ rat-
ing, i.e.,

P (R|X,µ) = P (R|µ) (3)

One typical example where MCAR holds is that given
an inspected item, whether it will be observed is a
Bernoulli trail with probability µ.

The MAR assumption is slightly different from the
MCAR assumption. Let Xfull = (Xobs, Xmis), i.e.,
the full data matrix Xfull is separated into observed
data matrix Xobs and missing data matrix Xmis. Un-
der the MAR assumption, the response probability de-
pends on the observed data and µ, i.e.,

P (R|X,µ) = P (R|Xobs, µ). (4)

Marlin and Zemel [15] refer to this as the probabil-
ity of observing a particular response only depending
on the observed elements of the data vector. The as-
sumption made by MAR may seem bizarre. However,
it comes up naturally if we want to ignore response
model and still learn unbiased data model parameters.
We demonstrate this in the following.

Let L(µ, θ|Xobs, R) be the likelihood of µ and θ given
the observation Xobs and R. Under the MAR assump-

tion, we have

L(µ, θ|Xobs, R) = P (R,Xobs|µ, θ)

=

∫

Xmis

P (R,X|µ, θ)dXmis

=

∫

Xmis

P (R|X,µ)P (X|θ)dXmis

=

∫

Xmis

P (R|Xobs, µ)P (X|θ)dXmis (5)

= P (R|Xobs, µ)

∫

Xmis

P (X|θ)dXmis

= P (R|Xobs, µ)P (Xobs|θ)
∝ P (Xobs|θ).

The key to marginalize the missing data is that the
missing data model depends only on the observed data,
i.e., MAR assumption in Eq. (4). Under the MCAR
assumption, we can simplify Eq. (5) similarly, which
only depends on µ. Note that the assumption made by
MAR appears naturally in the derivation. This is the
independence assumption we cannot release anymore
without losing the ability to marginalize the complete
data model independently of missing data model.

If both MCAR and MAR fail to hold, then NMAR as-
sumption is made. Unlike MCAR and MAR, NMAR
requires an explicit response model in order to learn
unbiased model parameters. Otherwise, maximizing
P (Xobs|θ) directly can yield a biased θ. With only a
few exceptions [15, 16], nearly all the previous work
on recommender systems try to maximize the data
model directly [5, 14, 19, 22, 23]. In a typical rec-
ommender system, the data collected can easily violate
the MAR assumption. The distinct distribution of rat-
ing values on user selected items and randomly selected
items hints that the response pattern depends on not
only the observed data. Also, a survey on the Ya-
hoo! LanuchCast provides evidence that the response
probability might depend on the fondness of particular
items [16, 26].

3 Models and Analysis

In the following, we first review the Probabilistic Ma-
trix Factorization (PMF). After that, we present the
response aware PMF and show how it can incorporate
PMF with the response models. More specifically, we
introduce two response models, the rating dominant
response model and the context-aware response model.
The updating rules and complexity analysis are pro-
vided correspondingly.
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3.1 Probabilistic Matrix Factorization

PMF [22] is one of the most famous matrix factor-
ization models in collaborative filtering, which de-
composes the partially observed data matrix X into
the product of two low-rank latent feature matrices,
U and V , where U ∈ RK×N , V ∈ RK×M , and
K � min(N,M).

By assuming Gaussian distribution on the residual
noise of observed data and placing Gaussian priors on
the latent feature matrices, PMF tries to maximize the
log-likelihood of the posterior distribution on the user
and item features as follows:

LPMF = −
∑

(i,j,x)∈Q

(x− UTi Vj)2
2σ2

− ‖U‖
2
F

2σ2
U

− ‖V ‖
2
F

2σ2
V

.

(6)

This is equivalent to minimizing a squared loss with
regularization defined as follows:

E =
1

2

∑

(i,j,x)∈Q
(x−UTi Vj)2+

λU
2
‖U‖2F+

λV
2
‖V ‖2F , (7)

where λU = σ2/σ2
U and λV = σ2/σ2

V are positive con-
stants to control the trade-off between the loss and the
regularization terms. ‖ · ‖2F denotes the Frobenious
norm.

After training the PMF model via gradient descent
or stochastic gradient algorithms [22], the predicted
rating that user i would assign to item j can be com-
puted as the expected mean of the Gaussian distribu-
tion x̂ij = UTi Vj .

3.2 Response Aware PMF

In Sec. 2, we have demonstrated that by neglecting
response patterns, not only do we lose the potential
information that might boost the model performance,
but also can it lead to incorrect or biased parame-
ters estimation. Due to the effectiveness and inter-
pretability of PMF, we will unify it with explicit re-
sponse models, which we refer to as Response Aware
PMF (RAPMF).

Replacing θ in Eq. (2) by the low-rank latent feature
matrices in PMF, we have

P (R,X|U, V, µ, σ2) = P (R|X,U, V, µ, σ2)P (X|U, V, σ2).
(8)

The probability of full model, P (R,X|U, V, µ, σ2), is
decomposed into data model P (X|U, V, σ2) and the
missing data model P (R|X,U, V, µ, σ2).

3.3 Response Model

Modeling the missing data successfully requires a cor-
rect and tractable distribution on the response pat-
terns. Bernoulli distribution is an intuitive distribu-
tion to explain data missing phenomena [16]. De-
pending on whether users’ and items’ features are in-
corporated, we propose two response models, rating
dominant response model and context-aware response
model.

3.4 Rating Dominant Response Model

For the sake of simplification, we assume the proba-
bility that a user chooses to rate an item follows a
Bernoulli distribution given the rating assigned is k.
Hence, for a scale of 1 to D, the rating dominant re-
sponse model has D parameters µ1, µ2, · · · , µD.

If X is fully observed, then the response mechanism
can be modeled as [16]:

P (R|X,U, V, µ, σ2) = P (R|X,µ)

=

N∏

i=1

M∏

j=1

D∏

k=1

(µ
[rij=1]
k (1− µk)[rij=0])[xij=k], (9)

where [r = 0] is an indicator variable that outputs 1
if the expression is valid and 0 otherwise. It is noted
that Eq. (9) adopts the “winner-take-all” scheme, i.e.,
a hard assignment scheme, to model users’ response
on a particular rating.

However, in real-world recommender system, the data
is not fully observed. The “winner-take-all” scheme
brings the risk of deteriorating assignment probability
when the data is recovered based on the learned model.
Hence, we adopt a soft assignment using probability
of the possible rating values in the response model as
follows:

P (R|X,U, V, µ, σ2) = P (R|U, V, µ, σ2)

=
N∏

i=1

M∏

j=1

D∑

k=1

(µ
[rij=1]
k (1− µk)[rij=0])P (xij = k|U, V, σ2),

(10)

where P (X|U, V, σ2), the probability of X being as-
signed to k, can be set to N (k|UTV, σ2) as is in [22].

To relieve the inaccuracy issue when recovering the
original model, we further introduce a discount pa-
rameter β on the assignment probability

P (R|X,U, V, µ, σ2) = P (R|U, V, µ, σ2) (11)

∝
N∏

i=1

M∏

j=1

(
D∑

k=1

(µ
[rij=1]
k (1− µk)[rij=0])N (k|UTV, σ2))β ,

(12)
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where the parameter β, in the range of 0 to 1, can be
interpreted as the faith we have on the response model
relative to the data model. As β decreases, the effect of
the response model decreases correspondingly. When
β = 0, the RAPMF collapses to PMF.

More importantly, the expectations of Bernoulli dis-
tributions, µk’s should be in the range of 0 to 1. With
the performance consideration, the logistic function is
usually adopted to constrain the range of µk’s [15],

g(µk) =
1

1 + exp(−µk)
, k = 1, . . . , D. (13)

Similarly, we place a zero mean Gaussian prior on µk
to regularize it.

Note that in Eq. (10), we use only one parameter for
each possible rating value, so all the users and items
share the same probability as long as the rating values
are the same. This is a simple approach to capture
the intuition that the rating assigned to an item may
influence the chance that it got rated. This motivates
us to name this model as rating dominant response
model. We refer to PMF with Rating dominate re-
sponse model as RAPMF-r.

By incorporating the response model in Eq. (12) and
the PFM model in Eq. (6) into RAPMF in Eq. (8), we
obtain the log-likelihood of the RAPMF-r as follows:

L(U, V, σ2, µ)

= β
N∑

i=1

M∑

j=1

log(
D∑

k=1

αkijN (k|UTV, σ2))− 1

2σ2
µ

‖µ‖2−

∑

(i,j,x)∈Q

(xij − UTi Vj)2
2σ2

− 1

2σ2
U

‖U‖2F −
1

2σ2
V

‖V ‖2F + C,

(14)

where C denotes the constant terms and αkij is defined
as

αkij = (g(µk)[rij=1](1− g(µk))[rij=0]). (15)

The gradient of L with respect to Ui is:

∂L
∂Ui

=− β
M∑

j=1

∑D
k=1 αkijN (k|UTV, σ2)(UTi Vj − k)Vj∑D

k=1 αkijN (k|UTV, σ2)

−
M∑

j=1

(UTi Vj − xij)[rij = 1]Vj − λUUi. (16)

Similarly, the gradient of L with respect to Vj is:

∂L
∂Vj

=− β
N∑

i=1

∑D
k=1 αkijN (k|UTV, σ2)(UTi Vj − k)Ui∑D

k=1 αkijN (k|UTV, σ2)

−
M∑

j=1

(UTi Vj − xij)[rij = 1]Ui − λV Vj . (17)

Both Eq. (16) and Eq. (17) consist of three terms.
The first term corresponds to the change due to the
response model, the second term is the change due to
the data model and third is a regularization to avoid
overfitting. Note that by adjusting β, we effectively
alter the weight of the response model when updating
parameters.

Finally, the gradient of L with respect to µl is

∂L
∂µl

=
N∑

i=1

M∑

j=1

N (l|UTV, σ2)g′(µl)(−1)[rij=0]

∑D
k=1 αkijN (k|UTV, σ2)

− λµµl,

(18)
where g′(x) is the derivative of the sigmoid function
g(x). In Eq. (16), (17), (18), λU = σ2/σ2

U , λV =
σ2/σ2

V and λµ = σ2/σ2
µ and a multiplicative constant

1/σ2 is dropped in all three equations.

To learn model parameters, we alternatively update
U, V and µ using the gradient algorithm with a learn-
ing rate η by maximizing the log-likelihood. First we
update U, V by

Ui ← Ui + η
∂L
∂Ui

, Vj ← Vj + η
∂L
∂Vj

. (19)

Then using the updated U, V , we update µl by

µl ← µl + η
∂L
∂µl

. (20)

Similar to PMF [22], we linearly map the rating val-
ues in [1, D] to [0, 1] and pass UTi Vj through the sig-
moid function as defined in Eq. (13). To avoid clut-
tered notations, we drop all the logistic function in our
derivation process. After obtained the trained model,
we convert the expected value, g(UTi Vj), back to the
scale of 1 to D and set it as the predicted score of user
i’s rating on item j.

3.5 Context aware response model

In real-world recommender systems, the probability of
an item being rated may not only depend on users’
rating score. Many factors affect the response proba-
bilities. For example, in a movie rating system, some
popular movies such as Titanic, Avatar, may have
much higher probability of being rated than a mediocre
movie. Moreover, the features of users and items may
contain group structure [30]. One may argue this
might be caused by the higher inspection rate, i.e.,
it is likely that a reputable movie is being watched
more than an obscure one. Nevertheless, it still makes
sense that some items may have higher chance of re-
ceiving a rating due to the high quality that a user will
not hesitate to rate it. In addition, different user may
have distinct rating habits. Some users might be more
willing to provide ratings in order to get high quality
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recommendation. This is supported by the fact that
the number of ratings received from different users can
differ wildly in real-world deployed recommender sys-
tems.

To capture such factors, we generalize the rating dom-
inant response model by including both item features
and user features. To keep the model tractable and ef-
ficient, we introduce a linear combination of the item
features, user features and a constant related to the
rating scores and pass it through the logistic function
to model the response probability,

µijk =
1

1 + exp(−(δk + UTi θU + V Tj θV ))
. (21)

We refer to Eq. (21) as context-aware response model,
in which the response probability is on a per-user-
item-rating basis. More sophisticated relationship def-
inition can be referred to [28, 29, 31]. The PMF
integrated with the context-aware response model is
named RAPMF-c. Note that by setting θU and θV
to zero, we can recover the rating dominant response
model in Eq. (13).

The log-likelihood of RAPMF-c is in the same struc-
ture as RAPMF-r. We only need to substitute µk in
Eq. (15) by µijk defined in Eq. (21). Similarly, the
gradients of L with respect to Ui and Vj are

∂L
∂Ui

=β
M∑

j=1

∑D
k=1 tUkijN (k|UTV, σ2)

∑D
k=1 αkijN (k|UTV, σ2)

−
M∑

j=1

(UTi Vj − xij)[rij = 1]Vj − λUUi, (22)

∂L
∂Vj

=− β
N∑

i=1

∑D
k=1 tV kijN (k|UTV, σ2)

∑D
k=1 αkijN (k|UTV, σ2)

−
M∑

j=1

(UTi Vj − xij)[rij = 1]Ui − λV Vj , (23)

where the tUkij and tV kij is defined as following

tUkij = g′(µkij)(−1)[rij=0]θU − αkij(UTi Vj − k)Vj ,
(24)

tV kij = g′(µkij)(−1)[rij=0]θV − αkij(UTi Vj − k)Ui.
(25)

Correspondingly, the gradients of L with respect to δl,

θU and θV are

∂L
∂δl

=
N∑

i=1

M∑

j=1

N (l|UTV, σ2)g′(µkij)(−1)[rij=0]

∑D
k=1 αkijN (k|UTV, σ2)

−λµδl, (26)

∂L
∂θU

=
N∑

i=1

M∑

j=1

D∑
k=1

N (k|UTV, σ2)g′(µkij)(−1)[rij=0]Ui

∑D
k=1 αkijN (k|UTV, σ2)

−λµθU , (27)

∂L
∂θV

=

N∑

i=1

M∑

j=1

D∑
k=1

N (k|UTV, σ2)g′(µkij)(−1)[rij=0]Vj

∑D
k=1 αkijN (k|UTV, σ2)

−λµθV . (28)

To learn RAPMF-c, we adopt the alternatively updat-
ing scheme to maximize the log-likelihood, where the
updating rules of U and V are the same as those in
Eq. (19). After updating U and V , we update δl, θU
and θV by

ϑ ← ϑ+ η
∂L
∂ϑ

,

where ϑ is replaced by δl, θU and θV , respectively.

3.6 Complexity and Parallelization

The training complexity of RAPMF, O(MN), can be
quite time consuming compared with the PMF, which
is linear in number of observations, O(|Q|). However,
we argue that the time spent on training is worthy
since it can boost the model performance. More im-
portantly, the prediction complexity of RAPMF is the
same as PMF, O(K), which can be taken as a constant
time given a moderate sized K. Since the training
procedure can be performed offline, RAPMF can ac-
commodate the hard response time constraint in real-
world deployed recommender systems due to the suc-
cinct prediction cost.

In addition, RAPMF can be speedup by paralleliza-
tion. The intensive computation cost, calculating the
gradients, can be decoupled and distributed to a clus-
ter of computers. It is also possible to use online learn-
ing to speed up the training process [12].

4 Experiments and Results

We conduct empirical evaluation to compare the per-
formance of PMF [22], CPT-v [16], Logit-vd [15], and
our RAPMF. We try to answer the following questions:

1. How to collect data with benchmark response pat-
terns to evaluate the models fairly?
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2. How to design experiment protocols to evaluate
the performance the models with and without re-
sponse models fairly?

3. How the compared models perform on the col-
lected data?

4. How the parameters, β and λ, affect the perfor-
mance of RAPMF?

Section 4.1-4.4 answer the above questions, respec-
tively.

4.1 Datasets

We conduct our empirical analysis on two datasets: a
synthetic dataset and a real-world dataset, the Yahoo!
Music ratings for User Selected and Randomly Selected
songs, version 1.0 (Yahoo dataset)1.

Synthetic dataset. The data generation process con-
sists of two steps: generating full rating matrix and
generating response matrix. To generate the full rat-
ing matrix, we first generate the latent user features
and item features from zero-mean spherical Gaussian
as follows:

Ui ∼ N (0K , σ
2
UIK), Vj ∼ N (0K , σ

2
V IK),

where i = 1, . . . , N , j = 1, . . . ,M , 0K is a K-
dimensional vector with each element being 0 and IK
is the K×K identity matrix. The full rating matrix X
is then obtained by re-scale the sigmoid value of UTV
to 1 to D by Xij = dg(UTi Vj)×De.
To generate the response matrix R, we first set the
inspection probability of a user inspecting an item,
Pinspect. Then, the partitioning of inspected ratings
and un-inspected ratings are done by the Bernoulli
trails with success probability Pinspect. For all the in-
spected ratings, we model their response probability
by a Bernoulli distribution with the success probability
Pk, where k ∈ {1, 2, . . . , D}. Table 2 summarizes the
parameters used for generating the synthetic dataset.
The parameters are selected so that they can faith-
fully simulate real users’ ratings and response behav-
iors. The rating probabilities Pk are chosen according
to Fig. 1. To minimize the effect of randomness, we
generate the dataset independently 10 times and re-
port the average result in the following. On average,
we provide about 3.3% of the full matrix as training
set, around 3.4% as testing set for traditional protocol,
around 17.3% as testing set for adversarial protocol
and all the remaining 80% as testing set for realistic
protocol.

Yahoo dataset. It provides a unique opportunity
to investigate the response ignorance problem. The
dataset contains 311,704 training ratings collected

1http://webscope.sandbox.yahoo.com

Table 2: Parameters for generating the synthetic
dataset.

N M D K Pinspect
1000 1000 5 5 0.2

P1 P2 P3 P4 P5

0.073 0.068 0.163 0.308 0.931

from 15,400 users on 1,000 songs during the normal
interaction between the users and the Yahoo! Music
system, with at least 10 ratings for each user. Dur-
ing a survey conducted by Yahoo! Research, exactly
10 songs randomly selected from these 1,000 songs
are presented to the user to listen and rate. In to-
tal there are 5,400 users participated this survey and
these 54,000 ratings are the testing ratings.

4.2 Setup and Evaluation Metrics

In a real-world deployed recommender system, the sta-
tus of an item given a user follows exactly one of
the three types: un-inspected, inspected-unrated, and
inspected-rated. Traditional collaborative filtering ap-
proaches separate the inspected-rated data into train-
ing set and test set and evaluate the model on the
test set. Since both the training set and the test set
belongs to the inspected-rated type, their rating distri-
butions are the same. Thus, the traditional evaluation
scheme may hide the significance of the ignoring re-
sponse model. In the experiment, we first investigate
two existing experimental protocols:

• Traditional protocol: Both the training set and
the test set are randomly selected from inspected-
rated items together with their rating users and
assigned scores. This is exactly the traditional
experiment protocol [22].
• Realistic protocol: The training set is ran-

domly selected from inspected-rated items, but
the test set is randomly selected from un-
inspected items. This is an experimental protocol
adopted in [15, 16]. This protocol captures the
ultimate goal of a recommender system, i.e., rec-
ommending un-inspected items to potential users
who are interested.

Moreover, we will investigate a new experimental pro-
tocol:

• Adversarial protocol: The training set is ran-
domly selected from inspected-rated items, but
the test set is randomly selected from inspected-
unrated items. This setting tests the model’s per-
formance when the distribution of the training set
and test are very divergent. It can reveal the prop-
erty of the model in some real-world cases where
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most of inspected-rated items receive very high
scores, while those inspected-unrated items have
low scores. This setting also demonstrates the
model performance when we have an adversary
that manipulates the responses.

For the synthetic dataset, we use the same training set
for all three protocols. For various protocols, different
test set can reveal different properties of the PMF with
and without the response models. We report the av-
erage performance on the 10 independently generated
datasets.

For Yahoo dataset, we use only traditional and realistic
protocol and do not evaluate the adversarial protocol
due to the missing of necessary inspection information.
For the traditional protocol, we perform 10 fold cross
validation on the training ratings. For the realistic
protocol, we train the model using training ratings and
test on the testing ratings. We perform the experiment
10 times and report the average results.

In the experiment, we use Root Mean Square
Error (RMSE) to evaluate the performance of
various approaches [16, 22, 27], i.e., RMSE =√

1/|T |∑(i,j,x)∈T (x̂ij − x)2, where T is the set of

(i, j, x) triplets reserved for testing and x̂ij is model
prediction for user i’s rating on item j.

4.3 Model Comparison

For both the synthetic dataset and Yahoo dataset, we
randomly select 10% of the testing ratings from real-
istic protocol as validation set to tune the parameters
(more advanced techniques can be referred to [20]):

• λU and λV : They are tuned by the grid
search scheme, i.e., first selecting from
{10−3, 10−2, 10−1, 100, 10, 102}, respectively.
We then fine-tune the range to achieve the best
performance of PMF; see an example in Fig. 3(a).
• β: We first fix the optimal λU and λV

obtained from PMF, we then tune it in
{0.0, 10−3, 10−2, 10−1, 1.0} and fine-tune it fur-
ther for RAPMF-r; see an example in Fig. 3(b).
• λµ: As shown later in Fig. 3(c), this parameter is

insensitive on a large range.

These parameters are then used across different proto-
cols. The hyper-parameters used for CPT-v and Logit-
vd follow the settings used in [15]. We choose K = 5
as the latent dimension size for all the experiments.
All the models are trained using 500 iterations. Ac-
cording to our experience, the change in performance
after 200 iterations is negligible.

Figure 2 shows the results of various models’ perfor-
mance under different protocols on both the synthetic
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Figure 2: Relative performance of various models.
Smaller value indicates a better model performance.

and Yahoo datasets. Figure 2(a) shows the results
on the synthetic datasets. We see that PMF per-
forms best under traditional protocol. This is expected
because under the traditional setting, the testing set
and the training set have exactly the same distribu-
tion. The response model does not help. However,
under realistic and adversarial protocol, the proposed
RAPMF-r outperforms PMF by 5.5% and 9.2%, with
95% confidence level on the paired t-test, respectively.
The RAPMF-c performs slightly worse than RAPMF-
r. This is probably due to the reason that we does
not take the user and item features into account when
generating the dataset.

More importantly, the learned rating probability for
a typical run of RAPMF-r is [0.0125, 0.0124, 0.0155,
0.0267, 0.105]. Comparing this with the parameter
used in Table 2 when generating the data, we see that
although RAPMF cannot recover the rating probabil-
ities exactly, the overall trend is captured quite pre-
cisely. This explains the significant performance boost
in realistic and adversarial protocol.

Figure 2(b) shows the results on the Yahoo dataset.
Again, PMF attains the best performance under tradi-
tional protocol. Under realistic protocol, the RAPMF-
r and RAPMF-c outperforms PMF by 4.1% and 4.9%,
with 95% confidence level on the paired t-test, respec-
tively. The performance gain is slightly less than that
in the synthetic dataset, probably due to the reason
that the rating probability in real-world dataset is not
as dynamic as the value we choose in Table 2. The per-
formance boost gained from context-awareness is not
as significant as we have expected. This result hints
that the rating value might impact a user’s decision on
whether to rate the item more than the user and item
features.

4.4 Sensitivity Analysis

In the following, we investigate how the model param-
eters affect the performance of RAPMF. All the sen-
sitivity analysis is done under the realistic setting in
one-trial of the generated synthetic dataset.
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Figure 3: Sensitivity analysis of hyper-parameters on RAPMF on one-trial test.

4.4.1 Impact of β

The faith parameter β is arguably the most important
parameter in our RAPMF model. As has been dis-
cussed in Section 3, we adopt a soft-margin approxima-
tion of the ideal hard-margin response model. When
making this approximation, we unavoidably introduce
some bias in the response model because we cannot
fully recover the true U and V . Hence, we introduce
β to control the weight of the response model.

Figure 3(b) plots the performance of RAPMF versus
β on the logarithmic scale. When β = 0, RAPMF
fall back to PMF, whose performance is 1.015, corre-
sponding to the most left point in Fig. 3(b). Clearly,
by incorporating an explicit response model, RAPMF
is able to beat PMF by a large margin (nearly 5%) by
using a proper β value. However, if we use too large a
β, we quickly lose the boost provided by the response
model. An observation of the experiment is that when
β is too large, the model does not converge. This is
because the model training starts from randomly ini-
tialized U and V , a large weight on the response model
will pull the model away from the true model and cause
divergence.

4.4.2 Impact of λ′s

The regularization parameters λ are placed on U , V
and µ. Since in the dataset, users and items are sym-
metric, we use the same regularization parameter λUV
for U and V and use another parameter λµ to control
µ.

Figure 3(a) shows the impact of λUV on the perfor-
mance of RAPMF. When λUV is very small, although
the RAPMF is able to fit the training data very well,
it does not generalize well to the test set. This is a sign
of over-fitting. As λUV becomes larger, which limits
the norms of U and V , the training RMSE increases
but the test RMSE decreases gradually. However, af-
ter a turning point, both the training RMSE and test
RMSE start to increase. This is when the regulariza-
tion is too stringent that it hinders the proper fitting
of the model.

Figure 3(c) shows the impact of λµ on the model per-
formance. As we can see, it is basically a straight line
in a large range from 10−3 to 104, while the RMSE is
changed only from 0.9714 to 0.9734, a very small scale.
The effect of λµ is inappreciable. This is probably
due to the fact that µ is a parameter in D-dimension
(D=5) and no significant over-fitting can occur.

5 Conclusion and Future Work

In this paper, we propose two response models, rating
dominant and context-aware response models, to cap-
ture users’ response patterns. Further, we unify the
response models with one of famous collaborative fil-
tering model-based methods, the Probabilistic Matrix
Factorization, to establish the Response Aware Prob-
abilistic Matrix Factorization framework (RAPMF).
The RAPMF also generalizes PMF as its special case.
Empirically, we verify the performance of RAPMF
under carefully designed experimental protocols and
show that RAPMF performs best when it tries to ful-
fill the ultimate goal of real-world recommender sys-
tems, i.e., recommending items to those who may be
interested in. The empirical evaluation demonstrates
the potential of our RAPMF model in real-world rec-
ommender system deployment.

There are several interesting directions worthy of con-
sidering for future study. One direction is to study
how to model the response when the response patterns
are hidden. The second fascinating avenue is to study
how to speed up our RAPMF through parallelization,
online learning, or sampling techniques. The third di-
rection is to design a smart way to efficiently tune the
hyper-parameters or to design the learning scheme to
automatically learn the model parameters.
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Abstract

Large-scale multiple testing tasks often ex-
hibit dependence, and leveraging the depen-
dence between individual tests is still one
challenging and important problem in statis-
tics. With recent advances in graphical mod-
els, it is feasible to use them to perform mul-
tiple testing under dependence. We propose
a multiple testing procedure which is based
on a Markov-random-field-coupled mixture
model. The ground truth of hypotheses is
represented by a latent binary Markov ran-
dom field, and the observed test statistics ap-
pear as the coupled mixture variables. The
parameters in our model can be automati-
cally learned by a novel EM algorithm. We
use an MCMC algorithm to infer the poste-
rior probability that each hypothesis is null
(termed local index of significance), and the
false discovery rate can be controlled accord-
ingly. Simulations show that the numeri-
cal performance of multiple testing can be
improved substantially by using our proce-
dure. We apply the procedure to a real-world
genome-wide association study on breast can-
cer, and we identify several SNPs with strong
association evidence.

1 Introduction

Observations from large-scale multiple testing prob-
lems often exhibit dependence. For instance, in
genome-wide association studies, researchers collect
hundreds of thousands of highly correlated genetic
markers (single-nucleotide polymorphisms, or SNPs)
with the purpose of identifying the subset of mark-
ers associated with a heritable disease or trait. In
functional magnetic resonance imaging studies of the
brain, thousands of spatially correlated voxels are col-

lected while subjects are performing certain tasks,
with the purpose of detecting the relevant voxels. The
most popular family of large-scale multiple testing
procedures is the false discovery rate analysis, such
as the p-value thresholding procedures (Benjamini &
Hochberg, 1995, 2000; Genovese & Wasserman, 2004),
the local false discovery rate procedure (Efron et al.,
2001), and the positive false discovery rate procedure
(Storey, 2002, 2003). However, all these classical mul-
tiple testing procedures ignore the correlation struc-
ture among the individual factors, and the question
is whether we can reduce the false non-discovery rate
by leveraging the dependence, while still controlling the
false discovery rate in multiple testing.

Graphical models provide an elegant way of represent-
ing dependence. With recent advances in graphical
models, especially more efficient algorithms for infer-
ence and parameter learning, it is feasible to use these
models to leverage the dependence between individ-
ual tests in multiple testing problems. One influen-
tial paper (Sun & Cai, 2009) in the statistics com-
munity uses a hidden Markov model to represent the
dependence structure, and has shown its optimality
under certain conditions and its strong empirical per-
formance. It is the first graphical model (and the only
one so far) used in multiple testing problems. How-
ever, their procedure can only deal with a sequential
dependence structure, and the dependence parameters
are homogenous. In this paper, we propose a multi-
ple testing procedure based on a Markov-random-field-
coupled mixture model which allows arbitrary depen-
dence structures and heterogeneous dependence param-
eters. This extension requires more sophisticated al-
gorithms for parameter learning and inference. For
parameter learning, we design an EM algorithm with
MCMC in the E-step and persistent contrastive di-
vergence algorithm (Tieleman, 2008) in the M-step.
We use the MCMC algorithm to infer the posterior
probability that each hypothesis is null (termed local
index of significance or LIS). Finally, the false discov-
ery rate can be controlled by thresholding the LIS.
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Section 2 introduces related work and our procedure.
Sections 3 and 4 evaluate our procedure on a vari-
ety of simulations, and the empirical results show that
the numerical performance can be improved substan-
tially by using our procedure. In Section 5, we apply
the procedure to a real-world genome-wide association
study (GWAS) on breast cancer, and we identify sev-
eral SNPs with strong association evidence. We finally
conclude in Section 6.

2 Method

2.1 Terminology and Previous Work

Table 1: Classification of tested hypotheses

Not rejected Rejected Total
Null N00 N10 m0

Non-null N01 N11 m1

Total S R m

Suppose that we carry out m tests whose results can
be categorized as in Table 1. False discovery rate
(FDR), defined as E(N10/R|R > 0)P (R > 0), de-
picts the expected proportion of incorrectly rejected
null hypotheses (Benjamini & Hochberg, 1995). False
non-discovery rate (FNR), defined as E(N01/S|S >
0)P (S > 0), depicts the expected proportion of false
non-rejections in those tests whose null hypotheses are
not rejected (Genovese & Wasserman, 2002). An FDR
procedure is valid if it controls FDR at a nominal level,
and optimal if it has the smallest FNR among all the
valid FDR procedures (Sun & Cai, 2009). The effects
of correlation on multiple testing have been discussed,
under different assumptions, with a focus on the va-
lidity issue (Benjamini & Yekutieli, 2001; Finner &
Roters, 2002; Owen, 2005; Sarkar, 2006; Efron, 2007;
Farcomeni, 2007; Romano et al., 2008; Wu, 2008; Blan-
chard & Roquain, 2009). The efficiency issue has also
been investigated (Yekutieli & Benjamini, 1999; Gen-
ovese et al., 2006; Benjamini & Heller, 2007; Zhang
et al., 2011), indicating FNR could be decreased by
considering dependence in multiple testing. Several
approaches have been proposed, such as dependence
kernels (Leek & Storey, 2008), factor models (Friguet
et al., 2009) and principal factor approximation (Fan
et al., 2012). Sun & Cai (2009) explicitly use a hidden
Markov model (HMM) to represent the dependence
structure and analyze the optimality under the com-
pound decision framework (Sun & Cai, 2007). How-
ever, their procedure can only deal with sequential de-
pendence, and it uses only a single dependence param-
eter throughout. In this paper, we replace HMM with
a Markov-random-field-coupled mixture model, which
allows richer and more flexible dependence structures.
The Markov-random-field-coupled mixture models are
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Figure 1: The MRF-coupled mixture model for three
dependent hypotheses Hi, Hj and Hk with observed
test statistics (xi, xj and xk) and latent ground truth
(θi,θj and θk). The dependence is captured by poten-
tial functions parameterized by φij ,φjk and φik, and
coupled mixtures are parameterized by ψ.

related to the hidden Markov random field models used
in many image segmentation problems (Zhang et al.,
2001; Celeux et al., 2003; Chatzis & Varvarigou, 2008).

2.2 Our Multiple Testing Procedure

Let x = (x1, ..., xm) be a vector of test statistics from
a set of hypotheses (H1, ...,Hm). The ground truth
of these hypotheses is denoted by a latent Bernoulli
vector θ = (θ1, ..., θm) ∈ {0, 1}m, with θi = 0 denoting
that the hypothesis Hi is null and θi = 1 denoting that
the hypothesis Hi is non-null. The dependence among
these hypotheses is represented as a binary Markov
random field (MRF) on θ. The structure of the MRF
can be described by an undirected graph G(V, E) with
the node set V and the edge set E . The dependence
between Hi and Hj is denoted by an edge connect-
ing nodei and nodej in E , and the strength of depen-
dence is parameterized by the potential function on
the edge. Suppose that the probability density func-
tion of the test statistic xi given θi = 0 is f0, and the
density of xi given θi = 1 is f1. Then, x is an MRF-
coupled mixture. The mixture model is parameterized
by a parameter set ϑ = (φ,ψ), where φ parameterizes
the binary MRF and ψ parameterizes f0 and f1. For
example, if f0 is standard normal N (0, 1) and f1 is
noncentered normal N (µ, 1), then ψ only contains pa-
rameter µ. Figure 1 shows the MRF-coupled mixture
model for three dependent hypotheses Hi, Hj and Hk.

In our MRF-coupled mixture model, x is observable,
and θ is hidden. With the parameter set ϑ = (φ,ψ),
the joint probability density over x and θ is

P (x,θ|φ,ψ) = P (θ;φ)
∏m

i=1
P (xi|θi;ψ). (1)
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Define the marginal probability that Hi is null given
all the observed statistics x under the parameters in
ϑ, Pϑ(θi = 0|x), to be the local index of significance
(LIS) for Hi (Sun & Cai, 2009). If we can accurately
calculate the posterior marginal probabilities of θ (or
LIS), then we can use a step-up procedure to control
FDR at the nominal level α as follows (Sun & Cai,
2009). We first sort LIS from the smallest value to the
largest value. Suppose LIS(1), LIS(2), ..., and LIS(m)

are the ordered LIS, and the corresponding hypotheses
are H(1), H(2),..., and H(m). Let

k = max

{
i :

1

i

∑i

j=1
LIS(j) ≤ α

}
. (2)

Then we reject H(i) for i = 1, ..., k.

Therefore, the key inferential problem that we need
to solve is that of computing the posterior marginal
distribution of the hidden variables θi given the test
statistics x, namely Pϑ(θi = 0|x), for i = 1, ...,m.
It is a typical inference problem if the parameters in
ϑ are known. Section 2.3 provides possible inference
algorithms for calculating Pϑ(θi = 0|x) for given ϑ.
However, ϑ is usually unknown in real-world applica-
tions, and we need to estimate it. Section 2.4 provides
a novel EM algorithm for parameter learning in our
MRF-coupled mixture model.

2.3 Posterior Inference

Now we are interested in calculating Pϑ(θi = 0|x) for a
given parameter set ϑ. One popular family of inference
algorithms is the sum-product family (Kschischang et
al., 2001), also known as belief propagation (Yedidia
et al., 2000). For loop-free graphs, belief propagation
algorithms provide exact inference results with a com-
putational cost linear in the number of variables. In
our MRF-coupled mixture model, the structure of the
latent MRF is described by a graph G(V, E). When
G is chain structured, the instantiation of belief prop-
agation is the forward-backward algorithm (Baum et
al., 1970). When G is tree structured, the instanti-
ation of belief propagation is the upward-downward
algorithm (Crouse et al., 1998). For graphical mod-
els with cycles, loopy belief propagation (Murphy et
al., 1999; Weiss, 2000) and the tree-reweighted algo-
rithm (Wainwright et al., 2003a) can be used for ap-
proximate inference. Other inference algorithms for
graphical models include junction trees (Lauritzen &
Spiegelhalter, 1988), sampling methods (Gelfand &
Smith, 1990), and variational methods (Jordan et al.,
1999). Recent papers (Schraudolph & Kamenetsky,
2009; Schraudolph, 2010) discuss exact inference al-
gorithms on binary Markov random fields which al-
low loops. In our simulations, we use belief propaga-

tion when the graph G has no loops. When G has
loops (e.g. in the simulations on genetic data and
the real-world application), we use a Markov chain
Monte Carlo (MCMC) algorithm to perform inference
for Pϑ(θi = 0|x).

2.4 Parameters and Parameter Learning

In our procedure, the dependence among these hy-
potheses is represented by a graphical model on the
latent vector θ parameterized by φ, and observed test
statistics x are represented by the coupled mixture pa-
rameterized by ψ. In Sun and Cai’s work on HMMs,
φ is the transition parameter and ψ is the emission
parameter. One implicit assumption in their work is
that the transition parameter and the emission param-
eter stay the same for i(i = 1, ...,m). Our extension
to MRFs also allows us to untie these parameters. In
the second set of basic simulations in Section 3, we
make φ and ψ heterogeneous and investigate how this
affects the numerical performance. In the simulations
on genetic data in Section 4 and the real-world GWAS
application in Section 5, we have different parameters
for SNP pairs with different levels of correlation.

In our model, learning (φ,ψ) is difficult for two rea-
sons. First, learning parameters is difficult by nature
in undirected graphical models due to the global nor-
malization constant (Wainwright et al., 2003b; Welling
& Sutton, 2005). State-of-the-art MRF parameter
learning methods include MCMC-MLE (Geyer, 1991),
contrastive divergence (Hinton, 2002) and variational
methods (Ganapathi et al., 2008). Several new sam-
pling methods with higher efficiency have been re-
cently proposed, such as persistent contrastive diver-
gence (Tieleman, 2008), fast-weight contrastive di-
vergence (Tieleman & Hinton, 2009), tempered tran-
sitions (Salakhutdinov, 2009), and particle-filtered
MCMC-MLE (Asuncion et al., 2010). In our proce-
dure, we use the persistent contrastive divergence algo-
rithm to estimate parameters φ. Another difficulty is
that θ is latent and we only have one observed training
sample x. We use an EM algorithm to solve this prob-
lem. In the E-step, we run our MCMC algorithm in
Section 2.3 to infer the latent θ based on the currently
estimated parameters ϑ = (φ,ψ). In the M-step, we
run the persistent contrastive divergence (PCD) algo-
rithm (Tieleman, 2008) to estimate φ from the cur-
rently inferred θ. Note that PCD is also an iterative
algorithm, and we run it until it converges in each
M-step. In the M-step, we also do a maximum likeli-
hood estimation of ψ from the currently inferred θ and
observed x. We run the EM algorithm until both φ
and ψ converge. Although this EM algorithm involves
intensive computation in both E-step and M-step, it
converges very quickly in our experiments.

513



3 Basic Simulations

In the basic simulations, we investigate the numerical
performance of our multiple testing approach on dif-
ferent fabricated dependence structures where we can
control the ground truth parameters. We first simulate
θ from P (θ;φ) and then simulate x from P (x|θ;ψ)
under a variety of settings of ϑ = (φ,ψ). Because
we have the ground truth parameters, we have two
versions of our multiple testing approach, namely the
oracle procedure (OR) and the data-driven procedure
(LIS). The oracle procedure knows the true parame-
ters ϑ in the graphical models, whereas the data-driven
procedure does not and has to estimate ϑ. The base-
line procedures include the BH procedure (Benjamini
& Hochberg, 1995) and the adaptive p-value proce-
dure (AP) (Benjamini & Hochberg, 2000; Genovese &
Wasserman, 2004) which are compared by Sun & Cai
(2009). We include another baseline procedure, the
local false discovery rate procedure (localFDR) (Efron
et al., 2001). The adaptive p-value procedure requires
a consistent estimate of the proportion of the true null
hypotheses. The localFDR procedure requires a con-
sistent estimate of the proportion of the true null hy-
potheses and the knowledge of the distribution of the
test statistics under the null and under the alternative.
In our simulations, we endow AP and localFDR with
the ground truth values of these in order to let these
baseline procedures achieve their best performance.

In the simulations, we assume that the observed xi
under the null hypothesis (namely θi = 0) is standard-
normally distributed and that xi under the alter-
native hypothesis (namely θi = 1) is normally dis-
tributed with mean µ and standard deviation 1.0.
We choose the setup and parameters to be consistent
with the work of Sun & Cai (2009) when possible.
In total, we consider three MRF models, namely a
chain-structured MRF, tree-structured MRF and grid-
structured MRF. For chain-MRF, we choose the num-
ber of hypotheses m = 3, 000. For tree-MRF, we
choose perfect binary trees of height 12 which yields a
total number of 8, 191 hypotheses. For grid-MRF, we
choose the number of rows and the number of columns
to be 100 which yields a total number of 10, 000 hy-
potheses. In all the experiments, we choose the num-
ber of replications N = 500 which is also the same as
the work of Sun & Cai (2009). In total, we have three
sets of simulations with different goals as follows.

Basic simulation 1: We stay consistent with Sun
& Cai (2009) in the simulations except that we use
the three MRF models. In all three structures, (θi)

m
1

is generated from the MRFs whose potentials on the

edges are

(
φ 1− φ

1− φ φ

)
. Therefore, φ only contains

parameter φ, and ψ only includes parameter µ.

Basic simulation 2: One assumption in basic sim-
ulation 1 is that the parameters φ and µ are ho-
mogeneous in the sense that they stay the same for
i(i = 1, ...,m). This assumption is carried down
from the work of Sun & Cai (2009). However in
many real-world applications, the transition param-
eters can be different across the multiple hypotheses.
Similarly, the test statistics for the non-null hypothe-
ses, although normally distributed and standardized,
could have different µ values. Therefore, we investi-
gate the situation where the parameters can vary in
different hypotheses. The simulations are carried out
for all three different dependence structures aforemen-
tioned. In the first set of simulations, instead of fixing
φ, we choose φ’s uniformly distributed on the interval
(0.8−∆(φ)/2, 0.8+∆(φ)/2). In the second set of sim-
ulations, instead of fixing µ, we choose µ’s uniformly
distributed on the interval (2.0−∆(µ)/2, 2.0+∆(µ)/2).
The oracle procedure knows the true parameters. The
data-driven procedure does not know the parameters,
and assumes the parameters are homogeneous.

Basic simulation 3: Another implicit assumption in
basic simulation 1 is that each individual test in the
multiple testing problem is exact. Many widely used
hypothesis tests, such as Pearson’s χ2 test and the like-
lihood ratio test, are asymptotic in the sense that we
only know the limiting distribution of the test statis-
tics for large samples. As an example, we simulate the
two-proportion z-test in this section and show how the
sample size affects the performance of the procedures
when the individual test is asymptotic. Suppose that
we have n samples (half of them are positive samples
and half of them are negative samples). For each sam-
ple, we have m Bernoulli distributed attributes. A
fraction of the attributes are relevant. If the attribute
A is relevant, then the probability of “heads” in the
positive samples (p+A) is different from that in the neg-
ative samples (p−A). p+A and p−A are the same if A is non-
relevant. For each individual test, the null hypothesis
is that the attribute is not relevant, and the alternative
hypothesis is otherwise. The two-proportion z-test can
be used to test whether p+A−p−A is zero, which yields an
asymptotic N (0, 1) under the null and N (µ, 1) under
the alternative (µ is nonzero). In the simulations, we
fix µ, but vary the sample size n, and apply the afore-
mentioned tree-MRF structure (m = 8, 191). The or-
acle procedure and localFDR only know the limiting
distribution of the test statistics and assume the test
statistics exactly follow the limiting distributions even
when the sample size is small.

Figure 2 shows the numerical results in basic simula-
tion 1. Figures (1a)-(1f) are for the chain structure.
Figures (2a)-(2f) are for tree structure. Figures (3a)-
(3f) are for the grid structure. In Figures (1a)-(1c),
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Figure 2: Comparison of BH(©), AP(4), localFDR(×), OR (+), and LIS (�) in basic simulation 1: (1) chain-
MRF, (2) tree-MRF, (3) grid-MRF; (a) FDR vs φ, (b) FNR vs φ, (c) ATP vs φ, (d) FDR vs µ, (e) FNR vs µ,
(f) ATP vs µ.

(2a)-(2c) and (3a)-(3c), we set µ = 2 and plot FDR,
FNR and the average number of true positives (ATP)
when we vary φ between 0.2 and 0.8. In Figures (1d)-
(1f), (2d)-(2f) and (3d)-(3f), we set φ = 0.8 and plot
FDR, FNR and ATP when we vary µ between 1.0
and 4.0. The nominal FDR level is set to be 0.10.
From Figure 2, we can observe comparable numerical
results between the chain structure and tree structure.
The FDR levels of all five procedures are controlled
at 0.10 and BH is conservative. From the plots for
FNR and ATP, we can observe that the data-driven
procedure performs almost the same as the oracle pro-
cedure, and they dominate the p-value thresholding
procedures BH and AP. The oracle procedure and the
data-driven procedure also dominate localFDR except
when φ = 0.5, when they perform comparably. This
is to be expected because the dependence structure is
no longer informative when φ is 0.5. In this situation
when the hypotheses are independent, our procedure
reduces to the localFDR procedure. As φ departs from
0.5 and approaches either 0 or 1.0, the difference be-
tween OR/LIS and the baselines gets larger. When
the individual hypotheses are easy to test (large µ val-
ues), the differences between them are not substantial.
When we turn to the grid structure, the numerical per-
formance is similar to that in the chain structure and
the tree structure except for two observations. First,
the data-driven procedure does not appear to control
the FDR at 0.1 when µ is small (e.g. µ = 1.0), al-
though the oracle procedure does, which indicates the
parameter estimation in the EM algorithm is difficult
when µ is small. In other words, with a limited number

of hypotheses, it is difficult to estimate the pairwise po-
tential parameters if the test statistics of the non-nulls
do not look much different from the test statistics of
the nulls. The second observation is that the slopes of
the FNR curve and ATP curve for the grid structure
are different from those in the chain and tree struc-
tures. The reason is that the connectivity in the grid
structure is higher than that in the chain and tree.
Therefore we can observe that even when the individ-
ual hypotheses are difficult to test (small µ values),
the FNR is still low because each individual hypothe-
sis has more neighbors in the grid than in the chain or
tree, and the neighbors are informative.

Figure 3 shows the numerical performance in basic
simulation 2. Figures (1a)-(1f), (2a)-(2f), and (3a)-
(3f) correspond to the chain structure, the tree struc-
ture and the grid structure respectively. In Figures
(1a)-(1c), (2a)-(2c), and (3a-3c), we set µ = 2 and
vary ∆(φ) between 0 and 0.4. In Figures (1d)-(1f),
(2d)-(2f), and (3d)-(3f), we set φ = 0.8 and vary ∆(µ)
between 0 and 4.0. Again, the nominal FDR level is
set to be 0.10. From Figure 3, we observe that all five
procedures control FDR at the nominal level and BH is
conservative when the transition parameter φ is het-
erogeneous. However, the data-driven procedure be-
comes more and more conservative as we increase the
variance of φ in the grid-structure. Nevertheless, the
data-driven procedure does not lose much efficiency
compared with the oracle procedure based on FNR
and ATP. Both the data-driven procedure and the or-
acle procedure dominate the three baselines. When
the µ parameter is heterogeneous, all five procedures
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Figure 3: Comparison of BH(©), AP(4), localFDR(×), OR (+), and LIS (�) in basic simulation 2: (1) chain-
MRF, (2) tree-MRF, (3) grid-MRF; (a) FDR vs ∆(φ), (b) FNR vs ∆(φ), (c) ATP vs ∆(φ), (d) FDR vs ∆(µ),
(e) FNR vs ∆(µ), (f) ATP vs ∆(µ).

are still valid, but the data-driven procedure becomes
more and more conservative as we increase the vari-
ance of µ. The data-driven procedure can be more con-
servative than the BH procedure when ∆(µ) is large
enough. The conservativeness appears most severe
in the grid-structure. However when we look at the
FNR and ATP, the data-driven procedure still dom-
inates BH, AP and localFDR substantially in all the
situations, although the data-driven procedure loses a
certain amount of efficiency compared with the oracle
procedure when the variance of µ gets large.
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Figure 4: Comparing BH(©), AP(4), localFDR(×),
OR(+), and LIS(�) in basic simulation 3: (a)FDR vs
n, (b)FNR vs n, (c)ATP vs n.

Figure 4 shows the results from basic simulation 3.
The oracle procedure and localFDR are liberal when
the sample size is small. This is because when the sam-
ple size is small, there exists a discrepancy between the
true distribution of the test statistic and the limiting
distribution. Quite surprisingly, the data-driven pro-
cedure stays valid. The reason is that the data-driven
procedure can estimate the parameters from data. The
data-driven procedure and the oracle procedure still
have comparable performance and enjoy a much lower

level of FNR compared with the baselines. For all the
basic simulations, we set the nominal FDR level to be
0.10. We have also replicated the basic simulations
by setting the nominal level to be 0.05, and similar
conclusions can be made.

4 Simulations on Genetic Data

Unlike the fabricated dependence structures in the ba-
sic simulations in Section 3, the dependence structure
in the simulations on genetic data in this section is
real. We simulate the linkage disequilibrium structure
of a segment on human chromosome 22, and treat a
test of whether a SNP is associated as one individual
test. We follow the simulation settings in the work of
Wu et al. (2010). We use HAPGEN2 (Su et al., 2011)
and the CEU sample of HapMap (The International
HapMap Consortium, 2003) (Release 22) to generate
SNP genotype data at each of the 2, 420 loci between
bp 14431347 and bp 17999745 on Chromosome 22. A
total of 685 out of 2, 420 SNPs can be genotyped with
the Affymetrix 6.0 array. These are the typed SNPs
that we use for our simulations. Within the overall
2, 420 SNPs, we randomly select 10 SNPs to be the
causal SNPs. All the SNPs on the Affymetrix 6.0 ar-
ray whose r2 values, according to HapMap, with any
of the causal SNPs are above t are set to be the as-
sociated SNPs. In the simulations, we report results
for three different t values, namely 0.8, 0.5 and 0.25.
We also simulate three different genetic models (ad-
ditive model, dominant model, and recessive model)
with different levels of relative risk (1.2 and 1.3). In
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total, we simulate 250 cases and 250 controls. The
experiment is replicated for 100 times and the aver-
age result is provided. With the simulated data, we
apply our multiple testing procedure (LIS) and three
baseline procedures: the BH procedure, the adaptive
p-value procedure (AP), and the local false discovery
rate procedure (localFDR). Because the dependence
structure is real and the ground truth parameters are
unknown to us, we do not have the oracle procedure
in the simulations on genetic data.

With the simulated genetic data, we use two com-
monly used tests in genetic association studies, namely
two-proportion z-test and Cochran-Armitage’s trend
test (CATT) (Cochran, 1954; Armitage, 1955; Slager
& Schaid, 2001; Freidlin et al., 2002) as the individual
tests for the association of each SNP. CATT also yields
an asymptotic N (0, 1) under the null and N (µ, 1) un-
der the alternative (µ is nonzero). Therefore, we pa-
rameterize ψ = (µ1, σ

2
1) where µ1 and σ2

1 are the mean
and variance of the test statistics under alternative.
The graph structure is built as follows. Each SNP
becomes a node in the graph. For each SNP, we con-
nect it with the SNP with the highest r2 value with it.
There are in total 490 edges in the graph. We further
categorize the edges into a high correlation edge set
Eh (r2 above 0.8), medium correlation edge set Em (r2

between 0.5 and 0.8) and low correlation edge set El
(r2 between 0.25 and 0.5). We have three different pa-
rameters (φh, φm, and φl) for the three sets of edges.
Then the density of θ in formula (1) takes the form

P (θ;φ) ∝ exp{
∑

(i,j)∈Eh
φhI(θi = θj)+

∑

(i,j)∈Em
φmI(θi = θj) +

∑

(i,j)∈El
φlI(θi = θj)},

(3)

where I(θi = θj) is an indicator variable that indicates
whether θi and θj take the same value. In the MCMC
algorithm, we run the Markov chain for 20, 000 iter-
ations with a burn-in of 100 iterations. In the PCD
algorithm, we generate 100 particles. In each iteration
of PCD learning, the particles move forward for 5 iter-
ations (the n parameter in PCD-n). The learning rate
in PCD gradually decreases as suggested by Tieleman
(2008). The EM algorithm converges after about 10 to
20 iterations, which usually take less than 10 minutes
on a 3.00GHz CPU.

Figure 5 shows the performance of the procedures in
the additive models with the homozygous relative risk
set to 1.2 and 1.3. The test statistics are from a two-
proportion z-test. We have also replicated the sim-
ulations on Cochran-Armitage’s trend test, and the
results are almost the same. In Figure 5, table (1)
summarizes the empirical FDR and the total number

of true positives (#TP) of our LIS procedure, BH, AP
and localFDR (lfdr), in the additive models with dif-
ferent (homozygous) relative risk levels, when we vary
t and when we vary the nominal FDR level α. We
regard a SNP having r2 above t with any causal SNP
as an associated SNP, and we regard a rejection of
the null hypothesis for an associated SNP as a true
positive. Our LIS procedure and localFDR are valid
while being conservative. BH and AP appear liberal
in some of the configurations. In any of the circum-
stances, our LIS procedure can identify more associ-
ated SNPs than the baselines. We can find a clue to
why our procedure LIS is being conservative from the
results in Figure 3. In basic simulation 2, we observe
that when the parameters µ and φ are heterogeneous
and we carry out the data-driven procedure under the
homogeneous parameter assumption, the data-driven
procedure is conservative. The discrepancy between
the nominal FDR level and the empirical FDR level
increases as the parameters move further away from
homogeneity. Although we assign three different pa-
rameters φh, φm, and φl to Eh, Em and El respectively,
the edges within the same set (e.g. El) may still be
heterogeneous. The fact that the LIS procedure re-
captures more true positives than the baselines while
remaining more conservative in many configurations
indicates that the local indices of significance provide
a ranking more efficient than the ranking provided by
the p-values from the individual tests. Therefore, we
further plot the ROC curves and precision-recall (PR)
curves when we rank SNPs by LIS and by the p-values
from the two-proportion z-test. The ROC curve and
PR curve are vertically averaged from 100 replications.
Subfigures (2a)-(2f) are for the additive model with ho-
mozygous relative risk level set to be 1.2. Subfigures
(3a)-(3f) are for the additive model with homozygous
relative risk level set to be 1.3. It is observed that the
curves from LIS dominate those from the p-values from
individual tests in most places, which further suggests
that LIS provides a more efficient ranking of the SNPs
than the individual tests.

Figure 6 shows the performance of the procedures in
the dominant model and the recessive model with the
homozygous relative risk set to be 1.2. The test statis-
tics are from a two-proportion z-test. In Figure 6, ta-
ble (1) summarizes the empirical FDR and the total
number of true positives (#TP) of our LIS procedure,
BH, AP and localFDR (lfdr) in the dominant model
and the recessive model when we vary t and when we
vary the nominal FDR level α. Our LIS procedure and
localFDR are valid while being conservative in all con-
figurations, and they appear more conservative in the
recessive model than in the dominant model. On the
other hand, BH and AP appear liberal in the recessive
model. Our LIS procedure still confers an advantage
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 t = 0.8  t = 0.5  t = 0.25 
 LIS BH AP lfdr  LIS BH AP lfdr  LIS BH AP lfdr 

   
 

 
 

 
 

rr = 1.2 
α = 0.05 

FDR: 0.018 0.059 0.059 0.010  0.018 0.059 0.059 0.010  0.018 0.058 0.058 0.009 
#TP: 12 11 11 1  12 11 11 1  20 18 19 7 

α = 0.10 
FDR: 0.077 0.089 0.089 0.010  0.077 0.089 0.089 0.010  0.076 0.079 0.079 0.009 
#TP: 13 11 11 1  13 11 11 1  21 20 20 8 

rr = 1.3 
α = 0.05 

FDR: 0.047 0.044 0.054 0.015  0.047 0.044 0.064 0.005  0.046 0.044 0.064 0.014 
#TP: 16 4 4 1  16 4 4 1  22 10 10 6 

α = 0.10 
FDR: 0.067 0.104 0.104 0.015  0.067 0.104 0.104 0.005  0.066 0.103 0.103 0.014 
#TP: 18 15 15 1  18 15 15 1  27 21 21 6 

(1) 
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Figure 5: Comparison of BH, AP, localFDR and LIS in the additive models when we vary relative risk rr, t and
the nominal FDR level α. Table (1) summarizes results. Subfigures (2a)-(2f) shows ROC and PR curves of LIS
(solid red lines) and individual p-values (dashed green lines) with rr = 1.2. Subfigures (3a)-(3f) shows ROC and
PR curves of LIS (solid red lines) and individual p-values (dashed green lines) with rr = 1.3.

over the baselines in the dominant model. The LIS
procedure also recaptures almost the same number of
true positives as BH and AP while maintaining a much
lower FDR in the recessive model. Again, we further
plot the ROC curves and precision-recall curves when
we rank SNPs by LIS and by the p-values from in-
dividual tests. Subfigures (2a)-(2f) are for the domi-
nant model. Subfigures (3a)-(3f) are for the recessive
model. It is also observed that the curves from LIS
dominate those from the p-values from individual tests
in most places, which also suggests that LIS provides
a more efficient ranking.

5 Real-world Application

Our primary GWAS dataset on breast cancer is
from NCI’s Cancer Genetics Markers of Susceptibil-
ity (CGEMS) (Hunter et al., 2007). 528, 173 SNPs for
1, 145 cases and 1, 142 controls are genotyped on the
Illumina HumanHap500 array. Our secondary GWAS
dataset comes from Marshfield Clinic. The Personal-
ized Medicine Research Project (McCarty et al., 2005),
sponsored by Marshfield Clinic, was used as the sam-
pling frame to identify 162 breast cancer cases and
162 controls. The project was reviewed and approved

by the Marshfield Clinic IRB. Subjects were selected
using clinical data from the Marshfield Clinic Cancer
Registry and Data Warehouse. Cases were defined as
women having a confirmed diagnosis of breast can-
cer. Both the cases and controls had to have at least
one mammogram within 12 months prior to having a
biopsy. The subjects also had DNA samples that were
genotyped using the Illumina HumanHap660 array, as
part of the eMERGE (electronic MEdical Records and
Genomics) network by McCarty et al. (2011).

We apply our multiple testing procedure on the
CGEMS data. The settings of the procedure are the
same as in the simulations on genetic data in Section
4. The individual test is two-proportion z-test. Our
procedure reports 32 SNPs with LIS value of 0.0 (an
estimated probability 1.0 of being associated). We fur-
ther calculate the per-allele odds-ratio of these SNPs
on the Marshfield data, and 14 of them have an odds-
ratio around 1.2 or above. The details about the 14
SNPs are given in supplementary material. There are
two clusters among them. First, rs3870371, rs7830137
and rs920455 (on chromosome 8) locate near each
other and near the gene hyaluronan synthase 2 (HAS2)
which has been shown to be associated with invasive
breast cancer by many studies (Udabage et al., 2005;
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 t = 0.8  t = 0.5  t = 0.25 
 LIS BH AP lfdr  LIS BH AP lfdr  LIS BH AP lfdr 

   
    

 
    

 
    

Dominant 
α = 0.05 

FDR: 0.026 0.040 0.040 0.010  0.026 0.040 0.040 0.010  0.025 0.039 0.039 0.009 
#TP: 14 4 4 2  14 4 4 2  21 10 10 7 

α = 0.10 
FDR: 0.051 0.079 0.089 0.010  0.048 0.079 0.109 0.010  0.044 0.079 0.109 0.009 
#TP: 20 12 12 3  22 12 12 3  33 19 29 18 

Recessive 
α = 0.05 

FDR: 0.009 0.079 0.079 0.009  0.009 0.079 0.079 0.009  0.009 0.079 0.079 0.009 
#TP: 11 11 11 11  11 11 11 11  18 17 18 17 

α = 0.10 
FDR: 0.018 0.104 0.104 0.009  0.018 0.104 0.114 0.009  0.017 0.104 0.114 0.009 
#TP: 11 12 12 11  11 12 12 11  22 21 21 17 

(1) 
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Figure 6: Comparison of BH, AP, localFDR and LIS in the dominant model and the recessive model with
different t values and different nominal FDR α values. Table (1) summarizes results. Subfigures (2a)-(2f) shows
ROC and PR curves of LIS (solid red lines) and individual p-values (dashed green lines) in the dominant model.
Subfigures (3a)-(3f) shows ROC and PR curves of LIS and individual p-values in the recessive model.

Li et al., 2007; Bernert et al., 2011). The other clus-
ter includes rs11200014, rs2981579, rs1219648, and
rs2420946 on chromosome 10. They are exactly the
4 SNPs reported by Hunter et al. (2007). Their as-
sociated gene FGFR2 is also well known to be asso-
ciated with breast cancer. SNP rs4866929 on chro-
mosome 5 is also very likely to be associated because
it is highly correlated (r2=0.957) with SNP rs981782
(not included in our data) which was identified from
a much larger dataset (4, 398 cases and 4, 316 controls
and a follow-up confirmation stage on 21, 860 cases and
22, 578 controls) by Easton et al. (2007).

6 Conclusion

In this paper, we use an MRF-coupled mixture model
to leverage the dependence in multiple testing prob-
lems, and show the improved numerical performance
on a variety of simulations and its applicability in a
real-world GWAS problem. A theoretical question of
interest is whether this graphical model based pro-
cedure is optimal in the sense that it has the small-
est FNR among all the valid procedures. The opti-
mality of the oracle procedure can be proved under
the compound decision framework (Sun & Cai, 2007,

2009), as long as an exact inference algorithm exists
or an approximate inference algorithm can be guaran-
teed to converge to the correct marginal probabilities.
The asymptotic optimality of the data-driven proce-
dure (the FNR yielded by the data-driven procedure
approaches the FNR yielded by the oracle procedure
as the number of tests m → ∞) requires consistent
estimates of the unknown parameters in the graphi-
cal models. Parameter learning in undirected models
is more complicated than in directed models due to
the normalization constant. To the best of our knowl-
edge, asymptotic properties of parameter learning for
hidden MRFs and MRF-coupled mixture models have
not been investigated. Therefore, we cannot prove the
asymptotic optimality of the data-driven procedure so
far, although we can observe its close-to-oracle perfor-
mance in the basic simulations.
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Abstract

Variational inference algorithms such as be-
lief propagation have had tremendous im-
pact on our ability to learn and use graph-
ical models, and give many insights for de-
veloping or understanding exact and approx-
imate inference. However, variational ap-
proaches have not been widely adoped for
decision making in graphical models, often
formulated through influence diagrams and
including both centralized and decentralized
(or multi-agent) decisions. In this work,
we present a general variational framework
for solving structured cooperative decision-
making problems, use it to propose several
belief propagation-like algorithms, and ana-
lyze them both theoretically and empirically.

1 Introduction

Graphical modeling approaches, including Bayesian
networks and Markov random fields, have been widely
adopted for problems with complicated dependency
structures and uncertainties. The problems of learn-
ing, i.e., estimating a model from data, and inference,
e.g., calculating marginal probabilities or maximum a
posteriori (MAP) estimates, have attracted wide at-
tention and are well explored. Variational inference
approaches have been widely adopted as a principled
way to develop and understand many exact and ap-
proximate algorithms. On the other hand, the prob-
lem of decision making in graphical models, sometimes
formulated via influence diagrams or decision networks
and including both sequential centralized decisions and
decentralized or multi-agent decisions, is surprisingly
less explored in the approximate inference community.

Influence diagrams (ID), or decision networks,
[Howard and Matheson, 1985, 2005] are a graphical
model representation of structured decision problems

under uncertainty; they can be treated as an extension
of Bayesian networks, augmented with decision nodes
and utility functions. Traditionally, IDs are used to
model centralized, sequential decision processes under
“perfect recall”, which assumes that the decision steps
are ordered in time and that all information is remem-
bered across time; limited memory influence diagrams
(LIMIDs) [Zhang et al., 1994, Lauritzen and Nilsson,
2001] relax the perfect recall assumption, creating a
natural framework for representing decentralized and
information-limited decision problems, such as team
decision making and multi-agent systems. Despite the
close connection and similarity to Bayes nets, IDs have
less visibility in the graphical model and automated re-
seasoning community, both in terms of modeling and
algorithm development; see Pearl [2005] for an inter-
esting historical perspective.

Solving an ID refers to finding decision rules that max-
imize the expected utility function (MEU); this task
is significantly more difficult than standard inference
on a Bayes net. For IDs with perfect recall, MEU
can be restated as a dynamic program, and solved
with cost exponential in a constrained tree-width of
the graph that is subject to the temporal ordering of
the decision nodes. The constrained tree-width can be
much higher than the tree-width associated with typ-
ical inference, making MEU significantly more com-
plex. For LIMIDs, non-convexity issues also arise,
since the limited shared information and simultane-
ous decisions may create locally optimal policies. The
most popular algorithm for LIMIDs is based on policy-
by-policy improvement [Lauritzen and Nilsson, 2001],
and provides only a “person-by-person” notion of opti-
mality. Surprisingly, the variational ideas that revolu-
tionized inference in Bayes nets have not been adopted
for influence diagrams. Although there exists work on
transforming MEU problems into sequences of stan-
dard marginalization problems [e.g., Zhang, 1998], on
which variational methods apply, these methods do
not yield general frameworks, and usually only work
for IDs with perfect recall. A full variational frame-
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work would provide general procedures for developing
efficient approximations such as loopy belief propaga-
tion (BP), that are crucial for large scale problems, or
providing new theoretical analysis.

In this work, we propose a general variational frame-
work for solving influence diagrams, both with and
without perfect recall. Our results on centralized deci-
sion making include traditional inference in graphical
models as special cases. We propose a spectrum of
exact and approximate algorithms for MEU problems
based on the variational framework. We give several
optimality guarantees, showing that under certain con-
ditions, our BP algorithm can find the globally optimal
solution for ID with perfect recall and solve LIMIDs in
a stronger locally optimal sense than coordinate-wise
optimality. We show that a temperature parameter
can also be introduced to smooth between MEU tasks
and standard (easier) marginalization problems, and
can provide good solutions by annealing the tempera-
ture or using iterative proximal updates.

This paper is organized as follows. Section 2 sets up
background on graphical models, variational methods
and influence diagrams. We present our variational
framework of MEU in Section 3, and use it to develop
several BP algorithms in Section 4. We present nu-
merical experiments in Section 5. Finally, we discuss
additional related work in Section 6 and concluding re-
marks in Section 7. Proofs and additional information
can be found in the appendix.

2 Background

2.1 Graphical Models

Let x = {x1, x2, · · · , xn} be a random vector in X =
X1× · · · ×Xn. Consider a factorized probability on x,

p(x) =
1

Z

∏

α∈I
ψα(xα) =

1

Z
exp

[∑

α∈I
θα(xα)

]
,

where I is a set of variable subsets, and ψα : Xα → R+

are positive factors; the θα(xα) = logψα(xα) are the
natural parameters of the exponential family repre-
sentation; and Z =

∑
x

∏
α∈I ψα is the normaliza-

tion constant or partition function with Φ(θ) = logZ
the log-partition function. Let θ = {θα|α ∈ I} and
θ(x) =

∑
α θα(xα). There are several ways to repre-

sent a factorized distribution using graphs (i.e., graphi-
cal models), including Markov random fields, Bayesian
networks, factors graphs and others.

Given a graphical model, inference refers to the pro-
cedure of answering probabilistic queries. Important
inference tasks include marginalization, maximum a
posteriori (MAP, sometimes called maximum proba-
bility of evidence or MPE), and marginal MAP (some-

times simply MAP). All these are NP-hard in general.
Marginalization calculates the marginal probabilities
of one or a few variables, or equivalently the normal-
ization constant Z, while MAP/MPE finds the mode
of the distribution. More generally, marginal MAP
seeks the mode of a marginal probability,

Marginal MAP: x∗ = arg max
xA

∑

xB

∏

α

ψα(xα),

where A,B are disjoint sets with A∪B = V ; it reduces
to marginalization if A = ∅ and to MAP if B = ∅.
Marginal Polytope. A marginal polytope M is a
set of local marginals τ = {τα(xα) : α ∈ I} that are
extensible to a global distribution over x, that is, M =
{τ | ∃ a distribution p(x), s.t.

∑
xV \α

p(x) = τα(xα) }.
Call P[τ ] the set of global distributions consistent
with τ ∈M; there exists a unique distribution in P[τ ]
that has maximum entropy and follows the exponen-
tial family form for some θ. We abuse notation to
denote this unique global distribution τ(x).

A basic result for variational methods is that Φ(θ) is
convex and can be rewritten into a dual form,

Φ(θ) = max
τ∈M
{〈θ, τ 〉+H(x; τ )}, (1)

where 〈θ, τ 〉 =
∑
x

∑
α θα(xα)τα(xα) is the point-wise

inner product, and H(x; τ ) = −∑x τ(x) log τ(x) is
the entropy of distribution τ(x); the maximum of (1)
is obtained when τ equals the marginals of the original
distribution with parameter θ. See Wainwright and
Jordan [2008].

Similar dual forms hold for MAP and marginal MAP.
Letting ΦA,B(θ) = log maxxA

∑
xB

exp(θ(x)), we have
[Liu and Ihler, 2011]

ΦA,B(θ) = max
τ∈M
{〈θ, τ 〉+H(xB |xA ; τ )}, (2)

where H(xB |xA ; τ ) = −∑x τ(x) log τ(xB |xA) is the
conditional entropy; its appearance corresponds to the
sum operators.

The dual forms in (1) and (2) are no easier to compute
than the original inference. However, one can approxi-
mate the marginal polytope M and the entropy in var-
ious ways, yielding a body of approximate inference
algorithms, such as loopy belief propagation (BP) and
its generalizations [Yedidia et al., 2005, Wainwright
et al., 2005], linear programming solvers [e.g., Wain-
wright et al., 2003b], and recently hybrid message pass-
ing algorithms [Liu and Ihler, 2011, Jiang et al., 2011].

Junction Graph BP. Junction graphs provide a
procedural framework to approximate the dual (1). A
cluster graph is a triple (G, C,S), where G = (V, E) is
an undirected graph, with each node k ∈ V associated
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with a subset of variables ck ∈ C (clusters), and each
edge (kl) ∈ E a subset skl ∈ S (separator) satisfying
skl ⊆ ck ∩ cl. We assume that C subsumes the index
set I, that is, for any α ∈ I, there exists a ck ∈ C,
denoted c[α], such that α ⊆ ck. In this case, we can
reparameterize θ = {θα|α ∈ I} into θ = {θck |k ∈ V}
by taking θck =

∑
α : c[α]=ck

θα, without changing the
distribution. A cluster graph is called a junction graph
if it satisfies the running intersection property – for
each i ∈ V , the induced sub-graph consisting of the
clusters and separators that include i is a connected
tree. A junction graph is a junction tree if G is tree.

To approximate the dual (1), we can replace M with
a locally consistent polytope L: the set of local
marginals τ = {τck , τskl : k ∈ V, (kl) ∈ E} satisfying∑
xck\skl

τck(xck) = τ(xskl). Clearly, M ⊆ L. We then

approximate (1) by

max
τ∈L
{〈θ, τ 〉+

∑

k∈V
H(xck ; τ ck)−

∑

(kl)∈E
H(xskl ; τ skl)},

where the joint entropy is approximated by a linear
combination of the entropies of local marginals. The
approximate objective can be solved using Lagrange
multipliers [Yedidia et al., 2005], leading to a sum-
product message passing algorithm that iteratively
sends messages between neighboring clusters via

mk→l(xcl) ∝
∑

xck\skl

ψck(xck)m∼k\l(xcN(k)
), (3)

where ψck = exp(θck), and m∼k\l is the product of
messages into k from its neighbors N (k) except l. At
convergence, the (locally) optimal marginals are

τck ∝ ψckm∼k and τskl ∝ mk→lml→k,

where m∼k is the product of messages into k. Max-
product and hybrid methods can be derived analo-
gously for MAP and marginal MAP problems.

2.2 Influence Diagrams

Influence diagrams (IDs) or decision networks are ex-
tensions of Bayesian networks to represent structured
decision problems under uncertainty. Formally, an in-
fluence diagram is defined on a directed acyclic graph
G = (V,E), where the nodes V are divided into two
subsets, V = R∪D, where R and D represent respec-
tively the set of chance nodes and decision nodes. Each
chance node i ∈ R represents a random variable xi
with a conditional probability table pi(xi|xpa(i)). Each
decision node i ∈ D represents a controllable decision
variable xi, whose value is determined by a decision
maker via a decision rule (or policy) δi : Xpa(i) → Xi,
which determines the values of xi based on the obser-
vation on the values of xpa(i); we call the collection

Weather 
Forecast 

Weather 
Condition 

Vacation 
Activity Satisfaction 

Chance nodes 

Decision nodes 

Utility nodes 

Figure 1: A simple influence diagram for deciding va-
cation activity [Shachter, 2007].

of policies δ = {δi|i ∈ D} a strategy. Finally, a util-
ity function u : X → R+ measures the reward given
an instantiation of x = [xR, xD], which the decision
maker wants to maximize. It is reasonable to assume
some decomposition structure on the utility u(x), ei-
ther additive, u(x) =

∑
j∈U uj(xβj ), or multiplicative,

u(x) =
∏
j∈U uj(xβj ). A decomposable utility func-

tion can be visualized by augmenting the DAG with
a set of leaf nodes U , called utility nodes, each with
parent set βj . See Fig. 1 for a simple example.

A decision rule δi is alternatively represented as a
deterministic conditional “probability” pδi (xi|xpa(i)),

where pδi (xi|xpa(i)) = 1 for xi = δi(xpa(i)) and zero
otherwise. It is helpful to allow soft decision rules
where pδi (xi|xpa(i)) takes fractional values; these de-
fine a randomized strategy in which xi is determined
by randomly drawing from pδi (xi|xpa(i)). We denote
by ∆o the set of deterministic strategies and ∆ the set
of randomized strategies. Note that ∆o is a discrete
set, while ∆ is its convex hull.

Given an influence diagram, the optimal strategy
should maximize the expected utility function (MEU):

MEU = max
δ∈∆

EU(δ) = max
δ∈∆

E(u(x)|δ)

= max
δ∈∆

∑

x

u(x)
∏

i∈C
pi(xi|xpa(i))

∏

i∈D
pδi (xi|xpa(i))

def
= max

δ∈∆

∑

x

exp(θ(x))
∏

i∈D
pδi (xi|xpa(i)) (4)

where θ(x) = log[u(x)
∏
i∈C pi(xi|xpa(i))]; we call the

distribution q(x) ∝ exp(θ(x)) the augmented distri-
bution [Bielza et al., 1999]. The concept of the aug-
mented distribution is critical since it completely spec-
ifies a MEU problem without the semantics of the in-
fluence diagram; hence one can specify q(x) arbitrarily,
e.g., via an undirected MRF, extending the definition
of IDs. We can treat MEU as a special sort of “infer-
ence” on the augmented distribution, which as we will
show, generalizes more common inference tasks.

In (4) we maximize the expected utility over ∆; this
is equivalent to maximizing over ∆o, since

Lemma 2.1. For any ID, maxδ∈∆EU(δ) =
maxδ∈∆o EU(δ).
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Perfect Recall Assumption. The MEU prob-
lem can be solved in closed form if the influence di-
agram satisfies a perfect recall assumption (PRA) —
there exists a “temporal” ordering over all the deci-
sion nodes, say {d1, d2, · · · , dm}, consistent with the
partial order defined by the DAG G, such that every
decision node observes all the earlier decision nodes
and their parents, that is, {dj} ∪ pa(dj) ⊆ pa(di) for
any j < i. Intuitively, PRA implies a centralized de-
cision scenario, where a global decision maker sets all
the decision nodes in a predefined order, with perfect
memory of all the past observations and decisions.

With PRA, the chance nodes can be grouped by when
they are observed. Let ri−1 (i = 1, . . . ,m) be the set
of chance nodes that are parents of di but not of any
dj for j < i; then both decision and chance nodes are
ordered by o = {r0, d1, r1, · · · , dm, rm}. The MEU and
its optimal strategy for IDs with PRA can be calcu-
lated by a sequential sum-max-sum rule,

MEU =
∑

xr0

max
xd1

∑

xr1

· · ·max
xdm

∑

xrm

exp(θ(x)), (5)

δ∗di(xpa(di)) = arg max
xdi

{∑

xri

· · ·max
xdm

∑

xrm

exp(θ(x))
}
,

where the calculation is performed in reverse temporal
ordering, interleaving marginalizing chance nodes and
maximizing decision nodes. Eq. (5) generalizes the
inference tasks in Section 2.1, arbitrarily interleaving
the sum and max operators. For example, marginal
MAP can be treated as a blind decision problem, where
no chance nodes are observed by any decision nodes.

As in other inference tasks, the calculation of the sum-
max-sum rule can be organized into local computa-
tions if the augmented distribution q(x) is factorized.
However, since the max and sum operators are not ex-
changeable, the calculation of (5) is restricted to elimi-
nation orders consistent with the “temporal ordering”.
Notoriously, this “constrained” tree-width can be very
high even for trees. See Koller and Friedman [2009].

However, PRA is often unrealistic. First, most systems
lack enough memory to express arbitrary policies over
an entire history of observations. Second, many prac-
tical scenarios, like team decision analysis [Detwarasiti
and Shachter, 2005] and decentralized sensor networks
[Kreidl and Willsky, 2006], are distributed by nature:
a team of agents makes decisions independently based
on sharing limited information with their neighbors.
In these cases, relaxing PRA is very important.

Imperfect Recall. General IDs with the perfect
recall assumption relaxed are discussed in Zhang et al.
[1994], Lauritzen and Nilsson [2001], Koller and Milch
[2003], and are commonly referred as limited memory
influence diagrams (LIMIDs). Unfortunately, the re-

d1 d2

u

d1 d2

u

d1 d2 u(d1, d2)
1 1 1
0 1 0
1 0 0
0 0 0.5

(a) Perfect Recall (b) Imperfect Recall (c) Utility Function

Figure 2: Illustrating imperfect recall. In (a) d2 ob-
serves d1; its optimal decision rule is to equal d1’s state
(whatever it is); knowing d2 will follow, d1 can choose
d1 = 1 to achieve the global optimum. In (b) d1 and
d2 do not know the other’s states; both d1 = d2 = 1
and d1 = d2 = 0 (suboptimal) become locally optimal
strategies and the problem is multi-modal.

laxation causes many difficulties. First, it is no longer
possible to eliminate the decision nodes in a sequential
“sum-max-sum” fashion. Instead, the dependencies of
the decision nodes have cycles, formally discussed in
Koller and Milch [2003] by defining a relevance graph
over the decision nodes; the relevance graph is a tree
with PRA, but is usually loopy with imperfect recall.
Thus iterative algorithms are usually required for LIM-
IDs. Second and more importantly, the incomplete in-
formation may cause the agents to behave myopically,
selfishly choosing locally optimal strategies due to ig-
norance of the global statistics. This breaks the strat-
egy space into many local modes, making the MEU
problem non-convex; see Fig. 2 for an illustration.

The most popular algorithms for LIMIDs are based on
policy-by-policy improvement, e.g., the single policy
update (SPU) algorithm [Lauritzen and Nilsson, 2001]
sequentially optimizes δi with δ¬i = {δj : j 6= i} fixed:

δi(xpa(i))← arg max
xi

E(u(x)|xfam(i) ; δ¬i), (6)

E(u(x)|xfam(i); δ¬i) =
∑

x¬fam(i)

exp(θ(x))
∏

j∈D\{i}
pδj(xj |xpa(j)),

where fam(i) = {i}∪pa(i). The update circles through
all i ∈ D in some order, and ties are broken arbitrar-
ily in case of multiple maxima. The expected util-
ity in SPU is non-decreasing at each iteration, and it
gives a locally optimal strategy at convergence in the
sense that the expected utility can not be improved
by changing any single node’s policy. Unfortunately,
SPU’s solution is heavily influenced by initialization
and can be very suboptimal.

This issue is helped by generalizing SPU to the
strategy improvement (SI) algorithm [Detwarasiti and
Shachter, 2005], which simultaneously updates sub-
groups of decisions nodes. However, the time and
space complexity of SI grows exponentially with the
sizes of subgroups. In the sequel, we present a novel
variational framework for MEU, and propose BP-like
algorithms that go beyond the näıve greedy paradigm.
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3 Duality Form of MEU

In this section, we derive a duality form for MEU, gen-
eralizing the duality results of the standard inference
in Section 2.1. Our main result is summarized in the
following theorem.

Theorem 3.1. (a). For an influence diagram with
augmented distribution q(x) ∝ exp(θ(x)), its log max-
imum expected utility log MEU(θ) equals

max
τ∈M
{〈θ, τ 〉+H(x; τ )−

∑

i∈D
H(xi|xpa(i); τ )}. (7)

Suppose τ ∗ is a maximum of (7), then δ∗ =
{τ ∗(xi|xpa(i))|i ∈ D} is an optimal strategy.

(b). For IDs with perfect recall, (7) reduces to

max
τ∈M
{〈θ, τ 〉+

∑

oi∈C
H(xoi |xo1:i−1

; τ )}, (8)

where o is the temporal ordering of the perfect recall.

Proof. (a) See appendix; (b) note PRA implies pa(i) =
o1:i−1 (i ∈ D), and apply the entropy chain rule.

The distinction between (8) and (7) is subtle but im-
portant: although (8) (with perfect recall) is always
(if not strictly) a convex optimization, (7) (without
perfect recall) may be non-convex if the subtracted
entropy terms overwhelm; this matches the intuition
that incomplete information sharing gives rise to mul-
tiple locally optimal strategies.

The MEU duality (8) for ID with PRA generalizes ear-
lier duality results of inference: with no decision nodes,
D = ∅ and (8) reduces to (1) for the log-partition
function; when C = ∅, no entropy terms appear and
(8) reduces to the linear program relaxation of MAP.
Also, (8) reduces to marginal MAP when no chance
nodes are observed before any decision. As we show
in Section 4, this unification suggests a line of unified
algorithms for all these different inference tasks.

Several corollaries provide additional insights.

Corollary 3.2. For an ID with parameter θ, we have

log MEU = max
τ∈I
{〈θ, τ 〉+

∑

oi∈C
H(xoi |xo1:i−1 ; τ )} (9)

where I = {τ ∈ M : xoi ⊥ xo1:i−1\pa(oi)|xpa(oi),∀oi ∈
D}, corresponding to those distributions that respect
the imperfect recall constraints; “x ⊥ y | z” denotes
conditional independence of x and y given z.

Corollary 3.2 gives another intuitive interpretation of
imperfect recall vs. perfect recall: MEU with imper-
fect recall optimizes same objective function, but over

a subset of the marginal polytope that restricts the
observation domains of the decision rules; this non-
convex inner subset is similar to the mean field approx-
imation for partition functions. See Wolpert [2006] for
a similar connection to mean field for bounded rational
game theory. Interestingly, this shows that extending
a LIMID to have perfect recall (by extending the ob-
servation domains of the decision nodes) can be con-
sidered a “convex” relaxation of the LIMID.

Corollary 3.3. For any ε, if τ ∗ is global optimum of

max
τ∈M
{〈θ, τ 〉+H(x)− (1− ε)

∑

i∈D
H(xi|xpa(i))}. (10)

and δ∗ = {τ∗(xi|xpa(i))|i ∈ D} is a deterministic strat-
egy, then it is an optimal strategy for MEU.

The parameter ε is a temperature to “anneal” the
MEU problem, and trades off convexity and optimal-
ity. For large ε, e.g., ε ≥ 1, the objective in (10) is a
strictly convex function, while δ∗ is unlikely to be de-
terministic nor optimal (if ε = 1, (10) reduces to stan-
dard marginazation); as ε decreases towards zero, δ∗

becomes more deterministic, but (10) becomes more
non-convex and is harder to solve. In Section 4 we
derive several possible optimization approaches.

4 Algorithms

The duality results in Section 3 offer new perspectives
for MEU, allowing us to bring the tools of variational
inference to develop new efficient algorithms. In this
section, we present a junction graph framework for BP-
like MEU algorithms, and provide theoretical analysis.
In addition, we propose two double-loop algorithms
that alleviate the issue of non-convexity in LIMIDs or
provide convergence guarantees: a deterministic an-
nealing approach suggested by Corollary 3.3 and a
method based on the proximal point algorithm.

4.1 A Belief Propagation Algorithm

We start by formulating the problem (7) into the
junction graph framework. Let (G, C,S) be a junc-
tion graph for the augmented distribution q(x) ∝
exp(θ(x)). For each decision node i ∈ D, we as-
sociate it with exactly one cluster ck ∈ C satisfying
{i,pa(i)} ⊆ ck; we call such a cluster a decision clus-
ter. The clusters C are thus partitioned into decision
clusters D and the other (normal) clusters R. For
simplicity, we assume each decision cluster ck ∈ D is
associated with exactly one decision node, denoted dk.

Following the junction graph framework in Section 2.1,
the MEU dual (10) (with temperature parameter ε) is
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approximated by

max
τ∈L
{〈θ, τ 〉+

∑

k∈R
Hck +

∑

k∈D
Hε
ck
−
∑

(kl)∈E
Hskl}, (11)

where Hck = H(xck), Hskl = H(xskl) and Hε(xck) =
H(xck)−(1−ε)H(xdk |xpa(dk)). The dependence of en-
tropies on τ is suppressed for compactness. Eq. (11)
is similar to the objective of regular sum-product junc-
tion graph BP, except the entropy terms of the decision
clusters are replaced by Hε

ck
.

Using a Lagrange multiplier method similar to Yedidia
et al. [2005], a hybrid message passing algorithm can
be derived for solving (11):

Sum messages:

(normal clusters)
mk→l ∝

∑

xck\skl

ψckm∼k\l, (12)

MEU messages:

(decision clusters)
mk→l ∝

∑

xck\skl

σk[ψckm∼k; ε]

ml→k
, (13)

where σk[·] is an operator that solves an annealed local
MEU problem associated with b(xck) ∝ ψckm∼k:

σk[b(xck); ε]
def
= b(xck)bε(xdk |xpa(dk))

1−ε

where bε(xdk |xpa(dk)) is the “annealed” optimal policy

bε(xdk |xpa(dk)) =
b(xdk , xpa(dk))

1/ε

∑
xdk

b(xdk , xpa(dk))1/ε
,

b(xdk , xpa(dk)) =
∑

xzk

b(xck), zk = ck \ {dk,pa(dk)}.

As ε→ 0+, one can show that bε(xdk |xpa(dk)) is exactly
an optimal strategy of the local MEU problem with
augmented distribution b(xck).

At convergence, the stationary point of (11) is:

τck ∝ ψckm∼k for normal clusters (14)

τck ∝ σk[ψckm∼k; ε] for decision clusters (15)

τskl ∝ mk→lml→k for separators (16)

This message passing algorithm reduces to sum-
product BP when there are no decision clusters. The
outgoing messages from decision clusters are the cru-
cial ingredient, and correspond to solving local (an-
nealed) MEU problems.

Taking ε→ 0+ in the MEU message update (13) gives
a fixed point algorithm for solving the original objec-
tive directly. Alternatively, one can adopt a deter-
ministic annealing approach [Rose, 1998] by gradually
decreasing ε, e.g., taking εt = 1/t at iteration t.

Reparameterization Properties. BP algorithms,
including sum-product, max-product, and hybrid mes-
sage passing, can often be interpreted as reparame-
terization operators, with fixed points satisfying some

sum (resp. max or hybrid) consistency property yet
leaving the joint distribution unchanged [e.g., Wain-
wright et al., 2003a, Weiss et al., 2007, Liu and Ih-
ler, 2011]. We define a set of “MEU-beliefs” b =
{b(xck), b(xskl)} by b(xck) ∝ ψckmk for all ck ∈ C, and
b(xskl) ∝ mk→lml→k; note that the “beliefs” b are dis-
tinguished from the “marginals” τ . We can show that
at each iteration of MEU-BP in (12)-(13), the b satisfy

Reparameterization: q(x) ∝
∏
k∈V b(xck)∏

(kl)∈E b(xskl)
, (17)

and further, at a fixed point of MEU-BP we have

Sum-consistency:

(normal clusters)

∑

ck\sij
b(xck) = b(xskl), (18)

MEU-consistency:

(decision clusters)

∑

ck\sij
σk[b(xck); ε] = b(xskl). (19)

Optimality Guarantees. Optimality guarantees of
MEU-BP (with ε → 0+) can be derived via reparam-
eterization. Our result is analogous to those of Weiss
and Freeman [2001] for max-product BP and Liu and
Ihler [2011] for marginal-MAP.

For a junction tree, a tree-order is a partial ordering on
the nodes with k � l iff the unique path from a special
cluster (called root) to l passes through k; the parent
π(k) is the unique neighbor of k on the path to the
root. Given a subset of decision nodes D′, a junction
tree is said to be consistent for D′ if there exists a
tree-order with sk,π(k) ⊆ pa(dk) for any dk ∈ D′.
Theorem 4.1. Let (G, C,S) be a consistent junction
tree for a subset of decision nodes D′, and b be a set
of MEU-beliefs satisfying the reparameterization and
consistency conditions (17)-(19) with ε → 0+. Let
δ∗ = {bck(xdk |xpa(dk)) : dk ∈ D}; then δ∗ is a locally
optimal strategy in the sense that EU({δ∗D′ , δD\D′}) ≤
EU(δ∗) for any δD\D′ .

A junction tree is said to be globally consistent if it
is consistent for all the decision nodes, which as im-
plied by Theorem 4.1, ensures a globally optimal strat-
egy; this notation of global consistency is similar to
the strong junction trees in Jensen et al. [1994]. For
IDs with perfect recall, a globally consistent junction
tree can be constructed by a standard procedure which
triangulates the DAG of the ID along reverse tempo-
ral order. For IDs without perfect recall, it is usually
not possible to construct a globally consistent junction
tree; this is the case for the toy example in Fig. 2b.
However, coordinate-wise optimality follows as a con-
sequence of Theorem 4.1 for general IDs with arbitrary
junction trees, indicating that MEU-BP is at least as
“optimal” as SPU.
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Theorem 4.2. Let (G, C,S) be an arbitrary junc-
tion tree, and b and δ∗ defined in Theorem 4.1.
Then δ∗ is a locally person-by-person optimal strategy:
EU({δ∗i , δD\i}) ≤ EU(δ∗) for any i ∈ D and δD\i.

Additively Decomposable Utilities. Our al-
gorithms rely on the factorization structure of the
augmented distribution q(x). For this reason, mul-
tiplicative utilities fit naturally, but additive utilities
are more difficult (as they also are in exact inference)
[Koller and Friedman, 2009]. To create factorization
structure in additive utility problems, we augment the
model with a latent “selector” variable, similar to that
in mixture models. For details, see the appendix.

4.2 Proximal Algorithms

In this section, we present a proximal point approach
[e.g., Martinet, 1970, Rockafellar, 1976] for the MEU
problems. Similar methods have been applied to stan-
dard inference problems, e.g., Ravikumar et al. [2010].

We start with a brief introduction to the proximal
point algorithm. Consider an optimization problem
minτ∈M f(τ ). A proximal method instead iteratively
solves a sequence of “proximal” problems

τ t+1 = arg min
τ∈M

{f(τ ) + wtD(τ ||τ t)}, (20)

where τ t is the solution at iteration t and wt is a pos-
itive coefficient. D(·||·) is a distance, called the prox-
imal function; typical choices are Euclidean or Breg-
man distances or ψ-divergences [e.g., Teboulle, 1992,
Iusem and Teboulle, 1993]. Convergence of proxi-
mal algorithms has been well studied: the objective
series {f(τ t)} is guaranteed to be non-increasing at
each iteration, and {τ t} converges to an optimal so-
lution (sometimes superlinearly) for convex programs,
under some regularity conditions on the coefficients
{wt}. See, e.g., Rockafellar [1976], Tseng and Bert-
sekas [1993], Iusem and Teboulle [1993].

Here, we use an entropic proximal function that natu-
rally fits the MEU problem:

D(τ ||τ ′) =
∑

i∈D

∑

x

τ(x) log[τi(xi|xpa(i))/τ
′
i(xi|xpa(i))],

a sum of conditional KL-divergences. The proximal
update for the MEU dual (7) then reduces to

τ t+1 = arg max
τ∈M

{〈θt, τ 〉+H(x)− (1− wt)H(xi|xpa(i))}

where θt(x) = θ(x) + wt
∑
i∈D log τ ti (xi|xpa(i)). This

has the same form as the annealed problem (10) and
can be solved by the message passing scheme (12)-(13).
Unlike annealing, the proximal algorithm updates θt

each iteration and does not need wt to approach zero.

We use two choices of coefficients {wt}: (1) wt = 1
(constant), and (2) wt = 1/t (harmonic). The choice
wt = 1 is especially interesting because the proximal
update reduces to a standard marginalization prob-
lem, solvable by standard tools without the MEU’s
temporal elimination order restrictions. Concretely,
the proximal update in this case reduces to

τ t+1
i (xi|xpa(i)) ∝ τ ti (xi|xpa(i))E(u(x)|xfam(i) ; δn¬i)

with E(u(x)|xfam(i) ; δn¬i) as defined in (6). This prox-
imal update can be seen as a “soft” and “parallel”
version of the greedy update (6), which makes a hard
update at a single decision node, instead of a soft mod-
ification simutaneously for all decision nodes. The soft
update makes it possible to correct earlier suboptimal
choices and allows decision nodes to make cooperative
movements. However, convergence with wt = 1 may
be slow; using wt = 1/t takes larger steps but is no
longer a standard marginalization.

5 Experiments

We demonstrate our algorithms on several influence di-
agrams, including randomly generated IDs, large scale
IDs constructed from problems in the UAI08 infer-
ence challenge, and finally practically motivated IDs
for decentralized detection in wireless sensor networks.
We find that our algorithms typically find better so-
lutions than SPU with comparable time complexity;
for large scale problems with many decision nodes,
our algorithms are more computationally efficient than
SPU because one step of SPU requires updating (6) (a
global expectation) for all the decision nodes.

In all experiments, we test single policy updating
(SPU), our MEU-BP running directly at zero temper-
ature (BP-0+), annealed BP with temperature εt =
1/t (Anneal-BP-1/t), and the proximal versions with
wt = 1 (Prox-BP-one) and wt = 1/t (Prox-BP-1/t).
For the BP-based algorithms, we use two construc-
tions of junction graphs: a standard junction tree by
triangulating the DAG in backwards topological order,
and a loopy junction graph following [Mateescu et al.,
2010] that corresponds to Pearl’s loopy BP; for SPU,
we use the same junction graphs to calculate the in-
ner update (6). The junction trees ensure the inner
updates of SPU and Prox-BP-one are performed ex-
actly, and has optimality guarantees in Theorem 4.1,
but may be computationally more expensive than the
loopy junction graphs. For the proximal versions, we
set a maximum of 5 iterations in the inner loop; chang-
ing this value did not seem to lead to significantly dif-
ferent results. The BP-based algorithms may return
non-deterministic strategies; we round to determinis-
tic strategies by taking the largest values.
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Figure 3: Results on random IDs of size 20. The y-
axes show the log MEU of each algorithm compared to
SPU on a junction tree. The left panels correspond to
running the algorithms on junction trees, and right
panels on loopy junction graphs. (a) & (b) shows
MEUs as the percentage of decision nodes changes.
(c) & (d) show MEUs v.s. the Dirichlet parameter α.
The results are averaged on 20 random models.

Random Bayesian Networks. We test our algo-
rithms on randomly constructed IDs with additive util-
ities. We first generate a set of random DAGs of size
20 with maximum parent size of 3. To create IDs, we
take the leaf nodes to be utility nodes, and among non-
leaf nodes we randomly select a fixed percentage to be
decision nodes, with the others being chance nodes.
We assume the chance and decision variables are dis-
crete with 4 states. The conditional probability tables
of the chance nodes are randomly drawn from a sym-
metric Dirichlet distribution Dir(α), and the entries of
the utility function from Gamma distribution Γ(α, 1).

The relative improvement of log MEU compared to the
SPU with junction tree are reported in Fig. 3. We find
that when using junction trees, all our BP-based meth-
ods dominate SPU; for loopy junction graphs, BP-0+

occasionally performs worse than SPU, but all the an-
nealed and proximal algorithms outperform SPU with
the same loopy junction graph, and often even SPU

with junction tree. As the percentage of decision nodes
increases, the improvement of the BP-based methods
on SPU generally increases. Fig. 4 shows a typical tra-
jectory of the algorithms across iterations. The algo-
rithms were initialized uniformly; random initializa-
tions behaved similarly, but are omitted for space.

Diagnostic Bayesian networks. We construct
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Figure 4: A typical trajectory of MEU (of the rounded
deterministic strategies) v.s. iterations for the random
IDs in Fig. 3. One iteration of the BP-like methods
denotes a forward-backward reduction on the junction
graph; One step of SPU requires |D| (number of deci-
sion nodes) reductions. SPU and BP-0+ are stuck at a
local model in the 2nd iteration.
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Figure 5: Results on IDs constructed from two di-
agnostic BNs from the UAI08 challenge. Here all al-
gorithms used the loopy junction graph and are ini-
tialized uniformly. (a)-(b) the logMEU of algorithms
normalized to that of SPU. Averaged on 10 trails.

larger scale IDs based on two diagnostic Bayes nets
with 200-300 nodes and 300-600 edges, taken from the
UAI08 inference challenge. To create influence dia-
grams, we made the leaf nodes utilities, each defined
by its conditional probability when clamped to a ran-
domly chosen state, and total utility as the product
of the local utilities (multiplicatively decomposable).
The set of decision nodes is again randomly selected
among the non-leaf nodes with a fixed percentage.
Since the network sizes are large, we only run the al-
gorithms on the loopy junction graphs. Again, our
algorithms significantly improve on SPU; see Fig. 5.

Decentralized Sensor Network. In this sec-
tion, we test an influence diagram constructed for de-
centralized detection in wireless sensor networks [e.g.,
Viswanathan and Varshney, 1997, Kreidl and Willsky,
2006]. The task is to detect the states of a hidden
process p(h) (as a pairwise MRF) using a set of dis-
tributed sensors; each sensor provides a noisy mea-
surement vi of the local state hi, and overall perfor-
mance is boosted by allowing the sensor to transmit
small (1-bit) signals si along an directional path, to
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Figure 6: (a) A sensor network on 3 × 3 grid; green lines denote the MRF edges of the hidden process p(h),
on some of which (red arrows) signals are allowed to pass; each sensor may be accurate (purple) or noisy
(black). Optimal strategies should pass signals from accurate sensors to noisy ones but not the reverse. (b)-(c)
The log MEU of algorithms running on (b) a junction tree and (c) a loopy junction graph. As the signal cost
increases, all algorithms converge to the communication-free strategy. Results averaged on 10 random trials.

help the predictions of their downstream sensors. The
utility function includes rewards for correct prediction
and a cost for sending signals. We construct an ID as
sketched in Fig. 6(a) for addressing the offline policy
design task, finding optimal policies of how to predict
the states based on the local measurement and received
signals, and policies of whether and how to pass signals
to downstream nodes; see appendix for more details.

To escape the “all-zero” fixed point, we initialize the
proximal algorithms and SPU with 5 random policies,
and BP-0+ and Anneal-BP-1/t with 5 random mes-
sages. We first test on a sensor network on a 3 × 3
grid, where the algorithms are run on both a junction
tree constructed by standard triangulation and a loopy
junction graph (see the Appendix for construction de-
tails). As shown in Fig. 6(b)-(c), SPU performs worst in
all cases. Interestingly, Anneal-BP-1/t performs rela-
tively poorly here, because the annealing steps make it
insensitive to and unable to exploit the random initial-
izations; this can be fixed by a “perturbed” annealed
method that injects a random perturbation into the
model, and gradually decreases the perturbation level
across iterations (Anneal-BP-1/t (Perturbed)).

A similar experiment (with only the loopy junction
graph) is performed on the larger random graph in
Fig. 7; the algorithm performances follow similar
trends. SPU performs even worse in this case since
it appears to over-send signals when two “good” sen-
sors connect to one “bad” sensor.

6 Related Works

Many exact algorithms for ID have been developed,
usually in a variable-elimination or message-passing
form; see Koller and Friedman [2009] for a recent re-
view. Approximation algorithms are relatively unex-
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Figure 7: The results on a sensor network on a random
graph with 30 nodes (the MRF edges overlap with the
signal paths). Averaged on 5 random models.

plored, and usually based on separately approximating
individual components of exact algorithms [e.g., Sab-
badin et al., 2011, Sallans, 2003]; our method instead
builds an integrated framework. Other approaches, in-
cluding MCMC [e.g., Charnes and Shenoy, 2004] and
search methods [e.g., Marinescu, 2010], also exist but
are usually more expensive than SPU or our BP-like
methods. See the appendix for more discussion.

7 Conclusion

In this work we derive a general variational framework
for influence diagrams, for both the “convex” central-
ized decisions with perfect recall and “non-convex” de-
centralized decisions. We derive several algorithms,
but equally importantly open the door for many oth-
ers that can be applied within our framework. Since
these algorithms rely on decomposing the global prob-
lems into local ones, they also open the possibility of
efficiently distributable algorithms.
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Abstract

Markov networks (MNs) are a powerful way to
compactly represent a joint probability distribu-
tion, but most MN structure learning methods
are very slow, due to the high cost of evaluat-
ing candidates structures. Dependency networks
(DNs) represent a probability distribution as a set
of conditional probability distributions. DNs are
very fast to learn, but the conditional distribu-
tions may be inconsistent with each other and
few inference algorithms support DNs. In this
paper, we present a closed-form method for con-
verting a DN into an MN, allowing us to enjoy
both the efficiency of DN learning and the con-
venience of the MN representation. When the
DN is consistent, this conversion is exact. For
inconsistent DNs, we present averaging methods
that significantly improve the approximation. In
experiments on 12 standard datasets, our meth-
ods are orders of magnitude faster than and often
more accurate than combining conditional distri-
butions using weight learning.

1 INTRODUCTION

Joint probability distributions are useful for representing
and reasoning about uncertainty in many domains, from
robotics to medicine to molecular biology. One of the most
powerful and popular ways to represent a joint probability
distribution compactly is with a Markov network (MN), an
undirected probabilistic graphical model. Inference in an
MN can compute marginal or conditional probabilities, or
find the most probable configuration of a subset of variables
given evidence. Although exact inference is usually in-
tractable, numerous approximate inference algorithms exist
to exploit the structure present in the MN representation.

One of the largest disadvantages of Markov networks is the
difficulty of learning them from data. In the fully observed

case, weight learning is a convex optimization problem, but
cannot be done in closed form except in very special cir-
cumstances, e.g. [18]. Structure learning is even harder,
since it typically involves a search over a large number of
candidate structures, and weights must be learned for each
candidate before it can be scored [4, 14, 3]. An increas-
ingly popular alternative is to use local methods to select
the structure, by finding the dependencies for each vari-
able separately and combining them using weight learn-
ing [15, 12].

Dependency networks (DNs) [8] represent the joint dis-
tribution itself as a set of conditional probability distribu-
tions, one for each variable. In terms of representational
power, DNs are comparable to MNs, since every MN can
be represented as a consistent DN and vice versa. The ad-
vantage of DNs is that they are much easier to learn than
MNs, since each conditional probability distribution can
be learned separately. However, the local distributions may
not be consistent with any joint distribution, making the
model difficult to interpret. Furthermore, very few infer-
ence algorithms support DNs. As a result, DNs remain
much less popular than MNs.

In this paper, we present a new method for converting de-
pendency networks into Markov networks, allowing us to
enjoy both the efficiency of DN learning and the conve-
nience of the MN representation. Surprisingly, this transla-
tion can be done in closed-form without any kind of search
or optimization. If the DN is consistent, then this conver-
sion is exact. For the general case of an inconsistent DN,
we present averaging methods that significantly improve
the approximation. As long as the maximum feature length
is bounded by a constant, our method runs in linear time
and space with respect to the size of the original DN.

Our method is similar in spirit to previous work on learn-
ing MNs by combining local, conditional distributions with
weight learning [12, 15]. However, instead of ignoring
the parameters of those local distributions, we use them to
directly compute the parameters of the joint distribution.
Hulten et al. [9] proposed a method for converting DNs to
Bayesian networks. However, this conversion process re-
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quired searching through possible structures and led to less
accurate models than learning a BN directly from data.

In experiments on 12 standard datasets, we find that our
DN2MN conversion method is orders of magnitude faster
than weight learning and often more accurate. For DNs
with decision tree conditional distributions, the converted
MN was often more accurate than the original DN. With
logistic regression conditional distributions, the converted
MNs were significantly more accurate than performing
weight learning.

Our method has potential applications outside of MN struc-
ture learning as well. For domains where data is limited or
unavailable, an expert could specify the conditional distri-
butions of a DN, which could then be translated into the
joint distribution of an MN. This could be much easier and
less error-prone than attempting to specify the entire joint
distribution directly.

Our paper is organized as follows. We begin with back-
ground on Markov networks and dependency networks in
Sections 2 and 3. In Section 4, we describe how to con-
vert consistent dependency networks into Markov networks
that represent the exact same probability distribution. In
Section 5, we discuss inconsistent conditional probability
distributions and methods for improving the approximation
quality through averaging. We evaluate our methods empir-
ically in Section 6 and conclude in Section 7.

2 MARKOV NETWORKS

A Markov network (MN) represents a probability distribu-
tion over a set of random variables X = {X1, X2, . . . , Xn}
as a normalized product of factors:

P (X) =
1

Z

∏

i

φi(Di) (1)

Z is the partition function, a normalization constant to
make the distribution sum to one; φi is the ith factor, some-
times referred to as a potential function; and Di ⊂ X is the
set of variables in the domain of φi.

A probability distribution where P (x) > 0 for all x ∈ X is
said to be positive. An MN that represents a positive distri-
bution can also be written as a log-linear model. In a log-
linear model, the probability distribution is expressed as
an exponentiated weighted sum of feature functions fi(Di)
rather than as a product of factors:

P (X) =
1

Z
exp

(∑

i

wifi(Di)

)
(2)

The correspondence between (1) and (2) is easily shown by
letting fi = log φi and wi = 1.

For discrete domains, a common choice is to use conjunc-
tions of variable tests as the features. Each test is of the

form (Xi = vi), where Xi is a variable in X and vi is a
value of that variable. We sometimes abbreviate tests of
Boolean variables, so that (Xi = T ) is written as Xi and
(Xi = F ) is written as ¬Xi. A conjunctive feature equals
1 if its arguments satisfy the conjunction and 0 otherwise.
Any factor represented as a table can be converted into a
set of conjunctive features with one feature for each entry
in the table. When the factors have repeated values or other
types of structure, a feature-based representation is often
more compact than a tabular one.

The Markov blanket of a variable Xi, denoted MB(Xi),
is the set of variables that render Xi independent from all
other variables in the domain. In an MN, this set consists
of all variables that appear in a factor or feature with Xi.
These independencies, and others, are entailed by the fac-
torization in (1).

2.1 INFERENCE

Given an MN, we often wish to answer queries such as the
probability of one or more variables given evidence. In
general, computing exact marginal and conditional proba-
bilities is #P-complete [16], so approximate inference algo-
rithms are commonly used instead. One of the most popu-
lar is Gibbs sampling [5].

Gibbs sampling is a Markov chain Monte Carlo method
that generates a set of random samples and uses them to
answer queries. The sampler is initialized to a random
state consistent with the evidence. Samples are generated
by resampling each non-evidence variable in turn, accord-
ing to its conditional probability given the current states
of the other variables. In early samples, the sampler may
be in an unlikely and non-representative state, so these
“burn-in” samples are typically excluded from considera-
tion. The probability of a query is estimated as the fraction
of samples consistent with the query. For positive distribu-
tions, Gibbs sampling will eventually converge to the cor-
rect probabilities, but this can take a very long time and
convergence can be difficult to detect.

2.2 WEIGHT LEARNING

In maximum likelihood parameter estimation, the goal is to
select a set of parameters that maximizes the log-likelihood
of the model on the training data. Here we assume that
the MN is expressed as a log-linear model with a fixed
set of features and that all variables are observed in the
training data. Since the log-likelihood of an MN is a con-
cave function of the weights, parameter learning can be
framed as a convex optimization problem and solved with
standard gradient-based approaches. Since log-likelihood
and its gradient are usually intractable to compute exactly
and slow to approximate, a commonly-used alternative is
pseudo-likelihood. Pseudo-log-likelihood (PLL) [2] is the
sum of the conditional log-likelihood of each variable given
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the other variables:

logP •w(X=x) =
n∑

i=1

logPw(Xi=xi|X−i=x−i)

where X−i = X − Xi, the set of all variables except for
Xi. Unlike log-likelihood, PLL and its gradient can both
be evaluated efficiently. Like log-likelihood, PLL is a con-
cave function, so any local optimum is also a global op-
timum. The main disadvantage of PLL is that it tends to
handle long-range dependencies poorly. Optimizing PLL
optimizes the model’s ability to predict individual vari-
ables given large amounts of evidence, and this may lead
to worse performance when less evidence is available. To
control overfitting, a zero-mean Gaussian prior is typically
placed on each weight.

2.3 STRUCTURE LEARNING

The goal of MN structure learning is to find a set of fac-
tors and parameters or features and weights with a high
score on the training data. As with weight learning, pseudo-
likelihood is a common choice due to the intractability of
the partition function. Of the many MN structure learning
variations that have been proposed, we touch on just a few
algorithms and their main themes.

One common approach to structure learning is to perform
a greedy search through the space of possible structures.
Della Pietra et al. [4] conduct this search in a top-down
manner, starting with atomic features (individual variable
tests) and extending and combining these simple features
until convergence. Davis and Domingos [3] propose a
bottom-up search instead, creating many initial features
based on the training data and repeatedly merging features
as learning progresses. Search-based algorithms tend to be
slow, since scoring candidate structures can be expensive
and there are many candidate structures to consider.

Another approach is to use local models to find the Markov
blanket of each variable separately and then combine the
features of these local models into a global structure.
Ravikumar et al. [15] do this by learning a logistic regres-
sion model with L1 regularization for each variable. The
use of L1 regularization encourages sparsity, so that most
of the interaction weights are zero. All non-zero interac-
tions are turned into conjunctive features. In other words,
if the logistic regression model for predictingXi has a non-
zero weight for Xj then the feature Xi∧Xj is added to the
model. Lowd and Davis [12] adopt a similar approach, but
use probabilistic decision trees as the local model. Each de-
cision tree is converted into a set of conjunctive features by
considering each path from the tree root to a leaf as a con-
junction of variable tests. In both works, the authors select
feature weights by performing weight learning. In addition
to being much faster than the search-based methods, the
local approaches often lead to more accurate models.

3 DEPENDENCY NETWORKS

A dependency network (DN) [8] consists of a set of con-
ditional probability distributions (CPDs) Pi(Xi|MB(Xi)),
each defining the probability of a single variable given its
Markov blanket. A DN is said to be consistent if there ex-
ists a probability distribution P that is consistent with the
DN’s conditional distributions. Inconsistent DNs are some-
times called general dependency networks.

Since Gibbs sampling only uses the conditional probability
of each variable given its Markov blanket, it is easily ap-
plied to DNs. The probability distribution represented by
a DN is defined as the stationary distribution of the Gibbs
sampler, given a fixed variable order. If the DN is consis-
tent, then its conditional distributions must be consistent
with some MN, and Gibbs sampling converges to the same
distribution as the MN. If the DN is inconsistent, then the
stationary distribution may depend on the order in which
the variables are resampled. Furthermore, the joint distri-
bution determined by the Gibbs sampler may be inconsis-
tent with the conditional probabilities in the CPDs.

Few other inference algorithms have been defined for DNs.
Heckerman et al. [8] describe a method for using Gibbs
sampling and CPD values together to estimate rare proba-
bilities with lower variance; Toutanova et al. [17] do max-
imum a posteriori (MAP) inference in a chain-structured
DN with an adaptation of the Viterbi algorithm; and Lowd
and Shamaei [13] propose mean field inference for DNs.
We know of no other methods.

A DN can be constructed from any MN by constructing a
conditional probability distribution for each variable given
its Markov blanket. A DN can also be learned from data
by learning a probabilistic classifier for each variable. This
makes DN learning trivial to parallelize with a separate pro-
cess for each variable. However, when learned from data,
the resulting CPDs may be inconsistent with each other.

Any standard method for learning a probabilistic classifier
can be used. Heckerman et al. [8] learn a probabilistic de-
cision tree for each variable. In a probabilistic decision
tree, the interior nodes of the tree are variable tests (such
as (X4 = T )), the branches are labeled with test outcomes
(such as true and false), and the leaves specify the marginal
distribution of the target variable given the tests on the path
from the root to leaf. Probabilistic decision trees can be
learned greedily to maximize the conditional log-likelihood
of the target variable.

Hulten et al. [9] investigated the problem of converting a
DN to a Bayesian network (BN). However, rather than try-
ing to match the distribution as closely as possible, they
tried to find the highest-scoring acyclic subset of the DN
structure. After proving the problem to be NP-hard, they
proposed a greedy algorithm for removing the least essen-
tial edges. The resulting BN was consistently less accurate
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than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT
DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x′, that only differ in the
state of one variable, Xj . In other words, xi = x′i for all
i 6= j, so x−j = x′−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x′)
=
P (xj ,x−j)
P (x′j ,x−j)

=
P (xj |x−j)P (x−j)
P (x′j |x−j)P (x−j)

=
P (xj |x−j)
P (x′j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x′ differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x′o[i],x
(i−1)
−o[i] )

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x′o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x′ and the
latter n− i are set to their values in x. Note that x(n) = x′,
since all n variables have been changed to their values in
x′.

We can use these intermediate instances to express the ratio

P (x)/P (x′) as a product:

P (x)

P (x′)
=
P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · · × P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · · × P (x(n−1))

P (x(n))

=

n∏

i=1

P (x(i−1))

P (x(i))
=

n∏

i=1

P (xo[i]|x(i)
−o[i])

P (x′o[i]|x
(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x(i)
−o[i])/P (x′o[i]|x

(i)
−o[i]) and

Z = 1/P (x′):

1

Z

∏

i

φi(x) = P (x′)
P (x)

P (x′)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x′.

Note that, unlike x′, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T ) = 4/5

P (X1 = T |X2 = F ) = 2/5

P (X2 = T |X1 = T ) = 2/3

P (X2 = T |X1 = F ) = 1/4

Let x′ = [T, T ] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x′1|x
(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x′2|x
(2)
−2)

=
P (x2|X1 = T )

P (X2 = T |X1 = T )

Note that φ2 is not a function of x1. This is because x(2)1 =
x′1, so the value ofX1 in the evidence is defined by the base
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instance, x′. In general, the ith converted factor φi is not a
function of the first i − 1 variables, since they are fixed to
values in x′.

By simplifying the factors, we obtain the following:

X1 X2 φ1(X1, X2)
T T 1
T F 1
F T 1/4
F F 3/2

X2 φ2(X2)
T 1
F 1/2

Multiplying the factors together and renormalizing yields:

X1 X2 P (X1, X2)
T T 0.4
T F 0.2
F T 0.1
F F 0.3

which matches both conditional distributions. Therefore,
an MN with the factors φ1 and φ2 represents the exact
same distribution as a DN with the conditional distributions
P (X1|X2) and P (X2|X1). Since the original DN is con-
sistent, any choice of x′ or o will lead to the same result.

4.2 LOG-LINEAR MODELS WITH
CONJUNCTIVE FEATURES

In the previous example, we showed how to convert a DN
to an MN using tables as factors. However, this can be very
inefficient when the conditional distributions have struc-
ture, such as decision trees or logistic regression models.
Rather than treating each type of CPD separately, we dis-
cuss how to convert any distribution that can be represented
as a log-linear model with conjunctive features.

Suppose the CPD for Xi is a log-linear model:

P (Xi|X−i) =
1

Z(X−i)
exp


∑

j

wjfj(Dj)




Note that the normalization Z is now a function of the
evidence variables, X−i. To represent P (Xi|x(i)

−o[i]), we

can condition each fj on x
(i)
−o[i] separately:

P (Xi|x(i)
−o[i]) =

1

Z(x
(i)
−o[i])

exp


∑

j

wjfj(Xi,x
(i)
−o[i])




x
(i)
−o[i] uses values from x′ for the first i variables in o and

x for the rest. The values from x′ are constant but those
in x are free variables, so that the resulting distribution is a
function of x. When simplifying fj(x

(i)
−o[i]), if the constant

values in x
(i)
−o[i] violate one of the variable tests in fj , then

fj is always zero and it can be removed entirely. Other-
wise, any conditions satisfied by constant values in x

(i)
−o[i]

are always satisfied and can be removed.

Table 1: The Basic DN2MN Algorithm
function DN2MN({Pi(Xi|X−i)},x′, o−1)
M ← ∅
for i = 1 to n do

Convert Pi to a set of weighted features, Fi.
for each weighted feature (w, f) ∈ Fi do
fn ← SIMPLIFYFEATURE(i, f,x′, o−1, true)
fd ← SIMPLIFYFEATURE(i, f,x′, o−1, false)
M = M ∪ (w, fn) ∪ (−w, fd)

end for
end for
return M

For example, suppose P (X2|X1, X4) uses the following
three conjunctive features:

f1(X1, X2, X4) = X1 ∧ ¬X2 ∧X4

f2(X1, X2) = X1 ∧X2

f3(X2, X4) = X2 ∧ ¬X4

If x′ = [T, T, T, T ] and o = [1, 2, 3, 4], then x(2) =

[X1, X2, T, T ]. After conditioning f1, f2, and f3 on x
(2)
−o[2],

they simplify to:

f1(X1, X2) = X1 ∧ ¬X2

f2(X1, X2) = X1 ∧X2

f3 is removed entirely, since it is inconsistent with x
(2)
−o[2].

To compute φ2, we must additionally condition the func-
tion in the denominator on X2 = x′2 = T . If the weights
of f1 and f2 are w1 and w2, respectively, then:

φ2(X1, X2)

=
P (X2|X1, X4 = T )

P (X2 = T |X1, X4 = T )

=
exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2))/Z(x

(2)
−o[2])

exp(w2(X1 ∧X2))/Z(x
(2)
−o[2])

= exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2)− w2X1)

Note that the final factor φi is always a log-linear model
where each feature is a subset of one of the features in
the original conditional distribution. Therefore, converting
each conditional distribution in this manner yields an MN
represented as a log-linear model.

We summarize our complete method for consistent DNs
with the algorithms in Tables 1 and 2. DN2MN takes a
set of conditional probability distributions, {Pi(Xi|X−i)},
a base instance x′, and an inverse variable ordering o−1.
The inverse variable ordering is a mapping from variables
to their corresponding indices in the desired ordering o, so
that o−1[o[i]] = i. DN2MN first converts the conditional
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Table 2: Feature Simplifying Subroutine
function SIMPLIFYFEATURE(i, f,x′, o−1, numerator)
f ′ ← ∅
for each variable test (Xj = vj) ∈ f do

if o−1[i] < o−1[j] OR (i = j AND numerator) then
f ′ ← f ′ ∪ (Xj = vj)

else if vj 6= x′j then
return ∅

end if
end for
return f ′

distributions into sets of weighted features. Then it condi-
tions each feature on some of the values in x′, depending
on the variable order, to produce the simplified distribu-
tions for the numerator and denominator of (4). This is
handled by SIMPLIFYFEATURE, which accepts a parame-
ter to indicate if the simplified feature is for the numerator
or denominator. Features in the denominator are assigned
negative weights, since 1/ exp(wf) = exp(−wf).

5 HANDLING INCONSISTENCIES

When the basic DN2MN algorithm is applied to an incon-
sistent DN, the result may depend on x′ and o. For exam-
ple, consider the following conditional distributions:

P1(X1 = T |X2 = T ) = 4/5

P1(X1 = T |X2 = F ) = 1/5

P2(X2 = T |X1 = T ) = 1/5

P2(X2 = T |X1 = F ) = 4/5

P1 encourages X1 and X2 to be equal, while P2 encour-
ages them to have opposite values. By symmetry, it is easy
to see that a Gibbs sampler with these transition probabili-
ties must converge to a uniform distribution. However, the
conditional distributions are not consistent with a uniform
distribution, so the DN is inconsistent. We see that the
choice of x′ here does affect the converted MN:

When x′ = [T, T ] When x′ = [F, F ]
and o = [1, 2]: and o = [1, 2]:

X1 X2 P (X1, X2)
T T 4/85
T F 16/85
F T 1/85
F F 64/85

X1 X2 P (X1, X2)
T T 64/85
T F 1/85
F T 16/85
F F 4/85

Unsurprisingly, changing the ordering o also changes the
resulting probability distribution for this example. How-
ever, no single choice of x′ and o leads to the true, uniform
distribution. To obtain a uniform distribution, we must av-
erage over several conversions.

5.1 AVERAGING OVER ALL BASE INSTANCES

A reasonable way to average is to convert the DN to an
MN k times and take the geometric mean of the resulting

distributions. With a log-linear model, this can be done by
simply combining all features from all models and dividing
the weights by k.

However, instead of merely summing over a small number
of base instances x′, we can sum over all base instances
in linear time and space by exploiting the structure of con-
junctive features. Given a feature fj and an intermediate
instance x

(i)
−o[i], suppose that k binary-valued variables in

fj have constant values in x
(i)
−o[i]. Out of all possible x′,

only the fraction 2−k will be consistent with the instance.
Therefore, rather than enumerating all possible x′, we can
simply multiply the weight of fj by 2−k, to reflect the fact
that it would be included in only that fraction of the con-
verted MNs.

For inconsistent DNs, a uniform distribution over all x′

may not be a good approach, since the DN may be more in-
consistent in less probable regions of the state space, lead-
ing to worse behavior. We have found that a product of
marginals distribution over x′ works well. We use train-
ing data to estimate the marginal distribution of each vari-
able, and then use those marginals to compute the modified
weight of each conditioned feature. The uniform approach
remains a special case. We also experimented with aver-
aging over all training examples, but found that using the
marginals worked slightly better.

5.2 AVERAGING OVER ORDERINGS

Since the conversion depends on the ordering, we would
like to average over all possible orderings as well. Since
every feature in the final model is a subset of one of the
original features, a feature with k variable tests has at most
2k subsets to consider. When converting the conditional
distribution for variableXi, all variables that come after i in
the ordering are constant, so variable tests involving those
variables will be removed. Consider a specific conjunctive
subfeature that contains only l of the original k variable
tests. There are k! total orderings of the variables in the k
conditions. There are (l − 1)! ways to order the remaining
conditions (excluding the target), and (k− l) ways to order
the conditions that were removed.1 Therefore, the fraction
of orderings consistent with a particular subfeature is: (l−
1)!(k − l)!/k!.

In a model with long conjuncts, the exponential number of
subfeatures leads to prohibitively large model sizes. Al-
ternately, we can sum over a linear number of orderings.
Given a base ordering, o, we sum over all n orderings of
the form:

[o[i], o[i+ 1], . . . , o[n], o[1] . . . , o[i− 1]]

1We assume each variable appears in at most one condition, so
they can be ordered independently. This assumption can easily be
relaxed.
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for all i. When averaging over a linear number of orderings,
a conjunctive feature with k variable tests will be converted
to k subfeatures, each determined by which of the variables
comes first in the ordering.

For example, suppose the conditional distribution for X7

contains the feature X4 ∧X6 ∧X7 ∧X13 and we are sum-
ming over all rotations of [1, 2, . . . , n]:

• If X7 is first in the order, then the conditioned feature
is X4 ∧X6 ∧X7 ∧X13.
• If X5 or X6 comes first, then X6 is fixed to its value

in x′, leaving X4 ∧X7 ∧X13.
• IfX1 toX4 orX14 toXn comes first, thenX4 andX6

come before X7 in the ordering, leaving X7 ∧X13.
• If X8 to X12 comes first, then all variables come be-

fore X7, so the conditioned feature is just X7.

Note that these orderings should not be weighted equally.
The weights for the four subfeatures should be multiplied
by 1/n, 2/n, (4 + (n− 13))/n, and 5/n, respectively.

For symmetry, we can average over all rotations of several
different orderings. In our experiments, we average over all
rotations of the orderings [1, 2, . . . , n] and [n, n−1, . . . , 1].
For features of length 2, this is equivalent to summing
over all orderings, since all subfeatures are included and
the symmetry of the opposite orderings ensures balanced
weights.

6 EXPERIMENTS

6.1 DATASETS

We used 12 standard MN structure learning datasets col-
lected and prepared by Davis and Domingos [3], omitting
EachMovie since it is no longer publicly available. All vari-
ables are binary-valued. The datasets vary widely in size
and number of variables. See Table 3 for a summary, and
Davis and Domingos [3] for more details on their origin.
Datasets are in increasing order by number of variables.

Table 3: Dataset characteristics
Dataset # Train # Tune # Test # Vars
NLTCS 16,181 2,157 3,236 16
MSNBC 291,326 38,843 58,265 17
KDDCup 2000 180,092 19,907 34,955 64
Plants 17,412 2,321 3,482 69
Audio 15,000 2,000 3,000 100
Jester [6] 9,000 1,000 4,116 100
Netflix 15,000 2,000 3,000 100
MSWeb 29,441 3,270 5,000 294
Book 8,700 1,159 1,739 500
WebKB 2,803 558 838 839
Reuters-52 6,532 1,028 1,540 889
20 Newsgroups 11,293 3,764 3,764 910

6.2 METHODS

On each dataset, we learned DNs with decision tree CPDs
and logistic regression CPDs. For decision tree CPDs, each
probabilistic decision tree was greedily learned to maxi-
mize the conditional likelihood of the target variable given
the others. To avoid overfitting, we used the structure prior
of Heckerman et al. [8], P (S) ∝ κf , where f is the number
of free parameters in the model and κ > 0 is a tunable pa-
rameter. Parameters were estimated using add-one smooth-
ing. We learned logistic regression CPDs with L1 regu-
larization using the Orthant-Wise Limited-memory Quasi-
Newton (OWL-QN) method [1]. Both κ and λ (the L1 reg-
ularization parameter) were tuned using held-out validation
data. For κ, we started from a value of 10−4 and increased
it by a factor of 10 until the score on the validation set de-
creased. For λ, we used the values 0.1, 0.2, 0.5, 1, 2, 5, . . . ,
1000 and selected the model with the highest score on the
validation set. To score a DN on a validation set, we com-
puted the product of the conditional probabilities of each
variable according to their respective CPDs.

We converted the DNs to MNs with 6 different choices of
base instances and orderings:

1. One ordering; one base instance
2. Two opposite orderings; one base instance
3. One ordering; expectation over all instances
4. Two opposite orderings; expectation over all instances
5. All rotations of one ordering; expectation over all in-

stances
6. All rotations of two opposite orderings; expectation

over all instances

The expectation over all instances was done using the
marginal distribution of the variables, as estimated using
the training data. To be as fair as possible, we include the
time to read in the entire training data in our timing results,
as well as the time to write the model to disk.

We also converted the DNs to MNs using weight learning,
similar to the methods of [15, 12]. We first converted all
DN CPDs to conjunctive features and removed duplicate
features. Then we learned weights for all features to maxi-
mize the PLL of the training data, using a Gaussian prior on
the weights to reduce overfitting. The standard deviation of
the Gaussians was tuned to maximize PLL on the valida-
tion set. With decision tree CPDs, we used standard devia-
tions of 0.05, 0.1, 0.2, 0.5, and 1.0, and the best-performing
models always had standard deviations between 0.1 and
0.5. For logistic regression CPDs, a slightly wider range of
standard deviations was required, ranging from 0.1 to 10.
Optimization was done using the limited memory BFGS
algorithm, a quasi-Newton method for convex optimiza-
tion [11]. Weight learning was terminated after 100 iter-
ations if it had not yet converged.
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We did not compare to BLM [3] or the algorithm of Della
Pietra et al. [4], since those algorithms have been shown to
be less accurate and many orders of magnitude slower than
Ravikumar et al. [15] on these datasets [12, 7].

In addition to PLL, we computed conditional marginal
log-likelihood (CMLL), a common evaluation metric for
Markov networks [3, 10, 12]. CMLL is the sum of the con-
ditional log-likelihood of each variable, given a subset of
the others as evidence. In our experiments, we followed
the approach of Davis and Domingos [3], who partition the
variables into four sets, Q1 through Q4. The marginal dis-
tribution of each variable is computed using the variables
from the other three sets as evidence:

CMLL(X) =
∑

j

∑

Xi∈Qj

logP (Xi|X−Qj)

Marginals were computed using Gibbs sampling. We used
a Rao-Blackwellized Gibbs sampler that adds counts to all
states of a variable based on its conditional distribution be-
fore selecting the next value for that variable. We found
that 100 burn-in and 1000 sampling iterations were suffi-
cient for Gibbs sampling, and additional iterations did not
affect the results very much.

All of our learning and inference methods are available in
the latest version of the open-source Libra toolkit.2

6.3 RESULTS

First, we compare the different approaches to converting
inconsistent DNs and compare the accuracy of the result-
ing MNs to the original DNs. Figure 1 shows the result
of converting DNs with both decision tree CPDs (left) and
logistic regression CPDs (right). We measure the relative
accuracy by comparing the PLL of each MN to the orig-
inal DN on the test data. In order to better show differ-
ences among datasets with different numbers of variables,
we show the normalized PLL (NPLL), which divides the
PLL by the number of variables in the domain. All graphs
are rescaled so that the height of the tallest bar in each clus-
ter is one, with its actual height listed above the graph. With
consistent DNs, all methods would be equivalent and all
differences would be zero. Since the DNs are inconsistent,
converting to an MN may result in an altered distribution
that is less accurate on test data.

Empirically, we see that using many orders and summing
over all base instances leads to more accurate models. For
the decision tree DNs, some of the bars are negative, indi-
cating MNs that are more accurate than their source DNs.
This can happen because the conditional distributions in
the MN combine several conditional distributions from the
original DN, leading to more complex dependencies than a
single decision tree. With 2n orderings, the converted MN

2http://libra.cs.uoregon.edu/

was more accurate on 10 out of 12 datasets. For logistic
regression DNs, the converted MNs are very, very close in
accuracy, but never better. With 2n orderings, the differ-
ence in NPLL is less than 0.005 for all datasets, and is less
than 0.001 for 8 out of 12.

Table 4 shows the relative accuracy of converting DNs to
MNs by learning weights (LW) or by direct conversion
with 2n orderings and a marginal distribution over base
instances (DN2MN). The result of the better performing
algorithm is marked in bold. Differences on individual
datasets are not always statistically significant, but the over-
all ranking trend shows the relative peroformance of the
two methods. LW and DN2MN do similarly well on tree
CPDs: neither PLL nor CMLL was significantly different
according to a Wilcoxon signed ranks test. With logis-
tic regression CPDs, DN2MN achieves higher PLL on 10
datasets and CMLL on 9. Both differences are significant
at p < 0.05 under a two-tailed Wilcoxon signed ranks test.

Table 5 shows the time for converting DNs using our
closed-form solution and weight learning. DN2MN is 7
to 250 times faster than weight learning with decision tree
CPDs, and 160 to 1200 times faster than weight learning
with logistic regression CPDs. These results include tun-
ing time, which is necessary to obtain the best results for
weight learning. If all tuning time is excluded, weight
learning is 12 times slower with tree CPDs and 49 times
slower with logistic regression CPDs, on average.

7 CONCLUSION

DN2MN learns an MN with very similar performance to
the original DN, and does so very quickly. With decision
tree CPDs, the MN is often more accurate than the orig-
inal DN. With logistic regression CPDs, the MN is sig-
nificantly more accurate than performing weight learning
as done by Ravikumar et al. [15]. This makes DN2MN
competitive with or better than state-of-the-art methods for
learning MN structure. Furthermore, DN2MN can exploit
many types of conditional distributions, including boosted
trees and rule sets, and can easily take advantage of any
algorithmic improvements in learning conditional distribu-
tions. Another important application of DN2MN is when
the model is specified by experts, since conditional distri-
butions could be much easier to specify than a joint distri-
bution.
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Figure 1: Difference in normalized PLL between the original DNs and converted MNs with different orderings and base
instances, divided by largest difference. Results from decision tree DNs are on the left; logistic regression DNs are on the
right. Smaller values indicate better MN performance. Largest difference values are listed above each dataset’s results,
rounded to nearest 1/1000th.

Table 4: Test set PLL and CMLL of converted DNs with tree and logistic regression CPDs.

Tree CPDs LR CPDs
PLL CMLL PLL CMLL

Dataset LW DN2MN LW DN2MN LW DN2MN LW DN2MN
NLTCS -5.02 -4.93 -5.25 -5.20 -4.96 -4.95 -5.23 -5.23
MSNBC -4.32 -4.31 -5.75 -5.80 -6.06 -6.06 -6.28 -6.28
KDDCup 2000 -2.05 -2.05 -2.08 -2.07 -2.06 -2.07 -2.11 -2.12
Plants -8.75 -9.17 -10.00 -10.67 -9.39 -9.50 -10.76 -10.91
Audio -38.01 -37.77 -38.25 -38.35 -36.17 -36.11 -36.93 -36.88
Jester -51.42 -50.77 -51.49 -51.42 -49.01 -48.81 -49.83 -49.76
Netflix -54.32 -53.60 -54.62 -54.50 -51.15 -51.10 -52.37 -52.31
MSWeb -8.20 -8.33 -8.72 -8.77 -8.70 -8.64 -8.96 -8.93
Book -34.60 -35.14 -34.49 -35.44 -33.86 -33.41 -34.75 -34.09
WebKB -149.37 -148.42 -149.99 -151.88 -153.13 -139.39 -158.51 -143.05
Reuters-52 -82.57 -82.67 -82.53 -85.16 -81.44 -77.62 -81.82 -79.60
20 Newsgroups -159.14 -152.84 -156.08 -154.06 -151.53 -147.76 -151.93 -148.82

Table 5: Total running time for learning MNs from DNs. DN2MN method uses 2n orderings and marginals.

Tree CPDs LR CPDs
Dataset LW DN2MN Speedup LW DN2MN Speedup
NLTCS 4.9s 0.3s 17.3 2.3s 0.01s 162.4
MSNBC 73.3s 9.4s 7.8 7.6s 0.04s 189.6
KDDCup 2000 121.3s 3.8s 31.5 32.0s 0.12s 251.7
Plants 67.9s 1.6s 42.7 71.4s 0.17s 427.6
Audio 147.4s 1.8s 80.3 139.3s 0.40s 344.0
Jester 56.6s 1.2s 46.6 311.7s 0.32s 974.1
Netflix 109.8s 2.0s 54.7 534.3s 0.43s 1245.6
MSWeb 452.8s 16.0s 28.3 308.6s 0.65s 472.0
Book 361.6s 1.4s 252.6 224.8s 1.10s 203.5
WebKB 177.5s 1.8s 128.6 386.3s 1.71s 225.9
Reuters-52 798.2s 3.3s 242.7 951.0s 2.66s 357.7
20 Newsgroups 1952.9s 7.6s 257.9 3830.5s 7.61s 503.0
Geom. mean 149.3s 2.5s 59.9 145.4s 0.38s 363.9
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Abstract

Most analyses of manipulation of voting schemes
have adopted two assumptions that greatly di-
minish their practical import. First, it is usually
assumed that the manipulators have full knowl-
edge of the votes of the nonmanipulating agents.
Second, analysis tends to focus on the probabil-
ity of manipulation rather than its impact on the
social choice objective (e.g., social welfare). We
relax both of these assumptions by analyzing op-
timal Bayesian manipulation strategies when the
manipulators have only partial probabilistic in-
formation about nonmanipulator votes, and as-
sessing the expected loss in social welfare (in the
broad sense of the term). We present a gen-
eral optimization framework for the derivation
of optimal manipulation strategies given arbi-
trary voting rules and distributions over prefer-
ences. We theoretically and empirically analyze
the optimal manipulability of some popular vot-
ing rules using distributions and real data sets
that go well beyond the common, but unrealis-
tic, impartial culture assumption. We also shed
light on the stark difference between the loss in
social welfare and the probability of manipula-
tion by showing that even when manipulation is
likely, impact to social welfare is slight (and often
negligible).

1 INTRODUCTION

The use of voting rules to aggregate preferences has
become a topic of intense study, and one of great im-
portance in ranking, recommender systems, resource
allocation, and other applications of social choice to
computational systems. One of the most challenging
topics in computational social choice is the study of
manipulation: given a voting rule, there is usually
some set of voter preferences such that one or more
voters can obtain a more desirable outcome by misre-
porting their preferences. Indeed, except under very
stringent assumptions, voting rules that are not ma-
nipulable do not exist [18, 33]. An important line
of research, initiated by Bartholdi et al. [2, 3], shows

that it can be computationally difficult to manipulate
certain rules. However, since worst-case complexity
is not itself a significant barrier to manipulation, re-
cent attention has focused on theoretical and empir-
ical demonstration that manipulation is often, or on
average, tractable for certain stylized preference dis-
tributions [11, 31, 16, 35].

While our understanding of manipulation has im-
proved immensely, some significant deficiencies remain
in the state of the art. First, analysis of manipulation
is often confined to cases in which the manipulators
have complete knowledge of the preferences of sincere
voters. While there are reasons for this, such analyses
offer too pessimistic a picture of manipulability, since
manipulators rarely have access to such information.

The main contribution of our work is a framework
for analyzing optimal Bayesian manipulation strate-
gies under realistic knowledge assumptions, namely,
manipulators with partial, probabilistic knowledge of
voter preferences. Since success of a manipulation is
generally uncertain, the optimal strategy simply max-
imizes the odds of success. This depends critically on
the voting rule, the number of voters, and the pref-
erence distribution—as a result, general analytical re-
sults are difficult to obtain. We instead present an em-
pirical methodology that, assuming only the ability to
sample vote profiles from the preference distribution,
allows one to compute an optimal manipulation strat-
egy. We illustrate this methodology on several prefer-
ence distributions (including real-world data). We also
derive sample complexity bounds that provide quality
guarantees on the resulting strategies. This framework
provides the ability to analyze the manipulability of
most voting rules under any probabilistic knowledge
assumptions—arbitrary priors, posteriors conditioned
on available evidence, even the special case of complete
knowledge—requiring only that the preference distri-
bution be sampleable.

While the computational framework is general, we also
analytically derive optimal manipulation strategies for
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the k-approval rule (and the Borda rule in a limited
fashion) under standard impartial (and anonymous)
culture assumptions. However, since impartial culture
is rare in practice [32], these results are primarily of
theoretical interest.

A second deficiency of current manipulation analyses
pertains to the emphasis on success probability. We
adopt a decision-theoretic perspective that provides a
more nuanced picture of manipulability of various vot-
ing rules. Intuitively, the more preferred an alternative
is to the sincere voters, the more likely it is that ma-
nipulators can succeed in causing the alternative to be
selected. As such, probability of manipulation does
not tell the whole story, since alternatives with higher
success probability cause less societal dissatisfaction.
To this end, we interpret the “score” associated with
specific alternatives under a given voting rule as an
explicit social choice objective—i.e., a social welfare
function in the broad sense of the term—and propose
analyzing rules in this light. We recognize that vot-
ing protocols are often applied in settings where max-
imizing (some form of) social welfare is not the main
objective; but we argue below that this perspective
is natural in many applications, and our methodology
applies to measures of social welfare different from the
“score” used by the voting rule itself.

Along these lines, we derive theoretical bounds on the
impact of manipulation on social welfare for the spe-
cial case of positional scoring rules. More importantly,
while distribution-dependent analytical results are dif-
ficult to obtain, we can exploit our ability to iden-
tify optimal manipulation strategies: by sampling vote
profiles from the distribution, computing the loss in
welfare under the optimal manipulation strategy, and
averaging the results, we can readily determine the
expected impact on welfare for any specific distribu-
tion. Our empirical results show that manipulation for
certain rules, under realistic knowledge assumptions,
generally causes little damage.

2 BACKGROUND

We briefly review relevant background; see [17, 9] for
further detail on (computational) social choice.

2.1 VOTING RULES

We assume a set of n voters N = {1, . . . , n} and a
set of m alternatives A = {a1, . . . , am}. A voter i’s
preferences are represented by a ranking or permuta-
tion vi over A. If vi(a) is the rank of a in vi, we say
i prefers aj to ak, if vi(aj) < vi(ak). We refer to vi
as i’s vote. A preference profile is a collection of votes
v = (v1, . . . , vn). Let V be the set of all such profiles.

A voting rule r : V → A selects a “winner” given a
preference profile. Common voting rules include plu-
rality, approval, Borda, single transferable vote (STV)
and many others. We will use positional scoring rules
frequently in the sequel. Let α = (α1, . . . , αm) be
a non-negative positional scoring vector, where αi ≥
αi+1 for all i ≥ 1. Intuitively, a earns score αi for ev-
ery vote that places it in position i, and the alternative
with the greatest total score wins.1 More formally, let
the m × m positional summary matrix (PSM) X for
profile v have entry Xij equal to the number of votes
that rank ai in position j. Then the score sα(ai;v)
of ai is the i-th entry of Xα′. Several important rules
can be defined using positional scores: plurality by
(1, 0, . . . , 0); k-approval by (1, 1, . . . , 0, 0), with k 1s;
and Borda by (m− 1,m− 2, . . . , 0).

Many voting rules—not just positional rules, but rules
such as maximin, Copeland, Bucklin, Kemeny, and
many others—explicitly score all alternatives, assign-
ing a score s(a,v) that defines some measure of the
quality of alternative a given a profile v, then choos-
ing the alternative with maximum score. This can be
viewed as implicitly defining a social choice objective
that is optimized by the voting rule, or more broadly
as a social welfare function, that expresses some “soci-
etal utility” for each alternative.2 While this interpre-
tation may not be valid in all contexts, we will refer
to s(a,v) as the social welfare of a under rule r for
voters with preferences v, and write this as SW (a,v)
to emphasize this view. We discuss this further below.

2.2 MANIPULATION

By manipulation we refer to a coalition of one or more
voters obtaining a more desirable outcome by misre-
porting their preferences. Indeed, except under very
stringent conditions (e.g., single-peaked preferences),
the classic Gibbard-Sattherwaite theorem shows that
no scheme is immune to manipulation [18, 33]. In
other words, there is some preference profile for which
at least one voter can obtain a better outcome by
misreporting. In the remainder of the paper, we fo-
cus on constructive manipulation, in which a coalition
attempts to cause a single “preferred” candidate to
win. We emphasize however that the general prin-
ciples underlying our approach apply equally well to
other forms of manipulation such as destructive ma-
nipulation or utility maximization (see below).

1In Sec. 3, we assume that tie-breaking works against
the desired alternative of the manipulators.

2We we use the term “social welfare” in its broadest
sense, referring to any means of ranking social outcomes.
Specifically, we do not assume its more restricted defini-
tion, commonly used in mechanism design, as “sum of in-
dividual voter utilities.”
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Whether manipulation is a problem in practice de-
pends on: how likely such manipulable preference pro-
files are; whether manipulators can detect the exis-
tence such a profile; and whether computing a suit-
able misreport is feasible. On this third point, the pi-
oneering work of Bartholdi et al. [2, 3] demonstrated
that, even given full knowledge of a profile, computing
a suitable manipulation is computationally intractable
for certain voting rules. This in turn led to the detailed
computational analysis of many voting rules (e.g., the
Borda rule [13, 4]). Of course, worst-case complexity
results offer little comfort if “difficult profiles” are un-
likely to arise in practice. Recent work suggests that
common voting rules are in fact frequently manipu-
lable, by studying heuristic algorithms that provide
theoretical guarantees [31, 41, 39], identifying proper-
ties of voting rules that make them easy to manipulate
in the typical case [11, 16, 40], and investigating (both
theoretically and empirically) the relation between the
number of manipulators and the probability of manip-
ulation [30, 38, 35] (see [15] for an overview).

Analyses demonstrating ease of manipulation tend to
suffer from two key drawbacks. First, they exclu-
sively analyze manipulation assuming the manipulat-
ing coalition has full knowledge of the vote profile.
While results showing that manipulation is difficult
can be justified on these grounds, claiming easiness
of manipulation has less practical import if the coali-
tion is assumed to have unreasonable access to the
preferences of sincere voters.3 One exception consid-
ers manipulators who know only that the vote profile
lies within some set [12], but unfortunately this work
only analyzes the rather weak notion of dominating
manipulations. Social choice research on manipula-
tion under probabilistic knowledge is mostly negative
in nature [23], or restricted to a single manipulator [1].

A second weakness of many analyses of probability of
manipulation (which do assume complete information
on the part of the manipulator) is their reliance on spe-
cific stylized models such as impartial culture (where
every ranking in equally likely) [16, 40]. Much em-
pirical work also considers very stylized distributions
such as impartial culture, Polya’s urn, and Condorcet
(or Mallows) distributions. Some work does consider
sub-sampling from real voting data, though with rela-
tively small numbers of votes [36].

2.3 PROBABILISTIC RANKING MODELS

Probabilistic analysis of manipulation—including our
Bayesian manipulation problem—requires some prob-

3This is implicit in [10], which shows that hardness
of full-information manipulation implies hardness under
probabilistic information.

abilistic model of voter preferences. By far the most
common model in social choice is impartial culture
(IC), which assumes the preference of any voter is
drawn from the uniform distribution over the set of
permutations of alternatives [32]. A related model is
the impartial anonymous culture (IAC) model in which
each voting situation is equally likely [32].4 Several
other models (bipolar, urn, etc.) are considered in
both theoretical and empirical social choice research.

Probabilistic models of rankings are widely consid-
ered in statistics, econometrics and machine learning
as well, including models such as Mallows φ-model,
Plackett-Luce, and mixtures thereof [25]. We use the
Mallows φ-model [24] in Sec. 6, which is parameterized
by a reference ranking σ and a dispersion φ ∈ (0, 1],
with P (r) = 1

Zφ
d(r,σ), where r is any ranking, d is

Kendall’s τ -distance, and Z is a normalizing constant.
When φ = 1, this model is exactly the impartial cul-
ture model studied widely in social choice—as such it
offers considerable modelling flexibility. However, mix-
tures of Mallows models offer even greater flexibility,
allowing (with enough mixture components) accurate
modelling of any distribution over preferences. As a
consequence, Mallows models, and mixtures thereof,
have attracted considerable attention in the machine
learning community [27, 8, 20, 26, 21]. We investigate
these models empirically below.

3 OPTIMAL BAYESIAN
MANIPULATION

We now consider how a manipulating coalition should
act given probabilistic knowledge of the preferences of
the sincere voters. We first formally define our setting,
then present several analytical results. Finally, we
present a general, sample-based optimization frame-
work for computing optimal manipulation strategies
and provide sample complexity results for positional
scoring rules and k-approval.

3.1 THE MODEL

We make the standard assumption that voters are par-
titioned into n sincere voters, who provide their true
rankings to a voting mechanism or rule r, and a coali-
tion of c manipulators. We assume the manipulators
have a desired alternative d ∈ A, and w.l.o.g. we as-
sume A = {a1, . . . , am−1, d}. We make no assumptions
about the manipulators’ specific preferences, only that
they desire to cast their votes so as to maximize the
probability of d winning under r. A vote profile can be
partitioned as v = (vn,vc), where vn reflects the true

4A voting situation simply counts the number of voters
who hold each possible ranking of the alternatives.
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preferences of the n sincere voters and vc the reported
preferences of the c manipulators.

In contrast to most models, we assume the coalition
has only probabilistic knowledge of sincere voter pref-
erence: a distribution P reflects these beliefs, where
P (vn) is the coalition’s degree of belief that the sin-
cere voters will report vn. We refer to the problem
facing the coalition as a Bayesian manipulation prob-
lem. Manipulator beliefs can take any form: a simple
prior based on a standard preference distributions; a
mixture model reflecting beliefs about different voter
“types;” or a posterior formed by conditioning on ev-
idence the coalition obtains about voter preferences
(e.g., through polling, subterfuge, or other means).
This latter indeed seems to be the most likely fashion
in which manipulation will proceed in practice. Fi-
nally, the standard full knowledge assumption is cap-
tured by a point distribution that places probability 1
on the actual vote profile. We sometimes refer to P
as a distribution over individual preferences, which in-
duces a distribution over profiles by taking the product
distribution Pn.

The coalition’s goal is to cast a collective vote vc that
maximizes the chance of d winning:

argmax
vc

∑

vn: r(vn,vc)=d

P (vn).

We refer to this vc as an optimal Bayesian manipula-
tion strategy. For most standard voting rules, this is
equivalent to maximizing the probability of manipula-
tion, which is the above sum restricted to profiles vn
such that r(vn) 6= d.

While we focus on constructive manipulation, our gen-
eral framework can be applied directly to any reason-
able objective on the part of the manipulating coali-
tion. Plausible objectives include: destructive manip-
ulation, which attempts to prevent a specific candidate
from winning; safe manipulation, where a coalitional
voter is unsure whether his coalitional colleagues will
vote as planned [34, 19]; or utility maximization, which
attempts to maximize (expected) utility over possible
winning candidates. Notice that constructive manipu-
lation can be interpreted as utility maximization with
a 0-1 utility for the desired candidate d winning.

3.2 ANALYTICAL RESULTS

Our aim is to determine optimal manipulation strate-
gies given any probabilistic beliefs that the coalition
might hold, for arbitrary voting rules. Given this gen-
eral goal, tight analytical results and bounds are in-
feasible, a point to which we return below. We do pro-
vide here two results for optimal manipulation under
impartial (and impartial anonymous) culture. Since

this style of analysis under partial information is rare,
these results suggest the form that further results (e.g.,
for additional rules and more general distributions)
might take. However, as argued elsewhere [32], this
preference model is patently unrealistic, so we view
these results as being largely of theoretical interest.
Indeed, the difficulty in obtaining decent analytical
results even for simple voting rules under very styl-
ized distributions strongly argues for a more general
computational approach to manipulation optimization
that can be applied broadly—an approach we develop
in the next section.

We begin with an analysis of the k-approval rule.
When sincere votes are drawn from the uniform distri-
bution over rankings, each alternative will obtain the
same number of approvals in expectation. Intuitively,
the coalition should cast its votes so that each approves
d, and all alternatives apart from d receive the same
number of approvals from the coalition (plus/minus 1
if c(k−1) is not divisible by m−1): we refer to this as
the balanced strategy. Indeed, this strategy is optimal:

Theorem 1. The balanced manipulation strategy is
optimal for k-approval under IC and IAC.5

Things are somewhat more complex for the Borda rule,
and we provide results only for the case of three can-
didates under IC and IAC. Apart from the balanced
strategy, we use a near-balanced strategy, where the
coalition’s total approval score for d is c, and the scores
for the two candidates apart from d differ by at most
2.

Theorem 2. Let A = {x, y, d} be a set of three al-
ternatives, assume c is even. Then the either the bal-
anced strategy or the near-balanced strategy is the op-
timal manipulation strategy for Borda under both IC
and IAC. Furthermore, the balanced strategy is opti-
mal if either: (i) n is even and c + 2 is divisible by
four; or (ii) n is odd and c is divisible by four.

4 A GENERAL OPTIMIZATION
FRAMEWORK

Analytical derivation of optimal Bayesian manipula-
tion strategies is difficult; and even for a fixed voting
rule, it is not viable for the range of beliefs that manip-
ulators might possess about the voter preferences. For
this reason, we develop a general optimization frame-
work that can be used to estimate optimal strategies
empirically given only the ability to sample vote pro-
files from the belief distribution. The model will allow
direct estimation of the probability of manipulation

5The nontrivial proofs of the results in this section can
be found in the appendix of a longer version of this paper;
see: http://www.cs.toronto.edu/∼cebly/papers.html.
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(and social cost, see below). The model can be adapted
to most voting rules, but we focus our development us-
ing positional scoring rules for ease of exposition.

The main idea is straightforward. Suppose we have
a sample of T vote profiles from preference distribu-
tion P . For each vote profile, a given manipulation
will either succeed or not; so we construct an opti-
mization problem, usually in the form of a mixed-
integer program (MIP), that constructs the manipu-
lation that succeeds on the greatest number of sam-
pled profiles. If enough samples are used, this ap-
proximately maximizes the probability of d winning,
or equivalently, the probability of successful manipu-
lation by the coalition. The formulation of the opti-
mization problem—including the means by which one
summarizes a sampled vote profile and formulates the
objective—depends critically on the voting rule being
used. We illustrate the method by formulating the
problem for positional scoring rules.

Assume a positional scoring rule using score vector
α. A sampled vote profile can be summarized by a
(summary) score vector s = (s1, . . . , sm), where si is
the total score of ai in that profile; hence we will treat
a profile and its score vector interchangeably. Assume
T sampled profiles S = {s1, . . . , sT }. A manipulation
strategy vc can be represented by a PSM X, where Xij

denotes the number manipulators who rank candidate
ai in jth position. The total score of each candidate
for a given profile s is then s + Xα′.

This strategy representation simplifies the formulation
of the optimization problem significantly (by avoid-
ing search over of all possible collections of rankings).
Moreover, it is not difficult to recover a set of manipu-
lator votes vc that induce any such X, using properties
of perfect matchings on c-regular bipartite graphs:

Lemma 3. A matrix X is the PSM for some manipu-
lation strategy vc iff X ∈ Nm×m≥0 and X1 = X′1 = c1.

Our aim then reduces to finding a PSM X satisfy-
ing the above properties such that Xα′ maximizes
the probability of manipulation. We can recover the
optimal manipulation strategy v∗c (i.e., a set of c
votes) in polynomial time using an algorithm to find
c edge-disjoint perfect matchings in a c-regular bipar-
tite graph. Specifically, we construct a bipartite graph
with candidates forming one set of nodes and “vote
positions” forming the second set. We connect these
two sets of nodes with a multi-set of edges, with ex-
actly Xij (duplicate) edges connecting candidate i to
position j. We find a perfect matching in this graph
to determine one manipulator vote, remove the cor-
responding edges, and repeat the process (decreasing
each row and column sum by one at each iteration).

We formulate the problem of finding an (approxi-

mately) optimal Bayesian manipulation strategy as a
MIP which constructs a PSM X maximizing the num-
ber of sampled profiles in S on which d wins. We
assume, for ease of exposition only, that α has in-
tegral entries. First note that in any optimal strat-
egy, Xd1 = c and Xdj = 0 for all j > 1, which im-
plies Xi1 = 0 for all ai 6= d. Otherwise we require
Xij ∈ {0, . . . , c} and row and column sum constraints:

m∑

j=2

Xij = c ∀ai 6= d,

m∑

i=1
i 6=d

Xij = c ∀j > 1.

We use variables Iti ∈ [0, 1] for all t ≤ T, i 6= d, where
Iti = 1 iff candidate ai’s total score with manipulators
is strictly less than d’s total score, constrained as:

std + cα1 − sti −
m∑

j=2

Xijαj ≥

α1(n+ c)(Iti − 1) + 1 ∀t, ai 6= d. (1)

The left-hand side of Eq. (1) is the score difference
between d and ai, bounded (strictly) from below by
−α1(n+ c). If it is less than 0, then Iti < 1; otherwise,
Iti is unconstrained by Eq. (1), and will take value 1
(due to the maximization objective below). Finally,
we use variables It ∈ {0, 1} to indicate whether d wins
under X on profile st, requiring:

∑

ai 6=d
Iti ≥ (m− 1)It ∀t. (2)

If d’s score is less than that of some ai, then the sum in
Eq. (2) is smaller than m−1, forcing It = 0 (otherwise
the maximization objective will force it to 1). We use
the following natural maximization objective:

max
I,X

T∑

t=1

It. (3)

If d wins in sample s prior to manipulation (see below),
d still wins after manipulator votes are counted, but
we do not consider this to be “successful manipula-
tion.” Thus, the estimated probability of manipulation
(distinct from the probability of d winning) is the MIP
objective value less the number of profiles in S where
d would have won anyway.

The MIP can be simplified greatly. First notice that d
cannot win, even with manipulation, in profile st if:

std + cα1 ≤ cαm + max
i
sti. (4)

Any such profiles—and all corresponding variables and
constraints—can be pruned from the MIP. Similarly,
we can prune any profile where d wins regardless of
the manipulation. This occurs when d wins without
manipulator votes or is very close to winning:

std + cα1 > cα2 + max
i
sti. (5)
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This pruning can greatly reduce the size of the MIP
in practice, indeed, in expectation by a factor equal
to the probability P that a random profile satisfies
condition (4) or (5). The MIP has at most a total of
(T +2)m−2 constraints, (m−1)2+T integer variables
and T (m − 1) continuous variables, where T is the
number of non-pruned profiles.

While pruning has a tremendous practical impact, the
optimal Bayesian manipulation problem for scoring
rules remains NP-hard: this follows from the NP-
hardness of Borda manipulation with a known profile
[13, 4], and the observation that a single known profile
corresponds to a special case of our problem.6

The remaining question has to do with sample com-
plexity: in order to have confidence in our estimate,
how many samples T should we use? Specifically, if
we set a PAC target, obtaining an ε-accurate estimate
of the probability of d winning with confidence 1− δ,
the required number of samples depends on the VC
dimension Dα of the class of boolean-valued functions
over vote profiles (or more generally the corresponding
score vectors s = (s1, . . . , sm)):

Fα = {s 7→ 1[d unique max of Xα′ + s] | ∀X}.
Using known results [14], on counting |Fα| one obtains
supαDα ∈ O(cm ln(cm) + c2). Standard sample com-
plexity results then apply directly:

Proposition 4. There exists a constant C > 0 such
that if T ≥ C(cm ln(cm) + c2 + ln(1/δ))/ε2 then for
any distribution P , with probability 1− δ over sample
S of size T , we have q̂ ≤ q∗+ ε, where q∗ is the proba-
bility of manipulation of the best strategy, and q̂ is the
probability of manipulation given the optimal solution
to the MIP.

For specific positional rules, the sample complexity
may be smaller. For example, using standard results
on compositions of integers, k-approval gives rise to a
VC dimension of Dkappr ≤ log2

(
m+ck−1
ck−1

)
, giving the

following sample complexity result:

Proposition 5. If T ≥ 256(2 log2

(
m+ck−1
ck−1

)
+

ln(4/δ))/ε2 then for any P , with probability 1− δ over
sample S of size T , we have q̂ ≤ q∗ + ε, where q∗ is
the probability of manipulation under the best strategy
for k-approval and q̂ is the probability of manipulation
given the optimal solution to the MIP for k-approval.

Furthermore, tighter results could be obtained with
specific knowledge or constraints on the distribution

6A partial LP relaxation of the MIP may be valuable
in practice: allowing entries of X to be continuous on [0, 1]
provides an upper bound on (optimal Bayesian) success
probability. Our computational experiments did not re-
quire this approximation, but it may be useful for larger
problems.

P . Of course, such sample complexity results are con-
servative, and in practice good predictions can be real-
ized with far fewer samples. Note also that this sample
complexity is only indirectly related to the complexity
of the MIP, due to the pruning of (typically, a great
many) sampled profiles.

5 IMPACT OF MANIPULATION
ON SOCIAL WELFARE

As discussed above, characterizing the impact of a
manipulating coalition’s action solely in terms of its
probability of succeeding can sometimes be misleading.
This is especially true when one moves away from po-
litical domains—where a utility-theoretic interpreta-
tion of voting may run afoul of policy, process and fair-
ness considerations—into other settings where voting
is used, such as resource allocation, consumer group
recommendations, hiring decisions, and team decision
making [7]. In such domains, it is often natural to
consider the utility that a group member (“voter”) de-
rives from the choice or decision that is made for the
group as a whole. However, even in “classical” voting
situations, most voting protocols are defined using an
explicit score, social choice objective, or social welfare
function; as such, analyzing the expected loss in this
objective due to (optimal) manipulation is a reason-
able approach to characterizing the manipulability of
different voting rules.

Intuitively, manipulation is more likely to succeed
when the desired candidate d is “closer to winning”
under a specific voting rule (in the absence of manipu-
lation) than if the candidate is “further from winning.”
In a (very loose) sense, if candidates that are “closer
to winning” are those that are generally ranked more
highly by group members, this means that such candi-
dates are generally more desirable. As a consequence,
social welfare for alternative d must be close to that
of the optimal (non-manipulated) alternative if d has
a reasonable chance of winning, which in turn means
that the damage, or loss in social welfare, caused by
manipulation will itself be limited. In this section
we formalize this intuition and provide some simple
bounds on such damage. We investigate this empiri-
cally in the next section.

Assume a voting rule r based on some social welfare
measure SW (a,v) over alternatives a and (reported)
preference profiles v; hence r(v) ∈ argmaxa SW (a,v).
As above, we partition the vote profile: v = (vn,vc).
We are interested in the loss in social welfare, or regret,
imposed on the honest voters by a manipulation, so
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define this to be:

R(vn,vc) = SW (r(vn),vn)− SW (r(v),vn).7 (6)

The expected regret of a specific manipulation, given
distribution P over preference profiles vn, is then:

ER(P,vc) = E
vn∼P

[R(vn,vc)] . (7)

Notice that any social welfare function SW that de-
termines the quality of a candidate a given the sin-
cere vote profile vn can be used in Eq. 6; we need not
commit to using r’s scoring function itself. However,
assessing loss does require the use of some measure
of societal utility or welfare. If one is concerned only
with whether the “true winner” is selected, then prob-
ability of manipulation, as discussed above, is the only
sensible measure.

We illustrate the our framework by deriving several
bounds on loss due to manipulation using positional
scoring rules to measure social welfare.8 We can derive
theoretical bounds on expected regret for positional
scoring rules. First, notice that expected regret can
be bounded for arbitrary distributions:

Proposition 6. Let r be a positional scoring rule with
score vector α. Then for any distribution P , and any
optimal manipulation strategy vc w.r.t. P , we have

ER(P,vc) < c[(α1 − αm)P (r(vn) 6= d ∧ r(v) = d)

+ (α2 − αm)P (r(vn) 6= r(v) ∧ r(v) 6= d)]. (8)

Intuitively, this follows by considering the maximum
increase in score the manipulating coalition can cause
for d relative to an alternative a that would have won
without the manipulators.

Proof of Prop. 6. Consider any vn. Clearly, d is
ranked first by all votes in vc. Case 1: if d wins in
vn then d also wins on v. Case 2: if ai wins in vn
but d wins on v then SW (ai) + αmc ≤ SW (ai) +
SW (ai,vc) < SW (d) + α1c implying R(vn,vc) <

7We assume a voting rule and welfare measure that can
accept variable numbers of voters, as is typical.

8One reason to consider positional scoring rules like
Borda in analyzing impact on social welfare is the tight
connection between scoring rules and social welfare maxi-
mization in its narrow sense (i.e., sum of individual utili-
ties). In models where we desire to maximize sum of util-
ities relative to some underlying utility profile, voting is
a relatively simple and low-cost way (i.e., with minimal
communication) of eliciting partial preference information
from voters. Analysis of the distortion of utilities induced
by restricting voters to expressing ordinal rankings shows
that, with carefully crafted positional rules, one can come
close to maximizing (this form of) social welfare [37, 29, 6].
Borda scoring, in particular, seems especially robust in this
sense.

c(α1 − αm). Case 3: if ai wins in vn and aj 6= ai wins
in vc then SW (ai) + αmc ≤ SW (ai) + SW (ai,vc) ≤
SW (aj) +α2c implying R(vn,vc) ≤ c(α2−αm). Case
4: if r(vn) = r(vc) then regret is zero. Summing 2
and 3 gives the upper bound on expected regret.

The proposition applies when P reflects full knowledge
of vn as well; and while this P -dependent bound will
be crude for some P , it is in fact tight in the worst-case
(which includes full knowledge distributions):

Proposition 7. Suppose α1 + · · · + αm = M , m − 1
divides c and n− c ≥ 0 is even. Then

sup
n,c,α

sup
P
ER(P,vc) = cM. (9)

Proof. The upper bound on the LHS follows from the
RHS of Eq. 8 since it is at most c(α1 − αm) ≤ cM .
For the lower bound on the LHS, let P be a point
mass on {vn}: in vn, the first c votes rank a1 first
and the remaining alternatives a2, . . . , am−1, p in such
a way that the number of times any is ranked i-th
(i ≥ 2) is c/(m−1). Of the remaining n−c votes, half
rank a1 first and d second, and half do the opposite
(the remaining candidates are ranked in any manner).
Thus SW (a1)−SW (d) = (α1− α2+···+αm

m−1 )c. Let α2 =
δ + ξ and αi = δ, for some δ, ξ > 0, for all i ≥ 3. One
optimal strategy vc is to always place d first and a1
last, resulting in a score difference of c(α1 − αm) =
c(α1− δ) which is strictly larger than the above social
welfare difference of c(α1 − δ − ξ/(m− 1)) within vn.
Hence vc causes d to win, inducing regret of c(M −
(m−1)δ−ξm/(m−1)), which can be made arbitrarily
close to cM using a small enough δ, ξ.

We can obtain a tighter bound than that offered by
Prop. 6 if, for a given P and r, we know the opti-
mal manipulation strategy. For instance, exploiting
Thm. 1 we obtain:

Proposition 8. Consider the k-approval rule, where
SW (a,vn) is the approval score of a. Let P be impar-
tial culture. Then

ER(vn,BAL) ≤
[⌈
ck

m

⌉
− 1

]
· [P (r(vn) 6= d ∧ r(v) = d)

+ P (r(vn) 6= r(v) ∧ r(v) 6= d)]. (10)

Proof. Consider any vn. We use a case analysis similar
to that in Prop. 6. Case 1 applies directly. For case 3,
ai must have received one more veto vote than aj from
the manipulators, and thus SW (ai)−SW (aj) ≤ 1. For
case 2, BAL implies that SW (ai)−

⌈
ck
m

⌉
+ 1 ≤ SW (p)

(ai might have received bck/mc veto votes, but the
bound holds in any case). Thus SW (ai) − SW (d) ≤
d ckm e − 1. Case 4 also applies directly. Summing cases
2 and 3 gives the required inequality.
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Fig. 1: Probability of manipulation and expected nor-
malized regret for Irish election data.

We can also exploit our empirical optimization frame-
work to assess the expected regret. While deriv-
ing optimal manipulation strategies is analytically in-
tractable in general, we can exploit the ability to em-
pirically determine (approximately) optimal Bayesian
strategies to great effect. Given a collection of samples,
we can—in the same MIP used to compute the opti-
mal strategy—measure expected regret empirically.9

Sample complexity results related to those above can
be derived (we omit details). Notice the ability to ac-
curately estimate the behavior of the manipulators is
critical to being able to estimate expected regret.

6 EMPIRICAL EVALUATION

We experiment with several common preference distri-
butions, as well as real voting data, to test the effec-
tiveness of our approach. We are primaily interested
in: (a) determining the computational effectiveness of
our empirical framework for computing optimal ma-
nipulation strategies when manipulators have incom-
plete knowledge; and (b) measuring both the proba-
bility of manipulation and expected regret caused by
manipulation in some prototypical scenarios. We focus
on Mallows models, and mixtures of Mallows models,
because of their flexibility and ability to represent a
wide class of preferences (including impartial culture).

9Pruning of samples must be less aggressive when esti-
mating regret, since damage may be caused by manipula-
tion even in profiles where d cannot win.

However, it should be clear that our framework is not
limited to such models. Space precludes a systematic
investigation of multiple voting rules, so we focus here
on the Borda rule.

Our first set of experiments uses 2002 Irish electoral
data from the Dublin West constituency, with 9 candi-
dates and 29, 989 ballots of top-t form, of which 3800
are complete rankings.10 We learn a Mallows mix-
ture with three components (using the techniques of
[21]) using a subsample of 3000 random (not necessar-
ily complete) ballots: this represents a prior that ma-
nipulators might develop with intense surveying. We
fix c = 10 manipulators and vary the number of sincere
voters n ∈ {100, 200, . . . , 1000}. The MIP is solved us-
ing 500 random profiles sampled from the learned Mal-
lows mixture, which provides the manipulators with an
approximately optimal strategy, as well as predicted
probability of success and expected regret. We test
the predictions by simulating the manipulators’ strat-
egy on the real data set, drawing 1000 random profiles
(of the appropriate size n) from the set of 3800 full
rankings to estimate true probability of manipulation
and expected regret (normalized by SW (r(vn),vn)).
Since manipulability varies greatly with the “expected
rank” of a candidate, we show results for the candi-
dates whose expected ranks in the learned model are
first, second, and fifth (below this, probability of ma-
nipulation is extremely small).

Fig. 1 shows that the probability of manipulation is in
fact quite high when d is the first- or second-ranked
candidate (in expectation), but is much smaller when
d is the fifth-ranked. Not surprisingly, probabilities
gradually drop as n grows. The predicted probabil-
ities based on the learned model are reasonably ac-
curate, but of course have some error due to to im-
perfect model fit. Despite the high probability of ma-
nipulation, the second plot shows that expected re-
gret (normalized to show percentage loss) is in fact
extremely small. Indeed, maximal (average) loss in so-
cial welfare is just over 3%, when d is candidate 2 and
n = 100, which means means nearly 10% of the vot-
ers are manipulators. Expected regret drops rapidly
with increasing n. Notice that success probability and
expected regret are greatest when the manipulators’
desired candidate has expected rank 1 or 2: while the
odds of 1 winning are higher than 2, 1 is also more
likely to win without manipulator intervention.

Our second set of experiments use Mallows models over
six alternatives with different variance φ (recall that
with φ = 1, Mallows is exactly IC). The reference rank-
ing is σ = 123456 (i.e., alternative 1 is most preferred,
2 next most, etc.). We fix c = 10 and vary n from 100

10See www.dublincountyreturningofficer.com.
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φ d n:100 200 300 400 500 600

.6
1 .03 .00 0 0 0 0
2 .46 .06 .00 0 0 0

.8
1 .19 .09 .05 .03 .01 .01
2 .68 .41 .25 .13 .08 .05
3 .41 .07 .01 0 0 0

1 * .46 .34 .26 .21 .17 .17
φ d n:100 200 300 400 500

.6
1 5.3E-4 1.7E-5 0 0 0
2 3.2E-2 2.1E-3 7.1E-5 0 0

.8
1 5.5E-3 1.7E-3 8.0E-4 2.2E-4 7.5E-5
2 4.0E-2 1.4E-2 6.0E-3 2.5E-3 1.3E-3
3 9.6E-3 7.6E-4 7.4E-5 1.4E-5 1.2E-5

1 * 1.9E-2 7.1E-3 3.6E-3 2.5E-3 1.5E-3

Fig. 2: Prob. of manipulation (top) and expected nor-
malized regret (bottom), Mallows models.

sec. n:100 200 300 400 500 600

avg 28.67 0.35 0.20 0.18 0.06 0.07
max 205.64 2.56 1.17 1.16 0.12 0.15

sec. d φ:0.5 0.6 0.7 0.8 0.9 1

avg
2 0.02 0.04 0.02 0.02 .05

2.44
4 0.02 0.03 0.02 0.02 0.14

max
2 0.03 0.15 0.03 0.07 0.14

30.22
4 0.03 0.08 0.05 0.04 1.16

Fig. 3: MIP solution times for Dublin (top) and Mal-
lows (bottom) on an 8-core 2.66GHz/core machine.

to 1000 as above. Results in Fig. 2 show manipula-
tion probability and expected regret as we vary φ and
consider desired alternatives 1, 2 and 3.11 While ma-
nipulation probability is high for these near-top alter-
natives (when n is small), expected regret (normalized
in percentage terms) is negligible, with a maximum of
4%, and then only when the distribution is close to
impartial culture (φ = 0.8) and n = 100 (nearly 10%
manipulators). As above, when manipulators want
d = 2, expected regret is highest. Of some inter-
est is the connection to both theoretical and empirical
work that shows phase transitions often occur when
the number of manipulators is roughly the square root
of the number of sincere voters: any less makes manip-
ulation very unlikely, while any more makes manipula-
tion likely. While most of this work analyzes complete
information settings, our results above show that with
realistic preference distributions—even with restricted
knowledge on the part of manipulators—the probabil-
ity of manipulation is sometimes quite significant with
far fewer manipulators than suggested by past work.
Despite this, expected regret remains relatively small.

Fig. 3 shows the average and maximum running times
of the MIP required to compute the optimal manip-
ulation for the problems described above. As can be
seen, even with a large number of sampled profiles, the
MIP can be solved quickly across a range of problem
sizes and distributions.

11Under IC (i.e., when φ = 1), alternatives are proba-
bilistically indistinguishable, so we show one row only.

7 CONCLUDING REMARKS

Our primary contribution is an empirical framework
for the computation of optimal manipulation strate-
gies when manipulators have incomplete information
about voter preferences. This is an important method-
ology for the analysis of the manipulability of voting
rules in realistic circumstances, without the need to
restrict the analysis to specific voting rules or pri-
ors. Our experiments indicate that our algorithms are
quite tractable. Furthermore, our results suggest that
manipulation may not be as serious a problem as is
commonly believed when realistic informational mod-
els are used, or when the quality of the outcome, rather
than societal justice, is the main objective. Our em-
pirical results, which exploit several innovations intro-
duced in this paper, demonstrate this in the case of
Borda voting; but our approach is easily adapted to
different types of manipulation under different scoring
rules, and can be applied to any “utility-based” voting
rule with appropriate formulation of the optimization
problem. Thus, our approach provides a compelling
framework for the comparison of voting rules.

One nonstandard aspect of our approach is the use
of the score under a voting rule as a proxy for social
welfare. A similar regret-based approach is taken in
preference elicitation [22]; and it is implicit in work
on approximating voting rules [28, 5], which assumes
that approximating the score also gives an approxima-
tion to the desirability of an alternative. One strong
argument in favor of this view is that scores of certain
voting rules, such as Borda, are provably good proxies
for utilitarian social welfare when utilities are drawn
from specific distributions [37]. That said, our frame-
work can be used, in principle, to analyze any measure
of impact or loss.

Our work suggests a number of interesting future di-
rections. Of course, we must study additional voting
rules, social welfare measures, and manipulator objec-
tives within our framework to further demonstrate its
viability. While our results suggest that incomplete
knowledge limits the ability of a manipulating coali-
tion to impact the results of an election, our frame-
work can also be used to directly study the relation-
ship between the “amount of information” (e.g., us-
ing entropy or equivalent sample size metrics) and the
probability of manipulation. Finally, interesting com-
putational questions arise within our approach: e.g.,
deriving tighter complexity results for optimal ma-
nipulation given a collection of vote profiles; or de-
riving simpler classes of manipulation policies (e.g.,
uncertainty-sensitive variants of the balanced manip-
ulation strategy) that can be more readily optimized
by a manipulating coalition.
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Abstract

The Semantic Web effort has steadily been gain-
ing traction in the recent years. In particular, Web
search companies are recently realizing that their
products need to evolve towards having richer
semantic search capabilities. Description log-
ics (DLs) have been adopted as the formal un-
derpinnings for Semantic Web languages used in
describing ontologies. Reasoning under uncer-
tainty has recently taken a leading role in this
arena, given the nature of data found on the Web.
In this paper, we present a probabilistic extension
of the DL EL++ (which underlies the OWL2 EL
profile) using Markov logic networks (MLNs) as
probabilistic semantics. This extension is tightly
coupled, meaning that probabilistic annotations
in formulas can refer to objects in the ontology.
We show that, even though the tightly coupled
nature of our language means that many basic
operations are data-intractable, we can leverage
a sublanguage of MLNs that allows to rank the
atomic consequences of an ontology relative to
their probability values (called ranking queries)
even when these values are not fully computed.
We present an anytime algorithm to answer rank-
ing queries, and provide an upper bound on the
error that it incurs, as well as a criterion to de-
cide when results are guaranteed to be correct.

1 Introduction

Recently, it has become apparent that Semantic Web for-
malisms must be able to cope with uncertainty in a prin-
cipled manner. The Web contains many examples where
uncertainty comes in [22]: as an inherent aspect of Web
data (such as in reviews of products or services, comments
in blog posts, weather forecasts, etc.), as the result of au-
tomatically processing Web data (for instance, analyzing
a document’s HTML Document Object Model usually in-

volves some degree of uncertainty), and as the result of in-
tegrating information from many different heterogeneous
sources (such as in aggregator sites, which allow users to
query multiple sites at once to save time). Finally, inconsis-
tency and incompleteness are also ubiquitous as the result
of over- and under-specification, respectively. To be ap-
plicable to Web-sized data sets, any machinery developed
for dealing with uncertainty in these settings must be scal-
able. In this paper, we develop an extension of EL++ [1] by
means of a probabilistic semantics based on Markov logic
networks [20]. EL++ is a DL that combines tractability
of several key reasoning problems with enough expressive
power to model a variety of ontologies; for instance, it is
expressive enough to model real-world ontologies such as
the well-known SNOMED CT, large segments of the Galen
medical knowledge base, as well as the Gene Ontology.
Moreover, EL++ underlies the OWL2 EL profile, in which
basic reasoning problems are solvable in polynomial time,
and highly scalable implementations are available. One of
the key aspects of the extension presented here is that it is
tightly coupled, meaning that probabilistic annotations can
refer to objects in the ontology, providing greater expres-
sive power than similar efforts in the literature.

In the area of Web data extraction [16], uncertainty comes
into play even for very basic tasks. Consider, as an exam-
ple, the form-labeling problem, consisting of the associa-
tion of blocks of text (i.e., the labels) to the corresponding
fields in a Web form [6], illustrated in Figure 1, where three
possible instances of the problem with decreasing likeli-
hood of occurrence are shown. In the first case, the fields f1
and f2 have horizontally aligned blocks of text on their left
and on their right; this case exemplifies the most typical sit-
uation where the blocks of text on the left of a field (denoted
l1 and l2) are the actual labels, while those on the right (de-
noted t1 and t2) are either unrelated or carry additional in-
formation about the fields. The second case represents the
symmetric situation, where the labels are on the right of the
fields. This situation is typical for eastern Web sites where
the content has right-to-left reading order (e.g., for Arabic).
Another possibility is exemplified by the third case, where
the labels occur in the north-west region of the field. In this
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Figure 1: Uncertainty in form labeling.

setting, probabilistic DL formalisms are well-suited to the
task, since they couple powerful modeling capabilities with
sound and complete reasoning procedures.

Example 1. Consider the following EL++ formulas de-
scribing a simple ontology of Web forms. The ontology
forces each field to be associated with a block of text rep-
resenting its label. Fields and text blocks are disjoint sets.

Field ⊑ ∃label .Text ; dom(label) ⊑ Field ;
Field ⊓ Text ⊑ ⊥; ran(label) ⊑ Text . �

The set of formulas above simply defines what a correct la-
beling of the form should be, without providing a measure
of the likelihood that the labeling is correct. Example 1
shows the need for probabilistic modeling languages for
reasoning over structured data on the Web, e.g., to leverage
the statistical evidence that certain patterns are more likely
to occur than others.

Markov logic networks [20] (MLNs), which were devel-
oped in recent years, are a simple approach to generaliz-
ing classical logic; their relative simplicity and lack of re-
strictions has recently caused them to be well-received in
the reasoning under uncertainty community. To our knowl-
edge, this work is the first to develop an MLN-based prob-
abilistic extension of DLs, and in particular of EL++.

The following are the main contributions of this paper:

(i) Introduction of tightly coupled probabilistic (TCP) DLs,
an expressive class of probabilistic ontology languages that
allow probabilistic annotations to refer to objects in the on-
tology. The probabilistic semantics is based on MLNs.

(ii) Complexity results establishing the intractability of ba-
sic computations over TCP ontologies necessary to rank
atomic consequences based on their probabilities.

(iii) The proposal of conjunctive MLNs (cMLNs), a subset
of the MLN formalism. Though we prove that this model
restriction does not alleviate the complexity issues of the
general case for TCP ontologies, we propose the analysis
of a special kind of equivalence classes of possible worlds,
for which we prove useful properties: deciding emptiness
and generation of members can both be done in polyno-
mial time in the data complexity, all worlds in a class are
guaranteed to have the same probability, and the highest-
probability classes can be identified in polynomial time in
the data complexity.

(iv) An anytime algorithm for answering ranking queries

over TCP ontologies with cMLNs that leverages the prop-
erties of equivalence classes and is guaranteed to inspect
worlds in decreasing order of probability. We provide an
upper bound on the error that is incurred by this algorithm
based on the number of worlds and equivalence classes in-
spected, and a criterion to decide when results are guaran-
teed to be correct.

The rest of this paper is organized as follows. Section 2
describes the preliminaries on the DL EL++ and MLNs.
Section 3 presents tightly coupled probabilistic DLs, and
a complexity result showing the intractability of computing
probabilities of atoms. In Section 4, we present conjunctive
MLNs, and we analyze how their structure can be leveraged
in the definition of well-behaved equivalence classes over
possible worlds, as well as in an anytime algorithm that ex-
ploits this equivalence class approach in order to tractably
compute a heuristic answer to the ranking of atoms accord-
ing to their probabilities. Finally, Sections 5 and 6 discuss
related work and conclusions, respectively.

2 Preliminaries

In this section, we briefly recall the description logic (DL)
EL++ and Markov logic networks (MLNs).

2.1 The DL EL++

We now recall the syntax and the semantics of EL++,
a tractable DL especially suited for representing large
amounts of data. Intuitively, DLs model a domain of inter-
est in terms of concepts and roles, which represent classes
of individuals and binary relations between individuals, re-
spectively. While we restrict ourselves to EL++ here, the
general approach continues to be valid for any DL or ontol-
ogy language for which instance checking is data-tractable
(for instance, the closely related Datalog+/– family of on-
tology languages contains such tractable subsets [3]). How-
ever, note that all results in this paper were derived for
EL++, and thus certain results may not hold for other logics.

Syntax and Semantics. We first define concepts and then
knowledge bases and instance checking in EL++. We as-
sume pairwise disjoint sets A, R, and I of atomic con-
cept names, role names, and individual names, respec-
tively. Concepts are defined inductively via the construc-
tors shown in the first five rows of the table in Figure 2;
this table adopts the usual conventions of using C and D to
refer to concepts, r to refer to a role, and a and b to refer
to individuals. The semantics of these concepts is given,
as usual in first-order logics, in terms of an interpretation
I = (∆I , ·I). The domain ∆I comprises a non-empty
set of individuals and the interpretation function ·I maps
each concept name A ∈ A to AI ⊆ ∆I , each role name
r ∈ R to a binary relation rI over ∆I × ∆I , and each
individual name a ∈ I to an individual aI ∈ ∆I . The ex-
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Name Syntax Semantics
Top ⊤ ∆I

Bottom ⊥ ∅
Nominal {a} {aI}
Conjunction C ⊓ D CI ∩ DI

Existential ∃r.C
{x ∈ ∆I | ∃y ∈ ∆I :

Restriction (x, y) ∈ rI ∧ y ∈ CI}
Concrete p(f1, ..., fk) {x ∈ ∆I | ∃y1, ..., yk ∈ ∆Dj :

Domain for p ∈ PDj fI
i (x) = yi, 1 ≤ i ≤ k

∧(y1, ..., yk) ∈ pDj }
GCI C ⊑ D CI ⊆ DI

RI r1 ◦ ... ◦ rk ⊑ r rI
1 ◦ ... ◦ rI

k ⊆ rI

Domain dom(r) ⊑ C rI ⊆ CI × ∆I
Restriction
Range ran(r) ⊑ C rI ⊆ ∆I × CI
Restriction
Concept

C(a) aI ∈ CI
Assertion
Role

r(a, b) (aI , bI) ∈ rI
Assertion

Figure 2: Syntax and Semantics of EL++ (rep. from [1]).

tension of ·I to arbitrary concept descriptions is defined via
the constructors in Figure 2.

Reference to concrete data objects is accomplished via the
parameterization of EL++ by concrete domains D1, ...,Dn,
which correspond to OWL data types. Such concrete do-
mains are pairs (∆D,PD), where ∆D is a set and PD is a
set of predicate names; each p ∈ PD has an arity n > 0
and an extension pD ∈ (∆D)n. The link between the DL
and concrete domains is accomplished via the introduction
of feature names F and the concrete domain constructor
included in Figure 2; p is used to denote a predicate of a
concrete domain, and f1, ..., fk to denote feature names.
The interpretation function maps each feature name f to a
partial function from ∆I to

∪
1≤i≤n ∆Di , where in general

it is assumed that ∆Di ∩ ∆Dj = ∅ for 1 ≤ i < j ≤ n.

EL++ Knowledge Bases. A KB consists of two sets, re-
ferred to as the ABox and the TBox, respectively contain-
ing the extensional knowledge about individual objects and
intensional knowledge about the general notions for the
domain in question. The ABox formally consists of a fi-
nite set of concept assertions and role assertions, while the
TBox is comprised of a finite set of constraints, which can
be general concept inclusions (GCIs), role inclusions (RIs),
domain restrictions (DRs), or range restrictions (RRs) (cf.
Figure 2). An interpretation I is a model of a TBox T
(resp., ABox A) iff, for each contained constraint (resp., as-
sertion), the conditions in the “Semantics” column of Fig-
ure 2 are satisfied. We note that the expressive power of
EL++ allows the expression of role hierarchies, role equiv-
alences, transitive roles, reflexive roles, left- and right-
identity rules, disjointness of complex concept descrip-
tions, and the identity and distinctness of individuals.

Finally, here we adopt the syntactic restriction presented
in [1] to avoid intractability/undecidability, which prevents
intricate interplay between role inclusions and range re-

strictions; we do not describe it here for reasons of space.

2.2 Markov Logic Networks

Markov logic networks (MLNs) [20] combine first-order
logic with Markov networks (abbreviated MNs; they are
also known as Markov random fields) [19]. We now pro-
vide a brief introduction first to MNs, and then to MLNs.

Markov Networks. A Markov network (MN) is a proba-
bilistic model that represents a joint probability distribution
over a (finite) set of random variables X = {X1, . . . , Xn}.
Each random variable Xi may take on values from a fi-
nite domain Dom(Xi). A value for X = {X1, . . . , Xn}
is a mapping x : X → ∪n

i=1Dom(Xi) such that x(Xi) ∈
Dom(Xi); the domain of X , denoted Dom(X), is the set
of all values for X . An MN is similar to a Bayesian net-
work (BN) in that it includes a graph G = (V,E) in which
each node corresponds to a variable, but, differently from
a BN, the graph is undirected; in an MN, two variables
are connected by an edge in G iff they are conditionally
dependent. Furthermore, the model contains a potential
function ϕi for each (maximal) clique in the graph; poten-
tial functions are non-negative real-valued functions of the
values of the variables in each clique (called the state of
the clique). In this work, we assume the log-linear rep-
resentation of MNs, which involves defining a set of fea-
tures of such states; a feature is a real-valued function of
the state of a clique (we only consider binary features in
this work). Given a value x ∈ Dom(X) and a feature fj

for clique j, the probability distribution represented by an
MN is given by P (X = x) = 1

Z exp
( ∑

j wj · fj(x)
)
,

where j ranges over the set of cliques in the graph G,
and wj = log ϕj(x{j}) (here, x{j} is the state of the j-th
clique). The term Z is a normalization constant to ensure
that the values given by the equation above are in [0, 1]; it
is given by Z =

∑
x∈Dom(X) exp

( ∑
j wj · fj(x)

)
. Prob-

abilistic inference in MNs is intractable; however, approxi-
mate inference mechanisms, such as Markov Chain Monte
Carlo, have been developed and successfully applied.

Markov Logic Networks. In the following, let ∆MLN,
VMLN, and RMLN denote the set of constants, variables, and
predicate symbols. The main idea behind Markov logic
networks (MLNs) is to provide a way to soften the con-
straints imposed by a set of classical logic formulas. In-
stead of considering worlds that violate some formulas to
be impossible, we wish to make them less probable. An
MLN is a finite set L of pairs (Fi, wi), where Fi is a for-
mula in first-order logic over VMLN, ∆MLN, and RMLN, and
wi is a real number. Such a set L, along with a finite set
of constants ∆MLN, defines a Markov network M that con-
tains: (i) one binary node corresponding to each element
of the Herbrand base of the formulas in L (i.e., all possible
ground instances of the atoms), where the node’s value is 1
iff the atom is true; and (ii) one feature for every possible
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Figure 3: The graph representation of a simple grounding
of the MLN from Example 2.

ground instance of a formula in L. The value of the feature
is 1 iff the ground formula is true, and the weight of the fea-
ture is the weight corresponding to the formula in L. From
this characterization and the description above of the graph
corresponding to an MN, it follows that M has an edge be-
tween any two nodes corresponding to ground atoms that
appear together in at least one formula in L. Furthermore,
the probability of x ∈ Dom(X) given this ground MLN is

P (X = x) =
1

Z
· exp

(∑

j

wj · nj(x)

)
, (1)

where ni(x) is the number of ground instances of Fi made
true by x, and Z is defined as above. This formula can be
used in a generalized manner to compute the probability of
any setting of a subset of random variables X ′ ⊆ X .
Example 2. Consider again the form-labeling problem of
Example 1. The fact that certain text blocks are more likely
to represent field labels than others (which is part of their
phenomenology) can be described by assigning weights to
the following first-order formulas:

ϕ1 : canLabel(Y, X) ∧ hor(X, Y ) ∧ left(X, Y ) ∧ adj (X, Y );

ϕ2 : canLabel(Y, X)∧ hor(X, Y )∧ right(X, Y )∧ adj (X, Y );

ϕ3 : canLabel(Y, X) ∧ ver(X, Y ) ∧ top(X, Y ) ∧ adj (X, Y );

ϕ4 : canLabel(Y, X) ∧ nw(X, Y ) ∧ adj (X, Y ).

Formula ϕ1 describes labels that are left-adjacent and hor-
izontally aligned with the field. The dual case, with right-
adjacent labels, is captured by ϕ2. The case of top-adjacent
labels that are vertically-aligned to the field is expressed
by formula ϕ3, while the last expression (ϕ4) describes the
case of labels appearing in the north-west area of the field.

The formulas above are part of the MLN associated with
the EL++ formulas describing the form ontology. As an ex-
ample, the following MLN formulas reflect the likelihood
of the particular labeling phenomenology.

ψ1 : (ϕ1, 9), ψ2 : (ϕ2, 6), ψ3 : (ϕ3, 5), ψ4 : (ϕ4, 1). �

Figure 3 shows a simple grounding of the MLN described
in Example 2, relative to the set of constants {f, ℓ} (resp.,
one field and one label). This grounding also assumes that
we have additional constraints (not shown here for simplic-
ity) that only allow arguments of predicates to take the type

of argument they expect; this sort of constraints is provided
in certain implementations of MLNs such as Tuffy1, where
they are called predicate scoping rules.

3 Tightly Coupled Probabilistic DLs

Considering the basic setup from Sections 2.1 and 2.2, we
now present the language of probabilistic EL++.

3.1 Syntax

Recall that we have (as discussed in Sections 2.1 and 2.2)
an infinite universe of individual names I, a finite set of
concept names C and role names R, a finite set of con-
stants ∆MLN, an infinite set of variables VMLN, and a finite
set of predicate names RMLN (such that RMLN ∩C = ∅ and
RMLN ∩ R = ∅). Finally, recall that the set of random vari-
ables in the MLN coincides with the set of ground atoms
over RMLN and ∆MLN; alternatively, we denote this set with
X = {X1, . . . , Xn}, as in Section 2.2.

Substitutions and Unifiers. We adopt the usual definitions
from classical logic. A substitution is a function from vari-
ables to variables or constants. Two sets S and T unify via
a substitution θ iff θS = θT , where θA denotes the appli-
cation of θ to all variables in all elements of A (here, θ is
a unifier). A most general unifier (mgu) is a unifier θ such
that for all other unifiers ω, there exists a substitution σ
such that ω = σ ◦ θ.

Translation into FOL. In the rest of this work, we assume
that EL++ TBoxes and ABoxes are translated into their
equivalent first-order logic formulas; therefore, when clear
from the context, we refer to axioms or assertions without
distinguishing them from their translations into FOL. This
is required for technical reasons, such as the need to be able
to explicitly refer to the variables in the axioms in order to
have the possibility of linking such variables with those in
probabilistic annotations. Note that this does not affect the
expressiveness of our formalism, nor its tractability, since
the translation to FOL (and back to EL++) can be done in
polynomial time in the size of the ontology.

Informally, probabilistic ontologies consist of a finite set of
first-order logic formulas that correspond to the translation
of EL++ axioms; each such formula is associated with a
probabilistic annotation, as described next.

Definition 1. A probabilistic annotation λ relative to an
MLN M defined over RMLN, VMLN, and ∆MLN is a (finite)
set of pairs ⟨Ai, xi⟩, where: (i) Ai is an atom over RMLN,
VMLN, and ∆MLN; (ii) xi ∈{0, 1}; and (iii) for any two pairs
⟨A, x⟩, ⟨B, y⟩ ∈ λ, there does not exist substitution θ that
unifies A and B. If |λ|= |X| and all ⟨A, xi⟩ ∈ λ are such
that A is ground, then λ is called a (possible) world.

1http://research.cs.wisc.edu/hazy/tuffy/
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Intuitively, a probabilistic annotation λ is used to describe
the class of events in which the random variables in an
MLN are compatible with the settings of the random vari-
ables described by λ, i.e., each Xi has the value xi.

Definition 2. Let F be the FOL translation of an EL++

axiom, and λ be a probabilistic annotation; a probabilistic
EL++ axiom is of the form F : λ. We also refer to proba-
bilistic axioms as annotated formulas.

Essentially, probabilistic axioms hold whenever the events
associated with their annotations occur. Note that whenever
a random variable’s value is left unspecified in an annota-
tion, the variable is unconstrained; in particular, an empty
annotation means that the formula holds in every possible
world (we sometimes refer to these axioms as crisp).

Definition 3. LetO be a set of (FOL translations of) proba-
bilistic EL++ axioms and M be an MLN. A tightly coupled
probabilistic EL++ ontology (TCP ontology, or knowledge
base) is of the form KB = (O,M), where the probabilistic
annotations of formulas in O are relative to M .

Recall that random variables in our MLN setting are
Boolean and written in the form of atoms over RMLN, VMLN,
and ∆MLN; if a is such an atom, a = 1 (resp., a = 0) de-
notes that the variable is true (resp., false); we also use the
notation a and ¬a, respectively.

Definition 4. Let KB = (O,M) be a probabilistic
EL++ ontology, and λ be a possible world. The (non-
probabilistic) EL++ ontology induced from KB by λ, de-
noted Oλ, is the set {θiFi | Fi : λi ∈ O and θiλi ⊆ λ},
where θi is an mgu for λ and λi.

The annotation of ontological axioms offers a clear model-
ing advantage by enabling a clear separation of concerns
between the task of ontological modeling and the task of
modeling the uncertainty around the axioms in the ontol-
ogy. More precisely, in our formalism, it is possible to ex-
press the fact that the probabilistic nature of an ontological
axiom is determined by elements that are outside of the do-
main modeled by the ontology.

Example 3. Consider the form-labeling ontology of Ex-
ample 1 and the MLN of Example 2. In general, we ex-
pect only certain axioms to be probabilistic, while others
are necessarily crisp. In our case, the fact that fields and
text blocks are disjoint sets of objects, and that fields are
labeled by text blocks are considered crisp axioms, since
we do not want these assumptions to be violated by any
model. However, we want to accept models where some
field is left unlabeled, and therefore violating the axiom
Field ⊑ ∃label .Text is possible. In addition, we want to
link the probability that this axiom holds to the heuristics
used to produce the actual labeling of the field, which are
out of the domain of the form-labeling ontology. The fol-
lowing is a possible probabilistic EL++ ontology modeling
this setup, where the first-order representation of the EL++

axioms discussed above is used to explicitly state the rela-
tionships between variables and constants in the MLN and
in the ontology.

∀X.field(X) → ∃Y.label(X, Y ) ∧ text(Y ) :{
⟨canLabel(Y, X), 1⟩

}
;

∀X.label(X, Y ) → field(X) : {};

∀X.label(X, Y ) → text(Y ) : {};

∀X.field(X) ∧ text(X) → ⊥ : {}. �

Data Complexity. In this setting, we extend the usual con-
cept of data complexity as follows: the set of formulas in
the MLN are considered to be fixed, as is the TBox; on the
other hand, the sets I and ∆MLN are not, and therefore the
ground ABox on the ontology side and the set of random
variables on the MLN side are not fixed, either.

3.2 Semantics

The semantics of TCP ontologies is given relative to
probabilistic distributions over interpretations of the form
IMLN = ⟨D,w⟩, where D is a database over I ∪ ∆N , and
w is a world. We usually abbreviate “true : λ” with “λ”.

Definition 5. An interpretation IMLN = ⟨D,w⟩ satisfies
an annotated formula F : λ, denoted IMLN |= F : λ, iff
whenever there exists an mgu θ such that for all ⟨Vi, xi⟩ ∈
λ it holds that Xi = θVi and w[i] = xi, then D |= θF .

A probabilistic interpretation is then a probability distri-
bution Pr over the set of all possible interpretations such
that only a finite number of interpretations are mapped to
a non-zero value. The probability of an annotated formula
F : λ, denoted Pr(F : λ), is the sum of all Pr(IMLN) such
that IMLN satisfies F : λ.

Definition 6. Let Pr be a probabilistic interpretation, and
F : λ be an annotated formula. We say that Pr satisfies (or
is a model of) F : λ iff Pr(F : λ) = 1. Furthermore, Pr is
a model of a probabilistic EL++ ontology KB = (O,M)
iff: (i) Pr satisfies all annotated formulas in O, and (ii)
1 − Pr(false : λ) = PrM (λ) for all possible worlds λ,
where PrM (λ) is the probability of

∧
⟨Vi,xi⟩∈λ(Vi = xi) in

the MLN M (and computed in the same way as P (X = x)
in Section 2.2).

In Definition 6 above, condition (ii) is stating that the prob-
ability values that Pr assigns are in accordance with those
of MLN M (note that the equality in the definition implies
that Pr(true : λ) = PrM (λ)) and that they are adequately
distributed (since Pr(true : λ) + Pr(false : λ) = 1).

In the following, we are interested in computing the proba-
bilities of atoms in a TCP ontology, working towards rank-
ing of entailed atoms based on their probabilities.

Definition 7. Let KB = (O,M) be a TCP ontology, and
a be a ground atom that is constructed from predicates and

558



individuals in KB . The probability of a in KB , denoted
PrKB (a), is the infimum of Pr(a : {}) subject to all proba-
bilistic interpretations Pr such that Pr |= KB .

Intuitively, an atom has the probability that results from
summing the probabilities of all possible worlds under
which the induced ontology entails the atom.

3.3 Ranking of Atoms based on Probabilities

In this paper, we focus on queries requesting the ranking of
atoms based on their probability values.

Definition 8. Let KB = (O,M) be a TCP ontology;
the answer to a ranking query Q = rank(KB) is a tuple
ans(Q) =

⟨
a1, . . . , an

⟩
such that {a1, . . . , an} are all of

the atomic consequences of Oλ for any possible world λ,
and i < j ⇒ PrKB (ai) ≥ PrKB (aj).

The straightforward approach to answering ranking queries
is to compute the probabilities of all atoms inferred by the
knowledge base; unfortunately, computing exact probabil-
ities of atoms is intractable.

Theorem 1. Let KB = (O,M) be a TCP ontology. Com-
puting PrKB (a) is #P -hard in the data complexity.

In the next section, we explore how this negative result can
be avoided by considering a special kind of MLN that al-
lows us to compute scores instead of probability values.
Such scores are closely related to probabilities, and allow
us to rank answers with respect to actual probability values.

4 Tractably Answering Ranking Queries

In this section, we consider a special case of MLNs that
proves to be useful towards more tractable methods to an-
swer ranking queries.

4.1 Conjunctive MLNs and Equivalence Classes

We now introduce a simple class of MLNs:

Definition 9. A conjunctive Markov logic network
(cMLN) is an MLN in which all formulas (F,w) in the
set are such that F is a conjunction of atoms, and w ∈ R.

Informally, a cMLN is an MLN in which formulas are re-
stricted to conjunctions of atoms. This restriction allows
us to define an equivalence relation over the set of worlds.
Given a cMLN M and its grounding gr(M,∆MLN), we use
the notation Sat(λ,M) to denote the set of all ground for-
mulas F in gr(M,∆MLN) that are satisfied by world λ. It is
easy to see that gr(M,∆MLN) can be computed in polyno-
mial time in the data complexity; we therefore work with
ground cMLNs in the rest of the paper.

Definition 10. Let M be a ground cMLN, and λ1 and λ2

be possible worlds. We say that λ1 and λ2 are equivalent

with respect to M , denoted λ1 ∼M λ2, iff Sat(λ1,M) =
Sat(λ2,M).

Clearly, ∼M is an equivalence relation; we denote
the equivalence classes induced by this relation with
C1, . . . , CN ; note that, in general, there are 2|gr(M,∆MLN)|

such classes, making it intractable to inspect all of them.

Example 4. Consider the MLN in Example 2, and the
grounding discussed above (cf. Figure 3). In this case, each
of ψ1 to ψ4 has one possible grounding, which we call f1 to
f4. There are therefore 16 equivalence classes in this case
(each ground formula can be negated or not), which form a
partition of the 28 = 256 possible worlds. �

There are several properties of equivalence classes that we
can leverage. First, equivalence classes are not guaranteed
to be non-empty, but it is simple to check for this condition.

Theorem 2. Let M be a ground cMLN, and C be a ∼M -
equivalence class. Deciding C = ∅ can be done in polyno-
mial time.

Furthermore, generating worlds for a given equivalence
class is also tractable:

Theorem 3. Let M be a ground cMLN, and C be a ∼M -
equivalence class. All elements in C can be obtained in
linear time with respect to the size of the output.

Proof sketch. Let C be described by formula pos ∧ neg,
where pos is the conjunction of all formulas from M that
are true in C, while neg is the conjunction of the negations
of all formulas not true in C. The set of all atoms in the
Herbrand base can be divided into two sets: det and undet;
the former contains all (possibly negated) atoms that are
determined by pos, while the latter contains the rest. The
worlds in C are obtainable by traversing neg and assigning
truth values to atoms in this formula in all possible ways
that make C true, without contradicting the atoms in det.

Finally, we point out an important characteristic of equiva-
lence classes with respect to probability values:

Theorem 4. Let M be a ground cMLN, and λ1 and λ2 be
possible worlds. If λ1 ∼M λ2, then PrM (λ1) = PrM (λ2).

Proof sketch. Follows from Definition 10. Since both
worlds belong to the same class, they satisfy (and do not
satisfy) the same formulas, and so the value exp

( ∑
j wj ·

nj(λi)
)

from Equation 1 is the same for both worlds; the
denominator (factor Z) is equal across all worlds, which
means that their probabilities are equal.

However, computing exact probabilities remains in-
tractable in cMLNs.
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Theorem 5. Let KB = (O,M) be a TCP ontology, where
M is a cMLN. Deciding PrKB (a) ≥ k is PP-hard in the
data complexity.

The complexity class PP contains problems decidable by
a probabilistic Turing machine in polynomial time, with
error probability less than 1/2; like #P , a polynomial
time Turing machine with a PP oracle can solve all prob-
lems in the polynomial hierarchy [21]. This negative result
does not prevent us, however, from tractably comparing the
probabilities of two worlds.

Proposition 1. Let M be a cMLN, and λ1 and λ2 be pos-
sible worlds. Deciding whether PrM (λ1) ≤ PrM (λ2) is in
PTIME in the data complexity.

The basic intuition behind this result is that we can com-
pute the term ni(x) in Equation 1 in polynomial time; since
the denominator in this equation is the same for all worlds,
PrM (λ1) ≤ PrM (λ2) can be decided by only computing
the numerators in this equation.

Example 5. Consider the following worlds relative to the
MLN in Example 2 and the grounding from Example 4:

λ1 =
{

canLabel(f, ℓ), hor(ℓ, f), ¬left(ℓ, f), adj(ℓ, f),

right(ℓ, f), ¬top(ℓ, f), ¬nw(ℓ, f), ¬ver(ℓ, f)
}
;

λ2 =
{

canLabel(f, ℓ), ¬hor(ℓ, f), ¬left(ℓ, f), adj(ℓ, f),

¬right(ℓ, f), top(ℓ, f), ¬nw(ℓ, f), ver(ℓ, f)
}
.

A quick inspection of the formulas in the MLN allows us to
conclude that λ1 |= ¬f1∧f2∧¬f3∧¬f4, while λ2 |= ¬f1∧
¬f2 ∧ f3 ∧¬f4. Therefore, taking into account the weights
of each formula, we can see that Pr(λ1) > Pr(λ2); in fact,
even though we cannot (tractably) compute the actual prob-
abilities, we can conclude that Pr(λ1) = e6

e5 Pr(λ2), or that
λ1 is approximately 2.7 times more probable than λ1. �

4.2 An Anytime Algorithm

The results in the previous section point the way towards
Algorithm anytimeRank for answering ranking queries;
the pseudocode for this algorithm is shown in Figure 4; in
the rest of this section, we will discuss its properties.

Algorithm anytimeRank takes a probabilistic ontology in
which the MLN is assumed to be a ground cMLN (recall
that the grounding can be computed in polynomial time
in the data complexity); the other input corresponds to a
stopping condition that can be based on whatever the user
considers important (time, number of steps, number of in-
spected worlds, etc); cf. Section 4.2.2 for a discussion on
ways to define the stopping condition based on properties
of the output offering correctness guarantees.

The main while loop in line 3 iterates through the set of
equivalence classes relative to M . Subroutine compMost-
ProbEqClass, invoked in line 4, computes the i-th most
probable equivalence class. Note that this can simply be

done by taking the formulas in M and sorting them with
respect to their weights; the classes are then generated by
keeping track of a Boolean vector of which formulas are
true and which are false. The next while loop, in line 7,
is in charge of going through the current equivalence class.
Subroutine computePossWorld takes the current class and a
set of already inspected worlds and computes a new world
(not in S). This can be done as described in the proof sketch
of Theorem 3; in particular, the possible combinations of
atoms in formula neg can be traversed in order, without
the need to explicitly keep track of a set like S. The final
lines of this loop take the computed world and obtain the
atomic consequences from the (non-probabilistic) induced
subontology (line 10), and adds the score to each such atom
(lines 11 and 12). The score of a class consists of e to the
power of the sum of the weights of formulas that are true in
that class. Line 13 updates the output set of atoms. Finally,
set out is returned in decreasing order of score.

Example 6. Consider the probabilistic EL++ ontology Φ =
(O,M), where O is given as follows:

∀Xp(X) → q(X) : {⟨m(X), 1⟩, ⟨n(X), 0⟩};
p(a) : {⟨m(a), 1⟩};
p(b) : {⟨n(a), 1⟩};
p(c) : {⟨m(c), 1⟩, ⟨n(c), 0⟩},

and M is given by {(m(X), 1.5), (n(X), 0.8)}. Suppose
we ground M with the set of constants {a, b, c}, yielding:

f1 : (m(a), 1.5), f2 : (n(a), 0.8), f3 : (m(b), 1.5),
f4 : (n(b), 0.8), f5 : (m(c), 1.5), f6 : (n(c), 0.8).

This setup therefore yields 26 = 64 equivalence classes (in
this case, we have exactly one world per class). Figure 5
shows a subset of these classes in decreasing order of score
(as they will be inspected by Algorithm anytimeRank).
The algorithm will proceed as follows; cf. Figure 5 for the
description of the classes (we use classes Ci to denote the
single world λi in that class):

OC1 |= {p(a), p(b)}; add e6.9 to score(p(a)) and score(p(b));

OC2 |= {p(a), p(b), p(c), q(c)}; add e6.1 to score(p(a)),
score(p(b)), score(p(c)), and score(q(c));

OC3 |= {p(a)}; add e6.1 to score(p(a));

OC4 |= {p(a), p(c), q(c)}; add e6.1 to score(p(a)), score(p(c)),
and score(q(c));

OC5 |= {p(a), p(b), q(a)}; add e5.3 to score(p(a)), score(p(b)),
and score(q(a)).

If the algorithm is stopped at this point, the scores are as
follows (approximate, and in descending order):

p(a) : 2530.18, p(b) : 1638.47, p(c) : 891.71, q(c) : 891.71 �

4.2.1 Correctness and Running Time of anytimeRank

The correctness of this algorithm lies in the fact that if all
classes are inspected, the returned output set is clearly the
answer to the ranking query. In the general case, only a
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Algorithm anytimeRank(KB = (O, M), stopCond)
// M is assumed to be a ground cMLN
1. score:= empty mapping from atoms to R (default 0);
2. out := empty set of atoms; i := 1;
3. while

(
i ≤ 2|M|) and !stopCond do begin

// i ranges over classes of possible worlds
4. C := compMostProbEqClass(M, i);
5. S := ∅;
6. i := i + 1;
7. while

(
|S| ̸= |C|

)
and !stopCond do

8. λ := computePossWorld(C, S);
// compute world s.t. λ ∈ C and λ /∈ S

9. S := S ∪ {λ};
10. Oλ := getInducedOnt(O, λ);
11. for all atoms a ∈ atomicCons(Oλ) do
12. score(a)+= exp

(∑
Fj∈M,C|=Fj

wj

)
;

13. out := out ∪ atomicCons(Oλ);
14. end;
15. return out sorted in dec. order according to score.

Figure 4: An anytime algorithm to compute the answer to
a ranking query over a TCP ontology (refer to text for de-
scription of subroutines).

Class f1 f3 f5 f2 f4 f6

∑
j wj

C1 1 1 1 1 1 1 6.9
C2 1 1 1 1 1 0 6.1
C3 1 1 1 1 0 1 6.1
C4 1 1 1 0 1 1 6.1
C5 1 1 1 1 0 0 5.3

. . .

Figure 5: Equivalence classes from Example 6, sorted in
descending order of the score assigned to possible worlds
that belong to them (e to the power of the value in the last
column); only 5 of the 64 classes are shown here.

subset of the worlds will be inspected; since the probabil-
ities of worlds in a given equivalence class are all equal
(Theorem 4), and this value depends directly on the for-
mulas in the cMLN that are satisfied by the class, the it-
eration through the equivalence classes in decreasing or-
der of probability is the optimal path to take. Though the
total running time of course depends on the stopping con-
dition, Theorem 3, along with the way in which equiva-
lence classes are manipulated (as described above), guaran-
tee a running time that is polynomial in the data complexity
as long as the combined number of inspected worlds and
equivalence classes is bounded by a polynomial as well.

4.2.2 Bounding the Error of anytimeRank

The following proposition provides a bound on the total
“mass” of score that remains unassigned by our algorithm
after a certain number of iterations.

Proposition 2. Let KB = (O,M) be a TCP ontology
where M is a ground cMLN with n ground atoms, and let
C1, ..., C2|M| be the set of equivalence classes of M sorted
in decreasing order of their score. Then, after analyzing

s worlds and t classes with Algorithm anytimeRank, the
total unassigned class score mass is bounded by above by
U = (2n − s) · exp

(∑
Fj∈M,Ct+1|=Fj

wj

)
.

This result is useful, for instance, in determining a provably
correct partial order over the output of the algorithm. For
example, if the output is {(a, 120), (b, 90), (c, 80), (d, 10)}
and U = 30, we can safely conclude that PrKB (a) >
PrKB (c), PrKB (a) > PrKB (d), PrKB (b) > PrKB (d),
and PrKB (c) > PrKB (d).

Theorem 6. Let out be the output of Algorithm anytimeR-
ank and U be the bound on the unassigned score mass as
computed in Proposition 2. The partial order ≤U defined
as: a ≤U b iff sa + U ≤ sb, where (a, sa), (b, sb) ∈ out,
is such that if a ≤U b then Pr(a) ≤ Pr(b).

Therefore, Theorem 6 allows us to glimpse into the total
order over the set of atoms as established by the true prob-
ability values, without actually computing them.

5 Related Work

Ontology languages, rule-based systems, and their inte-
grations are central for the Semantic Web [2]. Although
many approaches exist to tight, loose, or hybrid integra-
tions of ontology languages and rule-based systems, to our
knowledge there is very little work on the combination
of tractable description logics with MLNs. Probabilistic
ontology languages in the literature can be classified ac-
cording to the underlying ontology language, the supported
forms of probabilistic knowledge, and the underlying prob-
abilistic semantics (see [14] for a recent survey). Some
early approaches [11] generalize the description logic ALC
and are based on propositional probabilistic logics, while
others [12] generalize the tractable DL CLASSIC and FL,
and are based on Bayesian networks as underlying proba-
bilistic semantics. The fairly recent approach in [13], gen-
eralizing the expressive DL SHIF(D) and SHOIN (D)
behind the sublanguages OWL Lite and OWL DL, respec-
tively, of the Web ontology language OWL [18], is based
on probabilistic default logics, and allows for rich prob-
abilistic terminological and assertional knowledge. Other
recent approaches [23] generalize OWL by probabilistic
uncertainty using Bayesian networks.

In the probabilistic description logics literature, the most
closely related work is that of Prob-EL [15, 10], a proba-
bilistic extension to EL that belongs to a family of prob-
abilistic DLs derived in a principled way from Halpern’s
probabilistic first-order logic [4]. One limitation in this
line of research is that probabilistic annotations are some-
what restricted, leading to the inability to express uncer-
tainty about certain kinds of general knowledge; note that
our formalism does not suffer from this drawback, since
probabilistic annotations can be associated with any axiom.
In [15], the authors study various logics in this family and
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show complexity of reasoning, ranging from PTIME for
weak variants of EL to undecidable for expressive variants
of ALC. Prob-EL is more closely studied in [10], where
the authors show that reasoning is PTIME as long as (i)
probability values are restricted to 0 and 1, and (ii) prob-
abilistic annotations are only allowed on concepts; if (i) is
dropped, then it becomes EXPTIME-complete, while if (ii)
is dropped it becomes PSPACE-hard. The complexity re-
sults in our work are further testament to how intractable
simple tasks become when probabilistic computations are
involved, even when the starting point is a tractable logic.

Other recent efforts focused on extending EL DLs with
probabilistic uncertainty include [5], [9], and [17]. In [5],
a formalism is presented in which probability assessments
are only allowed on ABoxes. The authors study the prob-
lem of satisfiability of KBs, which involves determining
whether there exists a probability distribution that satisfies
all the assignments over the ABoxes. The work of [9] is
similar in spirit to [5], but there an MLN is employed in
order to infer the probabilities of atoms in the ABox as
a means to generate explanations as part of abductive in-
ference. Though they use MLNs, this work is quite dif-
ferent from ours since only the ABox is assumed to be
probabilistic, and the assertions are themselves part of the
MLN instead of being annotated by external events as in
our formalism. In [17], the authors present ELOG, which
is EL++ without nominals or concrete domains combined
with probabilistic log-linear models (a class which contains
MLNs). The resulting probabilistic formalism basically as-
signs weights to axioms reflecting how likely the axiom is
to hold. The main problem then corresponds to finding the
most probable coherent ontology, a problem that is essen-
tially different from the one tackled here.

Finally, a related formalism from the recent databases liter-
ature is that of probabilistic Datalog+/– [8, 7]. Datalog+/–
is a language that arose from the generalization of rule-
based constraints with the goal of expressing ontological
axioms. The probabilistic extension in [8, 7] also makes
use of MLNs, though the integration is loose in the sense
that probabilistic annotations cannot refer to objects in the
ontology, which leads to data-tractable algorithms but also
limits the expressive power of the formalism.

6 Discussion, Conclusions, and Future Work

In this work, we have extended the DL EL++ with prob-
abilistic uncertainty, based on the annotation of axioms.
Such annotations refer to events whose probabilities are
described by an associated MLN; one of the advantages
of this formalism is that it is tightly coupled, which means
that probabilistic annotations can refer to objects in the on-
tology. The proposed application of our formalism is in
managing uncertainty in the Semantic Web, showing exam-
ples of how it can be applied in the analysis of Web forms,

an important task in information extraction efforts.

Our focus here is on ranking queries, which request the set
of atomic inferences sorted in descending order of proba-
bility. The algorithm we developed works in an anytime
fashion, and therefore allows partial computations depend-
ing on the available resources; most importantly, we pro-
vide bounds on the error incurred by runs of this algorithm
and conditions that allow to conclude when certain pairs
in the output are correctly ordered. This algorithm works
over cMLNs, in which only conjunctions of atoms are al-
lowed. Regarding the expressivity of cMLNs, we can say
that: (i) They are rich enough to simulate disjunction for a
specific propositional subset. For instance, if the formula
p(X) ∨ q(X) with a given weight needs to be enforced for
the subset of individuals {a, b}, MLN learning algorithms
can be directed to give corresponding weights to the spe-
cific worlds in which

(
p(a) or q(a)

)
and

(
p(b) or q(b)

)

hold. So, it is possible to represent certain special cases that
may need to be handled. (ii) For the case of (atomic) nega-
tion, it is known to be representable via negative weights.
(iii) Though material implications cannot be represented,
this sort of constraint is more adequately placed on the on-
tology side, and the TBox is capable of representing them.

Regarding the practical applicability of the formalism, we
can say that, despite probabilistic instance-checking being
already intractable for cMLNs, it is often possible to bound
the number of scenarios in practice. Consider, for instance,
the problem of reasoning over data structures on the Web
(related to the running example). Web pages are usually
processed in isolation, since structured data do not usu-
ally span across pages and are often delimited by a cer-
tain DOM sub-tree. This implies that the number of pos-
sible worlds is bounded by a function of the constants ap-
pearing in a subset of the page. This bound can work to-
gether with the good computational behavior of cMLNs to
allow tractability of reasoning in practice. Other applica-
tions where cMLNs can be leveraged are semantic and nat-
ural language-based Web search.

Future work involves investigating other DLs that can be
extended in this manner, and pushing the known line be-
tween tractability and expressivity. We also need to em-
pirically evaluate our approach both on synthetic and real-
world data, as well as studying the application of other
techniques such as random sampling, which may provide
increased scalability at the cost of lost guarantees.
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[15] LUTZ, C., AND SCHRÖDER, L. Probabilistic de-
scription logics for subjective uncertainty. In Proc.
of KR (2010), pp. 393–403.

[16] MADHAVAN, J., KO, D., KOT, L., GANAPATHY, V.,
RASMUSSEN, A., AND HALEVY, A. Google’s deep
Web crawl. In Proc. of VLDB (2008), pp. 1241–1252.

[17] NOESSNER, J., AND NIEPERT, M. ELOG: a proba-
bilistic reasoner for OWL EL. In Proc. of RR (2011),
pp. 281–286.

[18] PATEL-SCHNEIDER, P. F., HAYES, P., AND HOR-
ROCKS, I. OWL Web Ontology Language seman-
tics and abstract syntax. W3C Recommendation,
2004. Available at http://www.w3.org/TR/
owl-semantics/.

[19] PEARL, J. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. 1988.

[20] RICHARDSON, M., AND DOMINGOS, P. Markov
logic networks. Machine Learning 62 (2006), 107–
136.

[21] TODA, S. On the computational power of PP and ⊕P.
In Proc. of FOCS (1989), pp. 514–519.

[22] WWW CONSORTIUM. Uncertainty Reasoning for
the World Wide Web – W3C Incubator Group Re-
port. Available at: http://www.w3.org/2005/
Incubator/urw3/XGR-urw3/.

[23] YANG, Y., AND CALMET, J. OntoBayes: An
ontology-driven uncertainty model. In Proc. of
IAWTIC (2005), pp. 457–463.

563



Sparse Q-learning with Mirror Descent

Sridhar Mahadevan and Bo Liu
Computer Science Department

University of Massachusetts, Amherst
Amherst, Massachusetts, 01003
{mahadeva, boliu}@cs.umass.edu

Abstract

This paper explores a new framework for rein-
forcement learning based on online convex opti-
mization, in particular mirror descent and related
algorithms. Mirror descent can be viewed as
an enhanced gradient method, particularly suited
to minimization of convex functions in high-
dimensional spaces. Unlike traditional gradient
methods, mirror descent undertakes gradient up-
dates of weights in both the dual space and primal
space, which are linked together using a Legen-
dre transform. Mirror descent can be viewed as
a proximal algorithm where the distance gener-
ating function used is a Bregman divergence. A
new class of proximal-gradient based temporal-
difference (TD) methods are presented based on
different Bregman divergences, which are more
powerful than regular TD learning. Examples of
Bregman divergences that are studied include p-
norm functions, and Mahalanobis distance based
on the covariance of sample gradients. A new
family of sparse mirror-descent reinforcement
learning methods are proposed, which are able to
find sparse fixed points of an l1-regularized Bell-
man equation at significantly less computational
cost than previous methods based on second-
order matrix methods. An experimental study
of mirror-descent reinforcement learning is pre-
sented using discrete and continuous Markov de-
cision processes.

Reinforcement learning (RL) models the interaction be-
tween the agent and an environment as a Markov deci-
sion process (MDP), a widely adopted model of sequential
decision-making. The major aim of this paper is to inves-
tigate a new framework for reinforcement learning and se-
quential decision-making, based on ideas from online con-
vex optimization, in particular mirror descent [NY83] and
related algorithms [BT03, Nes09]. Mirror descent general-
izes classical first-order gradient descent to non-Euclidean

geometries by using a distance-generating function specific
to a particular geometry. Mirror descent can be viewed as
a proximal algorithm [BT03], where the distance generat-
ing function used is a Bregman divergence [Bre67]. Mirror
descent is a powerful framework for convex optimization
in high-dimensional spaces: an early success of this ap-
proach was its use in positron-emission tomography (PET)
imaging involving an optimization problem with millions
of variables [BTMN01]. The mirror descent algorithm has
led to new methods for sparse classification and regression
[DHS11, SST11a]. Mirror descent has also been extended
from its original deterministic setting [NY83] to a stochas-
tic approximation setting [NJLS09], which makes it highly
appropriate for RL, as the standard temporal-difference
(TD) learning method for solving MDPs also has its ori-
gins in stochastic approximation theory [Bor08].

l1 regularized methods for solving MDPs have become a
topic of recent attention, including a technique combin-
ing least-squares TD (LSTD) with least-angle regression
(LARS) [KN09]; another method for combining l1 regular-
ization with approximate linear programming [PTPZ10];
finally, a linear complementarity formulation of l1 regu-
larization [JPWP10]. These methods involve matrix inver-
sion, requiring near cubic complexity in the number of (ac-
tive) features. In contrast, mirror-descent based RL meth-
ods promise similar performance guarantees involving only
linear complexity in the number of features. Recent work in
online learning [DHS11, SST11a] has explored the appli-
cation of mirror descent in developing sparse methods for
regularized classification and regression. This paper inves-
tigates the use of mirror-descent for sparse reinforcement
learning.

1 Technical Background

1.1 Reinforcement Learning

The most popular and widely used RL method is temporal-
difference (TD) learning [Sut88]. TD is a stochastic ap-
proximation approach [Bor08] to solving Markov decision
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processes (MDPs), comprised of a set of states S, a set
of (possibly state-dependent) actions A (As), a dynami-
cal system model comprised of the transition probabilities
P ass′ specifying the probability of transition to state s′ from
state s under action a, and a reward model R. A policy
π : S → A is a deterministic mapping from states to ac-
tions. Associated with each policy π is a value function
V π , which is a fixed point of the Bellman equation:

V π = Tπ(V π) = Rπ + γPπV π (1)

where 0 ≤ γ < 1 is a discount factor. Any optimal policy
π∗ defines the same unique optimal value function V ∗ that
satisfies the nonlinear system of equations:

V
∗
(s) = max

a

∑

s′

P ass′ (Rass′ + γV ∗(s′))

The action valueQ∗(s, a) represents a convenient reformu-
lation of the value function, defined as the long-term value
of performing a first, and then acting optimally according
to V ∗:

Q∗(s, a) = E
(
rt+1 + γmax

a′
Q∗(st+1, a

′)|st = s, at = a
)

(2)
where rt+1 is the actual reward received at the next time
step, and st+1 is the state resulting from executing ac-
tion a in state st. The (optimal) action value formulation
is convenient because it can be approximately solved by
a temporal-difference (TD) learning technique called Q-
learning [Wat89]. The simplest TD method, called TD(0),
estimates the value function associated with the fixed pol-
icy using a normal stochastic gradient iteration:

Vt+1(st) = Vt(st) + αt(rt + γVt(st+1)− Vt(st))

TD(0) converges to the optimal value function V π for pol-
icy π as long as the samples are “on-policy”, namely fol-
lowing the stochastic Markov chain associated with the
policy; and the learning rate αt is decayed according to
the Robbins-Monro conditions in stochastic approximation
theory:

∑
t αt = ∞,∑t α

2
t < ∞ [BT96]. When the set

of states S is large, it is often necessary to approximate the
value function V using a set of handcrafted basis functions
(e.g., polynomials, radial basis functions, wavelets etc.) or
automatically generated basis functions [Mah09]. In lin-
ear value function approximation, the value function is as-
sumed to lie in the linear span of the basis function matrix
Φ of dimension |S| × p, where it is assumed that p� |S|.
Hence, V π ≈ V̂ π = Φw. The equivalent TD(0) rule for
linear function approximated value functions is given as:

wt+1 = αt
(
rt + γφ(st+1)Twt − φ(st)

Twt
)
φ(st) (3)

where the quantity in the parenthesis is the TD error. TD
can be shown to converge to the fixed point of the compo-
sition of the projector ΠΦ onto the column space of Φ and
the Bellman operator Tπ .

l1 regularized least-squares methods for solving MDPs at-
tempt to find a fixed point of the l1 penalized Bellman equa-
tion:1 [KN09, PTPZ10, JPWP10]

w = f(w) = argminu
(
‖(Rπ + γPπΦw − Φu)‖2 + β‖u‖1

)

(4)
Unfortunately, the above l1 regularized fixed point is not a
convex optimization problem. Another way to introduce l1
regularization is to penalize the projected Bellman residual
[GS11], which yields a convex optimization problem:

wθ = argminw‖Rπ + γPπΦθ − Φw‖2

θ∗ = argminθ ‖Φwθ − Φθ‖22 + β‖θ‖1 (5)

where the first step is the projection step and the second
is the fixed point step. Note that in the on-policy set-
ting, algorithms derived from the motivation of minimiz-
ing projected Bellman residual asymptotically converge to
the solution of conventional TD-learning [SMP+09]. Re-
cent l1-regularized RL methods, such as LARS-TD and
LCP-TD, involve matrix inversion, requiring at least cubic
complexity in the number of (active) features. In contrast,
mirror-descent based RL methods can provide similar per-
formance guarantees involving only linear complexity in
the number of features.

1.2 Online Convex Optimization

Online convex optimization [Zin03] explores the use of
first-order gradient methods for solving convex optimiza-
tion problems. In this framework, at each step, the learner
picks an element wt of a convex set, in response to which
an adversary picks a convex loss function ft(wt). The aim
of the learner is to select elements in such a way as to min-
imize its long-term regret

T∑

t=1

ft(wt)−min
w

T∑

t=1

ft(w)

with respect to the choice it would have made in hindsight.

A fundamental problem addressed in this paper is to min-
imize a sum of two functions, as in Equation 4 and Equa-
tion 5:

w∗ = argminw∈X (f(w) + g(w)) (6)

where f(w) is a smooth differentiable convex function,
whereas g is a (possibly non-smooth) convex function that
is subdifferentiable over its domain. A common example is
l1 regularized classification or regression:

w∗ = argminw∈Rd
m∑

t=1

L(〈w, xt〉, yt) + β‖w‖1 (7)

1In practice, the full Φ matrix is never constructed, and only
the p-dimensional embedding φ(s) of sampled states are explic-
itly formed. Also, Rπ , Φ, and PπΦ are approximated by R̃, Φ̃,
and Φ̃′ over a given set of samples.
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where L(a, b) is a convex loss function, and β is a sparsity-
controlling parameter. The simplest online convex algo-
rithm is based on the classic gradient descent procedure for
minimizing a function, given as:

w0 ∈ X,wt = ΠX (wt−1 − αt∇f(wt−1)) : t ≥ 1 (8)

where ΠX(x) = argminy∈X‖x− y‖2 is the projector onto
set X , and αt is a stepsize. If f is not differentiable, then
the subgradient ∂f can be substituted instead, resulting in
the well-known projected subgradient method, a workhorse
of nonlinear programming [Ber99]. We discuss a general
framework for minimizing Equation 6 next.

1.3 Proximal Mappings and Mirror Descent

The proximal mapping associated with a convex function h
is defined as:

proxh(x) = argminu
(
h(u) + ‖u− x‖22

)

If h(x) = 0, then proxh(x) = x, the identity func-
tion. If h(x) = IC(x), the indicator function for a con-
vex set C, then proxIC (x) = ΠC(x), the projector onto
set C. For learning sparse representations, the case when
h(w) = β‖w‖1 is particularly important. In this case, the
entry-wise proximal operator is:

proxh(w)i =





wi − β, if wi > β

0, if |wi| ≤ β
wi + β, otherwise

(9)

An interesting observation follows from noting that the
projected subgradient method (Equation 8) can be written
equivalently using the proximal mapping as:

wt+1 = argminw∈X

(
〈w, ∂f(wt)〉+

1

2αt
‖w − wt‖22

)

(10)
An intuitive way to understand this equation is to view
the first term as requiring the next iterate wt+1 to move in
the direction of the (sub) gradient of f at wt, whereas the
second term requires that the next iterate wt+1 not move
too far away from the current iterate wt. Note that the
(sub)gradient descent is a special case of Equation (10)
with Euclidean distance setup.

With this introduction, we can now introduce the main con-
cept of mirror descent [NY83]. We follow the treatment
in [BT03] in presenting the mirror descent algorithm as a
nonlinear proximal method based on a distance generating
function that is a Bregman divergence [Bre67].

Definition 1: A distance generating function ψ(x) is de-
fined as a continuously differentiable strongly convex func-
tion (with modulus σ) which satisfies:

〈x′ − x,∇ψ(x′)−∇ψ(x)〉 ≥ σ‖x′ − x‖2 (11)

Given such a function ψ, the Bregman divergence associ-
ated with it is defined as:

Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 (12)

Intuitively, the Bregman divergence measures the differ-
ence between the value of a strongly convex function ψ(x)
and the estimate derived from the first-order Taylor series
expansion at ψ(y). Many widely used distance measures
turn out to be special cases of Bregman divergences, such
as Euclidean distance (where ψ(x) = 1

2‖x‖22 ) and Kull-
back Liebler divergence (where ψ(x) =

∑
i xi log2 xi,

the positive entropy function). In general, Bregman diver-
gences are non-symmetric, but projections onto a convex
set with respect to a Bregman divergence is well-defined.

The general mirror descent procedure can be written as:

wt+1 = argminw∈X

(
〈w, ∂f(wt)〉+

1

αt
Dψ(w,wt)

)

(13)
Notice that the squared distance term in Equation 10 has
been generalized to a Bregman divergence. The solution to
this optimization problem can be stated succinctly as the
following generalized gradient descent algorithm, which
forms the core procedure in mirror descent:

wt+1 = ∇ψ∗ (∇ψ(wt)− αt∂f(wt)) (14)

Here, ψ∗ is the Legendre transform of the strongly convex
function ψ, which is defined as

ψ∗(y) = sup
x∈X

(〈x, y〉 − ψ(x))

It can be shown that ∇ψ∗ = (∇ψ)−1 [BT03]. Mirror
descent is a powerful first-order optimization method that
been shown to be “universal” in that if a problem is online
learnable, it leads to a low-regret solution using mirror de-
scent [SST11b]. It is shown in [BTMN01] that the mirror
descent procedure specified in Equation 14 with the Breg-
man divergence defined by the p-norm function [Gen03],
defined below, can outperform regular projected subgradi-
ent method by a factor n

logn where n is the dimensionality
of the space. For high-dimensional spaces, this ratio can be
quite large.

2 Proposed Framework: Mirror Descent
RL

Algorithm 1 describes the proposed mirror-descent TD(λ)
method.2 Unlike regular TD, the weights are updated us-
ing the TD error in the dual space by mapping the primal
weights w using a gradient of a strongly convex function
ψ. Subsequently, the updated dual weights are converted

2All the algorithms described extend to the action-value case
where φ(s) is replaced by φ(s, a).
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Algorithm 1 Adaptive Mirror Descent TD(λ)
Let π be some fixed policy for an MDP M, and s0 be the
initial state. Let Φ be some fixed or automatically generated
basis.

1: repeat
2: Do action π(st) and observe next state st+1 and re-

ward rt.
3: Update the eligibility trace et ← et + λγφ(st)
4: Update the dual weights θt for a linear function ap-

proximator:

θt+1 = ∇ψt(wt)+αt(rt+γφ(st+1)Twt−φ(st)
Twt)et

where ψ is a distance generating function.
5: Set wt+1 = ∇ψ∗

t (θt+1) where ψ∗ is the Legendre
transform of ψ.

6: Set t← t+ 1.
7: until done.

Return V̂ π ≈ Φwt as the value function associated
with policy π for MDP M .

back into the primal space using the gradient of the Leg-
endre transform of ψ, namely ∇ψ∗. Algorithm 1 specifies
the mirror descent TD(λ) algorithm wherein each weight
wi is associated with an eligibility trace e(i). For λ = 0,
this is just the features of the current state φ(st), but for
nonzero λ, this corresponds to a decayed set of features
proportional to the recency of state visitations. Note that
the distance generating function ψt is a function of time.

2.1 Choice of Bregman Divergence

We now discuss various choices for the distance generat-
ing function in Algorithm 1. In the simplest case, suppose
ψ(w) = 1

2‖w‖22, the Euclidean length of w. In this case, it
is easy to see that mirror descent TD(λ) corresponds to reg-
ular TD(λ), since the gradients∇ψ and∇ψ∗ correspond to
the identity function. A much more interesting choice of ψ
is ψ(w) = 1

2‖w‖2q , and its conjugate Legendre transform

ψ∗(w) = 1
2‖w‖2p. Here, ‖w‖q =

(∑
j |wj |q

) 1
q

, and p

and q are conjugate numbers such that 1
p + 1

q = 1. This
ψ(w) leads to the p-norm link function θ = f(w) where
f : Rd → Rd [Gen03]:

fj(w) =
sign(wj)|wj |q−1

‖w‖q−2
q

, f−1
j (θ) =

sign(θj)|θj |p−1

‖θ‖p−2
p

(15)
The p-norm function has been extensively studied in the
literature on online learning [Gen03], and it is well-known
that for large p, the corresponding classification or regres-
sion method behaves like a multiplicative method (e.g., the
p-norm regression method for large p behaves like an ex-
ponentiated gradient method (EG) [KW95, Lit88]).

Another distance generating function is the negative en-
tropy function ψ(w) =

∑
i wi logwi, which leads to the

entropic mirror descent algorithm [BT03]. Interestingly,
this special case has been previously explored [PS95] as
the exponentiated-gradient TD method, although the con-
nection to mirror descent and Bregman divergences were
not made in this previous study, and EG does not gener-
ate sparse solutions [SST11a]. We discuss EG methods vs.
p-norm methods in Section 6.

2.2 Sparse Learning with Mirror Descent TD

Algorithm 2 Sparse Mirror Descent TD(λ)
1: repeat
2: Do action π(st) and observe next state st+1 and re-

ward rt.
3: Update the eligibility trace et ← et + λγφ(st)
4: Update the dual weights θt:

θ̃t+1 = ∇ψt(wt)+αt
(
rt + γφ(st+1)Twt − φ(st)

Twt
)
et

(e.g., ψ(w) = 1
2‖w‖2q is the p-norm link function).

5: Truncate weights:

∀j, θt+1
j = sign(θ̃t+1

j ) max(0, |θ̃t+1
j | − αtβ)

6: wt+1 = ∇ψ∗
t (θt+1) (e.g., ψ∗(θ) = 1

2‖θ‖2p and p and
q are dual norms such that 1

p + 1
q = 1).

7: Set t← t+ 1.
8: until done.

Return V̂ π ≈ Φwt as the l1 penalized sparse value
function associated with policy π for MDP M .

Algorithm 2 describes a modification to obtain sparse value
functions resulting in a sparse mirror-descent TD(λ) algo-
rithm. The main difference is that the dual weights θ are
truncated according to Equation 9 to satisfy the l1 penalty
on the weights. Here, β is the sparsity parameter defined
in Equation 7. An analogous approach was suggested in
[SST11a] for l1 penalized classification and regression.

2.3 Composite Mirror Descent TD

Another possible mirror-descent TD algorithm uses as the
distance-generating function a Mahalanobis distance de-
rived from the subgradients generated during actual trials.
We base our derivation on the composite mirror-descent ap-
proach proposed in [DHS11] for classification and regres-
sion. The composite mirror-descent solves the following
optimization problem at each step:

wt+1 = argminx∈X (αt〈x, ∂ft〉+ αtµ(x) +Dψt(x,wt))
(16)

Here, µ serves as a fixed regularization function, such as
the l1 penalty, and ψt is the time-dependent distance gener-
ating function as in mirror descent. We now describe a dif-
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ferent Bregman divergence to be used as the distance gen-
erating function in this method. Given a positive definite
matrix A, the Mahalanobis norm of a vector x is defined as
‖x‖A =

√
〈x,Ax〉. Let gt = ∂f(st) be the subgradient of

the function being minimized at time t, and Gt =
∑
t gtg

T
t

be the covariance matrix of outer products of the subgra-
dients. It is computationally more efficient to use the di-
agonal matrix Ht =

√
diag(Gt) instead of the full covari-

ance matrix, which can be expensive to estimate. Algo-
rithm 3 describes the adaptive subgradient mirror descent
TD method.

Algorithm 3 Composite Mirror Descent TD(λ)
1: repeat
2: Do action π(st) and observe next state st+1 and re-

ward rt.
3: Set TD error δt = rt + γφ(st+1)Twt − φ(st)

Twt
4: Update the eligibility trace et ← et + λγφ(st)
5: Compute TD update ξt = δtet.
6: Update feature covariance

Gt = Gt−1 + φ(st)φ(st)
T

7: Compute Mahalanobis matrix Ht =
√

diag(Gt).
8: Update the weights w:

wt+1,i = sign(wt,i−
αtξt,i
Htt,i

)(|wt,i−
αtξt,i
Htt,i

|− αtβ

Htt,i
)

9: Set t← t+ 1.
10: until done.

Return V̂ π ≈ Φwt as the l1 penalized sparse value
function associated with policy π for MDP M .

3 Convergence Analysis

Definition 2 [GLMH11]: Πl1 is the l1-regularized pro-
jection defined as: Πl1y = Φα such that α =

arg minw‖y − Φw‖2 + β‖w‖1, which is a non-expansive
mapping w.r.t weighted l2 norm induced by the on-policy
sample distribution setting, as proven in [GLMH11]. Let
the approximation error f(y, β) = ‖y −Πl1y‖2.

Definition 3 (Empirical l1-regularized projection): Π̂l1 is
the empirical l1-regularized projection with a specific l1
regularization solver, and satisfies the non-expansive map-
ping property. It can be shown using a direct derivation
that Π̂l1ΠT is a γ-contraction mapping. Any unbiased l1
solver which generates intermediate sparse solution before
convergence, e.g., SMIDAS solver after t-th iteration, com-
prises an empirical l1-regularized projection.

Theorem 1 The approximation error ||V − V̂ || of Algo-
rithm 2 is bounded by (ignoring dependence on π for sim-

Figure 1: Error Bound and Decomposition

plicity):

||V − V̂ || ≤ 1
1−γ×(

‖V −ΠV ‖+ f(ΠV, β) + (M − 1)P (0) + ‖w∗‖21 M
αtN

)

(17)
where V̂ is the approximated value function after N -th it-
eration, i.e., V̂ = ΦwN , M = 2

2−4αt(p−1)e , αt is the step-

size, P (0) = 1
N

N∑
i=1

‖ΠV (si)‖22, si is the state of i-th sam-

ple, e = d
p
2 , d is the number of features, and finally, w∗ is

l1-regularized projection of ΠV such that Φw∗ = Πl1ΠV .

Proof: In the on-policy setting, the solution given by Al-
gorithm 2 is the fixed point of V̂ = Π̂l1ΠT V̂ and the error
decomposition is illustrated in Figure 1. The error can be
bounded by the triangle inequality

||V − V̂ || = ||V −ΠTV ||+||ΠTV−Π̂l1ΠTV ||+||Π̂l1ΠTV−V̂ ||
(18)

Since Π̂l1ΠT is a γ-contraction mapping, and V̂ =
Π̂l1ΠT V̂ , we have

||Π̂l1ΠTV − V̂ || = ||Π̂l1ΠTV − Π̂l1ΠT V̂ || ≤ γ||V − V̂ ||
(19)

So we have

(1− γ)||V − V̂ || ≤ ||V −ΠTV ||+ ||ΠTV − Π̂l1ΠTV ||

‖V −ΠTV ‖ depends on the expressiveness of the basis
Φ, where if V lies in span(Φ), this error term is zero.
||ΠTV − Πl1Π̂TV || is further bounded by the triangle in-
equality

||ΠTV − Π̂l1ΠTV || ≤
||ΠTV −Πl1ΠTV ||+ ||Πl1ΠTV − Π̂l1ΠTV ||

where ‖ΠTV −Πl1ΠTV ‖ is controlled by the sparsity pa-
rameter β, i.e., f(ΠTV, β) = ||ΠTV −Πl1ΠTV ||, where
ε = ||Π̂l1ΠTV −Πl1ΠTV || is the approximation error de-
pending on the quality of the l1 solver employed. In Al-
gorithm 2, the l1 solver is related to the SMIDAS l1 reg-
ularized mirror-descent method for regression and classi-
fication [SST11a]. Note that for a squared loss function
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L(〈w, xi〉 , yi) = || 〈w, xi〉 − yi||22, we have |L′|2 ≤ 4L.
Employing the result of Theorem 3 in [SST11a], after the
N -th iteration, the l1 approximation error is bounded by

ε ≤ (M − 1)P (0) + ||w∗||21
M

αtN
,M =

2

2− 4αt(p− 1)e

By rearranging the terms and applying V = TV , Equation
(17) can be deduced.

4 Experimental Results: Discrete MDPs

Figure 2 shows that mirror-descent TD converges more
quickly with far smaller Bellman errors than LARS-TD
[KN09] on a discrete “two-room” MDP [MM07]. The ba-
sis matrix Φ was automatically generated as 50 proto-value
functions by diagonalizing the graph Laplacian of the dis-
crete state space connectivity graph[MM07]. The figure
also shows that Algorithm 2 (sparse mirror-descent TD)
scales more gracefully than LARS-TD. Note LARS-TD is
unstable for γ = 0.9. It should be noted that the com-
putation cost of LARS-TD is O(Ndm3), whereas that for
Algorithm 2 is O(Nd), where N is the number of samples,
d is the number of basis functions, and m is the number
of active basis functions. If p is linear or sublinear w.r.t d,
Algorithm 2 has a significant advantage over LARS-TD.

Figure 3 shows the result of another experiment conducted
to test the noise immunity of Algorithm 2 using a discrete
10 × 10 grid world domain with the goal set at the upper
left hand corner. For this problem, 50 proto-value basis
functions were automatically generated, and 450 random
Gaussian mean 0 noise features were added. The sparse
mirror descent TD algorithm was able to generate a very
good approximation to the optimal value function despite
the large number of irrelevant noisy features, and took a
fraction of the time required by LARS-TD.

Figure 4 compares the performance of mirror-descent Q-
learning with a fixed p-norm link function vs. a decaying
p-norm link function for a 10 × 10 discrete grid world do-
main with the goal state in the upper left-hand corner. Ini-
tially, p = O(log d) where d is the number of features, and
subsequently p is decayed to a minimum of p = 2. Vary-
ing p-norm interpolates between additive and multiplica-
tive updates. Different values of p yield an interpolation
between the truncated gradient method [LLZ09] and SMI-
DAS [SsT09].

Figure 5 illustrates the performance of Algorithm 3 on the
two-room discrete grid world navigation task.

5 Experimental Results: Continuous MDPs

Figure 6 compares the performance of Q-learning vs.
mirror-descent Q-learning for the mountain car task, which
converges more quickly to a better solution with much
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Figure 2: Mirror-descent Q-learning converges signifi-
cantly faster than LARS-TD on a “two-room” grid world
MDP for γ = 0.9 (top left) and γ = 0.8 (top right). The y-
axis measures the l2 (red curve) and l∞ (blue curve) norm
difference between successive weights during policy itera-
tion. Bottom: running times for LARS-TD (blue solid) and
mirror-descent Q (red dashed). Regularization β = 0.01.

lower variance. Figure 7 shows that mirror-descent Q-
learning with learned diffusion wavelet bases converges
quickly on the 4-dimensional Acrobot task. We found in
our experiments that LARS-TD did not converge within
20 episodes (its curve, not shown in Figure 6, would be
flat on the vertical axis at 1000 steps). Finally, we
tested the mirror-descent approach on a more complex 8-
dimensional continuous MDP. The triple-link inverted pen-
dulum [SW01] is a highly nonlinear time-variant under-
actuated system, which is a standard benchmark testbed in
the control community. We base our simulation using the
system parameters described in [SW01], except that the ac-
tion space is discretized because the algorithms described
here are restricted to policies with discrete actions. There
are three actions, namely {0, 5Newton,−5Newton}. The
state space is 8-dimensional, consisting of the angles made
to the horizontal of the three links in the arm as well as
their angular velocities, the position and velocity of the cart
used to balance the pendulum. The goal is to learn a pol-
icy that can balance the system with the minimum num-
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Figure 3: Sensitivity of sparse mirror-descent TD to noisy
features in a grid-world domain. Left: basis matrix with the
first 50 columns representing proto-value function bases
and the remainder 450 bases representing mean-0 Gaussian
noise. Right: Approximated value function using sparse
mirror-descent TD.
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Figure 4: Left: convergence of mirror-descent Q-learning
with a fixed p-norm link function. Right: decaying p-norm
link function.

ber of episodes. A run is successful if it balances the in-
verted pendulum for the specified number of steps within
300 episodes, resulting in a reward of 0. Otherwise, this run
is considered as a failure and yields a negative reward −1.
The first action is chosen randomly to push the pendulum
away from initial state. Two experiments were conducted
on the triple-link pendulum domain with 20 runs for each
experiment. As Table 1 shows, Mirror Descent Q-learning
is able to learn the policy with fewer episodes and usually
with reduced variance compared with regular Q-learning.

The experiment settings are Experiment 1: Zero initial state
and the system receives a reward 1 if it is able to balance
10,000 steps. Experiment 2: Zero initial state and the sys-
tem receives a reward 1 if it is able to balance 100,000
steps. Table 1 shows the comparison result between reg-
ular Q-learning and Mirror Descent Q-learning.
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Figure 5: Left: Convergence of composite mirror-descent
Q-learning on two-room gridworld domain. Right: Ap-
proximated value function, using 50 proto-value function
bases.
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Figure 6: Top: Q-learning; Bottom: mirror-descent Q-
learning with p-norm link function, both with 25 fixed
Fourier bases [KOT08] for the mountain car task.

6 Comparison of Link Functions

The two most widely used link functions in mirror descent
are the p-norm link function [BT03] and the relative en-
tropy function for exponentiated gradient (EG) [KW95].
Both of these link functions offer a multiplicative update
rule compared with regular additive gradient methods. The
differences between these two are discussed here. Firstly,
the loss function for EG is the relative entropy whereas
that of the p-norm link function is the square l2-norm func-
tion. Second and more importantly, EG does not produce
sparse solutions since it must maintain the weights away
from zero, or else its potential (the relative entropy) be-
comes unbounded at the boundary.

Another advantage of p-norm link functions over EG is that
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Figure 7: Mirror-descent Q-learning on the Acrobot task
using automatically generated diffusion wavelet bases av-
eraged over 5 trials.

Table 1: Results on Triple-Link Inverted Pendulum Task.
# of Episodes\Experiment 1 2

Q-learning 6.1± 5.67 15.4± 11.33
Mirror Descent Q-learning 5.7± 9.70 11.8± 6.86

the p-norm link function offers a flexible interpolation be-
tween additive and multiplicative gradient updates. It has
been shown that when the features are dense and the opti-
mal coefficients θ∗ are sparse, EG converges faster than the
regular additive gradient methods [KW95]. However, ac-
cording to our experience, a significant drawback of EG is
the overflow of the coefficients due to the exponential op-
erator. To prevent overflow, the most commonly used tech-
nique is rescaling: the weights are re-normalized to sum to
a constant. However, it seems that this approach does not
always work. It has been pointed out [PS95] that in the
EG-Sarsa algorithm, rescaling can fail, and replacing eligi-
ble traces instead of regular additive eligible traces is used
to prevent overflow. EG-Sarsa usually poses restrictions on
the basis as well. Thanks to the flexible interpolation capa-
bility between multiplicative and additive gradient updates,
the p-norm link function is more robust and applicable to
various basis functions, such as polynomial, radial basis
function (RBF), Fourier basis [KOT08], proto-value func-
tions (PVFs), etc.

7 Summary and Future Work

We proposed a novel framework for reinforcement learning
using mirror-descent online convex optimization. Mirror
Descent Q-learning demonstrates the following advantage
over regular Q learning: faster convergence rate and re-
duced variance due to larger stepsizes with theoretical con-
vergence guarantees [NJLS09]. Compared with existing
sparse reinforcement learning algorithms such as LARS-
TD, Algorithm 2 has lower sample complexity and lower
computation cost, advantages accrued from the first-order
mirror descent framework combined with proximal map-

ping [SST11a]. There are many promising future research
topics along this direction. We are currently exploring a
mirror-descent fast-gradient RL method, which is both con-
vergent off-policy and quicker than fast gradient TD meth-
ods such as GTD and TDC [SMP+09]. To scale to large
MDPs, we are investigating hierarchical mirror-descent RL
methods, in particular extending SMDP Q-learning. We are
also undertaking a more detailed theoretical analysis of the
mirror-descent RL framework, building on existing anal-
ysis of mirror-descent methods [DHS11, SST11a]. Two
types of theoretical investigations are being explored: re-
gret bounds of mirror-descent TD methods, extending pre-
vious results [SW94] and convergence analysis combining
robust stochastic approximation [NJLS09] and RL theory
[BT96, Bor08].
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Abstract

We describe multi-objective influence diagrams,
based on a set ofp objectives, where utility val-
ues are vectors inRp, and are typically only par-
tially ordered. These can still be solved by a
variable elimination algorithm, leading to a set of
maximal values of expected utility. If the Pareto
ordering is used this set can often be prohibitively
large. We consider approximate representations
of the Pareto set based onǫ-coverings, allowing
much larger problems to be solved. In addition,
we define a method for incorporating user trade-
offs, which also greatly improves the efficiency.

1 INTRODUCTION

Influence diagrams [1] are a powerful formalism for rea-
soning with sequential decision making problems under
uncertainty. They involve both chance variables, where the
outcome is determined randomly based on the values as-
signed to other variables, and decision variables, which the
decision maker can choose the value of, based on observa-
tions of some other variables. Uncertainty is represented
(like in a Bayesian network) by a collection of conditional
probability distributions, one for each chance variable. The
overall value of an outcome is represented as the sum of a
collection of utility functions.

In many situations, a decision maker has more than one ob-
jective, and mapping several objectives to a single utility
scale can be problematic, since the decision maker may be
unwilling or unable to provide precise tradeoffs between
objectives [2, 3, 4]. We consider multi-objective influence
diagrams, where utility values are now vectors inRp, with
p being the number of objectives. Since utility values are

∗Abdul Razak is funded by IRCSET and IBM through the
IRCSET Enterprise Partnership Scheme. This work was also sup-
ported in part by the Science Foundation Ireland under grant no.
08/PI/I1912

now only partially ordered (for instance by the Pareto or-
dering) we no longer have a unique maximal value of ex-
pected utility, but a set of them.

The Pareto ordering on multi-objective utility is a rather
weak one; the effect of this is that the set of maximal val-
ues of expected utility can often become huge. We dis-
cuss how the notion ofǫ-covering, which approximates the
Pareto set, can be applied for the case of multi-objective in-
fluence diagrams. As we demonstrate experimentally, this
has a major effect on the size of the undominated utility
vector sets and hence on the computational efficiency and
feasibility for larger problems.

We also define a simple formalism for imprecise tradeoffs;
this allows the decision maker, during the elicitation stage,
to specify a preference for one multi-objective utility vec-
tor over another, and uses such inputs to infer other pref-
erences. The induced preference relation then is used to
eliminate dominated utility vectors during the computation.
Our experimental results indicate that the presence of even
a few such imprecise tradeoffs greatly reduces the undom-
inated set of expected utility values.

The paper is organized as follows. We first discuss the re-
lated work. Then Section 2 describes standard influence di-
agrams and multi-objective utility values. Section 3 defines
multi-objective influence diagrams, and how variable elim-
ination can be used to compute the set of maximal values of
expected utility, up to a form of equivalence. Section 4 de-
scribes the use of theǫ-covering of the Pareto set. Section
5 defines the formalism for tradeoffs and how the induced
notion of preference dominance can be computed. Section
6 describes our experimental testing of multi-objective in-
fluence diagrams, based on the Pareto ordering, on theǫ-
covering approximation, and based on the dominance rela-
tion induced by the user tradeoffs. Section 7 concludes.

RELATED WORK: Our approach to multi-objective in-
fluence diagram computation is based on our general
framework [5].

Diehl and Haimes [6] describe a computational technique
for influence diagrams with multiple objectives, with the
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restriction of just a single value node (utility function).The
solution method is based on influence diagram transforma-
tions [7]. Pareto dominance is used to prune sub-optimal
utility vectors during the computation (with tradeoffs be-
ing taken into account at the end of the computation).

Papadimitriou and Yannakakis [8] proposed the use of the
logarithmic grid in (1 + ǫ) to generate anǫ-covering of
the Pareto set. Dubus et al. [9] also developed a variable
elimination algorithm that usesǫ-dominance over a graphi-
cal model (GAI network) that represents a (multi-objective)
generalized decomposable additive utility function.

Zhou et al. [10] consider influence diagrams (with a unique
value node) based on interval-valued utility, which is sim-
ilar to bi-objective utility. They adapt Cooper’s approach
for solving influence diagrams based on Bayesian network
algorithms [11]. Other extensions of influence diagrams
include work in [12, 13, 14] which allow interval probabil-
ity (but precise single-objective utility), and in [15] which
considers generalized influence diagrams based on fuzzy
random variables.

Maua et al. [16] proposed a variable elimination algorithm
for solving Limited Memory Influence Diagrams (LIM-
IDs). Although they consider standard totally ordered utili-
ties, their algorithm also manipulates partially ordered sets:
in their case, sets of functions that are used to represent the
effect of different undominated policies.

Our method for incorporating tradeoffs relates toconvex
cones, as shown by Theorem 3. A general approach to
multi-objective preferences based on cones has been de-
veloped by Yu and others [17, 18].

2 BACKGROUND

2.1 INFLUENCE DIAGRAMS

An influence diagram(ID) [1] is defined by a tuple
〈X,D,P,U〉, where X = {X1, . . . , Xn} is a set of
chance variableswhich specify the uncertain decision en-
vironment andD = {D1, . . . , Dm} is a set ofdecision
variableswhich specify the possible decisions to be made
in the domain. The chance variables are further divided
into observablemeaning they will be observed during ex-
ecution, orunobservable. As in Bayesian networks [19],
each chance variableXi ∈ X is associated with acondi-
tional probability table(CPT)Pi = P (Xi|pa(Xi)), where
Pi ∈ P andpa(Xi) ⊆ X ∪ D \ {Xi}. Each decision vari-
ableDk ∈ D has a parent setpa(Dk) ⊆ X ∪ D \ {Dk},
denoting the variables whose values will be known at the
time of the decision and may affect directly the decision.
Non-forgettingis typically assumed for an influence dia-
gram, meaning that a decision node and its parents are par-
ents to all subsequent decisions. Theutility (or reward)
functionsU = {U1, . . . , Ur} are defined over subsets of

Figure 1: A simple influence diagram with two decisions.

variablesQ = {Q1, . . . , Qr},Qi ⊆ X ∪ D, calledscopes,
and represent the preferences of the decision maker.

The graph of an ID contains nodes for chance variables (cir-
cled), decision variables (boxed) and for the utility compo-
nents (diamond). For each chance or decision node there is
an arc directed from each of its parent variables toward it,
and there is a directed arc from each variable in the scope
of a utility function toward its utility node.

The decision variables in an influence diagram are typically
assumed to be temporally ordered (also known asregular-
ity). LetD1, D2, ..., Dm be the order in which the decisions
are to be made. The chance variables can be partitioned
into a collection of disjoint setsI0, I1, . . . , Im. For eachk,
where0 < k < m, Ik is the set of chance variables that
are observed betweenDk andDk+1. I0 is the set of initial
evidence variables that are observed beforeD1. Im is the
set of chance variables left unobserved when the last deci-
sionDm is made. This induces a strict partial order≺ over
X ∪ D, given by:I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dm ≺ Im [20].

A policy (or strategy) for an influence diagram is a list of
decision rules∆ = (δ1, . . . , δm) consisting of one rule
for each decision variable. Adecision rulefor the deci-
sionDk ∈ D is a mappingδk : Ωpa(Dk) → ΩDk

, where
for a setS ⊆ X ∪ D, ΩS is the Cartesian product of
the individual domains of the variables inS. Therefore,
a policy ∆ determines a value for each decision variable
Di (which depends on the parents setpa(Di)). Given
a utility function U , a policy ∆ yields a utility function
[U ]∆ that involves no decision variables, by assigning their
values using∆. The expected utility given policy∆ is
EU∆ =

∑
X[(

∏n
i=1 Pi × ∑r

j=1 Uj)]∆. Solving an influ-
ence diagram means finding anoptimal policythat maxi-
mizes the expected utility, i.e., to findarg max∆EU∆. The
maximum expected utility can be shown to be equal to:

∑

I0

max
D1

· · ·
∑

Im−1

max
Dm

∑

Im




n∏

i=1

Pi ×
r∑

j=1

Uj


 (1)

Example 1 Figure 1 shows the influence diagram of the
oil wildcatter problem (adapted from [21]). An oil wild-
catter must decide either todrill or not to drill for oil at a
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specific site. Before drilling, aseismic testcould help de-
termine the geological structure of the site. The test results
can show aclosedreflection pattern (indication of signif-
icant oil), an openpattern (indication of some oil), or a
diffuse pattern (almost no hope of oil). The special value
notestis used if no seismic test is performed. There are
therefore two decision variables,T (Test) andD (Drill),
and two chance variablesS (Seismic results) andO (Oil
contents). The probabilistic knowledge consists of the con-
ditional probability tablesP (O) andP (S|O, T ), while the
utility function is the sum ofU1(T ) andU2(O,D). The op-
timal policy is to perform the test and to drill only if the
test results show an open or a closed pattern. The expected
utility of this policy is 22.5.

Several exact methods have been proposed over the past
decades for solving influence diagrams using local com-
putations [7, 22, 23, 20, 24, 25]. These methods adapted
classicalvariable eliminationtechniques, which compute a
type of marginalization over a combination of local func-
tions, in order to handle the multiple types of information
(probabilities and utilities), marginalization (

∑
andmax)

and combination (× for probabilities,+ for utilities) in-
volved in influence diagrams. Since the alternation of

∑

andmax in Equation 1 does not commute in general, it pre-
vents the solution technique from eliminating variables in
any ordering. Therefore, the computation dictated by Equa-
tion 1 must be performed along alegal elimination order-
ing that respects≺, namely the reverse of the elimination
ordering is some extension of≺ to a total order [20, 24].

2.2 MULTI-OBJECTIVE UTILITY VALUES

In many real-world situations it may not be possible for the
decision maker to map the various possible consequences
of a set of actions to the same scale of utility in a way that
avoids essentially arbitrary decisions. Hence, it is natural to
consider multi-objective or multi-attribute utility functions
to cope with multiple and non-commensurate utility scales
on which the decision maker’s preferences are expressed.

Consider a situation withp objectives (or attributes). A
multi-objective utility valueis characterized by a vector
~u = (u1, . . . , up) ∈ Rp, whereui represents the utility
with respect to objectivei ∈ {1, . . . , p}. We assume the
standard pointwise arithmetic operations, namely~u + ~v =
(u1 + v1, . . . , up + vp) andq × ~u = (q × u1, . . . , q × up),
whereq ∈ R. The comparison of utility values reduces to
that of their correspondingp-dimensional vectors.

We are interested in partial orders< on Rp satisfying the
following two monotonicity properties, where~u,~v, ~w ∈ Rp

are arbitrary vectors.

[Independence:] If ~u < ~v then~u+ ~w < ~v + ~w

[Scale-Invariance:] If ~u < ~v and q ∈ R, q ≥ 0 then
q × ~u < q × ~v.

An important example of such a partial order is the weak
Pareto order.

DEFINITION 1 (weak Pareto ordering) Let ~u,~v ∈ Rp

such that~u = (u1, . . . , up) and ~v = (v1, . . . , vp). We
define the binary relation≥ on Rp by ~u ≥ ~v ⇐⇒
∀i ∈ {1, . . . , p} ui ≥ vi.

Given~u,~v ∈ Rp, if ~u < ~v then we say that~u dominates~v.
As usual, the symbol≻ refers to the asymmetric part of<,
namely~u ≻ ~v if and only if ~u < ~v and it is not the case
that~v < ~u. In particular, relation≥ (resp.>) is also called
weak Pareto dominance(resp.Pareto dominance).

DEFINITION 2 (maximal/Pareto set) Given a partial or-
der< and a finite set of utility vectorsU ⊆ Rp, we define
the maximal set, denoted bymax<(U), to be the set con-
sisting of the undominated elements inU , i.e.,max<(U) =
{~v ∈ U | ∄~v ∈ U , ~v ≻ ~u}. When< is the weak Pareto
ordering≥, we callmax<(U) thePareto set.

3 MULTI-OBJECTIVE INFLUENCE
DIAGRAMS

In this section, we introduce the extension of the stan-
dard influence diagram model to include multiple objec-
tives. Towards this goal we consider a multi-objective util-
ity function that is additively decomposable [26]. For sim-
plicity and without loss of generality we assume that all
objectives are to be maximized. We next define formally
the graphical model and then derive a sequential variable
elimination algorithm for evaluating the model.

3.1 THE GRAPHICAL MODEL

A multi-objective influence diagram(MOID) extends the
standard influence diagram by allowing a multi-objective
utility function defined onp > 1 objectives. The graph-
ical structure of a MOID is identical to that of a standard
ID, namely it is a directed acyclic graph containingchance
nodes(drawn as circles) for the random discrete variables
X, decision nodes(drawn as rectangles) for the decision
variablesD, and utility nodes (drawn as diamonds) for
the local utility functionsU of the decision maker. The
directed arcs in the MOID represent the same dependen-
cies between the variables as in the standard model. Each
chance nodeXi ∈ X is associated with a conditional prob-
ability tableP (Xi|pa(Xi)) : ΩXi∪pa(Xi) → [0, 1]. The
utility functions Uj ∈ U represent the decision maker’s
preferences with respect to each of thep objectives, namely
Uj : ΩQj

→ Rp, whereQj is the scope ofUj .

A policy for a MOID is a sequence∆ = (δ1, . . . , δm),
where eachδi is a function fromΩpa(Di) → ΩDi

. Clearly,
given a policy∆ we have thatEU∆ ⊆ Rp. Solving a
multi-objective influence diagram means finding the set of
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Figure 2: A bi-objective influence diagram.

policies that generate maximal values of expected utility,
i.e., values of utility in the setmax<{EU∆ | policies∆}.
We say that a policy∆ is optimal if the corresponding ex-
pected utilityEU∆ is undominated.

Example 2 Figure 2 displays a bi-objective influence dia-
gram for the decision problem from Example 1. We con-
sider a utility function with two attributes representing the
testing/drillingpayoff and damageto the environment, re-
spectively. The utility of testing is(−10, 10), whereas
the utility of drilling is (−70, 18), (50, 12), (200, 8) for
a dry, wet and soaking hole, respectively. The aim is to
find optimal policies that maximize the payoff and min-
imize the damage to environment. The dominance rela-
tion is defined in this case by~u ≥ ~v ⇔ u1 ≥ v1 and
u2 ≤ v2 (e.g.,(10, 2) ≥ (8, 4) and (10, 2) � (8, 1)). The
Pareto setmax≥{EU∆ | policies∆} contains 4 elements,
i.e., {(22.5, 17.56), (20, 14.2), (11, 12.78), (0, 0)}, cor-
responding to the four optimal policies shown below (we
show how to obtain these in Section 3.4):

∆1 ∆2 ∆3 ∆4

δT yes no yes no
δD yes (S = closed) yes (S = notest)yes (S = closed)no (S = notest)

yes (S = open) no (S = open)
no (S = diffuse) no (S = diffuse)

EU∆i
{(22.5, 17.56)} {(20, 14.2)} {(11, 12.78)} {(0, 0)}

Because we are considering partially ordered utilities, the
max operator does not necessarily lead to a unique ele-
ment. This means that we need to extend the arithmetic
operations, addition, multiplication andmax, to finite sets
of utility values.

3.2 ARITHMETIC OPERATIONS AND
DISTRIBUTIVITY PROPERTIES

In this section we assume a partial order< on Rp that sat-
isfies Independence and Scale-Invariance. In particular,<
can be the weak Pareto ordering.

Given two finite setsU ,V ⊆ Rp and q ≥ 0, we define
the summation and multiplication operations asU + V =
{~u + ~v | ~u ∈ U , ~v ∈ V} and q × U = {q × ~u | ~u ∈
U}, respectively. The maximization operation is defined as

max(U ,V) = max<(U ∪ V). It is easy to see that+, ×
andmax are commutative and associative.

To ensure the correctness of a variable elimination com-
putation (such as the one in Algorithm 1) we need some
distributivity properties. However, the important property
(q1 + q2) × U = q1 × U + q2 × U does not always hold.
As a simple example, letq1 = q2 = 0.5 and consider
a set of bi-objective utility vectorsU = {(1, 0), (0, 1)}.
Using the point-wise operations on pairs of real numbers
we have that(q1 + q2) × U yields the set{(1, 0), (0, 1)},
whereas(q1 × U) + (q2 × U) = {(0.5, 0), (0, 0.5)} +
{(0.5, 0), (0, 0.5)} = {(1, 0), (0.5, 0.5), (0, 1)}. We will
see next that this distributivity property does hold if we re-
strict to convex sets.

3.3 EQUIVALENT SETS OF UTILITY VALUES

For U ,V ⊆ Rp, we say thatU < V if every element of
V is (weakly) dominated by some element ofU (so thatU
contains as least as large elements asV), namely if for all
~v ∈ V there exists~u ∈ U with ~u < ~v. We also define an
equivalence relation≈ between two finite setsU ,V ⊆ Rp

by U ≈ V if and only if U < V andV < U .

Given a setU ⊆ Rp, we define itsconvex closureC(U) to
consist of every element of the form

∑k
j=1(qj ×~uj), where

k is an arbitrary natural number, each~uj ∈ U , eachqj ≥ 0

and
∑k

j=1 qj = 1, respectively.

Given U ,V ⊆ Rp, we define the equivalence relation≡
by U ≡ V if and only if C(U) ≈ C(V). Therefore, two
sets of utility vectors are considered equivalent if, for every
convex combination of elements of one, there is a convex
combination of elements of the other which is at least as
good (with respect to the partial order< on Rp). The fol-
lowing result shows, in particular, that the operations on
sets of utility values respects the equivalence relation.

PROPOSITION1 Let U ,V,W ⊆ Rp be finite sets and let
q ≥ 0. The following properties hold: (1)U ≡ max<(U);
(2) if U ≡ V thenq × U ≡ q × V, U + W ≡ V + W and
max(U ,W) ≡ max(V,W).

We can show now that the distributivity, and other proper-
ties we require, hold with respect to the≡ relation between
finite sets of partially ordered utility values.

THEOREM 1 Let< be a partial order onRp satisfying In-
dependence and Scale-Invariance. Then, for allq, q1, q2 ≥
0 and for all finite setsU ,V,W ⊆ Rp, we have that:
(i) q × (U + V) = q × U + q × V;
(ii) (q1 + q2) × U ≡ (q1 × U) + (q2 × U);
(iii) q1 × (q2 × U) = (q1 × q2) × U ;
(iv) max(q × U , q × V) = q × max(U ,V);
(v) max(U + W,V + W) ≡ max(U ,V) + W.

This implies that variable elimination can be used to gen-
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Algorithm 1 : ELIM -MOID

Data: A MOID 〈X,D,P,U〉 with p > 1 objectives, a legal
elimination ordering of the variablesτ = (Y1, . . . , Yt)

Result: An optimal policy∆
// partition the functions into buckets
for l = t downto 1do1

place inbuckets[l] all remaining components inP andU2
that contain variableYl in their scope

// top-down step
for l = t downto 1do3

let Φl = {φ1, . . . , φj} andΨl = {ψ1, . . . , ψk} be the4
probability and utility components inbuckets[l]
if Yl is a chance variablethen5

φl ←∑
Yl

∏j
i=1 φi6

ψl ← (φl)−1 ×∑′
Yl

((
∏j

i=1 φi)× (
∑k

j=1 ψj))7

else ifYl is a decision variablethen8

φl ← maxYl

∏j
i=1 φi9

ψl ← maxYl((
∏j

i=1 φi)× (
∑k

j=1 ψj))10

place eachφl andψl in the bucket of the highest-index11
variable in its scope

// bottom-up step
for l = 1 to t do12

if Yl is a decision variablethen13

δl ← arg maxYl
((

∏j
i=1 φi)× (

∑k
j=1 ψj))14

∆← ∆ ∪ δl15

return ∆16

erate the set of maximal values of expected utility, up to
equivalence (see also [5] for more details).

3.4 VARIABLE ELIMINATION

As well as operation+ on sets of utilities, we define op-
eration+′ on finite sets of utility values byU +′ V =
max<(U + V). Theorem 1 allows us to apply an iterative
variable elimination procedure along a legal elimination or-
dering where chance variables are eliminated by+′, deci-
sion variables bymax, and the probability and (set-valued)
utility functions are combined by× and+, respectively.
The set of maximal expected utility values is equivalent to∑′

I0
maxD1

· · · maxDm

∑′
Im

(∏n
i=1 Pi × ∑r

j=1 Uj

)
.

The variable elimination algorithm, called ELIM -MOID, is
described by Algorithm 1. It is based on Dechter’s bucket
elimination framework [24] and computes the maximal set
max<{EU∆| policies∆} as well as an optimal policy (the
algorithm can be easily instrumented to produce the entire
set of optimal policies). Given a legal elimination ordering
τ = Y1, . . . , Yt, the input functions are partitioned into a
bucket structure, calledbuckets, such that each bucket is
associated with a single variableYl and contains all input
probability and utility functions whose highest variable in
their scope isYl.

ELIM -MOID processes each bucket, top-down from the last
to the first, by a variable elimination procedure that com-

putes new probability (denoted byφ) and utility (denoted
by ψ) components which are then placed in corresponding
lower buckets (lines 3-11). For a chance variableYl, theφ-
message is generated by multiplying all probability com-
ponents in that bucket and eliminatingYl by summation.
Theψ-message is computed as the average utility in that
bucket, normalized by the bucket’s compiledφ (hereYl is
eliminated by

∑′). For a decision variableYl, we compute
theφ andψ components in a similar manner and eliminate
Yl by maximization. In this case, the product of probability
components in the bucket is a constant when viewed as a
function of the bucket’s decision variable and therefore the
compiledφ-message is a constant as well [20, 5].

In the second, bottom-up step, the algorithm generates an
optimal policy (lines 12-16). The decision buckets are pro-
cessed in reversed order, from the first variable to the last.
Each decision rule is generated by taking the argument of
the maximization operator applied over the combination of
probability and utility components in the respective bucket,
for each combination of the variables in the bucket’s scope
(i.e., the union of the scopes of all functions in the bucket
minusYl) while remembering the values assigned to earlier
decisions. Ties are broken uniformly at random.

As is usually the case with bucket elimination algorithms,
the complexity of ELIM -MOID can be bounded exponen-
tially (time and space) by the width of the ordered induced
graph that reflects the execution of the algorithm (i.e., in-
duced width of the legal elimination ordering) [24]. Since
the utility values are vectors inRp, it is not easy to predict
the size of the undominated set of expected utility values.

4 APPROXIMATING THE PARETO SET

In this section, we assume without loss of generality a weak
Pareto ordering onRp

+ because the proposed approxima-
tion method relies on a log transformation of the solution
space as we will see next. The cardinality of the Pareto set
max≥{EU∆ : policies∆} (and also the number of opti-
mal policies) can often get very large. What would then
be desirable for the decision maker is an approximation of
the Pareto set thatapproximatelydominates (or covers) all
elements in{EU∆ : policies∆} and is of considerably
smaller size. This can be achieved by considering the no-
tion of ǫ-covering of the Pareto set which is based onǫ-
dominancebetween utility values [8].

DEFINITION 3 (ǫ-dominance) For any finiteǫ > 0, theǫ-
dominancerelation is defined on positive vectors ofRp

+ by
~u ≥ǫ ~v ⇔ (1 + ǫ) · ~u ≥ ~v.

DEFINITION 4 (ǫ-covering) LetU ⊆ Rp
+ andǫ > 0. Then

a setUǫ ⊆ U is called anǫ-approximate Pareto setor an
ǫ-covering, if any vector~v ∈ U is ǫ-dominated by at least
one vector~u ∈ Uǫ, i.e.,∀~v ∈ U ∃~u ∈ Uǫ such that~u ≥ǫ ~v.
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Algorithm 2 : (ǫ, λ)−COVERING(U )

Γ← ∅; V ← ∅;1
foreach~u ∈ U do2

if ϕλ(~u) /∈ Γ then3
remove fromΓ all ϕλ(~v) such thatϕλ(~u) ≥ ϕλ(~v);4
Γ← Γ ∪ {ϕλ(~u)};5

foreachϕλ(~u) ∈ Γ do V ← V ∪ {~u};6
return V;7

The setUǫ is not unique. However, it is possible to compute
anǫ-covering of a finite setU ⊆ Rp

+ by mapping each vec-
tor ~u ∈ U onto a hyper-grid using the log transformation
ϕ : Rp

+ → Zp
+, defined byϕ(~u) = (ϕ(u1), . . . , ϕ(up))

where∀i, ϕ(ui) = ⌈log ui/ log(1 + ǫ)⌉ [8]. By definition,
we have that:

PROPOSITION2 ∀~u,~v ∈ Rp
+, ϕ(~u) ≥ ϕ(~v) ⇒ ~u ≥ǫ ~v.

It is easy to see that any cell of the grid represents a dif-
ferent class of vectors having the same image throughϕ.
Based on Proposition 2, any vector belonging to a given
cell ǫ-dominates any other vector of that cell. Therefore,
for any finiteǫ, we can obtain a validǫ-covering ofU by
choosing one representative element in each cell and by
keeping only undominated cells occupied. For example, if
we restrict the vectors inU to be bounded by:1 ≤ ui ≤ B
for all i ∈ {1, . . . , p}, then the size ofUǫ is polynomial in
logB and1/ǫ (see also [8] for more details).

Example 3 Let U = {~u,~v} such that~u = (3.1, 2.9) and
~v = (3, 3.05). Clearly,~u � ~v and~v � ~u. Setǫ = 0.1. We
have thatϕ(~u) = ϕ(~v) = (12, 12), and it is easy to verify
that ~u ≥ǫ ~v and~v ≥ǫ ~u. Therefore,Uǫ = {~u} is a valid
ǫ-covering ofU , as is{~v}.

We next extend algorithm ELIM -MOID to compute anǫ-
covering of the expected utility set{EU∆ : policies∆}.
However, it is not possible to just replace Pareto dominance
with ǫ-dominance at each variable elimination step and still
guarantee a validǫ-covering becauseǫ-dominance is not a
transitive relation (e.g., if~u ≥ǫ ~v and~v ≥ǫ ~w, we only
have that~u ≥ (1+ ǫ)2 · ~w). To overcome this difficulty, we
use a finer dominance relation, defined as follows [9].

DEFINITION 5 ((ǫ, λ)-dominance) For any finite ǫ > 0
and λ ∈ (0, 1), the (ǫ, λ)-dominancerelation is defined
on positive vectors ofRp

+ by ~u ≥λ
ǫ ~v ⇔ (1 + ǫ)λ · ~u ≥ ~v.

Given a setU ⊆ Rp
+, a subsetU(ǫ,λ) ⊆ U is called an

(ǫ, λ)-covering, if∀~v ∈ U ∃~u ∈ U(ǫ,λ) such that~u ≥λ
ǫ ~v.

Algorithm 2 computes an(ǫ, λ)-covering of a finite setU ⊆
Rp

+ by using the log grid mappingϕλ : Rp
+ → Zp

+ defined
by ϕλ(~u) = (ϕλ(u1), . . . , ϕλ(up)) where∀i, ϕλ(ui) =
⌈log ui/ log(1 + ǫ)λ⌉. It is easy to see that:

PROPOSITION3 ∀~u,~v ∈ Rp
+, ϕλ(~u) ≥ ϕλ(~v) ⇒ ~u ≥λ

ǫ ~v.

PROPOSITION4 Let~u,~v, ~w ∈ Rp
+ andλ, λ′ ∈ (0, 1). The

following properties hold: (i) if~u ≥λ
ǫ ~v then~u + ~w ≥λ

ǫ

~v + ~w, and if~u ≥λ
ǫ ~v andq ≥ 0 thenq · ~u ≥λ

ǫ q · ~v; (ii) if
~u ≥λ

ǫ ~v and~v ≥λ′
ǫ ~w then~u ≥λ+λ′

ǫ ~w.

We define operationsmax∗ and+∗ on finite sets of utility
values bymax∗(U ,V) = max≥λ

ǫ
(U ∪ V) andU +∗ V =

max≥λ
ǫ
(U + V), wheremax≥λ

ǫ
(U) is an(ǫ, λ)-covering of

the finite setU ⊆ Rp
+ (computed using Algorithm 2).

The algorithm called ELIM -MOIDǫ, which computes anǫ-
covering of the expected utility set, is obtained from Algo-
rithm 1 by replacingmax and

∑′ by max∗ and
∑∗, re-

spectively. Since the top-down phase of the algorithm con-
sists oft elimination steps, one for each variable, and there-
fore requires computingt (ǫ, λi)-coverings viamax≥λ

ǫ
,

i = 1, . . . , t, a sufficient condition to obtain a validǫ-
covering is to choose theλi values summing to 1, specifi-
cally λi = 1/t, wheret is the number of variables. Thus:

THEOREM 2 Given a MOID instance〈X,D,P,U〉 with t
variables,p > 1 objectives and any finiteǫ > 0, algorithm
ELIM -MOIDǫ computes anǫ-covering.

The time and space complexity of ELIM -MOIDǫ is also
bounded exponentially by the induced width of the legal
elimination ordering. However, the size ofǫ-covering gen-
erated can be in many cases significantly smaller than the
corresponding Pareto set, as we will see in Section 6.

5 HANDLING IMPRECISE TRADEOFFS

The Pareto ordering is rather weak (often leading to very
large Pareto optimal sets, as mentioned above in Section 4,
and illustrated by the experiments in Section 6). Very often
the decision maker will be happy to allow some trade-offs
between objectives. For example, in a two-objective situa-
tion, they may tell us that are happy to gain 3 units of the
first objective at the cost of losing one unit of the second,
and hence prefer(3,−1) to (0, 0). Such tradeoffs may be
elicited using some structured method, or in a moread hoc
way. For instance, in Example 1, the decision maker may
be asked to imagine a scenario where it was known that the
oil content was “wet”, and whether they would then have a
preference for drilling. To do so would imply a preference
of (50, 12) over(0, 0).

We thus consider some setΘ of vector pairs of the form
(~u,~v), where~u,~v ∈ Rp. The idea is that this consists of
elicited preferences of the decision maker. We say that bi-
nary relation< onRp extendsΘ if ~u < ~v for all (~u,~v) ∈ Θ.
Similarly, we say that< extends Pareto if~u ≥ ~v ⇒ ~u < ~v.

We consider that the decision maker has a partial order<
overRp, and that they specify a set of preferencesΘ. We
assume the Scale-Invariance and Independence properties
hold (see Section 2), and, naturally, assume that< extends
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Pareto. The input preferencesΘ could contradict the other
assumptions we make. We say thatΘ is consistentif there
exists some partial order< that extendsΘ, extends Pareto,
and satisfies Scale-Invariance and Independence.

The input preferencesΘ (if consistent) give rise to a rela-
tion �Θ which specifies the deduced preferences. We say
that (~u,~v) can be deduced fromΘ if ~u < ~v holds for all
partial orders< that extendΘ, extend Pareto, and satisfy
Scale-Invariance and Independence. In this case we write
~u �Θ ~v. The definition easily implies the following.

PROPOSITION5 If Θ is consistent then�Θ is a par-
tial order extendingΘ and Pareto, and satisfying Scale-
Invariance and Independence.

Proposition 5 shows that this dominance relation�Θ satis-
fies Scale-Invariance and Independence, giving the proper-
ties (Theorem 1) we need for the variable elimination algo-
rithm to be correct (up to equivalence).

In Example 1, suppose now we have the additional user
preference of(50, 12) over (0, 0), and hence include the
pair ((50, 12), (0, 0)) in Θ. This would then imply that
(11, 12.78) is dominated w.r.t.�Θ by (20, 14.2).

Theorem 3 below gives a characterization of the partial or-
der�Θ, which we use as the basis of our implemented al-
gorithm for testing this kind of dominance. LetW be some
subset ofRp. DefineC(W ), the convex cone generated by
W , to be the set consisting of all vectors~u such that there
existsk ≥ 0 and non-negative real scalarsq1, . . . , qk and
~wi ∈ W with ~u ≥ ∑k

i=1 qi ~wi, where≥ is the weak Pareto
relation (and an empty summation is taken to be equal to
0). C(W ) is the set of vectors that weakly-Pareto dominate
some (finite) positive linear combination of elements ofW .

THEOREM 3 Let Θ be a consistent set of pairs of vectors
in Rp. Then~u �Θ ~v if and only if~u − ~v ∈ C(~ui − ~vi :
(~ui, ~vi) ∈ Θ).

Write finite set of input preferencesΘ as{(~ui, ~vi) : i =
1, . . . , k}. Theorem 3 shows that, to perform the domi-
nance test~u �Θ ~v, it sufficient to check if there exist,
for i = 1, . . . , k, non-negative real scalarsqi such that
~u−~v ≥ ∑k

i=1 qi(~ui − ~vi). This can be determined using a
linear programming solver, since it amounts to testing if a
finite set of linear inequalities is satisfiable.

Example 4 ConsiderΘ = {(−1, 2,−1), (4,−3, 0)} and
vectors~u = (1,−1, 0) and~v = (0,−2, 1). Then~u �Θ ~v
iff ~u − ~v weak Pareto-dominates a non-negative combi-
nation of elements ofΘ, i.e., ∃q1 ≥ 0, q2 ≥ 0 such
that ~u − ~v ≥ q1(−1, 2,−1) + q2(4,−3, 0), which is iff
there exists a solution for the linear system defined by:
1 ≥ −q1 + 4q2 and1 ≥ 2q1 − 3q2, and−1 ≥ −q1. Since
this is the case (e.g.,q1 = 1; q2 = 0.5) we have~u �Θ ~v.

Alternatively, we can use the fact that the dominance test
corresponds to checking whether~u−~v is in the convex cone
generated by{~ui−~vi : i = 1, . . . , k} plus thep unit vectors
in Rp. We made use of an (incomplete) algorithm [27] for
this purpose (which computes the distance of a vector from
a cone).

Therefore, the algorithm called ELIM -MOID-TOF that ex-
ploits tradeoffs is obtained from Algorithm 1, by replac-
ing the+′ andmax operators with+Θ andmaxΘ, respec-
tively, wheremaxΘ(U ,V) = max�Θ

(U ∪ V), U +Θ V =
max�Θ

(U + V), andmax�Θ
(U) is the set of undominated

elements of finite setU ⊆ Rp with respect to�Θ.

Instead of eliminating�Θ-dominated utility values during
the computation, one could generate the Pareto optimal set
of expected utility values, and only then eliminate�Θ-
dominated values. However, the experimental results in
Section 6 (Table 2) indicate that this will typically be much
less computationally efficient.

6 EXPERIMENTS

In this section, we evaluate empirically the performance
of the proposed variable elimination algorithms on random
multi-objective influence diagrams. All experiments were
run on a 2.6GHz quad-core processor with 4GB of RAM.

The algorithms considered were implemented in C++ (32-
bit) and are denoted by ELIM -MOID (Section 3), ELIM -
MOIDǫ (Section 4) and ELIM -MOID-TOF (Section 5), re-
spectively. We implemented both methods for performing
the �Θ-dominance, namely the linear programming and
the distance from a cone based one, and report only on the
former because their performance was comparable overall.

We experimented with a class of random influence di-
agrams described by the parameters〈C,D, k, p, r, a,O〉,
whereC is the number of chance variables,D is the num-
ber of decision variables,k is the maximum domain size,
p is the number of parents in the graph for each variable,
r is the number of root nodes,a is the arity of the utility
functions andO is the number of objectives. The structure
of the influence diagram is created by randomly picking
C+D−r variables out ofC+D and, for each, selectingp
parents from their preceding variables, relative to some or-
dering, whilst ensuring that the decision variables are con-
nected by a directed path. We then added to the graphD
utility nodes, each one havinga parents picked randomly
from the chance and decision variables.

We generated random problems with parametersk = 2,
p = 2, r = 5, a = 3 and variedC ∈ {15, 25, 35, 45, 55},
D ∈ {5, 10} andO ∈ {2, 3, 5}, respectively. In each case,
25% of the chance nodes were assigned deterministic CPTs
(containing 0 and 1 entries). The remaining CPTs were ran-
domly filled using a uniform distribution. The utility vec-
tors were generated randomly, each objective value being
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Table 1: Results with algorithms ELIM -MOID and ELIM -MOIDǫ on random influence diagrams. Time limit 20 minutes.
size w∗ ELIM -MOID ǫ = 0.01 ǫ = 0.1 ǫ = 0.3
(C,D,O) # time avg stdev med# time avg stdev med# time avg stdev med# time avg stdev med

(15,5,2) 9 16 10.77 3,601 7,422 1,33020 18.48 2,051 4,811 9220 0.06 87 150 1420 0.03 18 24 5
(25,5,2) 11 12 17.28 3,663 6,952 1,62316 58.47 1,340 2,835 13720 0.76 157 321 1320 0.17 24 42 6
(35,5,2) 14 11 60.63 2,104 2,092 2,04620 141.86 4,554 8,979 34420 1.49 112 167 2320 1.12 16 20 5
(45,5,2) 16 5 304.08 7,131 6,086 6,91718 56.57 1,791 3,183 80420 24.44 121 199 6920 2.53 21 27 12
(55,5,2) 18 5 267.74 8,227 11,166 4,26618 58.91 3,428 6,363 1,27020 17.59 80 113 2320 16.60 10 14 5
(15,5,3) 9 13 21.12 3,827 9,993 4298 8.52 1,247 1,477 97317 51.31 7,220 12,355 14019 1.89 470 675 16
(25,5,3) 11 2 163.84 4,638 4,518 4,5788 103.75 5,167 8,122 2,06318 77.98 2,641 4,409 87620 1.43 139 229 62
(35,5,3) 14 0 1 49.56 2,200 0 2,20013 83.25 6,113 8,614 39020 37.26 1,326 2,713 200
(45,5,3) 16 1 0.74 907 0 907 3 317.34 30,025 22,643 35,24815 57.58 5,689 15,495 5520 76.48 1,256 3,746 20
(55,5,3) 18 0 3 19.95 711 794 22014 165.69 898 1,918 10620 85.02 1,434 4,715 43
(15,5,5) 9 7 183.32 19,973 21,437 9,6593 111.53 7,267 3,789 6,6287 80.26 2,368 4,541 58613 10.97 156 235 59
(25,5,5) 11 1 199.13 25,021 0 25,0210 6 222.08 5,142 5,993 6,4999 106.95 6,432 17,449 133
(35,5,5) 14 0 0 1 36.04 636 0 636 6 305.37 21 9 27
(45,5,5) 16 0 0 0 7 51.94 6,620 5,898 8,250
(55,5,5) 18 0 0 0 4 77.25 1,556 2,488 3,091

(15,10,2) 12 11 221.24 5,516 6,653 1,94617 192.55 11,783 27,315 17320 10.74 1,074 3,122 2320 6.01 153 470 9
(25,10,2) 17 1 0.62 688 0 68814 208.05 4,391 12,479 23519 49.35 186 544 1620 14.18 42 125 6
(35,10,2) 20 0 2 490.39 3,788 1,601 2,69515 95.18 266 475 7316 79.63 68 152 18
(45,10,2) 22 0 1 512.51 4,136 0 4,1369 196.46 493 647 1899 125.28 87 111 54
(55,10,2) 26 0 0 1 590.92 20 0 20 1 148.03 7 0 7
(15,10,3) 12 0 0 2 53.32 312 17 16412 118.71 4,429 9,303 47
(25,10,3) 17 0 0 2 104.96 2,822 2,584 2,7038 215.39 1,960 2,005 2,678
(35,10,3) 20 0 0 1 15.38 49 0 49 4 272.04 3,496 5,659 6,918
(45,10,3) 22 0 0 2 280.15 956 809 8822 98.59 87 70 78
(55,10,3) 26 0 0 0 0
(15,10,5) 12 0 0 0 1 112.00 429 0 429
(25,10,5) 17 0 0 0 1 790.34 584 0 584
(35,10,5) 20 0 0 0 0
(45,10,5) 22 0 0 0 0
(55,10,5) 26 0 0 0 0

drawn uniformly at random between 1 and 30.

We report the average CPU time (in seconds) as well as the
average size (together with standard deviation and median)
of the maximal expected utility sets generated. In addition,
we also record the average induced width (w∗) of the prob-
lems obtained using a minfill elimination ordering [24].

Impact of the ǫ-covering Table 1 summarizes the results
obtained with algorithms ELIM -MOID and ELIM -MOIDǫ

with ǫ ∈ {0.01, 0.1, 0.3} on problems with 5 and 10 de-
cisions. The number shown in column (#) indicates how
many instances out of 20 were solved within the time or
memory limit. We see that ELIM -MOID can solve only
relatively small instances and runs out of time/memory on
the larger ones. For example, on problem size〈25, 5, 2〉,
ELIM -MOID solved 60% of the instances in about 17 sec-
onds and generated Pareto sets containing about 3,600
vectors on average (with a standard deviation of about
6,900). On the other hand, algorithm ELIM -MOIDǫ scales
up and solves larger problems while generating signifi-
cantly smallerǫ-coverings, especially asǫ increases. For
example, on problem class(25, 5, 2), the average size of
the ǫ-covering forǫ = 0.3 is about 2 orders of magnitude
smaller than the corresponding Pareto optimal set. The rea-
son is that asǫ increases, the corresponding logarithmic
grid gets coarser (i.e., fewer cells) and therefore the num-
ber of representative vectors needed to cover the optimal
Pareto set is smaller.

Figure 3 plots the distribution (mean and standard devia-
tion) of the size of theǫ-coverings generated for problem
class〈35, 5, 5〉, as a function ofǫ. We can see that asǫ
increases the size of theǫ-covering decreases considerably.
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Figure 3: Distribution (mean and stdev) of theǫ-covering
size as a function of theǫ value. We also plot the number
of instances solved out of 100. Time limit 20 minutes.

Impact of imprecise tradeoffs For the purpose of this
evaluation, we generated consistent random tradeoffs be-
tween the objectives of a given problem instance, as fol-
lows. Let(i, j) be a pair of objectives picked randomly out
of p objectives. We generate two tradeoffsa~ei − b~ej and
b~ej − ac~ei, where~ei and~ej are thei-th andj-th unit vec-
tors. Intuitively, one of the tradeoffs indicates how much
of objectivei one is willing to sacrifice to gain a unit of
objectivej, and the other is vice versa. In addition, we also
generate a 3-way tradeoff between three objectives(i, j, k)
picked randomly as well in the form of the tradeoff vector
a~ei + b~ej − c~ek. Therefore, our random tradeoffs genera-
tor is characterized by parameters(K,T, a, b, c), whereK
is the number of pairs of objectives,T is the number of
triplets (and thus a total of2K + T tradeoffs inΘ), and
randomly chosena, b, c ∈ [0, 1) are used to construct the
tradeoff vectors. Notice that parameterc can be used to
control the strength of the two-way tradeoffs. Specifically,
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Table 2: Results comparing algorithms ELIM -MOID and
ELIM -MOID-TOF on random influence diagrams with ran-
dom tradeoffs. Time limit 20 minutes.

size w∗ ELIM -MOID ELIM -MOID-TOF

(C,D,O) # time avg stdev med# time avg stdev med

K = 1; T = 0; a, b, c ∈ [0.1, 1)
(15,5,2) 9 9 139.58 2,714 2,864 1,67394 24.93 98 232 1
(25,5,2) 11 7 18.25 2,344 2,614 26992 7.12 33 126 1
(35,5,2) 14 2 283.29 9,115 8,934 9,02483 59.18 147 378 1
(45,5,2) 16 2 397.72 7,596 7,536 7,56676 23.08 86 302 1
(55,5,2) 18 4 717.68 10,422 5,851 14,89676 48.02 90 233 2

K = 2; T = 1; a, b, c ∈ [0.1, 1)
(15,5,3) 9 6 10.69 4,889 4,069 5,83085 34.62 48 135 2
(25,5,3) 11 2 4.42 4,000 3,938 3,96970 18.20 41 95 2
(35,5,3) 14 0 50 89.51 119 198 13
(45,5,3) 16 2 242.68 15,431 1,729 8,58052 28.18 41 73 4
(55,5,3) 18 0 51 94.63 75 154 4

K = 6; T = 3; a, b, c ∈ [0.1, 1)
(15,5,5) 9 3 65.73 15,062 12,229 14,74184 19.70 41 104 4
(25,5,5) 11 1 50.35 21,074 0 21,07474 83.30 97 217 4
(35,5,5) 14 0 59 63.69 101 225 8
(45,5,5) 16 0 61 96.59 107 216 8
(55,5,5) 18 0 41 84.32 51 101 12

K = 1; T = 0; a, b, c ∈ [0.1, 1)
(15,10,2) 12 5 91.82 6,856 8,280 3,17578 34.09 60 145 1
(25,10,2) 17 1 808.94 4,964 0 4,96437 94.08 63 232 1
(35,10,2) 20 0 23 227.78 29 68 1
(45,10,2) 22 0 11 59.97 30 39 13
(55,10,2) 26 0 0

K = 2; T = 1; a, b, c ∈ [0.1, 1)
(15,10,3) 12 0 45 157.48 86 191 12
(25,10,3) 17 0 11 204.78 74 83 73
(35,10,3) 20 0 3 303.42 8 8 4
(45,10,3) 22 0 3 158.17 4 4 1
(55,10,3) 26 0 0

K = 6; T = 3; a, b, c ∈ [0.1, 1)
(15,10,5) 12 0 40 106.50 27 64 5
(25,10,5) 17 0 21 104.70 67 114 10
(35,10,5) 20 0 5 244.45 72 80 48
(45,10,5) 22 0 0
(55,10,5) 26 0 0

if we were to setc = 1 then the two objectivesi and j
would essentially collapse into a single one (we’d have pre-
cise rates of exchange between objectivesi andj). If c = 0
then the second tradeoff for the pair(i, j) is irrelevant.

Table 3: Impact of the quality of the random tradeoffs on
bi-objective influence diagrams. Time limit 20 minutes.

size w∗ ELIM -MOID ELIM -MOID-TOF

(C,D,O) # time avg stdev med# time avg stdev med

K = 0; K = 1;c = 0
(15,5,2) 9 9 139.58 2,714 2,864 1,67384 48.30 243 542 23
(25,5,2) 11 7 18.25 2,344 2,614 26961 16.83 79 260 10
(35,5,2) 14 2 283.29 9,115 8,934 9,02442 94.89 190 344 11
(45,5,2) 16 2 397.72 7,596 7,536 7,56642 76.83 130 297 5
(55,5,2) 18 4 717.68 10,422 5,851 14,89641 144.64 268 312 78

Table 2 reports the results obtained with algorithms ELIM -
MOID and ELIM -MOID-TOF, respectively. For each prob-
lem class〈C,D,O〉 we generated 10 random instances,
and for each problem instance we generated 10 sets of ran-
dom tradeoff vectors using the parametersK,T, a, b, c in-
dicated in the header of each horizontal block. As before,
the columns labeled by # show how many problems out of
10 (respectively, out of 100) were solved by ELIM -MOID

(respectively, ELIM -MOID-TOF). Overall, we notice that
the expected utility sets computed by ELIM -MOID-TOFare
orders of magnitude smaller than the corresponding Pareto
optimal ones generated by ELIM -MOID. We also see that
the median size is even smaller, in some cases being ac-

class (C=25, D=5, O=5) - T=3
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Figure 4: Distribution (mean, stdev, median) of the size of
maximal utility sets as a function of pairwise tradeoffsK
and fixed 3-way tradeoffs (T = 3). We also plot the number
of instances solved out of 100. Time limit 20 minutes.

tually 1 indicating that the tradeoffs generated were strong
enough to make�Θ fairly close to being a total order.

In Table 3 we take a closer look at the impact of the trade-
offs strength for bi-objective problems with 5 decisions.
We see that even exploiting a single tradeoff (i.e., using
c = 0 for two objective case) has a dramatic impact on the
size of the maximal expected utility set. For example, on
problem class〈55, 5, 2〉, the undominated set of expected
utility values computed by ELIM -MOID-TOF contains on
average 38 times fewer utility values than the correspond-
ing Pareto optimal set generated by ELIM -MOID.

Figure 4 shows the distribution (mean, standard deviation
and median) of the size of the maximal sets generated
by ELIM -MOID-TOF on problems from class〈25, 5, 5〉 as
a function of the number of pairwise tradeoffsK. As
more tradeoffs become available the number of problem
instances solved increases because the�Θ-dominance gets
stronger and therefore it reduces the undominated utility
sets significantly.

7 CONCLUSION

In this paper, we describe how a variable elimination solu-
tion method for influence diagrams is extended to the case
of multi-objective utility. A general problem with using
the Pareto ordering for multi-objective utility is that theset
of maximal expected utility values will often become ex-
tremely large. We show how the use ofǫ-coverings can
lead to a much more practical computational approach than
the exact computation.

We also define a natural way of taking imprecise tradeoffs
into account, and give a computational method for check-
ing the resulting dominance condition. Our experimental
results indicate that the resulting maximal (multi-objective)
values of expected utility can be very much reduced by the
adding of (even a small number of) tradeoffs.
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Abstract

Joint alignment of a collection of functions is the
process of independently transforming the func-
tions so that they appear more similar to each
other. Typically, such unsupervised alignment al-
gorithms fail when presented with complex data
sets arising from multiple modalities or make re-
strictive assumptions about the form of the func-
tions or transformations, limiting their general-
ity. We present a transformed Bayesian infinite
mixture model that can simultaneously align and
cluster a data set. Our model and associated
learning scheme offer two key advantages: the
optimal number of clusters is determined in a
data-driven fashion through the use of a Dirichlet
process prior, and it can accommodate any trans-
formation function parameterized by a continu-
ous parameter vector. As a result, it is applica-
ble to a wide range of data types, and transfor-
mation functions. We present positive results on
synthetic two-dimensional data, on a set of one-
dimensional curves, and on various image data
sets, showing large improvements over previous
work. We discuss several variations of the model
and conclude with directions for future work.

1 Introduction

Joint alignment is the process in which data points are
transformed to appear more similar to each other, based
on a criterion of joint similarity. The purpose of alignment
is typically to remove unwanted variability in a data set,
by allowing the transformations that reduce that variability.
This process is widely applicable in a variety of domains.
For example, removing temporal variability in event re-
lated potentials allows psychologists to better localize brain
responses [32], removing bias in magnetic resonance im-
ages [21] provides doctors with cleaner images for their

Figure 1: Joint alignment and clustering: given 100 un-
labeled images (top), without any other information, our
algorithm (§ 3) chooses to represent the data with two clus-
ters, aligns the images andclustersthem as shown (bot-
tom). Our clustering accuracy is94%, compared to54%
with K-means using two clusters (using the minimum error
across 200 random restarts). Our model is not limited to
affine transformations or images.

analyses, and removing (affine) spatial variability in im-
ages of objects can improve the performance of joint com-
pression [9] and recognition [15] algorithms. Specifically,
it has been found that using an aligned version of the La-
beled Faces in the Wild [16] data set significantly increases
recognition performance [5], even for algorithms that ex-
plicitly handle misalignments. Aside from bringing data
into correspondence, the process of alignment can be used
for other scenarios. For example, if the data are similar
up to known transformations, joint alignment can remove
this variability and, in the process, recover the underlying
latent data [23]. Also, the resulting transformations from
alignment have been used to build classifiers using a single
training example [21] and learn sprites in videos [17].

1.1 Previous Work

Typically what distinguishes joint alignment algorithms are
the assumptions they make about the data to be aligned
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(1) Original (2) Congealing (3) Clustering (4) Alignment and Clustering

Figure 2: Illustrative example. (1) shows a data set of 2D
points. The set of allowable transformations is rotations
around the origin. (2) shows the result of the congealing
algorithm which transforms points to minimize the sum of
the marginal entropies. This independence assumption in
the entropy computation causes the points to be squeezed
into axis aligned groups. (3) highlights that clustering alone
with an infinite mixture model may result in a larger num-
ber of clusters. (4) shows the result of the model presented
in this paper. It discovers two clusters and aligns the points
in each cluster correctly. This result is very close to the
ideal one, which would have created tighter clusters.

and the transformations they can incur along with the level
of supervision needed. Supervision takes several forms
and can range from manually selecting landmarks to be
aligned [5] to providing examples of data transformations
[28]. In this paper we focus on unsupervised joint align-
ment which is helpful in scenarios where supervision is not
practical or available. Several such algorithms exist.

In the curve domain, thecontinuous profile model[23] uses
a variant of the hidden Markov model to locally transform
each observation, while a mixture of regression model ap-
pended with global scale and translation transformations
can simultaneously align and cluster [12]. Mattaret al. [25]
adapted thecongealingframework [21] to one dimensional
curves. Congealing is an alignment framework that makes
few assumptions about the data and allows the use of con-
tinuous transformations. It is a gradient-descent optimiza-
tion procedure that searches for the transformations param-
eters that maximize the probability of the data under a ker-
nel density estimate. Maximizing the likelihood is achieved
by minimizing the entropy of the transformed data. It was
initially applied to binary images of digits, but has since
also been extended to grayscale images of complex ob-
jects [15] and 3D brain volumes [33]. Additionally, sev-
eral congealing variants [31, 30, 6] have been presented
that can improve its performance on binary images of dig-
its and simple grayscale images of faces. Also in the image
domain, the transformed mixture of Gaussians [11] and the
work of Lui et al. [24] are used to align and cluster.

One of the attractive properties of congealing is a clear
separation between the transformation operator and opti-
mization procedure. This has allowed congealing to be
applied to a wide range of data types and transformation
functions [1, 15, 21, 22, 25, 33]. Its main drawback is its
inability to handle complex data sets that may contain mul-
tiple modes (i.e. images of the digits1 and7). While con-

gealing’s use of an entropy-based objective function can in
theory allow it to align multiple modes, in practice the inde-
pendence assumption (temporally for curves and spatially
for images) can cause it to collapse modes (see Figure 2
for an illustration). Additionally, its method for regulariz-
ing parameters to avoid excessive transformations isad hoc
and does not prevent it from annihilating the data (shrink-
ing to size zero) in some scenarios.

1.2 Our Approach

The problem we address here is joint alignment of a data
set that may contain multiple groups or clusters. Previous
nonparametric alignment algorithms (e.g. congealing [21])
typically fail to acknowledge the multi-modality of the data
set resulting in poor performance on complex data sets. We
address this by simultaneously aligning and clustering [11,
12, 24] the data set. As we will show (and illustrated in
Figure 2), solving both alignment and clustering together
offers many advantages over clustering the data set first and
then aligning the points in each cluster.

To this end, we developed a nonparametric1 Bayesian joint
alignment and clustering model that is a generalization of
the standard Bayesian infinite mixture model. Our model
possesses many of the favorable characteristics of congeal-
ing, while overcoming its drawbacks. More specifically, it:

• Explicitly clusters the data which provides a mech-
anism for handling complex data sets. Furthermore,
the use of a Dirichlet process prior enables learning
the number of clusters in a data-driven fashion.

• Can use any generic transformation function param-
eterized by a vector. This decouples our model from
the specific transformations which allows us to plug in
different functions for different data types.

• Enables the encoding of prior beliefs regarding the de-
gree of variability in the data set, as well as regularizes
the transformation parameters in a principled way by
treating them as random variables.

We first present a Bayesian joint alignment model (§ 2) that
assumes a unimodal data set (i.e. only one cluster). This
model is a special case of our proposed joint alignment and
clustering model that we introduce in§ 3. We then discuss
several variations of our model in§ 4 and conclude in§ 5
with directions for future work.

1.3 Problem Definition

We are provided with a data setx = {xi}N
i=1 of N items

and a transformation function,xi = τ(yi, ρi) parameter-

1Here, we use the term nonparametric to imply that the num-
ber of model parameters can grow (a property of the infinite mix-
tures), and not that the distributions are not parametric.
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ized byρi. Our objective is to recover the set of transfor-
mation parameters{ρi}N

i=1, such that the aligned data set
{yi = τ(xi, ρ

−1
i )}N

i=1 is more coherent. In the process,
we also learn a clustering assignment{zi}N

i=1 of the data
points. Hereρ−1

i is defined as the parameter vector gener-
ating the inverse of the transformation that would be gener-
ated by the parameter vectorρ (i.e.xi = τ(τ(xi, ρ

−1
i ), ρi)).

2 Bayesian Joint Alignment

The Bayesian alignment (BA) model assumes a unimodal
data set (in§ 3 this assumption is relaxed). Consequently
there is a single set of parameters (θ andρ) that generate the
entire data set (see Figure 3). Under this model, every ob-
served data item,xi, is generated by transforming a canon-
ical data item,yi, with transformation,ρi. More formally,
xi = τ(yi, ρi), whereyi ∼ FD(θ) andρi ∼ FT (ϕ). The
auxiliary variableyi is not shown in the graphical model
for simplicity. Given the Bayesian setting, the parameters
θ andϕ are random variables, with their respective prior
distributions,HD(λ) andHT (α).2

The model does not assume that there exists a single per-
fect canonical example that explains all the data, but uses
a parametric distributionFD(θ) to generate a slightly dif-
ferent canonical example,yi, for each data item,xi. This
enables it to explain variability in the data set that may not
be captured with the transformation function alone. The
model treats the transformation function as a black-box op-
eration, making it applicable to a wide range of data types
(e.g. curves, images, and 3D MRI scans), as long as an
appropriate transformation function is specified.

For both this model and the full joint alignment and clus-
tering model introduced in the next section we use expo-
nential family distributions forFD(θ) andFT (ϕ) and their
respective conjugate priors forHT (α) andHD(λ). This
allows us to use Rao-Blackwellized sampling schemes [4]
by analytically integrating out the model parameters and
caching sufficient statistics for efficient likelihood compu-
tations. Furthermore, the hyperparameters now play intu-
itive roles where they act as a pseudo data set and are easier
to set or learn from data.

2.1 Learning

Given a data set{xi}N
i=1 we wish to learn the parameters

of this model ({ρi}N
i=1, θ, ϕ). We use a Rao-Blackwellized

Gibbs sampler that integrates out the model parameters,
θ andϕ, and only samples the hidden variables,{ρi}N

i=1.
Such samplers typically speed-up convergence. The intu-
ition is that the model parameters are implicitly updated
with the sampling of every transformation parameter in-
stead of once per Gibbs iteration. The resulting Gibbs sam-

2Here we assume that the hyperparametersα andλ are fixed,
but they can be learned or sampled if necessary.

Figure 3: Graphical representation for our proposed
Bayesian alignment model (§ 2).

pler only iterates over the transformation parameters:

∀i=1:N ρ
(t)
i ∼ p(ρi|x, ρ

(t)
−i, α, λ)

∝ p(ρi, xi|x−i, ρ
(t)
−i, α, λ)

= p(xi|ρi,x−i, ρ
(t)
−i, λ)p(ρi|ρ(t)

−i, α)

= p(yi|y(t)
−i , λ)p(ρi|ρ(t)

−i, α),

whereyi = τ(xi, ρ
−1
i ). The t superscript in the above

equations refers to the Gibbs iteration number.

Samplingρi is complicated by the fact thatp(yi|y(t)
−i , λ) de-

pends on the transformation function. Previous alignment
research [21, 24], has shown that the gradient of an align-
ment objective function with respect to the transformations
provides a strong indicator for how alignment should pro-
ceed. One option would be Hamiltonian Monte Carlo sam-
pling [26] which uses the gradient as a drift factor to influ-
ence sampling. However, instead of relying on direct sam-
pling techniques, we use approximations based on the pos-
terior mode [13]. Such an approach is more direct since it
is expected that the distribution will be tightly concentrated
around the mode. Thus, at each iteration the transformation
parameter is updated as follows:

ρi = arg max
ρi

p(yi|y(t)
−i , λ)p(ρi|ρ(t)

−i, α).

Interestingly, the same learning scheme can be derived us-
ing the incremental variant [27] of hard-EM.

2.2 Model Characteristics

The objective function optimized in our model contains
two key terms, a data term,p(x|ρ, θ), and a transforma-
tion term,p(ρ|ϕ). The latter acts as a regularizer to pe-
nalize large transformations and prevent the data from be-
ing annihilated. One advantage of our model is that large
transformations are penalized in a principled fashion. More
specifically, the cost of a transformation,ρi is based on the
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Figure 4: Top row. Means before alignment. Bottom row.
Means after alignment with BA. The averages of pixelwise
entropies are as follows. Before: 0.3 (top), with congeal-
ing: 0.23 (not shown), and with BA: 0.21 (bottom).

learnedparameterϕ which depends on the transformations
of all the other data items,ρ−i, and the hyperparameters,
α. Learningϕ from the data is a more effective means for
assigning costs than handpicking them.

The model has several other favorable qualities. It is ef-
ficient, can operate on large data sets while maintaining a
low memory footprint, allows continuous transformations,
regularizes transformations in a principled way, is applica-
ble to a large variety of data types, and its hyperparameters
are intuitive to set. Its main drawback is the assumption
of a unimodal data set, which we remedy in§ 3. We first
evaluate this model on digit and curve alignment.

2.3 Experiments

Digits. We selected50 images of every digit from the
MNIST data set and performed alignment on each digit
class independently. The mean images before and after
alignment are presented in Figure 4. We allowed7 affine
image transformations: scaling, shearing, rotating and
translation.FD(θ) is the product of independent Bernoulli
distributions, one for each pixel location, andFT (ϕ) is a
7−D zero mean diagonal Gaussian. For comparison, we
also ran the congealing algorithm (see Figure 4).

Curves. We generated85 curve data sets in a manner sim-
ilar to curve congealing [25], where we took five original
curves from the UCR repository [18] and for each one gen-
erated 17 data sets, each containing 50 random variations
of the original curve. We used the same transformation
function in curve congealing [25], which allows non-linear
time warping (4 parameters), non-linear amplitude scaling
(8 parameters), linear amplitude scaling (1 parameter), and
amplitude translation (1 parameter).FD(θ) was set to a di-
agonal Gaussian distribution (i.e. we treat the raw curves
as a random vector), andFT (ϕ) was a14−D zero mean
diagonal Gaussian. Again, we compared against the curve
congealing algorithm. We computed a standard deviation
score by summing the standard deviation at each time step
of the final alignment produced by both algorithms. Fig-
ure 5 shows a scatter plot of these scores obtained by con-
gealing and BA for all 85 data sets, as well as sample align-
ment results on two difficult cases. As the figure shows, the
curve data sets can be quiet complex.
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Figure 5: Top row. Left: scatter plot of the standard de-
viation score (see text) of congealing and the Bayesian
alignment algorithm across the85 synthetic curve data sets.
Middle: An example of a difficult data set. Right: The
alignment result of the difficult data set. The bottom row
shows an example where BA outperformed congealing.

Discussion.On the digits data sets, BA performed at least
as well as congealing for every digit class and on average
performed better. On the curves data sets, BA does sub-
stantially better than congealing in many cases, but in some
cases congealing does slightly better. In all the experi-
ments, both congealing and BA converged. BA’s advantage
is largely due to its explicit regularization of transforma-
tions which enables it to perform a maximization at each
iteration. Congealing’s lack of such regularization requires
it to take small steps at each iteration making it more sus-
ceptible to local optima. Furthermore, congealing typically
requires five times the number of iterations to converge.

3 Clustering with Dirichlet Processes

We now extend the BA model introduced in the previous
section to explicitly cluster the data points. This provides
a mechanism for handling complex data sets that may con-
tain multiple groups.

The major drawback of the BA model is that a single pair
of data and transformation parameters (θ and ϕ, respec-
tively) generate the entire data set. One natural extension
to this generative process is to assume that we have several
such parameter pairs (finite but unknown a priori) and each
data point samples its parameter pair. By virtue of points
sampling the same parameter pair, they are assigned to the
same group or cluster. A Dirichlet process (DP) provides
precisely this construction and serves as the prior for the
data and transformation parameter pairs.

A DP essentially provides a distribution over distributions,
or, more formally, a distribution on random probability
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measures. It is parameterized by a base measure and a con-
centration parameter. A draw from a DP generates a finite
set of samples from the base measure (the concentration pa-
rameter controls the number of samples). A key advantage
of DP’s is that the number of unique parameters (i.e. clus-
ters) can grow and adapt to each data set depending on its
size and characteristics. Under this new probability model,
data points are generated in the following way:

1. Sample from the DP,G ∼ DP (γ, Hα × Hλ). γ is the
concentration parameter, andHα andHλ are the base
measures forFT (ϕ) andFD(θ) respectively.

2. For each data point,xi, sample a data and transforma-
tion parameter pair,(θi, ϕi) ∼ G.

3. Sample a transformation and canonical data item from
their distributions,yi ∼ FD(θi) andρi ∼ FT (ϕi).

4. Transform the canonical data item to generate the ob-
served sample,xi = τ(yi, ρi).

Figure 6 depicts the generative process as described above
(distributional form, right) and in the more traditional
graphical representation with the cluster random variable,
z, and mixture weights,π, made explicit (left).

Our model can thus be seen as an extension of the stan-
dard Bayesian infinite mixture model where we introduced
an additional latent variable,ρi, for each data point to rep-
resent its transformation. Several existing alignment mod-
els [11, 12, 21, 23] can be viewed as similar extensions
to other standard generative models. Sometimes the trans-
formations are applied to other model parameters instead
of data points as in the case of transformed Dirichlet pro-
cesses (TDP) [29]. TDP is an extension ofhierarchical
Dirichlet processeswhere global mixture components are
transformed before being reused in each group. The chal-
lenge in introducing additional latent variables is in design-
ing efficient learning schemes that can accommodate this
increase in model complexity.

3.1 Learning

We consider two different learning schemes for this model.
The first is a blocked, Rao-Blackwellized Gibbs sampler,
where we sample both the cluster assignmentzi, and trans-
formation parametersρi, simultaneously:

(z
(t)
i , ρ

(t)
i ) ∼ p(zi, ρi|z(t)

−i, ρ
(t)
−i,x, γ, α, λ)

∝ p(zi|z(t)
−i, γ)p(ρi|ρ(t)

−i, α)p(yi|y(t)
−i , λ).

As with the BA model, we approximate
p(ρi|ρ(t)

−i, α)p(yi|y(t)
−i , λ) with a point estimate based

on its mode. Consequently this learning scheme is a direct
generalization of the one derived for the BA model. Note

Figure 6: Graphical representation for our proposed non-
parametric Bayesian joint alignment and clustering model
(left) and its corresponding distributional form (right).

thatp(zi|z(t)
−i, γ) is the cluster predictive distribution based

on the Chinese restaurant process (CRP) [2].

While this sampler is effective (it produced the positive re-
sult in Figure 1) it scales linearly with the number of clus-
ters and computing the most likely transformation for a
cluster is an expensive operation. We designed an alter-
native sampling scheme that does not require the expensive
mode computation and whose running time is independent
of the number of clusters.

Thesecondsampler further integrates out the transforma-
tion parameter, and only samples the cluster assignment.
We now derive an implementation for this sampler.

∀i=1:N z
(t)
i ∼ p(zi | z(t)

−i,x, γ, α, λ)

∝ p(zi, xi | z(t)
−i,x−i, γ, α, λ)

= p(zi | z(t)
−i, γ)p(xi | z(t),x−i, α, λ).

p(xi | z,x−i, α, λ)

=

∫

θ

∫

ϕ

∫

ρi

p(xi, ρi, θ, ϕ | z,x−i, α, λ) dρi dϕ dθ

=

∫

θ

∫

ϕ

(∫

ρi

p(xi, ρi | zi, θ, ϕ, α, λ) dρi

)
· · ·

p(θ, ϕ | z−i,x−i, α, λ) dϕ dθ

(1)≈
∫

ρi

p(xi, ρi | zi, θ̂, ϕ̂, α, λ) dρi,

s.t. (θ̂, ϕ̂) = arg max
θ,ϕ

p(θ, ϕ | z−i,x−i, α, λ)

=

∫

ρi

p(ρi | ϕ̂, zi, α)p(xi | ρi, zi, θ̂, λ) dρi

=

∫

ρi

p(ρi | ϕ̂zi
, α)p(xi | ρi, θ̂zi

, λ) dρi
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(2)≈
∑L

l=1 wi · p(xi | ρ̂i
l, θ̂zi

, λ)
∑L

l=1 wi

s.t. {ρ̂i
l}L

l=1 ∼ q(ρ), wi =
p(ρ̂i

l | ϕ̂zi
, α)

q(ρ̂i
l)

(1) approximates the posterior distribution of the parame-
ters by its mode. The mode is computed using incremen-
tal hard-EM. Furthermore, the mode can be computed for
each cluster’s parameters independently. For every other
data pointj, perform an EM update:

E: ρ̂j = arg max
ρj

p(ρj | xj , θ̂zj
, ϕ̂zj

)

= arg max
ρj

p(ρj | ϕ̂zj
)p(xj | ρj , θ̂zj

)

M: θ̂zj
= arg max

θ
p(θ, | {xk, ρk | zk = zj}, λ)

ϕ̂zj
= arg max

ϕ
p(ϕ | {ρk | zk = zj}, α)

(2) uses importance sampling in order to reduce the number
of data transformations that need to be performed. Comput-
ing p(xi | ρ̂i

l, θ̂zi
, λ) requires transforming the data point,

which is the most computationally expensive single oper-
ation for this sampler. Thus it would be wise to reuse the
samples,{ρ̂i

l}L
l=1, across different clusters. We achieve

this through importance sampling, which proceeds by sam-
pling a set of transformation parameters from a proposal
distribution,q(ρ) and using those samples for all the clus-
ters by reweighting them differently for each cluster. This
is a large computational saving since the number of data
transformation operations performed in a single iterationof
this sampler is now independent of the number of clusters.
Furthermore, the quality of approximation is controlled by
the number of samples,L, generated.

To further increase the efficiency of the sampler, we
approximate the maximization in the E-step by reusing
the samples and selecting the one that maximizes
p(ρj | xj , θ̂zj

, ϕ̂zj
). This avoids the direct maximization

operation in the E-step which can be expensive. While not
adopted in this work, further computational gains might be
achieved at the expense of memory by storing and reusing
samples (i.e. transformed data points) across iterations and
reweighting them accordingly.

Thus our sampler iterates over every point in the data set,
samples a cluster assignment and then updatesθ̂ andϕ̂ for
the sampled cluster. It also updates its own transformation
parameter,̂ρi in the process.

Summary. We presented two samplers for our joint align-
ment and clustering model. Both samplers work well in
practice, but the second is more efficient. For both sam-
plers, every iteration begins by randomly permuting the or-
der of the points and the DP concentration parameter is re-
sampled using auxiliary variable methods [10]. As in the

BA model, we cache the sufficient statistics for every clus-
ter which can be updated efficiently as points are reassigned
to clusters to allow for efficient likelihood and mode com-
putation.

3.2 Incorporating Labelled Examples

The model presented in the previous section was used with-
out any supervision. Supervision here refers to the ground-
truth labels for some of the data points or the correct num-
ber of clusters. However, there are many scenarios where
this information is available and would be advantageous to
incorporate.

It is straightforward to modify the joint alignment and clus-
tering model to accommodate such labelled examples. Lets
assume we have positive examples for each cluster as well
as a large data set of unlabeled examples. Before attempt-
ing to align and cluster the unlabeled examples, we would
initialize several clusters and assign the positive examples
to their respective clusters. By assigning these examples to
their clusters and updating the sufficient statistics accord-
ingly, the cluster parameters have incorporated the positive
examples. Depending on the strength of the priors (i.e. the
hyperparameters) and the number of positive examples per
cluster it may be necessary to add the positive examples
several times. The stronger the prior, the more times the
positive examples need to be replicated. Note that replicat-
ing the positive examples does not increase memory usage
since we only store the sufficient statistics for each cluster.

If the labelled portion contains positive examples for all
the clusters, then setting the concentration parameter of the
DP to0 would prevent additional, potentially unnecessary,
clusters from being created.

3.3 Experiment: Alignment and Clustering of Digits

We evaluated our unsupervised and semi-supervised mod-
els on two challenging data sets. The first contains100 im-
ages of the digits “4” and “9”, which are the two most simi-
lar and confusing digit classes (the performance of KMeans
on this data set is close to random guessing). The sec-
ond contains the 200 images of all 10 digit classes used
by Liu et al. [24].3 For the second data set we used the
Histogram of Oriented Gradients (HOG) feature represen-
tation [7] used by Liuet al. to enable a fair comparison.

For both digit data sets we compared several algorithms us-
ing the same two metrics reported by Luiet al.: alignment

3Liu et al. also evaluated their model on 6 Caltech-256 cate-
gories and the CEAS face data set. For both data sets they ran-
domly selected 20 images from each category. We found that the
difficulty of a data set varied greatly from one sample to another,
so we reached out to the authors. Unfortunately, they were only
able to provide us with the digits data set which we do use. The
digits data set was the most difficult of the three.
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Algorithm
Digits 4 and 9 (Fig 1) All 10 digits (Fig 7)

Alignment Clustering Alignment Clustering

KMeans 4.18 (1.57) ± 0.031 54.0% 4.88 (1.61) ± 0.033 62.5%
Infinite mixture model [10] 3.64 (1.34) ± 0.036 86.0%, 4 4.87 (1.64) ± 0.037 69.5%, 13
Congealing [21] 2.11 (0.93) ± 0.019 83.0% 3.51 (1.34) ± 0.029 70.5%
TIC [11] − − 6.00 (1.1) 35.5%
Unsupervised SAC [24] − − 3.80 (0.9) 56.5%
Semi-supervised SAC [24] − − not reported 73.7%
Unsupervised JAC [§ 3.1] 1.44 (0.69) ± 0.014 94.0%, 2 2.38 (1.12) ± 0.027 87.0%, 12
Semi-supervised JAC [§ 3.2] 1.58 (0.79) ± 0.016 94.0% 2.71 (1.25) ± 0.028 82.5%

Table 1: Joint alignment and clustering of images. The left subtable refers to the first digit data set comprising100
images containing the digits “4” and “9” (Figure 1), while the right subtable refers to the second data set comprising200
images containing all 10 digits (the same data set used by Liuet al. [24], Figure 7). The alignment score columns contain
three metrics that adhere to the following template: mean (standard deviation)± standard error. The number following
the clustering accuracy in the “Infinite mixture model” and “Unsupervised JAC” rows is the number of clusters that the
model discovered (i.e. chose to represent the data with). Onboth data sets, our models significantly outperforms previous
nonparametric alignment [21], joint alignment and clustering [11, 24], and nonparametric Bayesian clustering [10] models.

scoremeasures the distance between pairs of aligned im-
ages assigned to the same cluster (we report the mean and
standard deviation of all the distances, and the standard er-
ror4), andclustering accuracyis the Rand index with re-
spect to the correct labels.

Table 1 summarizes the results on the models we evaluated:

• KMeans: we clustered the digits into the correct num-
ber of ground-truth classes (2 for the first data set, and
10 for the second) using the best of 200 KMeans runs.

• Infinite mixture model: removing the transforma-
tion/alignment component of our model reduces it to a
standard Bayesian infinite mixture model. We ran this
model to evaluate the advantage of joint alignment and
clustering.

• Congealing: we ran congealing on all the images
simultaneously and after alignment converged, clus-
tered the aligned images using KMeans (with the cor-
rect number of ground-truth clusters). This allows us
to evaluate the advantages of simultaneous alignment
and clustering over alignment followed by clustering.

• TIC, USAC and SSAC results are listed exactly as re-
ported by Liuet al.

• Unsupervised JAC refers to our full nonparametric
Bayesian alignment and clustering model (§ 3.1).

• Semi-supervised JAC refers to the semi-supervised
variant of our alignment and clustering model (§ 3.2).
We used asinglepositive example for each digit and
set the DP concentration parameter to0.

4The standard error here is defined as the sample standard de-
viation divided by the square root of the number of pairs.

Note that the alignment scores for KMeans and the infinite
mixture model are not relevant since no alignment takes
place in either of these two algorithms. They are only in-
cluded to offer a reference for the alignment score when the
data is not transformed.

As the results show, our models outperform previous work
with respect to both alignment and clustering quality. We
make three observations about these results:

1. Our unsupervised model outperformed the unsuper-
vised model of Liuet al. by 30.5%, and our semi-
supervised model outperformed their semi-supervised
model by8.8%. This is in addition to the significant
improvement in alignment quality.

2. Our unsupervised model improved upon the standard
infinite mixture model in terms of alignment quality,
clustering accuracy, and correctness of the discovered
number of clusters.

3. The number of clusters discovered by our unsuper-
vised model is quite accurate. For the first data set the
model discovered the correct number of clusters (see
Figure 1), and for the second it needed two additional
clusters (see Figure 7).

These positive results validate our joint alignment and clus-
tering models and associated learning schemes. Further-
more, it provides evidence for the advantage of solving
both alignment and clustering problems simultaneously in-
stead of independently.

3.4 Experiment: Alignment and Clustering of Curves

We now present joint alignment and clustering results on
a challenging curve data set of ECG heart data [19] that is
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Figure 7: Unsupervised joint alignment and clustering of 200 images of all 10 digits. (Top) All 200 images provided to our
model. (Bottom) The 12 clusters discovered and their alignments.

helpful in identifying the heart condition of patients. This
data set contains46 curves. 24 represent a normal heart-
beat, and22 represent an abnormal heartbeat. We ran both
congealing and our nonparametric Bayesian joint align-
ment and clustering model. In both cases we excluded
the non-linear scaling in amplitude transformation since the
amplitudes of the curves are helpful in classifying whether
the curve is normal or abnormal.

Our model discovered5 clusters in the data set resulting
in a clustering accuracy of84.8%. Inspecting the clusters
discovered by our model in Figure 8 highlights the fact that
although the data set represents two groups (normal and
abnormal), the curves do not naturally fall into two clus-
ters and more are needed to explain the data appropriately.
Figure 8 also displays the result of congealing the curves.
Clustering the congealed curves into2 clusters using the
best of200 KMeans runs results in a clustering accuracy of
71.7%. Clustering the congealed curves into5 clusters in a
similar manner results in a clustering accuracy of76.1%.

The large improvement in clustering accuracy over con-
gealing in addition to a much cleaner alignment result (Fig-
ure 8) highlights the importance of explicit clustering when
presented with a complex data set. Furthermore it show-
cases our models ability to perform equally well on both
image and curve data sets.

4 Discussions

In this section we discuss the adaptation of our joint align-
ment and clustering model to both online (when the data ar-
rives at intervals) and distributed (when multiple processors
are available) settings. Both of these adaptations are appli-
cable to the unsupervised and semi-supervised settings.

4.1 Online Learning

There are several scenarios where online alignment and
clustering may be helpful. Consider for instance a very
large data set that cannot fit in memory or the case where
the data set is not available up front but arrives over an ex-
tended period of time (such as in a tracking application).

An advantage of our model that has not yet been raised is its
ability to easily adapt to an online setting where only a por-
tion of the data set is available in the beginning. This is due
to our use of conjugate priors and distributions in the expo-
nential family which enable us to efficiently summarize an
entire cluster through its sufficient statistics. Consequently,
we can align/cluster the initial portion of the data set and
save out the sufficient statistics for every cluster after each
iteration (for both the data and transformations). Then as
new data arrives, we can load in the sufficient statistics and
use them to guide the alignment and clustering of the new
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Figure 8: Joint alignment and clustering of ECG heart data.
The first row displays the original data set (left) and the
result of congealing (right). The last three rows display the
5 clusters discovered by our model.

data in lieu of the original data set which can now be dis-
carded.

Given a sufficiently large initial data set, the alignment ofa
new data point using the procedure described above would
be nearly identical to the result had that data point been
included in the original set. This is true since the addition
of a single point to an already large data set would have a
negligible effect on the sufficient statistics. This process is
also applicable to the Bayesian alignment model.

4.2 Distributed Learning

We now describe how to adapt our sampling scheme to a
distributed setting using the MapReduce [8] framework.
This facilitates scaling our model to large data sets in
the presence of many processors. The key difference be-

tween the MapReduce implementation and the one de-
scribed in§ 3.1 is that the cluster parameters are updated
once per sampling iteration instead of after each point’s re-
assignment (i.e. using a standard sampler instead of a Rao-
Blackwellized sampler).

A MapReduce framework involves two key steps, Map and
Reduce. For our model the mapper would handle updating
the transformation parameter and clustering assignment of
a single data point, while the reducer would handle updat-
ing the parameters of a single cluster. More specifically, the
input to each Map operation would be a data point along
with a snapshot of the model parameters (the set of suf-
ficient statistics that summarize the data set). The Map
would output the updated cluster assignment and transfor-
mation parameter for that data point. The input to the Re-
duce step would then be all the data points that were as-
signed to a specific cluster (i.e. we would have a Reduce
operation for every cluster created). The Reducer would
then update the cluster parameters. Thus each sampling it-
eration is composed of a Map and Reduce stage.

5 Conclusion

We presented a nonparametric Bayesian joint alignment
and clustering model that has been successfully applied to
curve and image data sets. The model outperforms con-
gealing and yields impressive gains in clustering accuracy
over infinite mixture models. These results highlight the
advantage of solving both alignment and clustering tasks
simultaneously.

A strength of our model is the separation of the transforma-
tion function and sampling scheme, which makes it appli-
cable to a wide range of data types, feature representations,
and transformation functions. In this paper we presented
results on three data types (2D points, 1D curves, and im-
ages), three transformation functions (point rotations, non-
linear curve transformations and affine image transforma-
tions), and two feature representations (identity and HOG).

In the future we foresee our model applied to a wide ar-
ray of problems. Since curves are a natural representation
for object boundaries [18], one of our goals is to apply our
model to shape matching. We also intend to explore al-
ternative parameter learning schemes based on variational
inference [3, 20, 14].
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Abstract

We describe 北斎 Hokusai, a real time sys-
tem which is able to capture frequency in-
formation for streams of arbitrary sequences
of symbols. The algorithm uses the Count-
Min sketch as its basis and exploits the fact
that sketching is linear. It provides real time
statistics of arbitrary events, e.g. streams of
queries as a function of time. We use a fac-
torizing approximation to provide point esti-
mates at arbitrary (time, item) combinations.
Queries can be answered in constant time.

1 Introduction

Obtaining frequency information of data streams is an
important problem in the analysis of sequence data.
Much work exists describing how to obtain highly
efficient frequency counts of sequences at any given
time. For instance, the Count-Min [6] sketch is capa-
ble of providing ε accuracy with failure probability δ in
O(log δ/ε) space. Even better guarantees are possible
for the space-saver sketch [12], albeit at the expense
of having to keep a dictionary of tokens and a consid-
erably more computationally expensive data structure
(we need an ordered list rather than just a flat array in
memory). The key point is that sketching algorithms
can be queried at any time to return the total number
of symbols of any given type seen so far.

While highly desirable in its own right it does not solve
the following: we would like to know how many sym-
bols were observed at some time in the past. For in-
stance, we may want to know how many queries of
”Britney Spears” were carried out, say at noontime
last year on Easter Sunday. Clearly we could address
this problem by brute force, that is by pre-processing
the logfiles. Query languages such as Pig [14] are well
suited to generating such summary statistics, albeit
unable to retrieve it in real time.

Figure 1: Real-time results for the item aggregation
sketch and web query (“gigi goyette”) that was pop-
ular at the time of our study. Points represent ac-
tual results; lines are LOESS smoothed with span 0.1.
The plot shows the exact time query started to gain
popularity and peaked, as well as daily fluctuations of
search traffic. Estimate and real traffic are virtually
indistinguishable and the error is minimal.

It is the latter that we focus on in this paper. We
present an algorithm capable of retrieving approximate
count statistics in real time for any given point or in-
terval in time without the need to peruse the original
data. We will see that the work required for retrieving
such statistics is O(log t) for lookup and O(t) for de-
coding (here t is the length of the requested sequence)
and moreover that the answers are exact under the
assumption of statistical independence. Experiments
show that even if this assumption is violated, as it typ-
ically is in practice, the statistics still match closely the
exact data. We use a number of blocks:

• The Count-Min sketch serves as the basic data ag-
gregator. This is desirable since it has the prop-
erty of being linear in the data stream. That is, if
we sketch time periods T and T ′, then the sketch
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of T ∪ T ′ is given by the sum over the two indi-
vidual sketches. This makes it easy to aggregate
time intervals which are powers of 2.

• We exploit the fact that the Count-Min sketch is
linear in the resolution of the hash function. That
is, a sketch using a lower resolution hash function
is obtained by aggregating adjacent bins.

• We use the fact that for independent random vari-
ables the joint distribution can be characterized
exactly by retaining only the marginals.

• We use a Markovian approximation for sequences.

Our implementation stores Count-Min sketches of
both increasing time intervals in powers of 2, e.g. 1,
2, 4, 8, . . . minutes length. Moreover we also store
sketches of decreasing bit resolution. Finally, in or-
der to accelerate computation, we store sketches which
have both decreasing time and bit resolution. This
provides a suitable normalization.

Outline. We begin by giving a brief overview over the
Count-Min sketch [6] and how it can be parallelized
and made fault tolerant. In Section 3 we describe the
data structures used to aggregate the data in a linear
fashion and show how reduction in the bit resolution of
the hash function allows us to compute both time and
keyspace marginals. Using approximate independence
assumptions we can recover higher (time, item) reso-
lution of the sketch over time. In Section 4 we apply
sketches to O(1) probability estimates in the context
of probabilistic graphical models. Section 5 contains
experimental results.

2 Count-Min Sketch

Algorithms for sketches of data streams aim at obtain-
ing count statistics for observed items as they keep on
arriving in an online fashion. That is, such algorithms
typically allow one to assess how many items of a given
kind are contained in the data stream. One of the most
exciting algorithms for this purpose is the Count-Min
sketch of [6], a generalization of the Bloom filter [3]
and the count sketch [5], which generates linear data
summaries without requiring storage of the keys. That
is, the maximum amount of memory is allocated for
storing count statistics rather than an auxiliary index.

Denote by X the domain of symbols in the data
stream. The Count-Min sketch allocates a matrix of
counters M ∈ Rd×n initially all set to zero. More-
over, we require d pairwise independent hash functions
h1, . . . , hd : X→ {0, . . . n− 1}. For each item insertion
d counters, as determined by the hash functions and
the key, are incremented. Retrieval works by taking
the minimum of the associated counts (this mitigates
errors due to collisions). Algorithm 1 comes with sur-
prisingly strong guarantees. In particular [6] proves:

Algorithm 1 Count-Min Sketch

insert(x):
for i = 1 to d do
M [i, hi(x)]←M [i, hi(x)] + 1

end for

query(x):
c = min {M [i, hi(x)] for all 1 ≤ i ≤ d}
return c

hash h1 M11 M12 M13 M14 M15 M16
. . . M1n

hash h2 M21 M22 M23 M24 M25 M26
. . . M2n

hash h3 M31 M32 M33 M34 M35 M36
. . . M3n

x

Figure 2: Item x is inserted into each row of the Count-
Min sketch (positions 2, 6, and 3 respectively).

Theorem 1 Assume that n = d eε e and d = dlog 1
δ e.

Then with probability at least 1 − δ the Count-Min
sketch returns at any time an estimate cx of the true
count nx for any x which satisfies

nx ≤ cx ≤ nx + ε
∑

x′

nx′ . (1)

That is, the guarantee (1) is simply an additive bound
on the deviation of counts. Tighter estimates can
be obtained from M by using an iterative procedure
which goes beyond Algorithm 1. In particular, the
Counter Braid iteration [11] provides guarantees of
exact reconstruction with high probability provided
that the number of stored symbols is sufficiently small
and sufficiently well distributed. Note that reconstruc-
tion using [11] requires linear time, hence it is not ap-
plicable to our scenario of high throughput sketches.
Furthermore, whenever the item distribution follows a
power law, a tighter bound is available [7]. The follow-
ing two corollaries are immediate consequences of the
fact that the Count-Min sketch is linear in the amount
of data and in the amount of memory available.

Corollary 2 Denote by MT and MT ′ the Count-Min
sketches for the data stream observed at time intervals
T and T ′. Then whenever T ∩ T ′ = ∅ we have that
MT∪T ′ = MT +MT ′ .

This is analogous to Bloom filter hashes of the union of
two sets — one simply takes the OR of both hashes.
In our case the Boolean semiring is replaced by the
semiring of integers (or real numbers) [4].
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Corollary 3 Assume that n = 2b for b ∈ N and let
Mb be the summary obtained by the Count-Min sketch.
In this case the summary Mb−1 obtained by a sketch
Mb−1[i, j] = Mb[i, j] +Mb[i, j+ 2b−1] using hash func-
tions hb−1i (x) := hbi (x) mod 2b−1.

This is simply ’folding over’ the first and second half
of the Count-Min sketch on itself. These two corol-
laries mean that it is possible to increase the time
intervals simply by aggregating sketches over shorter
sub-intervals. Likewise, we may reduce the accuracy
after the fact simply by dropping the most significant
bits of h. This will become valuable when compress-
ing the Count-Min sketch by reducing either temporal
resolution or accuracy. Obviously as a consequence of
this compression we double the error incurred by the
sketch. The following chapters present algorithms to
counteract this effect.

3 Aggregation

We want to obtain information regarding item fre-
quency over an extended period of time. Assume that
we are interested in this data at a resolution of 1
minute (the time scale is arbitrary — we just use 1
minute for the sake of concreteness). Even in the case
where M might be relatively small (in the order of
1 MB) we would suffer from memory overflow if we
wanted to store 2 years (approximately 220 minutes
and hence 1 TB of data) in RAM to allow for fast
retrieval.1 Consequently we need to compress data.

3.1 Time Aggregation

One strategy is to perform binary aggregation on the
time axis. That is, rather than retaining a 1 minute
resolution for 2 years, we only retain a 2m minute
resolution for the last 2m minutes. The rationale is
that old observations have an exponentially decreasing
value and consequently it is sufficient to store them at
a concomitantly decreased precision. This is achieved
by Algorithm 2. The basic idea is to keep aggregates
M i for time intervals of length {1, 1, 2, 4, 8, . . . , 2m}
available. Note that the sequence contains its own cu-
mulative sum, since 1 +

∑n−1
i=1 2i = 2n. To update M i

whenever it covers the time span [2i−1, 2i−1] it suffices
to sum over the terms covering the smaller segments.

Theorem 4 At t, the sketch M j contains statistics
for the period [t− δ, t− δ − 2j ] where δ = t mod 2j.

1We could store this data on disk. Many tools exist for
offline parallel analytics which complement our approach.
However, we are interested in online instant access.

Algorithm 2 Time Aggregation

for all m do do
Initialize Count-Min sketch Mm = 0

end for
Initialize t = 0 and M̄ = 0
while data arrives do

Aggregate data into sketch M̄ for unit interval
t← t+ 1 (increment counter)
for j = 0 to argmax

{
l where i mod 2l = 0

}
do

T ← M̄ (back up temporary storage)
M̄ ← M̄ +M j (increment cumulative sum)
M j ← T (new value for M j)

end for
M̄ ← 0 (reset aggregator)

end while

Proof The proof proceeds by induction. At time
t = 0 this condition clearly holds since all counters
are empty. Now assume that it holds for time t > 0.
Denote by ∗ := argmax

{
l where i mod 2l = 0

}
the

largest exponent of 2 for which t is divisible by 2
∗
.

This is the last index which will become aggregated.

• For all M j with j > ∗ the condition holds if we
increment t← t+ 1 since the intervals are shifted
by one time step without crossing any power of 2.
• For all M j with j ≤ j∗ note that in the for

loop we update all such counters by cumula-
tive sums covering a consecutive contiguous se-
quence of shorter intervals via the cumulative sum
counter S. In other words, all these intervals start
from t− δ = 0 again.

Lemma 5 The amortized time required to update the
statistics is O(1) per time period regardless of T .

Proof This follows from the fact in 2−i of all
time periods we need to do i work. Hence the total
amortized workload is

∑∞
i=1 i · 2−i = 2.

One of the nice side-effects of this procedure is that
an “expensive” aggregation step which can involve up
to log t many additions is always followed by a cheap
update requiring only a single update (see Figure 3).
This means that the update operations may be carried
out as background threads in parallel to new updates,
as long as they complete their first step within the
update time period (this is trivially the case).

3.2 Item Aggregation

An alternative means of aggregating count statistics
over time is to retain the full time resolution while
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Figure 3: Time aggregation. We always insert into
the leftmost aggregation interval. As time proceeds
(top to bottom), new intervals are inserted from the
left. Whenever an interval of length 2n is 2n steps
old, it aggregates all data in [0, 2n] as its new value.
The more shaded bins are contained in more than one
interval.

sacrificing accuracy. That is, we can shrink the num-
ber of bins n over time but we retain the unit time
intervals. More specifically, we can halve the reso-
lution each time the Count-Min sketch ages 2n time
steps. One of the advantages of this strategy is that
the work required for aggregation is directly propor-
tional to the remaining size of the bins (see Figure 3).
We invoke Corollary 3 to halve the amount of space
required successively. This yields Algorithm 3.

Algorithm 3 Item Aggregation

t← 0 (initialize counter)
while data arrives do

Receive aggregated data sketch M̄ for unit inter-
val
t← t+ 1 (increment counter)
At ← M̄
for k = 1 to blog2 tc do
for all i, j do (reduce item resolution)

At−2
k

[i, j]← At−2
k

[i, j] +At−2
k

[i, j + 2m−k]

Shrink At−2
k

to length 2m−k

end for
end while

Note that as before this algorithm requires only O(1)
computational cost. Even better than before, this cost
is now O(1) for all steps rather than being an amor-
tized (i.e. average) cost: at each time step there is
one intervals of size 2i with 2i ≤ n for each i that
needs halving. The cost of doing so is bounded by∑l
i=0 2i = 2l+1 − 1 < 2n.

Moreover, the amount of storage required per time
interval [t − 2i, t − 2i−1] is constant since for every
doubling of the interval size we halve the amount of
storage required per sketch. This means that we can
retain full temporal resolution, albeit at the expense
of increasingly lose bounds on the item counts. In the
extreme case where 2m = n we end up with a sketch
which tells us simply how many tokens we received at
a given point in time but no information whatsoever
regarding the type of the tokens.

32 bins

16 bins

16 bins

8 bins

8 bins

8 bins

8 bins

Figure 4: Item aggregation. Every 2n with n ∈ N
we halve the amount of bits used in the sketch. This
allows us to sketch T time steps in O(log T ) space.
Obviously having fewer storage bins means that we
have less space available to store fine-grained informa-
tion regarding the observed keys. However, for heavy
hitters this is sufficient.

Note that by default the absolute error also doubles at
every aggregation step (the scaling is slightly different
for power law distributions). This means that after
several iterations the accuracy of the sketch becomes
very poor for low-frequency items while still providing
good quality for the heavy hitters. We will exploit
this as follows — for low frequency items we will use
an interpolation estimate whereas for high frequency
items we will use the aggregate sketch directly.

3.3 Resolution Extrapolation

We can take advantage of the following observation to
improve our estimates: at some point in time we would
like to obtain to-the-minute resolution of observations
for arbitrary objects. In the extreme case we may have
to-the-minute counts for all events and simultaneously
highly specific counts for a long period of time. The
basic idea in extrapolating counts is to use the fact that
a joint distribution p(x, t) over time and events can be
recovered using its marginals p(x) and p(t) whenever
x and t are independent of each other. In terms of
counts this means that we estimate

n̂xt =
nx · nt
n

where n =
∑

t

nt =
∑

x

nx. (2)
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The quantities nx and nt are available (as upper
bounds) via the Count-Min sketches M i and Aj re-
spectively. Finally, n could be obtained at runtime by
carrying out the summation over t or x respectively.
However, this is too costly as it requires summing over
O(T ) bins at time T . Instead, we compute a third set
of aggregate statistics simultaneously to Algorithms 2
and 3 which performs both time and item aggregation.

Algorithm 4 Item and Time Aggregation

t← 0 (initialize counter)
while data arrives do

Wait until item and time aggregation complete
t← t+ 1 (increment counter)
S = M2 (we only start combining at time 2)
for j = 1 to argmax

{
l where i mod 2l = 0

}
do

S[i, j]← S[i, j] + S[i, j + 2m−j ]
Shrink S to length 2m−j

T ← S (back up temporary storage)
S ← S +Bj (increment cumulative sum)
Bj ← T (new value for Bj)

end for
end while

While individual estimates on nt and nx would allow
for upper bounds via Theorem 1, and likewise a lower
bound on n, we only obtain an approximation (we take
a ratio between two upper bounds): we use (2) for each
hash function separately and perform the min opera-
tion subsequently. At time T the query for n(x, t)
requires:

n̂(x, t) := min
i

M ∗ [i, hi(x)]At[i, hm−
∗

i (x)]

B∗ [i, hm−
∗

i (x)]
(3)

where ∗ := blog2(T − t)c

We compute ∗ as the indicator for the most recent
interval containing information pertaining t after we
have seen T instants of data. The use of hm−

∗
is

needed to restrict the key range to the available ar-
ray. As a consequence we obtain estimates of counts
at full time and token resolution, albeit at decreasing
accuracy as we look further into the past.

Since (3) is only an approximation of the true counts
we use it only whenever the Count-Min estimate with
reduced bit resolution is not accurate enough. Given
that the accuracy decreases with e2−b where 2b is the
number of bins used in the sketch, we have the fol-
lowing variant of the sketching algorithm for queries:
use the simplified item aggregate whenever the error
is small enough. Otherwise switch to interpolation.
Since we know that the absolute error of the Count-
Min sketch is well controlled, we know that this strat-
egy is self consistent for frequent items. See Algo-
rithm 5 for details.

n(t)

n(x)n

Figure 5: Resolution interpolation. We approximate

n(x, t) by n(t)n(x)
n assuming independence, i.e. by ap-

proximating p(a, b) ≈ p(a) · p(b). This is analogous to
density estimation via copulas [13].

Algorithm 5 Improved Interpolating Sketch

query(x, t):

Obtain ñ(x, t) := miniA
t[i, h

m−j∗(x)
i ]

if ñ(x, t) > et
2b

then
return ñ(x, t) (heavy hitter)

else
Compute n̂(x, t) using (3).
return n̂(x, t) (interpolate)

end if

4 Beyond Sketches

Often we want to estimate the likelihood of a sequence
of symbols, e.g. probabilistic graphical models. Unfor-
tunately it is undesirable to insert long sequences di-
rectly into the Count-Min sketch. The reason for this
is that, as stated in Theorem 1, the error in approx-
imating the counts is an absolute error rather than
being relative to the key frequency. While this is not a
problem for relatively frequently occurring terms (pro-
vided that we know that they are frequent), the error
may not be acceptable for low probability (and hence
infrequently occurring) keys. We resort to tools from
undirected graphical models to obtain O(1) estimates
for item frequencies of more complex objects.

Cliques For sequences we use a Markovian approxi-
mation. That is, we model e.g. trigrams in terms of a
product of unigrams or in terms of a chain of bigrams.
For concreteness consider modeling the string ’abc’:

p(abc) ≈ p(a) · p(b) · p(c) Unigrams (4)

p(abc) ≈ p(a, b)p(c|b) =
p(a, b)p(b, c)

p(b)
Bigrams (5)

Clearly, whenever (4) is exact, it is included in (5) as
a special case, since the bigram model subsumes the
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unigram representation as a special case. In general we
may use the Markov model (4) and (5) as a frequency
estimate for items that are too rare to track.

Since we only have access to the item frequencies
rather than the true probabilities of occurrence it is
advisable to use hierarchical smoothing. While it
would be most desirable to use a Dirichlet-process
style smoothing along the lines of [16], the latter is
too costly to apply in real time as it requires consid-
erably more than O(1) computation. Instead we may
resort to a simplified approach like backoff smoothing:

p̂(a) =
na + n0
n+ Ln0

and p̂(ab) =
nab + n1p̂(a)p̂(b)

n+ n1
. (6)

Here n0 and n1 are parameters which describe the
amount of backoff smoothing we employ to estimate
the joint as a product of the marginals. More gen-
erally, we may use Good-Turing or Kneser-Ney [10]
smoothing. Eq. (5) can be extended as follows:

Theorem 6 Assume that x has an independence
structure that can be expressed as an undirected graph
G(V,E) in the sense of an undirected graphical model
(here V denotes the vertices associated with the coor-
dinates of x and E denotes the edges in the sense of
an undirected graphical model). Moreover denote by T
a junction tree containing G(V,E) as subgraph with a
set of cliques C and a set of separator sets S, then it
suffices if we obtain counts for xC and xS with C ∈ C

and S ∈ S to generate frequency estimates via

p̂(x) = n|S|−|C|
∏

C∈C
nxC

∏

S∈S
n−1xS (7)

Proof This follows immediately from the
Hammersley-Clifford Theorem [2], the fact that
a junction tree contains the maximum cliques of
an undirected graph, and the fact that empirical
frequencies converge to their probabilities.

In this view (4) and (5) are simple applications of a
Markov chain. It also provides us with a recipe for
selecting and generating extrapolation formulae for
more complex structures.

Maximum Entropy Estimation A natural choice
for estimating joint probabilities from marginals would
be to perform a (smoothed) maximum entropy esti-
mate which is then guaranteed to be consistent. How-
ever, this is too costly, as it requires at least O(m)
operations, where m is the size of the support of the
distribution. Such an estimate will lead to

p(x|θ) = exp

(
d∑

i=1

θ[i, hi(x)]− g(θ)

)
(8)

This follows directly, e.g. from [8, 1]. The advantage
is that after significant computation to obtain θ we
can provide more accurate frequency estimates at the
same cost as the original Count-Min sketch. Note that
the likelihood of the data stream is given by

∏

t

p(xt|θ) = exp
(
trM>θ − ng(θ)

)
. (9)

Unfortunately computing g(θ) is very costly — it re-
quires that we have access to the support of the distri-
bution, which would require an auxiliary data struc-
ture in its own right, thus obviating the advantages
afforded by sketches. This is why we do not pursue
this avenue further in the present paper.

5 Experiments

5.1 Setup

Code We implemented the Count-Min sketch algo-
rithms 2, 3 and 4 in the client-server setting, using
C++ and ICE (http://www.zeroc.com) middleware.
The experiments were run on quad core 2GHz Linux
x86 servers with 16GB RAM and Gigabit network con-
nection, and used sketches with 4 hash functions, 223

bins, and 211 aggregation intervals (amounting to 7
days in 5 minute intervals). For trigram interpolation,
we load Wikipedia into a single 12GB sketch with 3
hash functions, 230 bins, and no time aggregation.

Data We use two datasets for our research. One
is a proprietary dataset containing a subset of search
queries of five days in May 2011. The second dataset
contains the entire textual dump of the English ver-
sion of Wikipedia as per January 4, 2012 (we removed
the XML markup as a preprocessing step). In all
cases full statistics of the data were computed using
Hadoop. These counts serve as the gold standard for
any sketches and allow us to obtain a proper evalua-
tion of the estimated frequency counts.

Our choice of data (see Figure 6) was guided by both
the need to build algorithms applicable in an industrial
context and by the need to provide reproducible exper-
imental descriptions. Furthermore, both datasets are
quite different in terms of the size of their long tail.
The smaller query dataset has a very significant com-
ponent of infrequent terms whereas Wikipedia, largely
prose, displays a much lighter tail with a support of
only 4.5 Million unique terms.

5.2 Performance

In our experiments all three types of sketches were able
to consistently handle over 50k inserts per second. For
read requests we measured on average 22k requests per
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Figure 6: (Top) web query data from 5 days in May
2011; (Bottom) English text in Wikipedia as per Jan-
uary 4, 2012. While both datasets exhibit power-law
behavior they differ quite a bit in size and support.

second for time aggregation sketch, and 8,5k requests
per second for item aggregation and resolution inter-
polation. Performance is proportional to the network
bandwidth: inserts are one-way, asynchronous, and
use very short messages, whereas queries require two-
way communication and response messages are larger.

5.3 Accuracy

The first set of experiments is to evaluate the accuracy
of the sketches under temporal aggregation. Since the
Wikipedia dataset constitutes a snapshot in time we
only study the accuracy for the query dataset. The
Wikipedia dataset is only used to study interpolation.
The experimental protocol is as follows:

Gold Standard For all experiments we computed
the true counts using a batch algorithm on
Hadoop. It serves as reference for our estimates.

Time aggregation as described in Section 3.1.
Key aggregation as described in Section 3.2.
Interpolation as described in Section 3.3.
Absolute deviation is given by the absolute amount

that the sketch deviates from the true counts. In
the case of item aggregation sketching estimates
are always an overestimate. In all other cases
this is not necessarily true. We compute it us-

ing
∑
x |n̂x − nx|.

Relative deviation is given by the ratio between the

deviation and the estimate, i.e.
∑
x
|n̂x−nx|
n̂x

. Note
that this quantity may exceed 1 since we aggre-
gate over all keys.

We are not aware of any sketching algorithm address-
ing the problem of providing aggregates for arbitrary
time intervals. Hence we compare our results to the ex-
act offline aggregation results. Furthermore, we com-
pare to a naive aggregation per time slice and also to a
piecewise constant model. One would expect the latter
to perform well, given that we are dealing with time-
series data which is unlikely to change dramatically in
between intervals.

As can be seen in Figure 7, the interpolation algorithm
is well competitive relative to algorithms that perform
constant interpolation or that reduce item counts. As
expected the error increases with the amount of time
past. This is the case since we compress data every 2n

time steps by a factor of 2. The fact that the error of
the ’item aggregation’ variant is considerably higher
than of the ’time aggregation’ algorithm suggests that
the item frequency does not vary strongly over time for
most items, when compared to the variation between
items. Hence the relative frequency of occurrence is
generally a better estimate. That said, by using in-
terpolation we combine the best of both worlds and
obtain overall good estimates.

To obtain a more detailed estimate we stratify accu-
racy per item frequency interval, i.e. we stratify by the
number of occurrences of the item, as depicted in Fig-
ure 8. Not very surprisingly for frequent items, reduc-
ing the bit resolution of the sketch is less damaging,
as follows directly from Theorem 1, hence for heavy
hitters interpolation is on par with item aggregation.

5.4 Multigram Interpolation

We show that the factorizing approximation of Sec-
tion 4 can be used to obtain good estimates of multi-
grams in both textual documents and query streams.
To show that this works for interpolating terms, we
approximate trigrams by sketching unigrams and bi-
grams with a regular Count-Min sketch. We do that
in three different ways:

Unigram approximation by consuming unigrams
and using (4) to estimate trigram probabilities;

Bigram approximation by consuming bigrams and
unigrams and using (5);

Trigram sketching by consuming and querying
sketch for trigrams directly.
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Figure 7: Absolute accuracy n̂ − n of three different
aggregation algorithms.

Absolute Relative
error error

Unigram approximation 24977905.97 0.265740
Bigram approximation 1222160.44 0.013002

Trigram sketching 8352974.60 0.088867

Table 1: Absolute and relative deviation of trigram
approximation models using Wikipedia data.

Table 1 compares the resulting estimates with exact
trigram counts. Note that due to the lower number of
collisions, our bigram approximation has less than 15%
the error of direct aggregation. This is quite significant
since it means that in order to store higher order terms
direct sketching may not be quite so desirable (possi-
bly with the exception of storing the heaviest hitters
directly). It offers a very fast and cheap means of re-
trieving estimates relative to exact storage.

6 Discussion

Summary In this paper we presented an algorithm
for aggregating statistics on data streams which re-
tains temporal information of the items. At its heart
we used the Count-Min sketch to obtain a simple yet
effective compressed representation of the data. By
using time and item aggregation we showed how it is
possible to obtain sketches for a more extensive set of
query types. Moreover, we showed how the theory of
graphical models can be employed to obtain estimates
of structured set of covariates.

Our system allows real-time data access in constant
time without any need for expensive preprocessing.
This makes it an attractive alternative to batch pro-

cessing systems which, while accurate, are unable to
respond to requests without latency and which are
therefore less well suited to online data analysis. Ex-
periments demonstrated the excellent performance of
the proposed algorithms.

An alternative of our work is to use empirical Laplace
transforms to aggregate data. That is, many sketches
are amenable to weighted inserts over time. This al-
lows us to obtain sketches of the Laplace-transform
counts of a sequence. Decoding then occurs at the
client issuing a frequency query to the server. Details
of this are the subject of future work.

Extension to Delayed Updates In some cases
data may arrive with some delay. Here the Count-
Min sketch excels due to the fact that it is a linear
statistic of the data: We can always insert data later
into the appropriate (aged) records at a later stage.

A second (and much more significant) advantage is
that the additive property of Corollary 2 also ap-
plies to sets. Denote by S(X) the data sketch struc-
ture given by Algorithms 2, 3, and 4. In this case
S(X∪X′) = S(X) +S(X′). Hence we may use MapRe-
duce to carry out sketches on subsets of the data first
and then aggregate the terms between mappers. Since
everything is linear once the data has been inserted
this exhibits perfect scaling properties.

Note that the issue might arise that different subsets
of the data span slightly different time ranges. In this
case it is important to ensure that all sketches are syn-
chronized to the same time intervals since otherwise
aliasing might occur (e.g. a summary of 1 week’s data
might start on different days on different machines).

Parallelization Note that the sketches discussed in
the present paper are well amenable to parallelization.
In fact, we may use consistent hashing [9] to distribute
hash functions and keys over a range of workstations.
Details of this strategy are described in [15]. In a nut-
shell the idea is to send keys to several machines, each
of which compute only a single row of the matrix M ,
each of them using a different hash function. The com-
bination of both ideas leads to a powerful enterprise
framework for sketching data streams in real time.
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Figure 8: Absolute n̂−n and relative n̂−n
n̂ accuracy, stratified by item frequency interval. Left column: absolute

error. Right column: relative deviation. Top row: error over time, stratified by frequency of occurrence of items.
Bottom row: error for the heaviest hitters.
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Abstract

Influence diagrams allow for intuitive and yet
precise description of complex situations in-
volving decision making under uncertainty.
Unfortunately, most of the problems de-
scribed by influence diagrams are hard to
solve. In this paper we discuss the complexity
of approximately solving influence diagrams.
We do not assume no-forgetting or regularity,
which makes the class of problems we address
very broad. Remarkably, we show that when
both the treewidth and the cardinality of the
variables are bounded the problem admits a
fully polynomial-time approximation scheme.

1 INTRODUCTION

Influence diagrams are well-known graphical models
of decision making under uncertainty which allow for
compact and intuitive representation of complex situ-
ations, and relatively fast inference [7–9, 17].

Most of the algorithms for inference with influence di-
agrams require a total ordering over the decisions and
unlimited memory. The first assumption is called reg-
ularity and is graphically equivalent to the existence
of a directed path comprising all decision variables
in the diagram. The second assumption, called no-
forgetting, states that decisions are made in light of all
previously disclosed information. Graphically, it im-
plies that the parent set of a decision node contains all
previous decision nodes and their parents. These con-
ditions allow an optimal solution to be obtained by
dynamic programming [19], but impose an inherent
exponential worst-case complexity, since the output
might include a decision function over exponentially
many values (e.g., a table prescribing a value for the
last decision for each one of the exponentially many
assignments of the other decision variables).

There are two common approaches to avoid the ex-
ponential complexity. The first one is to insert arcs
entering decision variables in a way that makes them
insensitive to the previous decisions, thus decreasing
the size needed to represent its corresponding solu-
tion [8, 14]. This, however, implies observing quan-
tities that were initially deemed unobservable, which
might be undesirable or even unfeasible. The second
approach is to relax no-forgetting and work with a lim-
ited memory, that is, to assume that not all previous
decisions and observations are known and considered
when making a decision [10, 13, 20]. Graphically, it
corresponds to dropping arcs until the maximum size
of a decision function becomes manageable. The lat-
ter approach, which gives rise to limited memory in-
fluence diagrams [10], is additionally justified by situ-
ations where decisions have to be taken independently
of one another, as in team decision analysis [1, 6]; for
such cases, some of the no-forgetting arcs are inher-
ently absent.

Removing arcs from the original graph can make the
problem harder. This essentially occurs because the
problem might no longer be solvable by standard dy-
namic programming approaches. Zhang, Qi, and Poole
[21] and more recently Lauritzen and Nilsson [10] de-
termined sufficient conditions under which even influ-
ence diagrams that violate no-forgetting can be solved
exactly by dynamic programming. Any diagram of
bounded treewidth meeting these conditions can be
thus solved efficiently. As de Campos and Ji [4]
showed, however, even structurally very simple cases
can fail to meet these conditions and be hard to solve.
In fact, we have recently shown that even singly con-
nected diagrams of treewidth equal to two, with deci-
sion variables having no parents and variables taking
on a bounded number of states are NP-hard to solve,
and that the problem is inapproximable if the cardi-
nality of the variables is unbounded [12].

In this paper, we resume our investigation and an-
alyze the impact of the number of value nodes and
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variable cardinality on the theoretical complexity of
solving (limited memory) influence diagrams. We do
not assume no-forgetting or regularity. We show that
if the treewidth is bounded, the number of value vari-
ables do not affect the asymptotic complexity. Most
importantly, we show that if the cardinalities of the
variables are also bounded, the problem admits a fully
polynomial-time approximation scheme.

2 INFLUENCE DIAGRAMS

To help introduce the notation and illustrate concepts,
consider the following example of a decision problem
where an agent first needs to select one among the

actions d
(1)
1 , . . . , d

(i)
1 , which causes one of c

(1)
1 , . . . , c

(j)
1

outcomes to obtain with probability P (c1|d1), and gen-
erates a reward of U(c1). Then, without observing the
value c1, a second agent needs to select one among the

actions d
(1)
2 , . . . , d

(k)
2 , which generates one of the out-

comes c
(1)
2 , . . . , c

(`)
2 with probability P (c2|c1, d2) and a

reward of U(c2). The overall utility U(d1, c1, d2, c2)
of the agents’ actions their corresponding outcomes is
given by the sum of the intermediate rewards, that is,
U(d1, c1, d2, c2)=U(c1) + U(c2).

In the language of influence diagrams, the quantities
and events of interest are represented by three distinct
types of variables. Chance variables represent events
on which the decision maker has no control, such as
outcomes of tests or consequences of actions; decision
variables represent the alternatives a decision maker
has at each decision step; finally, value variables are
used to represent immediate rewards. In the exam-
ple, we can represent the decision of the first agent, its
outcome, and the corresponding reward by a decision
variable D1, a chance variable C1 and a value vari-
able V1, respectively. Similarly, we can represent the
second decision, its outcome and the corresponding re-
ward by a decision variable D2, a chance variable C2

and a value variable V2. Regarding the notation, we
denote variables by capital letters and identify them
with the set of values they can assume; generic and
particular values are denoted in lower case. For in-
stance, a generic action of the first agent is represented

as d1 ∈ D1 = {d(1)1 , . . . , d
(i)
1 }, while the corresponding

set of possible rewards (which depend on the outcome

c1) is given by V1 ={U(c
(1)
1 ), . . . , U(c

(j)
1 )}.

The functional dependencies between the variables in
the model can be compactly represented by a directed
acyclic graph (DAG) whose nodes are in a one-to-one
correspondence to the (decision, chance and value)
variables of the problem. For simplicity, we identify
nodes with their associated variables. Hence, we can
talk about the parents Pa(X) of a variable X, its chil-

D1

C1V1

D2

C2 V2

Figure 1: Influence diagram for the problem in the
example.

dren Ch(X), or yet its family Fa(X) = Pa(X) ∪ {X}
of X. The arcs entering decision variables represent
the set of variables whose values will be known by
the time the corresponding decision is made, either
because they are observed at this time (e.g., an out-
come of a previous decision or an action taken by a
different agent) or remembered (e.g., a previous deci-
sion or observation). The problem in the example can
be depicted as a DAG in Figure 1 (as usual, chance,
decision and value variables are represented by ovals,
squares and diamonds, respectively). The existence
of the dashed arc connecting D1 to D2 depends on
whether the decision of the first agent is known by the
second agent at the time the latter acts. It is present
if the second agent knows (and takes into account) the
decision of the first agent, and it is absent otherwise.

An influence diagram is a tuple (C,D,V,G,P,U),
where C, D and V are the sets of chance, decision and
value variables, respectively, G is a DAG over C∪D∪V,
P is a set containing one (conditional) probability dis-
tribution P (C|Pa(C)) per chance variable C in C, and
U is a set containing one reward function U(Pa(V ))
per value variable V . Thus, an influence diagram
specifies both a joint probability distribution P (C|D)=∏
C∈C P (C|Pa(C)) of the outcomes conditional on the

decisions, and a utility U(C,D)=
∑
V ∈V U(Pa(V )) over

outcomes and decisions.

2.1 The Strategy Selection Problem

For any decision variable D ∈ D, a policy is a condi-
tional probability distribution P (D|Pa(D)) prescrib-
ing a (possibly randomized) action for each state of
the parents. We say that a policy P (D|Pa(D)) is pure
if for every assignment to the parents it assigns all
the mass to a single action d ∈ D. A strategy is a
set S = {P (D|Pa(D)) : D ∈ D} containing a policy
for each decision variable. A strategy S induces a(n
unconditional) joint probability distribution over deci-
sions and outcomes by

PS(C,D) = P (C|D)
∏

D∈D
P (D|Pa(D)) ,

and has an associated expected utility given by

ES =
∑

C,D
PS(C,D)U(C,D) .
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The primary use of an influence diagram is the strategy
selection problem, which consists in finding a strategy
S∗ that maximizes the expected utility, that is, to find
S∗ such that ES∗ ≥ ES for all S. The value ES∗ is
called the maximum expected utility and is denoted
shortly by MEU. Most algorithms for finding optimal
strategies have complexity at least exponential in the
treewidth of the influence diagram, which is a measure
of its resemblance to a tree and is better formalized by
the notion of tree decomposition.

A tree decomposition of an influence diagram is a tree-
shaped graph where each node is associated to a subset
of the chance and decision variables in the diagram.
The decomposition satisfies the family preserving and
the running intersection properties, namely, that the
family of each decision and chance variable, as well as
the parent set of each value variable, is contained in
at least one set associated to a node of the tree, and
that the graph obtained by dropping nodes that do
not contain any given chance or decision variable is
still a tree. The treewidth of a tree decomposition is
the maximum number of variables associated to a node
minus one. The treewidth of an influence diagram is
the minimum treewidth of a tree decomposition of it.

For a fixed integer k, Bodlaender [2] showed that for
any diagram one can in linear time either obtain a
tree decomposition of treewidth at most k or know
that it does not exist. Hence, for any diagram of
bounded treewidth we can obtain in linear time an op-
timal tree decomposition, that is, a tree decomposition
whose treewidth equals the treewidth of the diagram.
Moreover, any tree decomposition can be turned into
a binary tree decomposition (i.e., one in which each
node has at most three neighbors) of same treewidth
in linear time [18]. Given a tree decomposition T with
m nodes, we denote by X1, . . . ,Xm the sets of vari-
ables associated to nodes 1, . . . ,m, respectively. Thus,
X1 ∪ · · · ∪ Xm=C ∪ D.

Given an influence diagram, we can evaluate the ex-
pected utility of any strategy S in time and space at
most exponential in its treewidth. Hence, if a dia-
gram has bounded treewidth, we can obtain ES for any
strategy S in polynomial time [9, Chapter 23]. Obtain-
ing the optimal strategy in this way is however unfea-
sible for any moderately large problem, as the number
of strategies is too high. In fact, de Campos and Ji [4]
showed that even in diagrams of bounded treewidth
the strategy selection problem is NP-hard. We have
recently [12] strengthened their result by showing that
the problem is already NP-hard in singly connected
diagrams of treewidth equal to two and variables as-
suming at most three values. The result uses a reduc-
tion from the partition problem to a influence diagram
whose underlying graph is a tree and contains a single

value variable. One might then wonder whether allow-
ing more than one value variable affects the difficulty
of the problem. The answer, as the following result
shows, is no.

Theorem 1. For any influence diagram I, there is an
influence diagram I ′ containing a single value variable
such that any strategy S for I is also a strategy for I ′
and obtains the same expected utility. Moreover, the
treewidth of I ′ is at most the treewidth of I plus three.

Proof. Let I=(C,D,V,G,P,U) be an arbitrary influ-
ence diagram and consider, without loss of generality,
a binary tree decomposition T of I such that for every
value variable Vi in V there is a leaf node in the tree
whose associated set of variables is Pa(Vi).

1 Assume
additionally that the tree is rooted at a node r and
that the leaf nodes `1, `2, . . . , `q associated to the sets
Pa(V1),. . . ,Pa(Vq), respectively, where q = |V| denotes
the number of value variables, are ordered in such a
way that they agree with an in-order tree traversal of
the tree decomposition, that is, in a depth-first tree
traversal of T rooted at r, the node `1 precedes `2,
which precedes `3, and so on. Let U and U be upper
and lower bounds, respectively, on the reward func-
tions in U , with U > U .

Now consider a diagram I ′= (C′,D, {V },G′,P ′, {U}),
which contains a single value variable V instead of the
q value variables of I and an augmented set of chance
variables C′ = C ∪ {W1, . . . ,Wq, O1, . . . , Oq}, where
W1, . . . ,Wq, O1, . . . Oq are binary variables. Further-
more, the subgraph of G′ obtained by considering
only nodes in C and D is identical to G with the
chance variables W1, . . . ,Wq replacing the value vari-
ables V1, . . . , Vq, respectively. Also, the variables
O1, . . . , Oq are arranged in a chain such that W1 is
the parent of O1, W2 and O1 are the parents of O2

and so forth, as in Figure 2(b). Each variable Wi, for
i = 1, . . . , q, is associated to a probability distribution

P (Wi|Pa(Vi)) such that P (w
(1)
i |Pa(Vi))=(U(Pa(Vi))−

U)/(U − U). Each variable Oi, i = 1, . . . , q, is associ-
ated to a probability distribution P (Oi|Oi−1,Wi) (we

assume O0 = ∅) such that P (o
(1)
i |o

(1)
i−1, w

(1)
i ) = 1 and

P (o
(1)
i |o

(1)
i−1, w

(2)
i ) = (i − 1)/i and P (o

(1)
i |o

(2)
i−1, w

(1)
i ) =

1/i and P (o
(1)
i |o

(2)
i−1, w

(2)
i ) = 0 (P (o

(1)
1 |w

(1)
1 ) = 1 and

P (o
(1)
1 |w

(2)
1 ) = 0). Finally, the value node V , with Oq

as sole parent, is associated to a utility function U(Oq)

1Any binary tree decomposition can be transformed to
meet this requirement by repeatedly selecting a node i as-
sociated to a superset of the parents of a value variable Vi
not meeting the requirement, and then adding two nodes
j and k such that the children of i become children of j,
and k is a child of i; the node j is associated to the set of
variables associated to i, while k is associated to Pa(Vi).
Note that the treewidth is unaltered by these operations.
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V1 V2 · · · Vq

C,D

(a)

W1 W2 Wq

O1 O2 · · · Oq V

C,D

(b)

Figure 2: (a) Influence diagram with multiple value
variables. (b) Its equivalent influence diagram contain-
ing a single variable as used in the proof of Theorem 1.

such that U(o
(1)
q )=qU and U(o

(2)
q )=qU .

To show that the treewidth of I ′ is not greater than
the treewidth of I by more than three, we build a
tree decomposition T ′ for I ′, based on the tree de-
composition T , as follows. First, we take each node
`i of T and include Wi, Oi and Oi−1 in Xi (Oi−1 is
included for i > 1), which is enough to cover their
families and to satisfy the family preserving property.
Note that at this stage T ′ does not satisfy the running
intersection property, because Oi−1 appears in both
`i−1 and `i but not necessarily in every (set associated
to a) node in between. Finally, we walk around the
tree T ′ in a Euler tour tree traversal where each edge
is visited exactly twice, and we include Oi−1 in each
node of T ′ that appears between `i−1 and `i during
the walk.2 By doing so we guarantee that the running
intersection property is also satisfied. Since the Euler
tour tree traversal visits each leaf once and each in-
ternal node at most three times, the procedure inserts
three new variables in the sets associated to `1, . . . , `q
and at most three variables Oi in the sets associated
to non-leaf nodes, and therefore does not increase the
treewidth of the decomposition by more than three.

It remains to show that the diagrams are equivalent
with respect to the expected utility of strategies. Let
S be a strategy for I. Then S is also a strategy for
I ′ (because the two diagrams share the same decision
variables and graph over C,D). First, we need to show
that for i=1, . . . , q it follows that

P (o
(1)
i |C,D) =

1

i

( i∑

j=1

P (w
(1)
j |C,D)

)
,

which we do by induction in i. The basis (i = 1)

follows trivially, because P (o
(1)
1 |w

(1)
1 ) = 1 by defini-

2An Euler tour tree traversal of T rooted at r is a list of
2m−1 symbols produced by calling ET (r), where ET (i) is
a recursive function that takes a node i with left children
j and right children k (if they exist) and prints out i, calls
ET (j) (if j exists), prints out i again, calls ET (k) (if k
exists), and then prints out i once more.

tion, so according to the graph structure we have that

P (o
(1)
1 |C,D) = P (w

(1)
1 |C,D). Now assume by hypoth-

esis of the induction that the above result is valid for
every 1 ≤ i ≤ k < q. Then P (o

(1)
k+1|C,D)

=P (o
(1)
k+1|o

(1)
k , w

(1)
k+1)P (o

(1)
k |C,D)P (w

(1)
k+1|C,D)

+ P (o
(1)
k+1|o

(1)
k , w

(2)
k+1)P (o

(1)
k |C,D)P (w

(2)
k+1|C,D)

+ P (o
(1)
k+1|o

(2)
k , w

(1)
k+1)P (o

(2)
k |C,D)P (w

(1)
k+1|C,D)

+ P (o
(1)
k+1|o

(2)
k , w

(2)
k+1)P (o

(2)
k |C,D)P (w

(2)
k+1|C,D)

=

(
1

k + 1
+

k

k + 1

)
P (o

(1)
k |C,D)P (w

(1)
k+1|C,D)+

(
k

k + 1

)
P (o

(1)
k |C,D)P (w

(2)
k+1|C,D)+

(
1

k + 1

)
P (o

(2)
k |C,D)P (w

(1)
k+1|C,D)

=

(
k

k + 1

)
P (o

(1)
k |C,D) +

1

k + 1
P (w

(1)
k+1|C,D)

=
k

(k + 1)

(
1

k

k∑

j=1

P (w
(1)
j |C,D)

)
+

1

k + 1
P (w

(1)
k+1|C,D)

=
1

k + 1

(k+1∑

j=1

P (w
(1)
j |C,D)

)
,

which shows that the result holds also for i = k + 1.

We can now show that for any strategy S the as-
sociated expected utility E′S in I ′ equals the asso-
ciated expected utility ES in I. Let C′′ = C′ \
{Oq}. By definition, E′S =

∑
C′,D PS(C′,D)U(C′,D) =∑

C′,D PS(C′,D)U(Oq), which is equal to

∑

C′′,D
PS(C′′,D)

(
qUP (o(1)q |C′′,D) + qUP (o(2)q |C′′,D)

)

=qU +
∑

C′′,D
PS(C′′,D)q(U − U)P (o(1)q |C′′,D)

=qU + q(U − U)
∑

C,D
PS(C,D)P (o(1)q |C,D)

=qU + q(U − U)
∑

C,D
PS(C,D)

1

q

q∑

i=1

P (w
(1)
i |C,D)

=qU + q
U − U
q

∑

C,D
PS(C,D)

q∑

i=1

P (w
(1)
i |Pa(Vi))

=qU + (U − U)
∑

C,D
PS(C,D)

q∑

j=1

U(Pa(Vi))− U
U − U

=qU +
U − U
U − U

∑

C,D
PS(C,D)

q∑

i=1

[U(Pa(Vi))− U ]

=qU − qU +
∑

C,D
PS(C,D)

q∑

i=1

U(Pa(Vi)) ,
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which is equal to
∑
C,D PS(C,D)U(C,D) = ES .

Cooper [3] showed that in any influence diagram con-
taining a single value variable the (single) utility func-
tion can be re-normalized to take values on the interval
[0, 1] without affecting the optimality of the strategies.
Together with the above result, this allows us, without
loss of generality, to focus exclusively on influence dia-
grams containing a single value variable taking values
on the interval [0, 1].

Under the usual assumptions of complexity theory,
when a problem is NP-hard to solve the best avail-
able options are (i) trying to devise an algorithm that
runs efficiently on many instances but has exponential
worst-case complexity, or (ii) trying to develop an ap-
proximation algorithm that for all instances provides
in polynomial time a solution that is provably within
a certain range of the optimal solution. We have in-
vestigated option (i) in a recent work [11, 12], and
showed empirically that a sophisticate variable elimi-
nation algorithm can, in spite of its exponential worst-
case complexity, solve a large number of problems in
feasible time. In the remainder, we study the theoret-
ical feasibility of option (ii). Given 0 < ε < 1, we say
that a procedure is an ε-approximation algorithm for
the strategy selection problem if for any influence dia-
gram it finds a strategy S such that MEU ≤ (1+ε) ES .
The algorithm is said to be a fully polynomial-time ap-
proximation scheme if it runs in time polynomial in
the input and in 1/ε for any given ε. The following
result implies that without assuming a bounded num-
ber of states per variable approximating the strategy
selection problem in polynomial time by virtually any
reasonable factor is NP-hard, and option (ii) is most
likely unfeasible.

Theorem 2 ([12]). Given a singly connected influence
diagram of bounded treewidth, for any 1 < 1 + ε < 2θ,
there is no polynomial-time ε-approximation algorithm
unless P=NP, where θ is the number of numerical
parameters (i.e., probabilities and rewards) needed to
specify the problem.

The result is obtained by a reduction from the SAT
problem, similarly to the proof of inapproximability of
MAP in Bayesian networks given by Park and Dar-
wiche [16]. According to the above result, algorithms
like SPU [10] or mini-bucket elimination [5], which find
a strategy in polynomial time, cannot guarantee that
the worst-case ratio between the expected utility of
that strategy and the maximum expected utility is
greater than 2−θ, even if the input is constrained to
influence diagrams of bounded treewidth. Since the
factor 2−θ quickly approaches zero as the size of the
problem increases, efficient algorithms eventually pro-
duce very poor solutions. As we show in the rest of

the paper, this is no longer true if we assume that
both the treewidth of the diagram and the cardinality
of the variables are bounded. In this case, we show
constructively the existence of a fully polynomial-time
approximation scheme.

3 FINDING PROVABLY GOOD
STRATEGIES

Our first step in showing the existence of a fully
polynomial-time approximation scheme for the strat-
egy selection problem is to devise an algorithm
that obtains provably good strategies, that is, an ε-
approximation scheme which returns, for any ε > 0, a
strategy S satisfying MEU ≤ (1+ε) ES . The algorithm
(scheme) we devise is a generalization of the MPU al-
gorithm [11, 12] to the case of (provably good) approxi-
mate inference in influence diagrams, and it consists in
propagating sets of probability potentials over a tree
decomposition. The idea behind the propagation of
sets of potentials is that the expected utility of each
strategy can be computed by propagating a (single)
potential over the same tree decomposition, and so the
propagated sets account for the simultaneous evalua-
tion of many different strategies. To be efficient, some
of these computations are halted early on, so that not
every strategy has its expected value computed. The
difficulty is in guaranteeing that within the evaluated
strategies (i.e., those whose expected values were ac-
tually computed) there is at least one which achieves
the desired approximation factor 1 + ε.

Let α be a real value greater than one, and K be a set
of nonnegative functions (called potentials) over a set
of variables X . We say that K′ ⊆ K is a α-covering
of K if for every potential P (X ) in K there is Q(X )
in K′ such that P (X ) ≤ αQ(X ). We also define the
potential 1(X ) which returns one for every assignment
to the variables in X .

For any decision variableD, let PD denote the set of all
pure policies for D. Hence, PD is a set containing |D|γ
distributions P (D|Pa(D)), where |D| is the number
of values D can assume and γ =

∏
X∈Pa(D) |X| is the

number of assignments to its parents (i.e., the number
of different combinations of values the parent variables
can jointly assume).

The procedure in Algorithm 1 takes an influence dia-
gram (which we assume contains a single value vari-
able taking values on [0, 1]), a tree decomposition of
the diagram, and a nonnegative value ε, and com-
putes an expected utility ES induced by some strategy
S such that MEU ≤ (1 + ε)ES , that is, it is an ε-
approximation for computing the maximum expected
utility. To keep things simple for now, let us assume
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Algorithm 1 Finding Provably Good Strategies

Require: A positive number ε, an influence diagram
I and a tree decomposition T with m nodes

Ensure: The value E satisfies MEU ≤ (1 + ε) E
1: // INITIALIZATION
2: let α=1 + ε/(2m)
3: let K1, . . . ,Km be singletons containing the poten-

tials 1(X1), . . . , 1(Xm), respectively
4: for each chance variable C do
5: find a node i in T such that Fa(C) ⊆ Xi
6: set Ki ← Combine(Ki, {P (C|Pa(C))})
7: end for
8: for each decision variable D do
9: find a node i in T such that Fa(D) ⊆ Xi

10: set Ki ← Combine(Ki,PD)
11: end for
12: find a node i in T such that Pa(V ) ⊆ Xi
13: set Ki ← Combine(Ki, {U(Pa(V ))})
14: // PROPAGATION
15: select a node r as the root of T
16: label all nodes as inactive
17: while there is an inactive node i do
18: select an inactive node i whose children are all

active
19: set Ai ← Combine(Ki, Cj : j ∈ Ch(i))
20: set Bi ← SumOut(Ai,Xi \ XPa(i))
21: set Ci ← Covering(Bi, α)
22: label i as active
23: end while
24: let E=max{µ : µ ∈ Cr}

this is our goal. We will see later on how to modify
the algorithm to also provide the strategy S, not only
its expected value, and thus devise an ε-approximation
algorithm for the strategy selection problem.

The algorithm is similar in spirit to the computation
of marginal queries in Bayesian networks by junction
trees [8], but differs radically in that it stores and
propagates sets of probability potentials, instead of
storing and propagating single probability potentials.
Like junction-tree algorithms for Bayesian networks,
the algorithm contains an initialization step, where the
sets of probability potentials are assigned to nodes of
the tree decomposition, and a propagation step, where
messages are sent from the leaves towards the root
node. The propagation finishes when the root receives
a message from every child, and obtains a set of val-
ues Cr (since Pa(r) = ∅, the set Br marginalizes out
all variables from each potential P (Xr) in Br, hence
producing real numbers).

The operations Combine and SumOut are analogous
to the multiplication and marginalization of probabil-
ity potentials but operate over sets, that is, the for-

mer returns the set of all potentials obtained by pair-
wise multiplication of the potentials in the sets given
as arguments, whereas the latter returns the set ob-
tained by summing out the variables in the second
argument from every potential in the first argument.
More formally, given a list of sets K1, . . . ,Kn contain-
ing potentials over the sets of variables Y1, . . . ,Yn,
respectively, we define the Combine operation as
Combine(K1, . . . ,Kn) = {P (Y1) · · ·P (Yn) : P (Yi) ∈
Ki, i = 1, . . . , n}; given a set K of potentials over the
set of variables Y and a subset Z ⊆ Y, the SumOut
operation is given by SumOut(K,Z) = {∑Z P (Y) :
P (Y) ∈ K}. Finally, the Covering operation returns
an α-covering for the argument, where α=1 + ε/(2m)
is set according to the approximation factor ε and the
number of nodes in the tree m. For the moment, let
us ignore how α-coverings are actually obtained. We
shall get back to this point later on.

The algorithm begins by assigning each probability
distribution associated to a chance variable to a node
of the tree decomposition. If two or more such func-
tions are assigned to the same node i, the result is a
singleton Ki containing their multiplication. The algo-
rithm then assigns policies to nodes in much a similar
way, except that the sets associated to nodes which
have been chosen in the second loop are no longer sin-
gletons. Finally, the utility function is associated to
a node of the tree. For example, if the tree decom-
position contained only a single node with all decision
and chance variables associated to it, the result of the
initialization step would be a single set K1 containing
all joint probability distributions PS(C,D) induced by
strategies S. On the other hand, if for each (decision,
chance and value) variable X there were exactly one
node i in the tree such that Fa(X) ⊆ Xi, then after the
initialization step the set Ki, for i = 1, . . . ,m, would
be equal to the singleton {P (X|Pa(X))}, if the node i
were associated to the family of a chance variable X,
to the singleton {U(Pa(X))}, if i were the node asso-
ciated to the parents of the value variable V , or to the
set of policies PX , if i was associated to the family of
a decision variable X.

The propagation step starts by rooting the tree de-
composition T at an arbitrary node r. This allows us
to organize the neighbors of a node in the tree as the
parent (i.e., the one closer to the root) and the children
(the ones farther from the root), and defines a direc-
tion for the propagation of messages, which consists in
selecting a node i satisfying the condition (which ini-
tially only leaves do) and computing the correspond-
ing sets of potentials Ai, Bi and Ci. The first two
are set analogous to the potentials produced during a
junction-tree propagation in a Bayesian network. The
message set Ci is obtained by removing elements from
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Bi in a way that satisfies the α-covering condition (we
will get back to this). Once all nodes have been pro-
cessed (including the root), the algorithm produces a
solution E by seeking the highest value in the set Cr.
To show that this value is indeed the expected utility
of a feasible strategy S such that MEU ≤ (1 + ε) ES ,
we need to introduce some additional notation.

For any node i of the tree decomposition, let T [i] be
the subtree rooted at i, that is, the graph obtained by
removing all nodes which are not descendants of i or
i itself. Let also X = X1 ∪ · · · ∪ Xm = C ∪ D denote
all variables in the tree. We denote by X [i] the set
of all variables associated to the nodes in T [i], that
is, X [i] =

⋃
j∈T [i] Xj (hence Xi ⊆ X [i]). We define a

function σ : X → {1, . . . ,m} that returns for each vari-
able X the node i to which its associated (probability,
policy or utility) potential was assigned in the initial-
ization step. Given a node i, the function U(Pa(V ); i)
returns the utility function U(Pa(V )) if σ(V ) = i and
one otherwise. Finally, let Yi=Xi ∩ XPa(i) be the sep-
arator set of i and Pa(i).

Lemma 3. The value E computed by the procedure
in Algorithm 1 is the expected utility ES associated to
some valid strategy S.

Proof. First we show by induction in the nodes from
the leaves toward the root that for any node i any
potential P (Yi) in Bi or Ci satisfies

P (Yi) =
∑

X [i]\XPa(i)

∏

C:σ(C)∈T [i]

P (C|Pa(C))

∏

D:σ(D)∈T [i]

P (D|Pa(D))
∏

j∈T [i]

U(Pa(V ); j)

for some partial strategy {P (D|Pa(D)) : D ∈
D, σ(D) ∈ T [i]}. Consider a leaf node i. Then the
induction hypothesis is trivially satisfied by applying
the definitions of the Combine and SumOut opera-
tions, and noting that T [i] contains only the node i.
Now consider an internal node i and assume that for
every child j of i the induction hypothesis holds. Then
for any P (Yi) in Bi or in Ci it follows that P (Yi)

=
∑

Xi\XPa(i)

∏

C:σ(C)=i

P (C|Pa(C))
∏

D:σ(D)=i

P (D|Pa(D))

U(Pa(V ); i)
∏

j∈Ch(i)
P (Yj)

=
∑

X [i]\XPa(i)

∏

C:σ(C)∈T [i]

P (C|Pa(C))

∏

D:σ(D)∈T [i]

P (D|Pa(D))
∏

j∈T [i]

U(Pa(V ); j) ,

which satisfies the induction hypothesis. The result of
the lemma is thus obtained by applying the induction

result to the root node r. For any µ ∈ Cr we have that

µ =
∑

X

∏

C

P (C|Pa(C))
∏

D

P (D|Pa(D))U(Pa(V ))

for some strategy S={P (D|Pa(D))}.

Theorem 4. The value E satisfies MEU ≤ (1 + ε) E.

Proof. Let S∗ = {P ∗(D|Pa(D)) : D ∈ D} denote an
optimal strategy. We first show by induction from the
leaves toward the root that for any node i there is a
P (Yi) ∈ Ci such that P ∗(Yi) ≤ αsiP (Yi), where

P ∗(Yi) =
∑

X [i]\XPa(i)

∏

C:σ(C)∈T [i]

P (C|Pa(C))

∏

D:σ(D)∈T [i]

P ∗(D|Pa(D))
∏

j∈T [i]

U(Pa(V ); j) ,

and si is the number of nodes in T [i]. Consider a
leaf node i. Then the induction hypothesis holds since
P ∗(Yi) ∈ Bi by design and by definition of α-covering
there is P (Yi) ∈ Ci such that P ∗(Yi) ≤ αP (Yi). As-
sume the induction holds for all children j of a node i.
By design, there is P (Yi) ∈ Bi such that

P (Yi) =
∑

Xi\XPa(i)

∏

C:σ(C)=i

P (C|Pa(C))

∏

D:σ(D)=i

P ∗(D|Pa(D))U(Pa(V ); i)
∏

j∈Ch(i)
P (Yj) ,

and by using the inductive hypothesis it follows that
P ∗(Yi) ≤ α

∑
j∈Ch(i) sjP (Yi) . And since Ci is an α-

covering of Bi, there is Q(Yi) ∈ Ci such that P (Yi) ≤
αQ(Yi), and thus P ∗(Yi) ≤ α1+

∑
j∈Ch(i) sjQ(Yi) =

αsiQ(Yi). Since by Lemma 3, every µ ∈ Cr corre-
sponds to the expected utility of some strategy S, it
follows from the induction result on r that there is
ES ∈ Cr such that MEU ≤ αm ES , and since E max-
imizes over µ ∈ Cr, we have that MEU ≤ αm E =
(1 + ε/(2m))m E. Finally, it follows from the inequal-
ity (1 + 2x) ≥ (1 + x/k)k, valid for every positive real
x ≤ 1 and positive integer k, that MEU ≤ (1+ε) E.

Recall from Section 2 that for any influence diagram
of bounded treewidth we can obtain a binary tree
decomposition of minimum treewidth in linear time.
Assume, without loss of generality, that such a mini-
mum treewidth binary tree decomposition is given as
input to the approximation algorithm, and let ω be
the treewidth of the influence diagram given as input
and κ be the maximum number of values a decision or
chance variable can assume. The complexity of the al-
gorithm is bounded by the complexity of computing a
potential P (Yi) in a set Bi times the cardinality of the
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largest set Bi plus the complexity of the initialization
step and the complexity of the Covering operation.
Computing a P (Yi) requires 2

∏
X∈Xi |X| multiplica-

tions and
∏
X∈Xi\XPa(i)

|X| additions, and hence takes

O(κω) time, which is polynomial in the cardinality of
the (chance and decision) variables (since ω is assumed
to be bounded by a constant). The complexity of
the initialization step is bounded by the complexity
of combining the sets of policies PD with the sets Ki
for each decision variable. Each decision variable has
at most κκ

ω

policies, which makes this step exponen-
tial in κ. Although it is possible to transform the dia-
gram so that the complexity of the initialization step
becomes polynomially bounded in κ [12, Prop. 7], we
refrain from doing so here because it would make the
algorithm more complicated, and it would not change
the worst-case running time, which we know from The-
orem 2 that cannot be polynomial in κ.

Regarding the cardinality of the sets Ci and the com-
plexity of the Covering operations, in principle, we
would like to be able to implement Covering in way
that it takes polynomial time in its argument and pro-
vides an α-covering that is as small as possible. The
former requirement is easily met by sequentially in-
specting an element P (Yi) in Bi and inserting it into
Ci only if there is no other Q(Yi) in Bi such that
P (Yi) ≤ αQ(Yi). This procedure takes time polyno-
mial in the cardinality of Bi and in |Yi|, but does not
guarantee that the size of the obtained set is bounded,
and in the worst case we might simply output Ci=Bi
at every node i, which would cause Cr to contain as
many as

∏m
i=1 |K|i or O(κκ

mω

) elements. As we show
in the next section, there is a better way of finding
α-coverings (in polynomial time) that guarantees that
the cardinality of the sets Ci remains bounded in the
(size of the influence diagram given as) input (mea-
sured in bits and using a reasonable encoding) if the
cardinality of any variable is bounded.

Before introducing the fully polynomial-time approxi-
mation scheme, there is a minor detail we have post-
poned in the discussion, which is how to modify the
algorithm to provide not only the expected value but
also a strategy that obtains that value. This can
be easily implemented by associating to any poten-
tial generated during the algorithm the policies that
were used either directly or indirectly to produce
it. More specifically, let δ be a dictionary, which
is initialized with δ[1(Xi)] ← {} for i = 1, . . . ,m,
δ[P (C|Pa(C))] ← {} for every C in C, δ[U(Pa(V ))] ←
{}, and δ[P (D|Pa(D))] ← {P (D|Pa(D))} for ev-
ery D in D and P (D|Pa(D)) in PD. We rede-
fine the operations Combine and SumOut to up-
date δ as the computations are done as follows. Let
K be the output of Combine(K1, . . . ,Kn). Then

for every P (Y1) · · ·P (Yn) ∈ K, where P (Y1) ∈
K1, . . . , P (Yn) ∈ Kn, we assign δ[P (Y1) · · ·P (Yn)] ←
δ[P (Y1)] ∪ · · · ∪ δ[P (Yn)]. Likewise, let K be the out-
put of SumOut(K′,Z). Then δ[

∑
Z P (Y)]← δ[P (Y)]

for every
∑
Z P (Y) in K, where P (Y) ∈ K′. The

Covering operation does not need modification since
it returns a subset of its argument. Finally, we obtain
a strategy S such that ES = E from δ[E]. Note that
these additional operations do not change the asymp-
totical running time complexity, and can be efficiently
implemented using pointers to the original functions,
incurring a very small increase in the space complexity.

4 A FULLY POLYNOMIAL-TIME
APPROXIMATION SCHEME

When the maximum cardinality of a variable κ is as-
sumed bounded, the complexity of computing each po-
tential P (Yi) in the procedure in Algorithm 1 as well
as the cardinalities of the sets Ki are bounded by a
constant. Hence, the only difficulty one needs to over-
come in order to devise a fully polynomial-time ap-
proximation scheme out of that procedure is to guar-
antee that the operation Covering returns sets Ci
whose cardinality is polynomially bounded by the in-
put size, where the latter is defined as the number of
bits needed to encode all numerical parameters (i.e.,
probabilities and utilities) as well as the variables and
the underlying graph of the diagram. For definiteness,
we assume the numerical parameters are specified as
rational numbers in a reasonable way. The procedure
in Algorithm 2 partitions the space Y over which the
potentials in the input set K are specified in hyper-
rectangles such that the ratio of any two potentials
falling in the same rectangle is at most α. Thus, we
can provide an α-covering of K by letting K′ be a set
obtained by selecting exactly one element from each
non-empty rectangle.3 Remarkably, we show that the
number of elements in K′ is a polynomial function of
the size of the influence diagram (in bits).

The next result, which is inspired by a similar result
by Papadimitriou and Yannakakis [15], relates the car-
dinality of the output of the Covering procedure in
Algorithm 2 with the size in bits of the input set K.

Lemma 5. Let K be a set of potentials P (Y) whose
range is contained in [0, 1]. Then the set K′ obtained
by the procedure in Algorithm 2 is an α-covering of
K with at most (1 − blogα tc)η elements, where t is
the smallest (strictly) positive number in the range of
a potential in K and η =

∏
X∈Y |X| is the number of

assignments to Y.

3The notation blogα P (Y)c denotes a function F (Y)
such that F (y) = blogα P (y)c if P (y) 6= 0 and F (y) = 0
otherwise, where y is an assignment to Y.
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Algorithm 2 Finding A Small α-Covering

Require: A set K of potentials over a set of variables
Y, a value α > 1

Ensure: K′ is an α-covering of K
1: let K′ and L initially be empty sets
2: for each P (Y) in K do
3: if blogα P (Y)c is not in L then
4: insert blogα P (Y)c into L
5: insert P (Y) into K′
6: end if
7: end for

Proof. To see that K′ is an α-covering of K, note
that by design if a potential P (Y) ∈ K is not in
K′ then the latter contains a potential Q(Y) ∈ K
such that blogα P (Y)c = blogαQ(Y)c, which implies
P (Y) ≤ αQ(Y).

Regarding the cardinality of K′, first note that there
are −blogα tc (distinct) integers between t and one (the
minus sign is because t ≤ 1). Now consider a poten-
tial P (Y) ∈ K. By assumption, the range of P (Y) is
contained in [0, 1], and for each assignment y to Y we
have that either P (y) ≥ t or P (y) = 0. Hence, for
each y there are only (1−blogα tc) distinct values the
number blogα P (y)c can assume, and therefore only
(1− blogα tc)η possibilities for blogα P (Y)c.

The following result is an immediate consequence of
the above result which shows that the cardinality of
any set Ci is polylogarithmic in the smallest positive
number being specified by a potential in Bi.
Corollary 6. For i = 1, . . . ,m, the set Ci contains
O([1− blogα tic]κ

ω

) elements, where ti is the smallest
(strictly) positive number in a potential in Bi.

We can now state the main result of this paper.

Theorem 7. There is a fully polynomial-time ap-
proximation scheme for influence diagrams of bounded
treewidth and bounded variable cardinality.

Proof. Assume, without loss of generality, that the in-
fluence diagram given as input contains only one value
variable taking values in [0, 1]. Let t denote the small-
est (strictly) positive numerical parameter in the spec-
ification (i.e., the smallest nonzero probability or util-
ity specified by the diagram), and let b denote the size
of the diagram (in bits). Since the input probabili-
ties and utilities are (by assumption) rational num-
bers, each positive input number is not smaller than
2−b (otherwise we would need more than b bits to en-
code it). Any potential P (Y) in a set Bi is obtained by
multiplying and marginalizing the functions specified
by the diagram, and hence any value P (y) in P (Y) is

a polynomial in the numerical parameters in the in-
put. Moreover, since each variable in the network is
associated to a function over at most κκ

ω

numbers,
the polynomial has degree at most O(nκκ

ω

) ≤ O(n),
where n is the number of variables. In particular,
the smallest positive value ti in a potential in Bi, for
i = 1, . . . ,m, is also a polynomial in the numerical
parameters of the input of degree O(n), and since
these are either zero or some number greater than
or equal to 2−b, it follows that ti ≥ 2−bO(n). Thus,
we have from Corollary 6 that the cardinality of any
set Ci is O([1− blogα 2−bO(n)c]κω ) ≤ O([bn/ ln(α)]κ

ω

).
But since α = 1 + ε/2m, we have from the inequality
ln(1 + x) ≥ x/(1 + x) valid for all x > 0 that

O

([
bn

ln(α)

]κω)
≤O
([
bn

1 + ε
2n

ε
2n

]κω)
≤O
([

bn2

ε

]κω)
.

Hence, for i = 1, . . . ,m the number of elements in any
Ci is polynomial in b, n and 1/ε.

4.1 CONCLUSION

Influence diagrams provide a very expressive language
to describe decision problems under uncertainty, espe-
cially if no-forgetting and regularity are not required.
Finding an optimal strategy for such problems is NP-
hard even in diagrams of bounded treewidth and very
simple structure (e.g., a tree), which makes approx-
imation algorithms an interesting alternative. Here
again the problem shows itself to be hard. Without as-
suming that variables have bounded cardinality, there
is no polynomial-time approximation algorithm unless
P=NP. As we show here, neither restricting the dia-
grams to a single value variable makes the problem
easier to solve or approximate.

In this paper, we give some hope in light of so many
negative results by showing that when the diagram
has bounded treewidth and the variables take on a
bounded number of values, there is a fully polynomial-
time approximation algorithm for the (optimal) strat-
egy selection problem. Although our proof is con-
structive, the algorithm we provide is not expected
to be practical for any reasonably large problem due
to the huge constants hidden in the asymptotic analy-
sis. Nevertheless, the existence of such an scheme shall
motivate researchers to investigate more efficient ap-
proximation algorithms to solve influence diagrams of
low treewidth and low variable cardinality.

Acknowledgements

This work was partially supported by the Swiss Na-
tional Science Foundation grants no. 200020 134759/1
and 200020 137680/1, and Hasler Foundation grant
no. 10030.

612



References

[1] C. Amato, D. S. Bernstein, and S. Zilberstein.
Optimizing fixed-size stochastic controllers for
POMDPs and decentralized POMDPs. Au-
tonomous Agents and Multi-Agent Systems, 21
(3):293–320, 2010.

[2] H. L. Bodlaender. A linear-time algorithm for
finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317,
1996.

[3] G. F. Cooper. A method for using belief networks
as influence diagrams. Fourth Workshop on Un-
certainty in Artificial Intelligence, 1988.

[4] C. P. de Campos and Q. Ji. Strategy selection
in influence diagrams using imprecise probabili-
ties. In Proceedings of the 24th Conference in Un-
certainty in Artificial Intelligence, pages 121–128,
2008.

[5] R. Dechter. An anytime approximation for opti-
mizing policies under uncertainty. In Workshop
of Decision Theoretic Planning, AIPS, 2000.

[6] A. Detwarasiti and R. D. Shachter. Influence dia-
grams for team decision analysis. Decision Anal-
ysis, 2(4):207–228, 2005.

[7] R. A. Howard and J. E. Matheson. Influence dia-
grams. In Readings on the Principles and Applica-
tions of Decision Analysis, pages 721–762. Strate-
gic Decisions Group, 1984.

[8] F. V. Jensen and T. D. Nielsen. Bayesian Net-
works and Decision Graphs. Information Science
and Statistics. Springer, 2nd edition, 2007.

[9] D. Koller and N. Friedman. Probabilistic Graph-
ical Models: Principles and Techniques. MIT
Press, 2009.

[10] S. L. Lauritzen and D. Nilsson. Representing and
solving decision problems with limited informa-
tion. Management Science, 47:1235–1251, 2001.
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Abstract

Agents learning to act autonomously in real-
world domains must acquire a model of the dy-
namics of the domain in which they operate.
Learning domain dynamics can be challenging,
especially where an agent only has partial ac-
cess to the world state, and/or noisy external sen-
sors. Even in standard STRIPS domains, exist-
ing approaches cannot learn from noisy, incom-
plete observations typical of real-world domains.
We propose a method which learns STRIPS ac-
tion models in such domains, by decomposing
the problem into first learning a transition func-
tion between states in the form of a set of clas-
sifiers, and then deriving explicit STRIPS rules
from the classifiers’ parameters. We evaluate
our approach on simulated standard planning do-
mains from the International Planning Competi-
tion, and show that it learns useful domain de-
scriptions from noisy, incomplete observations.

1 INTRODUCTION

Developing agents with the ability to act autonomously in
the world is a major goal of artificial intelligence. One
important aspect of this development is the acquisition of
domain models to support planning and decision-making:
to operate effectively in the world, an agent must be able
to accurately predict when its actions will succeed, and
what effects its actions will have. Only when a reliable
action model is acquired can the agent usefully combine
sequences of actions into plans, in order to achieve wider
goals. However, learning domain dynamics can be a chal-
lenging problem: agents’ observations may be noisy, or in-
complete; actions may be non-deterministic; the world may
be noisy or contain many irrelevant objects and relations.

In this paper we consider the problem of acquiring explicit
domain models from the raw experiences of an agent ex-
ploring the world, where the agent’s observations are in-
complete, and observations and actions are subject to noise.

The domains we consider are relational STRIPS (Fikes and
Nilsson, 1971) domains, although our approach has the po-
tential to be extended to more expressive domains. Given
the autonomous learning setting, we assume only a weak
domain model where the agent knows how to identify ob-
jects, has acquired predicates to describe object attributes
and relations, and knows what types of actions it may per-
form, but not the appropriate contexts for the actions, or
their effects. Experience in the world is then developed
through observing changes to object attributes and relations
when motor-babbling with primitive actions.

Other approaches to learning STRIPS operators do not han-
dle both noisy and incomplete observations (see Section 3).
We develop a two-stage approach to the problem which de-
couples the requirement to tolerate noisy, incomplete ob-
servations from the requirement to learn compact STRIPS
operators. In the first stage we learn action models by con-
structing a set of kernel classifiers which tolerate noise and
partial observability, but whose action models are implicit
in the learnt parameters of the classifiers, similar to the
work of Mourão et al. (2009, 2010). However, we ad-
ditionally use the method to learn preconditions as well
as effects, as suggested but not explored in earlier work.
Also, we evaluate additional kernels for the learning prob-
lem and select a better performing alternative. The initial
action model learnt in this first stage acts as a noise-free,
fully observable source of observations from which to ex-
tract explicit action rules. In the second stage we devise
a novel method to derive explicit STRIPS operators from
the model implicit in the kernel classifiers. In experiments
the resulting rules perform as well as the original classi-
fiers, while providing a compact representation of the ac-
tion models suitable for use in automated planning systems.

2 THE LEARNING PROBLEM

A domain is a tuple D = 〈O,P,A〉, where O is a finite
set of world objects, P is a finite set of predicate (relation)
symbols, and A is a finite set of actions. Each predicate
and action also has an associated arity. A fluent expression
is a statement of the form p(c1, c2, ..., cn), where p ∈ P ,
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n is the arity of p, and each ci ∈ O. A state is any set of
fluent expressions, and S is the set of all possible states.
Since state observations may be incomplete we assume an
open world where unobserved fluents are considered to be
unknown. For any state s ∈ S, a fluent expression φ is true
at s iff φ ∈ s. The negation of a fluent expression, ¬φ, is
true at s (also, φ is false at s) iff¬φ ∈ s. If φ ∈ s then¬φ /∈
s. Any (legal) fluent expression not in s is unobserved.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. In STRIPS domains Prea
can be any set of fluent expressions and Effa can be any set
of fluent expressions and negated fluent expressions. Ac-
tion preconditions and effects can also be parameterised.
An action with all of its parameters replaced with objects
fromO is said to be an action instance. Objects mentioned
in the preconditions or the effects must be listed in the ac-
tion parameters (the STRIPS scope assumption (SSA)).

The task of the learning mechanism is to learn the precon-
ditions and effects Prea and Effa for each a ∈ A, from
data generated by an agent performing a sequence of ran-
domly selected actions in the world and observing the re-
sulting states. The sequence of states and action instances
is denoted by s0, a1, s1, ..., an, sn where si ∈ S and ai
is an instance of some a ∈ A. Our data consists of ob-
servations of the sequence of states and action instances
s′0, a1, s

′
1, ..., an, s

′
n, where state observations may be noisy

(some φ ∈ si may be observed as ¬φ ∈ s′i) or incomplete
(some φ ∈ si are not in s′i). Action failures are allowed:
the agent may attempt to perform actions whose precondi-
tions are unsatisfied. In these cases the world state does
not change, but the observed state may still be noisy or in-
complete. To make accurate predictions in domains where
action failures are permitted, the learning mechanism must
learn both preconditions and effects of actions.

E.g. in BlocksWorld, where an agent stacks and unstacks
blocks, consider a state with blocks B1 and B2 on the table:

(AND armempty (ontable B1) (ontable B2) (clear B1)
(clear B2) (NOT (on B1 B2)) (NOT (on B2 B1))
(NOT (holding B1)) (NOT (holding B2))).

A corresponding noisy, incomplete observation is:

(AND armempty (ontable B2) (holding B1) (clear B1)
(NOT (on B1 B2)) (NOT (holding B2))).

It is noisy as (holding B1) is incorrect, and incomplete
as (ontable B1),(clear B2) and (NOT(on B2 B1))

are missing. A sequence of noisy, incomplete observations
of states and actions could be as follows:
s′0: (AND armempty (ontable B2) (holding B1)

(clear B1) (NOT (on B1 B2)) (NOT (holding B2)))
a1: (pickup B1)
s′1: (AND (NOT (clear B1)) (holding B1) (NOT (on B1 B2))

(NOT (ontable B2)) (NOT (on B2 B1)))
a2: (stack B1 B2)
s′2: (AND armempty (clear B1) (clear B2)

(ontable B2) (NOT (holding B1)))
a3: (stack B2 B1)
s′3: (AND armempty (clear B1) (NOT (clear B2))

(NOT (on B2 B1)) (NOT (on B2))).

(1)

Taking a sequence of such inputs, we learn action descrip-
tions for each action in the domain. For example, the
stack action, which moves a block from the gripper on
to another block, would be represented as:

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
:effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)

(not (clear ?underob)) (not (holding ?ob)))).

3 RELATED WORK

Previous work fulfils some but not all of the require-
ments for learning models in the setting we consider. In
autonomous robotics, various techniques exist to learn
preconditions and effects of actions in noisy, partially
observable worlds (Doğar et al., 2007; Metta and Fitz-
patrick, 2003; Modayil and Kuipers, 2008). However,
none of these approaches learn relational models. Con-
versely, much previous work on learning relational ac-
tion models relies on the provision of prior knowl-
edge of the action model. Strategies include seed-
ing initial models with approximate planning opera-
tors (Gil, 1994), using known successful plans (Wang,
1995), excluding action failures (Amir and Chang, 2008),
or the presence of a teacher (Benson, 1996). Such knowl-
edge is unlikely to be available to an autonomous agent
learning the dynamics of its domain. Additionally, only a
few approaches are capable of learning under either partial
observability (Amir and Chang, 2008; Yang et al., 2007;
Zhuo et al., 2010), noise in any form (Pasula et al., 2007;
Rodrigues et al., 2010), or both (Halbritter and Geibel,
2007; Mourão et al., 2010). Approaches which handle both
do so by generating implicit action models which must be
used as a black-box to make predictions of state changes,
and do not generate symbolic action representations.

We extract rules from classifiers based on the intuition that
more discriminative features will contribute more to the
classifier’s objective function. This is similar to the insight
underlying feature selection methods of the type which
rank each feature according to the sensitivity of the classi-
fier’s objective function to the removal of the feature (Ko-
havi and John, 1997; Guyon et al., 2002). Our approach
differs in that features are selected separately for individual
examples, rather than once across the entire training set,
and we define a stopping criterion which identifies when
the set of selected features can no longer form a rule.

Our work also has links with earlier work in version spaces
(Mitchell, 1982) and the associated greedy search, which
underlie many other approaches to rule learning (e.g. Amir
and Chang, 2008; Pasula et al., 2007). Our rule search ben-
efits from extra information to guide the search, in the form
of the weights associated with each hypothesis by the pre-
viously trained statistical classifiers, which can be highly
robust to noise and incomplete observations.
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4 LEARNING IMPLICIT MODELS

The basis of our approach is the division of the learning
problem into two parts: initially a classification method
is used to learn to predict effects of actions, then STRIPS
rules are derived from the resulting action representations.
We define the implicit action model to be the model of the
domain implicit in the learnt parameters of the classifiers,
and the explicit action model to be the domain model de-
scribed by STRIPS rules. In learning an implicit action
model, our approach follows earlier work (Croonenborghs
et al., 2007; Halbritter and Geibel, 2007; Mourão et al.,
2009, 2010) which encodes the learning problem in terms
of the inputs and outputs of a set of classifiers. However,
none of these methods generate explicit action models.

Following the approach of Mourão et al. (2009, 2010), we
encode the state descriptions with a fixed dimension vec-
tor representation by only considering objects which are
mentioned in the action parameter list. By the SSA this
is sufficient to learn STRIPS rules. For an action instance
with arguments o1, o2, ..., on we therefore restrict the state
description to all possible fluents whose arguments are in
{o1, o2, ..., on}. Also we schematise descriptions by re-
placing the i-th action parameter with the label argi when-
ever it appears in any fluent. Thus all state descriptions are
now written in terms of the action parameters and not in
terms of specific objects. The SSA fixes a small number
of objects to consider for an action, as well as their roles,
which allows relational state descriptions to be encoded in a
vector, as each possible fluent in a state maps to exactly one
possible fluent in any other state. We encode state descrip-
tions as vectors where each bit in the vector corresponds to
each possible fluent which could exist in the schematised
state description. The value of a bit is 1 if the fluent is true,
−1 if false, and a wildcard value * if unobserved.

In our previous BlocksWorld example (1), the state
descriptions for s′0 and s′1 in the context of the
pickup(B1) action a1 would include only B1, and are
schematised to form prior and successor states sprior =
(AND armempty(holding arg1)(clear arg1)) and
ssucc = (AND (holding arg1) (NOT(clear arg1)))

respectively, to give 〈sprior, pickup(arg1), ssucc〉
as a training example. Conversely, the descriptions
for s′1 and s′2 in the context of the stack(B1 B2)

action a2 contain both B1 and B2 as both are action
parameters, giving sprior = (AND (holding arg1)

(NOT(on arg1 arg2)) (NOT(on arg2 arg1))

(NOT(clear arg1)) (NOT(ontable arg2))) and
ssucc = (AND armempty (clear arg1) (clear arg2)

(ontable arg2) (NOT(holding arg1))).

Encoding the state descriptions as vectors, where the
bits correspond to armempty followed by clear,

ontable, holding and on with first argument arg1,
and then the same predicates with first argument

arg2, we obtain vprior = 〈1, 1, ∗, 1, ∗, ∗, ∗, ∗, ∗〉
and vsucc = 〈∗,−1, ∗, 1, ∗, ∗, ∗, ∗, ∗〉 for a1 and
vprior = 〈∗,−1, ∗, 1,−1, ∗,−1, ∗,−1〉 and vsucc =
〈1, 1, ∗,−1, ∗, 1, 1, ∗, ∗〉 for a2.

Given the vectorised state descriptions, a changes vector
vdiff is derived for each training example, where the i-th
bit vdiff

i is defined as follows:

vdiff
i =





0, if vpriori = vsucci and vsucci , vpriori ∈ {−1, 1}
1, if vpriori 6= vsucci and vsucci , vpriori ∈ {−1, 1}
∗, otherwise.

A set of classifiers now learns the implicit action model.
Each classifier Ca,i corresponds to a particular action a in
the domain and predicts the i-th bit of the changes vector.
Thus if 〈sprior, a, ssucc〉 is a training example for Ca,i then
the input to the classifier is vprior with target value vdiff

i .

Voted perceptron classifiers equipped with a kernel func-
tion have previously been applied to the problem of learn-
ing action models (Mourão et al., 2009, 2010) as they
are computationally efficient and known to tolerate noise
(Khardon and Wachman, 2007). We take a similar ap-
proach. Mourão et al. used voted perceptrons combined
with a DNF kernel, K(x, y) = 2same(x,y), where
same(x, y) is the number of bits with equal values in
x and y (Sadohara, 2001; Khardon and Servedio, 2005).
In the same(x, y) calculation, bits with unobserved values
are excluded. The features of the DNF kernel are all possi-
ble conjunctions of fluents, seemingly ideal for learning ac-
tion preconditions which are arbitrary conjunctions of flu-
ents. However, DNF is not PAC-learnable by a perceptron
using the DNF kernel, as examples exist on which it can
make exponentially many mistakes (Khardon et al., 2005).
We therefore consider as an alternative the k-DNF kernel,
whose features are all possible conjunctions of fluents of
length ≤ k for some fixed k: K(x, y) =

∑k
l=0

(
same(x,y)

l

)

(Khardon and Servedio, 2005). Preconditions with more
than k fluents are still possible since the voted perceptron
supports hypotheses which are conjunctions of features.

5 RULE EXTRACTION

Once the classifiers have been trained, the first step in de-
riving explicit action rules is to extract individual per-effect
rules to predict each fluent in isolation. We will look at how
to combine the rules to extract postconditions in Section 6.

The rule extraction process takes as input a classifier Ca,i
and returns a set of preconditions (as vectors) which pre-
dict that the fluent corresponding to bit i will change if
action a is performed. For example, in the BlocksWorld
domain a set of preconditions extracted from the classifiers
for stack is shown in Figure 2.
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for v ∈ SV + do
child := v
while child only covers +ve training examples do
parent := child
for each valued bit in parent do

flip bit to its negation and calculate weight
child := child whose parents have least weight difference

rulev := parent

(a) Rule Extraction Algorithm

-1 -1 1 1 w=-10 1 1 1 1 w=80 1 -1 1 1 w=100 1 -1 -1 1 w=90 1 -1 1 -1 w=-5

∗ -1 1 1 w=-5 1 ∗ 1 1 w=60 1 -1 ∗ 1 w=80 1 -1 1 ∗ w=0

∗ -1 ∗ 1 w=10 1 ∗ ∗ 1 w=40 1 -1 ∗ ∗ w=15

(b) Example of Rule Extraction Process

Figure 1: Each node in (b) contains a vector corresponding to a possible precondition, and the weight w assigned to the
vector by the voted perceptron model. Each level of the lattice contains vectors with one fewer feature than the level
above. Lines join parent and children nodes: solid lines link the candidate parent rule at one level with its children in the
level below, and dashed lines link children to their alternative parent. Shaded nodes are the preconditions selected at each
iteration through the lattice. The positive support vector “seed” is the vector 〈1 -1 1 1〉 with weight 100. Following the
rule extraction algorithm in (a), the child whose parents have the least weight difference, the vector 〈1 -1 * 1〉, is chosen as
the next candidate rule. The process ends with the rule 〈1 * * 1〉 as both children have a negative counterexample in the
training data (not shown).

(armempty) changes when:
[8] (AND (NOT(armempty)) (NOT(ontable arg1)))

(clear arg1) changes when:
[14] (AND (NOT(clear arg1)) (holding arg1)

(NOT(on arg1 arg2)))
[12] (AND (NOT(clear arg1)) (NOT(ontable arg1))

(NOT(on arg2 arg1)))
[8] (AND (clear arg1) (ontable arg1) (clear arg2)

(NOT(on arg1 arg2)) (NOT(on arg2 arg1)))

(ontable arg1) changes when:
[6] (AND (NOT(ontable arg1)) (NOT(on arg1 arg2)))
[4] (AND (NOT(armempty)) (ontable arg1)

(NOT(clear arg2)))

(holding arg1) changes when:
[15] (AND (holding arg1))

(on arg1 arg2) changes when:
[3] (AND (NOT(on arg1 arg2)))

(clear arg2) changes when:
[12] (AND (clear arg2) (ontable arg2)

(NOT(holding arg2)))
[6] (AND (NOT(armempty)) (NOT(clear arg1)) (clear arg2)

(holding arg1) (NOT(on arg1 arg2)))
[2] (AND (NOT(clear arg1)) (clear arg2)

(NOT(ontable arg2)))

Figure 2: Per-effect rules generated for the BlocksWorld
stack action from 1000 examples in a world with 5%
noise and 25% observability. Weights are shown in square
brackets. Fluents in bold are neither in, nor implied by, the
true action specification. Many of these fluents will later be
excluded by the rule combination process (Section 6).

Rules are extracted from a voted perceptron with kernel
K and support vectors SV = SV + ∪ SV −, where SV +

(SV −) is the set of support vectors whose predicted values
are 1 (−1). The positive support vectors are each instances
of some rule learnt by the perceptron, and so are used to
“seed” the search for rules. The extraction process aims to
identify and remove all irrelevant bits in each support vec-
tor, using the voted perceptron’s prediction calculation to

determine which bits to remove.

The weight of any possible state description vector x is
defined to be the value calculated by the voted percep-
tron’s prediction calculation before thresholding (Freund
and Schapire, 1999):

weighte(x) =
n∑

i=1

ci sign
i∑

j=1

yjαjK(xj ,x)

where each xi is one of the n support vectors, yi is the
corresponding target value, ci and αi are the parameters
learnt by the classifier, and e is the effect predicted by the
classifier. The predicted value for x is 1 if weighte(x) > 0
and−1 otherwise. A child of vector x is any distinct vector
obtained by replacing a single bit of x with the value *.
Similarly, a parent of x is any vector obtained by replacing
a *-valued bit with the value 1 or −1.

The basic intuition behind the rule extraction process is
that more discriminative features will contribute more to
the weight of an example. Thus the rule extraction pro-
cess operates by taking each positive support vector and
repeatedly deleting the feature which contributes least to
the weight until some stopping criterion is satisfied. This
leaves the most discriminative features underlying the ex-
ample, which can be used to form a precondition. An ex-
ample of the process of extracting rules is shown in Fig-
ure 1(b), and an outline of the algorithm in Figure 1(a), as
follows. Take each positive support vector v in turn, and
aim to find a conjunction rulev which covers v and does
not cover any negative training examples, but where every
child of rulev covers at least one negative example. Con-
struct rulev by a greedy algorithm which first takes v as
a candidate rule and then repeatedly creates a new candi-
date rule by choosing one bit to set to the ∗ value. The
bit is chosen by considering the difference in weights be-
tween the current candidate x = 〈x1, ..., xi, ..., xn〉 and
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each x¬i = 〈x1, ...,¬xi, ..., xn〉, finding

argmin
xi∈{x1,...,xi,...,xn}

(weighte(x)− weighte(x¬i)).

Removing the resulting xi removes the least discrimina-
tive bit in the current candidate rule. At each step the new
candidate rule is tested against the training examples. If it
classifies a negative training example as positive, then the
rule is too general and rulev is set to the previous candi-
date rule, otherwise the process repeats. The result is a set
of rules for each action, predicting when a particular output
bit changes. There may be many rules, up to one per posi-
tive support vector, each consisting of a set of preconditions
which, if satisfied, predict the output bit will change.

6 RULE COMBINATION

The rule extraction process described above produces a set
of rules for an action, such as for the BlocksWorld stack
action shown in Figure 2. However, in STRIPS we expect
a single rule for each action, consisting of a set of precon-
ditions and a set of effects such as in the definition of the
BlocksWorld stack action given in Section 2.

The rule combination process therefore builds a single
STRIPS-like rule for each action, taking as input the
set of rules produced by the rule extraction process:
{(v1, e1), (v2, e2), . . . , (vr, er)} where vi is the vector rep-
resenting the i-th set of preconditions, and ei is the bit
which changes when vi holds. Rule combination gener-
ates a rule (vrule, erule) where the j-th element of vrule,
vrule,j ⊆

⋃
i vi,j and erule ⊆

⋃
i ei. Given the definitions

in Section 4, we can directly convert the single state vec-
tor vrule and the set of effects erule into a precondition and
effect in STRIPS format.1

Without noise or partial observability, the combination
process is a straightforward conjunction of all precondi-
tions and all effects in the set of rules for an action, i.e.,
∀j vrule,j =

⋃
i vi,j and erule =

⋃
i ei. However, when

learning from noisy examples, unwanted additional fluents
can be introduced to the per-effect rules via noisy sup-
port vectors. Similarly, incomplete training examples can
mean some necessary fluents are missing from individual
per-effect rules. In this section we describe an approach
to identify and eliminate fluents introduced by noise while
adding in fluents omitted due to partial observability.

To support the process of choosing between different po-
tential rules which may contain noisy fluents, or omit
necessary fluents, we introduce two filtering functions.
AcceptPrecons takes an existing precondition and effects
(vrule, erule) for an action a, and assesses whether a new

1Since the effects in erule are changes it may be necessary to
identify from what value the change is made, by referring to the
rule from which the effect bit originated.

R := {(v1, e1), . . . , (vr, er)}
rule := (v1,∅)
locks = ∅
while R 6= ∅ do
next := highest weighted rule in R
R := R \ {next}
vcandidate = CombinePrecons(rule, next, locks)
if vcandidate 6= vrule then
vcandidate = SimplifyPrecons(rule, next, vcandidate)
if AcceptPrecons(rule, vcandidate) then
vrule := vcandidate

if AcceptEffect(rule, enext) then
erule := erule ∪ enext

erule = SimplifyEffects(rule)

Figure 3: Outline Rule Combination Algorithm

precondition vnew predicts the effects of a at least as well
as the current precondition. AcceptEffects takes an exist-
ing precondition and effects for an action a, and assesses
whether the precondition predicts a new effect enew of a at
least as well as it predicts the current effects. We describe
AcceptPrecons and AcceptEffects in detail in Section 6.2.

6.1 RULE COMBINATION OVERVIEW

With the filtering functions in place, we now describe how
the rule combination process generates STRIPS rules by
combining and refining the per-effect rules. Figure 3 gives
an outline of the algorithm, described below.

For each action the process derives a rule (vrule, erule)
from the set of rules R = {(v1, e1), . . . , (vr, er)} pro-
duced by rule extraction, ordered so that weightei(vi) ≥
weightej (vj) if i < j. The process first initialises vrule to
the highest weighted precondition inR and sets erule = ∅.
The rule is then refined by combining it with each of the re-
maining per-effect rules in turn, in order of highest weight.

Each time (in CombinePrecons) the process combines the
current precondition vrule with the precondition from the
next per-effect rule vi, which we will name vnext, into a
candidate precondition vcandidate. This includes resolv-
ing any conflicts between vrule and vnext. We now have
a candidate precondition vcandidate which is a merge of
vrule and vnext. The process refines vcandidate further by
testing it against a set of alternatives in SimplifyPrecons
and setting vcandidate to the best result. Now vcandidate is
tested against the original vrule, using AcceptPrecons . If
vcandidate is accepted, vrule is updated to vcandidate. Simi-
larly, enext is tested against the original set of effects erule,
using AcceptEffects . If enext is accepted, erule is updated
to erule ∪ enext. Finally, the process refines erule by test-
ing it against a set of alternatives in SimplifyEffects and
setting erule to the best result. In the next section we de-
scribe each of the subprocedures in detail.
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6.2 ALGORITHM DETAILS

CombinePrecons: In attempting to combine (vrule, erule)
with (vnext, enext), the first check is whether enext con-
tradicts any effect in erule. Effects conflict if both rules
predict change to a fluent, but the rules have different val-
ues for the fluent in their preconditions. (For example, the
two per-effect rules for (ontable arg1) in Figure 2 con-
flict.) If there is a conflict, the new rule is rejected, as we
assume only one rule per action, and the higher weighted
baseline rule is more likely to be correct.

Second, CombinePrecons combines the preconditions on
every bit which is not locked (listed in locks) and does not
conflict, i.e., ∀i vrule,i = vnext,i or vrule,i = ∗:

vcandidate,i =





vrule,i, if vrule,i = vnext,i or i ∈ locks
vrule,i, if vnext,i = ∗
vnext,i, if vrule,i = ∗ and i /∈ locks.

For conflicts, where vrule,i 6= vnext,i and vrule,i, vnext,i ∈
{1,−1}, CombinePrecons decides which value each con-
flict bit should take in vcandidate, as follows.

For each conflicting fluent, there are three possible values
the fluent could take in the preconditions of the true rule: ∗
(unobserved), 1 (true) or −1 (false). The weight weighte
(for each effect e in erule) of each variant is calculated
(with the values of other conflicting fluents set to ∗). The
preferred variant is where the value is ∗, indicating a non-
discriminative feature, and giving the simplest precondi-
tion. However, a variant is only acceptable if the weight of
the resulting precondition is positive for all effects in erule,
since then the new precondition still predicts the same ef-
fects as the current precondition vrule. If accepted, the
fluent is locked at the ∗ value, to prevent later, possibly
noisy rules, from resetting it. Locked fluents are recorded
in the locks variable (see Figure 3). If the ∗-variant is un-
acceptable, then the (1)-valued or (−1)-valued cases are
considered, provided they have positive weights on all the
effects. If both variants are acceptable, whichever has the
highest average weight over all the effects is selected. If
neither variant is acceptable then the conflict is unresolved
for this fluent. As long as the conflicts on every fluent are
resolved, the rule combination process can continue with
the new candidate precondition. If not, the current rule is
rejected (and CombinePrecons returns vrule).

SimplifyPrecons: Once CombinePrecons has generated a
candidate precondition vcandidate, SimplifyPrecons con-
siders alternative, less specific preconditions. It creates a
set of alternatives vcandidate\i for each bit i in vcandidate
which differs from vrule. vcandidate\i = vcandidate except
at bit i where vcandidate\i = ∗. Whenever the filtering
function AcceptPrecons rates vcandidate as worse than any
vcandidate\i, the associated fluent vcandidate,i is set to ∗.
SimplifyEffects: In light of the new preconditions,
SimplifyEffects tests if any of the effects should be re-

moved from the new vrule . For instance, more specific pre-
conditions may lower the incidence of some effects (as seen
in the training data) to the extent that AcceptEffects rejects
them. Each effect is tested against all the other effects by
AcceptEffects and, if rejected, removed from erule.

AcceptPrecons: In the precondition filtering function, be-
fore even making a comparison between preconditions, the
new precondition vnew must be checked to ensure that it is
consistent with the classifiers and supported by the train-
ing data. For this we require a notion of coverage of the
training set. Coverage is defined to account for partial ob-
servability, so that precondition vnew covers example x at
effect e (denoted coverse(vnew, x)) if none of the fluents in
the example state contradict the fluents in the rule precon-
ditions, and e is in both the example state changes and the
rule effects. Now vnew can form a rule precondition if:

1. vnew is consistent with the classifiers: for each e ∈
erule, vnew should be classified by the classifier Ca,e
as predicting change, that is,
∀e ∈ erule weighte(vnew) > 0; and

2. vnew is supported by the training data: for each
e ∈ erule, vnew should cover at least one training
example where e changed, that is,
∀e ∈ erule |{x : coverse(vnew, x)}| > 0.

Both should be considered, as weight alone may permit
rules which do not cover any training examples, while cov-
erage alone may allow negatively weighted rules.

Additionally, AcceptPrecons uses differences in precision
and recall to identify and reject any new precondition
which performs significantly worse than the existing pre-
condition. It rejects preconditions where either the preci-
sion or recall on the training set drops substantially for any
e ∈ erule. Since precision and recall is a trade-off, the com-
parison is made using the F-score2 for precondition pre at
effect e: Fpre,e . Ideally we want the new precondition to
improve on (or at least not worsen) the F-score, but we must
introduce some tolerance to account for the effects of noise.

For instance, suppose vnew = 〈1, 1, ∗, ∗〉 is more general
than vrule = 〈1, 1, 0, ∗〉, and that vnew is in fact the true
rule. The F-score for vrule is calculated on the subset of
training examples which vrule covers, while the F-score
for vnew also includes training examples which 〈1, 1, 1, ∗〉
covers. If the training set happens to have a higher propor-
tion of training examples with a noisy outcome covered by
〈1, 1, 1, ∗〉 than 〈1, 1, 0, ∗〉 then the F-score for vnew can be
lower than for vrule. To account for such effects of noise,
we allow the new F-score Fvnew,e to drop to some fraction
εp of the F-score for the existing precondition Fvrule,e, for
any effect e ∈ erule. For new F-scores below this value,
the new precondition is rejected.

2F-score is the harmonic mean of precision and recall (true
positives/predicted changes and true positives/actual changes, re-
spectively) (Van Rijsbergen, 1979).
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AcceptEffect : The effects filtering function similarly com-
pares F-scores. Given (vrule, erule) it compares how well
vrule predicts a new effect enew relative to how well it pre-
dicts each e ∈ erule: specifically it compares Fvrule,enew
to Fvrule,e for each e ∈ erule. This identifies effects which
are inconsistent with the other effects in terms of precision
and recall. In particular, effects which occur in far fewer
examples than other effects are identified in this way: these
are likely to be caused by noise, or could be conditional ef-
fects. An effect is rejected by the function if its F-score is
less than some fraction εe times the F-score on any other
effect of the same rule.

In our evaluation, εp and εe were set to 0.95 and 0.5 respec-
tively, and not varied across the domains. The values were
selected empirically via experiments on a holdout dataset
from one experimental domain (ZenoTravel).

6.3 RULE COMBINATION EXAMPLE

We now consider an example of one iteration of the rule
combination process. Working with the BlocksWorld
domain stack action, suppose the current rule is
(〈∗,−1,−1, 1,−1, 1, 1, ∗, ∗〉 , {1, 3, 5}) corresponding
to the precondition (AND (NOT(clear arg1))

(NOT(ontable arg1)) (holding arg1)

(NOT(on arg1 arg2)) (clear arg2) (ontable

arg2)) and effects {(clear arg1) (holding arg1)

(clear arg2)}. We try to combine this with the
new rule (〈∗, ∗,−1, ∗,−1, ∗,−1, ∗, 1〉 , {2}) correspond-
ing to the precondition (AND (NOT(ontable arg1))

(NOT(on arg1 arg2)) (NOT(ontable arg2))

(on arg2 arg1)) and effects {(ontable arg1)}.

CombinePrecons finds no conflicts in the ef-
fects, and generates the candidate precondition
〈∗,−1,−1, 1,−1, 1, ?, ∗, 1〉 where ? denotes a conflict-
ing fluent. To resolve the conflict the weights of the vectors
〈∗,−1,−1, 1,−1, 1, ∗, ∗, 1〉, 〈∗,−1,−1, 1,−1, 1, 1, ∗, 1〉
and 〈∗,−1,−1, 1,−1, 1,−1, ∗, 1〉 are calculated for each
of the Cstack,(clear arg1), Cstack,(holding arg1) and
Cstack,(clear arg2) classifiers. If 〈∗,−1,−1, 1,−1, 1, ∗, ∗, 1〉
is accepted as vcandidate, SimplifyPrecons would consider
the alternative precondition 〈∗,−1,−1, 1,−1, 1, ∗, ∗, ∗〉 as
the last bit in vcandidate was different in vrule.

Assuming 〈∗,−1,−1, 1,−1, 1, ∗, ∗, ∗〉 is accepted as
vcandidate by SimplifyPrecons , it is compared to the
original vrule (the only difference now is that the bit cor-
responding to (ontable arg2) is unset in vcandidate).
vcandidate has higher weight and so AcceptPrecons
accepts vcandidate and vrule := vcandidate. Conversely the
new effect is rejected by AcceptEffects so erule ={1, 3, 5}
as before. Finally, SimplifyEffects uses AcceptEffects
to test the relative prediction performance of the new
vrule on each effect, with no changes. The new rule is
(〈∗,−1,−1, 1,−1, 1, ∗, ∗, ∗〉 , {1, 3, 5}).

7 EXPERIMENTS

We tested our approach on several simulated domains
taken from the International Planning Competition (IPC) at
http://ipc.icaps-conference.org/. The domains
differ in terms of the number and arity of actions and pred-
icates, and the number and hierarchy of types. The main
domain characteristics are detailed in Table 1.

Sequences of random actions and resulting states were
generated from the PDDL domain descriptions and used
as training and testing data. All data was generated
using the Random Action Generator 0.5 available at
http://magma.cs.uiuc.edu/filter/, modified to
also generate action failures. Table 2 shows the numbers of
objects used in training and testing data for each domain.

Ten different randomly generated training and testing sets
were used. Training and testing sets were sequences of
20,000 and 2,000 actions respectively. Both sequences con-
tained an equal mixture of successful and unsuccessful ac-
tions (where some precondition of the action was not sat-
isfied, and so no change occurred in the world). In some
domains (e.g. Rovers), portions of the state space can only
be traversed once, and in these cases multiple shorter se-
quences of 400 actions were generated from randomly gen-
erated starting states. In line with previous work (Amir and
Chang, 2008), incomplete observations were simulated by
randomly selecting a fraction (10%, 25% or 50%) of fluents
(including negations) from the world to observe after each
action. The remaining fluents were discarded and the re-
duced state vector was generated from the observed fluents.
Sensor noise was simulated similarly by flipping the value
of each bit in the state vector with probability 1% and 5%.

7.1 RESULTS

We first tested the performance of different kernels on
learning the implicit action model, comparing results for
a standard (non-kernelised) perceptron, a voted (non-
kernelised) perceptron, and a voted kernel perceptron. Both
the DNF kernel and k-DNF kernel with k = 2, 3 and 5
were tested. Performance was measured in terms of the
F-score of the predictions on the test sets.

The fully observable, noiseless cases are easily learnt by
any of the perceptrons tested. After 5,000 training exam-
ples, the F-score on the test set is 1, in almost all cases. Per-

Table 1: Domain Characteristics

Domain Actions Predicates
No. Max arity No.(+types) Max arity

BlocksWorld 4 2 5 2
Depots 5 4 6 (+6) 2
ZenoTravel 5 6 8 (+4) 2
DriverLog 6 4 6 (+4) 2
Rovers 9 6 25 (+7) 3
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Table 2: Number of Objects in Training and Testing Worlds

Domain Training Testing
BlocksWorld 13 blocks 30 blocks
Depots 1 depot 4 depots

2 distributors 4 distributors
2 trucks 4 trucks
3 pallets 10 pallets
3 hoists 8 hoists
10 crates 8 crates

ZenoTravel 5 cities 10 cities
3 planes 5 planes
7 people 10 people

DriverLog 3 road junctions 20 road junctions
3 drivers 5 drivers
7 packages 25 packages
3 trucks 5 trucks

Rovers 2 rovers 4 rovers
4 waypoints 8 waypoints
3 objectives 4 objectives
3 cameras 4 cameras
3 modes 3 modes
2 stores 4 stores
1 lander 1 lander

formance of the voted perceptron, with or without the var-
ious kernels, is almost identical (results not shown). With
the introduction of unobserved fluents or noise, the voted
perceptron performs better than the standard perceptron.
However, the DNF kernel does not improve performance,
with the unkernelised voted perceptron learning signifi-
cantly more accurate action models. In contrast, the k-DNF
kernels all produce significantly more accurate models than
the DNF kernel or no kernel (p < 0.05, repeated measures
ANOVA with post-hoc Bonferroni t-test). Figure 4 gives
a comparison of the relative performance of each model.
The use of k-DNF kernels therefore represents a significant
improvement on previous work which used only the DNF
kernel. In light of these results, the 3-DNF kernel was se-
lected for the remainder of the experiments.

Next, we extracted explicit rules from the implicit action
models. There was no statistically significant difference
between the F-scores of predictions made by the percep-
tron models and those made by the extracted rules (re-
peated measures ANOVA, p > 0.05). We also com-
pared the resulting models to the original domain descrip-
tions using a measure of error rate (Zhuo et al., 2010).
The error rate for a single action is defined as the num-
ber of extra or missing fluents in the preconditions and
effects (Epre and Eeff respectively) divided by the num-
ber of possible fluents in the preconditions and effects (T ):
Error(a) = 1

2T (Epre + Eeff ). The error rate
of a domain model with a set of actions A is:
Error(A) = 1

|A|
∑
a∈AError(a).

The error rates indicate that the learnt models are close to
the actual STRIPS domain definitions, falling below 0.1 af-
ter around 5,000 examples in all cases (Figure 5). In par-
ticular, for fully observable, noiseless domains the correct
STRIPS model is given by the extracted rules in fewer than

StandardVoted Voted
2-DNF

Voted
3-DNF

Voted
5-DNF

Voted
DNF

0.6

0.7

0.8

0.9

1.0

F-
sc

or
e

Average F-score by model

Figure 4: Comparison of the performance of different per-
ceptrons learning action models from 20,000 random ac-
tions in STRIPS domains, averaged across all domains, lev-
els of noise and partial observability. Error bars are stan-
dard error. Performance is significantly different between
models which use a k-DNF kernel and those which do not.

2,000 training examples, except for the most complex do-
main, Rovers. Comparisons with other approaches in the
literature are difficult due to differences in the learning set-
tings. Nevertheless it is notable that the error rates of the
learnt action models are low in comparison to action mod-
els learnt by (Yang et al., 2007) for the same domains: their
error rates at 90% observability (the highest reported) range
from around 0.04 (ZenoTravel) to 0.1 or above (DriverLog
and Depots) to more than 0.6 (Rovers). An example action
model is shown in Figure 6, demonstrating that the method
derives compact STRIPS-like rules even with high levels of
incompleteness and noise in the observations.

We also calculated the F-scores for predictions made by
the learnt rules on our (noiseless, fully observable) test sets
(Figure 5). The F-scores are above 0.9 for all noise lev-
els at 25% observability and above, for all domains except
Rovers, indicating that in practice the rules correctly pre-
dict most fluents. The Rovers F-scores are somewhat lower,
because there are fewer training examples per action than
for the other domains, and more possible fluents.

Furthermore, our learning is fast. The longest-running ex-
ample in the experiments (Rovers with 20,000 training ex-
amples, 5% noise, fully observable) takes under 1.5 hours
on a single Intel Xeon 5160 processor to train the classi-
fiers, and run rule extraction and combination. The Zeno-
Travel example (Figure 6) runs in under 2 minutes.

8 CONCLUSIONS AND FUTURE WORK

The results demonstrate that our approach successfully
learns STRIPS operators from noisy, incomplete observa-
tions, in contrast to previous work which either generates
explicit operators but cannot tolerate noise and incomplete
examples, or tolerates noise and incomplete examples but
does not generate explicit operators. We also show empir-
ically that the 3-DNF kernel is a more appropriate choice
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Figure 5: Results from learning explicit action rules from 5,000 training examples at varying levels of observability and
noise in simulated planning domains. The error rate measures errors in the learnt domain model relative to the actual
domain model (above). The F-score measures performance of the rules on fully observable, noiseless test domains (below).

than the DNF kernel for learning in this setting.

Our approach depends on decomposing the learning prob-
lem into two stages: learning implicit action models and
then deriving explicit rules from the implicit models. Cru-
cially, the implicit models produce noise-free, complete ob-
servations for the domain model which has been learnt. An
alternative approach to our rule derivation process would
be to apply existing action model learning techniques to
the observations produced by the implicit models. How-
ever such an approach effectively restarts the learning pro-
cess, ignoring information already learnt and available in
the perceptron models, and so is likely to be less efficient.

Our approach also depends on the STRIPS scope assump-
tion (SSA) which essentially identifies the objects which
are relevant to the action and fixes their roles. In real-
world scenarios the SSA may not apply. Without the SSA,
during learning we must also consider state relating to ob-
jects which are not listed in the action parameters. Im-
plicit action models in this setting may be learnt using a
graphical representation of states combined with a suitable
graph kernel (Mourão, 2012). In future work we therefore
plan to extend our rule extraction method to derive rules
from classifiers trained with graphical state representa-
tions. Additional steps will be required to efficiently handle
the complexity introduced by the requirement to perform
comparisons between graphical state descriptions. There
are positive results in PAC-learning existential conjunctive
and k-DNF concepts in noise-free structural domains with
Boolean relations (Haussler, 1989; Valiant, 1985), which
apply to learning from the implicit models, suggesting that
our approach will scale to graphical state representations.

(:action DEBARK
:parameters (?x1 ?x2 ?x3 )
:precondition (AND (in ?x1 ?x2) (at ?x2 ?x3))
:effect (AND (at ?x1 ?x3) (NOT(in ?x1 ?x2))))

(:action BOARD
:parameters (?x1 ?x2 ?x3 )
:precondition (AND (at ?x1 ?x3) (at ?x2 ?x3))
:effect (AND (NOT(at ?x1 ?x3)) (in ?x1 ?x2)))

(:action FLY
:parameters (?x1 ?x2 ?x3 ?x4 ?x5 )
:precondition (AND (at ?x1 ?x2) (fuel-level ?x1 ?x4)

(next ?x5 ?x4))
:effect (AND (NOT(at ?x1 ?x2)) (at ?x1 ?x3)

(NOT(fuel-level ?x1 ?x4)) (fuel-level ?x1 ?x5)))

(:action ZOOM
:parameters (?x1 ?x2 ?x3 ?x4 ?x5 ?x6 )
:precondition (AND (at ?x1 ?x2) (fuel-level ?x1 ?x4)

(next ?x6 ?x5) (next ?x5 ?x4))
:effect (AND (NOT(at ?x1 ?x2)) (at ?x1 ?x3)

(NOT(fuel-level ?x1 ?x4)) (fuel-level ?x1 ?x6)))

(:action REFUEL
:parameters (?x1 ?x2 ?x3 ?x4 )
:precondition (AND (fuel-level ?x1 ?x3) (next ?x4 ?x3)

(next ?x3 ?x4) (at ?x1 ?x2))
:effect (AND (NOT(fuel-level ?x1 ?x3)) (fuel-level ?x1 ?x4))

Figure 6: Explicit action model output for the ZenoTravel
domain after 5,000 training examples with 10% observabil-
ity and 5% noise. Missing fluents are in bold italic, in-
correct fluents in bold. The error rate of this example is
0.05. Such imperfect rules have quite small effects on per-
formance (F-score 0.85 in this case), but will in future work
be improved by eliminating low reliability classifiers.
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Abstract

We present a novel approach to detecting and
utilizing symmetries in probabilistic graph-
ical models with two main contributions.
First, we present a scalable approach to
computing generating sets of permutation
groups representing the symmetries of graph-
ical models. Second, we introduce orbital
Markov chains, a novel family of Markov
chains leveraging model symmetries to re-
duce mixing times. We establish an insightful
connection between model symmetries and
rapid mixing of orbital Markov chains. Thus,
we present the first lifted MCMC algorithm
for probabilistic graphical models. Both ana-
lytical and empirical results demonstrate the
effectiveness and efficiency of the approach.

1 Introduction

Numerous algorithms exploit model symmetries with
the goal of reducing the complexity of the computa-
tional problems at hand. Examples are procedures
for detecting symmetries of first-order theories [7] and
propositional formulas [2] in order to avoid the exhaus-
tive exploration of a partially symmetric search space.
More recently, symmetry detection approaches have
been applied to answer set programming [11] and (in-
teger) linear programming [26, 27, 34, 30]. A consider-
able amount of attention to approaches utilizing model
symmetries has been given by work on “lifted proba-
bilistic inference [36, 9].” Lifted inference is mainly mo-
tivated by the large graphical models resulting from
statistical relational formalism such as Markov logic
networks [38]. The unifying theme of lifted probabilis-
tic inference is that inference on the level of instanti-
ated formulas is avoided and instead lifted to the first-
order level. Notable approaches are lifted belief propa-
gation [41, 22], bisimulation-based approximate infer-

ence algorithms [40], first-order knowledge compilation
techniques [44, 16], and lifted importance sampling ap-
proaches [17]. With the exception of some results for
restricted model classes [41, 44, 21], there is a some-
what superficial understanding of the underlying prin-
ciples of graphical model symmetries and the proba-
bilistic inference algorithms utilizing such symmetries.
Moreover, since most of the existing approaches are de-
signed for relational models, the applicability to other
types of probabilistic graphical models is limited.

The presented work contributes to a deeper under-
standing of the interaction between model symmetries
and the complexity of inference by establishing a link
between the degree of symmetry in graphical mod-
els and polynomial approximability. We describe the
construction of colored graphs whose automorphism
groups are equivalent to those of the graphical models
under consideration. We then introduce the main con-
tribution, orbital Markov chains, the first general class
of Markov chains for lifted inference. Orbital Markov
chains combine the compact representation of symme-
tries with generating sets of permutation groups with
highly efficient product replacement algorithms. The
link between model symmetries and polynomial mixing
times of orbital Markov chains is established via a path
coupling argument that is constructed so as to make
the coupled chains coalesce whenever their respective
states are located in the same equivalence class of the
state space. The coupling argument applied to orbital
Markov chains opens up novel possibilities of analyt-
ically investigating classes of symmetries that lead to
polynomial mixing times.

Complementing the analytical insights, we demon-
strate empirically that orbital Markov chains converge
faster to the true distribution than state of the art
Markov chains on well-motivated and established sam-
pling problems such as the problem of sampling inde-
pendent sets from graphs. We also show that exist-
ing graph automorphism algorithms are applicable to
compute symmetries of very large graphical models.
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2 Background and Related Work

We begin by recalling some basic concepts of group
theory and finite Markov chains both of which are cru-
cial for understanding the presented work. In addition,
we give a brief overview of related work utilizing sym-
metries for the design of algorithms for logical and
probabilistic inference.

2.1 Group Theory

A symmetry of a discrete object is a structure-
preserving bijection on its components. For instance,
a symmetry of a graph is a graph automorphism.
Symmetries are often represented with permutation
groups. A group is an abstract algebraic structure
(G, ◦), where G is a set closed under a binary associa-
tive operation ◦ such that there is a identity element
and every element has a unique inverse. Often, we re-
fer to the group G rather than to the structure (G, ◦).
We denote the size of a group G as |G|. A permuta-
tion group acting on a finite set Ω is a finite set of
bijections g : Ω→ Ω that form a group.

Let Ω be a finite set and let G be a permutation group
acting on Ω. If α ∈ Ω and g ∈ G we write αg to de-
note the image of α under g. A cycle (α1 α2 ... αn)
represents the permutation that maps α1 to α2, α2 to
α3,..., and αn to α1. Every permutation can be writ-
ten as a product of disjoint cycles where each element
that does not occur in a cycle is understood as being
mapped to itself. We define a relation ∼ on Ω with
α ∼ β if and only if there is a permutation g ∈ G such
that αg = β. The relation partitions Ω into equiva-
lence classes which we call orbits. We use the notation
αG to denote the orbit {αg | g ∈ G} containing α. Let
f : Ω→ R be a function from Ω into the real numbers
and let G be a permutation group acting on Ω. We
say that G is an automorphism group for (Ω, f) if and
only if for all ω ∈ Ω and all g ∈ G, f(ω) = f(ωg).

2.2 Finite Markov chains

Given a finite set Ω a finite Markov chain defines a ran-
dom walk (X0, X1, ...) on elements of Ω with the prop-
erty that the conditional distribution of Xn+1 given
(X0, X1, ..., Xn) depends only on Xn. For all x, y ∈ Ω
P (x, y) is the chain’s probability to transition from x
to y, and P t(x, y) = P tx(y) the probability of being in
state y after t steps if the chain starts at x. A Markov
chain is irreducible if for all x, y ∈ Ω there exists a t
such that P t(x, y) > 0 and aperiodic if for all x ∈ Ω,
gcd{t ≥ 1 | P t(x, x) > 0} = 1. A chain that is both
irreducible and aperiodic converges to its unique sta-
tionary distribution.

The total variation distance dtv of the Markov chain

from its stationary distribution π at time t with initial
state x is defined by

dtv(P
t
x, π) =

1

2

∑

y∈Ω

|P t(x, y)− π(y)|.

For ε > 0, let τx(ε) denote the least value T such that
dtv(P

t
x, π) ≤ ε for all t ≥ T . The mixing time τ(ε) is

defined by τ(ε) = max{τx(ε) | x ∈ Ω}. We say that
a Markov chain is rapidly mixing if the mixing time is
bounded by a polynomial in n and log(ε−1), where n
is the size of each configuration in Ω.

2.3 Symmetries in Logic and Probability

Algorithms that leverage model symmetries to solve
computationally challenging problems more efficiently
exist in several fields. Most of the work is related to
the computation of symmetry breaking predicates to
improve SAT solver performance [7, 2]. The construc-
tion of our symmetry detection approach is largely
derived from that of symmetry detection in proposi-
tional theories [7, 2]. More recently, similar symme-
try detection approaches have been put to work for
answer set programming [11] and integer linear pro-
gramming [34]. Poole introduced the notion of lifted
probabilistic inference as a variation of variable elim-
ination taking advantage of the symmetries in graph-
ical models resulting from probabilistic relational for-
malisms [36]. Following Poole’s work, several algo-
rithms for lifted probabilistic inference were developed
such as lifted and counting belief propagation [41, 22],
bi-simulation-based approximate inference [40], gen-
eral purpose MCMC algorithm for relational mod-
els [29] and, more recently, first-order knowledge com-
pilation techniques [44, 16]. In contrast to existing
methods, we present an approach that is applicable to
a much larger class of graphical models.

3 Symmetries in Graphical Models

Similar to the method of symmetry detection in propo-
sitional formulas [7, 2, 8] we can, for a large class
of probabilistic graphical models, construct a col-
ored undirected graph whose automorphism group
is equivalent to the permutation group represent-
ing the model’s symmetries. We describe the ap-
proach for sets of partially weighted propositional for-
mulas since Markov logic networks, factor graphs,
and the weighted model counting framework can be
represented using sets of (partially) weighted formu-
las [38, 44, 16]. For the sake of readability, we describe
the colored graph construction for partially weighted
clauses. Using a more involved transformation, how-
ever, we can extend it to sets of partially weighted
formulas. Let S = {(fi, wi)}, 1 ≤ i ≤ n, be a set of
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Figure 1: The colored graph resulting from the set of
weighted clauses of Example 3.1.

partially weighted clauses with wi ∈ R if fi is weighted
and wi = ∞ otherwise. We define an automorphism
of S as a permutation mapping (a) unnegated vari-
ables to unnegated variables, (b) negated variables to
negated variables, and (c) clauses to clauses, respec-
tively, such that this permutation maps S to an iden-
tical set of partially weighted clauses. The set of these
permutations forms the automorphism group of S.

The construction of the colored undirected graph
G(S) = (V,E) proceeds as follows. For each variable
a occurring in S we add two nodes va and v¬a model-
ing the unnegated and negated variable, respectively,
to V and the edge {va, v¬a} to E. We assign color
0 (1) to nodes corresponding to negated (unnegated)
variables. This coloring precludes permutations that
map a negated variable to an unnegated one or vice
versa. We introduce a distinct color c∞ for unweighted
clauses and a color cw for each distinct weight w oc-
curring in S. For each clause fi with weight wi = w
we add a node vfi with color cw to V . For each un-
weighted clause fi we add a node vfi with color c∞ to
V . Finally, we add edges between each clause node vfi
and the nodes of the negated and unnegated variables
occurring in fi. Please note that we can incorporate
evidence by introducing two novel and distinct colors
representing true and false variable nodes.

Example 3.1. Let {f1 := (a ∨ ¬c, 0.5), f2 := (b ∨
¬c, 0.5)} be a set of weighted clauses. We introduce 6
variable nodes va, vb, vc, v¬a, v¬b, v¬c where the former
three have color 1 (green) and the latter three color 0
(red). We connect the nodes va and v¬a; vb and v¬b;
and vc and v¬c. We then introduce two new clause
nodes vf1 , vf2 both with color 2 (yellow) since they
have the same weight. We finally connect the variable
nodes with the clause nodes they occur in. Figure 1
depicts the resulting colored graph. A generating set of
Aut(G(S)), the automorphism group of this particular
colored graph, is {(va vb)(v¬a v¬b)(vf1 vf2)}.

The following theorem states the relationship between
the automorphisms of S and the colored graph G(S).

Theorem 3.2. Let S = {(fi, wi)}, 1 ≤ i ≤ n, be a set
of partially weighted clauses and let Aut(G(S)) be the
automorphism group of the colored graph constructed
for S. There is a one-to-one correspondence between
Aut(G(S)) and the automorphism group of S.

Given a set of partially weighted clauses S with vari-
ables X we have, by Theorem 3.2, that if we define a
distribution Pr over random variables X with features
fi and weights wi, 1 ≤ i ≤ n, then Aut(G(S)) is an
automorphism group for ({0, 1}X,Pr). Hence, we can
use the method to find symmetries in a large class of
graphical models. The complexity of computing gen-
erating sets of Aut(G(S)) is in NP and not known to
be in P or NP-complete. For graphs with bounded
degree the problem is in P [25]. There are special-
ized algorithms for finding generating sets of auto-
morphism groups of colored graphs such as Saucy[8]
and Nauty[28] with remarkable performance. We will
show that Saucy computes irredundant sets of gen-
erators of automorphism groups for graphical models
with millions of variables. The size of these generating
sets is bounded by the number of graph vertices.

We briefly position the symmetry detection approach
in the context of existing algorithms and concepts.

3.1 Lifted Message Passing

There are two different lifted message passing algo-
rithms. Lifted First-Order Belief Propagation [41] op-
erates on Markov logic networks whereas Counting Be-
lief Propagation [22] operates on factor graphs. Both
approaches leverage symmetries in the model to par-
tition variables and features into equivalence classes.
Each variable class (supernode/clusternode) contains
those variable nodes that would send and receive the
same messages were (loopy) belief propagation (BP)
run on the original model. Each feature class (super-
feature/clusterfactor) contains factor nodes that would
send and receive the same BP messages.

The colored graph construction provides an alterna-
tive approach to partitioning the variables and fea-
tures of a graphical model. We simply compute
the orbit partition induced by the permutation group
Aut(G(S)) acting on the set of variables and features.
For instance, the orbit partition of Example 3.1 is
{{a, b}, {c}, {f1, f2}}. In general, orbit partitions have
the following properties: For two variables v1, v2 in the
same orbit we have that (a) v1 and v2 have identical
marginal probabilities and (b) the variable nodes cor-
responding to v1 and v2 would send and receive the
same messages were BP run on the original model;
and for two features f1 and f2 in the same orbit we
have that the factor nodes corresponding to f1 and f2

would send and receive the same BP messages.

3.2 Finite Partial Exchangeability

The notion of exchangeability was introduced by de
Finetti [14]. Several theorems concerning finite (par-
tial) exchangeability have been stated [10, 14]. Given
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a finite sequence of n binary random variables X, we
say that X is exchangeable with respect to the distri-
bution Pr if, for every x ∈ {0, 1}n and every permu-
tation g acting on {0, 1}n, we have that Pr(X = x) =
Pr(X = xg). This is equivalent to saying that the sym-
metric group Sym(n) is an automorphism group for
({0, 1}n,Pr). Whenever we have finite exchangeability,
there are n+ 1 orbits each containing the variable as-
signments with Hamming weight i, 0 ≤ i ≤ n. Hence,
every exchangeable probability distribution over n bi-
nary random variables is a unique mixture of draws
from the n + 1 orbits. In some cases of partial ex-
changeability, namely when the orbits can be specified
using a statistic, one can use this for a more compact
representation of the distribution as a product of mix-
tures [10]. The symmetries that have to be present for
such a re-parameterization to be feasible, however, are
rare and constitute one end of the symmetry spectrum.

Therefore, a central question is how arbitrary symme-
tries, compactly represented with irredundant genera-
tors of permutation groups, can be utilized for efficient
probabilistic inference algorithms that go beyond (a)
single variable marginal inference via lifted message
passing and (b) the limited applicability of finite par-
tial exchangeability. In order to answer this question,
we turn to the major contribution of the present work.

4 Orbital Markov Chains

Inspired by the previous observations, we introduce or-
bital Markov chains, a novel family of Markov chains.
An orbital Markov chain is always derived from an
existing Markov chain so as to leverage the symme-
tries in the underlying model. In the presence of
symmetries orbital Markov chains are able to perform
wide-ranging transitions reducing the time until con-
vergence. In the absence of symmetries they are equiv-
alent to the original Markov chains. Orbital Markov
chains only require a generating set of a permutation
group G acting on the chain’s state space as additional
input. As we have seen, these sets of generators are
computable with graph automorphism algorithms.

Let Ω be a finite set, let M′ = (X ′0, X
′
1, ...) be a

Markov chain with state space Ω, let π be a station-
ary distribution of M′, and let G be an automor-
phism group for (Ω, π). The orbital Markov chain
M = (X0, X1, ...) for M′ is a Markov chain which
at each integer time t+1 performs the following steps:

1. Let X ′t+1 be the state of the original Markov chain
M′ at time t+ 1;

2. Sample Xt+1, the state of the orbital Markov
chainM at time t+ 1, uniformly at random from
X ′Gt+1, the orbit of X ′t+1.

The orbital Markov chainM, therefore, runs at every
time step t ≥ 1 the original chainM′ first and samples
the state ofM at time t uniformly at random from the
orbit of the state of the original chain M′ at time t.

First, let us analyze the complexity of the second step
which differs from the original Markov chain. Given a
state Xt and a permutation group G we need to sam-
ple an element from Xt

G, the orbit of Xt, uniformly at
random. By the orbit-stabilizer theorem this is equiv-
alent to sampling an element g ∈ G uniformly at ran-
dom and computing Xt

g. Sampling group elements
nearly uniform at random is a well-researched prob-
lem [6] and computable in polynomial time in the size
of the generating sets with product replacement algo-
rithms [35]. These algorithms are implemented in sev-
eral group algebra systems such as Gap[15] and exhibit
remarkable performance. Once initialized, product re-
placement algorithms can generate pseudo-random el-
ements by performing a small number of group multi-
plications. We could verify that the overhead of step
2 during the sampling process is indeed negligible.

Before we analyze the conditions under which orbital
Markov chains are aperiodic, irreducible, and have the
same stationary distribution as the original chain, we
provide an example of an orbital Markov chain that
is based on the standard Gibbs sampler which is com-
monly used to perform probabilistic inference.

Example 4.1. Let V be a finite set of random vari-
ables with probability distribution π, and let G be
an automorphism group for (×V ∈VV, π). The orbital
Markov chain for the Gibbs sampler is a Markov chain
M = (X0, X1, ...) which, being in state Xt, performs
the following steps at time t+ 1:

1. Select a variable V ∈ V uniformly at random;

2. Sample X ′t+1(V ), the value of V in the config-
uration X ′t+1, according to the conditional π-
distribution of V given that all other variables
take their values according to Xt;

3. Let X ′t+1(W ) = Xt(W ) for all variables W ∈ V \
{V }; and

4. Sample Xt+1 from X ′Gt+1, the orbit of X ′t+1, uni-
formly at random.

We call this Markov chain the orbital Gibbs sampler.
In the absence of symmetries, that is, if G’s only el-
ement is the identity permutation, the orbital Gibbs
sampler is equivalent to the standard Gibbs sampler.

Let us now state a major result of this paper. It relates
properties of the orbital Markov chain to those of the
Markov chain it is derived from. A detailed proof can
be found in the appendix.
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Figure 2: An undirected graphical model over two
binary variables and one symmetric potential function
with corresponding distribution shown on the right.
There are three orbits each indicated by one of the
rounded rectangles.

Theorem 4.2. Let Ω be a finite set and let M′ be a
Markov chain with state space Ω and transition matrix
P ′. Moreover, let π be a probability distribution on Ω,
let G be an automorphism group for (Ω, π), and let M
be the orbital Markov chain for M′. Then,

(a) if M′ is aperiodic then M is also aperiodic;

(b) if M′ is irreducible then M is also irreducible;

(c) if π is a reversible distribution forM′ and, for all
g ∈ G and all x, y ∈ Ω we have that P ′(x, y) =
P ′(xg, yg), then π is also a reversible and, hence,
a stationary distribution for M.

The condition in statement (c) requiring for all g ∈ G
and all x, y ∈ Ω that P ′(x, y) = P ′(xg, yg) conveys
that the original Markov chain is compatible with the
symmetries captured by the permutation group G.
This rather weak assumption is met by all of the prac-
tical Markov chains we are aware of and, in particular,
Metropolis chains and the standard Gibbs sampler.

Corollary 4.3. Let M′ be the Markov chain of the
Gibbs sampler with reversible distribution π. The or-
bital Gibbs sampler forM′ is aperiodic and has π as a
reversible and, hence, a stationary distribution. More-
over, if M′ is irreducible then the orbital Gibbs sam-
pler is also irreducible and it has π as its unique sta-
tionary distribution.

We will show both analytically and empirically that, in
the presence of symmetries, the orbital Gibbs sampler
converges at least as fast or faster to the true distribu-
tion than state of the art sampling algorithms. First,
however, we want to take a look at an example that
illustrates the advantages of the orbital Gibbs sampler.

Example 4.4. Consider the undirected graphical
model in Figure 2 with two binary random variables
and a symmetric potential function. The probabilities
of the states 01 and 10 are both 0.49. Due to the sym-
metry in the model, the states 10 and 01 are part of
the same orbit. Now, let us assume a standard Gibbs
sampler is in state 10. The probability for it to tran-
sition to one of the states 11 and 00 is only 0.02 and,

by definition of the standard Gibbs sampler, it can-
not transition directly to the state 01. The chain is
“stuck” in the state 10 until it is able to move to 11
or 00. Now, consider the orbital Gibbs sampler. Intu-
itively, while it is “waiting” to move to one of the low
probability states, it samples the two high probability
states horizontally uniformly at random from the orbit
{01, 10}. In this particular case the orbital Gibbs sam-
pler converges faster than the standard Gibbs sampler,
a fact that we will also show analytically.

4.1 Mixing Time of Orbital Markov Chains

We will make our intuition about the faster conver-
gence of the orbital Gibbs sampler more concrete. We
accomplish this by showing that the more symmetry
there is in the model the faster a coupling of the orbital
Markov chain will coalesce and, therefore, the faster
the chain will converge to its stationary distribution.

There are several methods available to prove rapid
mixing of a finite Markov chain. The method we will
use here is that of a coupling. A coupling for a Markov
chainM is a stochastic process (Xt, Yt) on Ω×Ω such
that (Xt) and (Yt) considered marginally are faithful
copies of M. The coupling lemma expresses that the
total variation distance ofM at time t is limited from
above by the probability that the two chains have not
coalesced, that is, have not met at time t (see for in-
stance Aldous [1]). Coupling proofs on the joint space
Ω × Ω are often rather involved and require complex
combinatorial arguments. A possible simplification is
provided by the path coupling method where a cou-
pling is only required to hold on a subset of Ω×Ω (Bub-
ley and Dyer [4]). The following theorem formalizes
this idea.

Theorem 4.5 (Dyer and Greenhill [12]). Let δ be an
integer valued metric defined on Ω×Ω taking values in
{0, ..., D}. Let S ⊆ Ω× Ω such that for all (Xt, Yt) ∈
Ω×Ω there exists a path Xt = Z0, ..., Zr = Yt between
Xt and Yt with (Zl, Zl+1) ∈ S for 0 ≤ l ≤ r and

r−1∑

l=0

δ(Zl, Zl+1) = δ(Xt, Yt).

Define a coupling (X,Y ) → (X ′, Y ′) of the Markov
chainM on all pairs (X,Y ) ∈ S. Suppose there exists
β ≤ 1 with E[δ(X ′, Y ′)] ≤ βδ(X,Y ) for all (X,Y ) ∈
S. If β < 1 then the mixing time τ(ε) of M satisfies

τ(ε) ≤ ln(Dε−1)

1− β .

If β = 1 and there exists an α > 0 such that
Pr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] ≥ α for all t, then

τ(ε) ≤
⌈
eD2

α

⌉ ⌈
ln(ε−1)

⌉
.
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We selected the insert/delete Markov chain for inde-
pendent sets of graphs for our analysis. Sampling in-
dependent sets is a classical problem motivated by nu-
merous applications and with a considerable amount
of recent research devoted to it [24, 13, 45, 42, 37]. The
coupling proof for the orbital version of this Markov
chain provides interesting insights into the construc-
tion of such a coupling and the influence of the graph
symmetries on the mixing time. The proof strategy is
in essence applicable to other sampling algorithms.

Let G = (V,E) be a graph. A subset X of V is an
independent set if {v, w} /∈ E for all v, w ∈ X. Let
I(G) be the set of all independent sets in a given graph
G and let λ be a positive real number. The partition
function Z = Z(λ) and the corresponding probability
measure πλ on I(G) are defined by

Z = Z(λ) =
∑

X∈I(G)

λ|X| and πλ(X) =
λ|X|

Z
.

Approximating the partition function and sampling
from I(G) can be accomplished using a rapidly mix-
ing Markov chain with state space I(G) and stationary
distribution πλ. The simplest Markov chain for inde-
pendent sets is the so-called insert/delete chain [13].
If Xt is the state at time t then the state at time t+ 1
is determined by the following procedure:

1. Select a vertex v ∈ V uniformly at random;

2. If v ∈ Xt then letXt+1 = Xt\{v} with probability
1/(1 + λ);

3. If v /∈ Xt and v has no neighbors in Xt then let
Xt+1 = Xt ∪ {v} with probability λ/(1 + λ);

4. Otherwise let Xt+1 = Xt.

Using a path coupling argument one can show that the
insert/delete chain is rapidly mixing for λ ≤ 1/(∆−1)
where ∆ is the maximum degree of the graph [13].
We can turn the insert/delete Markov chain into the
orbital insert/delete Markov chain M(I(G)) simply
by adding the following fifth step:

5. Sample Xt+1 uniformly at random from its orbit.

By Corollary 4.3 the orbital insert/delete chain for in-
dependent sets is aperiodic, irreducible, and has πλ as
its unique stationary distribution. We can now state
the following theorem concerning the mixing time of
this Markov chain. It relates the graph symmetries to
the mixing time of the chain. The proof of the theorem
is based on a path coupling that is constructed so as
to make the two chains coalesce whenever their respec-
tive states are located in the same orbit. A detailed
and instructive proof can be found in the appendix.

v

w

w

w

v

v

Figure 3: Two independent sets X ∪{v} and X ∪{w}
of the 4x4 grid located in the same orbit. The first
permutation is the reflection on the sketched diagonal
the second a clockwise 90◦ rotation.

Theorem 4.6. Let G = (V,E) be a graph with maxi-
mum degree ∆, let λ be a positive real number, and let
G be an automorphism group for ({0, 1}V , πλ). More-
over, let (X ∪ {v}) ∈ I(G), let (X ∪ {w}) ∈ I(G), let
{v, w} ∈ E, and let ρ = Pr[(X ∪ {v}) /∈ (X ∪ {w})G].
The orbital insert/delete chain M(I(G)) is rapidly
mixing if either ρ ≤ 0.5 or λ ≤ 1/((2ρ− 1)∆− 1).

The theorem establishes the important link between
the graph automorphisms and the mixing time of the
orbital insert/delete chain. The more symmetries the
graph exhibits the larger the orbits and the sooner the
chains coalesce. Figure 3 depicts the 4x4 grid with two
independent sets X∪{v} and X∪{w} with {v, w} ∈ E
and (X ∪ {v}) ∈ (X ∪ {w})G. Since ρ < 1 for nxn
grids, n ≥ 4, we can prove (a) rapid mixing of the
orbital insert/delete chain for larger λ values and (b)
more rapid mixing for identical λ values.

The next corollary follows from Theorem 4.6 and the
simple fact that X ′ ∈ XG for all X ⊆ V,X ′ ⊆ V with
|X| = |X ′| whenever G is the symmetric group on V .

Corollary 4.7. Let G = (V,E) be a graph, let λ be
a positive real number, and let G be an automorphism
group for ({0, 1}V , πλ). If G is the symmetric group
Sym(V ) then M(I(G)) is rapidly mixing with τ(ε) ≤
|V | ln(|V |ε−1).

By analyzing the coupling proof of Theorem 4.6 and,
in particular, the moves leading to states (X ′, Y ′) with
|X ′| = |Y ′| and the probability that X ′ and Y ′ are
located in the same orbit in these cases, it is possible
to provide more refined bounds. Moreover, to capture
the full power of orbital Markov chains, a coupling
argument should not merely consider pairs of states
with Hamming distance 1. Indeed, the strength of the
orbital chains is that, in the presence of symmetries
in the graph topology, there is a non-zero probability
that states with large Hamming distance (up to |V |)
are located in the same orbit. The method presented
here is also applicable to Markov chains known to mix
rapidly for larger λ values than the insert/delete chain
such as the insert/delete/drag chain [13].
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social network model [41]
people 20 50 100 250 500
vertices 1740 10200 40700 251750 1003500
edges 2120 10350 50600 314000 1253000
time [s] 0.04 0.15 0.81 22.5 261.3
features 860 5150 20300 125750 501500
orbs w/o 7 7 7 7 7
orbs w/ 238 1244 6237 30192 78303

kxk grid model
k 20 50 100 250 500

vertices 800 5000 20000 125000 500000
edges 1160 7400 29800 187000 749000
time [s] 0.02 0.03 0.2 0.6 2.5

Table 1: Number of vertices and edges of the colored
graphs, the runtime of Saucy, and the number of
(super-)features of the social network model without
and with 10% evidence.
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Figure 4: From left to right: the 3-grid, the 3-
connected cliques, and the 3-complete graph models.

5 Experiments

Two graphical models were used to evaluate the sym-
metry detection approach. The “Friends & Smok-
ers” Markov logic network where for a random 10%
of all people it is known (a) whether they smoke or
not and (b) who 10 of their friends are [41]. More-
over, we used the kxk grid model, an established and
well-motivated lattice model with numerous applica-
tions [37]. All experiments were conducted on a PC
with an AMD Athlon dual core 5400B 1.0 GHz proces-
sor and 3 GB RAM. Table 1 lists the results for varying
model sizes. Saucy’s runtime scales roughly quadratic
with the number of vertices and it performs better for
the kxk grid models. This might be due to the larger
sets of generators for the permutation groups of the
social network model. Table 1 also lists the number of
features of the ground social network model (features),
the number of feature orbits without (orbs w/o) and
with (orbs w/) 10% evidence.

We proceeded to compare the performance of the or-
bital Markov chains with state-of-the-art algorithms
for sampling independent sets. We used Gap[15], a
system for computational discrete algebra, and the
Orb package[31]1 to implement the sampling algo-

1http://www.gap-system.org/Packages/orb.html
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Figure 5: The results of the three Gibbs samplers for
the 5-grid model (top) and the 6-grid model (bottom).

rithms. The experiments can easily be replicated by
installing Gap and the Orb package and by running
the Gap files available at a dedicated code repository2.
For the evaluation of the sampling algorithms we se-
lected three different graph topologies exhibiting vary-
ing degrees of symmetry:

The k-grid model is the 2-dimensional kxk grid.
An instance of the model for k = 3 is depicted
in Figure 4 (left). Here, the generating set of
the permutation group G computed by Saucy is
{(a c)(d f)(g i), (a i)(b f)(d h)} and |G| = 8. The per-
mutation group G partitions the set {0, 1}9 in 102 or-
bits with each orbit having a cardinality in {1, 2, 4, 8}.
The k-connected cliques model is a graph with k + 1
distinct cliques each of size k − 1 and each con-
nected with one edge to the same vertex. Statisti-
cal relational formalisms such as Markov logic net-
works often lead to similar graph topologies. An in-

2http://code.google.com/p/lifted-mcmc/
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Figure 6: The results of the three Gibbs samplers for
the 5-connected cliques model.

stance for k = 3 is depicted in Figure 4 (center).
Here, the generating set of G computed by Saucy is
{(a g)(b f), (a c)(b d), (a i)(b h)} and |G| = 24. The
permutation group G partitions the set {0, 1}9 in 70
orbits with cardinalities in {1, 4, 6, 12, 24}.
The k-complete graph model is a complete graph with
k2 vertices. Figure 4 (right) depicts an instance for k =
3. Here, the generating set of G computed by Saucy
is {(b c), (b d), (b e), (b f), (b g), (b h), (b i), (a b)} and
|G| = 9! = 362880. The permutation group G parti-
tions the set {0, 1}9 in 10 orbits with each orbit having
a cardinality in {1, 9, 36, 84, 126}.
Saucy needed at most 5 ms to compute the sets of gen-
erators for the permutation groups of the three models
for k = 6. We generated samples of the probability
measure πλ on I(G) for λ = 1 and the three differ-
ent graph topologies by running (a) the insert/delete
chain, (b) the insert/delete/drag chain [13], and (c)
the orbital insert/delete chain. Each chain was started
in the state corresponding to the empty set and no
burn-in period was used. The orbital insert/delete
chain did not require more RAM and needed 50 mi-
croseconds per sample which amounts to an overhead
of about 25% relative to the 40 microseconds of the
insert/delete chain. The 25% overhead remained con-
stant and independent of the size of the graphs. Since
the sampling algorithms create large files with all ac-
cumulated samples, I/O overhead is included in these
times. For each of the three topologies and each of the
three Gibbs samplers, we computed the total variation
distance between the distribution approximated using
all accumulated samples and the true distribution π1.
Figure 5 plots the total variation distance over elapsed
time for the k-grid model for k = 5 and k = 6. The
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Figure 7: The results of the three Gibbs samplers for
the 5-complete graph model.

orbital insert/delete chain (Orbital Gibbs) converges
the fastest. The insert/delete/drag chain (Drag Gibbs)
converges faster than the insert/delete chain (Gibbs)
but since there is a small computational overhead of
the insert/delete/drag chain the difference is less pro-
nounced for k = 6. The same results are observable
for the other graph topologies (see Figures 6 and 7)
where the orbital Markov chain outperforms the oth-
ers. In summary, the larger the cardinalities of the
orbits induced by the symmetries the faster converges
the orbital Gibbs sampler relative to the other chains.

6 Discussion

The mindful reader might have recognized a similarity
to lumping of Markov chains which amounts to parti-
tioning the state space of the chain [5]. Computing the
coarsest lumping quotient of a Markov chain with a bi-
simulation procedure is linear in the number of non-
zero probability transitions of the chain and, hence,
in most cases exponential in the number of random
variables. Since merely counting equivalence classes
in the Pólya theory setting is a #P-complete prob-
lem [18] there are clear computational limitations to
this approach. Orbital Markov chains, on the other
hand, combine the advantages of a compact represen-
tation of symmetries as generating sets of permutation
groups with highly efficient product replacement algo-
rithms and, therefore, provide the advantages of lump-
ing while avoiding the intractable explicit computation
of the partition of the state space.

One can apply orbital Markov chains to other graph-
ical models that exhibit symmetries such as the Ising
model. Since Markov chains in general and Gibbs sam-
plers in particular are components in numerous algo-
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rithms (cf. [43, 20, 38, 19, 23, 3]), we expect orbital
Markov chains to improve the algorithms’ performance
when applied to problems that exhibit symmetries.
For instance, sampling algorithms for statistical rela-
tional languages are obvious candidates for improve-
ment. Future work will include the integration of or-
bital Markov chains with algorithms for marginal as
well as maximum a-posteriori inference. We will also
apply the symmetry detection approach to make exist-
ing inference algorithms more efficient by, for instance,
using symmetry breaking constraints in combinatorial
optimization approaches to maximum a-posteriori in-
ference in Markov logic networks (cf. [39, 32, 33]).

While we have shown that permutation groups are
computable with graph automorphism algorithms for
a large class of models it is also possible to assume cer-
tain symmetries in the model in the same way (condi-
tional) independencies are assumed in the design stage
of a probabilistic graphical model. Orbital Markov
chains could easily incorporate these symmetries in
form of permutation groups.
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Abstract

Learning a Bayesian network structure from
data is an NP-hard problem and thus exact
algorithms are feasible only for small data
sets. Therefore, network structures for larger
networks are usually learned with various
heuristics. Another approach to scaling up
the structure learning is local learning. In
local learning, the modeler has one or more
target variables that are of special interest;
he wants to learn the structure near the tar-
get variables and is not interested in the rest
of the variables. In this paper, we present
a score-based local learning algorithm called
SLL. We conjecture that our algorithm is the-
oretically sound in the sense that it is optimal
in the limit of large sample size. Empirical
results suggest that SLL is competitive when
compared to the constraint-based HITON al-
gorithm. We also study the prospects of con-
structing the network structure for the whole
node set based on local results by present-
ing two algorithms and comparing them to
several heuristics.

1 INTRODUCTION

A Bayesian network is a representation of a joint prob-
ability distribution. It consists of two parts: the struc-
ture and the parameters. The structure of a Bayesian
network is represented by a directed acyclic graph
(DAG) that expresses the conditional independence re-
lations among variables and the parameters determine
the local conditional distributions for each variable.

Structure learning in Bayesian networks, that is, find-
ing a DAG that fits to the data, has drawn lots of
interest in recent years. There are two rather dis-
tinct approaches to structure learning. In score-based
approach (Cooper and Herskovits, 1992; Heckerman

et al., 1995) each DAG gets a score based on how well
it fits to the data and the goal is to find the DAG
that maximizes the score. On the other hand, the
constraint-based approach (Pearl, 2000; Spirtes et al.,
2000) is based on testing conditional independencies
among variables and constructing a DAG that repre-
sents these relations. Both approaches are compatible
in the sense that (under some general assumptions),
no matter which approach one uses, exact algorithms
converge to the same DAG when the number of samples
tends to infinity.

Structure learning in Bayesian networks is NP-hard
(Chickering, 1996; Chickering et al., 2004). Due to the
NP-hardness of the problem, it is unlikely that there are
exact algorithms that run in polynomial time. Indeed,
the fastest exact algorithms (Silander and Myllymäki,
2006) run in exponential time. Although there have
been several attempts to scale up the exact algorithms
(de Campos et al., 2009; Parviainen and Koivisto, 2009;
Jaakkola et al., 2010; Cussens, 2011; Malone et al.,
2011), these methods quickly become infeasible with
larger datasets.

As the exact algorithms do not work for large data
sets, one often has to resort to heuristics. A common
strategy is to use different variants of greedy search. An
alternative approach to the problem is local learning.
When one has a large data set, often it is a case that
all variables are not equally interesting. One might
have one or a handful of target variables and the goal
is to learn the structure only in the vicinity of the
targets. An example for a problem where local learning
is feasible is prediction. If we know the Markov blanket
of a target variable, that is, its parents, its children
and the parents of its children, the remaining variables
do not give any more information. Thus, if it is known
that we are going to predict the values of only a handful
of variables, we can just learn their Markov blankets
and ignore the structure of the rest of the network.

Local learning is not a new approach. There have
been several studies especially on constraint-based lo-
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cal learning (Nägele et al., 2007; Aliferis et al., 2010a,b).
These studies have shown that local learning can be a
powerful tool in practice. In this paper we study the
prospects of the score-based local learning of Bayesian
network structures. We present a score-based local
learning algorithm (SLL) that is a variant of the gener-
alized local learning (GLL) framework (Aliferis et al.,
2010a). Assuming a consistent scoring criterion is used,
we conjecture that our algorithm is theoretically sound
in the same sense as greedy equivalence search (GES)
(Chickering, 2002) and HITON (Aliferis et al., 2010a),
that is, it is guaranteed to find the true Markov blan-
ket of the target node when the sample size tends to
infinity.

Optimality guarantees in the limit or lack thereof do not
tell anything about results with finite sample size. Thus,
we conducted experiments and compared our algorithm
to other heuristics. Based on the experiments, we found
our algorithm promising.

2 PRELIMINARIES

2.1 BAYESIAN NETWORKS

The structure of a Bayesian network is represented by
a directed acyclic graph (DAG). Formally, a DAG is a
pair (N,A) where N is the node set and A is the arc set.
If there is an arc from u to v, that is, uv ∈ A, we say
that u is a parent of v and v is a child of u. If v is either
a parent or a child of u, they are said to be neighbors.
Further, if there is a directed path from u to v in A
then v is a descendant of u. Nodes v and u are are said
to be spouses of each other if they have a common child
and there is no arc between v and u. We denote the set
of the parents of a node v in A by Av. Further, we use
HA(v) and SA(v) to denote the sets of the neighbors
and spouses of v in A, respectively. When the node set
is clear from the context, we identify a DAG by its arc
set A. The cardinality of N is denoted by n.

Each node v corresponds to a random variable and the
DAG expresses conditional independence assumptions
between variables. Random variables u and v are said
to be conditionally independent in distribution p given
a set S of random variables if p(u, v|S) = p(u|S)p(v|S).
A DAG contains or represents a joint distribution of
the random variables if the joint distribution satisfies
the local Markov condition, that is, every variable is
conditionally independent of its non-descendants given
its parents. Such a distribution can be specified using
local conditional probability distributions (CPD) which
specify the distribution of a random variable given its
parents Av. CPDs are usually taken from a parame-
terized class of probability distributions, like discrete
or Gaussian distributions. Thus, the CPD of variable

v is determined by its parameters θv; the type and
the number of parameters is specified by the particular
class of probability distributions. The parameters of
a Bayesian network are denoted by θ which consists
of the parameters of each CPD. Finally, a Bayesian
network is a pair (A, θ).

A distribution p is said to be faithful to a DAG A if all
conditional independencies in p are implied by A. We
say that a DAG Ap is a perfect map of a distribution
p if Ap contains p and p is faithful to Ap. By p[Z] we
denote the marginal distribution of p on set Z.

The conditional independencies implied by a DAG can
be extracted using a d-separation criterion; this is
equivalent to local Markov condition. The skeleton
of a DAG A is an undirected graph that is obtained
by replacing all directed arcs uv ∈ A with undirected
edges between u and v. A path in a DAG is a cycle-free
sequence of edges in the corresponding skeleton. A
node v is a head-to-head node along a path if there are
two consecutive arcs uv and wv on that path. Nodes v
and u are d-connected by nodes Z along a path from v
to u if every head-to-head node along the path is in Z
or has a descendant in Z and none of the other nodes
along the path is in Z. Nodes v and u are d-separated
by nodes Z if they are not d-connected by Z along any
path from v to u. If Ap is a perfect map of p then v
and u are conditionally independent give Z in p if and
only if v and u are d-separated by Z in Ap. If v and
u are conditionally independent in p given Z we use
notation v ⊥⊥p u|Z.
The Markov blanket of node v is the smallest node set
S such that v is conditionally independent of all other
nodes given S. The Markov blanket of node v consists
of the parents of v, the children of v, and the spouses
of v.

Nodes s, t, and u form a v-structure in a DAG if s
and t are spouses and u is their common child. A
v-structure is denoted by (s, u, t). Two DAGs are
said to be Markov equivalent if they can contain the
same set of distributions, or equivalently, imply the
same set of conditional independence statements. It
can be shown that two DAGs are Markov equivalent
if and only if they have the same skeleton and same
v-structures (Verma and Pearl, 1990).

2.2 CONSISTENT SCORING CRITERION

Score-based structure learning methods in Bayesian
networks assign a score to each DAG based on how well
the DAG fits to the data according to some statistical
principle. A function f(A,D) that assigns the score
to a DAG A based on the data D is called a scoring
criterion. A scoring criterion is decomposable if the
score of a DAG is a sum of local scores that only depend
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on a node and its parents. A local score function is
denoted by f(v,Av, Dv, DAv ), where Dv and DAv are
the data on a node v and a node set Av, respectively.
Now, a decomposable score for a DAG A can be written
as

f(A,D) =
∑

v∈N

f(v,Av, Dv, DAv ).

Let the data D consists of m independent and identi-
cally distributed (i.i.d.) samples from a distribution p
on N . A scoring criterion f is said to be consistent if
in the limit as m grows, the following two properties
hold:

1. If A′ contains p and A does not, then f(A′, D) >
f(A,D).

2. If A′ and A both contain p, and A′ has fewer
parameters, then f(A′, D) > f(A,D).

A related and in our case more useful property is local
consistency. Let A be any DAG and A′ be the DAG
that results from adding the arc uv to A. A scoring
criterion f is said to be locally consistent if in the limit
as m grows, the following two properties hold for all u
and v:

1. If u 6⊥⊥p v|Av, then f(A′, D) > f(A,D).

2. If u ⊥⊥p v|Av, then f(A′, D) < f(A,D).

Intuitively, adding an arc that eliminates an inde-
pendence constraint that does not hold in the data-
generating distribution increases the score, and adding
an arc that does not eliminate such a constraint de-
creases the score.

A scoring criterion is said to be score equivalent if two
Markov equivalent DAGs always have the same score.
With a score equivalent scoring criterion one can learn
a structure of a Bayesian network up to an equivalence
class but cannot distinguish the DAGs inside the class.

For example, commonly used BDeu score is locally con-
sistent (Chickering, 2002) and score equivalent (Heck-
erman et al., 1995).

2.3 STRUCTURE DISCOVERY PROBLEM

The problem of structure discovery in Bayesian net-
works is to find, given data D, a DAG that in some
sense is the best representation of the data. We call
this global learning. In score-based approach the good-
ness of a DAG is measured by the score f(A,D). In
constraint-based approach one would like to find a DAG
that is a perfect map of the data-generating distribu-
tion.

In the local learning problem the output is the neighbor
and/or spouse sets for a target node, not a DAG. The
goodness of the result can be measured by comparing
learned neighbor and spouse sets to the corresponding
sets in the Ap, the perfect map of the data-generating
distribution. Note that this comparison can be made
only if Ap is known.

3 LOCAL LEARNING
ALGORITHM

In this section, we present a score-based local learning
algorithm algorithm (SLL) that finds the Markov blan-
ket of a given target node. SLL works in two phases:
First, one learns the neighbors of the target and then
the rest of the Markov blanket. SLL is a score-based
variant of the constraint-based local learning algorithm
by Aliferis et al. (2010a,b); the main difference be-
tween SLL and the algorithm by Aliferis et al. is that
they use independence tests to identify the neighbors
and spouses whereas we recognize them from optimal
Bayesian networks. In this section, we also analyze the
behavior of the algorithm in the limit. We also consider
constructing a Bayesian network for the whole node
set using the local structures that have been found.

3.1 FINDING PARENTS AND CHILDREN

We start by learning the potential neighbors of a target
node. The idea of the algorithm is as follows. The
input of the algorithm consists of the data D on the
node set N and a target node t ∈ N . During the ex-
ecution of the algorithm, we update two sets: Set O
consists of the nodes that have not been analyzed yet
and set H consists of nodes that are currently consid-
ered as potential neighbors of t. In the beginning, set
H is empty and O contains all nodes but t. After the
initialization, nodes in O are considered one by one:
One learns an optimal DAG on the target, the current
set of its potential neighbors and the new node under
consideration. For the structure learning we use a sub-
routine OptimalNetwork which returns the highest
scoring DAG on a given node set. The subroutine can
use the dynamic programming algorithm of Silander
and Myllymäki (2006) or any other exact algorithm.
After an optimal DAG is found, the nodes that are the
neighbors of t in that particular DAG form a new set
of potential neighbors and the rest of the nodes are
discarded. After all nodes are either discarded or in
the set of potential neighbors, the set of the potential
neighbors is returned.

The pseudocode of the above procedure is shown in
Algorithm 1.

Next, we will show that if the data was generated from
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Algorithm 1 FindPotentialNeighbors
Input: Data D on node set N , a target node t ∈ N .
Output: The potential neighbors of t.
1: Initialization: O ← N \ {t}, H(t)← ∅
2: while O is nonempty do
3: Choose v ∈ O
4: O ← O \ {v}
5: Z ← {t, v} ∪H(t)
6: A← OptimalNetwork(Z,DZ)
7: H(t)← HA(t)
8: end while
9: return H(t)

a distribution p, Algorithm 1 is guaranteed to find all
correct neighbors, that is, all nodes that are neighbors
of t in Ap will be included in H(t) in the limit. The
guarantee holds under the following assumptions.
Assumption 1. The data D consists of i.i.d. samples
from a distribution p that is faithful to a DAG Ap.
Assumption 2. The procedure OptimalNetwork
uses a locally consistent and score equivalent scoring
criterion.
Lemma 3. Let HAp(t) be the neighbors of the target
t in Ap. When Assumptions 1 and 2 hold, Algorithm 1
will return a set H(t) such that HAp(t) ⊆ H(t).

Proof. If nodes t and v are not conditionally indepen-
dent in p given any set X ⊆ N \ {t, v}, then any
Bayesian network that contains p must have an arc
between t and v. Thus, if we have two networks A
and A′ on Y ∪{t, v} such that A′ has an arc between t
and v and A has not and otherwise they are the same,
then by the local consistency, A′ has higher score than
A. Thus, the highest scoring network must have an
arc between t and v. As the above reasoning applies
to every set Y ⊆ N \ {t, v}, v will be in H(t) when
Algorithm 1 stops.

Based on the previous lemma we know that if a node v
is a neighbor of a node t in Ap, then it will be in H(t).
However, we have no guarantees that no nodes that are
non-adjacent to t in Ap are included in H(t). Indeed,
Aliferis et al. (2010a) point out that if we have a perfect
map Ap described in Figure 1 an extra node might be
added to H(t). To see this, assume that t is our target
and its true neighbors u and s are in H(t) and w has
been discarded. Then t 6⊥⊥p v|X for all X ⊆ {u, s} and
thus, by local consistency, adding an arc between t and
v always increases the score and therefore it is always
included in the optimal DAG.

The neighbor relation is symmetric: if v is a child of t
then t is a parent of v. This allows us to try to remove

Figure 1: A DAG where non-adjacent nodes t and v
are not conditionally independent given any subset of
the neighbors of t.

extra nodes from H(t) using a simple symmetry cor-
rection in similar fashion as Aliferis et al. (2010a): t
and v are neighbors in Ap only if both v is a potential
neighbor of t and t is a potential neighbor of v. Algo-
rithm 2 uses symmetry correction to find the neighbors
of a target node.

Algorithm 2 FindNeighbors
Input: Data D on node set N , a target node t ∈ N .
Output: The neighbors of t.
1: H∗(t)← FindPotentialNeighbors(D, t)
2: for all v ∈ H∗(t) do
3: H(v)← FindPotentialNeighbors(D, v)
4: if t /∈ H(v) then
5: H∗(t)← H∗(t) \ {v}
6: end if
7: end for
8: return H∗(t)

To analyze the optimality of the algorithm, we use
the below lemma which shows that if t and v are not
neighbors in Ap but they are dependent given every
subset of the neighbors of t then they are conditionally
independent given some subset of the neighbors of v.
Formally, let EAp(t) be the set consisting of the nodes
v ∈ N \ {t} such that t 6⊥⊥p v|X for all X ⊆ HAp(t).
Lemma 4 (Aliferis et al. (2010a), Lemma 2). If v ∈
EAp(t) \HAp(t), then t /∈ EAp(v) \HAp(v).

However, it is not clear whether the output of Algo-
rithm 1 is a subset of the the nodes that are condition-
ally dependent on t given any subset of the neighbors
of t. As we are not aware of any counterexamples, we
conjecture the follows.
Conjecture 5. Let H(t) be the output of Algorithm 1.
Then H(t) ⊆ EAp(t).

The next lemma shows the optimality of Algorithm 2
in the limit assuming Conjecture 5 holds.
Lemma 6. Let HAp(t) be the neighbors of the target
t in Ap. When Assumptions 1 and 2 and Conjecture 5
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hold, Algorithm 2 will return a set H∗(t) such that
H∗(t) = HAp(t).

Proof. First, let us prove that HAp(t) ⊆ H∗(t). By
Lemma 3, HAp(t) ⊆ H(t) and HAp(v) ⊆ H(v) for all
v. Thus, if v ∈ HAp(t) then v ∈ H(t) and t ∈ H(v).

Let us prove that H∗(t) ⊆ HAp(t). By Conjecture 5
we observe that H(t) ⊆ EAp(t). Suppose that we have
nodes t, v ∈ N such that v ∈ H(t) and t ⊥⊥p v|X
for some X ⊆ N \ {t, v}. Therefore, it must be that
v ∈ EAp(t) and v /∈ HAp(t). Thus, v ∈ EAp(t)\HAp(t).
By Lemma 4, we have that t /∈ EAp(v) \HAp(v). By
symmetry, t /∈ HAp(v) and thus t /∈ EAp(v). Therefore,
t /∈ H(v) and Algorithm 2 does not include t and v as
neighbors of each other.

3.2 FINDING THE MARKOV BLANKET

Learning the spouses of the target t is quite similar to
the learning the neighbors of t. In addition to the data
D and target node t we take as input the set H∗(t),
learned by Algorithm 2, consisting of the neighbors of t.
The set S(t) will consist the potential spouses of t. As
all potential spouses are neighbors of a neighbor of t,
we need to go through only a subset of all nodes. The
set of neighbors H∗(t) is fixed and we keep updating
the set S(t). All nodes that have a common child with
t and are not neighbors of t are kept in and the rest
are discarded. Again, the nodes that remain in S(t)
once all nodes have been considered, are considered
potential spouses of t.

The procedure is summarized in Algorithm 3.

Algorithm 3 FindPotentialSpouses
Input: Data D on node set N , a target node t ∈ N ,

neighbors of the target H∗(t).
Output: Potential spouses of t.
1: Find set H ′: the neighbors of the nodes in H∗(t).
2: Initialization: O ← H ′ \ (H∗(t) ∪ {t}), S(t)← ∅
3: while O is nonempty do
4: Choose v ∈ O
5: O ← O \ {v}
6: Z ← {t, v} ∪H∗(t) ∪ S(t)
7: A←OptimalNetwork(Z,DZ)
8: S(t)← SA(t)
9: end while

10: return S(t)

The following lemma shows that the set S(t) will not
contain any nodes that are not spouses of the target t
in Ap.
Lemma 7. Let SAp(t) be the spouses of the target t in
Ap. When Assumptions 1 and 2 and Conjecture 5 hold,

Algorithm 3 will return a set S(t) such that S(t) ⊆
SAp(t).

Proof. Let t be the target, u its neighbor and v a
neighbor of u. A spouse v is added to S(t) only when
there is a v-structure (t, u, v) in A.

Suppose that there is no v-structure (t, u, v) in Ap.
Then t 6⊥⊥p v|X for all X ⊆ N \ {t, u, v}. Now, if
a DAG A has the v-structure (t, u, v) then At does
not contain u and thus t 6⊥⊥p v|At. This means that,
by local consistency, adding an arc vt to A increases
the score. Symmetrically, Av does not contain u and
by local consistency, adding an arc tv increase the
score. Since it is always possible to add at least one
of these arcs without introducing a cycle, A cannot be
the optimal graph.

Lemma 7 does not guarantee that all spouses are found
(in the limit) using Algorithm 3. Indeed, Figure 1 shows
an example where Algorithm 3 leaves one spouse out.
Let t be our target. Then, its neighbors are s and u.
Consider learning an optimal DAG on {s, t, u, v}. We
notice that t and v are not conditionally independent
given any subset of {s, u} and thus by local consistency
the optimal network must contain an arc between t
and v. Therefore, v cannot be part of a v-structure
and is discarded. However, in the original graph v is
involved in a v-structure (t, s, v). To find spouses, we
use Algorithm 4.

Algorithm 4 FindSpouses
Input: Data D on node set N , a target node t ∈ N ,

neighbors of the target H∗(t), neighbors of the
neighbors of the target H∗(v) for all v ∈ H∗(t).

Output: The spouses of t.
1: S∗(t)← FindPotentialSpouses(D, t,H∗(t))
2: for all v ∈ N \ ({t} ∪H∗(t)) do
3: S(v)← FindPotentialSpouses(D, v,H∗(v))
4: if t ∈ S(v) then
5: S∗(t)← S∗(t) ∪ {v}
6: end if
7: end for
8: return S∗(t)

It is not known whether Algorithm 4 is guaranteed to
find all spouses in the limit. Finding a counterexample
seems difficult and thus we conjecture as follows.
Conjecture 8. Let SAp(t) be the spouses of the target
t in Ap. When Assumptions 1 and 2 hold, Algorithm 4
will return a set S∗(t) such that S∗(t) = SAp(t).

Once we have found the neighbors H∗(t) and spouses
S∗(t) of a target node t, the Markov blanket is simply
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H∗(t) ∪ S∗(t). The following conjecture that holds if
Conjectures 5 and 8 hold summarizes the theoretical
guarantees.
Conjecture 9. When Assumptions 1 and 2 hold, the
local learning algorithm is optimal in the limit, that
is, when the sample size m approaches infinity the
algorithm always finds the correct Markov blanket for
every target.

3.3 TIME AND SPACE REQUIREMENT

In both Algorithm 1 and 3, the while loop is executed
at most n− 1 times. The time and space requirement
inside the loop is dominated by the procedure Opti-
malNetwork. On a node set Z it runs in O(|Z|22|Z|)
time and O(|Z|2|Z|) space, where in the worst case
|Z| = O(n). Thus, these algorithms have a worst
case time requirement O(n32n) and space requirement
O(n2n). In practice, however, the networks are often
relatively sparse and the running times are significantly
lower than in the worst case; see the experiments. Al-
gorithms 2 and 4 call Algorithms 1 and 3 at most n
times, respectively. Thus, the total time requirement
is at most O(n42n).

The above algorithms were presented for computing
the Markov blanket for a single target. If one computes
Markov blankets for all nodes, one can store and reuse
the the potential neighbor and spouse sets. Thus, in
the worst case the Markov blanket for all nodes can be
found in O(n42n) time.

3.4 FROM LOCAL TO GLOBAL

Above we have learned Markov blankets of target nodes.
Next, we introduce two methods to construct a DAG
on the whole node set based on the local results.

The first method uses a constraint-based approach. As
mentioned in the previous section, when computing the
local neighbor sets we do not need to do the symmetry
correction separately for each node. Instead, we can
first find the potential neighbors for each node and then
get the actual neighbors and build the skeleton using
AND-rule; an edge between u and v is added to the
skeleton only if both u and v are potential neighbors of
each other. Similar way we can also skip the separate
symmetry checks when finding the spouses of each node.
As a result, we can use the procedure SLL+C described
in Algorithm 5 to construct a DAG.

On lines 1–4 of the Algorithm 5 the skeleton E is built
and on lines 5–19 the v-structures are directed; this
specifies the Markov equivalence class of the DAG. To
direct the rest of the arcs which is done on line 20 we
can use the rules listed in Pearl (2000). Note that in
practice there may be conflicts between v-structures.

Algorithm 5 SLL+C
Input: Data D on node set N .
Output: Directed acyclic graph A.
1: for all v ∈ N do
2: H(v)← FindPotentialNeighbors(D, v)
3: end for
4: E ← {{u, v} | v ∈ H(u) and u ∈ H(v)}
5: for all v ∈ N do
6: H∗(v)← {u | {v, u} ∈ E}
7: S(v)← FindPotentialSpouses(D, v,H∗(v))
8: end for
9: A← ∅

10: for all v ∈ N do
11: for all u ∈ S(v) do
12: for all w is a common child of v and u do
13: if possible without introducing cycles then
14: remove {v, w} and {u,w} from E
15: add vw and uw to A
16: end if
17: end for
18: end for
19: end for
20: direct the rest of the edges without introducing

cycles or (if possible) additional v-structures
21: return A

With a finite sample size, one v-structure could, for
example, force an arc to be oriented from u to v and
another v-structure from v to u.

Another way to construct a DAG from the local re-
sults is to use a heuristic such as greedy search with
some constraints imposed by the local neighbors. As
we will see later in the experiments section, this often
leads to a structure with better score compared to the
constraint-based approach. Another advantage is that
there is no need to find the spouses of the nodes, which
is often the more computationally intensive phase in
SLL. Algorithm 6 describes SSL+G procedure which
uses OR-rule to build a skeleton E of potential edges
from the local neighbor sets. Then it calls a greedy
search as a subroutine, which may only add an arc
if the corresponding edge is present in the skeleton.
This approach is similar to the MMHC algorithm by
Tsamardinos et al. (2006a) and comes with no correct-
ness guarantees in the limit.

4 EXPERIMENTS

We implemented the SLL algorithm as well as both
SLL+C and SLL+G algorithms in C++. As Optimal-
Network subroutine we used the dynamic program-
ming algorithm by Silander and Myllymäki (2006) with
fallback to greedy equivalence search (GES) (Chicker-
ing, 2002) if the number of nodes in the input is larger
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Algorithm 6 SLL+G
Input: Data D on node set N .
Output: Directed acyclic graph A.
1: for all v ∈ N do
2: H(v)← FindPotentialNeighbors(D, v)
3: end for
4: E ← {{u, v} | v ∈ H(u) or u ∈ H(v)}
5: A← GreedySearch(D,E)
6: return A

than 20. In the dynamic programming we limited
the maximum in-degree of a node to 5. The imple-
mentation is available at http://www.cs.helsinki.
fi/u/tzniinim/uai2012/. These algorithms were
compared against several state-of-the-art algorithms,
namely the constraint-based HITON (Aliferis et al.,
2010a) for local structure discovery and greedy search
(GS), greedy equivalence search (GES) and the max-
min hill-climbing (MMHC) (Tsamardinos et al., 2006a)
for global structure discovery. The association test used
by HITON and MMHC was the built in Assoc function
of the implementation, that is, G2 test according to
Aliferis et al. (2010a) and Tsamardinos et al. (2006a).
For HITON the maximum conditioning set size was
set to 5. BDeu prior with equivalent sample size 1 was
used in all algorithms when applicable.

In our experiments we used discrete data generated
from real world Bayesian networks. We chose a subset
of (smaller) data sets which were used by Tsamardinos
et al. (2006a) and are freely available online1. These
are listed in Table 1. Some of the networks have been
generated by tiling 3, 5 or 10 copies of the original
network using a method by Tsamardinos et al. (2006b).
For each network we had 10 independently generated
random datasets containing 500, 1000 and 5000 i.i.d.
samples.

To accommodate to limited space we chose a repre-
sentative sample of four of the networks for which we
have figures: Alarm5, Child10, Insurance5, and
Hailfinder. The figures for the rest of the networks
are available as an online appendix.

4.1 LOCAL LEARNING

In the local learning experiments the goal was to learn
both the neighbor sets and the Markov blankets for
all nodes. We compared SLL to the constraint-based
HITON from Causal Explorer toolkit2 by Aliferis et al.
(2011).

For both the neighbor sets and the Markov blankets
1http://www.dsl-lab.org/supplements/mmhc_paper/

mmhc_index.html
2http://www.dsl-lab.org/causal_explorer/

max
Num in/out domain

Network vars -degree size
Alarm 37 4 / 5 2–4
Alarm3 111 4 / 5 2–4
Alarm5 185 4 / 6 2–4
Barley 48 4 / 5 2–67
Child 20 2 / 7 2–6
Child3 60 3 / 7 2–6
Child5 100 2 / 7 2–6
Child10 200 2 / 7 2–6
Hailfinder 56 4 / 16 2–11
Insurance 27 3 / 7 2–5
Insurance3 81 4 / 7 2–5
Insurance5 135 5 / 8 2–5

Table 1: Bayesian networks used in the experiments.
Information from Tsamardinos et al. (2006a).

we measured the local Hamming distance between the
learned set of nodes and the true set of nodes. The
Hamming distance of two sets A and B is the number
of elements which are contained in only one of the sets,
that is, |A\B|+|B\A|. For each data set we computed
the Sum of Local Hamming Distances over all possible
target nodes, call it SLHD.

Figure 2 shows the average SLHDs as a function of
the size of the data set for learning the neighbor nodes.
As expected, the accuracy of the learned neighbor set
improves as the number of data samples increases. In
most of the cases SLL beats HITON. The average
SLHDs for learning the Markov blankets are shown in
Figure 3. The results are similar to those for neighbor
nodes.

4.2 GLOBAL LEARNING

In the global learning experiments the goal was to learn
the entire structure (DAG) of the underlying Bayesian
network. We considered both SLL+C and SLL+G
heuristics. As the greedy search algorithm we used the
steepest ascent hill-climbing with a TABU list of the
last 100 structures and a stopping criterion of 15 steps
without improvement in the maximum score. These
parameters were chosen to be same as in the MMHC
and greedy search implementation by Tsamardinos et al.
(2006a). We compared our algorithms to greedy search
(GS) and max-min hill-climbing (MMHC) from Causal
Explorer toolkit as well as greedy equivalent search
(GES) from TETRAD software3.

Some of the algorithms return a DAG but the others
return a PDAG, a partially directed acyclic graph which

3http://www.phil.cmu.edu/projects/tetrad/
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Figure 2: Average SLHD (Sum of Local Hamming Distances) between the returned neighbor sets (parents and
children) and the true neighbor sets for different data sizes (500, 1000 and 5000 samples). Standard deviations
are shown as vertical bars.
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Figure 3: Average SLHD between the returned Markov blankets and the true Markov blankets.

corresponds to a Markov equivalence class. Compared
to a DAG, in the corresponding PDAG the edges which
are not oriented the same way in all members of the
class are undirected. Since the DAGs belonging to a
same equivalence class cannot be distinguished using
score equivalent scores, we converted all returned DAGs
to PDAGs and compared the PDAGs. If the algorithm
failed (i.e. did not return a valid DAG) the run was
ignored. This only affected GES, which failed to return
an acyclic graph in several runs.

We used two measures the evaluate the goodness of the
PDAGs returned by the algorithms: normalized BDeu
score and Structural Hamming Distance from the true
structure. The normalized BDeu score was obtained by
computing the BDeu score with equivalent sample size
1 for a DAG extension of the PDAG and dividing the
result by the score of the true structure; the lower the
normalized score, the better the structure fits to the
data. Average normalized scores are shown in Figure 4.
The basic greedy search seems to do surprisingly well,
even compared to the GES. For some networks SLL+G
works better than MMHC, for other it is the other way
around. SLL+C loses to the other methods in most of
the cases.

The Structural Hamming Distance (SHD) between two
PDAGs is defined as the number of edges which are
missing/extra or of wrong type (reversed or directed in
one PDAG and undirected in the other). We measured
the distances between the resulting PDAGs and the

true structures. Figure 5 shows the average SHDs.
Compared to the observations for scores, here SLL+C
performs clearly better and a basic greedy search much
worse.

4.3 TIME CONSUMPTION

Figure 6 shows the average running times. For local
learning the times include learning both the neighbors
and the Markov blankets for all nodes. As in SLL+C
the most of the time is spent in local learning part
which is the same as running the SLL algorithm for all
nodes, these times are combined. The times for HITON
are not directly comparable to SLL since it does the
symmetry correction for each node separately. In spite
of this extra work, HITON is often not any slower than
SLL. Also for global learning the rival algorithms are
usually faster than SLL+G and SLL+C.

5 DISCUSSION

In this paper we have studied prospects of score-based
local learning. We have conjectured that the score-
based local learning provides same the theoretical guar-
antees as greedy equivalence search (GES) (Chickering,
2002) and constraint-based local learning (Aliferis et al.,
2010a). A natural avenue for future research is to prove
these guarantees or lack thereof.

Our experiments suggest that our method provides
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a competitive alternative for constraint-based local
learning. Our algorithm seems to often find local neigh-
borhoods more accurately than the competitor. How-
ever, as a downside our algorithm usually consumes
significantly more time. We hope that our algorithm
could bridge the gap between exact algorithms and
constraint-based local learning by providing a way to
trade off between accuracy and scalability. The local-
to-global approach seem to perform less well compared
to various other heuristics. However, in some data sets
local-to-global algorithms outperformed all benchmarks
in structural Hamming distance especially when there
was lots of data. This suggests that with further devel-
opment, score-based local-to-global heuristic could be
competitive in certain types of networks.
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Abstract

A nonparametric approach for policy learn-
ing for POMDPs is proposed. The approach
represents distributions over the states, ob-
servations, and actions as embeddings in
feature spaces, which are reproducing ker-
nel Hilbert spaces. Distributions over states
given the observations are obtained by ap-
plying the kernel Bayes’ rule to these distri-
bution embeddings. Policies and value func-
tions are defined on the feature space over
states, which leads to a feature space expres-
sion for the Bellman equation. Value itera-
tion may then be used to estimate the op-
timal value function and associated policy.
Experimental results confirm that the correct
policy is learned using the feature space rep-
resentation.

1 Introduction

Partially Observable Markov Decision Processes
(POMDPs) are general models for sequential control
problems in partially observable environments, in
which an agent executes an action under uncertainty
while reward delivery and state transitions vary
depending on the state and action. The objective
is to find an optimal policy that maximizes a value
function defined on beliefs (distributions over states),
and determined by the reward function. When the
value is the expected sum of discounted rewards, the
optimal policy and the optimal value function are
computed by solving a Bellman equation. Solutions
to the Bellman equation are generally very difficult to
obtain, with a number of approaches being employed.
These include tractable parametric models of the sys-
tem (parametric POMDPs [Poupart et al., 2006,
Even-dar, 2005]); Monte Carlo methods for
more complex models (Monte Carlo POMDPs

[Silver and Veness, 2010, Thrun, 2000]); and methods
that take advantage of the piece-wise linear and con-
vex (PWLC) property (PBVI [Pineau et al., 2003],
Perseus [Spaan and Vlassis, 2005], HSVI
[Smith and Simmons, 2004]), where these last ap-
proaches use the fact that value functions computed
by finite-step value iteration algorithms are PWLC
in the beliefs [Sondik, 1971, Porta. et al., 2006]. All
these methods have drawbacks, however: parametric
models can cause bias errors if they oversimplify,
Monte Carlo sampling methods can be computation-
ally costly, and PWLC-based methods require the
observations and actions to be discrete.

Our nonparametric approach is based on a series
of recent works in which probability distributions
are represented as embeddings in reproducing ker-
nel Hilbert spaces (RKHSs) [Fukumizu et al., 2008,
Gretton et al., 2007, Gretton et al., 2012]. Proba-
bility distributions can be embedded as points in
RKHSs, and expectations of RKHS functions may
be obtained as inner products with these em-
beddings, using the kernel trick. For a suffi-
ciently rich RKHS (i.e., a characteristic RKHS),
every probability distribution has a unique em-
bedding, and the distance between embeddings
is a metric on distributions [Fukumizu et al., 2008,
Sriperumbudur et al., 2010]. Recently, inference
methods which make use of the embeddings have
been proposed, including for Hidden Markov Mod-
els [Song et al., 2009, Song et al., 2010], and be-
lief propagation [Song et al., 2010, Song et al., 2011].
More recently, the embeddings have been used
in performing value iteration and optimal pol-
icy learning in Markov decision processes (MDPs)
[Grunewalder et al., 2012]; and the Kernel Bayes’ Rule
(KBR) [Fukumizu et al., 2011] was proposed, which
updates a prior distribution embedding via feature
space operations to obtain a posterior embedding.

In this paper, we propose kernel POMDPs
(kPOMDPs), a new approach to solving the Bellman
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equations and determining policy, based on a non-
parametric model defined in appropriate RKHSs. All
probability distributions required for the algorithm
are represented as embeddings in RKHSs, including
the beliefs over the states, the transition models, the
observation models, and the predictive distributions
over subsequent states given actions, observations,
and current beliefs. These embeddings are updated
sequentially based on actions and observations.
Likewise, value functions are defined over feature
representations of states, and policies map RKHS
representations of states to actions, which leads to an
expression for the Bellman equation in feature space.

We use the feature representation of the Bellman
equations to define a value iteration algorithm for
POMDPs, which directly estimates both the expected
immediate rewards and expected values of posterior
beliefs in feature space. As in the earlier work
cited above, expectations are represented by inner
products in respective state and observation feature
spaces, and can be efficiently computed using the ker-
nel trick. While the original Bellman operator has
contractive and isotonic properties, i.e., the original
value iteration is guaranteed to converge monotoni-
cally [Porta. et al., 2006], the resulting kernel Bellman
operator does not. That said, these properties can be
enforced following a simple correction, as proposed by
[Grunewalder et al., 2012]. Approaches from the clas-
sical POMDP literature for initializing and enhancing
efficiency can be applied, including ways to set initial
values over the state feature space, and pruning meth-
ods for action edges.

Since kPOMDPs are nonparametric, the embeddings
of the distributions used in the algorithm are learned
from training samples. Note that in training, we must
have access to samples from the hidden state, although
for the test phase no such observations are necessary.
This setting is reasonable in cases where hidden states
are relatively costly to obtain: while it might be possi-
ble to observe them initially when learning the system
dynamics, we would not have access to them during
the value iteration phase, when learning an optimal
policy.

Advantages of kPOMDPs include

• kPOMDPs can handle complex distributions over
states and observations, since kPOMDPs are non-
parametric.

• kPOMDPs can handle a wide variety of data
types, as RKHS kernels have been defined on
many domains: these include discrete, continu-
ous, and structured data.

• kPOMDPs can be applied to high-dimensional

POMDPs, since the computation scales with
training sample size, and not with state and
observation dimensionality. The convergence of
the distribution embedding is at a rate indepen-
dent of the dimension of the underlying space
[Fukumizu et al., 2011, Gretton et al., 2012].

Our experiments confirm that the proposed kernel
value iteration algorithm learns the correct policy on
POMDP benchmark tasks.

This paper is organized as follows. We introduce the
notations for POMDPs in the next section, and review
recent kernel methods for probability distributions in
Section 3. We present kernel POMDPs in Section 4,
where Bellman equations in feature spaces (Subsec-
tion 4.1), the empirical expression and value iteration
algorithms (Subsection 4.2) are shown. Experiments
follow for an online planning algorithm.

2 POMDPs

A POMDP is specified by a tuple ⟨S,A, T,R,O, Z⟩
where S is the set of states, A is the set of actions,
T : S × A × S → [0,∞)1 is the transition function
where T (s, a, s′) = Pr(s′|s, a) represents the distribu-
tion of the next state s′ given an action a in a state
s, R : S × A → R is the reward function given an
action a in a state s, O is the set of observations,
Z : S ×O → [0,∞)2 is the observation function where
Z(s, o) = Pr(o|s) represents the distribution of obser-
vation o given a state s. We assume that R is bounded.

An agent executes an action a under the setting that
the true state s is not known, but partial information o
can be observed according to Z(s, o). The agent then
transitions to its next state s′ according to T (s, a, s′),
receiving a reward R(s, a) and making a new observa-
tion o′ according to Z(s′, o′). The agent executes then
its next action a′, and the process is repeated.

The goal of reinforcement learning in a POMDP
is, given an initial belief b0 for the initial state
and a history of actions and observations ht+1 =
{a0, o1, ..., at, ot+1}, to find an optimal policy π∗

t+1 :
(b0, ht+1) 7→ at+1 that maximizes the value function of
the expected sum of discounted rewards with infinite
horizon E[

∑∞
t=0 γ

tRt], where γ ∈ (0, 1) is a discount
factor.

In POMDPs, all the information (b0, ht+1) is con-
densed in a sufficient statistic of a belief distribution
b over the state set S, and the optimal policy π∗

t+1 is
reduced to π∗ : b 7→ a. Belief bt+1(t ≥ 0) is updated

1In discrete case, T : S × A × S → [0, 1].
2In discrete case, Z : S × O → [0, 1].
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according to Bayes’ rule

bt+1(st+1) =
Z(st+1, ot+1)P (st+1|at; bt)

P (ot+1|at; bt)
, (1)

where

P (st+1|at; bt) = ESt∼bt [T (St, at, st+1)] ,

P (ot+1|at; bt) = ESt+1∼P (·|bt,at) [Z(ot+1, St+1)] .

A variable with a prime indicates a value at the next
timestep. ba,o′

denotes the posterior belief for the next
state S′ when the next observation o′ is observed after
executing action a in belief b.

The value function of belief b following a fixed policy
π is given by

V π(b) = E

[ ∞∑

t=0

γtESt∼bt [R(St, π(bt))]

]
, (2)

and it is the fixed point of the Bellman equation

V π(b) = Qπ(b, π(b)),

Qπ(b, a) = ES∼b [R(S, a)]+γEO′∼P (·|b,a)

[
V π(ba,O′

)
]
(3)

where Qπ(b, a) is the action value function, i.e., the
value of executing action a in belief b while future ac-
tions a′, a′′, . . . are chosen according to policy π.

The optimal policy π∗ and its optimal value function
V ∗(b) are given by the fixed point of the Bellman op-
timality equation

V ∗(b) = max
a∈A

Q∗(b, a),

Q∗(b, a) = ES∼b [R(S, a)] + γEO′∼p(·|b,a)

[
V ∗(ba,O′

)
]
,

π∗ = arg max
a∈A

Q∗(b, a). (4)

V ∗(b) can be estimated by the value iteration algo-
rithm Vd = HVd−1(d ≥ 1), where Vd is the d-step
value function and H is the Bellman operator

(HV )(b)=max
a∈A

[
ES∼b [R(S, a)]+γEO′∼p(·|b,a)

[
V (ba,O′

)
]]
.

(5)

H is known to be isotonic, contractive, and Vd is guar-
anteed to be more accurate than Vd−1; that is, if Vd−1

satisfies ε = supb |V ∗(b)− Vd−1(b)|, then Vd has an er-
ror bound of |V ∗(b)− V̂d(b)| ≤ γε where γ ∈ (0, 1)
[Ross et al., 2008].

The initial value V0(b) of belief b used for value itera-
tion can be defined using the initial Q-value Q0(s, a)
over states and actions,

V0(b) = max
a∈A

ES∼b(·) [Q0(S, a)] . (6)

A simple choice for Q0(s, a) is the reward Q0(s, a) =
R(s, a). Alternatively, a QMDP approximation
Q0(s, a) = QMDP (s, a) may be used [Littman, 1995],
where QMDP (s, a) is given by running MDP value it-
eration, and approximating the POMDP by an MDP.

In kernel POMDPs, all the expectations appearing
above are computed nonparametrically, without ex-
plicitly estimating the distributions b(S), P (S′|a; b),
P (O′|a; b), ba,o′

(S′) and transition and observation
models, T and Z. Instead, we obtain feature represen-
tations of the distributions (distribution embeddings)
and the models (conditional embedding operators), as
described in Section 3.

We end this section with a key to matching the prob-
abilistic and reinforcement learning results presented
in this section with their nonparametric, kernel-based
counterparts in the following section. Bayes’ rule (1)
becomes the kernel Bayes’ rule eq.(12), and its em-
pirical counterpart leads to the updates (15)(16); the
Bellman equations (3)(4) take the form of Claims 1-4,
the Bellman operator (5) becomes the kernel Bellman
operator (19), and the value initializations (6) lead to
the initializations (20),(21).

3 Kernel Methods for Probabilities

In the present section, we provide an overview
of distribution embeddings in reproduc-
ing kernel Hilbert spaces [Smola et al., 2007,
Sriperumbudur et al., 2010, Gretton et al., 2012].
The embeddings are represented as mean (non-
linear) features of distributions, hence may
also be referred to as mean embeddings. We
also recall conditional embedding operators
[Song et al., 2009, Song et al., 2010], and the Kernel
Bayes’ Rule (KBR) [Fukumizu et al., 2011]. Mean
embeddings can be updated using conditional em-
bedding operators; in particular, KBR allows us to
obtain posterior embeddings given prior embeddings
in feature spaces.

3.1 Embedding Distributions

Let HX be an RKHS associated with a bounded and
measurable positive definite kernel kX : X × X → R
over domain (X ,BX ), with ⟨·, ·⟩HX

the corresponding
inner product. The embedding of a distribution P
over (X ,BX ) in HX is given by the RKHS element
µX = EX∼P [kX (X, ·)] ∈ HX . µX coincides with the
unique element satisfying ⟨µX , f⟩HX

= EX∼P [f(X)]
for all f ∈ HX , which means that the expectation of
any function f ∈ HX can be computed as an inner
product of the embedding µX and f in HX , without
explicitly estimating the distribution P .
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The element µX can be estimated by a linear combi-
nation of feature vectors on samples (X1, . . . , Xn) over
X , i.e., µ̂X = Υα where α = (α1, . . . , αn)⊤ ∈ Rn and
Υ = (kX (·, X1), . . . , kX (·, Xn)). Using the empirical
embedding µ̂X , the expectation can be nonparametri-
cally estimated as

EX∼P [f(X)] ∼ ⟨µ̂X , f⟩HX
= α⊤f , (7)

where f = (f(X1), . . . , f(Xn))⊤.

We use characteristic kernels, e.g., Gaussian kernels
and Laplacian kernels, which guarantee that each dis-
tribution maps to a unique embedding in the RKHS
[Sriperumbudur et al., 2010, Fukumizu et al., 2011].

3.2 Conditional Embedding Operators &
Kernel Bayes’ Rule (KBR)

Let HX and HY be RKHSs associated with kX and
kY over (X ,BX ) and (Y,BY), respectively. Let (X,Y )
be a random variable taking values on X × Y with
distribution P and the density p(x, y). The condi-
tional density functions {p(Y |X = x)|x ∈ X} define
a family of embeddings {µY |x} in HY . According to
[Song et al., 2009], a mapping from kX (x, ·) ∈ HX to
µY |x ∈ HY for all x ∈ X can be characterized by con-
ditional embedding operator UY |X : HX → HY ,

µY |x = UY |XkX (x, ·) = CY XC
−1
XXkX (x, ·), (8)

where CY X and CXX are uncentred covariance oper-
ators with respect to P ,

CY X = E(X,Y )∼P [kY(Y, ·)⊗ kX (X, ·)] ,
CXX = E(X,Y )∼P [kX (X, ·)⊗ kX (X, ·)] , (9)

and we use the tensor product definition (a ⊗ b)c =
a⟨b, c⟩. Feature representations of conditional distri-
butions µY |x are obtained by applying the operator
UY |X to the feature map kX (x, ·).
Since a posterior distribution is also written as a con-
ditional distribution, the embedding of a posterior
can be expressed as a conditional embedding operator
[Fukumizu et al., 2011]. Let Π be a prior distribution
with density π(x), and (X̄, Ȳ ) be a new random vari-
able with distribution Q corresponding to the density
q(x, y) = p(y|x)π(x). The embedding of a posterior
q(X̄|Ȳ = y) given y can be expressed by a correspond-
ing conditional embedding operator UX̄|Ȳ

µX̄|y = UX̄|Ȳ kY(y, ·) = CX̄Ȳ C
−1
Ȳ Ȳ

kY(y, ·), (10)

where CX̄Ȳ and CȲ Ȳ are covariance operators with
respect to Q.

CX̄Ȳ = E(X̄,Ȳ )∼Q

[
kX (X̄, ·)⊗ kY(Ȳ , ·)

]
,

CȲ Ȳ = E(X̄,Ȳ )∼Q

[
kY(Ȳ , ·)⊗ kY(Ȳ , ·)

]
. (11)

See Appendix for further details and empirical esti-
mates.

The inference underlying kPOMDPs is accomplished
with the embedding operator UY |X and posterior em-
bedding operator UX̄|Ȳ .

4 Kernel POMDPs (kPOMDPs)

We now present our main results: we formulate
POMDPs in feature spaces, and propose a kernelized
value iteration algorithm. A key to the notation is
given in Table 1.

4.1 Kernel Bellman Equations (KBEs)

To kernelize the Bellman equations, we introduce three
RKHSs for state set S, action set A, and observation
set O. Let HS , HA, HO be RKHSs associated with
bounded and measurable positive definite kernels kS ,
kA, kO over (S,BS), (A,BA), (O,BO), respectively.
⟨·, ·⟩HS

, ⟨·, ·⟩HA
, ⟨·, ·⟩HO

denote their respective inner
products, and φ(S), ψ(A), ϕ(O) their feature vectors.

The relevant distributions b(S), P (S′|a; b), P (O′|a; b),
ba,o′

(S′) can be embedded in the corresponding
RKHSs HS , HO as follows:

µS = ES∼b(·)[φ(S)],

µS′|a;µS
= ES′∼p(·|a;b)[φ(S′)],

µO′|a;µS
= EO′∼p(·|a;b)[ϕ(O′)],

µa,o′

S′ = ES′∼ba,o′ (·)[φ(S′)].

These embeddings are related via conditional embed-
ding operators expressing transition models T , obser-
vation models Z, and posteriors.

Let US′|S,A : HS ⊗ HA → HS be the conditional
embedding operator for the transition model T , and
UO|S : HS → HO be the operator for the observation

model Z. Let U (a,µS)

S̄|Ō : HO → HS be the posterior

embedding operator corresponding to eq.(10), where
we use the prior embedding µS′|a;µS

in the KBR.

The four embeddings above are related as

µS′|a;µS
= US′|S,AµS ⊗ kA (a, ·) ,

µO′|a;µS
= UO|SµS′|a;µS

,

µa,o′

S′ = U (a,µS)

S̄|Ō kO(o′, ·). (12)

The sequence of mappings µS 7→ µS′|a;µS
7→

µO′|a;µS
7→ µa,o′

S′ depends on the action a. A policy π
is defined to be a mapping from embeddings µS to ac-
tions. In evaluating policies, value functions V (·) are
defined to be functions of embeddings µS , and thus
(indirectly) of the actions a and observations o.
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Table 1: Notation

State Action Observation (State, Action)
domain S A O S × A
r.v. S A O (S,A)
Instance s a o (s, a)
kernel kS(·, ·) kA(·, ·) kO(·, ·) kS×A(·, ·) = kS(·, ·) ⊗ kA(·, ·)
RKHS HS HA HO HS×A = HS ⊗ HA
feature map φ(s) = kS(s, ·) ψ(a) = kA(a, ·) ϕ(o) = kO(o, ·) ϑ(s, a) = kS×A((s, a), ·)
finite Sample Set S0 A0 O0 (S0,A0)
feature matrix Υ Ψ Φ Θ
Gram matrix GS = Υ⊤Υ GA = Ψ⊤Ψ GO = Φ⊤Φ G(S,A) = GS ⊙GA

feature column kS(s) = Υ⊤φ(s) kA(a) = Ψ⊤ψ(a) kO(o) = Φ⊤ϕ(o) k(S,A)(s, a) = Θ⊤ϑ(a, o)

Using value functions over embeddings, the expected
immediate rewards and expected values of posterior
beliefs in the Bellman equations (Section 2) can be
computed as inner products in RKHSs,

ES∼b [R(S, a)] = ⟨µS , R (·, a)⟩HS
,

EO′∼P (·|b,a)

[
V π(ba,O′

)
]

=
⟨
µO′|a;µS

, V π
(
µ

a,(·)
S′

)⟩
HO

,

EO′∼P (·|b,a)

[
V ∗(ba,O′

)
]

=
⟨
µO′|a;µS

, V ∗
(
µ

a,(·)
S′

)⟩
HO

,

assuming R(·, a) ∈ HS and V π
(
µ

a,(·)
S′

)
, V ∗

(
µ

a,(·)
S′

)
∈

HO.

We are now ready to introduce the kernel Bellman
equation as an operation on the embeddings µS . Let
PS be the set of beliefs and IS be the set of embeddings
of PS in HS .

Claim 1. Let R(·, a) ∈ HS and V π
(
µ

a,(·)
S′

)
∈ HO for

all a ∈ A and µS ∈ IS . The kernel Bellman equations
on HS are

V π(µS)=Qπ (µS , π (µS)) ,

Qπ(µS , a)= ⟨µS , R (·, a)⟩HS
+γ

⟨
µO′|a;µS

, V π
(
µ

a,(·)
S′

)⟩
HO

.

The solution of these equations following a fixed policy
π on HS yields a value function V π(·). The kernel
Bellman optimality equations take similar form.

Claim 2. Let R(·, a) ∈ HS and V ∗
(
µ

a,(·)
S′

)
∈ HO for

all a ∈ A and µS ∈ IS . The kernel Bellman optimality
equations on RKHS HS are

V ∗(µS)= max
a∈A

Q∗(µS , a) ,

Q∗(µS , a)= ⟨µS , R (·, a)⟩HS
+γ

⟨
µO′|a;µS

, V ∗
(
µ

a,(·)
S′

)⟩
HO

,

π∗(µS)= arg max
a∈A

Q∗ (µS , a) . (13)

The solution of these equations is the optimal value
function V ∗(·) with corresponding optimal policy π∗(·)

on HS . We use the following tuple for solving a
POMDP in feature space:

⟨
HS ,HA,US|S,A, R,HO,UO|S ,U (A,IS)

S̄|Ō

⟩
,

where U (A,IS)

S̄|Ō = {U (a,µS)

S̄|Ō |a ∈ A, µS ∈ IS}.

4.2 Empirical Expression

We next provide a finite sample version of
the kernel POMDP. Suppose that Dn =
{(s̃i, õi), ãi, R̃i, (s̃

′
i, õ

′
i)}ni=1 are n training samples

according to a POMDP ⟨S,A, T,R,O, Z⟩. Note that
state samples {(s̃i, s̃

′
i)} are included, and will used for

estimating belief embeddings µS , µa,o′

S′ . We assume
that such samples from the true state are available
for training, but not during the test phase.

Let S0, O0, A0, S ′
0, O′

0 be finite sets of states, obser-
vations, and actions taken from the training samples
Dn. The associated feature vectors are

Υ= (φ (s̃1) , . . . , φ (s̃n)) ,Υ′ =(φ (s̃′
1) , . . . , φ (s̃′

n)) ,

Φ =(ϕ (õ1) , . . . , ϕ (õn)) ,Φ′ =(ϕ (õ′
1) , . . . , ϕ (õ′

n)) ,

Ψ= (ψ (ã1) , . . . , ψ (ãn)) ,Θ=(ϑ (s̃1, ã1) , . . . , ϑ (s̃n, ãn)) .

We build Gram matrices from the feature matrices
Υ, Ψ, Φ as GS = Υ⊤Υ, GA = Ψ⊤Ψ, GO = Φ⊤Φ,
G(S,A) = GS ⊙ GA, where ⊙ denotes the Hadamard
(element-wise) product. The embeddings µS , µO′|a;µS

,

µa,o′

S′ take respective forms

µ̂S = Υα,

µ̂O′|a;µS
= Φβ′

a;α,

µ̂a,o′

S′ = Υα′
a,o′ . (14)

The update rules for the weight vectors α 7→ β′
a;α 7→

α′
a,o′ corresponding to µS 7→ µO′|a;µS

7→ µa,o′

S′ in
eq.(12) are given as follows:

• The update α 7→ β′
a;α uses the empirical esti-

mates of conditional embedding operators US′|S,A,
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UO|S , which results in a linear transformation
β′

a;α = LO|S,aα for all a ∈ A by the n×n matrix
LO|S,a:

(GS +εSnIn)
−1
GSS′

(
G(S,A)+ε(S,A)nIn

)−1
G(S,A)(S,a)

(15)

with GSS′ := Υ⊤Υ′, G(S,A)(S,a) := D (kA(a))GS ,

and kA(a) = Ψ⊤ψ(a).

• The update β′
a;α 7→ α′

a,o′ is based on the ker-
nel Bayes’ rule. The Gram matrix expression,

eq.(25), results in α′
a,o′ = RS|O(β̂

′
a;α)kO(o′) using

a non-negative vector β̂
′
a;α and an n × n matrix

RS|O(β̂
′
a;α):

(
D(β̂

′
a;α)GO + ϵnIn

)−1

D(β̂
′
a;α). (16)

Given samples Dn, the embeddings µ̂S , µ̂O′|a;µS
, µ̂a,o′

S′

are identified with n-dimensional vectors
α,β′

a;α,α
′
a;α ∈ Rn, respectively, and the Bell-

man equations (Claims 1, 2) can be represented
in terms of these weight vectors. Therefore, the
belief and predictive distributions are represented by
n-dimensional vectors for any sets S and O.

Claim 3. Given samples Dn, the kernel Bellman
equation (Claim 1) has the empirical expression

V̂ π (α) = Q̂π (α, π (α)) ,

Q̂π (α, a) = α⊤Ra + γβ′⊤
a;αV̂π

(
α′

a,O0

)
, (17)

where Ra = (R(s̃1, a), . . . , R(s̃n, a))
⊤ ∈ Rn is

the reward vector on samples S0 for action a and

V̂π
(
α′

a,O0

)
=

(
V̂ π

(
α′

a,õ1

)
, . . . , V̂ π

(
α′

a,õn

))⊤
∈ Rn

is the posterior belief value vector on samples O0 given
action a.

Claim 4. Given samples Dn, the kernel Bellman op-
timality equation (Claim 2) has the expression

V̂ ∗ (α) = max
a∈A

Q̂∗ (α, a) ,

Q̂∗ (α, a) = α⊤Ra + γβ′⊤
a;αV∗ (

α′
a,O0

)
,

π̂∗ (α) = arg max
a∈A

Q̂∗ (α, a) , (18)

where Ra = (R(s̃1, a), . . . , R(s̃n, a))
⊤ ∈ Rn and

V̂∗ (
α′

a,O0

)
=

(
V̂ ∗ (

α′
a,õ1

)
, . . . , V̂ ∗ (

α′
a,õn

))⊤
∈ Rn.

Figure 1 illustrates the planning forward search using
the Bellman equations. Even when the assumptions
in Claims 1, 2 do not hold, we use Claims 3, 4 as an

Figure 1: A search tree using kernel Bellman equa-
tions. Beliefs are represented by n-dimensional weight
vectors α on samples. The expected immediate re-
ward (first term) is given by the linear combination
α⊤Ra on samples S0 and associated with the action
link a. The discounted expected value for next be-
liefs (second term) is given by the linear combination

γβ′⊤
a;αV̂

(
α′

a,O0

)
on samples O0 and associated with

the observation links O0 = {õ1, . . . , õn}. Observation
links are expanded with respect to finite set O0 in-
stead of O. The kernel Bayes’ rule is applied to each
pair (a, õ). Values are back-propagated bottom to top
starting at initial values V0(·) in the kernel value iter-
ation algorithm.

approximation, and Claim 4 for value iteration. Let
Ĥn be the kernel Bellman operator,

(ĤnV ) (α) = max
a∈A

[
α⊤Ra + γβ′⊤

a;αV
(
α′

a,O0

)]
. (19)

We run value iteration V̂d = ĤnV̂d−1(d ≥ 1) with an
initial value function V0(·) on weights. The detailed al-
gorithm is shown in Algorithm 1. The computational
complexity is given in Subsection 4.3. We use the same
value initializations as in distributional POMDPs (Sec-
tion 2). If Q0(·, a) ∈ HS for all a ∈ A, the initial values
V0(·) over embeddings can be set as

V0(µS) = max
a∈A
⟨µS , Q0(·, a)⟩HS

, (20)

which leads to the empirical expression

V0(α) = max
a∈A

α⊤Q0
a, (21)

where Q0
a = (Q0 (s̃1, a) , . . . , Q0 (s̃n, a))

⊤ ∈ Rn is an
initial action value vector on samples S0. The re-
ward function Q0(s, a) = R(s, a) or the QMDP value
Q0(s, a) = QMDP (s, a) can be used for initialization.

Since α,β′
a;α,α

′
a;α do not always give nonnegative

vectors, the Bellman operator Ĥn is not guaranteed to
be isotonic and contractive, although empirically, Ĥn

can be used for the value iteration algorithm. Ĥn is
corrected to have the isotonic and contractive proper-
ties by approximating the weight vectors as probability
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Algorithm 1 Kernel Value Iteration (α, d)

Input: belief weights α, tree depth d
Output: Value Vd(α), Policy πd(α)
if d = 0 then

Set: Vd(α) = max
a∈A

Q0(α, a),

πd(α) = arg max
a∈A

Q0(α, a)

else
for all a ∈ A do

Compute: β′
a;α = LO|S,aα

for all õi ∈ O0 do
if

(
β′

a;α

)
i
̸= 0 then

Compute posterior:
α′

a,õi
= RS|O(β′

a;α)kO(õi)
Set:
V (α′

a,õi
)←Kernel Val. Iter.(α′

a,õi
, d−1)

end if
end for

end for
Set: Vd(α) = max

a∈A
Qd(α, a),

πd(α) = arg max
a∈A

Qd(α, a)

end if

vectors [Grunewalder et al., 2012]. Let α̂, β̂
′
a;α, α̂

′
a;α

be probability vectors derived from α,β′
a;α,α

′
a;α ac-

cording to ŵi = max{wi,0}∑n
i=1 max{wi,0} for weight vectors w.

The corresponding kernel Bellman operator Ĥ+
n us-

ing the probability vectors α̂, β̂
′
a;α is guaranteed to

be isotonic and contractive. The proof is given in the
Supplementary material.

Given samples Dn, we use the following tuple for the
kernel value iteration:

⟨
(HS ,kS) , (HA,kA) , R, (HO,kO) , LO|S,A, RS|O(·)

⟩
,

where LO|S,A = {LO|S,a|a ∈ A}.

4.3 Computational Complexity

The update rule α 7→ β′
a;α has complexity O(n2) with

respect to the number of samples n for an action a,
where the matrix LS|O,a is computed only once in the
training phase. The update rule β′

a;α 7→ α′
a,o′ has

complexity O(n3) for an observation o′, due to the in-
version of an n × n matrix (eq. 16). In total, the
computation of the posterior weights α′

a,o′ for a pair

(a, o′) costs O(n3), compared with O(|S|2) for Bayes’
rule in eq.(1). Kernel value iteration to depth d costs
O(n3(n|A|)d), whereas classical value iteration costs
O(|S|2(|O||A|)d). The complexity O(n3) for comput-
ing α′

a,o′ can be reduced to O(nr2) via a low rank
approximations of the n × n Gram matrices, where r
is the rank.

Algorithm 2 Online Planning with Finite Horizon d

Set: T , t = 0
Get: Initial observation o
Compute: Initial belief α = (GO + nϵOIn)−1kO(o)
repeat

Planning: a ← Kernel Value Iteration (α, d)
Get: reward and new observation (R, o′)
Compute next belief: α = RS|O(β′

a;α)kO(o′)
t = t+ 1

until t > T

5 Experiments

We implemented an online planning algorithm in
POMDPs using the kernel Bellman equations (Algo-
rithm 2). An example of kPOMDP dynamics is shown
in Figure 3. An agent computes the initial belief
weights α ∈ Rn by α = (GO + nϵOIn)−1kO(o) with
an initial observation o, which corresponds to a belief
estimate without a prior. The agent makes a decision
a by kernel value iteration to finite horizon d under
the current belief weights α. The agent then updates
the belief weights using a function RS|O(·) and predic-
tive weights β′

a;α when obtaining a reward R and a
next observation o′. When the prediction fails (e.g.,
D(β′

a;α)kO(o′) = 0, or in discrete cases β′
a;α(o′) = 0)

in the case of small training samples, we reset current
belief weights and estimated initial belief weights. To
make the online planning algorithms more efficient, we
computed the inverses of the n×nmatrices in our algo-
rithm by combining low rank approximations based on
the incomplete Cholesky factorization and the Wood-
bury identity [Fine and Scheinberg, 2001]

Figure 2 shows some results on benchmarks
[Littman, 1995], where the state, action, and ob-
servation sets are finite. Results are d = 2, d = 1,
d = 1 for 10 × 10 Grid World, Network, Hallway,
respectively. The exact policy is computed by an
agent having complete knowledge about the POMDP
environment. The histogram policy computed by
running a classical value iteration algorithm, where
transition and observation models are estimated by
histograms using the same samples as our algorithm.
Since the histogram policy requires samples over all
the combinations of states and actions to estimate
transition models, we introduced prior samples
drawn from a uniform prior to test kPOMDP and
Histograms under exactly the same conditions. Note
that KBR does not need prior samples. We used
QMDP initial values and pruned action links based
on the QMDP values [Ross et al., 2008]. An action
link was pruned if its QMDP value was lower than the
current estimated value. The KBR-controller learned
the exact policy as the number of training samples
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Figure 2: kPOMDPs+KBR controller. The left, middle, and right figures are 10× 10 Gridworld, Network, and
Hallway problems, respectively. Averaged discounted sum of rewards an agent got in test experiments are plotted
against the number of training samples. We ran N experiments, where one experiment consists of T steps. The
parameters are accompanied with the titles, (γ, S, A, O, T, N) = (γ, |S|, |A|, |O|, T , N). Training samples are
collected by uniform random actions. The leftmost plot for each figure is the result of uniform prior samples
where no information about the environment. 10×10 grid world problem is similar to the 4×4 grid world, where
state size is 100, reward is delivered by any action at a goal state with value 1, otherwise 0, and observations are
9 wall patterns about 4 nearest neighbors.

was increased in the 10 × 10 grid world and network
problems. In our limited experiments, though KBR
and histogram methods sometimes showed different
results depending on training data, they gave similar
results on average.

We also implemented a simulator of a swing-up cart-
balancing system. The system consists of a cart with
mass 8 kg running on a 2 m track and a freely swinging
pendulum with mass 2 kg attached to the cart with a
50 cm rod. The state of the system is the angle and the
angular velocity of the pendulum (θ, θ̇), however the
agent observes only the angle. The agent may apply
a horizontal force or action to the cart, chosen from
a ∈ {−250,−150,−50, 0, 50, 150, 250}N. The dynam-
ics of the system are nonlinear. The states are con-
tinuous, but time is discretized in steps of 0.1 s. The
objective is to balance the pendulum in the inverted
position. Training samples are collected by applying
uniform random actions from uniformly random states
over θ = [−π/3, π/3], θ̇ = [3, 3]. The reward function
is given by R(θ, θ̇) = exp(−θ2/2σ2

1 − θ̇2/10σ2
2), where

σ2
1 and σ2

2 are the variances of uniform distributions
over θ = [−π/3, π/3], θ̇ = [3, 3], respectively.

Figure 3 shows a visualization of the kPOMDP dy-
namics and the inverted pendulum results (see cap-
tion details). The rightmost figure plots the aver-
aged result of the earned rewards (height=cos(θ)) of
the learned policies as a function of training samples.
The episode length was 10 sec, i.e., the maximum of
the total rewards is 100. The result was averaged
over 20 experiments, the planning depth was d = 1,
and the initial value function was the reward function
R(θ, θ̇). In kPOMDP, we used Gaussian kernels G(·, ·)
for states and observations kS((θ1, θ̇1), (θ2, θ̇2)) =
G(θ1, θ2)G(θ̇1, θ̇2), kO(θ1, θ2) = G(θ1, θ2), where the

kernel parameters σ were σ = MedDist/30 for θ and
σ = MedDist/10 for θ̇, where MedDist is the me-
dian inter-sample distance. The kernel for actions
was the identity. We compared kPOMDP to his-
togram policies where the environment is discretized.
Histogram(M) indicates M×M discretized states over
[−π/3, π/3]×[3, 3]. kPOMDP almost reached the max-
imum value 100 and showed better results than his-
togram policies.

6 Summary

We have introduced POMDPs in feature spaces, where
beliefs over states are represented as distribution em-
beddings in feature spaces and updated via the ker-
nel Bayes’ rule. The Bellman equations, value func-
tions, and policies are all expressed as functions of
this feature representation. We further proposed a pol-
icy learning strategy by value iteration in the kernel
framework, where the isotonic and contraction prop-
erties of the kernel Bellman operator are enforced by a
simple correction. Value initialization and action edge
pruning can be implemented for kernel POMDPs, fol-
lowing the approach of distributional POMDPs such
as QMDP. Experiments confirm that the controller
learned in feature space converges to the optimum pol-
icy. Our approach serves as a first step towards more
powerful kernel-based algorithms for POMDPs.

A Appendix: Kernel Bayes’ Rule

A variant of the kernel Bayes’ rule algorithm we have
used in this paper is described. [Fukumizu et al., 2011]
propose a squared regularization form for the empirical
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Figure 3: Inverted pendulum results with an example of kPOMDP dynamics. In the three 3D plots, all the points
indicate training samples on state set S = (θ, θ̇) and z axis indicates the magnitude of weights on their samples
(after normalization), i.e., belief embedding weights α̂ identifying belief embedding µ̂S . The true state of the
system is also marked by the black point in each 3D plot. The four colors indicate different combinations of signs
of states (for instance, blue denotes positive angular velocity and negative angle). The middle figure in the 3D
plots shows the initial belief estimate given an initial observation o = θ, estimated by α = (GO +nϵOIn)−1kO(o)
in Algorithm 2. Since θ̇ is uncertain at the initial point, positive weights spread in the direction of θ̇ axis. The
left and right figures in the 3D plots correspond to the updated weights α′

a,o′ of belief embeddings depending on
the executed actions a1 (positive) and a2 (negative) after observing a new observation o′ = θ′. Angular velocity
θ̇ is then well estimated by the kPOMDPs. The rightmost figure shows the averaged result of the total rewards
obtained by learned policies as training samples increased. More description is in the text.

posterior embedding in (10),

µ̂X̄|y = ĈX̄Ȳ

(
Ĉ2

Ȳ Ȳ + δnIn

)−1

ĈȲ Ȳ kY(y, ·), (22)

where δ is a small regularization parameter to avoid
the instability of Ĉ−1

Ȳ Ȳ
, since the empirical estimate

ĈȲ Ȳ may include negative weights. The estimate (22)
is consistent under smoothness assumptions, and con-
verges to µX̄|y in the infinite sample limit. Since we
always normalize weight vectors to probability vectors
as in subsection 4.2, however, we use the simpler and
more computationally efficient estimate

µ̂X̄|y = ĈX̄Ȳ (ĈȲ Ȳ + ϵnIn)−1kY(y, ·), (23)

where ϵ is a small regularization parameter. Though
the consistency of (23) with the combination of the
normalization is not theoretically proven, experiments
(Section 5) show good empirical results. In what fol-
lows we give the KBR algorithm when the estimate
(23) is used with normalized weights.

Denote feature vectors φ(X) = kX (X, ·) and ϕ(Y ) =
kY(Y, ·). Let U1, . . . , Ul be l samples drawn from
the prior Π and (X1, Y1), . . . , (Xn, Yn) be n samples
drawn from P . Consider an empirical prior embed-
ding µ̂Π = Ῡγ where Ῡ = (φ(U1), . . . , φ(Ul)) are fea-
ture mappings of the prior samples and γ ∈ Rl is a
weight vector. Define the n × l matrix GXU = Υ⊤Ῡ,
and

Υ ◦ Φ := (φ(X1)⊗ ϕ(Y1), . . . , φ(Xn)⊗ ϕ(Yn)) ,

Φ ◦ Φ := (ϕ(Y1)⊗ ϕ(Y1), . . . , ϕ(Yn)⊗ ϕ(Yn)) . (24)

Empirical estimates of the covariance operators
CX̄Ȳ , CȲ Ȳ are then given by ĈX̄Ȳ = (Υ ◦ Φ) β,

ĈȲ Ȳ = (Φ ◦ Φ) β with the weight vector β =

(GX + εnIn)
−1
GXUγ [Fukumizu et al., 2011]. We ap-

proximate β by a non-negative vector β̂, as in subsec-
tion 4.2, leading to the following proposition:

Proposition 1. The empirical estimate eq.(23) has
the following Gram matrix expression using a non-
negative vector β̂ for all y ∈ Y:

µ̂X̄|y = ΥRX|Y (β̂)kY (y),

RX|Y (β̂) :=
(
D(β̂)GY + δnIn

)−1

D(β̂), (25)

where kY (y) = Φ⊤ϕ(y) and D(β̂) = diag(β̂).

Proof. The proof follows the same reasoning as Propo-
sition 3.4 of [Fukumizu et al., 2011].

Let α(y) = RX|Y (β)Φ⊤ϕ(y) ∈ Rn. The posterior em-
bedding µX̄|y can be estimated by a linear combination
of feature vectors on samples Υ = (φ(X1), . . . , φ(Xn))
with weights α(y) ∈ Rn that depend on y ∈ Y.
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Abstract

Cooperative Bayesian games (BGs) can
model decision-making problems for teams
of agents under imperfect information, but
require space and computation time that is
exponential in the number of agents. While
agent independence has been used to miti-
gate these problems in perfect information
settings, we propose a novel approach for
BGs based on the observation that BGs addi-
tionally possess a different types of structure,
which we call type independence. We propose
a factor graph representation that captures
both forms of independence and present a
theoretical analysis showing that non-serial
dynamic programming cannot effectively ex-
ploit type independence, while Max-Sum
can. Experimental results demonstrate that
our approach can tackle cooperative Bayesian
games of unprecedented size.

1 Introduction

Cooperative multiagent systems are an essential tool,
not only for tackling inherently distributed problems,
but also for decomposing problems too complex to be
tackled by a single agent (Huhns, 1987; Sycara, 1998;
Panait and Luke, 2005; Vlassis, 2007; Buşoniu et al.,
2008). However, to make such systems effective, the
constituent agents must be able to coordinate their
action selection in order to achieve a common goal.

This problem is particularly vexing in the presence of
imperfect information (Harsanyi, 1967–1968). Even a
single-agent system may have incomplete knowledge of
the state of its environment (Kaelbling et al., 1998),
e.g., due to noisy sensors. However, the presence of
multiple agents often greatly exacerbates this problem,
as each agent typically has access to only a fraction of
the whole system’s sensors. In principle, agents could

Figure 1: Illustration of multiagent decision making with
imperfect information. Both agents know house 2 is on fire.
However, each agent receives only a noisy observation of
the single neighboring house it can observe in the distance.

synchronize their beliefs and coordinate their actions
by communicating. However, communication is often
unreliable and limited by bandwidth constraints, leav-
ing each agent uncertain how others will act.

Consider the example depicted in Fig. 1. Both fire-
fighting agents know there is fire at house H2 but each
receives only a noisy observation about one of the other
houses. Consequently, effective decision making is dif-
ficult. If agent 1 (left) observes flames in house H1,
it may be tempted to fight fire there rather than at
house H2. However, the efficacy of doing so depends
on whether agent 2 (right) will fight fire in house H2,
which in turn depends on whether agent 2 observes
flames in house H3, a fact unknown to agent 1.

Such problems can be modeled as cooperative
Bayesian games (BGs), which extend traditional
strategic games to model imperfect information. BGs
can model a great variety of problems and are of
great importance for solving sequential decision prob-
lems (Emery-Montemerlo et al., 2004; Oliehoek et al.,
2008a; Kumar and Zilberstein, 2010; Spaan et al.,
2011). In a BG, a type for each agent, specifying the
private information it holds, is drawn from a distribu-
tion. Then, the agents simultaneously select actions
conditioned on their individual type, and subsequently
receive a team payoff based on the realized types and
actions.

Unfortunately, solving cooperative BGs is NP-hard
(Tsitsiklis and Athans, 1985). Just representing them
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requires space exponential in the number of agents and
solving them exactly requires time exponential in the
number of agents and types. However, as in cooper-
ative strategic games (Guestrin et al., 2002; Kok and
Vlassis, 2006), many problems exhibit agent indepen-
dence, i.e., the global payoff function can be decom-
posed as the sum of local payoff functions, each of
which depends on the actions of only a few agents. The
resulting cooperative graphical Bayesian games (CG-
BGs) can be represented more compactly and solved
more effectively using inference methods for graphi-
cal models such as non-serial dynamic programming
(NDP) (Bertele and Brioschi, 1972) and the popular
Max-Sum algorithm (Pearl, 1988; Kok and Vlassis,
2005, 2006; Farinelli et al., 2008; Rogers et al., 2011).

This paper is motivated by the observation that BGs
also exhibit another form of structure that we call type
independence, in which the global payoff function can
be decomposed as the sum of contributions, each of
which depends on only one joint type. Such structure
has been exploited when cooperative BGs are solved
using heuristic search methods (Kumar and Zilber-
stein, 2010; Oliehoek et al., 2010), though the role of
type independence has not been made explicit. How-
ever, in the worst case, heuristic search methods are
no better than brute-force search and thus can perform
much worse than inference-based methods, even when
exploiting structure with and/or search trees (Mari-
nescu and Dechter, 2009).1 In addition, such methods
do not exploit agent independence.

To address these shortcomings, this paper investigates
the exploitation of type independence using inference
methods. Specifically, we propose a novel factor graph
representation that neatly captures both agent and
type independence and thus enables the exploitation of
both forms of structure. Our analysis of the computa-
tional complexity of both NDP and Max-Sum applied
to this factor graph reveals that the former cannot ef-
fectively exploit type independence; we prove that its
computational complexity remains exponential in the
number of types (although it still outperforms one of
the search methods empirically). On the other hand,
we prove that each iteration of Max-Sum is tractable
for problems with small local neighborhoods. Bound-
ing the number of iterations thus yields a polynomial-
time approximate method for such cooperative BGs.

In addition, we present extensive experimental results
that demonstrate that Max-Sum finds near-optimal
solutions and that the simultaneous exploitation of
both agent and type independence leads to dramati-

1NDP, for example, is never slower than brute-force
search, i.e., conditioning in graphical models (Koller and
Friedman, 2009). When the induced width is small, NDP
can be much faster (Dechter, 1999).

cally better scalability than several state-of-the-art al-
ternatives in the number of agents, actions, and types.
This improved scalability enables the solution of coop-
erative BGs of unprecedented size.

2 Background

We begin with some background on BGs and CGBGs.

Bayesian Games A Bayesian game, also called a
strategic game of imperfect information, is an aug-
mented strategic game in which the players hold pri-
vate information (Harsanyi, 1967–1968; Osborne and
Rubinstein, 1994). The private information of agent i
defines its type θi ∈ Θi. The agents’ payoffs depend
not only on their actions, but also on their types.

Definition 1. A Bayesian game (BG) is a tuple
〈D, A,Θ, Pr(Θ), 〈u1, ...un〉〉, where D is the set of n
agents, A = A1 × · · · × An is the set of joint actions
a = 〈a1, . . . , an〉, Θ = Θ1 × · · · × Θn is the set of joint
types θ = 〈θ1, . . . , θn〉, Pr(Θ) is the distribution over
joint types, and ui : Θ × A → R is the payoff function
of agent i.

Since agents in a BG can condition their actions on
their types, they select policies (as opposed to actions
as in strategic games). A joint policy β = 〈β1, ..., βn〉,
consists of individual policies βi for each agent i. De-
terministic (pure) individual policies map each type θi

to an action. Since we focus on cooperative Bayesian
games, in which all agents share a single team payoff
function u = ui for all i, only deterministic policies
need be considered.

In a BG, the traditional Nash equilibrium is replaced
by a Bayesian Nash equilibrium (BNE). A profile of
policies β = 〈β1, ..., βn〉 is a BNE when no agent i has
an incentive to switch its policy βi, given the policies
of the other agents β 6=i. In cooperative BGs, the defi-
nition of a solution is simpler. Let the value of a joint
policy be its expected payoff:

V (β) =
∑

θ∈Θ

Pr(θ)u(θ, β(θ)), (1)

where β(θ) = 〈β1(θ1), ..., βn(θn)〉 is the joint action
specified by β for joint type θ. A solution of a coop-
erative BG is β∗ = arg maxβ V (β), which is a Pareto-
optimal Bayesian Nash equilibrium.

Cooperative Graphical Bayesian Games. A key
difficulty in BGs is that the size of their payoff matrices
is exponential in the number of agents. However, many
BGs contain agent independence, i.e., not all agents
directly influence each other, which allows for compact
representations and efficient solutions.
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Agent independence can be formalized in graphical
(strategic) games (Kearns et al., 2001; Kearns, 2007)
and graphical Bayesian games (Soni et al., 2007), in
which each agent has an individual payoff function
that depends on only a subset of agents. Unfortu-
nately, such models are not useful in cooperative games
since all agents share a single payoff function in which
all agents participate (otherwise they would be irrel-
evant). Instead, we employ cooperative graphical BGs
(CGBGs) (Oliehoek et al., 2008b), which use coordi-
nation (hyper-)graphs (Guestrin et al., 2002; Kok and
Vlassis, 2006) to express conditional independence be-
tween agents. In CGBGs, the single team payoff func-
tion decomposes as the sum of several local payoff func-
tions.

Definition 2. A cooperative graphical Bayesian game
(CGBG) is a tuple 〈D, A,Θ, Pr(Θ), U〉 where D, A, Θ,
and Pr(Θ) are as before and U = {u1, . . . , uρ} is the
set of local payoff functions, each of which involves only
a subset of agents. Each ue has scope A(ue) specifying
the subset of agents on which it depends.

When scopes are restricted, CGBGs can be repre-
sented much more compactly than regular cooperative
BGs. In fact, if the largest scope has size k, then the
representation size is exponential in k, but only lin-
ear in n. However, the joint type distribution must
also be compact. A typical assumption is that the
type probabilities factor as the product of individual
type probabilities (Soni et al., 2007; Jiang and Leyton-
Brown, 2010). More generally, it is common to repre-
sent Pr(Θ) compactly (e.g., as in (Koller and Milch,
2003; Jiang and Leyton-Brown, 2010)) by means of
Bayesian networks (Pearl, 1988; Bishop, 2006) or other
graphical models.2

Agents in a CGBG aim to maximize the expected sum
of local payoffs:

β∗ = arg max
β

∑

e∈E

∑

θe∈Θe

Pr(θe)u
e(θe, βe(θe)) (2)

where θe = 〈θi〉i∈A(ue) is the local joint type, βe =
〈βi〉i∈A(ue) is the local joint policy, and βe(θe) is the
local joint action under β given θe.

3 The local value
for the e-th payoff component is:

V e(βe) =
∑

θe∈Θe

Pr(θe)u
e(θe, βe(θe)). (3)

2While not all joint type distributions admit a compact
representation, this is nonetheless a minimal assumption:
there is no hope of solving other BGs efficiently, as they
cannot even be represented efficiently. Fortunately, the
class of real-world problems that admit a compact repre-
sentation is likely to be quite large.

3We abuse notation such that e is an index into the set
of local payoff functions and an element of the set of scopes.

1 2 3 4 5

V 1 V 2 V 3 V 4

Figure 2: An AI factor graph with five agents. Circu-
lar nodes are agents and square nodes are local payoff
functions, with edges indicating in which local payoff
function each agent participates.

Each local value component can be interpreted as a
factor in a factor graph (Kschischang et al., 2001;
Loeliger, 2004), which generalizes a coordination graph
to allow local payoff functions that depend on more
than two agents. The resulting bipartite graph has
one set of nodes for all the local value functions (the
factors) and another set for all the agents (the vari-
ables, whose values correspond to policies), as shown
in Fig. 2. A local value function V e is connected to an
agent i if and only if i ∈ A(ue). We refer to this as an
agent independence (AI) factor graph.

A naive solution approach is to simply enumerate
all joint policies. However, the required time is
O(|A∗||Θ∗|n), where |A∗| and |Θ∗| are the size of the
largest individual action and type set. Thus, it scales
exponentially with the number of agents and types.
Fortunately, the agent independence expressed in the
factor graph of Fig. 2 can be exploited. For instance,
Oliehoek et al. (2008b) apply NDP to this graph. An-
other option is to use Max-Sum message passing.

3 Representing Type Independence

Applying NDP or Max-Sum to an AI factor graph
can reduce the exponential complexity with respect to
the number of agents. However, it cannot reduce the
exponential complexity with respect to the number of
types because this complexity manifests itself in the
number of values that the variables can take on.

The key observation motivating this work is that CG-
BGs also possess a second form of independence, which
we call type independence, that enables solution ap-
proaches to avoid the exponential dependence on the
number of types. Unlike agent independence, which
only some BGs possess, type independence is an in-
herent property of all BGs because it is a direct con-
sequence of the fact that the value of a joint policy is
an expectation over joint types.

Type independence is expressed in terms of a contri-
bution for each joint type:

Cθ(a) ≡ Pr(θ)u(θ,a). (4)

The value of a joint policy β can now be interpreted
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as a sum of contributions, one for each joint type:

V (β) =
∑

θ∈Θ

Cθ(β(θ)). (5)

Type independence results from the additive structure
of a joint policy’s value shown in (5). The key insight is
that each contribution term depends only on the joint
action selected when the corresponding joint type θ
occurs. Since that action is selected according to the
joint policy β, the contribution depends only on β(θ),
the part of the joint policy that specifies the joint ac-
tion for θ.

Viewed from another perspective, type independence
occurs because, in any game, only one individual type
is realized for each agent, and that type affects only
some contributions. In other words, the individual
action βi(θi) selected for type θi of agent i affects
only those contributions whose joint types involve θi.
For instance, in the firefighting problem illustrated in
Fig. 1, one possible joint type is θ = 〈N, N〉 (neither
agent observes flames). Clearly, the action β1(F ) that
agent 1 selects when it has type F (it observes flames),
has no effect on the contribution of this joint type.

An optimal joint policy can also be described in terms
of contributions, by simply maximizing the value as
defined in (5):

β∗ = arg max
β

V (β) = arg max
β

∑

θ∈Θ

Cθ(β(θ)). (6)

Thus, the solution to a BG maximizes the sum of con-
tributions, each of which has restricted scope. This
is an important observation, since maximization of an
additively factored function with components of re-
stricted scope is exactly the operation that algorithms
such as NDP and Max-Sum make more efficient.

To apply these methods, we represent type indepen-
dence in a factor graph, by creating factors for all
the contributions (corresponding to joint types) and
variables for all the individual types of all the agents.
Fig. 3 shows such a factor graph for the firefighting
problem. Unlike the representation that results from
reducing a BG to a strategic game played by agent-
type combinations (Osborne and Rubinstein, 1994),
this factor graph does not ‘flatten’ the utility func-
tion. On the contrary, it explicitly represents the con-
tributions of each joint type, thereby capturing type
independence.

However, while the factor graph in Fig. 3 represents
type independence, it does not represent agent inde-
pendence because the global payoff represented by the
sum of contributions is not decomposed into local pay-
off functions. Conversely, the factor graph shown in
Fig. 2 represents agent independence but not type in-

N1 F1 N2 F2

C〈N1,N2〉 C〈N1,F2〉 C〈F1,N2〉 C〈F1,F2〉

Figure 3: A factor graph for the firefighting problem
that captures type independence, e.g., the action that
agent 1 selects when it has type N affects only the
contribution factors C〈N1,N2〉 and C〈N1,F2〉 in which it
has that type.

dependence because the value of each local payoff func-
tion is not decomposed into contributions. To solve
CGBGs efficiently, we need a factor graph formulation
that captures both agent and type independence.

To this end, we define a local contribution as follows:

Ce
θe

(ae) ≡ Pr(θe)u
e(θe,ae). (7)

Using this notation, the solution of the CGBG is

β∗ = arg max
β

∑

e∈E

∑

θe∈Θe

Ce
θe

(βe(θe)). (8)

Thus, the solution corresponds to the maximum of an
additively decomposed function containing a contribu-
tion for each local joint type θe. This can be expressed
in a factor graph in which an individual type θi of an
agent i is connected to a contribution Ce

θe
if and only

if i participates in ue and θe specifies θi for agent i,
as illustrated in Fig. 4. We refer to this graph as the
agent and type independence (ATI) factor graph. Con-
tributions are separated, not only by the joint type to
which they apply, but also by the local payoff function
to which they contribute. Consequently, both agent
and type independence are neatly expressed.

4 Solving ATI Factor Graphs

ATI factor graphs can be solved using existing meth-
ods such as NDP and Max-Sum. In this section, we
analyze the computational complexity of doing so.

4.1 Non-Serial Dynamic Programming

NDP can compute the maximum configuration of a
factor graph. In the forward pass, variables are elimi-
nated one by one according to some prespecified order.
Eliminating the kth variable v involves collecting all
the factors in which it participates and replacing them
with a new factor fk that represents the sum of the
removed factors, given that v selects a best response.
Once all variables are eliminated, the backward pass
iterates through the variables in reverse order of elim-
ination. Each variable selects a best response to the

657



β1 β2 β3

u1 u2

θ1
1 θ2

1 θ1
2 θ2

2 θ1
3 θ2

3

C1
〈1,1〉C

1
〈1,2〉C

1
〈2,1〉C

1
〈2,2〉 C2

〈1,1〉C
2
〈1,2〉C

2
〈2,1〉C

2
〈2,2〉

Figure 4: ATI factor graph for a CGBG with three
agents, two types per agent, and two local payoff func-
tions. Agents 1 and 2 participate in payoff function u1

(corresponding to the first four contributions), while
agents 2 and 3 participate in u2 (corresponding to the
last four contributions). The factor graph expresses
both agent independence (e.g., agent 1 does not par-
ticipate in u2) and type independence (e.g, the action
agent 1 selects when it receives observation θ1

1 affects
only the first 2 contributions).

variables already visited, eventually yielding an opti-
mal joint policy.

The maximum number of agents participating in a fac-
tor encountered during NDP is known as the induced
width w of the ordering. The induced width depends
on the order in which the variables are eliminated and
determining the optimal order is NP-complete (Arn-
borg et al., 1987). The following result is well-known
(see for instance (Dechter, 1999)):

Theorem 1. NDP requires exponential time and
space in the induced width w.

Though NDP is still exponential, for sparse problems
the induced width is much smaller than the total num-
ber of variables V , i.e., w ≪ V , leading to an ex-
ponential speedup over naively enumerating the joint
variables. However, NDP scales poorly in practice on
densely connected graphs (Kok and Vlassis, 2006). In
addition, because of the particular shape that type in-
dependence induces on the ATI factor graph, we can
establish the following:

Theorem 2. The induced width of an ATI factor
graph is lower bounded by the number of individual
types and the size of the largest payoff function:

w ≥ (k − 1) · |Θ∗|,

where k is the largest local scope k = maxe∈E |A(ue)|,
and Θ∗ denotes the smallest individual type set.

Proof. Assume ue is a payoff function of maximal
size k. At some point, NDP will eliminate the first
variable connected to one of its contributions, i.e., a
type of an agent i ∈ A(ue). Since such a variable is

connected to contributions for each profile θe\i of types
of the other agents participating in ue, the newly intro-
duced factor will connect all the types of these (k − 1)
other agents. The minimum number of types of an
agent is |Θ∗| and thus the lower bound holds.

Theorems 1 and 2 lead directly to the following obser-
vation:

Corollary 1. The computational complexity of NDP
applied to an ATI factor graph is exponential in the
number of individual types.

Therefore, even given the ATI factor graph formula-
tion, it seems unlikely that NDP can effectively ex-
ploit type independence. In particular, we hypothesize
that NDP will not perform significantly better when
applied to the ATI factor graph instead of the AI fac-
tor graph. In fact, it is easy to construct an example
where it performs worse.

4.2 Max-Sum

To more effectively exploit type independence, we can
solve the ATI factor graph using the Max-Sum mes-
sage passing algorithm. Max-Sum is an appealing
choice for several reasons. First, it performs well
in practice on structured problems (Murphy et al.,
1999; Kschischang et al., 2001; Kok and Vlassis, 2006;
Farinelli et al., 2008; Kuyer et al., 2008). Second, un-
like NDP, it is an anytime algorithm that can provide
results after each iteration, not only at the end (Kok
and Vlassis, 2006). Third, as we show below, its com-
putational complexity is exponential only in the size of
the largest local payoff function’s scope, which is fixed
for many classes of CGBGs.

Max-Sum iteratively sends messages between the fac-
tors and variables. These messages encode how much
payoff the sender expects to be able to contribute to
the total payoff. In particular, a message sent from
a type i to a contribution j encodes, for each possi-
ble action, the payoff it expects to contribute. This is
computed as the sum of the incoming messages from
other contributions. Similarly, a message sent from
a contribution to a type i encodes the payoff it can
contribute conditioned on each available action to the
agent with type i.4

Max-Sum iteratively passes these messages over the
edges of the factor graph. Within each iteration, the
messages are sent either in parallel or sequentially with
a fixed or random ordering. When run on an acyclic
factor graph (i.e., a tree), it is guaranteed to converge
to an optimal fixed point (Pearl, 1988; Wainwright

4For a detailed description of how the messages are com-
puted, see Oliehoek (2010) or Rogers et al. (2011).
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et al., 2004). In cyclic factor graphs, there are no
guarantees that Max-Sum will converge.5 However,
experimental results have demonstrated that it works
well in practice even when cycles are present (Kschis-
chang et al., 2001; Kok and Vlassis, 2006; Kuyer et al.,
2008). This requires normalizing the messages to pre-
vent them from growing ever larger, e.g., by taking a
weighted sum of the new and old messages (damping).

Here we show that the computational complexity of
one iteration of Max-Sum on a CGBG is exponential
only in the size of the largest local payoff function’s
scope. In general, it is not possible to bound the num-
ber of iterations, since Max-Sum is not guaranteed
to converge. However, Max-Sum converges quickly
in practice and, since it is an anytime algorithm, the
number of iterations can be fixed in advance.

Theorem 3. One iteration of Max-Sum run on the
factor graph constructed for a CGBG has cost

O
(
|A∗|k · k2 · ρρ∗|Θ∗|2k−1

)
, (9)

where ρ∗ is the maximum number of edges in which an
agent participates.

Proof. It follows directly from the cost of a message
and the number of messages sent by factors and vari-
ables that the complexity of one iteration of Max-Sum
is

O
(
mk · k2 · l · F

)
, (10)

where F is the number of factors, k is the maximum de-
gree of a factor, l is the maximum degree of a variable,
and m is the maximum number of values a variable
can take.

Now, we interpret (10) for the CGBG setting. In this
case, m = |A∗|, F = O(ρ · |Θ∗|k) is the number of
contributions, and l = O(ρ∗ · |Θ∗|k−1), since each edge
e ∈ E in which a (type of an) agent participates induces
O(|Θ∗|k−1) contributions to which it is connected.

The implication of this theorem it that a Max-Sum
iteration is tractable for small k, the size of the largest
local scope. For problems with bounded k, this there-
fore directly yields a polynomial-time approximate al-
gorithm by bounding the number of iterations. Given
these results, we expect that, in general, Max-Sum
will prove more effective than NDP at exploiting
type independence. In particular, we hypothesize that
Max-Sum will outperform NDP when applied to an
ATI factor graph and will outperform Max-Sum when
applied to an AI factor graph.

5However, some variants of the message passing ap-
proach have slight modifications that yield convergence
guarantees (Globerson and Jaakkola, 2008). Since we
found that regular Max-Sum performs well in our experi-
mental setting, we do not consider such variants here.

5 Experiments

To evaluate the efficacy of using ATI factor graphs,
we compare NDP-ATI, NDP applied to an ATI fac-
tor graph and Max-Sum-ATI, Max-Sum applied to
an ATI factor graph with 10 restarts, to several state-
of-the-art alternatives. In particular, we compare to:
BaGaBaB, Bayesian Game Branch and Bound, a
heuristic search method for optimally solving CBGs
(Oliehoek et al., 2010); AltMax, Alternating max-
imization, starting with a random joint policy, each
agent iteratively computes a best-response policy for
each of its types, thus hill-climbing to a local opti-
mum; CE, Cross Entropy optimization (de Boer et al.,
2005) a randomized optimization method that main-
tains a distribution over joint policies; MAID-CM,
the state-of-the-art continuation method for solving
multiagent influence diagrams (Blum et al., 2006).6

Apart from MAID-CM, methods were implemented
using the MADP Toolbox (Spaan and Oliehoek, 2008);
the NDP and Max-Sum implementations also use lib-
DAI (Mooij, 2008).

5.1 Random CGBG Experiments

We first present experiments in randomly generated
games following a procedure similar to that used by
Kok and Vlassis (2006). We start with a set of n agents
with no local payoff functions defined. As long as a
path does not exist between every pair of agents, we
add a local payoff function involving k agents. Pay-
offs ue(θe,ae) are drawn from a normal distribution
N (0, 1), and the local joint type probabilities Pr(θe)
are drawn from a uniform distribution and then nor-
malized.

These random BGs enable testing on a range of prob-
lem parameters. In particular, we investigate the ef-
fect of scaling the number of agents n, the number of
types for each agent |Θi|, and the number of actions
for each agent |Ai|. We assume that the scopes of
the local payoff functions, the individual action sets,
and the individual type sets all have the same size for
each agent. For each set of parameters, we generate
1, 000 random CGBGs. Each method is run on these
instances, limited by 1GB of memory and 5s compu-
tation time.7 Payoffs are normalized with respect to
those of Max-Sum-ATI (whose payoff is always 1).

First, we compare NDP-ATI and Max-Sum-ATI with
other methods that do not exploit a factor graph rep-

6Since we use the implementation of Blum et al., which
does not output the quality of the found solution, we report
only computation times.

7A data point is not presented if the method exceeded
the predefined resource limits on one or more test runs.
MAID-CM was run on 30 games and given 30s.
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(e) Scaling |Ai|: Computation times.
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Figure 5: Comparison of Max-Sum-ATI and NDP-ATI with other methods, scaling the number of agents ((a)
and (d)), the number of actions ((b) and (e))), and the number of types ((c) and (f)). In all plots k = 2, and
the parameters that are not being varied are set as follows: n = 5, |Ai| = 3, |Θi| = 3.

resentation explicitly, the results of which are shown in
Fig. 5. These graphs show the payoff and computation
time when increasing the number of agents (Fig. 5a
and 5d), the number of actions (Fig. 5b and 5e), and
the number of types (Fig. 5c and 5f). These results
support a number of observations. 1) As predicted,
NDP scales well with respect to the number of agents,
but not types. It also scales poorly with the number of
actions, which indicates that the encountered induced
width is quite high in practice. 2) Though NDP can-
not successfully exploit type independence, it is still
consistently faster than BaGaBaB’s heuristic search.
3) The approximate Max-Sum method always finds
the optimum when we can compute it. 4) Max-Sum
finds substantially better solutions than the other ap-
proximate methods AltMax and CE, while running
faster than them for all but the smallest problems. 5)
MAID-CM, the state-of-the-art for MAIDs, is signif-
icantly slower than the other methods.

To make explicit the advantage of exploiting type
independence, Fig. 6 compares the performance
of Max-Sum-ATI to that of Max-Sum-AI, i.e.,
Max-Sum applied to an AI factor graph, for games
with k = 2, |Θi| = 4, |ai| = 4, larger numbers of agents,

and 30s allowed per CGBG. Max-Sum-AI scales only
to 50 agents, while Max-Sum-ATI scales to 725 (lim-
ited only by the allocated memory). While it is not
possible to compute optimal solutions for these prob-
lems, values found by both methods are close and in-
crease in proportion with the number of payoff com-
ponents, indicating no degradation in performance.

While these results are for k = 2, experiments con-
ducted for k = 3 were qualitatively similar, though
lack of space prevents a detailed presentation. Note
that there is no hope of efficiently solving problems
with large k, since such problems cannot even be rep-
resented compactly. However, this not a serious prac-
tical limitation; on the contrary, even low values of
k allow for complicated interactions since each agent
may participate in many local payoff functions.

5.2 Generalized Firefighting Experiments

In this section, we aim to demonstrate that the ad-
vantages of Max-Sum-ATI extend to a more realistic
problem, called Generalized Firefighting, which
is like the two-agent firefighting problem of Fig. 1 but
with NH houses and n agents physically spread over a

660



100 200 300 400 500 600 700
10

−2

10
−1

10
0

10
1

10
2

Varying # agents −− Computation Times

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

# agents

 

 

Max−Sum−AI

Max−Sum−ATI

Figure 6: Comparison of the scaling behavior for many
agents for Max-Sum-AI and Max-Sum-ATI.

2-dimensional area. Each agent observes the NO near-
est houses and may choose to fight fire at any of the
NA nearest houses.

Fig. 7 shows the results of our experiments in this do-
main, which corroborate our findings on random CG-
BGs by showing that Max-Sum has the most desir-
able scaling behavior in a variety of different parame-
ters.8 We omit payoff plots because all methods com-
puted solutions with the same payoff on all problem
instances; Max-Sum achieves the optimum in cases
where we can compute it. Further investigation of so-
lution quality (omitted due to lack of space) showed
that solution quality decreases (there are only penal-
ties in this problem) proportionally with the number
of payoff components, again indicating that scalability
does not come at the expense of solution quality.

6 Related Work

There is a large body of research that is related to the
work presented in this paper. Max-Sum has been used
in decision making for teams of cooperative agents
(Kok and Vlassis, 2006; Farinelli et al., 2008; Kuyer
et al., 2008; Rogers et al., 2011). However, all of this
work deals with cooperative games of perfect informa-
tion, whereas we deal with imperfect information.

The CGBG model was introduced by Oliehoek et al.
(2008b), who also used NDP to optimally solve CG-
BGs. However, NDP was applied only to the AI factor
graph. Here we applied and analyzed application of
NDP and Max-Sum to a newly proposed ATI factor
graph.

Two methods that are closely related to our ap-
proach are the heuristic search methods introduced

8We omit NDP-ATI, since Max-Sum-ATI outper-
formed it in random games, and MAID-CM, since it could
not find solutions for any of these problems in 30s.

by Oliehoek et al. (2010) and Kumar and Zilber-
stein (2010). The former propose BaGaBaB for co-
operative BGs, which we evaluated in our compara-
tive experiments. It exploits additivity of the value
function and can thus be interpreted as exploiting
type independence. However, its performance depends
heavily on the tightness of the heuristic used within
BaGaBaB (and, when problem sizes increase, the
heuristic bounds tend to become looser, leading to
disproportionate increases in runtime). Kumar and
Zilberstein (2010) take a similar approach by perform-
ing search with a state-of-the-art heuristic (EDAC) for
weighted constraint satisfaction problems to perform
a point-based backup (as part of a solution method for
sequential decision problems formalized as decentral-
ized partially observable Markov decision processes,
Dec-POMDPs). However, the EDAC heuristic pro-
vides leverage only in the two-agent case (de Givry
et al., 2005). Furthermore, unlike our approach, nei-
ther of these methods exploits agent independence.

A closely related framework is the multiagent influence
diagram (MAID), which extends decision diagrams to
multiagent settings (Koller and Milch, 2003). A MAID
represents a decision problem with a Bayesian network
containing a set of chance nodes and, for each agent, a
set of decision and utility nodes. As in a CGBG, the in-
dividual payoff function for each agent is defined as the
sum of local payoffs. MAIDs are more general because
they can represent sequential and non-identical pay-
off settings. Therefore, MAID solution methods are in
principle applicable to CGBGs. However, these meth-
ods aim merely to find a sample Nash equilibrium,
which is only guaranteed to be a local optimum. In
contrast, our factor-graph formulation enables meth-
ods that find the global optimum. The MAID-CM
method (Blum et al., 2006), which we also compared
against, exploits the structure of the network in an in-
ner loop to more efficiently compute the gradient of
the payoff function. However, Blum et al. do not de-
compose the payoff into contributions and thus do not
represent type independence. Moreover, since this in-
ference is performed exactly using a clique-tree based
approach, it cannot exploit type independence effec-
tively, as the graphical argument made against NDP
extends directly to this setting.

The framework of Bayesian action-graph games
(BAGGs) can also model any BG (Jiang and Leyton-
Brown, 2010). The BAGG solution method is similar
to MAID-CM in that it exploits structure in an in-
ner loop while searching for a sample equilibrium and
thus suffers from the same limitations. This frame-
work additionally allows the exploitation of anonymity
and context-specific independence, but offers no ad-
vantages when these are not present.
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(a) Varying n. Each agent observes 2
houses (4 types per agent).
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(b) Varying |Ai| when each agent ob-
serves 2 houses (4 types per agent).
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(c) Varying number of houses that are
observed per agent (n = 4, |Ai| = 5).

Figure 7: Computation time results for the Generalized Fire Fighting problem.

7 Conclusions & Future Work

This paper considered the interaction of a team
of agents under uncertainty modeled as cooperative
graphical Bayesian games (CGBGs). We showed that
CGBGs possess two different types of structure, agent
and type independence, which can be neatly captured
in a novel ATI factor graph formulation.

We considered two standard solution methods: non-
serial dynamic programming (NDP) and Max-Sum
message passing. The former has a computational
complexity that is exponential in the induced tree
width of the factor graph, which we proved to be lower
bounded by the number of individual types. One it-
eration of the latter is tractable when there is enough
independence between agents: we showed that it is ex-
ponential only in k, the maximum number of agents
that participate in the same local payoff function.

By bounding the number of iterations, the combina-
tion of the ATI factor graph and Max-Sum yields, for
any fixed k, a polynomial-time algorithm. While there
are no quality guarantees, the complexity results sug-
gest that any algorithm that scales polynomially with
respect to the number of types (and thus, via our the-
orem, tree-width) cannot provide a solution within an
arbitrary error bound (Kwisthout, 2011). It may be,
however, be possible to obtain (non-adjustable) quality
bounds for Max-Sum solutions via a technique that
eliminates edges from the factor graph (Rogers et al.,
2011).

An empirical evaluation showed that solution quality is
high: in all our experiments Max-Sum found the opti-
mal solution (when it could be computed). Moreover,
the evaluation also revealed that exploiting both agent
and type agent independence leads to significantly bet-
ter performance than current state-of-the-art methods,
providing scalability to much larger problems than was

previously possible. In particular, we showed that this
approach allows for the solution of coordination prob-
lems with imperfect information for up to 750 agents,
limited only by a 1GB memory constraint. As such,
we anticipate that the representation and exploitation
of both agent and type independence will be a critical
component in future solution methods for cooperative
Bayesian games.

For future work, a possible extension of our approach
could replace Max-Sum with message passing algo-
rithms for belief propagation that are guaranteed to
converge (Globerson and Jaakkola, 2008). In certain
cases, such approaches can be shown to compute an
optimal solution (Jebara, 2009). A different direction
of study would be to use our approach to help solve
Dec-POMDPs, by replacing the BG solving compo-
nents used by Oliehoek et al. (2008b) and Kumar and
Zilberstein (2010) with NDP or Max-Sum applied to
the ATI factor graph. This can lead to huge scale-
up in the number of agents approximate solutions can
handle (Oliehoek, 2010). Similarly, it may be possi-
ble to improve methods like MAID-CM by performing
the inference with Max-Sum in order to exploit type
independence. Another avenue is to extend our algo-
rithms to the non-cooperative case by rephrasing the
task of finding a sample Nash equilibrium as one of
minimizing regret, as suggested by Vickrey and Koller
(2002).
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Abstract

We study the problem of complexity estima-
tion in the context of parallelizing an advanced
Branch and Bound-type algorithm over graph-
ical models. The algorithm’s pruning power
makes load balancing, one crucial element of ev-
ery distributed system, very challenging. We pro-
pose using a statistical regression model to iden-
tify and tackle disproportionally complex paral-
lel subproblems, the cause of load imbalance,
ahead of time. The proposed model is evalu-
ated and analyzed on various levels and shown
to yield robust predictions. We then demonstrate
its effectiveness for load balancing in practice.

1 INTRODUCTION

This paper explores the application of learning for im-
proved load balancing in the context of distributed search
for discrete combinatorial optimization over graphical
models (e.g., Bayesian networks, weighted CSPs). Specif-
ically, we consider one of the best exact search algorithms
for solving the MPE task over graphical models, AND/OR
Branch and Bound (AOBB) [12], ranked first and third, re-
spectively, in the UAI’06 and ’08 evaluations and winning
all three MPE categories of the 2011 PASCAL Inference
Challenge.

We adapt the established concept of parallel tree search [7],
where a search tree is explored centrally up to a certain
depth and the remaining subtrees are solved in parallel. In
the graphical model context we explore the search space
of partial instantiations up to a certain point and solve the
resulting conditioned subproblems in parallel.

The distributed framework is built with a grid computing
environment in mind, i.e., a set of autonomous, loosely
connected systems – notably, we cannot assume any kind of
shared memory or dynamic load balancing which most par-
allel or distributed algorithms build upon [1, 5, 7, 6]. The

primary challenge is therefore to determine a priori a set
of subproblems with balanced complexity, so that the over-
all parallel runtime will not be dominated by just a few of
them. In the optimization context, however, the use of cost
and heuristic functions for pruning makes it very hard to
reliably predict and balance subproblem complexity ahead
of time; in particular, structural parameters like the induced
width are not sufficient to differentiate subproblems.

Our suggested approach and the main contribution of this
paper is to estimate subproblem complexity by learning
a regression model over several subproblem parameters,
some static and structural (e.g., induced width, variable do-
main sizes), others dynamically extracted at runtime (e.g.
upper and lower bounds on the subproblem solution based
on the heuristic function).

A similar regression-based approach was developed in [11]
to predict the problem complexity (called “empirical hard-
ness”) of combinatorial auction instances; similarly the
successful SAT solverSATzillauses linear regression mod-
els to choose among a set of component solvers the one that
is predicted to be fastest for a given SAT instance [16].

Other general work on estimating search complexity goes
back to [10] and more recently [9], which predict the size
of general backtrack trees through random probing. Simi-
lar schemes were devised for Branch and Bound algorithms
[2], where search is run for a limited time and the par-
tially explored tree is extrapolated. These approaches typi-
cally require a substantial amount of probing, which is pro-
hibitively expensive in our setup, where many hundreds, if
not thousands of subproblems need to be evaluated quickly.

The contribution of the present paper lies in proposing and
studying a general learning approach for estimating sub-
problem complexity. In particular, we frame the problem
as statistical regression analysis, which allows us to lever-
age established, powerful techniques from machine learn-
ing and statistics. Motivated by different parallelization
scenarios, we distinguish three distinct levels of learning:
based on a single problem instance, based on a specific
class of problems, and based on a combination of problem
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(a) (b) (c) (d)

Figure 1: (a) Example primal graph with six variables, (b) its pseudo tree along orderingA, B, C, D, E, F , (c) the corre-
sponding context-minimal AND/OR search graph, and (d) the parallel search space resulting from parallelizing at depth
d = 2 with eight independent subproblems.

classes. We evaluate, analyze, and contrast these three lev-
els on a sample set of more than 11,000 subproblem sam-
ples from four problem classes and demonstrate generally
robust prediction performance. We also demonstrate em-
pirically the model’s potential for improved load balancing.

The remainder of the paper is organized as follows: Section
2 summarizes the necessary background and outlines the
distributed AND/OR Branch and Bound algorithm. Sec-
tion 3 introduces the proposed regression model for com-
plexity estimation while Section 4 evaluates it on a variety
of instances from several problem classes. Section 5 pro-
vides selected parallel results that highlight the benefitsof
the proposed model and Section 6 concludes.

2 BACKGROUND

We assume the usual definitions of agraphical modelas a
set of functionsF = {f1, . . . , fm} over discrete variables
X = {X1, . . . , Xn} , its primal graph, induced graph, and
induced width.

2.1 AND/OR SEARCH SPACES

The concept of AND/OR search spaces has been intro-
duced as a unifying framework for advanced algorithmic
schemes for graphical models to better capture the struc-
ture of the underlying graph [3]. Its main virtue consists in
exploiting conditional independencies between variables,
which can lead to exponential speedups. The search space
is defined using apseudo tree, which captures problem de-
composition:

DEFINITION 1 (pseudo tree) Given an undirected graph
G = (X, E) , a pseudo treeof G is a directed, rooted tree
T = (X, E′) with the same set of nodesX , such that ev-
ery arc ofG that is not included inE′ is a back-arc inT ,
namely it connects a node inT to an ancestor inT . The
arcs inE′ may not all be included inE .

AND/OR Search Trees and Graphs : Given a graphical
model instance with variablesX and functionsF , its pri-

mal graph(X, E) , and a pseudo treeT , the associated
AND/OR search treeconsists of alternating levels of OR
and AND nodes. The structure of the AND/OR search tree
is based on the underlying pseudo treeT : the root of the
AND/OR search tree is an OR node labeled with the root
of T . The children of an OR nodeXi are AND nodes la-
beled with assignments〈Xi, xi〉 ; the children of an AND
node〈Xi, xi〉 are OR nodes labeled with the children ofXi

in T , representing conditionally independent subproblems.
Different nodes may root identical subproblems and can
be merged throughcaching, yielding anAND/OR search
graph of smaller size, at the expense of using additional
memory during search.

Given a graphical model, its primal graphG , and a guiding
pseudo treeT of heighth, the size of the AND/OR search
tree isO(n · kh) , while O(n · kw∗

) bounds the AND/OR
search graph, wherew∗ is the induced width ofG over a
depth-first traversal ofT andk bounds the domain size [3].
Figure 1(a) shows an example problem primal graph with
six variables, Figure 1(b) depicts a pseudo tree along order-
ing A, B, C, D, E, F . Figure 1(c) shows the corresponding
AND/OR search graph.

AND/OR Branch and Bound : AND/OR Branch and
Bound (AOBB) is a state-of-the-art algorithm for solving
optimization problems over graphical models. Assuming
maximization, it traverses the AND/OR graph in a depth-
first manner while keeping track of a current lower bound
on the optimal solution cost. During expansion of a node
n, this lower boundl is compared with a heuristic upper
boundu(n) on the optimal solution belown – if u(n) ≤ l
the algorithm can prune the subproblem belown [12].

Mini-Bucket Heuristics : The heuristich(n) that we use
in our experiments is the Mini-Bucket heuristic. It is based
on Mini-Bucket elimination, an approximate variant of a
variable elimination scheme that computes approximations
to reasoning problems over graphical models [4]. A control
parameteri allows to trade accuracy of the heuristic against
its time and space requirements. It was shown that the inter-
mediate functions generated by the Mini-Bucket algorithm
MBE(i) can be used to derive a heuristic function that un-
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derestimates the minimal cost solution to a subproblem in
the AND/OR search graph [12].

2.2 DISTRIBUTED AOBB & LOAD BALANCING

Our distributed implementation of AND/OR Branch and
Bound draws from the notion of parallel tree search [7, 6],
where a search tree is explored centrally up to a certain
depth and the remaining subtrees are solved in parallel. Ap-
plied to the search graph from Figure 1(c), for instance,
we could obtain eight independent subproblems as shown
in Figure 1(d), with a conditioning search space (in gray)
spanning the first two levels (variablesA andB).

We refer to the boundary between conditioning search
space and parallel subproblems as theparallelization fron-
tier. Its choice determines the shape and the number of
subproblems and is thus crucial for effective parallelload
balancing. Namely, it is known that for best parallel per-
formance we should spread the parallel workload evenly
across all available CPUs, while minimizing overhead.
Note that we assume independent worker machines, with
limited or very costly communication, hence dynamic load
balancing at runtime (cf. [6]) is not applicable.

Algorithm 1 shows pseudo code for our parallelization pol-
icy: the parallelization frontier is generated in a breadth-
first manner by iteratively selecting the current most com-
plex subproblem, estimated by a complexity estimator
N̂ , and splitting it into its immediate “sub-subproblems”,
which are in turn added to the frontier. This process is re-
peated until a desired number of subproblems is obtained,
at which point all subproblems are submitted to the dis-
tributed environment.

In the context of depth-first Branch and Bound, however,
determining the most complex subproblem is extremely
difficult and elusive. Due to the pruning power of the
algorithm, subproblem runtimes can differ greatly, even
when the underlying subgraph structure and the associated
asymptotic complexity guarantees (exponential in the in-
duced width of the AND/OR subspace) are identical.

To illustrate, consider the subproblem statistics of two par-
allel runs shown in Figure 2, where instead the paralleliza-
tion frontier is placed at a fixed depthd = 5 andd = 4,
respectively, yielding 64 and 144 subproblems (the hori-

Algorithm 1 Finding the parallelization frontier

Input: Pseudo treeT with root X0, subproblem countp, sub-
problem complexity estimator̂N .

Output: SetF of subproblem root nodes with|F | ≥ p .
1: F ← {〈X0〉}
2: while |F | < p :
3: n′ ← arg maxn∈F N̂(n)
4: F ← F \ {n′}
5: F ← F ∪ children(n′)
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Figure 2: Subproblem statistics for fixed-depth paralleliza-
tion frontier showing large variance in subproblem runtime.
Dashed lines mark 0, 20, 80, and 100 percentile.

zontal axis). In each case we see significant variance in
subproblem runtime. In fact, the overall runtime is dom-
inated exclusively by the handful of longest-running sub-
problems, with most other subproblems finishing long be-
fore (note the log scale). Detecting and mitigating this im-
balance ahead of time constitutes the central challenge in
this line of work, as we elaborate in the next sections.

3 LEARNING COMPLEXITIES
THROUGH REGRESSION

This section introduces our learning approach to subprob-
lem complexity prediction through regression analysis.
Previous work has investigated and evaluated various meth-
ods for balancing subproblem complexity, directly formu-
lating metrics using human expert knowledge [13, 14].
These metrics were relative in nature, i.e., they only al-
lowed comparison of one subproblem to another within a
given overall problem instance. In contrast, the present
work does not depend as heavily on expert knowledge and
gives absolute complexity estimates.

3.1 GENERAL METHODOLOGY

We identify a subproblem by its search space root node
n. We further measure the complexity of the subproblem
rooted atn through the size of its explored search space,
which is the number of node expansions required for its
solution, denotedN(n). We then aim to capture the expo-
nential nature of the search space size by modelingN(n)
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as an exponential function of various subproblem features
φi(n) as follows:

N(n) = exp(
∑

i

λiφi(n)) (1)

The exponent has been chosen as a sum so that we can
consider the log complexity and obtain the following:

log N(n) =
∑

i

λiφi(n) (2)

Given a set ofm sample subproblems, finding suitable pa-
rameter valuesλj can thus be formulated as a well-known
linear regressionproblem, with themean squared error
(MSE) as the loss functionL(λ) we aim to minimize:

L(λ) =
1

m

m∑

k=1

(∑

i

λiφi(nk) − log N(nk)
)2

(3)

The MSE captures how well the learned regression model
fits the training data. In the context of load balancing for
parallelism we can consider a secondary metric, thePear-
son correlation coefficient(PCC), which is simply the nor-
malized covariance between the vector of subproblem com-
plexities and their estimates, normalized by the product of
each vector’s standard deviation. It is bounded by[−1, 1] ,
where 1 implies perfect linear correlation and -1 anticorre-
lation. Hence a value close to 1 is desirable, as it signifies a
model likely to correctly identify the hardest subproblems.

3.2 SUBPROBLEM FEATURES

Table 1 lists the full set of basic subproblem featuresφi

that we consider. This list was compiled based on our prior
knowledge of what aspects can affect problem complexity.
Features can be divided into two distinct classes: “static”,
which can be precompiled from the problem graph and
pseudo tree, and “dynamic” which are computed at run-
time, as the parallelization frontier decision is made (note
that none of the dynamic features are costly to compute).

3.3 SUBPROBLEM SAMPLE DOMAINS

In order to evaluate training and prediction error of the
proposed complexity model from a statistical learning per-
spective, we need to specify the sample domain over which
we will make predictions, for which we aim to generate a
model, and from which subproblem samples are assumed
to be drawn. In fact, in the following we consider three
incrementally more general levels of sample domains and
learning, corresponding to three different designs in the
context of parallelizing AOBB:

1. Learning per problem instance: The sample domain
is all subproblems from a single problem instance.
This corresponds to learning a new complexity model

Subproblem variable statistics (static):
1: Number of variables in subproblem.

2-6: Min, Max, mean, average, and std. dev. of variable
domain sizes in subproblem.

Pseudotree depth/leaf statistics (static):
7: Depth of subproblem root in overall search space.

8-12: Min, max, mean, average, and std. dev. of depth of
subproblem pseudo tree leaf nodes, counted from sub-
problem root.

13: Number of leaf nodes in subproblem pseudo tree.
Pseudo tree width statistics (static):
14-18: Min, max, mean, average, and std. dev. of induced

width of variables within subproblem.
19-23: Min, max, mean, average, and std. dev. of induced

width of variables within subproblem,when condition-
ing on subproblem root conditioning set.

Subproblem cost bounds (dynamic):
24: Lower boundL on subproblem solution cost, derived

from current best overall solution.
25: Upper boundU on subproblem solution cost, provided

by mini bucket heuristics.
26: DifferenceU − L between upper and lower bound, ex-

pressing “constrainedness” of the subproblem.
Pruning ratios (dynamic), based on running 5000 node ex-
pansion probe of AOBB:

27: Ratio of nodes pruned using the heuristic.
28: Ratio of nodes pruned due of determinism (zero proba-

bilities, e.g.)
29: Ratio of nodes corresponding to pseudo tree leaf.

Sample statistics (dynamic), based on running 5000 node ex-
pansion probe of AOBB:

30: Average depth of terminal search nodes within probe.
31: Average node depth within probe (denotedd̄ ).
32: Average branching degree, defined asd̄

√
5000 .

Various (static):
33: Mini bucketi-bound parameter.
34: Max. subproblem variable context size minus mini

bucketi-bound.

Table 1: Subproblem features for complexity estimation.

for every problem instance the parallel scheme en-
counters (e.g., we would learn separate models for the
two instances in Figure 2).

2. Learning per problem class: Take the domain to be
all subproblems of problems from a specific class. In
the parallelization context we learn a separate model
for every problem class we consider. For example, we
would learn a single model for all pedigree problems,
but a different model for other problem classes like
protein sidechain prediction.

3. Learning across problem classes: Take the sample
domain to be all subproblems of all problems from
several classes. Ultimately this could translate to a
parallel scheme that uses a single complexity model
for all problem classes under consideration.

These three levels are increasingly more general and thus
potentially more challenging for robust estimation. On the
other hand, they require increasingly less computational ef-
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fort, since fewer distinct models need to be learned. Lastly,
they can present different trade-offs between pre-compiled
off-line learning and learning at runtime.

3.4 REGRESSION ALGORITHMS

We investigated a number of algorithms for fitting a lin-
ear model. Ordinary least squares (OLS) regression was
problematic due to numerical issues (near-singular matrix
inversion) and prone to overfitting (due to lack of regular-
ization) and we did not consider if further. Standard ridge
regression adds theL2-norm of the parameter vectorλ to
the regularized loss function through a termα(

∑
i λ2

i )
1
2 ;

similarly, lasso regression [15], places anL1-penalty on
the parameter vector by adding the termα

∑
i |λi| . The

so-called “Elastic Net” combines both penalty terms [18].
In each case we followed the common approach of deter-
mining the regularization parameterα once through initial
cross validation and held it fixed subsequently.

In our experiments we found all methods to perform simi-
larly in terms of training and prediction errors, with a slight
advantage for the lasso method. We will therefore focus on
lasso learning. This method has the additional benefit of
“built-in” feature selection: learned models are relatively
sparse and thus compact, because theL1-regularization
pushes many parametersλi to zero [15].

3.5 NON-LINEAR REGRESSION

In addition to the purely linear regression analysis proposed
above, we also explored non-linear approaches. In particu-
lar, we took inspiration from [11], which reports improved
prediction performance usingquadratic feature expansion,
albeit in the context of combinatorial auctions. Quadratic
feature expansion, also referred to as “quadratic regres-
sion”, works by adding new features in the form of pairwise
products of the original features; namely, for every pair of
subproblem featuresφi, φj with i ≤ j, we create a new
featureφi · φj . We then perform linear regression on the
expanded feature set (629 in our case), thereby effectively
fitting a polynomial of 2nd degree. Results will be outlined
in Section 4.5.

Next we evaluate the proposed regression model on a vari-
ety of instances from several different problem classes.

4 EVALUATION AND ANALYSIS

The basis for our evaluation are 31 hard problem instances
from four classes: pedigree haplotyping problems, pro-
tein side-chain prediction ([17], named “pdb”), “large fam-
ily” genetic linkage instances, and grid networks (“75-2x-
x”). Summary statistics of the different problem classes
are given in Table 2. We note that all instances each take
several hours, if not days to solve using sequential AOBB.

domain M n k w h

pedigree 13 437 – 1272 3 – 7 17 – 39 47 – 102
pdb 5 103 – 172 81 10 – 15 24 – 43
largeFam 8 2569 – 3730 3 – 4 28 – 37 73 – 108
grid 5 624 – 675 2 37 – 39 111 – 124

Table 2: Summary statistics for problem classes used,M
gives the number of instances in the class.n denotes num-
ber of problem variables,k max. domain size,w induced
width, h pseudo tree height.

To compile a set of subproblem samples we revisit exper-
iments with fixed-depth parallelization (cf. Section 2.2):
we randomly choose not more than 500 subproblems from
a previously recorded fixed-depth parallel run for each in-
stance. This leaves us with about 11,500 sample subprob-
lems (approx. 40% pedigree, 25% protein, 25% largeFam,
10% grids), which is very reasonable for the number of
features we have (the variance of the trained linear model
scales withp/m, wherep is the number of features andm
the number of samples, cf. Section 7.3 in [8]).

The empirical evaluation is organized as follows: Sections
4.1 through 4.3 assess the prediction power of our proposed
linear regression complexity model according to the three
levels of learning outlined in Section 3.3. Section 4.4 in-
spects feature informativeness and Section 4.5 briefly in-
vestigates performance of the quadratic model. Section 4.6
provides a summary of the learning results.

Throughout this section results are presented as a log-log
scatter plot of actual versus predicted complexities, each
also containing mean squared prediction error (“MSE”, on
the test set) and Pearson correlation coefficient (“PCC”) as
well as mean squared training error (“TER”).

4.1 LEARNING PER PROBLEM INSTANCE

This first set of experiments is meant to determine the pre-
diction quality of a regression model that is learned for a
single instance only. To that end, we consider all subprob-
lem samples from a given problem instance and apply 5-
fold cross validation (i.e., partition the samples into 5 sub-
sets, then predict the complexities of each subset by learn-
ing a model on the remaining four).

Figure 3 presents scatter plots for six problem instances
from the different problem classes considered. We see that
results are good for the protein and largeFam instance and
still acceptable forpedigree19with slightly higher MSE.
Pedigree41has a relatively low MSE and good PCC, in
spite of the plot’s flat appearance. In case of the grid in-
stance75-26-9the model’s discriminatory power is likely
limited by the small number of subproblem samples in this
case. Finally, we note that the training error (“TER”) is
very close to the prediction error (“MSE”) in all cases, in-
dicating the absence of overfitting.
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Figure 3: Actual vs. predicted subproblem complexity
when learning per problem instance, using 5-fold cross val-
idation.

4.2 LEARNING PER PROBLEM CLASS

Secondly, we aim to assess how well we can learn a model
for an entire problem class. That is, we learn only once
from sample subproblems of instances from the problem
class in question. For testing we perform cross validation
on the level of problem instances. Namely, we predict the
subproblems of a given instance by fitting a model using
subproblem samples of other instances from the same class
– but not of the test instance itself.

Results are shown in Figure 4. Compared to Figure 3 in
the previous section, estimates for the grid and largeFam
instance are very similar and yield almost the same mean
squared error. MSE increases for the pedigree and large-
Fam instances, but the PCC and overall shape of the predic-
tions also remain similar, with the exception ofpedigree41
which sees both MSE and PCC deteriorate.

4.3 LEARNING MULTIPLE PROBLEM CLASSES

Lastly, we investigate how good a model we can learn from
subproblems of instances across multiple problem classes.
In particular, given a problem instance we learn a regres-
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Figure 4: Actual vs. predicted subproblem complexity
when learning per problem class.

sion model on the subproblems of all other instances, re-
gardless of their problem class.

Results are given in Figure 5, analogous to Figures 3 and 4.
The two pedigree problems see an improved MSE and PCC
(significantly forpedigree41), but the other instances suffer
from a slightly larger prediction error. However, we again
note that the overall shape of the plots remains roughly lin-
ear, which is also captured by high PCC values.

4.4 MOST INFORMATIVE FEATURES

Linear regression has the advantage that the resulting mod-
els can be straightforward to interpret. Namely, to assess
the informativeness of featureφi we simply look at the ab-
solute value of its coefficientλi in the regression model.
Assuming a normalized sample set, features with larger
absolute values contribute more to the predictions and are
thus intuitively more informative.

In addition, recall that theL1-regularization in lasso re-
gression implicitly performs feature selection by assigning
λi = 0 for somei. In our case, training on the entire sample
set (11,500 subproblem instances, regularization parameter
through cross-validation) yielded non-zeroλi for nine fea-
tures, as shown in in Table 3. In addition each feature’s
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Figure 5: Actual vs. predicted subproblem complexity
when learning across problem classes.

cost of omission(“coo”) as defined in [11] is given, which
measures the normalized difference between the prediction
error of the model with all nine features and the prediction
error of a model trained with the respective feature omitted
(using 5-fold cross-validation in all cases).

The particular set of features can be somewhat misleading,
however, since lasso regression tends to pick only one of
several highly correlated features. Yet it is useful to gain
a conceptual understanding. In particular, we observe that
the most informative features are dynamic, extracted from

Featureφi |λi| coo
Average branching degree in probe 0.57 100
Average leaf node depth in probe 0.39 87
Subproblem upper bound minus lower bound 0.22 17
Ratio of nodes pruned by heuristic in probe 0.20 27
Max. context size minus mini bucketi-bound 0.19 16
Ratio of leaf nodes in probe 0.18 10
Subproblem upper bound 0.11 7
Std. dev. of subproblem pseudo tree leaf depth0.06 2
Depth of subproblem root node in overall space0.05 2

Table 3: Features present in the linear model trained by
lasso regression, with their model coefficientsλi and their
cost of omission “coo” (normalized).
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Figure 6: Example prediction results using a quadratic re-
gression model. Left: learning per problem instance, using
5-fold cross validation (cf. Fig. 3). Right: learning from
all problem classes (cf. Fig. 5).

a limited AOBB probe or based on the initial subproblem
bounds. Only the fifth feature, max. subproblem context
size minus mini-bucketi-bound, is static, with a normal-
ized cost of omission of only 16. This ties in to Section 2.2,
where we observed that the asymptotic complexity bound
of AOBB (based on static parameters) yields little informa-
tion in this context.

4.5 NON-LINEAR REGRESSION

Here we briefly summarize results from our investigation
of quadratic feature expansion, as detailed in Section 3.5.
Selected prediction results for three instances are shown
in Figure 6. On the left are results of learning per problem
instances, on the right we plot the prediction accuracy when
learning from all problem classes.

Comparing the plots on the left (per-problem learning) with
Figure 3, we note that quadratic regression does a bit better
than linear regression in terms of MSE and very similarly
with regards to PCC. In contrast to [11], however, we find
deteriorated prediction performance when comparing the
plots on the right with Figure 5: while the PCC value is
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similar, the mean squared prediction error when learning
from multiple problem classes increases considerably for
pedigree19and largeFam3-11-59. Notably, however, the
training error remains fairly low in both cases, which is in-
dicative of overfitting. And indeed, with over 600 subprob-
lem features and just 31 different instances, the quadratic
regression model is likely to pick up specific characteris-
tics of each instance that hurt its predictive performance.

Since quadratic models are also more expensive to train and
lack the straightforward interpretability of a linear model,
we feel that the latter is better-suited for our purposes.

4.6 INTERPRETATION OF RESULTS

We have trained and evaluated our proposed regression
model on the three levels of learning laid out in Section 3.3,
trading off between the wider applicability of the learned
models and the challenges of capturing increasingly gen-
eral sample sets. Learning per problem instance provided
a good baseline but has limited relevance in practice, since
each new instance requires extensive sampling of subprob-
lems to train on. Learning per problem class is more rea-
sonable as the learned model can be reused within the given
problem class; our experiments showed good performance.
Finally, learning across classes is the most challenging as
the sample set is likely to be more diverse and have higher
variance, requiring more training samples; however, once
we learn a model it can be used throughout.

And indeed, our results in Section 4.3 show that, given our
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Figure 7: Subproblem statistics for regression-based par-
allelization (cf. fixed-depth parallelization in Fig. 2),p
denotes the number of subproblems.
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Figure 8: Subproblem statistics for fixed-depth (top) and
regression-based (bottom) parallelization onlargeFam3-
15-59instance.

substantial set of 11,500 subproblem samples, the model
can accommodate this most general level of learning across
problem classes without a noticeable penalty, at least for
the current collection of problem classes. A model learned
across classes is therefore also the basis for the next section,
where we demonstrate the benefit of robust complexity es-
timates in the context of distributed AOBB.

5 REGRESSION-BASED LOAD
BALANCING IN PRACTICE

In this section we present selected experimental results that
show the potential of the proposed regression models in
guiding the parallelization process, as described in Section
2.2 – a comprehensive empirical evaluation of Distributed
AOBB is beyond the scope of this paper. As noted above,
the regression model used for experiments in this section
was learned at the most general level, using all available
problem classes as discussed in Section 4.3 (but always ex-
cluding the test problem instance).

5.1 IMPROVING LOAD BALANCING

To demonstrate the profound impact the complexity predic-
tions can have on the load balancing of the parallel scheme,
we revisit the two parallel experiments presented in Section
2.2, Figure 2. In both cases the overall performance was
heavily dominated by very few long-running subproblems.

Figure 7 shows runtime statistics for parallel execution on
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Figure 9: Actual vs. predicted subproblem complexity
from the two parallel executions in Figure 7.
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Figure 10: Parallel speedup forpedigree41, pedigree19,
and largeFam3-15-59(cf. Figures 2, 7, and 8) as a func-
tion of the number of parallel CPUs. Dashed lines repre-
sent fixed-depth parallelization, solid lines correspond to
parallel runs guided by our regression model.

these instances, using the regression model for load bal-
ancing. Figure 8 gives an additional example on a large-
Fam instance. In all cases we see that the max. subprob-
lem runtime has been reduced greatly, close to 50% for
largeFam3-15-59(1,362 to 716 seconds for “max. job”
in Figure 8). We also note the drastically lower standard
deviation in subproblem runtimes.

In addition, Figure 9 compares the complexity estimates
obtained during the parallel execution with the actual
recorded values. In both cases we observe good prediction
error andpedigree19in particular also shows good PCC.

5.2 FACILITATING PARALLEL SPEEDUP

Figure 10 plots the parallel speedup for the three prob-
lem instances considered in Section 5.1 over the number
of parallel CPUs. For each instance we show (as a dashed
line) the speedup when using fixed-depth parallelization
and (with a solid line) the speedup of the parallel execu-
tion guided by the regression model.

Comparing each instance’s two entries reveals a clear ad-
vantage for the regression-based parallelization: it achieves
higher speedups, roughly by a factor of two, and seems to
plateau later, i.e. it is able to utilize a larger number of
parallel resources.

On the other hand, most curves appear to level off well be-
fore their theoretical limit. This indicates that further im-
provements are possible, even though “perfect” speedup is
unattainable in practice, since splitting a given subproblem
often yields components of widely varying size and large
jumps in complexity.

One way to mitigate these issues lies in increasing the sub-
problem granularity, i.e., setting the number of subprob-
lems to match several times the number of parallel CPUs.
However, this may add overhead in the general distributed
context and redundancies in the particular graphical model
context, which can negate potential gains in extreme cases.
Indeed, finding the right balance in granularity is a central
research issue in the field of distributed computing.

6 CONCLUSION & FUTURE WORK

We have presented a case study of complexity estimation
in the context of parallelizing the state-of-the-art sequential
optimization algorithm AND/OR Branch and Bound. The
pruning power of the algorithm makes parallel load balanc-
ing very challenging, leading to inefficiencies in practice.

To address these symptoms we have proposed to employ
statistical regression analysis in order to identify bottle-
necks for parallel performance ahead of time. In particular,
we developed a linear regression model that uses a variety
of static as well as dynamic features to predict a subprob-
lem’s complexity, enabling us to detect and split problem-
atic subproblems.

We identified three distinct levels of learning and evaluated
our proposed model accordingly, using more than 11,000
subproblem samples from 31 problem instances and four
problem classes. Results were good throughout, with gen-
erally low prediction error and high correlation coefficients.

In the context of our parallel scheme, we have shown how
the regression model can enable more effective load bal-
ancing and improved parallel speedup. This last set of re-
sults, however, also outlined opportunities for further im-
provements and future research, including varying the par-
allel granularity.

Future work with respect to learning of complexity esti-
mates will expand to more instances and additional prob-
lem classes. In that context we also plan to investigate how
our learned models perform on instances from previously
unseen problem classes. Furthermore, we are trying to de-
vise more subproblem features, for instance extracted di-
rectly from the cost function tables within a subproblem.
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Abstract

Latent variable models are an elegant frame-
work for capturing rich probabilistic depen-
dencies in many applications. However, cur-
rent approaches typically parametrize these
models using conditional probability tables,
and learning relies predominantly on local
search heuristics such as Expectation Max-
imization. Using tensor algebra, we pro-
pose an alternative parameterization of latent
variable models (where the model structures
are junction trees) that still allows for com-
putation of marginals among observed vari-
ables. While this novel representation leads
to a moderate increase in the number of pa-
rameters for junction trees of low treewidth,
it lets us design a local-minimum-free algo-
rithm for learning this parameterization. The
main computation of the algorithm involves
only tensor operations and SVDs which can
be orders of magnitude faster than EM al-
gorithms for large datasets. To our knowl-
edge, this is the first provably consistent pa-
rameter learning technique for a large class
of low-treewidth latent graphical models be-
yond trees. We demonstrate the advantages
of our method on synthetic and real datasets.

1 Introduction

Latent variable models such as Hidden Markov Models
(HMMs) (Rabiner & Juang, 1986), and Latent Dirich-
let Allocation (Blei et al., 2003) have become a popular
framework for modeling complex dependencies among
variables. A latent variable can represent an abstract
concept (such as topic or state), thus enriching the
dependency structure among the observed variables
while simultaneously allowing for a more tractable
representation. Typically, a latent variable model is
parameterized by a set of conditional probability ta-
bles (CPTs) each associated with an edge in the la-

tent graph structure. For instance, an HMM can be
parametrized compactly by a transition probability ta-
ble and an observation probability table. By summing
out the latent variables in the HMM, we obtain a fully
connected graphical model for the observed variables.

Although the parametrization of latent variable mod-
els using CPTs is very compact, parameters in this
representation can be difficult to learn. Compared to
parameter learning in fully observed models which is
either of closed form or convex (Koller & Friedman,
2009), most parameter learning algorithms for latent
variable models resort to maximizing a non-convex ob-
jective via Expectation Maximization (EM) (Demp-
ster et al., 1977). EM can get trapped in local optima
and has slow convergence.

While EM explicitly learns the CPTs of a latent vari-
able model, in many cases the goal of the model is
primarily for prediction and thus the actual latent pa-
rameters are not needed. One example is determining
splicing sites in DNA sequences (Asuncion & Newman,
2007). One can build a different latent variable model,
such as an HMM, for each type of splice site from
training data. A new sequence is then classified by de-
termining which model it is most likely to have been
generated by. Other examples include supervised topic
modelling such as (Blei & McAuliffe, 2007; Lacoste-
Julien et al., 2008; Zhu et al., 2009) and collaborative
filtering (Su & Khoshgoftaar, 2009).

In these cases, it is natural to ask whether there ex-
ists an alternative representation/parameterization of
a latent variable model where parameter learning can
be done consistently and the representation remains
tractable for inference among the observed variables.
This question has been tackled recently by Hsu et al.
(2009), Balle et al. (2011), and Parikh et al. (2011)
who proposed spectral algorithms for local-minimum-
free learning of HMMs, finite state transducers, and
latent tree graphical models respectively. Unlike tra-
ditional parameter learning algorithms such as EM,
spectral algorithms do not directly learn the CPTs of
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Figure 1: Our algorithm for local-minimum-free learning of latent variable models consist of four major steps. (1) First,
we transform a model into a junction tree, such that each node in the junction tree corresponds to a maximal clique
of variables in the triangulated graph of the original model. (2) Then we embed the clique potentials of the junction
tree into higher order tensors and express the marginal distribution of the observed variables as a tensor-tensor/matrix
multiplication according to the message passing algorithm. (3) Next we transform the tensor representation by inserting
a pair of transformations between those tensor-tensor/matrix operations. Each pair of transformations is chosen so that
they are inversions of each other. (4) Lastly, we show that each transformed representation is a function of only observed
variables. Thus, we can estimate each individual transformed tensor quantity using samples from observed variables.

a latent variable model. Instead they learn an alter-
native parameterization (called the observable repre-
sentation) which generally contains a larger number
of parameters than the CPTs, but where computing
observed marginals is still tractable. Moreover, these
alternative parameters have the advantage that they
only depend on observed variables and can therefore
be directly estimated from data. Thus, parameter
learning in the alternative representation is fast, local-
minimum-free, and provably consistent. Furthermore,
spectral algorithms can be generalized to nonparamet-
ric latent models (Song et al., 2010, 2011) where it is
difficult to run EM.

However, existing spectral algorithms apply only
to restricted latent structures (HMMs and latent
trees), while latent structures beyond trees, such as
higher order HMMs (Kundu et al., 1989), factorial
HMMs (Ghahramani & Jordan, 1997) and Dynamic
Bayesian Networks (Murphy, 2002), are needed and
have been proven useful in many real world prob-
lems. The challenges for generalizing spectral algo-
rithms to general latent structured models include the
larger factors, more complicated conditional indepen-
dence structures, and the need to sum out multiple
variables simultaneously.

The goal of this paper is to develop a new represen-
tation for latent variable models with structures be-
yond trees, and design a spectral algorithm for learning
this representation. We will focus on latent junction
trees; thus the algorithm is suitable for both directed
and undirected models which can be transformed into
junction trees. Concurrently to our work, Cohen et al.
(2012) proposed a spectral algorithm for Latent Prob-
abilistic Context Free Grammars (PCFGs). Latent
PCFGs are not trees, but have many tree-like prop-
erties, and so the representation Cohen et al. (2012)
propose does not easily extend to other non-tree mod-
els such as higher order/factorial HMMs that we con-
sider here. Our more general approach requires more

complex tensor operations, such as multi-mode inver-
sion, that are not used in the latent PCFG case.

The key idea of our approach is to embed the clique
potentials of the junction tree into higher order tensors
such that the computation of the marginal probabil-
ity of observed variables can be carried out via tensor
operations. While this novel representation leads only
to a moderate increase in the number parameters for
junction trees of low treewidth, it allows us to design
an algorithm that can recover a transformed version of
the tensor parameterization and ensure that the joint
probability of observed variables are computed cor-
rectly and consistently. The main computation of the
algorithm involves only tensor operations and singu-
lar value decompositions (hence the name “spectral”)
which can be orders of magnitude faster than EM al-
gorithms in large datasets. To our knowledge, this is
the first provably consistent parameter learning tech-
nique for a large class of low-treewidth latent graph-
ical models beyond trees. In our experiments with
large scale synthetic datasets, we show that our spec-
tral algorithm can be almost 2 orders of magnitude
faster than EM while at the same achieving consid-
erably better accuracy. Our spectral algorithm also
achieves comparable accuracy to EM on real data.

Organization of paper. A high level overview of
our approach is given in Figure 1. We first provide
some background on tensor algebra and latent junc-
tion trees. We then derive the spectral algorithm by
representing junction tree message passing with ten-
sor operations, and then transform this representation
into one that only depends on observed variables. Fi-
nally, we analyze the sample complexity of our method
and evaluate it on synthetic and real datasets.

2 Tensor Notation

We first give an introduction to the tensor nota-
tion tailored to this paper. An Nth order tensor is
a multiway array with N “modes”, i.e., N indices
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{i1, i2, . . . , iN} are needed to access its entries. Sub-
arrays of a tensor are formed when a subset of the
indices is fixed, and we use a colon to denote all
elements of a mode. For instance, A(i1, . . . , in−1, :
, in+1, . . . , iN ) are all elements in the nth mode
of a tensor A with indices from the other N −
1 modes fixed to {i1, . . . , in−1, in+1, . . . , iN} respec-
tively. Furthermore, we also use the shorthand ip:q =
{ip, ip+1, . . . , iq−1, iq} for consecutive indices, e.g.,
A(i1, . . . , in−1, :, in+1, . . . , iN ) = A(i1:n−1, :, in+1:N ).

Labeling tensor modes with variables. In con-
trast to the conventional tensor notation such as the
one described in Kolda & Bader (2009), the ordering of
the modes of a tensors will not be essential in this pa-
per. We will use random variables to label the modes
of a tensor: each mode will correspond to a random
variable and what is important is to keep track of this
correspondence. Therefore, we think two tensors are
equivalent if they have the same set of labels and they
can be obtained from each other by a permutation of
the modes for which the labels are aligned.

In the matrix case this translates to A and A> being
equivalent in the sense that A> carries the same in-
formation as A, as long as we remember that the rows
of A> are the columns of A and vice versa. We will
use the following notation to denote this equivalence

A ∼= A> (1)

Under this notation, the dimension (or the size) of a
mode labeled by variable X will be the same as the
number of possible values for variableX. Furthermore,
when we multiply two tensors together, we will always
carry out the operation along (a set of) modes with
matching labels.

Tensor multiplication with mode labels. Let
A ∈ RI1×I2×···×IN be an Nth order tensor and B ∈
RJ1×J2×···×JM be an Mth order tensor. If X is a com-
mon mode label for both A and B (w.l.o.g. we assume
that this is the first mode, implying also that I1 = J1),
multiplying along this mode will give

C = A×X B ∈ RI2×···×IN×J2×···×JM , (2)

where the entries of C is defined as

C(i2:N , j2:M ) =
∑I1

i=1
A(i, i2:N )B(i, j2:M )

Similarly, we can multiply two tensors along multiple
modes. Let σ = {X1, . . . , Xk} be an arbitrary set of
k modes (k variables) shared by A and B (w.l.o.g. we
assume these labels correspond to the first k modes,
and I1 = J1, . . . , Ik = Jk holds for the correspond-
ing dimensions). Then multiplying A and B along σ
results in

D = A×σ B ∈ RIk+1×...×IN×Jk+1×...×JM , (3)

where the entries of D are defined as

D(ik+1:N , jk+1:M ) =
∑

i1:k

A(i1:k, ik+1:N )B(i1:k, jk+1:M ).

Multi-mode multiplication can also be interpreted as
reshaping the σ modes of A and B into a single mode
and doing single-mode tensor multiplication. Further-
more, tensor multiplication with labels is symmetric
in its arguments, i.e., A×σ B ∼= B ×σ A.

Mode-specific identity tensor. We now define our
notion of identity tensor with respect to a set of modes
σ = {X1, . . . , XK}. Let A be a tensor with mode la-
bels containing σ, and Iσ be a tensor with 2K modes
with mode labels {X1, . . . , XK , X1, . . . , XK}. Then
Iσ is an identity tensor with respect to modes σ if

A×σ Iσ ∼= A. (4)

One can also understand Iσ using its matrix repre-
sentation: flattening Iσ with respect to σ (the first
σ modes mapped to rows and the second σ modes
mapped to columns) results in an identity matrix.

Mode-specific tensor inversion. Let F ,F−1 ∈
RI1×···×IK×IK+1×···×IK+K′ be tensors of order K +
K ′, and both have two sets of mode labels σ =
{X1, . . . , XK} and ω′ = {XK+1, . . . , XK+K′}. Then
F−1 is the inverse of F w.r.t. modes ω if and only if

F ×ω F−1 ∼= Iσ. (5)

Multimode inversion can also be interpreted as re-
shaping F with respect to ω into a matrix of size
(I1 . . . IK)× (IK+1 . . . IK+K′), taking the inverse, and
then rearranging back into a tensor. Thus the exis-
tence and uniqueness of this inverse can be character-
ized by the rank of the matricized version of F .

Mode-specific diagonal tensors. We use δ to
denote an N -way relation: its entry δ(i1:N ) at po-
sition i1:N equals 1 when all indexes are the same
(i1 = i2 = . . . = iN ), and 0 otherwise. We will
use �d to denote repetition of an index d times. For
instance, we use P(�dX) to denote a dth order ten-
sor where its entries at (i1:d)th position are specified
by δ(i1:d)P(X = xi1). A diagonal matrix with its
diagonal equal to P(X) is then denoted as P(�2X).
Similarly, we can define a (d + d′)th order tensor
P(�dX|�d′Y ) where its (i1:dj1:d′)th entry corresponds
to δ(i1:d)δ(j1:d′)P(X = xi1 |Y = yj1).

3 Latent Junction Trees

In this paper, we will focus on discrete latent vari-
able models where the number of states, kh, for each
hidden variable is much smaller than the number of
states, ko, for each observed variable. Uppercase let-
ters denote random variables (e.g., Xi) and lowercase
letters their instantiations (e.g., xi). A latent variable
model defines a joint probability distribution over a
set of variables X = O ∪H . Here, O denotes the set
of observed variables,

{
X1, . . . , X|O|

}
. H denotes the

set of hidden variables,
{
X|O|+1, . . . , X|H |+|O|

}
.

We will focus on latent variable models where the
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structure of the model is a junction tree of low
treewidth (Cowell et al., 1999). Each node Ci in
a junction tree corresponds to a subset (clique) of
variables from the original graphical model. We will
also use Ci to denote the collection of variables con-
tained in the node, i.e. Ci ⊂ X . Let C denote the
set of all clique nodes. The treewidth is then the
size of a largest clique in a junction tree minus one,
that is t = maxCi∈C |Ci| − 1. Furthermore, we asso-
ciate each edge in a junction tree with a separator set
Sij := Ci ∩ Cj which contains the common variables
of the two cliques Ci and Cj it is connected to. If we
condition on all variables in any Sij , the variables on
different sides of Sij will become independent.

Without loss of generality, we assume that each in-
ternal clique node in the junction tree has exactly 3
neighbors.1 Then we can pick a clique Cr as the root
of the tree and reorient all edges away from the root
to induce a topological ordering of the clique nodes.
Given the ordering, the root node will have 3 children
nodes, denoted as Cr1 , Cr2 and Cr3 . Each other inter-
nal node Ci will have a unique parent node, denoted
as Ci0 , and 2 children nodes denoted as Ci1 and Ci2 .
Each leaf node Cl is only connected with its unique
parent node Cl0 . Furthermore, we can simplify the
notation for the separator set between a node Ci and
its parent Ci0 as Si = Ci ∩Ci0 , omitting the index for
the parent node. Then the remainder set of a node
is defined as Ri = Ci \ Si. We also assume w.l.o.g.
that if Ci is a leaf in the junction tree, Ri consists of
only observed variables. We will use ri to denote an
instantiation of the set of variables in Ri. See Figure 2
for an illustration of notation.

Given a root and a topological ordering of the nodes
in a junction tree, the joint distribution of all variables
X can be factorized according to

P(X ) =
∏|X |

i=1
P(Ri|Si), (6)

where each CPT P(Ri|Si), also called a clique poten-
tial, corresponds to a node Ci. The number of param-
eters needed to specify the model is O(|C|kto), linear
in the number of cliques but exponential in the tree
width t. Then the marginal distribution of the ob-
served variables can be obtained by summing over the
latent variables,

P(O) =
∑

X|O|+1

. . .
∑

X|O|+|H |



|X |∏

i=1

P(Ri|Si)


 , (7)

where we use
∑
X φ(X) to denote summation over all

possible instantiations of φ(x) w.r.t. variable X. Note
that each (non-leaf) remainder set Ri contains a small
subset of all latent variables. The presence of latent

1If this is not the case, the derivation is similar but
notationally much heavier.
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Figure 2: Example latent variable models with variables
X = {A,B,C,D,E, F,G,H, I, . . .}, the observed variables
are O = {F,G,H, . . .} (only partially drawn). Its corre-
sponding junction tree is shown in the middle panel. Cor-
responding to this junction tree, we also show the general
notation for it in the rightmost panel.

variables introduces complicated dependency between
observed variables, while at the same time only a small
number of parameters corresponding to the entries in
the CPTs are needed to specify the model.

The process of eliminating the latent variables in (7)
can be carried out efficiently via message passing.
More specifically, the summation can be broken up into
local computation for each node in the junction tree.
Each node only needs to sum out a small number of
variables and then the intermediate result, called the
message, is passed to its parent for further process-
ing. In the end the root node incorporates all messages
from its children and produces the final result P (O).
The local summation step, called the message update,
can be generically written as2

M(Si) =
∑

Ri
P(Ri|Si)M(Si1)M(Si2) (8)

where we use M(Si) to denote the intermediate re-
sults of eliminating variables in the remainder set Ri.
This message update is then carried out recursively
according the reverse topological order of the junction
tree until we reach the root node. The local sum-
mation step for the leaf nodes and root node can be
viewed as special cases of (8). For a leaf node Cl,
there is no incoming message from children nodes,
and hence M(Sl) = P(rl|Sl); for the root node Cr,
Sr = ∅ and Ri = Ci, and hence P(O) = M(∅) =∑
∀X∈Cr P(Cr)M(Sr1)M(Sr2)M(Sr3).

Example. The message update at the internal node
CBCDE in Figure 2 is

M({C,E}) =
∑

B,D
P(B,D|C,E)P(f |B,C)P(g|B,D).

4 Tensor Representation for Message
Passing

Although the parametrization of latent junction trees
using CPTs is very compact and inference (message
passing) can be carried out efficiently, parameters in
this representation can be difficult to learn. Since the
likelihood of the observed data is no longer convex in
the latent parameters, local search heuristics, such as

2For simplicity of notation, assume Ci = Si ∪ Si1 ∪ Si2 .
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EM, are often employed to learning the parameters.
Therefore, our goal is to design a new representation
for latent junction trees, such that subsequent learning
can be carried out in a local-minimum-free fashion.

In this section, we will develop a new representation
for the message update in (8) by embedding each CPT
P(Ri|Si) into a higher order tensor P(Ci) . As we will
see, there will be two advantages to the tensor form.
The first is that tensor multiplication can be used to
compactly express the sum and product steps involved
in message passing. As a very simplistic example, let
PA|B = P(A|B) be a conditional probability matrix
and PB = P(B) be a marginal probability vector.
Then matrix-vector multiplication, PA|BPB = P (A),
sums out variable B. However, if we put the marginal
probability of B on the diagonal of a matrix, then B
will not be summed out: e.g., if P�2B = P(�2B), then
PA|BP�2B = P(A,B) (but now B is no longer on the
diagonal). We will leverage these facts to derive our
tensor representation for message passing.

Moreover, we can then utilize tensor inversion to con-
struct an alternate parameterization. In the very
simplistic (matrix) example, note that P(A,B) =
PA|BP�2B = PA|BFF−1P�2B . The invertible trans-
formations F will give us an extra degree of freedom
to allow us to design an alternate parameterization of
the latent junction tree that is only a function of ob-
served variables. This would not be possible in the
traditional representation (Eq. 8).

4.1 Embed CPTs to higher order tensors

As we can see from (6), the joint probability distri-
bution of all variables can be represented by a set
of conditional distributions over just subsets of vari-
ables. Each one of this conditionals is a low order
tensor. For example in Figure 2, the CPT correspond-
ing to the clique node CBCDE would be a 4th order
tensor P(B,D|C,E) where each variable corresponds
to a different mode of the tensor. However, this rep-
resentation is not suitable for deriving the observable
representation since message passing cannot be defined
easily using the tensor multiplication/sum connection
shown above. Instead we will embed these tensors into
even higher order tensors to facilitate the computation.
The key idea is to introduce duplicate indexes using
the mode-specific identity tensors, such that the sum-
product steps in message updates can be expressed as
tensor multiplications.

More specifically, the number of times a mode of the
tensor is duplicated will depend on how many times
the corresponding variable in the clique Ci appears in
the separator sets incident to Ci. We can define the
count for a variable Xj ∈ Ci as

dj,i = I[Xj ∈ Si] + I[Xj ∈ Si1 ] + I[Xj ∈ Si2 ], (9)

where I[·] is an indicator function taking value 1 if its
argument is true and 0 otherwise. Then the tensor
representation of the node Ci is

P(Ci) :=
P(. . . , (�dj,iXj), . . .︸ ︷︷ ︸

∀Xj∈Ri

| . . . , (�dj′,iXj′), . . .︸ ︷︷ ︸
∀Xj′∈Si

), (10)

where the labels for the modes of the ten-
sor are the combined labels of the separator
sets, i.e., {Si, Si1 , Si2}. The number of times a variable
is repeated in the label set is exactly equal to dj,i.

Essentially, tensor P(Ci) contains exactly the same
information as the original CPT P(Ri|Si). Further-
more, P(Ci) has a lot of zero entries, and the entries
from P(Ri|Si) are simply embedded in the higher or-
der tensor P(Ci). Suppose all variables in node Ci
are latent variables each taking kh values. Then the

number of entries needed to specify P(Ri|Si) is k
|Ci|
h ,

while the high order tensor P(Ci) has kdih entries where

di :=
∑
j:Xj∈Ci dj,i which is never smaller than k

|Ci|
h .

In a sense, the parametrization using higher order ten-
sor P(Ci) is less compact than the parametrization
using the original CPTs. However, constructing the
tensor P this way allows us to express the junction
tree message update step in (8) as tensor multipli-
cations (more details in the next section), and then
we can leverage tools from tensor analysis to design a
local-minimum-free learning algorithm.

The tensor representation for the leaf nodes and
the root node are special cases of the representation
in (10). The tensor representation at a leaf node
Cl is simply equal to its CPT P(Cl) = P(Rl|Sl).
The root node Cr has no parent, so P(Cr) =
P(. . . , (�dj,rXj), . . .), ∀Xj ∈ Cr. Furthermore, since
dj,i is simply a count of how many times a variable in
Ci appears in each of the incident separators, the size
of each tensor does not depend on which clique node
was selected as the root.

Example. In Figure 2, node CBCDE corresponds to
CPT P(B,D|C,E). Its high order tensor representa-
tion is P(CBCDE) = P(�2B,D| �2 C,E), since both
B and C occur twice in the separator sets incident to
CBCDE . Therefore the tensor P({B,C,D,E}) is a
6th order tensor with mode labels {B,B,D,C,C,E}.

4.2 Tensor message passing

With the higher order tensor representation for clique
potentials in the junction tree as in (10), we can ex-
press the message update step in (8) as tensor multipli-
cations. Consequently, we can compute the marginal
distribution of the observed variables O in equation (7)
recursively using a sequence of tensor multiplications.
More specifically the general message update equation
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for a node in a junction tree can be expressed as

M(Si) = P(Ci)×Si1 M(Si1)×Si2 M(Si2). (11)

Here the modes of the tensor P(Ci) are labeled by the
variables, and the mode labels are used to carry out
tensor multiplications as explained in Section 2. Es-
sentially, multiplication with respect to the duplicated
modes of the tensor P(Ci) will implement some kind
of element-wise multiplication for the incoming mes-
sages and then summation over the variables in the
remainder set Ri.

The tensor message passing steps in leaf nodes and the
root node are special cases of the tensor message up-
date in equation (11). The outgoing message M(Sl)
at a leaf node Cl can be computed by simply setting all
variables in Rl to the actual observed values rl, i.e.,

M(Sl) = P(Cl)Rl=rl = P(Rl = rl|Sl). (12)

In this step, there is no difference between the aug-
mented tensor representation and the standard mes-
sage passing in junction tree. At the root, we arrive
at the final results of the message passing algorithm,
and we obtain the marginal probability of the observed
variables by aggregating all incoming messages from
its 3 children, i.e.,

P(O) = (13)
P(Cr)×Sr1 M(Sr1)×Sr2 M(Sr2)×Sr3 M(Sr3).

Example. For Figure 2, using the following tensors

P({B,C,D,E}) = P(�2B,D | �2 C,E)
M({B,C}) = P(f |B,C)
M({B,D}) = P(g|B,D),

we can write the message update for node CBCDE in
the form of equation (11) as

M({C,E}) = P({B,C,D,E})×{B,C}M({B,C})
×{B,D}M({B,D}).

Note how the tensor multiplication sums out B and
D: P({B,C,D,E}) has two B labels, and it appears
in the subscripts of tensor multiplication twice; D ap-
pears once in the label and in the subscript of ten-
sor multiplication respectively. Similarly, C is not
summed out since there are two C labels but it appears
only once in the subscript of tensor multiplication.

5 Transformed Representation

Explicitly learning the tensor representation in (10) is
still an intractable problem. Our key observation is
that we do not need to recover the tensor represen-
tation explicitly if our focus is to perform inference
using the message passing algorithm as in (11)–(13).
As long as we can recover the tensor representation up
to some invertible transformation, we can still obtain
the correct marginal probability P(O).

More specifically, we can insert a mode-specific iden-
tity tensor Iσ into the message update equation
in (11) without changing the outgoing message. Sub-

sequently, we can then replace the mode-specific iden-
tity tensor by a pair of tensors, F and F−1, which are
mode-specific inversions of each other (F ×ω F−1 ∼=
Iσ). Then we can group these inserted tensors with
the representation P(C) from (10), and obtain a trans-

formed version P̃(C) (also see Figure 1). Furthermore,
we have the freedom in choosing these collections of
tensor inversion pairs. We will show that if we choose
them systematically, we will be able to estimate each
transformed tensor P̃(C) using the marginal proba-
bility of a small set of observed variables (observable
representation). In this section, we will first explain
the transformed tensor representation.

As an illustration, consider a sequence of matrix mul-
tiplications with two identity matrices I1 = F1F

−1
1

and I2 = F2F
−1
2 inserted

ABC = A(F1F
−1
1 )B(F2F

−1
2 )C

= (AF1)︸ ︷︷ ︸
Ã

(F−11 BF2)︸ ︷︷ ︸
B̃

(F−12 C)︸ ︷︷ ︸
C̃

.

We see that we can equivalently compute ABC using
their transformed versions, i.e., ABC = ÃB̃C̃.

Moving to the tensor case, let us first consider a node
Ci and its parent node Ci0 . Then the outgoing message
of Ci0 can be computed recursively as

M(Si0) = P(Ci0)×Si M(Si)︸ ︷︷ ︸
P(Ci)×Si1M(Si1 )×Si2M(Si2 )

× . . .

Inserting a mode specific identity tensor ISi with la-
bels {Si, Si} and similarly defined mode specific iden-
tity tensors ISi1 and ISi2 into the above two message
updates, we obtain

M(Si0) = P(Ci0)×Si (ISi ×Si M(Si)︸ ︷︷ ︸
P(Ci)×Si1 (ISi1×Si1 M(Si1 ))×Si2 (ISi2×Si2 M(Si1 ))

)× . . .

Then we can further expand ISi using tensor inver-
sion pairs F i, F−1i , i.e., ISi = F i ×ωi F−1i . Note
that both F and F−1 have two set of mode labels,
Si and another set ωi which is related to the observ-
able representation and explained in the next section.
Similarly, we expand ISi1 and ISi2 using their corre-
sponding tensor inversion pairs.

After expanding tensor identities I, we can regroup
terms, and at node Ci we have

M(Si) =(P(Ci)×Si1 F i1 ×Si2 F i2) (14)

×ωi1 (F−1i1 ×Si1 M(Si1))

×ωi2 (F−1i2 ×Si2 M(Si2))

and at the parent node Ci0 of Ci

M(Si0) =(P(Ci0)×Si F i × . . .) (15)

×ωi (F−1i ×Si M(Si))× . . .
Now we can define the transformed tensor representa-
tion for P(Ci) as

P̃(Ci) := P(Ci)×Si1 F i1 ×Si2 F i2 ×Si F−1i , (16)

where the two transformations F i1 and F i2 are ob-
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tained from the children side and the transformation
F−1i is obtained from the parent side. Similarly, we
can define the transformed representation for a leaf
node and for the root node as

P̃(Cl) = P(Cl)×Sl F−1l (17)

P̃(Cr) = P(Cr)×Sr1 Fr1 ×Sr2 Fr2 ×Sr3 Fr3 (18)

Applying these definitions of the transformed repre-
sentation recursively, we can perform message passing
based purely on these transformed representations

M̃(Si0) = P̃(Ci0)×ωi M̃(Si)︸ ︷︷ ︸
P̃(Ci)×ωi1

M̃(Si1 )×ωi2
M̃(Si2 )

× . . . (19)

6 Observable Representation

In the transformed tensor representation in (16)-(18),
we have the freedom of choosing the collection of ten-
sor pairs F and F−1. We will show that if we choose
them systematically, we can recover each transformed
tensor P̃(C) using the marginal probability of a small
set of observed variables (observable representation).

We will focus on the transformed tensor representa-
tion in (16) for an internal node Ci (other cases fol-
low as special cases). Due to the recursive way the
transformed representation is defined, we only have
the freedom of choosing F i1 and F i2 in this formula;
the choice of F i will be fixed by the parent node of
Ci. The idea is to choose

• F i1 = P(Oi1 |Si1) as the conditional distribution
of some set of observed variables Oi1 ⊂ O in the
subtree rooted at child node Ci1 of node Ci, con-
ditioning on the corresponding separator set Si1 .

• Similarly, we choose F i2 = P(Oi2 |Si2) where
Oi2 ⊂ O and it lies in subtree rooted at Ci2 .

• Following this convention, F i is chosen by the
parent node Ci0 and is fixed to P(Oi|Si).

Therefore, we have

P̃(Ci) = P(Ci)×Si1 P(Oi1 |Si1)×Si2 P(Oi2 |Si2)

×Si P(Oi|Si)−1, (20)

where the first two tensor multiplications essentially
eliminate the latent variables in Si1 and Si2 .3 With
these choices, we also fix the mode labels ωi, ωi1 and
ωi2 in (14) (15) and (19). That is ωi = Oi, ωi1 = Oi1
and ωi2 = Oi2 .

To remove all dependencies on latent variables in
P̃(Ci) and relate it to observed variables, we need
to eliminate the latent variables in Si and the ten-
sor P(Oi|Si)−1. For this, we multiply the transformed

tensor P̃(Ci) by P(Oi,Oi−), where Oi− denotes some
set of observed variables which do not belong to the
subtree rooted at node Ci. Furthermore, P(Oi,Oi−)
can be re-expressed using the conditional distribution

3If a latent variable in Si1 ∪ Si2 is also in Si, it is not
eliminated in this step but in another step.

of Oi and Oi− respectively, conditioning on the sepa-
rator set Si, i.e.,

P(Oi,Oi−) = P(Oi|Si)×Si P(�2Si)×Si P(Oi−|Si).
Therefore, we have

P(Oi|Si)−1 ×Oi P(Oi,Oi−) = P(�2Si)×Si P(Oi−|Si),
and plugging this into (20), we have

P̃(Ci)×Oi P(Oi,Oi−)
=P(Ci)×Si1 P(Oi1 |Si1)×Si2 P(Oi2 |Si2)

×Si P(�2Si)×Si P(Oi−|Si)
=P(Oi1 ,Oi2 ,Oi−), (21)

where P̃(Ci) is now related to only marginal prob-
abilities of observed variables. From the equivalent
relation, we can inverting P(Oi,Oi−), and obtain the

observable representation for P̃(Ci)

P̃(Ci) = P(Oi1 ,Oi2 ,Oi−)×Oi− P(Oi,Oi−)−1. (22)

Example. For node CBCDE in Figure 2, the choices
of Oi,Oi1 ,Oi2 and Oi− are {F,G}, G, F and H re-
spectively.

There are many valid choices of Oi−. In the supple-
mentary, we describe how these different choices can
be combined via a linear system using Eq. 21. This
can substantially increase performance.

For the leaf nodes and the root node, the derivation
for their observable representations can be viewed as
special cases of that for the internal nodes. We provide
the results for their observable representation below:

P̃(Cr) = P(Or1 ,Or2 ,Or3), (23)

P̃(Cl) = P(Ol,Ol−)×Ol− P(Ol,Ol−)−1. (24)

If P(Ol,Ol−) is invertible, then P̃(Cl) = IOl . Oth-
erwise we need to project P(Oi,Oi−) using a tensor
U i to make it invertible, as discussed in the next sec-
tion. The overall algorithm is given in Algorithm 1.
Given N i.i.d. samples of the observed nodes, we sim-
ply replace P(·) by the empirical estimate P̂(·).

Algorithm 1 Spectral algorithm for latent junction tree

In: Junction tree topology and N i.i.d. samples{
xs1, . . . , x

s
|O|
}N
s=1

Out: Estimated marginal P̂(O)
1: Estimate P̂(Ci) for the root, leaf and internal nodes

P̂(Cr) = P̂(Or1 ,Or2 ,Or3)×Or1
Ur1 ×Or2

Ur2 ×Or3
Ur3

P̂(Cl) = P̂(Ol,Ol−)×Ol− (P̂(Ol,Ol−)×Ol U l)
−1

P̂(Ci) = P̂(Oi1 ,Oi2 ,Oi−)×Oi1
U i1 ×Oi2

U i2

×Oi− (P̂(Oi,Oi−)×Oi U i)
−1

2: In reverse topological order, leaf and internal nodes
send messages

M̂(Sl) = P̂(Cl)Ol=ol
M̂(Si) = P̂(Ci)×Oi1

M̂(Si1)×Oi2
M̂(Si2)

3: At the root, obtain P̂(O) by

P̂(Cr)×Or1
M̂(Sr1)×Or2

M̂(Sr2)×Or3
M̂(Sr3)
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7 Discussion

The observable representation exists only if there exist
tensor inversion pairs F i = P(Oi|Si), and F−1i . This
is equivalent to requiring that the rank of the matri-
cized version of F i (rows corresponds to modes Oi and
column to modes Si) has rank τi := kh×|Si|. Similarly.
the matricized version of P(O−i|Si) also needs to have
rank τi, so that the matricized version of P(Oi,Oi−)
has rank τi and is invertible. Thus, it is required that
#states(Oi) ≥ #states(Si). This can be achieved by
either making Oi consist of a few high dimensional ob-
servations, or of many smaller dimensional ones. In
the case when #states(Oi) > #states(Si), we need to
project F i to a lower dimensional space using a ten-
sor U i so that it can be inverted. In this case, we
define F i := P(Oi|Si) ×Oi U i. For example, follow-
ing this through the computation for the leaf gives us
that P̃(Cl) = P(Ol,Ol−)×Ol− (P(Ol,Ol−)×Ol U l)

−1.
A good choice of U i can be obtained by performing a
singular value decomposition of the matricized version
of P(Oi,Oi−) (variables in Oi are arranged to rows and
those in Oi− to columns).

For HMMs and latent trees, this rank condition can
be expressed simply as requiring the conditional prob-
ability tables of the underlying model to not be rank-
deficient. However, junction trees encode more com-
plex latent structures that introduce subtle considera-
tions. A general characterization of the existence con-
dition for observable representation with respect to
the graph topology will be our future work. In the
appendix, we give some intuition using a couple of ex-
amples where observable representations do not exist.

8 Sample Complexity

We analyze the sample complexity of Algorithm 1 and
show that it depends on the junction tree topology
and the spectral properties of the true model. Let di
be the order of P(Ci) and ei be the number of modes
of P(Ci) that correspond to observed variables.

Theorem 1 Let τi = kh × |Si|, dmax = maxi di, and
emax = maxi ei. Then, for any ε > 0, 0 < δ < 1, if

N ≥ O
((

4k2h
3β2

)dmax kemax
o ln |C|δ |C|2

ε2α4

)

where στ (∗) returns the τ th largest singular value and

α = mini στi(P(Oi,O−i)), β = mini στi(F i)

Then with probability 1− δ,∑
x1,...,x|O|

∣∣∣P̂(x1, . . . , x|O|)− P(x1, . . . , x|O|)
∣∣∣ ≤ ε .

See the supplementary for a proof. The result implies
that the estimation problem depends exponentially on
dmax and emax, but note that emax ≤ dmax. Fur-
thermore, dmax is always greater than or equal to the
treewidth. Note the dependence on the singular val-
ues of certain probability tensors. In fully observed

models, the accuracy of the learned parameters de-
pends only on how close the empirical estimates of the
factors are to the true factors. However, our spec-
tral algorithm also depends on how close the inverses
of these empirical estimates are to the true inverses,
which depends on the spectral properties of the matri-
ces (Stewart & Sun, 1990).

9 Experiments

We now evaluate our method on synthetic and real
data and compare it with both standard EM (Demp-
ster et al., 1977) and stepwise online EM (Liang &
Klein, 2009). All methods were implemented in C++,
and the matrix library Eigen (Guennebaud et al.,
2010) was used for computing SVDs and solving linear
systems. For all experiments, standard EM is given 5
random restarts. Online EM tends to be sensitive to
the learning rate, so it is given one restart for each
of 5 choices of the learning rate {0.6, 0.7, 0.8, 0.9, 1}
(the one with highest likelihood is selected). Conver-
gence is determined by measuring the change in the
log likelihood at iteration t (denoted by f(t)) over the

average: |f(t)−f(t−1)|
avg(f(t),f(t−1)) ≤ 10−4 (the same precision as

used in Murphy (2005)).

For large sample sizes our method is almost two or-
ders of magnitude faster than both EM and online
EM. This is because EM is iterative and every iter-
ation requires inference over all the training examples
which can become expensive. On the other hand, the
computational cost of our method is dominated by the
SVD/linear system. Thus, it is primarily dependent
only on the number of observed states and maximum
tensor order, and can easily scale to larger sample sizes.

In terms of accuracy, we generally observe 3 distinct
regions, low-sample size, mid-sample size, and large
sample size. In the low sample size region, EM/online
EM tend to overfit to the training data and our spec-
tral algorithm usually performs better. In the mid-
sample size region EM/online EM tend to perform bet-
ter since they benefit from a smaller number of param-
eters. However, once a certain sample size is reached
(the large sample size region), our spectral algorithm
consistently outperforms EM/online EM which suffer
from local minima and convergence issues.

9.1 Synthetic Evaluation

We first perform a synthetic evaluation. 4 different la-
tent structures are used (see Figure 3): a second order
nonhomogenous (NH) HMM, a third order NH HMM,
a 2 level NH factorial HMM, and a complicated syn-
thetic junction tree. The second/third order HMMs
have kh = 2 and ko = 4, while the factorial HMM and
synthetic junction tree have kh = 2, and ko = 16. For
each latent structure, we generate 10 sets of model pa-
rameters, and then sample N training points and 1000
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test points from each set, whereN is varied from 100 to
100, 000. For evaluation, we measure the accuracy of

joint estimation using error = |P̂(x1,...,xO)−P(x1,...,xO)|
P(x1,...,xO) .

We also measure the training time of both methods.

Figure 3 shows the results. As discussed earlier, our
algorithm is between one and two orders of magnitude
faster than both EM and online EM for all the latent
structures. EM is actually slower for very small sample
sizes than for mid-range sample sizes because of over-
fitting. Also, in all cases, the spectral algorithm has
the lowest error for large sample sizes. Moreover, criti-
cal sample size at which spectral overtakes EM/online
EM is largely dependent on the number of parameters
in the observable representation compared to that in
the original parameterization of the model. In higher
order/factorial HMM models, this increase is small,
while in the synthetic junction tree it is larger.

9.2 Splice dataset

We next consider the task of determining splicing sites
in DNA sequences (Asuncion & Newman, 2007). Each
example consists of a DNA sequence of length 60,
where each position in the sequence is either an A, T ,
C, or G. The goal is to classify whether the sequence
is an Intron/Exon site, Exon/Intron site, or neither.
During training, for each class a different second or-
der nonhomogeneous HMM with kh = 2 and ko = 4 is
trained. At test, the probability of the test sequence is
computed for each model, and the one with the high-
est probability is selected (which we found to perform
better than a homogeneous one).

Figure 4, shows our results, which are consistent with
our synthetic evaluation. Spectral performs the best
in low sample sizes, while EM/online EM perform a
little better in the mid-sample size range. The dataset
is not large enough to explore the large sample size
regime. Moreover, we note that spectral algorithm is
much faster for all the sample sizes.

10 Conclusion

We have developed an alternative parameterization
that allows fast, local minima free, and consistent pa-
rameter learning of latent junction trees. Our ap-
proach generalizes spectral algorithms to a much wider
range of structures such as higher order, factorial, and
semi-hidden Markov models. Unlike traditional non-
convex optimization formulations, spectral algorithms
allow us to theoretically explore latent variable mod-
els in more depth. The spectral algorithm depends not
only on the junction tree topology but also on the spec-
tral properties of the parameters. Thus, two models
with the same structure may pose different degrees of
difficulty based on the underlying singular values. This
is very different from learning fully observed junction
trees, which is primarily dependent on only the topol-
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Figure 3: Comparison of our spectral algorithm (blue) to
EM (red) and online EM (green) for various latent struc-
tures. Both errors and runtimes in log scale.
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ogy/treewidth. Future directions include learning dis-
criminative models and structure learning.
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Abstract

In spectral clustering, one defines a similarity
matrix for a collection of data points, trans-
forms the matrix to get the Laplacian ma-
trix, finds the eigenvectors of the Laplacian
matrix, and obtains a partition of the data
using the leading eigenvectors. The last step
is sometimes referred to as rounding, where
one needs to decide how many leading eigen-
vectors to use, to determine the number of
clusters, and to partition the data points. In
this paper, we propose a novel method for
rounding. The method differs from previ-
ous methods in three ways. First, we relax
the assumption that the number of clusters
equals the number of eigenvectors used. Sec-
ond, when deciding the number of leading
eigenvectors to use, we not only rely on infor-
mation contained in the leading eigenvectors
themselves, but also use subsequent eigenvec-
tors. Third, our method is model-based and
solves all the three subproblems of rounding
using a class of graphical models called la-
tent tree models. We evaluate our method on
both synthetic and real-world data. The re-
sults show that our method works correctly
in the ideal case where between-clusters sim-
ilarity is 0, and degrades gracefully as one
moves away from the ideal case.

1 Introduction

Clustering is a data analysis task where one assigns
similar data points to the same cluster and dissimi-
lar data points to different clusters. There are many
different clustering algorithms, amongst which spec-
tral clustering [14] is one approach that has gained
prominence in recent years. The idea is to convert
clustering into a graph cut problem. More specifically,

one first builds a similarity graph over the data points
using data similarity as edge weights and then parti-
tions the graph by cutting some of the edges. Each
connected component in the resulting graph is a clus-
ter. The cut is done so as to simultaneously minimize
the cost of cut and balance the sizes of the resulting
clusters [12]. The graph cut problem is NP-hard and
is hence relaxed. The solution is given by the leading
eigenvectors of the so-called Laplacian matrix, which is
a simple transformation of the original data similarity
matrix. In a post-processing step called rounding [2],
a partition of the data points is obtained from those
real-valued eigenvectors.

In this paper we focus on rounding. In general, round-
ing is considered an open problem. There are three
subproblems: (1) decide which leading eigenvectors to
use; (2) determine the number of clusters; and (3) de-
termine the members in each cluster. Previous round-
ing methods fall into two groups depending on whether
they assume the number of clusters is given. When the
number of clusters is known to be k, rounding is usu-
ally done based on the k leading eigenvectors. The
data points are projected onto the subspace spanned
by those eigenvectors and then the K-means algorithm
is run on that space to get k clusters [14]. Bach and
Jordan [2] approximate the subspace using a space
spanned by k piecewise constant vectors and then run
K-means on the latter space. Zhang and Jordan [19]
observe a link between rounding and the orthogonal
Procrustes problem and iteratively use an analytical
solution for the latter problem to build a method for
rounding. Rebagliati and Verri [10] ask the user to
provide a number K that is larger than k and obtain
k clusters based on the K leading eigenvectors using a
randomized algorithm.

When the number of clusters is not given, one needs
to estimate it. A common method is to manually ex-
amine the difference between every two consecutive
eigenvalues starting from the first two. If a big gap
appears for the first time between the k-th and (k+1)-
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th eigenvalues, then one uses k as an estimate of the
number of clusters. Zelnik-Manor and Perona [17] pro-
pose an automatic method. For a particular integer k,
it tries to rotate the k leading eigenvectors so as to
align them with the canonical coordinate system for
the eigenspace spanned by those vectors. A cost func-
tion is defined in terms of how well the alignment can
be achieved. The k with the lowest cost is chosen as an
estimate for the number of clusters. Xiang and Gong
[16] and Zhao et al. [20] relax the assumption that clus-
tering should be based on a continuous block of eigen-
vectors at the beginning of the eigenvector spectrum.
They use heuristics to choose eigenvectors which do
not necessarily form a continuous block, and use Gaus-
sian mixture models to determine the clusters. Socher
et al. [13] assume the number of leading eigenvectors to
use is given. Based on those leading eigenvectors, they
determine the number of clusters and the membership
of each cluster using a non-parametric Bayesian clus-
tering method.

In this paper, we propose a model-based approach to
rounding. The novelty lies in three aspects. First,
we relax the assumption that the number of clusters
equals the number of eigenvectors used for rounding.
While the assumption is reasonable in the ideal case
where between-cluster similarity is 0, it is not appro-
priate in non-ideal cases. Our method allows the num-
ber of clusters to differ from the number of eigenvec-
tors. Second, we choose a continuous block of lead-
ing eigenvectors for rounding just as [17]. The dif-
ference is that, when deciding the appropriateness of
the k leading eigenvectors, Zelnik-Manor and Perona
[17] use only information contained in those eigenvec-
tors, whereas we also use information in subsequent
eigenvectors. So our method uses more information
and hence the choice is expected to be more robust.
Third, we solve all the three subproblems of rounding
within one class of models, namely latent tree mod-
els [18]. In contrast, most previous methods either
assume that the first two subproblems are solved and
focus only on the third subproblem, or do not solve all
the subproblems within one class of models [17, 20].

The remaining paper is organized as follows. In Sec-
tion 2 we review the basics of spectral clustering and
point out two key properties of the eigenvectors of the
Laplacian matrix in the ideal case. In Section 3 we
describe a straightforward method for rounding that
takes advantage of the two properties. This method is
fragile and breaks down as soon as we move away from
the ideal case. In Sections 4 and 5 we propose a model-
based method that exploits the same two properties.
In Section 6 we evaluate the method on both synthetic
and real-world data sets and also on real-world image
segmentation tasks. The paper concludes in Section 7.

2 Background

To cluster a set of n data points X = {x1, . . . , xn}, one
starts by defining a non-negative similarity measure sij
for each pair xi and xj of data points. In this paper we
consider two measures. The k-NN similarity measure
sets sij to 1 if xi is one of the k nearest neighbors of xj ,
or vice verse, and 0 otherwise. TheGaussian similarity
measure sets sij = exp(

−‖xi−xj‖2
σ2 ), where σ controls

the width of neighborhood of each data point. The
n × n matrix S = [sij ] is called the similarity matrix.
The similarity graph is an undirected graph over the
data points where the edge is added between xi and
xj , with weight sij , if and only if sij > 0.

In spectral clustering, one transforms the similarity
matrix to get the Laplacian matrix. There are sev-
eral Laplacian matrices to choose from [14]. We use
the normalized Laplacian matrix Lrw = I − D−1S,
where I is the identity matrix, and D = (dij) is the
diagonal degree matrix given by dii =

∑n
j=1 sij . Next

one computes the eigenvectors of Lrw and sorts them
in ascending order of their corresponding eigenvalues.
Denote those eigenvectors as e1, . . . , en. To obtain k
clusters, one forms an n×k matrix U using the k lead-
ing eigenvectors e1, . . . , ek as columns. Each row yi of
U is a point in Rk and corresponds to an original data
point xi. One partitions the points {y1, . . . , yn} into
k clusters using the K-means algorithm and obtains k
clusters of the original data points accordingly.

Suppose the data consist of kt true clusters C1, . . . ,
Ckt . In the ideal case, the similarity graph has kt con-
nected components, where each of them corresponds to
a true cluster. Assume that the data points are ordered
based on their cluster memberships. Then the Lapla-
cian matrix Lrw has a block diagonal form, with each
block corresponding to one true cluster [14]. Moreover,
Lrw has exactly kt eigenvalues that equal 0, and the
eigenspace of eigenvalue 0 is spanned by the indica-
tor vectors ~1C1

, . . . ,~1Ckt . Create an n× kt matrix Uc
using those indicator vectors as columns. It is known
that, when k = kt, U = UcR for some orthogonal ma-
trix R ∈ Rk×k [8]. For simplicity, assume the non-zero
eigenvalues of Lrw are distinct. Call those eigenvec-
tors for eigenvalue 0 the primary eigenvectors and the
others the secondary eigenvectors. The facts reviewed
in this paragraph imply the following:
Proposition 1. In the ideal case, eigenvectors of Lrw
have the following properties:

1. The primary eigenvectors are piecewise constant,
with each value identifying one true cluster or the
union of several true clusters.

2. The support (non-zero elements) of each sec-
ondary eigenvector is contained by one of the true
clusters.
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Figure 1: Example eigenvectors: There are five true
clusters C1, . . . , C5 in the data set shown in (a). The
10-NN similarity measure is used to produce the ideal
case. Two eigenvectors are shown in (b) and (c). Each
eigenvector is depicted in two diagrams. In the first
diagram, the values of the eigenvector are indicated
by different colors, with grey meaning 0. In the second
diagram, the x-axis indexes the data points and the y-
axis shows the values of the eigenvector.

The two properties are illustrated in Fig 1. The pri-
mary eigenvector e1 has two different values, 0.1 and
0. The value 0.1 identifies the cluster C1, whereas 0
corresponds to the union of the other clusters. The
eigenvector e6 is a secondary eigenvector. Its support
is contained by the true cluster C4.

3 A Naive Method for Rounding

In the original graph cut formulation of spectral clus-
tering [12], an eigenvector has two different values. It
partitions the data points into two clusters. In the re-
laxed problem, an eigenvector can have many different
values (see Fig 1(c)). The first step of our method is
to obtain, from each eigenvector ei, two clusters using
a confidence parameter δ that is between 0 and 1. Let
eij be the value of ei at the j-th data point. One of
the clusters consists of the data points xj that satisfy
eij > 0 and eij > δmaxj eij , while the other cluster
consists of the data points xj that satisfy eij < 0 and
eij < δminj eij . The indicator vectors of those two
clusters are denoted as e+i and e−i respectively. We
refer to the process of obtaining e+i and e−i from ei as
binarization. Applying binarization to the eigenvec-
tors e1 and e6 of Fig 1 results in the binary vectors
shown in Fig 2. Note that e−1 is a degenerated binary
vector in the sense that it is all 0. We still refer to
it as a binary vector for convenience. The following
proposition follows readily from Proposition 1.

Proposition 2. Let eb be a vector obtained from an
eigenvector e of the Laplacian matrix Lrw via bina-
rization. In the ideal case:

1. If e is a primary eigenvector, then the support of
eb is either a true cluster or the union of several
true clusters.

2. If e is a secondary eigenvector, then the support
of eb is contained by one of the true clusters.
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Figure 2: Binary vectors obtained from eigenvectors
e1 and e6 through binarization with δ = 0.1. Data
points have values 1 (red) or 0 (green).

Each binary vector gives a partition of the data points,
with one cluster comprising points with value 1 and
another comprising points with value 0. Consider two
partitions where one divides the data into two clusters
C1 and C2 and the other into P1 and P2. Overlaying
the two partitions results in a new partition consisting
of clusters C1∩P1, C1∩P2, C2∩P1, and C2∩P2. Note
that there are not necessarily exactly 4 clusters in the
new partition as some of the 4 intersections might be
empty. It is evident how to overlay multiple partitions.

Consider the case when the number q of leading eigen-
vectors to use is given. Here is a straightforward
method for rounding:

Naive-Rounding1(q)

1. Compute the q leading eigenvectors of Lrw.
2. Binarize the q eigenvectors.
3. Obtain a partition of the data using each binary

vector from the previous step.
4. Overlay all the partitions to get the final partition.

Note that the number of clusters obtained by Naive-
Rounding1 is determined by q, but it is not necessar-
ily the same as q. The following proposition is an easy
corollary of Proposition 2.

Proposition 3. In the ideal case and when q is
smaller than or equal to the number of true clusters,
the clusters obtained by Naive-Rounding1 are either
true clusters or unions of true clusters.

Now consider how to determine the number q of lead-
ing eigenvectors to use. We do so by making use of
Proposition 2. The idea is to gradually increase q in
Naive-Rounding1 and test the partition Pq obtained
for each q to see whether it satisfies the condition of
Proposition 2 (2).

SupposeK is a sufficiently large integer. Denote a sub-
routine that tests the partition Pq by cTest(Pq, q,K).
To perform this test, we use the binary vectors ob-
tained from the eigenvectors from the range [q+ 1,K].
If the support of every such binary vector is contained
by some cluster in Pq, we say that Pq satisfies the
containment condition and cTest returns true. Oth-
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erwise, Pq violates the condition and cTest returns
false.

Let kt be the number of true clusters. When q =
kt, cTest(Pq, q,K) passes because of Proposition 2.
When q = kt + 1, Pq is likely to be finer than the
true partition. Consequently, cTest(Pq, q,K) may
fail. The probability of this happening increases with
the number of binary vectors used in the test. To make
the probability high, we pick K such that K/2 is safely
larger than kt and let q run from 2 to bK/2c. When
q < kt, cTest(Pq, q,K) usually passes.

The above discussions suggest that if cTest(Pq, q,K),
for the first time, passes for some q = k and fails for
q = k + 1, we can use k as an estimate of kt. Con-
sequently, we can use the k leading eigenvectors for
clustering and return Pk as the final clustering result.
This leads to the following algorithm:

Naive-Rounding2(K)

1. For q = 2 to bK/2c,
(a) P ← Naive-Rounding1(q).
(b) P ′ ← Naive-Rounding1(q + 1).
(c) If cTest(P, q,K) = true and cTest(P ′, q +

1,K) = false, return P .
2. Return P .

Suppose an integer K is given such that K/2 is safely
larger than the number of true clusters. The algorithm
Naive-Rounding2 automatically decides how many
leading eigenvectors to use and automatically deter-
mines the number of clusters. Consider running it on
the data set shown in Fig 1(a) with K = 40. It loops q
through 2 to 4 without terminating because both the
two tests at Step 1(c) return true. When q = 5, P is
the true partition and P ′ is shown in Fig 3(a). At Step
1(c), the first test for P passes. However, the second
test for P ′ fails, because the support of the binary vec-
tor e+16 is not contained by any cluster in P ′ (Fig 3).
So, Naive-Rounding2 terminates at Step 1(c) and
returns P (the true partition) as the final result.

4 Latent Class Models for Rounding

Naive-Rounding2 is fragile. It can break down as
soon as we move away from the ideal case. In this and
the next section, we describe a model-based method
that also exploits Proposition 2 and is more robust.

In the model-based method, the binary vectors are re-
garded as features and the problem is to cluster the
data points based on those features. So what we face
is a problem of clustering discrete data. As in the pre-
vious section, there is a question of how many leading
eigenvectors to use. In this section, we assume the
number q of leading eigenvectors to use is given. In
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(c) e+16

Figure 3: Illustration of Naive-Rounding2: (a)
shows the 7 clusters given by the first 6 pairs of bi-
nary vectors. (b) and (c) show eigenvector e16 and
one of the binary vectors obtained from e16. The sup-
port of e+16 (the red region) is not contained by any of
the clusters in (a).

the next section, we will discuss how to determine q.

The problem we address in this section is how to clus-
ter the data points based on the first q pairs of bi-
nary vectors e+1 , e

−
1 , . . . , e

+
q , e−q . We solve the prob-

lem using latent class models (LCMs) [3]. LCMs are
commonly used to cluster discrete data, just as Gaus-
sian mixture models are used to cluster continuous
data. Technically they are the same as the Naive Bayes
model except that the class variable is not observed.

The LCM for our problem is shown in Fig 4(a). So
far we have been using the notations e+s and e−s to de-
note vectors of n elements or functions over the data
points. In this and the next sections, we overload the
notations to denote random variables that take differ-
ent values at different data points. The latent variable
Y represents the partition to find and each state of
Y represents a cluster. So the number of states of Y ,
often called the cardinality of Y , is the number of clus-
ters. To learn an LCM from data means to determine:
(1) the cardinality of Y , i.e., the number of clusters;
and (2) the probability distributions P (Y ), P (e+s |Y ),
and P (e−s |Y ), i.e., the characterization of the clusters.

After an LCM is learned, one can compute the poste-
rior distribution of Y for each data point. This gives
a soft partition of the data. To get a hard partition,
one can assign each data point to the state of Y that
has the maximum posterior probability. This is called
hard assignment.

There are two cases with the LCM learning problem,
depending on whether the number of clusters is known.
When that number is known, we only need to deter-
mine the probability distributions P (Y ), P (e+s |Y ), and
P (e−s |Y ). This is done using the EM algorithm [5].

Proposition 4. It is possible to set the probability pa-
rameter values of the LCM in Fig 4(a) in such a way
that it gives the same partition as Naive-Rouding1.
Moreover, those parameter values maximize the likeli-
hood of the model.
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Figure 4: (a) Latent class model and (b) latent tree
model for rounding: The binary vectors e+1 , e

−
1 , . . . ,

e+q , e−q are regarded as random variables. The discrete
latent variable Y represents the partition to find.

The proof is omitted due to space limit. It is well
known that the EM algorithm aims at finding the max-
imum likelihood estimate (MLE) of the parameters. So
the LCMmethod for rounding actually tries to find the
same partition as Naive-Rounding1.

Now consider the case when the number of clusters is
not known. We determine it using the BIC score [11].
Given a model m, the score is defined as BIC(m) =
logP (D|m, θ) − d

2 log n, where D is the data, θ is the
MLE of the parameters, and d is the number of free pa-
rameters in the model. We start by setting the number
k of clusters to 2 and increase it gradually. We stop the
process as soon as the BIC score of the model starts to
decrease, and use the k with the maximum BIC score
as the estimate of the number of clusters. Note that
the number of clusters determined using the BIC score
might not be the same as the number of clusters found
by Naive-Rounding1.

5 Latent Tree Models for Rounding

In this section we present a method for determining the
number q of leading eigenvectors to use. Consider an
integer q between 2 and K/2. We first build an LCM
using the first q pairs of binary vectors and obtain a
hard partition of the data using the LCM. Suppose
k clusters C1, . . . , Ck are obtained. Each cluster Cr
corresponds to a state r of the latent variable Y .

We extend the LCM model to obtain the model shown
in Fig 4(b). We do this in three steps. First, we intro-
duce k new latent variables Y1, . . . , Yk into the model
and connect them to Y . Each Yr is a binary variable
and its conditional distribution is set as follows:

P (Yr = 1|Y = r′) =

{
1 if r′ = r,

0 otherwise.
(1)

So the state Yr = 1 means the cluster Cr and Yr = 0
means the union of all the other clusters.

Next, we add binary vectors from the range [q+1,K] to

the model by connecting them to the new latent vari-
ables. For convenience we call those vectors secondary
binary vectors. This is not to be confused with the sec-
ondary eigenvectors mentioned in Proposition 1. For
each secondary binary vector ebs, let Ds be its support.
When determining to which Yr to connect ebs, we con-
sider how well the cluster Cr covers Ds. We connect
ebs to the Yr such that Cr covers Ds the best, in the
sense that the quantity |Ds ∩Cr| is maximized, where
|.| stands for the number of data points in a set. We
break ties arbitrarily.

Finally, we set the conditional distribution P (ebs|Yr) as
follows:

P (ebs = 1|Yr = 1) =
|Ds ∩ Cr|
|Cr|

(2)

P (ebs = 1|Yr = 0) =
|Ds − Cr|
n− |Cr|

(3)

What we get after the extension is a tree structured
probabilistic graphical model, in which the variables
at the leaf nodes are observed and the variables at
the internal nodes are latent. Such models are known
as latent tree models (LTMs) [4, 15], sometimes also
called hierarchical latent class models [18]. The LCM
part of the model is called its primary part, while the
newly added part is called the secondary part. The
parameter values for the primary part is determined
during LCM learning, while those for the secondary
part are set manually by Equations (1–3).

To determine the number q of leading eigenvectors to
use, we examine all integers in the range [2,K/2]. For
each such integer q, we build an LTM as described
above and compute its BIC score. We pick the q with
the maximum BIC score as the answer. After q is
determined, we use the primary part of the LTM to
partition the data. In other words, the secondary part
is used only to determine q. We call this method LTM-
Rounding.

Here are the intuitions behind the LTM method. If the
support Ds of ebs is contained in cluster Cr, it fits the
situation to connect ebs to Yr. The model construction
no longer fits the data well if Ds is not contained in
any of the clusters. The worst case is when two dif-
ferent clusters Cr and Cr′ cover Ds equally well and
better than other clusters. In this case, ebs can be ei-
ther connected to Yr or to Yr′ . Different choices here
lead to different models. As such, neither choice is
‘ideal’. Even when there is only one cluster Cr that
covers Ds the best, connecting ebs to Yr is still intu-
itively not ‘perfect’ as long as Cr does not cover Ds

completely.

So when the support of every secondary binary vector
is contained by one of the clusters C1, . . . , Ck, the
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LTM we build would fit the data well. However, when
the supports of some secondary binary vectors are not
completely covered by any of the clusters, the LTM
would not fit the data well. In the ideal case, the fit
would be good if q is the number kt of eigenvectors for
eigenvalue 0 according to Proposition 2. The fit would
not be as good otherwise. This is why the likelihood
of the LTM contains information that can be used to
choose q.

We now summarize the LTM method for rounding:

LTM-Rounding(K,δ)

1. Compute the K leading eigenvectors of Lrw.
2. Binarize the eigenvectors with confidence param-

eter δ as in Section 3.
3. S∗ ← −∞.
4. For q = 2 to bK/2c,

(a) mlcm ← the LCM learnt using the first q
pairs of binary vectors as shown in Section 4.

(b) P ← hard partition obtained using mlcm.
(c) mltm ← the LTM extended from mlcm as ex-

plained in Section 5.
(d) S ← the BIC score of mltm.
(e) If S > S∗, then P ∗ ← P and S∗ ← S.

5. Return P ∗.

An implementation of LTM-Rounding can be ob-
tained from http://www.cse.ust.hk/~lzhang/ltm/
index.htm.

The choice of K should be such that K/2 is safely
larger than the number of true clusters. We do not
allow q to be larger than K/2, so that there is suffi-
cient information in the secondary part of the LTM to
determine the appropriateness of using the q leading
eigenvectors for rounding. The parameter δ should be
picked from the range (0, 1). We recommend to set δ at
0.1. The sensitivity of LTM-Rounding with respect
to those parameters will be investigated in Section 6.3.

6 Empirical Evaluations

Our empirical investigations are designed to: (1) show
that LTM-Rounding works perfectly in the ideal case
and its performance degrades gracefully as we move
away from the ideal case, and (2) compare LTM-
Rounding with alternative methods. Synthetic data
are used for the first purpose, while both synthetic and
real-world data are used for the second purpose.

LTM-Rounding has two parameters δ and K. We
set δ = 0.1 and K = 40 in all our experiments except
in sensitivity analysis (Section 6.3). For each set of
synthetic data, 10 repetitions were run.
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Figure 5: Synthetic data set for the ideal case. Each
color and shape of the data points identifies a cluster.
Clusters were recovered by LTM-Rounding correctly.

6.1 Performance in the Ideal Case

Three data sets were used for the ideal case (Fig 5).
They vary in the number and the shape of clusters.
Intuitively the first data set is the easiest, while the
third one is the hardest. To produce the ideal case,
we used the 10-NN similarity measure for the first two
data sets. For the third one, the same measure gave a
similarity graph with one single connected component.
So we used the 3-NN similarity measure instead.

LTM-Rounding produced the same results on all 10
runs. The results are shown in Fig 5 using colors and
shapes of data points. Each color identifies a cluster.
LTM-Rounding correctly determined the numbers of
clusters and recovered the true clusters perfectly.

6.2 Graceful Degrading of Performance

To demonstrate that the performance of LTM-
Rounding degrades gracefully as we move away from
the ideal case, we generated 8 new data sets by adding
different levels of noise to the second data set in Fig 5.
The Gaussian similarity measure was adopted with
σ = 0.2. So the similarity graphs for all the data sets
are complete.

We evaluated the quality of an obtained partition by
comparing it with the true partition using Rand index
(RI) [9] and variation of information (VI) [7]. Note
that higher RI values indicate better performance,
while the opposite is true for VI. The performance
statistics of LTM-Rounding are shown in Table 1.
We see that RI is 1 for the first three data sets. This
means that the true clusters have been perfectly re-
covered. The index starts to drop from the 4th data
set onwards in general. It falls gracefully with the in-
crease in the level of noise in data. Similar trend can
also be observed on VI.

The partitions produced by LTM-Rounding at the
best run (in terms of BIC score) are shown in Fig 7(a)
using colors and shapes of the data points. We see that
on the first four data sets, LTM-Rounding correctly
determined the number of clusters and the members
of each cluster. On the next three data sets, it also
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Table 1: Performances of various methods on the 8 synthetic data sets in terms of Rand index (RI) and variation
of information (VI). Higher values of RI or lower values of VI indicate better performance. K-means and GMM
require extra information for rounding and should not be compared with the other two methods directly.

Data 1 2 3 4 5 6 7 8
RI LTM 1.0±.00 1.0±.00 1.0±.00 .99±.01 .97±.02 .98±.01 .94±.01 .88±.01

ROT .92±.00 .92±.00 1.0±.00 .98±.00 .52±.00 .52±.00 .88±.00 .90±.00
K-means 1.0±.00 1.0±.00 1.0±.00 1.0±.00 .85±.00 .72±.00 .71±.00 .75±.00
GMM 1.0±.00 1.0±.00 1.0±.00 1.0±.00 .94±.00 .88±.00 .91±.00 .88±.00

VI LTM .00±.00 .00±.00 .00±.00 .06±.09 .29±.19 .28±.14 .79±.12 1.64±.10
ROT .40±.00 .40±.00 .00±.00 .20±.00 1.60±.00 1.60±.00 1.85±.00 1.42±.00

K-means .00±.00 .00±.00 .00±.00 .00±.00 1.04±.00 1.41±.00 1.52±.00 1.97±.00
GMM .00±.00 .00±.00 .00±.00 .00±.00 .85±.00 .91±.00 1.25±.00 1.74±.00

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(2)

●

●
● ● ● ● ● ● ● ● ●

●

●

● ● ●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(5)

● ● ● ● ● ● ●

● ● ●

● ● ●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(8)

(a) K = 40 with varying δ (x-axis)

●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(2)

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(5)

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(8)

(b) δ = 0.1 with varying K (x-axis)

Figure 6: Sensitivity analysis on parameters δ and K
in LTM-Rounding. The y-axis denotes Rand index.
We recommend δ = 0.1 and K = 40 in general.

correctly recovered the true clusters except that the
top and the bottom crescent clusters might have been
broken into two or three parts. Given the gaps between
the different parts, the results are probably the best
one can hope for. The result on the last data set is
less ideal but still reasonable.

Putting together, the above discussions indicate that
the performance of LTM-Rounding degrades grace-
fully as we move away from the ideal case.

6.3 Sensitivity Analysis

We now study the sensitivity of the parameters δ and
K in LTM-Rounding. Experiments were conducted
on the 2nd, 5th, and 8th data sets in Fig 7. Those data
sets contain different levels of noise and hence are at
different distances from the ideal case.

To determine the sensitivity of LTM-Rounding with
respect to δ, we fix K = 40 and let δ vary between
0.01 and 0.95. The RI statistics are shown in Fig 6(a).
We see that on data set (2) the performance of LTM-
Rounding is insensitive to δ except when δ = 0.01.
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(a) Partitions produced by LTM-Rounding
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(b) Partitions produced by ROT-Rounding

Figure 7: The 8 synthetic data sets.

On data set (5), the performance of LTM-Rounding
is more or less robust when 0.1 ≤ δ ≤ 0.3. Its
performance gets particularly worse when δ ≥ 0.8.
Similar behavior can be observed on data set (8).
Those results suggest that the performance of LTM-
Rounding is robust with respect to δ in situations
close to the ideal case and it becomes sensitive in situ-
ations that are far away from the ideal case. In general,
we recommend δ = 0.1.

To determine the sensitivity of LTM-Rounding with
respect to K, we fix δ = 0.1 and let K vary between
5 and 100. The RI statistics are shown in Fig 6(b).
It is clear that the performance of LTM-Rounding is
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robust with respect to K as long as it is not too small.

6.4 Running Time

LTM-Rounding deals with tree-structured models.
It is deterministic everywhere except at Step 4(a),
where the EM algorithm is called to estimate the pa-
rameters of LCM. EM is an iterative algorithm and
is computationally expensive in general. However, it
is efficient on LCMs. So the running time of LTM-
Rounding is relatively short. To process one of the
data sets in Fig 7, it took around 10 minutes on a
laptop computer.

6.5 Alternative Methods for Rounding

To compare with LTM-Rounding, we included the
method by Zelnik-Manor and Perona [17] in our ex-
periments. The latter method determines the appro-
priateness of using the q leading eigenvectors by check-
ing how well they can be aligned with the canon-
ical coordinates through rotation. So we name it
ROT-Rounding. Both LTM-Rounding and ROT-
Rounding can determine the number q of eigenvectors
and the number k of clusters automatically. Therefore,
they are directly comparable. The method by Xiang
and Gong [16] is also related to our work. However,
its implementation is not available to us and hence it
is excluded from comparison.

K-means and GMM can also be used for rounding.
However, both methods cannot determine q, and K-
means cannot even determine k. We therefore gave
the number kt of true clusters for K-means and used
q = kt for both methods. Since the two methods re-
quired additional information, they are included in our
experiments only for reference. They should not be
compared with LTM-Rounding directly.

ROT-Rounding and GMM require the maximum al-
lowable number of clusters. We set that number to 20.

6.6 Comparison on Synthetic Data

Table 1 shows the performance statistics of the three
other methods on the 8 synthetic data sets. LTM-
Rounding performed better than ROT-Rounding
on all but two data sets. The differences were sub-
stantial on 5 of those data sets.

The partitions produced by ROT-Rounding at one
run are shown in Fig 7(b).1 We see that on the first
two data sets, ROT-Rounding underestimated the
number of clusters and merged the two smaller cres-
cent clusters. This is serious under-performance given
the easiness of those data sets. On the 3rd data set,

1Same results were obtained for all 10 repetitions.

Table 2: Comparison on MNIST digits data.

Method #clusters RI VI
LTM 9.3±.82 .91±.00 2.17±.07
ROT 19.0±.00 .92±.00 2.40±.00

K-means (10) .90±.00 1.83±.00
GMM 16.0±.00 .91±.00 2.14±.00

sd-CRP 9.3±.96 .89±.00 2.72±.08

it recovered the true clusters correctly. On the 4th
data set, it broke the top crescent cluster into two.
On the 5th data set, it recovered the bottom clus-
ter correctly but merged all the other clusters incor-
rectly. This leads to a much lower RI. The story on
the 6th data set is similar. On the 7th data set, it
produced many more clusters than the number of true
clusters. Therefore, its RI is also lower. On the last
data set, the clustering obtained by ROT-Rounding
is not visually better than the one produced by LTM-
Rounding, even though RI suggests otherwise. Given
all the evidence presented, we conclude that the perfor-
mance of LTM-Rounding is significantly better than
that of ROT-Rounding.

Like LTM-Rounding, both K-means and GMM re-
covered clusterings correctly on the first three data sets
(Table 1). They performed slightly better than LTM-
Rounding on the 4th data set. However, their perfor-
mances were considerably worse on the next three data
sets. They were also worse on the last one in terms
of VI. It happened even though K-means and GMM
were given additional information for rounding. This
shows the superior performance of LTM-Rounding.

6.7 MNIST Digits Data

In the next two experiments, we used real-world data
to compare the rounding methods. The MNIST digits
data were used in this subsection. The data consist of
1000 samples of handwritten digits from 0 to 9. They
were preprocessed by the deep belief network as de-
scribed in [6] using their accompanying code.2 Table 2
shows the results averaged over 10 runs.

We see that the number of clusters estimated by LTM-
Rounding is close to the ground truth (10), but that
by ROT-Rounding is considerably larger than 10. In
terms of quality of clusterings, the results are incon-
clusive. RI suggests that ROT-Rounding performed
slightly better, but VI suggests that LTM-Rounding
performed significantly better.

Compared with LTM-Rounding, K-means obtained

2We thank Richard Socher for sharing the preprocessed
data with us. The original data can be found at http:
//yann.lecun.com/exdb/mnist/.
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a better clustering (in terms of VI), whereas GMM
obtained one with similar quality. However, K-means
was given the number of true clusters and GMM the
number of eigenvectors. GMM also overestimated the
number of clusters even with the extra information.

A non-parametric Bayesian clustering method, called
sd-CRP, has recently been proposed for rounding [13].
Although we obtained the same data from their au-
thors, we could not get a working implementation
for their method. Therefore, we simply copied their
reported performance to Table 2. Note that sd-
CPR can determine the number clusters automati-
cally. However, it requires the number of eigenvectors
as input, and the number was set to 10 in this experi-
ment. Hence, sd-CPR requires more information than
LTM-Rounding. Table 2 shows that it estimated a
similar number of clusters as LTM-Rounding. How-
ever, its clustering was significantly worse in terms of
RI or VI. This shows that LTM-Rounding performed
better than sd-CPR even with less given information.

6.8 Image Segmentation

The last part of our empirical evaluation was con-
ducted on real-world image segmentation tasks. Five
images from the Berkeley Segmentation Data Set
(BSDS500) were used. They are shown in the first
column of Fig 8. The similarity matrices were built
using the method proposed by Arbeláez et al. [1].

The segmentation results obtained by ROT-
Rounding and LTM-Rounding are shown in
the second and third columns of Fig 8 respectively.
On the first two images, ROT-Rounding did not
identify any meaningful segments. In contrast, LTM-
Rounding identified the polar bear and detected
the boundaries of the river on the first image. It
identified the bottle, the glass and a lobster on the
second image.

An obvious undesirable aspect of the results is that
some uniform regions are broken up. Examples include
the river bank and the river itself in the first image,
and the background and the table in the second image.
This is a known problem of spectral clustering when
applied to image segmentation and can be dealt with
using image analysis techniques [1]. We do not deal
with the problem in this paper.

On the third image the performance of LTM-
Rounding was better because the lizard was identi-
fied and the segmentation lines follow leaf edges more
closely. On the fourth image LTM-Rounding did a
better job at detecting the edges around the lady’s
hands and skirt and on the left end of the silk scarf.
However, ROT-Rounding did a better job at the last
image because it produced a cleaner segmentation.

Original ROT LTM

Figure 8: Image segmentation results.

Overall, the performance of LTM-Rounding was bet-
ter than that of ROT-Rounding. The objective of
this section has been to compare LTM-Rounding and
ROT-Rounding on the same collection of eigenvec-
tors. The conclusion is meaningful even if the final
segmentation results are not as good as the best that
can be achieved by image analysis techniques.

7 Conclusion

Rounding is an important step of spectral clustering
that has not received sufficient attention. Not many
papers have been published on the topic, especially on
the issues of determining the number of leading eigen-
vectors to use. In this paper, we have proposed a novel
method for the task. The method is based on latent
tree models. It can automatically select an appropriate
number of eigenvectors to use, determine the number
of clusters, and finally assign data points to clusters.
We have shown that the method works correctly in the
ideal case and its performance degrades gracefully as
we move away from the ideal case.
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Abstract

We consider the problem of selecting a subset
of alternatives given noisy evaluations of the
relative strength of different alternatives. We
wish to select a k-subset (for a given k) that
provides a maximum likelihood estimate for
one of several objectives, e.g., containing the
strongest alternative. Although this problem
is NP-hard, we show that when the noise
level is sufficiently high, intuitive methods
provide the optimal solution. We thus gener-
alize classical results about singling out one
alternative and identifying the hidden rank-
ing of alternatives by strength. Extensive
experiments show that our methods perform
well in practical settings.

1 Introduction

The initial motivation for this paper stemmed
from discussions with the inventors of EteRNA
(http://eterna.cmu.edu). Similarly to Foldit [9],
EteRNA is a scientific discovery game where the goal
is to design RNA molecules that fold into stable struc-
tures. Thousands of human players propose RNA de-
signs weekly, but only a relatively small number k of
them can be synthesized in a laboratory to discover
whether they actually fold well. To choose k designs to
synthesize, players vote over the proposed designs us-
ing a voting rule known as k-approval : each player re-
ports up to k favorite designs, each of which is awarded
one point. The k designs that receive the most points
are synthesized, and the best design is identified.

The aggregation of opinions via k-approval has sev-
eral shortcomings. For example, players typically do
not consider all proposed designs, and in particular de-
signs that receive votes early in the voting process gain
visibility and therefore usually accumulate more votes,
leading to a snowball effect. One alternative is to elicit

players’ opinions about pairs of designs, making sure
that each proposed design is compared with at least
several others. Regardless of how players’ opinions are
elicited, one would need to answer the question: what
is our objective in aggregating opinions? For EteRNA,
the answer is simple; since biochemists are seeking a
stable design for a specific molecule, but will only use
a single proposed design, we would like to select a set
of k designs that includes at least one great design.
Including one great design is sufficient, as it will be
singled out when the k selected designs are synthe-
sized.

Of course, this setup is not confined to the realm of hu-
man computation; it also arises naturally, for example,
in the process of new product development (NPD). A
product can have many different potential designs. A
k-subset of these designs is selected based on a market
survey, and (possibly costly) prototypes are manufac-
tured for the selected designs. The prototypes are then
evaluated by a focus group that definitively singles out
the best design. Again, the goal is to include at least
one great design among the prototypes that are eval-
uated.

A natural approach views elicited opinions over alter-
natives (designs, in the examples) as noisy estimates
of a true, hidden ranking of the alternatives in terms
of quality. Given such a noise model, the examples
presented above call for the selection of the subset of
alternatives that is most likely to contain the top alter-
native of the true ranking, that is, the truly strongest
alternative. However, other settings may require the
selection of a subset of alternatives that is most likely
to possess a different property. In this paper we study
this maximum likelihood estimation (MLE) framework
under several objectives and noise models.

1.1 Our model and results

Our model consists of two components: the noise
model and the objective function. We are interested
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in two basic noise models (see, e.g, [4]) that govern
how the dataset is obtained given a hidden true rank-
ing. The first model—the noisy comparisons model—
corresponds to independent evaluations of pairs of al-
ternatives, where each evaluation is consistent with
the true ranking with a fixed probability p ∈ (1/2, 1).
For the second model—the noisy orders model (also
known as the Mallows model [14])—we imagine vot-
ers submitting complete rankings over the alternatives.
The probability of observing a ranking is exponentially
small in its Kendall Tau distance to the true ranking,
i.e., the number of pairs of alternatives on which the
two rankings disagree. The second model is consistent
with EteRNA’s current voting method, where in the-
ory players are expected to consider all designs, but it
is much more natural when the number of alternatives
(e.g., product designs) is small. Our positive results
hold with respect to a general noise model—the noisy
choice model—that includes both basic models as spe-
cial cases.

For the second component, we focus on three objective
functions. Objective 1 is the one discussed above: se-
lect a subset that maximizes the probability of includ-
ing the top alternative of the true ranking. Objective 2
aims to select a k-subset of alternatives that coincides
with the top k alternatives of the true ranking; this ob-
jective is natural, for example, when choosing a team
of workers to carry out a task that requires multiple
workers with identical skills (here the alternatives are
the workers). Objective 3 seeks to select an ordered
tuple of alternatives of length k that maximizes the
probability of coinciding with the k-prefix of the true
ranking. In other words, we are trying to single out
the k top alternatives as before, but in the correct or-
der; this objective is closely aligned with web search
applications. Note that the three objectives coincide
when k = 1. We consider Objective 1 to be the most
natural and important among the three, and indeed
our exposition concentrates on this objective.

We prove that computing the optimal solution under
all three objectives is NP-hard for any nontrivial value
of k (for Objectives 1 and 2, the case of k = m, where
m is the number of alternatives, is trivial). However,
our analytical results indicate that the optimal so-
lutions for special cases correspond to intuitive (and
sometimes tractable) methods. In particular, our an-
alytical results focus on the case where the level of
noise is very high. There are two compelling reasons
for considering such noisy settings. First, if the level
of noise is not very high, any reasonable method would
be able to single out the true ranking with relatively
little data and high confidence, and therefore maxi-
mizing our objectives becomes a nonissue. Second, as
we discuss below, our experiments clearly indicate that

methods that perform well in theory with respect to a
very high noise level also perform well in practice.

For Objective 1, we introduce the extended scoring
method to single out a k-subset of alternatives. We
prove that under the noisy choice model, when the
noise level is sufficiently high, any optimal solution is
in the solution space provided by the extended scor-
ing method.1 Interestingly, under noisy orders the ex-
tended scoring method reduces to a well-known vot-
ing rule (which maps a vector of rankings submitted
by voters to a selected alternative) called Borda count,
and its special case for noisy comparisons also provides
a highly intuitive and tractable method. To our sur-
prise, it turns out that the extended scoring method
also yields the optimal solution for Objective 2 when
the noise level is sufficiently high.

For Objective 3 we present the scored tuples method,
and prove that it gives the optimal solution when the
noise level is high. Interestingly, under the noisy orders
model, this method coincides with Borda count when
k = 1, and with another famous rule known as the
Kemeny rule when k = m. Intermediate values of k
give a sequence of optimal voting rules that connects
Borda count with Kemeny; we believe that this insight
is of independent interest to social choice theory.

Finally, we conduct extensive experiments that com-
pare the extended scoring method (for Objectives 1
and 2) and the scored tuples method (for Objective 3)
with other methods. Our experiments indicate that
the proposed methods, which are theoretically opti-
mal under high noise, also outperform other methods
under practical noise levels. Moreover, in cases where
we are able to compute the MLE (i.e., the optimal
solution), its performance and that of the proposed
methods are almost indistinguishable.

1.2 Related work

Young [18] studied maximum likelihood estimators
under (a variation of) the noisy orders model and
two objectives: identifying the top alternative of the
true ranking (which coincides with our objectives for
k = 1), and identifying the MLE ranking. In fact,
Young’s paper is based on work done by the marquis
de Condorcet roughly two centuries earlier [10]. Young
found that when the noise level is sufficiently high, the
winner according to Borda count is the MLE for the
top alternative, and regardless of the noise level the
Kemeny rule is an MLE for the true ranking. Our
main results for Objectives 1 and 2 generalize Young’s
results for Borda count by extending them to a more
powerful noise model and (more importantly) to dif-

1Subtleties with respect to tie breaking are discussed in
detail in Section 3.
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ferent values of k. Our result for Objective 3 con-
nects Young’s results for Borda (k = 1) and Kemeny
(k = m) via a sequence of optimal voting rules for
intermediate values of k, while again generalizing the
noise model.

A series of relatively recent AI papers deal with voting
rules as MLEs (see, e.g., [6, 8, 17, 16]). In particular, in
a UAI 2005 paper, Conitzer and Sandholm [6] reverse
Young’s question by asking for which common voting
rules there exist (constrained) noise models such that
the voting rules are MLEs for the top alternative or
the true ranking. One section of the paper of Xia and
Conitzer [16] studies a setting where a set of alterna-
tives must be selected, under a noise model that is
different from ours, where there is a set of winners of
size k but no underlying ranking. They provide a sin-
gle result for this setting: an evaluation problem that
is related to identifying the set of winners is NP-hard.

Under standard noise models such as noisy orders and
noisy comparisons, computing the MLE true ranking
is also NP-hard [3, 5], but there is a significant amount
of work on this problem (see, e.g., [1, 2, 7, 12, 4]). For
example, Braverman and Mossel [4] provide polyno-
mial time algorithms that compute the MLE ranking
with high probability. However, we see below that se-
lecting the top k elements of the MLE ranking is not
the optimal solution to our objectives (with the obvi-
ous exception of Objective 3 for k = m) and moreover
our experiments show that this method provides poor
performance with respect to our objectives in practice.

2 The Model

We denote [k] = {1, . . . , k}. In addition, let
arg maxk

s∈S H(s) be the set of k-subsets of S (let
|S| = t) with largest values under the given function
H . In other words, for each order (s1, . . . , st) of the ele-
ments of S such that H(si) ≥ H(si+1) for all i ∈ [t−1],
arg maxk

s∈S H(s) includes the set {s1, . . . , sk}.

We consider a set of alternatives A; denote |A| = m.
We will use small letters to denote specific alterna-
tives. Let L(A) be the set of permutations (which
we think of as linear orders or rankings) on A, where
each permutation is a bijection σ : A → {1, 2, . . . , m}.
Hence, σ(a) denotes the position of alternative a in
σ, and σ−1(i) denotes the alternative at the ith posi-
tion, i.e., the ith most preferred alternative when σ is
viewed as a ranking over the alternatives. In particu-
lar, σ(a) < σ(b) denotes that a is preferred to b under
σ. We let σ−1([k]) = (σ−1(1), . . . , σ−1(k)) denote the
ordered tuple consisting of the k-prefix of σ.

We assume that there exists a true hidden order σ∗ ∈
L(A) over the alternatives, which reflects their true

strengths. We also make the standard assumption that
σ∗ is selected using a uniform prior over L(A). Let
a∗ = (σ∗)−1(1) denote the best alternative under σ∗.

Our objective is to find a “good” set of alternatives
given noisy observations. We consider two standard
noise models (see, e.g., [4]).

2.1 Noisy comparisons and tournaments

In the noisy comparisons model, a pairwise preference
a ≻ b denotes that alternative a is preferred to alter-
native b. We imagine that each pair of alternatives is
presented to n voters (with possibly different sets of
voters for each pair). The preferences returned by the
voters are independently consistent with the true rank-
ing σ∗ with a fixed probability 1/2 < p < 1. Hence,
the dataset D is a set of comparisons where each pair of
alternatives appears exactly n times, for a fixed value
of n. Note that the case of n = 1 with relatively high
value of p can also represent the aggregate opinion of
many voters.

We think of the dataset D as corresponding to a
slightly nonstandard weighted tournament. Denote by
nab the number of a ≻ b votes. The tournament TD

is a directed graph where the vertex set is the set of
alternatives, there are edges between each pair of al-
ternatives in both directions, and the weight of the
edge e = (a, b) is we = nab.

2

2.2 Noisy orders and ranked voting

In our second model, a fixed set of n voters provide
rankings over all alternatives. In this noisy orders
model (also known as the Condorcet noise model [10]),
each ranking is generated independently by drawing
pairwise preferences similarly to the noisy compar-
isons model, except that the process is restarted if the
generated vote has a cycle (e.g. a ≻ b ≻ c ≻ a).
Concisely, the probability of drawing each ranking
σi given the true order σ∗ = σ is proportional to

p(m
2 )−dK(σi,σ) · (1 − p)dK(σi,σ). The distance dK(·, ·) is

the Kendall tau distance between two rankings, which
counts their number of disagreements on pairs of alter-
natives. Probabilities are normalized using a normal-
ization constant which can be shown to be independent
of the true ranking σ∗ (see, e.g., [13]). Note that this
model is equivalent to the Mallows model [14], which
is widely used in machine learning and statistics.

A voting rule (also known as a social choice function)
is a function f : L(A)n → A that accepts n rankings
(σ1, σ2, · · · , σn) ∈ L(A)n as input and outputs a se-
lected alternative. We will informally use the same

2Typically tournaments have exactly one directed edge
between each pair of vertices.
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term to refer to functions that output a ranking of the
alternative, i.e., an element of L(A); such functions are
also known as social welfare functions.

Below we consider a number of well-known voting
rules; we begin with two that will play a special role.
Under Borda count each voter i awards m − σi(a)
points to each alternative a ∈ A, and an alterna-
tive with most points overall is selected. The Ke-
meny rule selects a ranking π ∈ L(A) that minimizes∑n

i=1 dK(π, σi). Informally, the Kemeny ranking min-
imizes the number of disagreements with voters over
pairs of alternatives.

In Section 6 we consider some additional voting rules
as benchmarks. Under Maximin, the score of an alter-
native a is mina′∈A\{a} |{i ∈ [n] : σi(a) < σi(a

′)}|.
Under plurality, each voter i awards one point to
σ−1

i (1), and under k-approval, one point to each of
σ−1

i (1), . . . , σ−1
i (k).

2.3 A generalization: The noisy choice model

We next present the noisy choice model, a general
framework that unifies both models; to the best of
our knowledge this model is novel. The model is char-
acterized by two properties. First, a notion of nab for
all alternatives a ∈ A and b ∈ A \ {b} that denotes the
degree to which a is preferred over b in the input. For
a fixed n and all a ∈ A and b ∈ A\ {a}, nab +nba = n.

Second, a likelihood of a dataset D given that the true
order is σ∗ = σ,

Pr[D|σ∗ = σ] =
γd(σ,D)

Zγ
, (1)

where the normalizing constant Zγ is independent of
σ (although it might depend on the parameters of
the model), and the distance function is defined as
d(σ, D) =

∑
a,b ∈A: σ(a)<σ(b) nba. The distance intu-

itively measures the amount of disagreement between
the ranking and the dataset on pairs of alternatives.
Crucially, the likelihood of the dataset diminishes ex-
ponentially as its distance from the true order in-
creases.

The noisy comparisons model and noisy orders model
both fall under this more general framework. Indeed,
the notion of nab is clear in both models: it is simply
the number of votes that prefer a to b. It is also easy
to verify that γ = (1 − p)/p for both models.

In addition to noisy comparisons and noisy orders, the
noisy choice model can capture other practical mod-
els of inputs. For example, consider the model where
inputs are noisy partial orders of a fixed length l gen-
erated as follows. For each voter, l alternatives are
chosen uniformly at random from the set of all alter-

natives. Then a partial order is generated according to
the Mallows Model over the chosen l alternatives. Al-
ternatively, we can consider a model where each voter
reports an unweighted tournament over the alterna-
tives, i.e., individual preferences may be “irrational”.

Note that γ is a measure of the level of noise; γ ≈ 0
induces a distribution that is highly centered around
the true order and γ ≈ 1 induces a distribution that
is close to the uniform distribution. We also remark
that the distance function d(·, ·) under the noisy orders
model is just the sum of Kendall tau distances of a
particular ranking from the input orders.

3 Including the Top Alternative

We first consider the case where we want to select a
k-subset of alternatives that is most likely to contain
a∗, the top alternative of the true ranking σ∗.

Objective 1 Given k, find a k-subset of alternatives
that maximizes the probability of containing the best
alternative, i.e., a subset in

argmax
S⊆A, |S|=k

Pr[a∗ ∈ S|D].

A crucial observation regarding Objective 1 is that

Pr[a∗ ∈ S|D] =
∑

a∈S

Pr[a∗ = a|D] ∝
∑

a∈S

Pr[D|a∗ = a],

where the last step follows from Bayes’ rule and the
assumption of uniform prior over rankings. The fol-
lowing observation is immediately implied.

Observation 3.1 The optimal solution to Objective 1
under the noisy choice model is any subset in

argmaxk
a∈A Pr[a∗ = a|D].

In words, we choose the k most likely alternatives ac-
cording to their probabilities of coinciding with the
top alternative of the true ranking. Equivalently, one
could select any subset in arg maxk

a∈A Pr[D|a∗ = a]
since we have assumed a uniform prior over rankings.
Despite Observation 3.1, finding an optimal solution
to Objective 1 is computationally hard.

Theorem 3.2 For any k ∈ [m−1], computing an op-
timal solution to Objective 1 is NP-hard under noisy
orders and noisy comparisons.

The theorem’s proof appears in the full version of
the paper.3 Note that the theorem also proves NP-
hardness under the noisy choice model because noisy

3The full version of the paper is available from:
http://www.cs.cmu.edu/~arielpro/papers.html.
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orders and noisy comparisons are just special cases.
The intuition behind the proof is as follows. Young [18]
demonstrated (via an example) that when p close to 1,
under a specific noise model that is very similar to the
noisy comparisons model, the optimal solution with re-
spect to Objective 1 with k = 1 coincides with the first
element of an MLE of the true ranking σ∗. We show
that this result holds under both noisy comparisons
and noisy orders and also prove that computing the
first element of an MLE ranking is NP-hard by utiliz-
ing the NP-hardness of computing the MLE ranking
itself. Here, an MLE ranking is a minimum feedback
ranking under noisy comparisons (see, e.g., [4]), and
a Kemeny ranking under noisy orders [18], which are
both NP-hard to compute [5, 3]. Finally, we leverage
the case of k = 1 to extend the NP-hardness to other
values of k.

Because of these computational connections, it is nat-
ural to wonder whether the optimal solution to Ob-
jective 1 is given by taking the top k elements of the
MLE ranking for any k and any value of p. However,
Young [18] also showed that this is not the case when
p is close to 1/2 even for k = 1 (in fact he did not con-
sider the case of k > 1). Indeed, he showed that when
p is close to 1/2, in his example the MLE ranking σ
is the only ranking that puts the alternative σ(1) first
and has significant probability, whereas a different al-
ternative (the winner under Borda count) appears first
in rankings that individually have smaller probability
than the MLE ranking, but combined have a larger
overall probability. Below we extend this result by
showing that when p is sufficiently close to 1/2, the
problem is indeed tractable for any value of k under
our general noisy choice model, and in fact the solu-
tion coincides with intuitive methods. Although the
theoretical guarantees are for the case where p is close
to 1/2 (i.e., very noisy settings, γ ≈ 1 in Equation (1)),
the experiments in Section 6 show that the methods
developed here also work well when the noise level is
lower.

Our general method, which we refer to as the extended
scoring method,4 is well defined for input data gen-
erated according to the noisy choice model. For an
alternative a ∈ A, let the score of a be

sc(a) =
∑

b∈A\{a}
nab. (2)

We choose the top k alternatives according to their
score, i.e., we return a set in arg maxk

a sc(a).

Theorem 3.3 For every n and m there exists γ′ <
1 such that for all γ ≥ γ′, the optimal solutions

4We use the term “extended” to avoid confusion with
generalized scoring rules [15].

to Objective 1 under the noisy choice model are in
arg maxk

a sc(a).

The theorem’s formulation leaves open the possibility
that some sets in argmaxk

a sc(a) are far from being
optimal. However, the theorem’s proof in fact shows
that for any δ > 0 there is sufficiently large γ such
that every S ∈ arg maxk

a sc(a) is optimal up to δ, i.e.,
for any S′ ⊆ A such that |S′| = k,

Pr[a∗ ∈ S|D] ≥ Pr[a∗ ∈ S′|D] − δ.

Proof of Theorem 3.3 Let γ = 1 − ǫ, ǫ > 0. By
Observation 3.1, we know that the optimal solution is
given by arg maxk

a Pr[D|a∗ = a]. In our model

Pr[D|a∗ = a] =
∑

σ∈L(A),σ−1(1)=a

Pr[D|σ∗ = σ]

=
∑

σ∈L(A),σ−1(1)=a

γd(σ,D)

Zγ
.

Let La(A) = {σ ∈ L(A)| σ−1(1) = a}. Thus |La(A)| =
(m − 1)!. Define an objective function f(a) = Zγ ·
Pr[D|a∗ = a]. Since Zγ is a constant, the optimal
solution is also given by arg maxk

a f(a). Using γ = 1−ǫ
and the fact that (1 − ǫ)t ≥ 1 − t · ǫ for any t ∈ N,
we obtain the following lower bound on our objective
function f :

f(a) ≥ f̂(a) =
∑

σ∈La(A)

(1 − ǫ · d(σ, D)). (3)

In addition, the gap between f and f̂ can be upper
bounded using

|(1 − ǫ)t − (1 − t · ǫ)| ≤
t∑

i=2

(
t

i

)
· ǫi ≤ 2t · ǫ2

for ǫ < 1. It follows that for every a ∈ A,

f(a) − f̂(a) ≤
∑

σ∈La(A)

2d(σ,D) · ǫ2

≤ ǫ2 · (m − 1)! · 2n·(m
2 ). (4)

The theorem will now follow by proving two
statements: arg maxk

a f(a) ⊆ arg maxk
a f̂(a), and

arg maxk
a f̂(a) = arg maxk

a sc(a). We use the follow-
ing claim.

Claim 3.4 For every a ∈ A,

f̂(a) = Cǫ + ǫ · (m − 1)! · sc(a)

where Cǫ depends only on ǫ (and not on a).

699



Proof First, we simplify f̂ by summing the individual
terms in Equation (3).

f̂(a) = (m − 1)! − ǫ ·
∑

σ∈La(A)

d(σ, D). (5)

Furthermore, note that
∑

σ∈La(A) d(σ, D) equals

∑

σ∈La(A)

∑

x∈A,y∈A\{x}
nyx · 1[σ(x) < σ(y)]

=
∑

σ∈La(A)

∑

x∈A,y∈A\{x}
(n − nxy) · 1[σ(x) < σ(y)]

= n ·
∑

σ∈La(A)

∑

x∈A,y∈A\{x}
1[σ(x) < σ(y)]

−
∑

x∈A,y∈A\{x}
nxy ·

∑

σ∈La(A)

1[σ(x) < σ(y)]

The symbol 1 represents the indicator function. For
the first term it holds that

n ·
∑

σ∈La(A)

∑

x∈A,y∈A\{x}
1[σ(x) < σ(y)]

= n ·
∑

σ∈La(A)

(
m

2

)
= n · (m − 1)! ·

(
m

2

)
.

To analyze the second term we consider three cases
separately: (i) x = a, y ∈ A \ {a}, (ii) x ∈ A \ {a},
y = a, and (iii) x ∈ A \ {a}, y ∈ A \ {a, x}. If x = a,
then for every y ∈ A\{a} and every σ ∈ La(A) it holds
that a ≻ y, and hence nay is multiplied by (m − 1)!.
Similarly, if y = a, then for every x ∈ A \ {a}, nxa is
multiplied by 0. If x ∈ A \ {a} and y ∈ A \ {a, x},
then nxy is multiplied by (m − 1)!/2 because x ≻ y in
exactly half of the rankings in the summation. Thus
the second terms equals

(m − 1)! ·


 ∑

y∈A\{a}
nay +

1

2
·

∑

x∈A\{a},y∈A\{a,x}
nxy




= (m − 1)! · sc(a) +
(m − 1)!

2
· n ·

(
m − 1

2

)
,

since nxy + nyx = n for every x 6= y. Combining both
terms and substituting back,

∑

σ∈La(A)

d(σ, D)

= n · (m − 1)! ·
(

m

2

)

− (m − 1)!

2
· n ·

(
m − 1

2

)
− (m − 1)! · sc(a)

= C′
ǫ − (m − 1)! · sc(a),

for some constant C′
ǫ independent of a. Plugging this

into Equation (5) we get

f̂(a) = Cǫ + ǫ · (m − 1)! · sc(a)

as required. �(Claim 3.4)

Claim 3.4 directly implies that arg maxk
a f̂(a) =

arg maxk
a sc(a). It therefore remains to prove that

arg maxk
a f(a) ⊆ argmaxk

a f̂(a). For this purpose it is

sufficient to show that for every a, a′ ∈ A, f̂(a) > f̂(a′)
implies f(a) > f(a′).

Note that f̂(a) > f̂(a′) implies sc(a) ≥ sc(a′)+1 (since
scores are integers) and using Claim 3.4 this implies

f̂(a) ≥ f̂(a′) + ǫ · (m − 1)!. Therefore

f(a) ≥ f̂(a) ≥ f̂(a′) + ǫ · (m − 1)!

≥ f(a′) − ǫ2 · (m − 1)! · 2n·(m
2 ) + ǫ · (m − 1)!.

The third transition follows from Equation (4). Set-

ting ǫ < 2−n·(m
2 ), i.e., γ > γ′ = 1 − 2−n·(m

2 ), we have
that f(a) > f(a′) as required. �

The notion of score underlying the extended scoring
method (Equation (2)) provides an intuitive reflection
of the quality of an alternative. In the special case of
the noisy comparisons model, sc(a) =

∑
x∈A\{a} nax

is just the sum of weights of the outgoing edges from
a in the weighted tournament defined in Section 2.
Hence, the extended scoring method reduces to picking
k alternatives with highest weighted outdegrees.

In the special case of the noisy orders model,

sc(a) =
∑

x∈A\{a}
nax =

∑

x∈A\{a}

n∑

i=1

1[σi(a) < σi(x)]

=

n∑

i=1

∑

x∈A\{a}
1[σi(a) < σi(x)] =

n∑

i=1

(m − σi(a)),

which is exactly the Borda score of alternative a.
Hence, the extended scoring method reduces to pick-
ing k alternatives with maximum Borda scores. The-
orem 3.3 thus extends Young’s result for Borda
count [18] from the noisy orders model to the noisy
choice model and from k = 1 to any value of k under
Objective 1.

4 Identifying the Top Subset

Under Objective 1 we choose k alternatives, each of
which is likely to be the top alternative a∗. However,
in principle it may be the case that each of these alter-
natives is either the top-ranked alternative or among
the bottom-ranked alternatives. In this section we seek
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to identify the set of top k alternatives, but we will see
that the solution in fact coincides with the solution to
Objective 1.

Objective 2 Given k, find the k-subset of alterna-
tives that maximizes the probability of coinciding with
the top k alternatives of the true hidden order, i.e., a
subset in

argmax
S⊆A,|S|=k

Pr[S = {(σ∗)−1(i)}i∈[k]|D].

It is easy to see that this objective coincides with Ob-
jective 1 for k = 1, and hence it is NP-hard for k = 1
under noisy orders and noisy comparisons. As before,
we can extend this observation to any k ∈ [m − 1] for
all three models (the proof appears in the full version
of the paper).

Next, we show that the extended scoring method is
again optimal when γ ≈ 1.

Theorem 4.1 For every n and m there exists γ′ <
1 such that for all γ ≥ γ′, the optimal solutions
to Objective 2 under the noisy choice model are in
arg maxk

a sc(a).

Theorem 4.1 (whose proof is given in the full version
of the paper) suggests that the alternatives selected by
the extended scoring method are not only good can-
didates for the best alternative individually, but as a
whole they also make a good “team”, i.e, when put to-
gether they are the most likely to coincide with the top
k alternatives. Theorems 4.1 and 3.3 together provide
an argument in favor of the extended scoring method
and, in particular, they strongly advocate Borda count
when inputs are noisy orders.

5 Identifying the Top Tuple

In this section we study an objective that is even more
ambitious than Objective 2: not only do we want to
correctly identify the top k alternatives of σ∗, we seek
to identify them in the correct order.

Objective 3 Given k, find the ordered k-tuple that
maximizes the probability of coinciding with the k-
prefix of the true hidden order, i.e., a tuple in

arg max
(a1,a2,...,ak) ∈ Ak

Pr[(σ∗)−1([k]) = (a1, a2, . . . , ak)|D].

Objective 3 coincides with its predecessors when k = 1,
and reduces to finding an MLE for the true ranking
when k = m. In fact we are able to prove that comput-
ing the optimal solution to Objective 3 is NP-hard for

any k ∈ [m] under noisy orders and noisy comparisons
(the proof appears in the full version of the paper).

To tackle Objective 3 we propose a new method, which
we call the scored tuples method. Similarly to the ex-
tended scoring method, it maximizes a lower bound of
the stated objective function and provides optimality
guarantees when γ ≈ 1. We first extend the definition
of the noisy choice model’s distance function to com-
pute the distance between a k-tuple (a1, a2, . . . , ak)
and a dataset D; this distance is defined as

d((a1, a2, . . . , ak), D) =
∑

1≤i<j≤k

najai .

Next, for a k-tuple (a1, a2, . . . , ak), define the score of
the tuple as

sc(a1, a2, . . . , ak) =

k∑

i=1

sc(ai) − d((a1, a2, . . . , ak), D),

(6)
where sc(ai) is defined as in Equation (2). We select
a k-tuple in argmax(a1,a2,...,ak)∈Ak sc(a1, a2, . . . , ak).

It may seem that overloading the notation of sc(a) as
we have (via Equation (2) and Equation (6) with a tu-
ple of length 1) may create inconsistencies, but in fact
the k = 1 case of Equation (6) reduces to Equation (2).

It turns out that the above method provides guaran-
tees with respect to Objective 3 that are equivalent to
those that we were able to obtain for previous objec-
tives.

Theorem 5.1 For every n and m there exists γ′ <
1 such that for all γ ≥ γ′, the optimal solutions
to Objective 3 under the noisy choice model are in
arg max(a1,a2,...,ak)∈Ak sc(a1, a2, . . . , ak).

The proof of Theorem 5.1 is given in the full version
of the paper; let us consider its implications with re-
spect to the noisy orders model. Since maximizing
sc(a1, a2, . . . , ak) is optimal when γ ≈ 1, it must be the
case (and indeed it is easy to verify) that this solution
reduces to finding the Borda winner when k = 1 and
reduces to finding the Kemeny ranking when k = m.
Thus the optimal solution for k = 1, . . . , m induces a
range of voting rules where Borda count lies on one
extreme, and the Kemeny rule lies on the other. We
find it intriguing (and of independent interest to so-
cial choice theory) that Borda count and Kemeny are
connected via a sequence of “optimal” voting rules.

We remark that the Kemeny rule has been suggested
as a method of aggregating the search results given
by different search engines; in particular it can be for-
mally argued that spam websites will appear at the
bottom of the aggregate ranking [11]. However, since
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users are usually only interested in the top 50 results or
so, our results suggest that the scored tuples method
with a relatively small k may outperform the Kemeny
rule (same method with k = m) in this context.

Finally, an important note is that although computing
arg max(a1,a2,...,ak)∈Ak sc(a1, a2, . . . , ak) is NP-hard in
general, it can be computed in polynomial time for
constant k. In some practical settings one would only
need to select a constant number of alternatives (con-
sider, e.g., the search engine example given above) and
the rule can therefore be easily applied.

6 Experiments

We performed simulations under the noisy compar-
isons model and the noisy orders model. We experi-
mented with various values of the accuracy parameter
p (recall that γ = (1−p)/p). Although the theoretical
guarantees hold only for p close to 1/2 (which corre-
sponds to γ close to 1), we observed that for various
values of p in the practical range the methods sug-
gested in this paper significantly outperform various
other known methods.

The graphs present results for particular values of p
for which the probabilities are visible; the probabili-
ties quickly go to 1 for higher values of p and go to
0 for lower values of p. The results are also verified
empirically for various values of m (number of alter-
natives) and n (number of voters) and p (accuracy pa-
rameter) under both models. Error bars correspond to
95% confidence intervals and thus verify that the sug-
gested methods show statistically significant improve-
ment over other methods. In all the graphs shown
below each point is computed by taking the average
over 10000 iterations.

We remark that the simulations are symmetric with re-
spect to the true order, i.e., it does not matter which
true order we begin with as long as the methods do
not use any information about it. If we perform simu-
lations on a fixed true order, it becomes necessary to
break ties uniformly at random, which is what we do.

For noisy orders we compared Borda count for Objec-
tives 1 and 2, and the scored tuples method for Ob-
jective 3, against the Kemeny rule (which is the MLE
ranking), k-approval, plurality, maximin, and maxi-
mizing unweighted outdegree in the tournament where
there is an edge from a to b if a majority of voters rank
a above b (a.k.a. Copeland). For noisy comparisons we
compared weighted outdegree for Objectives 1 and 2,
and the scored tuples method for Objective 3, against
the Minimum Feedback ranking (which is the MLE
ranking), unweighted outdegree, and Maximin.

For Objective 1, we were also able to estimate the ac-

tual optimal solution using Observation 3.1. For this
we needed to sample rankings according to Pr[σ∗ =
σ|D]. One obstacle is that it can be shown that even
computing Pr[σ∗ = σ|D] is NP-hard. We used the
fact that Pr[σ∗ = σ|D] ∝ Pr[D|σ∗ = σ] ∝ γd(σ,D)

and sampled rankings using the Metropolis-Hastings
algorithm. Note though that for larger values of the
parameters the optimal solution is very difficult to es-
timate, whereas finding a Borda winner is a trivial
computational task.
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Fig. 1: Objective 1, Noisy Orders, m=10, n=10, p=0.55.
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Fig. 2: Objective 1, Noisy Orders, m=20, n=100, p=0.505.
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Fig. 3: Objective 1, Noisy Orders, m=10, n=10, p=0.6.

Figure 1 shows simulations for 10 alternatives, 10 vot-
ers and p = 0.55 under noisy orders. Clearly Borda

702



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  2  3  4  5

Pr
ob

ab
ili

ty

Value of k

MLE-Sampling
Weighted Outdegree
Unweighted Outdegree
MinFeedback
Maximin

Fig. 4: Objective 1, Noisy Comparisons, m=10, n=10,
p=0.55.
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Fig. 5: Objective 2, Noisy Orders, m=10, n=10, p=0.55.

count outperforms other methods by a large margin,
and in fact it is almost indistinguishable from the ac-
tual optimal solution. Extensive simulations show that
similar results hold for a large number of alternatives
and/or a large number of voters as well. An example
with 20 alternatives, 100 voters and p = 0.505 under
noisy orders is shown in Figure 2.

As mentioned above, the value of p is chosen such
that the graphs span the probability spectrum (prob-
abilities are not constantly 1 or 0) but similar results
hold for other values of p as well. For example, Fig-
ure 4 shows that Borda count dominates other meth-
ods when p = 0.6. However, the margin is smaller. In-
deed, for this relatively high value of p, most methods
under consideration achieve excellent accuracy with
only ten voters.

We also performed detailed simulations under the
noisy comparisons model and observed similar results.
Figure 4 shows a sample simulation for 10 alternatives,
10 voters and p = 0.55. In this case weighted outde-
gree (which is the special case of the extended scoring
method) outperforms other methods by a statistically
significant margin.

Under Objective 2, the extended scoring method again
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Fig. 6: Objective 3, Noisy Orders, m=10, n=10, p=0.55.

outperforms other methods as shown in Figure 5 (with
10 alternatives, 10 voters and p = 0.55 under noisy
orders). As expected, under Objective 3 the scored
tuples method outperforms other methods. Figure 6
shows simulations with 10 alternatives, 10 voters and
p = 0.55 under noisy orders. We do not provide ad-
ditional graphs for noisy comparisons due to lack of
space, but the results are similar: the methods that
are theoretically optimal for p close to 1/2 outperform
other methods for practical values of p.

7 Discussion

We began our exposition with the human computa-
tion angle, and we would like to revisit it now that
we have gained some new insights. Voting is a natu-
ral and almost ubiquitous tool in human computation
systems. However, the designers of these systems usu-
ally employ simplistic voting rules such as plurality
or k-approval (as EteRNA does). Our results suggest
that the choice of voting rule can significantly affect
performance. For example, given that we are indeed
interested in singling out one great design, switching
from k-approval to Borda count in EteRNA can pro-
vide significant benefits. Of course we cannot expect
players to rank all the proposed designs, but we can
work with partial rankings or pairwise comparisons (as
described in Section 2). We find it exciting that social
choice theory can help improve human computation
systems. Indeed, it is difficult to apply the principles
of social choice (e.g., voting rules as MLEs) to political
elections, because it is almost impossible to switch vot-
ing rules. In contrast, human computation provides a
perfect testbed for these principles.
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Abstract

EDML is a recently proposed algorithm for
learning MAP parameters in Bayesian net-
works. In this paper, we present a number
of new advances and insights on the EDML
algorithm. First, we provide the multival-
ued extension of EDML, originally proposed
for Bayesian networks over binary variables.
Next, we identify a simplified characteriza-
tion of EDML that further implies a sim-
ple fixed-point algorithm for the convex op-
timization problem that underlies it. This
characterization further reveals a connection
between EDML and EM: a fixed point of
EDML is a fixed point of EM, and vice versa.
We thus identify also a new characteriza-
tion of EM fixed points, but in the seman-
tics of EDML. Finally, we propose a hybrid
EDML/EM algorithm that takes advantage
of the improved empirical convergence behav-
ior of EDML, while maintaining the mono-
tonic improvement property of EM.

1 INTRODUCTION

EDML is a recently proposed algorithm for learning
MAP parameters of a Bayesian network from incom-
plete data (Choi, Refaat, & Darwiche, 2011). EDML
is procedurally very similar to Expectation Maximiza-
tion (EM), yet EDML was shown to have certain ad-
vantages, both theoretically and practically. Theoret-
ically, EDML can in certain specialized cases prov-
ably converge in one iteration, whereas EM may re-
quire many iterations to solve the same learning prob-
lem. Empirically, a preliminary experimental evalua-
tion suggested that EDML could find better parameter
estimates than EM, in fewer iterations.

In this paper, we present a number of new results
and insights on the EDML algorithm. First, we pro-

vide a simple extension of EDML to Bayesian net-
works over multivalued variables, whereas EDML was
initially proposed for Bayesian networks over binary
variables. We also show that the convex optimization
problem that underlies the binary version of EDML,
remains convex for the multivalued case.

Next, we identify a new and simplified characteriza-
tion of EDML, which facilitates a number of theoreti-
cal observations about EDML. For example, this new
characterization implies a simple, fixed-point iterative
algorithm for solving the convex optimization prob-
lems underlying EDML. Moreover, we show that this
fixed-point algorithm monotonically improves the so-
lutions of these convex optimization problems, which
correspond to an approximate factorization of the pos-
terior over network parameters.

Armed with this new characterization of EDML, we go
on to identify a surprising connection between EDML
and EM (considering their theoretical and practical
differences). In particular, we show that a fixed point
of EDML is a fixed point of EM, and vice versa. This
observation has a number of implications. First, it pro-
vides a new perspective on EM fixed points, based on
the semantics of EDML, which was originally inspired
by an approximate inference algorithm for Bayesian
networks that subsumed the influential loopy belief
propagation algorithm as a degenerate case (Pearl,
1988; Choi & Darwiche, 2006). Second, it suggests
a hybrid EDML/EM algorithm that seeks to take ad-
vantage of the desirable properties from each: the im-
proved convergence behavior of EDML, and the mono-
tonic improvement property of EM.

2 TECHNICAL PRELIMINARIES

We use upper case letters (X) to denote variables and
lower case letters (x) to denote their values. Variable
sets are denoted by bold-face upper case letters (X)
and their instantiations by bold-face lower case letters
(x). Generally, we will use X to denote a variable
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in a Bayesian network and U to denote its parents. A
network parameter will therefore have the general form
θx|u, representing the probability Pr(X=x|U=u).

Each variable X in a Bayesian network can be thought
of as inducing a number of conditional random vari-
ables, denoted by X|u, where the values of variable
X|u are drawn based on the conditional distribution
Pr(X|u). Parameter estimation in Bayesian networks
can be thought of as a process of estimating the dis-
tributions of these conditional random variables.

We will use θ to denote the set of all network parame-
ters. Given a network structure G, our goal is to learn
its parameters from an incomplete dataset, such as:

example E B A C
1 e1 b1 a1 ?
2 ? b2 a2 ?
3 e1 b2 a2 c1

We use D to denote a dataset, and di to denote an
example. The dataset above has three examples, with
example d2 being B = b2, and A = a2.

2.1 LEARNING PARAMETERS

A commonly used measure for the quality of parameter
estimates θ is their likelihood, defined as:

L(θ|D) =
∏N
i=1 Prθ(di),

where Prθ is the distribution induced by network
structure G and parameters θ. In the case of com-
plete data (each example fixes the value of each vari-
able), the maximum likelihood (ML) parameters are
unique and easily obtainable. Learning ML param-
eters is harder when the data is incomplete and the
EM algorithm (Dempster, Laird, & Rubin, 1977; Lau-
ritzen, 1995) is typically employed. EM starts with
some initial parameters θ0, called a seed, and succes-
sively improves on them via iteration. EM uses the
update equation:

θk+1
x|u =

∑N
i=1 Prθk(xu|di)∑N
i=1 Prθk(u|di)

,

which requires inference on a Bayesian network param-
eterized by θk, in order to compute Prθk(xu|di) and
Prθk(u|di). It is known that one run of the jointree
algorithm on each example is sufficient to implement
an iteration of EM, which is guaranteed to never de-
crease the likelihood of its estimates across iterations.
EM also converges to every local maxima, given that it
starts with an appropriate seed. It is common to run
EM with multiple seeds, keeping the best local max-
ima it finds. See (Darwiche, 2009; Koller & Friedman,
2009) for recent treatments on parameter learning in
Bayesian networks via EM and related methods.

EM can also be used to find Maximum a Posteriori
(MAP) parameters given Dirichlet priors on network
parameters. The Dirichlet prior for the parameters of
a random variable X|u is specified by a set of expo-
nents, ψx|u, leading to a density ∝ ∏x[θx|u]ψx|u−1. It
is common to assume that exponents are > 1, which
guarantees a unimodal density. For MAP parameters,
EM uses the update (see, e.g., Darwiche (2009)):

θk+1
x|u =

ψx|u − 1 +
∑N
i=1 Prθk(xu|di)

ψX|u − |X|+
∑N
i=1 Prθk(u|di)

, (1)

where ψX|u =
∑
x ψx|u. When ψx|u = 1, the equa-

tion reduces to the one for computing ML parameters.
Moreover, using ψx|u = 2 leads to ML parameters with
Laplace smoothing. This is a common technique to
deal with the problem of insufficient counts (i.e., in-
stantiations that never appear in the dataset, leading
to zero probabilities and division by zero). We will use
Laplace smoothing in our experiments.

2.2 SOFT EVIDENCE

EDML makes heavy use of soft evidence (i.e., evidence
that changes the distribution of a variable without nec-
essarily fixing its value). In this section, we give an
introduction to the semantics of soft evidence.

We follow the treatment of (Chan & Darwiche, 2005)
for soft evidence, which models soft evidence as hard
evidence on a virtual event η. In particular, soft evi-
dence on some variableX with k values is quantified by
a vector λx1

, . . . , λxk with λxi ∈ [0,∞). The semantics
is that λx1

: · · · : λxk = Pr(η|x1) : · · · : Pr(η|xk). The
soft evidence on variable X is then emulated by assert-
ing the hard evidence η. That is, the new distribution
on variable X after having asserted the soft evidence
is modeled by Pr(X|η). Note that Pr(X|η) depends
only on the ratios λx1

: · · · : λxk , not on their absolute
values. Hard evidence of the form X = xj can be mod-
eled using λxi = 0 for all i 6= j, and λxj = 1. Moreover,
neutral evidence can be modeled using λxi = 1 for all
i. The reader is referred to (Chan & Darwiche, 2005)
for more details.

3 BINARY EDML

EDML is a recent method for learning Bayesian net-
work parameters from incomplete data (Choi et al.,
2011). It is based on Bayesian learning in which one
formulates estimation in terms of computing posterior
distributions on network parameters. That is, given
a Bayesian network, one constructs a corresponding
meta network in which parameters are explicated as
variables, and on which the given dataset D can be
asserted as evidence; see Figure 1. One then estimates
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θH	  

θS|h	   θE|h	  

H1	   H2	   H3	  

S1	   S2	   S3	  E1	   E2	   E3	  

θS|h	   θE|h	  

Figure 1: A meta network induced from a base network
S←−H−→E. The CPTs here are based on standard
semantics; see, e.g., (Darwiche, 2009, Ch. 18).

H2	  

S2	   E2	  

H:	  H2	  

H1	   H3	  

S1	   E1	   E3	  S3	  

θH	  

θS|h	   θE|h	  

Sh	  S
2	   Sh	  S

3	  Sh	  S
1	   Sh:	  S2	   Eh:	  E2	  Sh:	  S2	   Eh:	  E2	  

θE|h	  θS|h	  

Figure 2: An edge-deleted network obtained from the
meta network in Figure 1. Highlighted are the island
for example d2 and the island for parameter set θS|h.

parameters by considering the posterior distribution
obtained from conditioning the meta network on the
given dataset D. Suppose for example that the meta
network induces distribution P and let θ denote an
instantiation of variables that represent parameters in
the meta network. One can then obtain MAP param-
eter estimates by computing argmaxθ P(θ|D) using in-
ference on the meta network; see (Darwiche, 2009) for
an example treatment of Bayesian learning.

It is known that meta networks tend to be too com-
plex for exact inference algorithms, especially when
the dataset is large enough. The basic insight behind
EDML was to adapt a specific approximate inference
scheme to meta networks with the goal of computing
MAP parameter estimates. In particular, the original
derivation of EDML adapted the approximate infer-
ence algorithm proposed by (Choi & Darwiche, 2006),
in which edges are deleted from a Bayesian network

Algorithm 1 Binary EDML

input:
G: A Bayesian network structure
D: An incomplete dataset d1, . . . ,dN
θ: An initial parameterization of structure G
αX|u, βX|u: Beta prior for each random variable X|u
1: while not converged do
2: Pr← distribution induced by θ and G
3: Compute Bayes factors:

κix|u←
Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1

Pr(x̄u|di)/Pr(x̄|u)− Pr(u|di) + 1

for each family instantiation xu and example di
4: Update parameters:

θx|u← argmax
p

[p]αX|u−1[1−p]βX|u−1
N∏

i=1

[κix|u ·p−p+1]

5: return parameterization θ

to make it sparse enough for exact inference, followed
by a compensation scheme that attempts to improve
the quality of the approximations obtained from the
edge-deleted network. The adaptation of this infer-
ence method to meta networks is shown in Figure 2.
The two specific techniques employed here were to aug-
ment each edge θX|u−→Xi by an auxiliary variable
Xi

u, leading to θX|u−→Xi
u−→Xi, where Xi

u−→Xi is
an equivalence edge. This is followed by deleting the
equivalence edge. This technique yielded a discon-
nected meta network with two classes of subnetworks,
called parameter islands and network islands.

Deleting edges, as proposed by (Choi & Darwiche,
2006), leads to introducing two auxiliary nodes in the
Bayesian network for each deleted edge. Moreover, ap-
proximate inference by edge deletion follows the dele-
tion process by a compensation scheme that searches
for appropriate CPTs of these auxiliary nodes. As it
turns out, the search for these CPTs, which is done
iteratively, was amenable to a very intuitive interpre-
tation as shown in (Choi et al., 2011).

In particular, one set of CPTs corresponded to soft
evidence on network parameters, where each network
island contributes one piece of soft evidence for each
network parameter. The second set of CPTs corre-
sponded to updated parameter estimates, where each
parameter island contributes an estimate of its un-
derlying parameter set. This interpretation was the
basis for the form of EDML shown in Algorithm 1.
This particular version of EDML, introduced in (Choi
et al., 2011), assumes that all network variables are
binary. Binary EDML, as we shall call it, iterates just
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like EM does, producing new estimates after each it-
eration. However, EDML iterations can be viewed as
having two phases. In the first phase, each example in
the data set is used to compute a piece of soft evidence
on each parameter set (Line 3 of Algorithm 1). In the
second phase, the pieces of soft evidence pertaining to
each parameter set are used to compute a new esti-
mate of that set (by solving the convex optimization
problem on Line 4 of Algorithm 1). The process re-
peats until some convergence criteria is met. Aside
from this optimization task, EM and EDML have the
same computational complexity.

4 MULTIVALUED EDML

One contribution of this paper is the extension of bi-
nary EDML so that it handles multivalued variables
as well. In principle, the extension turns out to be
straightforward and is depicted in Algorithm 3. How-
ever, two issues require further discussion. The first
concerns the specification of soft evidence for multi-
valued variables. The second is confirming that the
optimization problem corresponding to a parameter
island (on Line 4 of Algorithm 3) remains strictly con-
cave, therefore, admitting unique solutions. We will
consider both issues next.

4.1 EXAMPLES AS SOFT EVIDENCE

The first key concept of EDML is to interpret a data
example di in the dataset as soft evidence on a con-
ditional random variable X|u. As mentioned earlier,
soft evidence on a variable is modeled using a vector of
parameters, one for each value of the variable. We will
therefore use λx|u to denote the parameter pertaining
to value x of variable X|u.

EDML uses Equation 2 in Algorithm 3 to compute soft
evidence. In particular, example di is viewed as soft
evidence on conditional random variable X|u that is
quantified as follows:

λix|u←Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1

We will not derive this equation here as it resembles
the one for binary EDML. We will, however, discuss
some of its key properties in this and further sections.

Consider the case when the example di is inconsis-
tent with the parent instantiation u. In this case, the
example should be irrelevant to variable X|u. Equa-
tion 2 does the right thing here as it reduces to 1 for
all values of x, which amounts to neutral evidence.

Another special case is when example di is complete;
that is, it has no missing values. In this case, one
can verify that if di is consistent with u (relevant),

x 

X1 X2 XN … 

Figure 3: Learning from independent, hard observa-
tions X1, . . . , XN . The distribution of variable X is
specified by parameter set θX .

θX 

X1 X2 XN …	  
η1 η2 ηN …	  

Figure 4: Learning from independent, soft observa-
tions η1, . . . , ηN . The distribution of variable X is
specified by parameter set θX .

then λix|u = 0 for all values x except the value x?

consistent with di. This is equivalent to hard evidence
in favor of x?. On the other hand, if di is inconsistent
with u (irrelevant), then λix|u = 1 for all values x,
providing neutral evidence. In a nutshell, a complete
example provides either hard evidence, if it is relevant;
or neutral evidence, if it is irrelevant.

4.2 LEARNING FROM SOFT EVIDENCE

Consider the standard learning problem depicted in
Figure 3. Here, we have a variable X that takes k
values x1, . . . , xk and has a distribution specified by
a parameter set θX : θx1

, . . . , θxk . That is, each pa-
rameter θxi represents the corresponding probability
Pr(X = xi). Suppose further that we have a Dirichlet
prior ρ(θX) on the parameter set with exponents ψxi
greater than one. A standard learning problem here
is to compute the MAP estimates of parameter set θX
given N independent observations on the variable X.
MAP estimates are known to be unique in this case and
have a corresponding closed form. In particular, it is
known that the posterior ρ(θX |X1, . . . , XN ) is a uni-
modal Dirichlet and, hence, has a unique maximum;
see for example (Darwiche, 2009).

EDML is based on a variant of this learning problem
in which we are given N soft observations on variable
X instead of hard observations. This variant is shown
in Figure 4, where each observation Xi has a child ηi

that is used to emulate soft evidence on Xi. That is, to
represent soft evidence λix1

, . . . , λixk , we simply choose
the CPT for ηi so that Pr(ηi|x1) : · · · : Pr(ηi|xk) =
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Algorithm 2 EM

input:
G: A Bayesian network structure
D: An incomplete dataset d1, . . . ,dN
θ: An initial parameterization of structure G
ψ: A Dirichlet prior for each parameter set θX|u
1: while not converged do
2: Pr← distribution induced by θ and G
3: Compute probabilities:

Pr(xu|di) and Pr(u|di)

for each family instantiation xu and example di
4: Update parameters:

θx|u←
ψx|u − 1 +

∑N
i=1 Pr(xu|di)

ψX|u − |X|+
∑N
i=1 Pr(u|di)

5: return parameterization θ

Algorithm 3 Multivalued EDML

input:
G: A Bayesian network structure
D: An incomplete dataset d1, . . . ,dN
θ: An initial parameterization of structure G
ψ: A Dirichlet prior for each parameter set θX|u
1: while not converged do
2: Pr← distribution induced by θ and G
3: Compute soft evidence parameters:

λix|u←Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1 (2)

for each family instantiation xu and example di
4: Update parameters:

θX|u← argmax
θ̂X|u

∏

x

[θ̂x|u]ψx|u−1
N∏

i=1

∑

x

λix|uθ̂x|u (3)

5: return parameterization θ

λix1
: · · · : λixk .

Note here that the posterior density ρ(θX |η1 . . . ηN ) is
no longer Dirichlet, but takes the more complex form
given by Equation 3 of Algorithm 3. Yet, we have the
following result.

Theorem 1 Given N soft observations ηi on a vari-
able X, and a Dirichlet prior on its parameters θX ,
with Dirichlet exponents ψx > 1, the posterior density
ρ(θX |η1 . . . ηN ) is strictly log concave.

Therefore, the posterior density, ρ(θX |η1 . . . ηN ), has a
unique maximum. We next provide a simple iterative
method for obtaining the maximum in this case.

5 SIMPLE EDML

Multivalued EDML, as given in Algorithm 3, works
as follows. We start with some initial parameter esti-
mates, just like EM. We then iterate, while perform-
ing two steps in each iteration. In the first step, each
example di in the dataset is used to compute soft evi-
dence on each variable X|u, as in Equation 2 of Algo-
rithm 3. Using this soft evidence, a learning problem
is set up for the parameter set θX|u as given in Fig-
ure 4, which is a learning sub-problem in the context
of Equation 3 of Algorithm 3. The solution to this
learning sub-problem provides the next estimate for
parameter set θX|u. The process repeats. In principle,
any appropriate optimization algorithm could be used
to solve each of these learning sub-problems.

We will next derive a simpler description of EDML
that has two key components. First, we will provide a
convergent update equation that iteratively solves the

optimization problem in Equation 3 of Algorithm 3.
Second, we will use this update equation to provide a
characterization of EDML’s fixed points.

First, consider the likelihood:

Pr(η1, . . . , ηN | θX) =
N∏

i=1

Pr(ηi | θX)

=

N∏

i=1

∑

x

Pr(ηi | x)Pr(x | θX) =

N∏

i=1

∑

x

λixθx

Next, we have the posterior:

ρ(θX | η1, . . . , ηN ) ∝ ρ(θX)Pr(η1, . . . , ηN | θX)

= ρ(θX)
N∏

i=1

∑

x

λixθx

Assuming a Dirichlet prior over parameter set θX , with
Dirichlet exponents ψx, the log of the posterior is:

log ρ(θX | η1 . . . ηN )

=
∑

x

(ψx − 1) log θx +
N∑

i=1

log
∑

x

λixθx + γ

where γ is a constant that is independent of θX , which
we can ignore. By Theorem 1 we know that the log of
the posterior is strictly concave when ψx > 1.

To get the unique maximum of the log posterior, we
solve the optimization problem:

minimize − log ρ(θX | η1, . . . , ηN )

subject to
∑

x

θx = 1
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In order to characterize the unique maximum of the
log posterior, we start by taking the Lagrangian:

L(θX , ν) = − log ρ(θX | η1, . . . , ηN ) + ν · (
∑

x

θx − 1)

where ν is a Lagrange multiplier. We get the follow-
ing condition for the optimal parameter estimates, by
setting the gradient of L(θX , ν) with respect to θX to
zero:

θx =
ψx − 1 +

∑N
i=1

λixθx∑
x∗ λ

i
x∗θx∗

ψX − |X|+N

where ψX =
∑
x ψx, and where we used the constraint∑

x θx = 1 to identify that ν = ψX − |X|+N.

The above equation leads to a much stronger result.

Theorem 2 The following update equation monoton-
ically increases the posterior ρ(θX|u | η1, . . . , ηN ):

θtx|u =

ψx|u − 1 +
∑N
i=1

λix|uθ
t−1
x|u∑

x? λ
i
x?|uθ

t−1
x?|u

ψX|u − |X|+N
(4)

This theorem suggests a convergent iterative algorithm
for solving the convex optimization problem of Equa-
tion 3 in Algorithm 3. First, we start with some ini-
tial parameter estimates θ0x|u at iteration t = 0. For
iteration t > 0, we use the above update to compute
parameters θtx|u given the parameters θt−1x|u from the

previous iteration. If at some point, the parameters
of one iteration do not change in the next (in prac-
tice, up to some limit), we say that the iterations have
converged to a fixed point. The above theorem, to-
gether with Theorem 1, shows that these updates are
convergent to the unique maximum of the posterior.

Given Equation 4, one can think of two types of iter-
ations in EDML: local and global. A global iteration
corresponds to executing Lines 2–4 of Algorithm 3 and
is similar to an EM iteration. Within each global iter-
ation, we have local iterations which correspond to the
evaluations of Equation 4. Note that each parameter
set θX|u has its own local iterations, which are meant
to find the optimal values of this parameter set. More-
over, the number of local iterations for each parameter
set θX|u may be different, depending on the soft evi-
dence pertaining to that set (i.e., λix|u) and depending
on how Equation 4 is seeded for that particular pa-
rameter set (i.e., θ0x|u).

This leads to a number of observations on the differ-
ence between EM updates (Equation 1) and EDML
updates (Equation 4). From a time complexity view-
point, an EM update implies exactly one local iter-
ation for each parameter set since Equation 1 needs
to be evaluated only once for each parameter set. As

mentioned earlier, however, an EDML update requires
a varying number of local iterations. We have indeed
observed that some parameter sets may require sev-
eral hundred local iterations, depending on the seed of
Equation 4 and the convergence criteria used. Another
important observation is that EDML has a secondary
set of seeds, as compared to EM, which are needed
to start off Equation 4 at the beginning of each global
iteration of EDML. In our experiments, we seed Equa-
tion 4 using the parameter estimates obtained from the
previous global iteration of EDML. We note, however,
that the choice of these secondary seeds is a subject
that can significantly benefit from further research.

6 EDML FIXED POINTS

One of the more well known facts about EM is that
its fixed points are precisely the stationary points of
the log-likelihood function (or more generally, the pos-
terior density when Dirichlet priors are used). This
property has a number of implications, one of which is
that EM is capable of converging to every local max-
ima of the log-likelihood, assuming that the algorithm
is seeded appropriately.

In this section, we show that the fixed points of EDML
are precisely the fixed points of EM. We start by for-
mally defining what a fixed point is.

Both EM and EDML can be viewed as functions f(θ)
that take a network parameterization θ and returns an-
other network parameterization f(θ). Each algorithm
is seeded with initial parameters θ0. After the first it-
eration, each algorithm produces the next parameters
θ1 = f(θ0). More generally, at iteration i, each algo-
rithm produces the parameters θi+1 = f(θi). When
θi+1 = θi, we say that parameters θi are a fixed point
for an algorithm. We also say that the algorithm has
converged to θi. We now have the following results.

Theorem 3 A parameterization θ is a fixed point for
EDML if and only if it is a fixed point for EM.

The proof of this theorem rests on two observations.
First, using the update equation of EM given on Line 4
of Algorithm 2, one immediately gets that the EM
fixed points are characterized by the following equation

Pr(x|u) =
ψx|u − 1 +

∑N
i=1 Pr(xu|di)

ψX|u − |X|+
∑N
i=1 Pr(u|di)

(5)

That is, we can test whether a network parameteriza-
tion θ is a fixed point for EM by simply checking the
probability distribution Pr it induces to see if satisfies
the above equation (this is actually a set of equations,
one for each family instantiation xu in the network).
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Consider now EDML updates as given by Equation 4
and suppose that we have reached a fixed point, where
θtx|u = θt−1x|u = Pr(x|u) for all xu. If we now replace

each λix|u by its corresponding value in Equation 2 of
Algorithm 3, we obtain, after some simplification:

Pr(x|u) =
ψx|u − 1 +

∑N
i=1

λix|uPr(x|u)∑
x? λ

i
x?|uPr(x?|u)

ψX|u − |X|+N

=
ψx|u − 1 +

∑N
i=1 Pr(xu|di) + Pr(¬u|di)Pr(x|u)

ψX|u − |X|+N

(6)

Thus, a parameterization θ is a fixed point for EDML
iff it satisfies Equation 6. After noting that N =∑N
i=1 Pr(u|di) + Pr(¬u|di), we rearrange Equation 6

to obtain Equation 5, which is the characteristic equa-
tion for EM fixed points. Thus, a parameterization θ
satisfies Equation 6 iff it is a fixed point for EM.

7 HYBRID EDML/EM

By Theorem 3, EDML and EM share the same fixed
points. This result is fairly surprising, considering the
theoretical and practical differences between the two
algorithms. For example, certain specialized situations
were identified where EDML converges to optimal pa-
rameter estimates in a single global iteration (regard-
less of how it is seeded), whereas EM may require many
iterations to converge to the same estimates (Choi
et al., 2011). On the other hand, EDML is not guaran-
teed to monotonically improve its estimates after each
global iteration as EM does (improvement here is in
terms of increasing the likelihood of estimates, or the
MAP when Dirichlet priors are used).

By carefully examining EDML updates (Equation 4),
one can see that the quantities it needs to perform a
single local iteration are the same quantities needed to
perform an EM update (Equation 1). Hence, without
any additional computational effort, one can obtain
EM updates as a side effect of computing EDML up-
dates (the converse is not true since Equation 4 may
require many local iterations). As both algorithms
share the same fixed points, it thus makes sense to con-
sider a hybrid algorithm that takes advantage of the
improved theoretical and practical benefits of EDML
(with respect to faster convergence) and the monotonic
improvement property of EM.

We thus propose a very simple hybrid algorithm. At
each global iteration of EDML, we also compute EM
updates simultaneously. We then evaluate each up-
date and choose the one that increases the posterior
the most. As EM is guaranteed to improve the poste-
rior, this hybrid algorithm is also trivially guaranteed

to monotonically improve the posterior, therefore, in-
heriting the most celebrated feature of EM.

While additionally computing an EM update is not
much overhead if one is computing an EDML update,
evaluating both updates with respect to the posterior
incurs a non-trivial cost. As we shall see in the follow-
ing section, however, the improved convergence behav-
ior of EDML enables this hybrid algorithm to realize
improvements over EM, both in terms of faster conver-
gence (i.e., number of global iterations) and in terms of
time (i.e., when taking both global and local iterations
under consideration).

8 EXPERIMENTAL RESULTS

In our first set of experiments, we show that simple
EDML, as compared to EM, can often find better es-
timates in fewer global iterations. In our second set
of experiments, we show that a hybrid EDML/EM al-
gorithm can find better estimates in less time, as well
as fewer global iterations. We use the following net-
works: alarm, andes, asia, diagnose, pigs, spect, water,
and win95pts. Network spect is a naive Bayes network
induced from a dataset in the UCI ML repository, with
1 class variable and 22 attributes. Network diagnose
is from the UAI 2008 evaluation. The other networks
are commonly used benchmarks.1

Using these networks, we simulated data sets of a cer-
tain size (210), then made the data incomplete by ran-
domly selecting a certain percentage of the nodes to be
hidden (10%, 25%, 35%, 50%, and 70%). For each of
these cases, and for each network, we further generated
3 data sets at random. A combination of a network, a
percentage of hidden nodes, and a generated data set
constitutes a learning problem. Both EM and EDML
are seeded with the same set of randomly generated
parameters. Local EDML iterations are seeded with
the estimates of the previous global iteration.

8.1 EXPERIMENTS I

First, we study the behavior of EDML compared to
EM, with respect to global iterations (more on the
computation time, in the next section). For every
learning problem, we run both EM and EDML2 for
1000 global iterations and identify the best MAP es-
timates achieved by either of them, for the purpose of
evaluation. In each global iteration, EM and EDML

1Available at http://www.cs.huji.ac.il/site/labs/
compbio/Repository/ and http://genie.sis.pitt.edu/
networks.html

2Soft evidence and parameter updates are damped in
EDML, which is typical for algorithms like loopy belief
propagation, which EDML is, in part, inspired by (Choi &
Darwiche, 2006).
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Figure 5: MAP Error of parameter estimates over iterations. Going right on the x-axis, we have increasing
iterations. Going up on the y-axis, we have increasing error. EDML is depicted with a solid red line, and EM
with a dashed black line. The curves are from left to right, in pairs, for the networks: andes, asia, diagnose, and
alarm. Each pair of curves represents a selection of two different datasets of size 210.

each try to improve their current estimates by improv-
ing the posterior (again, EM is provably guaranteed to
increase the posterior, while EDML is not). The dif-
ference between the (log) posterior of the current es-
timates, and the best (log) posterior found, by either
algorithm, is considered to be the error. The error is
measured at every global iteration of EM and EDML
until it decreases below 10−4. Table 1 summarizes the
results by showing the percentage of global iterations
in which each algorithm had less error than the other.
In the global iterations where an algorithm had less
error, the factor by which it decreases the error of the
other algorithm, on average, is computed, and is con-
sidered the relative improvement: r and r′, for EM
and EDML, respectively. Table 1 shows the results for
three different breakdowns: (1) by different networks,
(2) by different hiding percentages, and (3) on average.

We see here that EDML can obtain better estimates
than EM in much fewer global iterations. Interest-
ingly, this is the case even though EDML is not guar-
anteed to improve estimates after each global itera-
tion, as EM does. Another interesting observation is
that decreasing the percentage of hidden nodes widens
the gap between EDML and EM, in favor of EDML.
This is not surprising though since the approximate
inference scheme on which EDML is based becomes
more accurate with more observations. In particu-
lar, the local optimization problems that EDML solves
exactly and independently, become more independent
with more observations (i.e., as the dataset becomes
more complete). Figure 5 highlights a selection of er-
ror curves given by EM and EDML for different learn-
ing problems. One can see that in most cases shown,
the EDML error goes to zero much faster than EM.

Table 1: Speedup results (iterations)

category % EDML % EM r r′

alarm 89.25% 10.75% 76.21% 76.44%
andes 75.89% 24.11% 88.95% 79.29%
asia 99.01% 0.99% 92.05% 76.91%

diagnose 78.99% 21.01% 77.99% 80.18%
pigs 83.34% 16.66% 83.51% 60.57%
spect 86.65% 13.35% 82.70% 79.96%
water 82.77% 17.23% 91.55% 83.78%

win95pts 78.73% 21.27% 91.75% 79.89%
hiding 10% 93.82% 6.18% 84.59% 87.13%
hiding 25% 90.95% 9.05% 83.83% 75.70%
hiding 35% 82.24% 17.76% 86.26% 75.09%
hiding 50% 77.61% 22.39% 87.8% 80.21%
hiding 70% 75.65% 24.35% 84.48% 74.21%
average 83.05% 16.95% 85.41% 76.96%

8.2 EXPERIMENTS II

Our first set of experiments showed that EDML can
obtain better estimates in significantly fewer global it-
erations than EM. A global EDML iteration, however,
is more costly than a global EM iteration as EDML
performs local iterations which are needed to solve the
convex optimization problem associated with each pa-
rameter set. Thus, EDML can potentially take more
time to converge than EM in some cases, therefore re-
ducing the overall benefit over EM, in terms of time
(more on this later).3 EDML can still perform favor-
ably time-wise compared to EM, but we show here

3This could be alleviated, for example, by better seed-
ing of the local EDML iterations (to speed up convergence
of the local iterations), or by performing the local EDML
iterations in parallel, across parameter sets.
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Figure 6: MAP of parameter estimates over time. Going right on the x-axis, we have increasing time (ms).
Going up on the y-axis, we have increasing MAP. Hybrid EDML is depicted with a solid red line, EM with a
dashed black line, and EDML with a blue dotted dashed line. The curves are from left to right for the following
problems: alarm with hiding 25%, win95pts with hiding 35%, and water with hiding 50%.

Table 2: Speedup results (time)

network % Hybrid % EM s s′

alarm 46.67% 53.33% 75.80% 56.22%
andes 53.33% 46.67% 42.27% 47.08%
asia 66.67% 33.33% 70.37% 41.00%

diagnose 26.67% 73.33% 52.71% 43.14%
pigs 73.33% 26.67% 52.35% 31.32%
spect 100% 0% 98.03% —
water 35.71% 64.29% 46.15% 43.55%

win95pts 80.00% 20.00% 66.37% 54.95%
average 60.50% 39.50% 67.45% 45.55%

that a hybrid EDML/EM can go even further.

We first run EM until convergence (or until it ex-
ceeds 1000 iterations). Second, we run our hybrid
EDML/EM until it achieves the same quality of pa-
rameter estimates as EM (or until it exceeds 1000 iter-
ations). To summarize the results, Table 2 shows the
percentage of learning problems in which each algo-
rithm was faster than the other. In the cases where the
hybrid EDML/EM algorithm was faster, the average
percentage by which it decreases the execution time of
EM is reported as the speedup (s). The speedup for
the cases in which EM was faster is given by s′.

The results suggest that hybrid EDML/EM can be
used to get better estimates in less time. Specifically,
on average, the hybrid method decreases the execu-
tion time by a factor of 3.07 in about 60.50% of the
cases, and, in the rest of the cases, EM was faster by a
factor of roughly 1.84. This is particularly interesting
in light of the non-trivial overhead associated with hy-
brid EDML/EM, as it has to evaluate both EDML and
EM estimates in order to select the better estimate. In
comparison, EDML alone was on average faster than
EM by a factor of 2.59 times in about 54.17% of the
cases, whereas EM was faster than EDML alone by a
factor of 2.38 in the remaining 45.83% of the cases.

Figure 6 shows a sample of the time curves showing
two cases where EDML/EM reached better MAP esti-

mates, faster than EM, and one case where EDML/EM
finished slightly after EM. EDML alone is also plotted
in Figure 6 where it is usually slower than EDML/EM
except in some cases; see the center plot in Figure 6.

9 RELATED WORK

EM has played a critical role in learning probabilis-
tic graphical models and Bayesian networks (Demp-
ster et al., 1977; Lauritzen, 1995; Heckerman, 1998).
However, learning (and Bayesian learning in particu-
lar) remains challenging in a variety of situations, par-
ticularly when there are hidden (latent) variables; see,
e.g., (Elidan, Ninio, Friedman, & Shuurmans, 2002;
Elidan & Friedman, 2005). More recently, there have
been characterizations of EM that also have interesting
connections to loopy belief propagation, and related al-
gorithms (Liu & Ihler, 2011; Jiang, Rai, & III, 2011),
although their focus is more on approximate (partial)
MAP inference in probabilistic graphical models via
message-passing, and less on learning.

Slow convergence of EM has also been recognized, par-
ticularly in the presence of hidden variables. In such
cases, EM can be coupled with algorithms such as gra-
dient ascent, or other more traditional algorithms for
optimization; see, e.g. (Aitkin & Aitkin, 1996). A
variety of other techniques for accelerating EM have
been proposed in the literature; see, e.g., (Thiesson,
Meek, & Heckerman, 2001).
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Abstract

Active Learning (AL) is increasingly im-
portant in a broad range of applications.
Two main AL principles to obtain accu-
rate classification with few labeled data
are refinementof the current decision
boundary andexplorationof poorly sam-
pled regions. In this paper we derive
a novel AL scheme that balances these
two principles in a natural way. In
contrast to many AL strategies, which
are based on an estimated class condi-
tional probability p̂(y|x), a key compo-
nent of our approach is to view this quan-
tity as a random variable, hence explic-
itly considering theuncertaintyin its es-
timated value. Our main contribution
is a novel mathematical framework for
uncertainty-based AL, and a correspond-
ing AL scheme, where the uncertainty
in p̂(y|x) is modeled by a second-order
distribution. On the practical side, we
show how to approximate such second-
order distributions for kernel density clas-
sification. Finally, we find that over a
large number of UCI, USPS and Caltech-
4 datasets, our AL scheme achieves sig-
nificantly better learning curves than pop-
ular AL methods such as uncertainty sam-
pling and error reduction sampling, when
all use the same kernel density classifier.

1 INTRODUCTION

In many applications, including computer vision
and natural language processing, unlabeled data
abounds while procuring labels for training is
costly. Pool-based active learning (AL) schemes ju-
diciously select those among the unlabeled points
that are deemed most informative, and thought to
help achieve a steeper learning curve. The prospect
of reduced labeling effort has spurred intense ef-
forts to improve AL. On the theoretical side, sev-
eral works considered the sample complexity and
potential benefits of AL, see (Beygelzimer et al.,
2009; Balcan et al., 2010; Hanneke, 2011). On
the practical side, various works suggested concrete
AL schemes, recently e.g. (Huang et al., 2010; Sid-
diquie and Gupta, 2010), with large gains over ran-
dom labeling in various applications, see (Settles,
2010) for a comprehensive review.

In this paper we focus on pool based AL. We first re-
view a potential weakness common to many popular
AL methods, and then derive a new pool-based AL
scheme. In a pool-based setting, one typically starts
with a small (possibly empty) set of labeled samples
L = {xi, yi}ℓ

i=1, and a large pool of unlabeled sam-
plesU = {xj}n

j=ℓ+1. Most pool-based AL schemes
rely on a classifier – or more precisely, a regressor
– that outputs not only a predicted class labelŷ at
a new samplex, but also an estimatêp(y|x) of the
conditional class probabilitiesPr[Y = y|X = x]
for all classesy. Then, sequential one-step looka-
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Figure 1: Active learning on the XOR problem. Small black symbols are unlabeled data, large colored
symbols are the labeled ones. (a) Class-conditional probability and decision boundary estimated by kernel
density classification, with labeled data in only 3 out of 4 quadrants. (b), (c) Training utility values (TUV)
of uncertainty sampling and the proposed DEAL, lighter color representing a higher TUV. Uncertainty sam-
pling prematurely concentrates on local refinement of the current decision boundary. DEAL keeps exploring
before reverting to refinement. (d) Resulting learning curves.

head AL schemes compute a Training Utility Value
(TUV) for any unlabeled sample, and query the la-
bel of the sample with largest TUV.

One popular and successful AL strategy is uncer-
tainty sampling (US) which iteratively selects the
sample whose current class prediction is least con-
fident1 (Baum, 1991; Hwang et al., 1991; Seung
et al., 1992; Lewis and Gale, 1994).

Another common strategy is to query that sample
whose inclusion in the training set may contribute
most towards a “confident” classification. Here,
confidence is measured by the entropy of the class
conditional probabilities, or the expected estimated
risk (MacKay, 1992; Roy and McCallum, 2001;
Zhu et al., 2003): the more assertive the resulting
classifier, the better, according to these algorithms.
A variant in the regression context has been pro-
posed in (Boutilier et al., 2003).

Yet another popular AL strategy is to select samples
that minimize the uncertainty in the estimated pa-
rameters of a classifier, e.g. by maximally reducing
the version space of a SVM (Tong and Koller, 2002)
or by minimizing the variance of the parameter es-

1Note that this can be defined in many possible ways,
in particular in multi-class settings.

timates in multinomial logistic regression (Schein
and Ungar, 2007).

A common theme to all these AL schemes is their
use of point estimateŝp(y|x), possibly combined
with density estimateŝp(x), but without consider-
ation of the inherent random uncertainties in these
quantities. By definition,̂p(y|x) is estimated from
the finite, and often small, currently labeled setL.2

Hence, at anyx, p̂(y|x) is a random variable, which
may have small bias and variance in some regions,
but high uncertainty in others.

In this paper, we propose to capitalize on this seem-
ing flaw, and to put the unavoidable uncertainty in
the estimateŝp(y|x) at the very heart of a novel AL
scheme: Distributional Estimate Active Learning
(DEAL). First, in Section 2 we propose to quantify
the uncertainty in the estimatêp(y|x) via asecond-
order distribution, see Eq. (1). Next, in Section 3
we show how such a second-order distribution can
be approximated for kernel density classification;
and in Section 4 we show how such distributions
can be used, in a principled mathematical frame-
work, for uncertainty-based AL. In Section 5 we
show empirically that with a baseline implementa-

2And, in the case of semi-supervised active learning,
also from the unlabeled setU .
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tion using kernel density classification, DEAL per-
forms significantly better than two highly popular
AL schemes and random sampling in a thorough
benchmark on more than 40 classification prob-
lems from the UCI (Frank and Asuncion, 2010) and
USPS (LeCun et al., 1990) databases, and on an im-
age classification task using the Caltech-4 dataset.

Our approach is somewhat related to the mini-
mization of uncertainty in Gaussian process regres-
sion for space-filling experimental design (Sacks
et al., 1989). In the machine learning commu-
nity, several works devised efficient approximations
for the intractable posterior distribution in Gaussian
process classification models (Nickisch and Ras-
mussen, 2008). In particular, these distributions
were used to compute Bayesian predictive distribu-
tions (Snelson and Ghahramani, 2005), which for
classification arepoint estimatesof the class condi-
tional probabilities. Gaussian processes were also
used for active learning, though there the authors
suggested to label those samples whose normalized
margin is smallest (Kapoor et al., 2007). Thus, even
though second-order distributions were derived for
logistic regression and Gaussian processes, to the
best of our knowledge, these have not been used
in AL for classification. In this paper we thus em-
phasize the importance, use, and potential benefit
of second-order distributions in AL classification
problems. As discussed in Section 6, second-order
distributions may see potential use beyond AL.

2 CLASSIFIER UNCERTAINTY
AND ACTIVE LEARNING

In statistical pattern recognition, agreement prevails
that a classifier should not be forced to make a pre-
diction unless reasonably confident about it. This
principle is formalized by introducing an auxiliary
“doubt” class that the classifier can always vote for,
at a fixed cost (Ripley, 2008). In the generic case of
a symmetric loss function, minimizing the expected
risk leads to an algorithm that, given a samplex,
votes for the class with highest conditional proba-
bility, ŷ = arg maxy p̂(y|x), provided that the ex-
pected loss of this decision is smaller than the fixed

cost of the “doubt” class.

The “doubt” class captures the uncertainty of a pre-
diction ŷ at locationsx where no class is clearly
dominant. Even if the class conditional probabilities
are perfectly known, this type of “first-order” uncer-
tainty is still present wherever two classes overlap
in feature space. As a direct consequence to AL, if
the current labeled set makes it quite clear that two
classes are equally probable at some region in fea-
ture space, it is futile to attempt reducing this first-
order uncertainty by requesting more labels there!

In practice,p(y|x) is unknown, and thus estimated
from a finite training set. This induces asecond
kind of uncertainty: not only how confident are we
in the predicted label̂y, but also how accurate is
our point estimatêp(y|x). An inaccurate point esti-
mate may result in a misleading classifier that errs
and votes for the wrong class, with a class condi-
tional probability margin that is deceptively large.
Asking for the label of additional training samples
in such regions can result in a decisive change in
the current decision boundary. Hence, samples with
highly uncertain class conditional probability esti-
mates should be prime candidates of a good AL cri-
terion. A point in case is the classical XOR prob-
lem, illustrated in Fig. 1. Starting with 10 labeled
data in only 3 out of 4 quadrants (an event whose
probability is∼20% with 10 randomly selected la-
beled data), nearest-neighbor type classifiers give
an erroneous prediction at the remaining quadrant,
with a deceptively large margin. Consequently, AL
schemes based on̂p(y|x) do not sample points in
the remaining quadrant. This overconfidence of AL
schemes was also noted by (Baram et al., 2004),
who suggest to label at random once in a while.

Motivated by the above insights, in this paper we
derive an AL scheme that incorporates this random-
ness inp̂(y|x) in a natural way. The key ingredient
in our scheme is asecond-order distribution

Gx(q) = Pr[p̂(y = 1|x) ≤ q] (1)

which measures our uncertainty in the point esti-
mate p̂(y|x). Before deriving the DEAL scheme,
we first show how such a second-order distribution
can be estimated for the kernel density classifier.
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3 SECOND-ORDER
DISTRIBUTIONS FOR THE
KERNEL DENSITY CLASSIFIER

Kernel density classification is a prototypical non-
parametric generative classifier. While with lim-
ited training data this classifier will likely have a
lower accuracy compared to modern discriminative
classifiers, we choose it since it is:(i) conceptu-
ally simple and easy to implement,(ii) usable in all
the active learning criteria that we wish to bench-
mark and(iii) representative of an entire class of
more advanced methods. While beyond the scope
of this paper, second-order distributions can also be
derived for discriminative classifiers, and then used
in our AL scheme.

For simplicity, in the rest of this paper we focus on
the binary classification problem, with class labels
y ∈ {−1, +1}. To derive second-order distribu-
tions for the unknown class probabilitiesp(1|x) =
Pr[Y =1|X =x], we use Bayes rule

p(1|x) =
p(x|1)π1

p(x|−1)π−1 + p(x|1)π1
(2)

with πy the prior probability for classy. In kernel
density classification, the unknown class densities
p(x|1) and p(x|− 1) are replaced by their Parzen
window estimates. To derive second-order distribu-
tions, we thus need to approximate the distribution
of these point estimates.

Let K be a normalized (
∫

K(u)du = 1) isotropic
kernel. Then the kernel density estimate

p̂(x|Y =y) =
1

ny

∑

xi:yi=y

K (x − xi) (3)

is a random variable. With only a single observation
from classy (ny = 1), the exact distribution of this
random variable is given by

Pr[p̂(x|y) ≤ z] =

∫
1 (K(u − x) ≤ z) p(u|y)du

(4)
This distribution depends on the location of the
queryx, on the kernel functionK and on the un-
known densityp(x|Y = y). Qualitatively, for non-
negative and monotonically decaying kernelsK, the

resulting density must be zero forz < 0 and for
z > K(0). For ny i.i.d. observations from classy,
the distribution of the class density kernel estimate
is given by any-fold convolution of the probability
density that corresponds to Eq. (4).

Since the exact densityp(x|Y = y) is unknown
(otherwise no learning would be necessary), we
resort to an approximation of the distribution of
p̂(x|y). Key requirements are that the approximate
distribution be continuous, infinitely divisible, have
no mass atz < 0 and its derivative should de-
cay to zero asz → ∞. A good candidate meet-
ing these criteria is the Gamma distribution which,
with its shape and location parametersk andθ, is
also sufficiently rich to faithfully model a variety
of situations that arise in practice. A standard esti-
mate of mean and variance of the kernel density es-
timate (Ḧardle et al., 2004, chap. 3) allows to apply
the method of moments and obtain the shape param-
eterky = nyp̂(x|Y =y)/C2 and location parameter
θy = C2/ny, whereC2 =

∫
K2(x)dx.

When the class priorπy is estimated by the ratio
ny/n, we obtain the following approximate distri-
bution for the random variablêp(x|y)

p̂(x|y)π̂y ∼ Γ
(
δ +

ny p̂(x|y)
C2

, C2

ny
· ny

n

)
. (5)

Here,δ is a small positive constant added both to
regularize Eq. (2) in low-density regions, and to
guarantee that the shape parameter of the Gamma
distribution is strictly positive, even when no la-
beled observations are available yet for classy.

With θ := C2/n, inserting Eq. (5) into Eq. (2) gives

p̂(Y =1|x) ∼ Γ(δ + k1, θ)

Γ(δ + k−1, θ) + Γ(δ + k1, θ)

= Beta(δ + k1, δ + k−1) = Beta(α, β) (6)

In particular, for ad-dimensional isotropic Gaussian
kernel with bandwidthh, we obtain

ky = 2d/2
∑

xi:yi=y

exp
(
− ‖x − xi‖2

/2h2
)

. (7)
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4 DISTRIBUTIONAL ESTIMATE
ACTIVE LEARNING (DEAL)

Our novel AL scheme requires a method (for in-
stance the one described in the previous section, or
a Gaussian process classifier) that outputs a second-
order distributionGx(q), Eq. (1).

Our point of departure in deriving our AL scheme,
is the following key observation (Friedman, 1997):
The performance of a classifier, as measured by its
misclassification error, depends only on the location
of its decision boundary, and not on the precise esti-
mates of the conditional class probabilities. In par-
ticular, inaccurate point estimateŝp(y|x) may still
yield the optimal Bayes classifier as long as they re-
sult in the same decision boundary.

A second-order distribution can thus help assess
the uncertainty in the currently estimated decision
boundary. In more detail, given a second-order dis-
tribution with densitygx(q)= d

dq Gx(q), we can ex-
tract a point estimate for the posterior probability

p̂(1|x) =

∫ 1

0

q gx(q)dq (8)

and a corresponding classifier, which for a symmet-
ric loss function is simply

f̂(p̂(1|x)) = sgn(p̂(1|x) − 1/2). (9)

The goal of classification is to build a classifierf̂
that minimizes the overall risk

R =

∫
R[x, f̂ ]p(x)dx (10)

where the local risk atx is

R[x, f̂ ] = EY [L(y, f̂)] =
∑

y=±1

L(y, f̂)p(Y = y|x).

(11)
In general, the exact local risk atx is unknown,
as we do not know the exact posterior probabilities
p(y|x). Replacing these by their estimates gives

R̂[x, f̂(p̂(1|x))]=
∑

y±1

L(y, f̂(p̂(1|x))) p̂(y|x).

(12)

Note that this formula does not take into account the
inherent uncertainty in the estimatep̂(y|x). For ex-
ample, a second-order distributionGx(q) with some
spread and expectation of 1/2 implies thatp(1|x)
could be much different from 1/2! In such cases,
Eq. (12) is hence overly pessimistic.

A second-order distribution mitigates the over-
pessimism in such regions. A more balanced esti-
mate of the risk that takes into account a second-
order distribution is

ÊR[x]=Eq[R̂[x, f̂(q)]]=

∫ 1

0

R̂[x, f̂(q)] gx(q)dq

(13)
The intuition behind this estimate is as follows: if
the second-order distribution has significant mass
near both limits of its domain (i.e., it has a high
density for values ofq = p̂(y|x) close to 0 and
1), then it may be possible to construct a classi-
fier with low risk atx, by querying additional la-
bels in its neighborhood. As an extreme example,
consider a second-order distribution forp̂(Y =1|x)
given by Bernoulli(0.5), which implies that the con-
ditional probability of class +1 is either 0 or 1.
Then, R̂[x] = 0.5, but ÊR[x] = 0. This fact is
taken into account by Eq. (13) but not by Eq. (12).

It is easy to prove that for any densitygx(q), from
which p̂(1|x) andf̂ are derived via Eqs. (8) and (9),
R̂[x] ≥ ÊR[x]. Moreover, equality holds iff the en-
tire mass of the second-order distribution lies on one
side of the decision threshold, or if it is a Dirac dis-
tribution at 1/2. Interestingly, in these two cases it
is of no benefit to query the label atx.

These properties suggest that the differenceR̂[x] −
ÊR[x] is a good indicator for the potential impor-
tance of acquiring a label atx, though other choices
seem possible. Consequently, taking also into ac-
count that theoverall risk is a density-weighted
mean of the local risk (see Eq. (10)), we propose
the following training utility value (TUV):

TUV (x) =
(
R̂[x] − ÊR[x]

)
· p̂(x) (14)

where p̂(x) is some (non-parametric) estimate of
the density atx. The weighting by the total den-
sity concentrates the learning effort on those regions
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Table 1: One iteration of DEAL

Algorithm DEAL

Input: Labeled setL, unlabeled setU .
Output: Selected samplex ∈ U

and its labely(x)
Algorithm:
1: compute density estimatêp(x)
2: for all x ∈ U do

- compute second-order distribution
of p̂(Y =1|x) by Eq. (6)

- computeTUV (x) by Eq. (14)
3: query labely of x ∈ U with largestTUV

Exp. Design

0 0.5 1

50

0

α
+

β

α/(α + β)

US

0 0.5 1

50

0

α
+

β

α/(α + β)

DEAL

A

BC C

0 0.5 1

50

0

α
+

β

α/(α + β)

Figure 2: Training utility values, as a function of the
two parametersα/(α + β) andα + β in a second-
order distribution of typeBeta(α, β), for space-
filling experimental design (Sacks et al., 1989), un-
certainty sampling and DEAL. Roughly,α and β
measure the local amount of evidence for either
class (Eqs. (6),(7)). Not taking sample density into
account, the most interesting points for DEAL are
those with little evidence for either class as yet (A),
followed by points with evidence for both classes
(B), followed by points with strong evidence for
one and little for the other class (C). In contrast, US
merely takes into account the distance from the de-
cision boundary, pretending (A)≡(B). Space-filling
experimental design prefers unexplored regions, re-
gardless of their estimated class conditional proba-
bilities, so that (B)≡(C).

of feature space that are actually relevant. Table 1
describes the pseudo-code of a single iteration of
DEAL. Of course, the density estimatêp(x) need
be computed only once at the start of the AL pro-
cess. Fig. 2 compares the TUV of DEAL to criteria
used in experimental design and for US.

5 RESULTS

We compare the empirical performance of DEAL to
that of random sampling (RS), uncertainty sampling
(US) (Lewis and Gale, 1994) and error reduction
sampling (ERS) (Roy and McCallum, 2001). For
a meaningful comparison, all methods use the same
kernel density classifier, with an isotropic Gaussian
kernel whose bandwidth is chosen according to the
normal reference rule (Scott, 1992, chapter 6). The
densityp̂(x) in Eq. (14) is also estimated by kernel
density estimation with the same kernel and band-
width selection rule.

As is well known, non-parametric kernel density es-
timation with a limited number of samples may be
highly inaccurate in high dimensions (Scott, 1992,
chapter 7). Therefore, we first project the data to its
d leading principal components, where the dimen-
siond is chosen according to the resampling via per-
mutation scheme of (Zhu and Ghodsi, 2006), with
the minimum number of components set to two.

We always start with an empty setL of labeled
points. In case of RS, US and ERS, the first query
points are selected randomly until there is at least
one label for each class. In case of DEAL, its deter-
ministic strategy can be applied from the very be-
ginning, with the first label requested for the point
with the highest density estimate. In all our exper-
iments, we setδ = 0.5, consistent with Jeffreys’
prior for the Bernoulli distribution (Jeffreys, 1946).

5.1 UCI DATA SETS BENCHMARK

We considered 32 of the most frequently used UCI
data sets3. Each dataset was preprocessed as fol-
lows: (i) Categorical variables with more than two
outcomes were replaced by #outcomes−1 indica-
tor variables,(ii) missing values in categorical vari-
ables were treated as a separate outcome,(iii) miss-
ing values in continuous inputs were replaced by
the respective mean, and(iv) the data was normal-
ized to unit variance in each dimension. If a dataset

3We excluded datasets with only categorical variables,
or with significant missing data. We did not exclude
datasets on which our AL scheme did not perform well.

720



had more than two classes, the classes were joined
to create binary problems such that the new classes
were approximately equally abundant.

All results are obtained from 10-fold cross valida-
tion (CV), i.e., nine tenths of the data were used in
active learning, with one tenth reserved for testing.
To average out the randomness of the initial labeling
for RS, US and ERS, all experiments are repeated 5
times for each of the 10 CV folds. Fig. 3(a) shows
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Figure 3: Learning curves for two data sets
(“Pendigits” and “USPS, Grouping 10”) where
DEAL works well. Note that DEAL does not out-
perform the competing methods on every single
data set, but on average across multiple data sets
(see tables). The top horizontal line is the asymp-
totic performance of the classifier, at the end of the
complete learning curve (estimated by 10-fold CV
for UCI and on separate test set for the USPS data).

the learning curve for the Pendigits dataset. All oth-
ers appear in the supplementary material.

To reward both initial steepness of the learning
curve and early convergence to a high accuracy, we
propose to measure performance by the area un-
der the learning curve. All curves are truncated
when the worst method achieves 90% of the accu-
racy of the classifier trained with the completely la-
beled training data4, but at the latest after 200 itera-
tions. As we compare only the relative performance

4Defined as the average of the 10-fold CV accuracies,
each with a different set of 9/10 of the data fully labeled.

Table 2: Average accuracy of the compared AL
strategies for 32 data sets from the UCI database
with preprocessing as described in text, wheren is
the total size of the data set andd the dimension
of the PCA subspace. The mean rank is computed
based on ordering the performance of the AL strate-
gies for each data set. The best and second best
methods are indicated by bold font and italics, re-
spectively. The mean rank test statistic is used for
the statistical hypothesis tests described in the text.

Dataset (n,d) RS US ERS DEAL
Anneal (898,17) .813 .849 .802 .857

Audiology (226,9) .664 .650 .680 .666
Autos (205,14) .653 .638 .614 .678

Balance S. (625,2) .717 .705 .716 .715
Breast C. (286,16) .644 .656 .640 .617
Breast W (699,2) .807 .835 .820 .855
Dermatol. (366,4) .802 .841 .789 .878
Diabetes (768,2) .684 .682 .687 .695

Ecoli (336,3) .796 .793 .793 .852
Glass (214,4) .646 .688 .669 .668

Heart C (303,8) .733 .722 .748 .753
Hepatitis (155,7) .782 .796 .781 .801

Hyperth. (3772,11) .863 .889 .865 .919
Ionosphere (351,5) .782 .802 .817 .841

Iris (150,2) .793 .809 .807 .924
Led 24 (1000,2) .667 .643 .667 .695
Letter (20000,5) .631 .627 .632 .652

Liver (345,2) .530 .541 .516 .539
Lymph (148,9) .671 .712 .681 .692

Optdig. (5620,18) .819 .849 .791 .887
Pendigits (7494,5) .783 .804 .783 .861
Primary Tu (339,9) .652 .650 .647 .696
Satimage (6435,3) .777 .819 .790 .852
Segment (2310,3) .830 .741 .737 .871

Sonar (208,8) .695 .714 .699 .725
Soybean (683,20) .786 .811 .764 .831
Vehicle (846,4) .720 .736 .721 .734

Vote (435,8) .803 .799 .812 .841
Vowel (990,16) .671 .540 .627 .694

Waveform (5000,2) .767 .793 .787 .787
Wine (178,3) .831 .847 .856 .895
Yeast (1484,2) .571 .562 .577 .592

Mean Rank 3.09 2.56 2.97 1.38

of different AL strategies for the same classifica-
tion algorithm, this measure is equivalent to the one
proposed in (Baram et al., 2004) and also used in
(Schein and Ungar, 2007). The results for all data
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Table 3: Average accuracy of the compared AL
strategies for 10 different groupings of the USPS
Zip Data with preprocessing as described in text.
The best and second best method are indicated using
bold font and italics, respectively. The mean rank is
computed based on ordering the performance of the
AL strategies for each grouping.

Grouping RS US ERS DEAL
{1, 2, 3, 4, 5} 0.777 0.807 0.829 0.832
{0, 1, 2, 3, 4} 0.786 0.808 0.831 0.837
{1, 3, 5, 7, 9} 0.782 0.819 0.832 0.830
{0, 1, 7, 8, 9} 0.774 0.811 0.817 0.830
{1, 3, 4, 5, 9} 0.793 0.810 0.828 0.838
{1, 2, 3, 7, 8} 0.782 0.797 0.825 0.833
{0, 1, 6, 8, 9} 0.777 0.813 0.824 0.846
{0, 5, 6, 7, 9} 0.777 0.805 0.815 0.830
{0, 2, 4, 5, 8} 0.750 0.805 0.815 0.821
{3, 4, 5, 6, 9} 0.791 0.799 0.825 0.840
Mean Rank 4.000 3.000 1.900 1.100

sets are presented in Table 2.

We compare the performance of the different strate-
gies as recommended in (Demšar, 2006). The Fried-
man test, which uses the mean performance ranks of
Table 2, yields ap-value ofp = 2.53× 10−9 for the
null hypothesis of equal performance of all strate-
gies. For comparing all classifiers to each other, we
use the two-tailed Nemenyi test. At a1% signif-
icance level its threshold for differences in Mean
Rank is1.004. This means that DEAL performs
significantly better than each of the other strategies.
The performances of the other methods do not differ
significantly from each other, even at the10% level
(corresponding to a threshold of0.739).

5.2 USPS ZIP DATA

To obtain challenging classification tasks with con-
voluted decision boundaries, the digit images from
the USPS corpus (LeCun et al., 1990) were grouped
into two classes in various ways, see Table 3. All
images were projected to thed = 39 leading prin-
cipal components, with 7291 samples eligible for
active learning and an independent set of 2007 sam-
ples held out for testing purposes.

Table 4: Average accuracy of the compared AL
strategies for 3 different groupings of the Caltech-
4 data set with preprocessing as described in text.
The best and second best method are indicated us-
ing bold font and italics, respectively.

Grouping RS US ERS DEAL
{1, 2} vs. {3, 4} 0.818 0.846 0.807 0.877
{1, 3} vs. {2, 4} 0.799 0.829 0.803 0.840
{1, 4} vs. {2, 3} 0.803 0.836 0.797 0.872

Mean Rank 3.333 2.000 3.667 1.000

As Table 3 shows, DEAL performed best in 9 out
of the 10 groupings. Fig. 3(b) shows one learning
curve, all others are in the supplementary material.

5.3 CALTECH-4

Caltech-4 is a well established standard benchmark
for object categorization (Fergus et al., 2003) and
has also been used in AL (Kapoor et al., 2007). This
dataset consists of 4 different image groups: air-
planes (category 1; 800 images), rear views of cars
(2; 1155), frontal faces (3; 435) and motorbikes (4;
798). Fig. 4 shows one example from each category.
We represent the images by the “Color and Edge Di-
rectivity Descriptor” (CEDD) (Chatzichristofis and
Boutalis, 2008). The resulting 144-dimensional fea-
tures were then projected to the 17 leading princi-
pal components. To create challenging two-class
problems with convoluted decision boundaries, we
grouped the 4 categories in three possible ways.

Table 4 presents the resulting performances, based
on 10-fold CV with 5 repetitions (see Section 5.1).
It shows that DEAL performs best for all group-
ings. Moreover, for this dataset, US is the second
best strategy, probably because the problem is not as
challenging as the Zip Data, that originally consists
of 10 categories. Interestingly, ERS performs worse
than random sampling in two out of three tasks.

6 DISCUSSION

In this paper we derived a new AL strategy, which
considers not only the density and distance of an
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Figure 4: Left: Example images of the 4 object categories of Caltech-4 (airplane, car, face, motorbike).
Right: Learning curves for three possible groupings of the 4categories. DEAL performed best in all cases
and US second best. Interestingly, ERS is not better than RS here (see also Table 4). The top horizontal line
is the asymptotic accuracy of the classifier, with all training data labeled (estimated by 10-fold CV).

unlabeled sample to the decision boundary, but also
the number of labeled points in its neighborhood.
All this information is taken into account by requir-
ing that the underlying classifier provide a distribu-
tional estimate at each unlabeled point, leading to a
natural definition of its training utility value.

Information similar to that contained in a second-
order distribution isimplicitly used by methods
that minimize the expected estimated risk (MacKay,
1992; Roy and McCallum, 2001; Zhu et al., 2003).
These AL schemes indirectly measure the uncer-
tainty of a point estimate, by perturbing the current
classifier with hypothetical new labels and invest-
ing where the potential reduction in estimated risk
is greatest.

In contrast, DEAL makes this dependence on the
uncertainty explicit. Not only is it simple to im-
plement, it also empirically outperformed error re-
duction sampling, uncertainty and random sampling
schemes on a large collection of UCI, USPS and
Caltech data sets. Note that one cannot expect a sin-
gle strategy to perform best on all data sets. For in-
stance, if the decision boundary is simple, strongly
favoring exploitation over exploration (as in uncer-
tainty sampling) may be the best strategy. For more
challenging classification problems with complex
class boundaries, balancing exploration and refine-
ment, as DEAL does, seems a crucial ingredient for
active learning.

While our AL scheme is general and applicable
to any classifier that outputs second-order distribu-
tions, in this paper we focused for simplicity on
its implementation with kernel density classifica-
tion. As we shall describe in a future publication,
second-order distributions can be derived for other
classifiers, most notably random forest (Breiman,
2001). Encouragingly, with random forest as the
base classifier, not only are lower classification er-
rors achieved, but also the advantage of DEAL over
the other AL strategies continues to hold.

Finally, we note that second-order distributions are
not limited to AL. In the presence of few training
data, they may be used to extend the “doubt” class
to also include poorly explored regions with high
uncertainty. While beyond the scope of this paper,
second-order distributions are also useful for out-
lier detection, in applications such as optical inspec-
tion, where not all defects are known in advance
when training the classifier. These extensions, as
well as generalizing our AL scheme to multi-class
problems, and deriving second-order distributions
for other (discriminative) classifiers, are interesting
topics for future research.
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Abstract

The goal of phylodynamics, an area on the
intersection of phylogenetics and population
genetics, is to reconstruct population size dy-
namics from genetic data. Recently, a se-
ries of nonparametric Bayesian methods have
been proposed for such demographic recon-
structions. These methods rely on prior spec-
ifications based on Gaussian processes and
proceed by approximating the posterior dis-
tribution of population size trajectories via
Markov chain Monte Carlo (MCMC) meth-
ods. In this paper, we adapt an integrated
nested Laplace approximation (INLA), a re-
cently proposed approximate Bayesian infer-
ence for latent Gaussian models, to the es-
timation of population size trajectories. We
show that when a genealogy of sampled in-
dividuals can be reliably estimated from ge-
netic data, INLA enjoys high accuracy and
can replace MCMC entirely. We demonstrate
significant computational efficiency over the
state-of-the-art MCMC methods. We illus-
trate INLA-based population size inference
using simulations and genealogies of hepati-
tis C and human influenza viruses.

1 INTRODUCTION

Estimation of population size dynamics from molecu-
lar data is a fundamental task in ecology and pub-
lic health. Since population size fluctuations affect
the variability of population gene frequencies, current
molecular sequence data provide information about
the past population size trajectory. Such indirect in-
ference is particularly useful in retrospective studies,
where assessing past population sizes via sampling or
fossil records is impossible. For example, RNA sam-
ples of hepatitis C virus (HCV) obtained in 1993 were

sufficient to estimate the dynamics of HCV infections
in Egypt from 1895 to 1993 (Pybus et al., 2003); and
ancient and modern musk ox mitochondrial DNA sam-
ples, dated from 56,900 radiocarbon years old to con-
temporaneous, allowed for estimation of musk ox pop-
ulation dynamics throughout the late Pleistocene to
the present (Campos et al., 2010).

Molecular sequence data of individuals sampled at a
single time point (isochronous sampling) or at differ-
ent points in time (heterochronous sampling) are re-
lated to each other via, a usually unknown, genealog-
ical relationship. A genealogy is a rooted bifurcating
tree that describes the ancestral relationships of the
sampled individuals (left upper box in Figure 1). In
the genealogy, each internal node indicates that the
two lineages met a common ancestor. Such events are
called coalescent events, and these events occur at co-
alescent times.

Kingman’s coalescent (Kingman, 1982) is a probability
model that describes a stochastic process of generat-
ing a genealogy of a random sample of molecular se-
quences given the effective population size (Nordborg,
2001; Hein et al., 2005). The original formulation,
that considered only a constant population size, was
later generalized to a variable population size (Slatkin
and Hudson, 1991; Griffiths and Tavaré, 1994). Sta-
tistically, the coalescent model was an important ad-
vance, because it allowed for likelihood-based inference
of population dynamics.

Many coalescent-based methods for estimation of effec-
tive population size trajectories have been developed
over the last 10 years. For a recent review see (Ho and
Shapiro, 2011). Some methods assume that a fixed
genealogy is available (Fu, 1994; Pybus et al., 2000)
and others may or may not consider the genealogi-
cal uncertainty and can produce estimates of popula-
tion size trajectories from a fixed genealogy or directly
from molecular data (Kuhner et al., 1995; Drummond
et al., 2002, 2005; Minin et al., 2008). Felsenstein
(1992) showed that likelihood-based methods that ac-

726



count for genealogical uncertainty are statistically the
most efficient. However, all methods that incorpo-
rate genealogical uncertainty in population size dy-
namics reconstruction integrate over the space of ge-
nealogies using Markov chain Monte Carlo (MCMC).
Such MCMC sampling of genealogies is computation-
ally expensive. Sometimes, a single genealogy esti-
mated from sequences that contain sufficient phylo-
genetic information is enough to estimate population
trajectories accurately (Pybus et al., 2000; Minin et al.,
2008). In this paper, we are interested in providing a
fast estimation of population size trajectories from a
fixed genealogy.

Some coalescent-based methods assume a simple para-
metric form of the population size trajectory (e.g., ex-
ponential or logistic growth), allowing the model pa-
rameters to be estimated by maximum likelihood or
Bayesian methods. However, more flexible nonpara-
metric methods are preferable for populations with
poorly understood population dynamics, where it may
be difficult to justify a simple parametric form of the
population size trajectory. In fact, all recently devel-
oped methods rely on Bayesian nonparametric tech-
niques to perform inference (Opgen-Rhein et al., 2005;
Drummond et al., 2005; Heled and Drummond, 2008;
Minin et al., 2008; Palacios and Minin, 2011). A com-
mon characteristic of most of these methods is the
assumption of a piece-wise linear trajectory of effec-
tive population sizes and the possibility of the num-
ber of parameters growing with the number of sam-
ples. Bayesian skyline methods (Drummond et al.,
2005; Heled and Drummond, 2008) and Opgen-Rhein
et al. (2005) use multiple change point models to es-
timate population trajectories in a Bayesian frame-
work. The method of Opgen-Rhein et al. (2005) is
implemented only for a fixed genealogy. Recently,
Bayesian nonparametric approaches that rely on Gaus-
sian processes have been successfully implemented
(Minin et al., 2008; Palacios and Minin, 2011). These
methods model the effective population size as a func-
tion of a Gaussian process (GP) a priori, providing
more flexible priors than previous Bayesian nonpara-
metric methods.

GP-based models use MCMC methods to perform
Bayesian inference. We show that when the geneal-
ogy remains fixed, these models fall into a general class
of latent Gaussian models, for which integrated nested
Laplace approximation (INLA) can be used to perform
computationally efficient approximate Bayesian infer-
ence (Rue et al., 2009; Illian et al., 2012). Here, we
adapt the INLA methodology to the estimation of pop-
ulation size trajectories and replace MCMC entirely.
Our approximation is accurate and much faster than
MCMC, while still providing the benefits of the Gaus-
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Figure 1: Example of a genealogy of 10 individuals ran-
domly sampled at time t10 (red circles) from the population
depicted as black circles. When we follow the ancestry of
the samples back in time, two of those lineages coalesce at
time t9, the rest of the lineages continue to coalesce until
the time to the most recent common ancestor of the sam-
ple at time t1. The population size trajectory is shown as
the solid black curve. When the population size is large
(around t5), for any pair of lineages that exist at time t5
(red circles at t5), it takes longer to meet their most recent
common ancestor (t4). The upper left box shows the ge-
nealogy reconstructed by following the ancestry of the 10
sampled individuals. The genealogy in the upper left cor-
ner is the aligned representation of the genealogy depicted
in the main plot.

sian process-based Bayesian nonparametric approach.
We illustrate the performance of our method with sim-
ulated and two real data sets.

2 COALESCENT BACKGROUND

We assume that a genealogy with time measured in
units of generations is available. Let tn = 0 denote the
present time when all n available sequences are sam-
pled (isochronous ) and let tn = 0 < tn−1 < ... < t1
denote the coalescent times of lineages in the geneal-
ogy. Figure 1 depicts an example of such a genealogy
with time going backwards, that is, the first coalescent
time occurred tn−1 generations ago and all the sam-
ples meet the common ancestor t1 generations ago. Let
Ne(t) denote the time evolution of the effective popu-
lation size as we move into the past. Then, the con-
ditional density of the coalescent time tk−1, given the
previous coalescent time tk, takes the following form:

P [tk−1|tk, Ne(t)] =
Ck exp

[
−
∫ tk−1

tk

Ck
Ne(t)

dt
]

Ne(tk−1)
, (1)

where Ck =
(
k
2

)
is the coalescent factor that depends

on the number of lineages k = 2, ..., n, meaning that
the density for the next coalescent time is quadratic
in the number of lineages and inversely proportional
to the effective population size. The larger the popu-
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lation size, the more genetic variability is in the pop-
ulation and hence, the longer it takes for two lineages
to coalesce. The larger the number of lineages, the
faster two of them meet their common ancestor. Fig-
ure 1 shows an example of a population that experi-
ences growth and then a decay in population size. In
this case, no pair of lineages coalesces between times
t4 and t5, because the population is large during this
time interval, while it takes little time for a pair of
lineages to find their common ancestor after time t4,
when the population size becomes very small.

The heterochronous coalescent arises when samples of
sequences are collected at different times. The con-
ditional density of a coalescent time tk−1 is slightly
different than Eq. 1 since it takes into account the
fact that the number of lineages at each time point
depends not only on the number of coalescent events
(in which case, the number of lineages decreases by
one each time), but also on the new samples incorpo-
rated into the analysis at any time after the last coa-
lescent time tk. The details of the heterochronous co-
alescent are omitted for brevity, however, all methods
described here have been implemented to incorporate
heterochronous sampling. See (Felsenstein and Ro-
drigo, 1999) and (Drummond et al., 2002) for a more
detailed account of heterochronous sampling.

Under this coalescent-based framework, we ignore the
effects of population structure, recombination and se-
lection (Nordborg, 2001). The parameter of interest,
the effective population size, can be used to approxi-
mate census population size by knowing the generation
time in calendar units and the population variability
in the number of offspring. The latter quantity might
be difficult to know a priori, however, sometimes it
suffices to analyze an arbitrarily rescaled population
size trajectory, assuming the variability in the number
of offspring remains constant.

2.1 ESTIMATION OF Ne(t) USING A
DISCRETE-TIME GMRF

There are two approaches to estimation of effective
population size trajectories that use Gaussian pro-
cesses. The first approach, developed by Minin et al.
(2008), assumes a priori that given a genealogy, the
effective population size trajectory is a piecewise con-
stant trajectory with change points (knots) placed at
coalescent times. That is,

Ne(t) =
n∑

k=2

exp (γk) 1(tk,tk−1](t), (2)

where

γ = (γ2, ..., γk) ∼MVN
(
0, (τQ)−1

)
and

1(tk,tk−1](t) =

{
1 if t ∈ (tk, tk−1],

0 otherwise.

More specifically, a priori γ is assumed to be an in-
trinsic Gaussian Markov random field (GMRF) on a
chain graph connecting nodes 2 through n. Minin et al.
(2008) used a random walk of the first order (rw1) on
an irregular grid of mid-points of inter-coalescent time
intervals. For this reason, we refer to this method here
as the coalescent grid Gaussian process (CGGP). The
random walk construction implies that matrix Q is
tridiagonal and positive semidefinite (hence the intrin-
sic GMRF). See (Rue and Held, 2005) for background
on GMRFs. The precision parameter τ has a Gamma
prior distribution with α = β = 0.001. The authors
estimate γ and τ by MCMC sampling from the poste-
rior distribution of these parameters. The estimated
trajectory and the corresponding uncertainty are re-
ported in the form of pointwise posterior medians and
95% Bayesian credible intervals (BCIs) obtained from
the MCMC samples.

2.2 ESTIMATION OF Ne(t) USING A
CONTINUOUS-TIME GP

Instead of modelling Ne(t) as a piecewise continu-
ous function a priori, Palacios and Minin (2011) pro-
pose a more flexible prior specification and place a
transformed Gaussian process prior on Ne(t). The
transformation is a sigmoidal function with a lower
bound. This particular transformation is required by
the authors in order to perform exact posterior infer-
ence via a data augmentation scheme, which is simi-
lar to the work of Adams et al. (2009). However, a
log-Gaussian transformation using a finely discretized
Gaussian process, in principle, would produce similar
results (Møller et al., 1998; Adams et al., 2009).

2.2.1 EXACT POSTERIOR INFERENCE
WITH GP

Palacios and Minin (2011) place the following prior on
Ne(t):

Ne(t) =

(
λ

1 + exp[−γ(t)]

)−1
, (3)

where
γ(t) ∼ GP(0, C) (4)

and GP(0, C) denotes a Gaussian process with mean
function 0 and covariance function C. A Gaussian pro-
cess restricted to finite data is a multivariate Gaussian
distribution. That is, γ(t1), ..., γ(tB) ∼ MVN(0,Σ).
A priori, 1/Ne(t) is a sigmoidal Gaussian process, a
scaled logistic function of a Gaussian process which
range is restricted to lie in [0, λ]; λ is a positive con-
stant hyperparameter, inverse of which serves as a
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lower bound of Ne(t) (Adams et al., 2009). The like-
lihood function is the product of the conditional den-
sities in Eq. 1 and involves integration of Ne(t), that
under the GP assumption, is intractable. The authors,
following earlier work by Adams et al. (2009) on Pois-
son processes, do inference assuming an augmented
data likelihood which allows to bypass intractability in
the likelihood. The authors implement their method
for the Brownian motion GP with a precision param-
eter τ . They place a Gamma prior distribution on the
precision hyperparameter τ with α = β = 0.001 and
a mixture of uniform and exponential distributions on
an upper bound of 1/Ne(t) (or equivalently, a lower
bound on Ne(t)) as follows:

P (λ) = ε
1

λ̂
I{λ<λ̂} + (1− ε) 1

λ̂
e−

1
λ̂
(λ−λ̂)I{λ≥λ̂}, (5)

where ε > 0 is a mixing proportion and λ̂ is our best
guess of the upper bound, possibly obtained from pre-
vious studies. The authors estimate τ and Ne(t), or
equivalently, τ , γ(t) and λ by MCMC sampling from
the posterior distribution of these parameters. The es-
timated trajectory and the corresponding uncertainty
are reported in the form of the pointwise posterior
medians and 95% BCIs evaluated at a grid of points
{s1, ..., sB} obtained from the MCMC samples. This
grid can be made as fine as necessary after the MCMC
is finished. The values of {γ(s1), γ(s2), .., .γ(sB)} are
obtained via the GP predictive distribution condition-
ing on the values of each iteration. This method will
be referred to as exact Gaussian process (EGP).

2.2.2 DISCRETIZED CONTINUOUS-TIME
GP

The continuous-time version of the prior specified in
Eq. 2, is

Ne(t) = exp [γ(t)] , (6)

where γ(t) is the Gaussian process described in Eq.
4. However, for the same reason described in sec-
tion 2.2.1, the likelihood function becomes intractable.
Palacios and Minin (2011) showed that estimation of
the effective population size is analogous to the esti-
mation of an inhomogeneous intensity of a point pro-
cess. In this context, and under the prior described in
Eq. 6, estimation of Ne(t) is computationally equiv-
alent to the estimation of the intensity function of a
Log-Gaussian Cox process (Møller et al., 1998). In a
Log-Gaussian Cox process, the likelihood is commonly
approximated by discretization. The approximation
method proceeds by constructing a fine regular grid
{s1, ..., sB} over the observation window and approxi-
mate ∫

dt

Ne(t)
=

∫
exp [−γ(t)] dt, (7)

by
B∑

j=2

exp
(
−γ∗j

)
∆, (8)

where ∆ is the distance between grid points, and γ∗j is
a representative value of γ(t) in the interval (sj−1, sj),
usually γ((sj − sj−1)/2). Note that if the Gaussian
process is a Brownian motion process, this approxi-
mation is similar to the CGGP method described in
section 2.1. The difference is in the construction of
the grid. In the CGGP method, the grid is irregular
and determined by the coalescent times. For this rea-
son, we call approximation (8) a regular grid Gaussian
process (RGGP).

3 INTEGRATED NESTED
LAPLACE APPROXIMATION

INLA provides fast and accurate Bayesian approxima-
tion to posterior marginals in latent Gaussian mod-
els (Rue et al., 2009). Latent Gaussian models are
a wide class of hierarchical models in which the re-
sponse variables y = (y1, . . . , yn) are assumed to be
conditionally independent given some latent param-
eters η = (η1, . . . , ηn) and other parameters θ1. The
second hierarchical level corresponds to specifying η as
a function of a GMRF x = (x1, . . . , xn) with a preci-
sion matrix Q and hyperparameters θ2, and the third
and last hierarchical stage corresponds to prior specifi-
cations for the hyperparameters θ = (θ1,θ2) Formally,

π(y|η,θ1) =
∏

j

π(yj |ηj(xj),θ1), (9)

x ∼MVN(0,Q−1(θ2)), (10)

and

θ ∼ P (θ). (11)

An interface in R, called INLA, implements a wide vari-
ety of likelihoods (Eq. 9), link functions (η) and GM-
RFs (Eq. 10), including the Poisson likelihood model
for each observed value of yj (not necessarily the same
for every yj) with a logarithmic additive link func-
tion and random walk of first order as a GMRF. See
www.r-inla.org for documentation.

The coalescent with variable population size (Eq. 1),
together with the GMRF prior specification (Eq. 2)
falls into the latent Gaussian model class, so INLA
can be implemented for these coalescent models. In
the case of the continuously specified GP (section 2.2),
the approximate posterior method described in Section
2.2.2 (RGGP) also falls into the latent Gaussian model
class.
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3.1 INLA FOR PHYLODYNAMICS

Although INLA is implemented for a wide variety of la-
tent Gaussian models, we will only describe the main
steps of the approximation for posterior inference of
effective population size trajectories. A typical sum-
mary of the posterior distribution of the effective pop-
ulation size trajectory, Ne(t), is described by posterior
medians and 95% BCIs evaluated pointwise on a grid
of time points. These values can be obtained from the
posterior marginals of the population trajectory on the
grid. For the CGGP model described in section 2.1,
we then wish to obtain the posterior marginals

Pr(γi|t) =

∫ ∞

0

Pr(γi|τ, t)Pr(τ |t)dτ, i = 2, .., n (12)

and

Pr(τ |t), (13)

where t denotes the vector of coalescent times. A
nested procedure is used to construct approximations
of Pr(γi|τ, t) and Pr(τ |t) first and then numerically in-
tegrate out τ to arrive at Pr(γi|t). The approximation
of the marginal of τ is

P̃r(τ |t) ∝ Pr(γ, τ, t)

P̃rG(γ|τ, t)

∣∣∣∣
γ∗(τ)

, (14)

where γ∗(τ) is the mode of the full conditional
Pr(γ|τ, t), obtained using the Newton-Raphson algo-
rithm, and P̃rG(γ|τ, t) is the Gaussian approximation
of this full conditional constructed via a Taylor ex-
pansion around γ∗(τ). The resulting P̃rG(γ|τ, t) is a
Gaussian distribution with mean γ∗ and precision ma-
trix Q +diag(c), where Q is the prior precision matrix
of the GMRF γ and a vector c consists of the second
order Taylor series coefficients.

The approximation to the full conditional Pr(γi|τ, t)
is the following:

P̃r(γi|τ, t) ∝ Pr(γ, τ, t)

P̃rG(γ−i|τ, t)

∣∣∣∣
γ∗

−i

, (15)

where γ∗−i = EG(γ−i|γi, τ, t) and P̃rG(γ−i|τ, t) are

derived from P̃rG(γ|τ, t).

For the continuously specified GP approximation de-
scribed in section 2.2.2, the INLA approximation is,
in essence the same, but the GMRF is placed at the
mid-points of a finer and regular grid. In this case,
there are two levels of approximation, one level corre-
sponding to the likelihood discretization and another
level corresponding to the approximation of marginal
posterior distributions of model parameters.
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Figure 2: INLA vs MCMC for CGGP: Simulated data
under the constant population size (first row), exponential
growth (second row) and expansion followed by a crash
(third row). The true trajectories are represented by black
dashed lines. We show posterior medians estimated with
MCMC sampling (solid black lines) and 95% BCIs esti-
mated with MCMC (gray shaded areas). Posterior medi-
ans obtained using INLA are denoted by solid blue lines
and INLA 95% BCIs are shown as dashed blue lines.
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4 RESULTS

4.1 SIMULATED DATA

We compare INLA and MCMC approaches for the
models described in sections 2.1 and 2.2. We simulate
three genealogies relating n = 100 individuals under
the following demographic scenarios:

1. Constant population size trajectory: Ne(t) = 1.

2. Exponential growth: Ne(t) = 25e−5t.

3. Population expansion followed by a crash:

Ne(t) =

{
e4t t ∈ [0, 0.5],

e−2t+3 t ∈ (0.5,∞).
(16)

Figure 2 shows the log effective population size tra-
jectories recovered for the three scenarios under the
CGGP model using the MCMC approach (black lines
and gray shaded areas) and the INLA approach (blue
dark lines and blue dashed lines). In all the cases,
the INLA approximation is very close to the results
obtained using MCMC.

Figure 3 shows the log effective population size tra-
jectories recovered for the same three scenarios for the
continuously specified GP. In this case, the comparison
is not entirely fair because we are comparing the exact
MCMC method (EGP) with the doubly approximated
INLA on the RGGP model. Nevertheless, both esti-
mations look very similar for the last two cases (ex-
ponential growth and expansion followed by crash).
In all cases, INLA results are very similar to the re-
sults for the CGGP model and the difference between
the MCMC method and INLA methods in the con-
stant trajectory example could be an artifact of the
likelihood approximation and the convergence of the
MCMC method. However, a more likely explanation
is poor approximation of the marginal posterior of the
Brownian motion precision, τ , by INLA. Indeed, when
we examined MCMC-based and INLA-based marginal
posteriors of τ , we found that the two marginals did
not agree at all.

4.2 HEPATITIS C VIRUS IN EGYPT

We analyze a genealogy estimated from 63 HCV E1
sequences sampled in 1993 in Egypt. This is perhaps
the most commonly used dataset for evaluating dif-
ferent methodologies for estimation of population size
trajectories. Minin et al. (2008) compared population
size trajectories recovered from a single fixed geneal-
ogy and from the sequence data directly. The authors
show that there is little difference between these two
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Figure 3: INLA vs MCMC for RGGP and EGP respec-
tively: see Figure 2 for the legend.
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Figure 4: HCV in Egypt. Estimation of the log effective population size trajectories. In both plots, INLA approximations
to posterior medians and 95% BCIs are represented by blue solid lines and blue dashed lines respectively. Approximations
using MCMC sampling are represented by black solid lines and shaded areas. The left plot shows the results assuming
the CGGP model and the right plot shows the result assuming the EGP for the MCMC sampling results and the RGGP
model for the INLA approximation.

estimation protocols. They argue that in this case ge-
nealogical uncertainty does not play a significant role
in the estimation of the Egyptian HCV population dy-
namics.

Figure 4 shows the recovered effective population sizes
as black lines and uncertainty as gray shaded areas for
the CGGP (left plot) and the EGP (right plot) using
MCMC and as blue solid lines and blue dashed lines
for the INLA approximation for CGGP (left plot) and
RGGP (right plot). In this case, it is remarkable how
similar the INLA approximations are to the MCMC
results, even for the continuously specified model with
the double approximation (INLA-RGGP). In all cases,
the known aspects of the HCV epidemic in Egypt
are recovered: an exponential growth starting around
1920s and a decline in population size after 1970s (Py-
bus et al., 2003).

4.3 INFLUENZA A VIRUS IN NEW YORK

We analyze a genealogy estimated from 288 H3N2 se-
quences sampled in New York state from January, 2001
to March, 2005 to estimate population size dynamics
of human influenza A in New York. This genealogy has
also been analyzed before (Palacios and Minin, 2011)
and can be obtained from the authors. The key as-
pects of the influenza A virus epidemic in temperate
regions like New York are the epidemic peaks during
winters followed by strong bottlenecks at the end of

the winter season. The first plot in Figure 5 shows
the recovered population size trajectories assuming the
CGGP model. In this case, the MCMC and the INLA
approximation deviate from each other substantially,
however, the expected peaks during the winter seasons
in 2002, 2004 and 2005 are recovered by both meth-
ods. The MCMC approach does not recover a peak
in the 2003 season, while the INLA approximation re-
semble more the results from the continuously speci-
fied model. INLA and MCMC results are very similar
for the continuously specified model (right plot of Fig-
ure 5) with the notable differences in 95% BCIs near
the time to the most recent common ancestor. This
difference again may be an artifact of the double ap-
proximation involved.

4.4 RUNNING TIMES

The MCMC chains used for the CGGP model have
length 1,000,000 with 100,000 of burn-in and generated
using the BEAST software (Drummond and Rambaut,
2007; Minin et al., 2008) on a desktop PC. The run-
ning times range from 20 minutes to a couple of hours
depending on the data. For the INLA approach, re-
sults were generated using the R interface INLA on the
same computer in less than 2 seconds for all scenarios.

For the continuously specified GP model described in
section 2.2, MCMC times are at best as fast as MCMC
for the CGGP approach, while the results obtained
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Figure 5: Influenza A in New York. Estimation of the log effective population size trajectories. In both plots, INLA
approximations to posterior medians and 95% BCIs are represented by blue solid lines and blue dashed lines respectively.
Approximations using MCMC sampling are represented by black solid lines and shaded areas. The left plot shows the
results assuming the CGGP model and the right plot shows the result assuming the EGP for the MCMC sampling results
and the RGGP model for the INLA approximation.

using INLA, were generated in less than 5 seconds on
a grid of size 1000.

5 DISCUSSION

We show that recent Gaussian process-based Bayesian
nonparametric approaches to estimation of effective
population size trajectories fall into a larger class of
latent Gaussian models, allowing us to perform ap-
proximate Bayesian inference using INLA. We show
that it is possible to estimate population size trajec-
tories from fixed genealogies in seconds without sacri-
ficing any modeling advantages of recently developed
Bayesian nonparametric methods.

We did observe a significant discrepancy between the
INLA approximation and MCMC inference for the
continuously specified GP model in the case of con-
stant population size. We want to point out that
in this case, we are not comparing apples to apples.
We should be comparing INLA approximation to the
MCMC for the regular grid approximation of the con-
tinuously specified GP. However, we did not have ac-
cess to approximate GP-based MCMC for phylody-
namics. In the absence of a better option, we are
comparing INLA to the exact MCMC for this GP
model (Palacios and Minin, 2011). Therefore, we re-
main uncertain whether the grid approximation or the
INLA approximation is to blame for the discrepancy

observed in the top plot of Figure 2. The discrepancy
between the marginal posterior distributions estimated
by INLA and MCMC and the fact that the precision of
the RGGP likelihood discretization did not have any
effect on our results suggest that INLA approximation
indeed fails in this simulation scenario. This asser-
tion is supported by another disagreement of INLA
and MCMC for the CGGP model in the influenza A
example, where we are comparing apples to apples.

A natural extension of the methods presented here is
the incorporation of genealogical uncertainty into the
model. This extension can be accomplished by intro-
ducing another level of hierarchical modeling and ana-
lyzing molecular data directly (Drummond et al., 2005;
Minin et al., 2008). Even though the full posterior
distribution of population trajectories from molecular
sequence data no longer falls into the latent Gaussian
model class, we believe that the extension is possible
using Metropolis independence sampler (Rue et al.,
2004). Nevertheless, the ability to obtain fast esti-
mates of population size trajectories from a fixed ge-
nealogy (as with INLA) should be a boon for biological
researchers who need to screen multiple populations of
interest quickly or to provide an online analysis of epi-
demic outbreaks with enormous flow of molecular data
in real time (Fraser et al., 2009).

There are other approaches to the estimation of effec-
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tive population sizes under more complicated coales-
cent models that include recombination (McVean and
Cardin, 2005; Li and Durbin, 2011). These methods
assume a simple change point model for the effective
population size trajectory. In principle, Bayesian non-
parametric approaches similar to the approaches dis-
cussed here can be applied in this setting. However,
presence of recombination makes such extensions po-
tentially challenging.

Other approximate Bayesian methods could be ap-
plied to Bayesian nonparametric phylodynamics, such
as variational Bayes (VB) (Bishop, 2006) and expecta-
tion propagation (EP) (Cseke and Heskes, 2010). For
our particular application with a sparse GP prior, such
as Brownian motion, Cseke and Heskes (2010) show
that INLA should be faster than EP methods.
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Abstract

In this paper, starting from a generalized co-
herent (i.e. avoiding uniform loss) interval-
valued probability assessment on a finite
family of conditional events, we construct
conditional probabilities with quasi additive
classes of conditioning events which are con-
sistent with the given initial assessment.
Quasi additivity assures coherence for the ob-
tained conditional probabilities. In order to
reach our goal we define a finite sequence of
conditional probabilities by exploiting some
theoretical results on g-coherence. In partic-
ular, we use solutions of a finite sequence of
linear systems.

1 Introduction

In many applications of Artificial Intelligence we need
to reason with uncertain information under vague or
partial knowledge. A possible approach to uncertain
reasoning can be based on imprecise probabilistic as-
sessments on a family of conditional events which has
no particular algebraic structure. In such a case a
general framework is obtained by using suitable gen-
eralizations of the coherence principle of de Finetti
(de Finetti [1974]), or similar principles adopted for
lower and upper probabilities. A further advantage
of using these approaches is given by the possibility
of looking at the conditional probability P (E|H) as a
primitive concept, with no need of assuming that the
probability of the conditioning event H be positive.
In the past, the coherence-based approach to proba-
bilistic reasoning has covered several natural seman-
tics for conditionals, included the ones used in default
reasoning such as System P (see, e.g., Gilio [2002],
Biazzo et al. [2005], Gilio and Sanfilippo [2011]). In
this paper we adopt a notion of generalized coherence
called g-coherence given in Biazzo and Gilio [2000] (see

also Coletti [1994], Gilio [1995b], Biazzo et al. [2005]).
The notion of g-coherence is weaker than the notion
of coherence given for lower and upper probabilities
(see Walley [1991], Williams [2007]) and is equivalent
(Biazzo and Gilio [2002]) to the property of “avoid-
ing uniform loss” given in Walley [1991, 1997]. Using
some algorithms, a g-coherent probability assessment
can be corrected obtaining a coherent assessment. We
recall that, given a coherent (precise) assessment P
on an arbitrary family F of conditional events, there
always exists a coherent extension of P which is a con-
ditional probability (Regazzini [1985]), see also Holzer
[1985], Rigo [1988]). Conversely, given a conditional
probability P on E × X , where E is an algebra and
X is a nonempty subset of E \ {∅}, in Rigo [1988] is
shown that a suitable condition given in Császár [1955]
(called Csàszàr’s condition) is necessary and sufficient
for coherence of P . If no restrictions are supposed re-
garding the class of conditioning events X the function
P could be not coherent (Gilio and Spezzaferri [1992],
Gilio [1995a], Coletti and Scozzafava [2002]). More-
over, if X has a particular structure, for instance X is
additive (Holzer [1985], Coletti and Scozzafava [2002])
or quasi-additive (Gilio [1989]), then P is coherent. As
quasi-additivity property is weaker than additivity it is
of some interest to check if a given coherent assessment
P could be extended as a conditional probability with
the class of conditioning events quasi-additive. We re-
mark that the such conditional probabilities may be
useful because in many applications in order to take
a decision we need to choose a precise and (possibly
complete) probability assessment. Hence, the kind of
problems studied in this paper can help the decision
maker to ’integrate knowledge’ by computing a prob-
ability distribution consistent with the ’incomplete or
vague’ initial information quantified by the imprecise
assessment.
In what follows, starting from a g-coherent interval-
valued probability assessment A on a finite family F
of conditional events we first determine the associated
interval-valued assessment A∗ on F coherent in the

736



sense of Walley. Then, after recalling the notion of
finitely additive conditional probability and for the set
of conditioning events the property of quasi additivity,
we construct a sequence of conditional probabilities
with quasi additive classes of conditioning events. We
extend the conditional probabilities of this sequence
using the same (quasi additive) classes of condition-
ing events. Thus, we are able to define a conditional
probability P01...k on E × X , where E is the algebra
generated by F and X is a quasi additive class which
coincides with the union of the previous classes of con-
ditioning events. Moreover, X contains the initial set
of conditioning events of F . Finally, we observe that
P01...k is a coherent conditional probability on F con-
sistent with A. By this procedure one can obtain a
large (potentially infinite) number of coherent condi-
tional probabilities. The paper is organized as follows.
In Section 2 we first give some preliminary notions and
results on generalized coherence. Then, we recall the
concepts of conditional probability and quasi additive
class of events. Finally we recall a sufficient condition
for coherence of conditional probability. In Section 3
we show how a g-coherence assessment, using some
algorithms, can be corrected obtaining a coherent as-
sessment. In Section 4 given a g-coherent interval-
valued assessment A on F we construct a finite se-
quence P0, P1, . . . , Pk of conditional probabilities with
quasi additive families of conditioning events. In Sec-
tion 5 we introduce a new sequence of conditional prob-
abilities P 0

0 , P
0
1 , . . . , P

0
k with quasi additive families of

conditioning events such that, for each i, the probabil-
ity P 0

i is a particular extension of Pi. We also show
that P 0

i is coherent. In Section 6 we define a con-
ditional probability P01...k with a quasi additive class
of conditioning events which contains all conditioning
events on F . We show that P01...k is coherent and its
restriction on F is a coherent assessment which is con-
sistent with A. In Section 7 we give a characterization
theorem of coherent precise assessments and a relevant
way of introducing quasi additive classes. Finally, we
give some conclusions.

2 Preliminary notions and results

In this section we set up notation and terminology.
We also recall some basic concepts and results, related
with the checking of g-coherence and propagation of
conditional probability bounds. Next, we recall the
definition of conditional probabilities. Finally, we re-
call the notion of quasi-additive class of events and a
sufficient condition for coherence which will be used in
the next sections.

2.1 Notations

For each integer n we set Jn = {1, 2, . . . , n}. Moreover,
we denote respectively by Ω the sure event, by ∅ the
impossible event and the empty set, by Ec the negation
of the event E, by E ∨H the disjunction of E and H
and by E∧H (or simply by EH) the conjunction of E
and H. The logical implication from E to H, namely
if E is true, then also H is true, is denoted by E ⊆ H.

2.2 Constituents

Given any pair of events E and H, with H 6= ∅, we
look at the conditional event E|H as a three-valued
logical entity which is true, or false, or void, accord-
ing to whether EH is true, or EcH is true, or Hc

is true. In the setting of coherence, agreeing to the
betting metaphor, if you assess P (E|H) = p, then
you agree to pay an amount p, by receiving 1, or 0,
or p, according to whether E|H is true, or E|H is
false, or E|H is void (bet called off). Given a family
of conditional events FJn = {Ei|Hi, i ∈ Jn}, we set
HJn =

∨
j∈Jn Hj . For each r ∈ {0, 1, . . . 3n − 1}, we

denote by (rnrn−1 · · · r2r1) its ternary representation,
such as r = r130 + r231 + · · ·+ rn3rn−1, and by Rr the
event defined as Rr = Rr11 R

r2
2 · · ·Rrnn , where

Rrii =





EiHi, if ri = 1,

EciHi, if ri = 0,

Hc
i , if ri = 2.

Then, we introduce the set

CJn = {Rr 6= ∅, r ∈ {0, 1, 2, . . . , 3n − 1}}
containing every Rr that is not impossible. As some
conjunction Rr may be impossible, the cardinality of
CJn is less than or equal to 3n. We call constituents
or possible worlds associated with FJn the elements of
CJn . Obviously CJn is a partition of Ω, that is
1.
∨
C∈CJn C = Ω,

2. C ′ ∧ C ′′ = ∅ for each C ′, C ′′ ∈ CJn with C ′ 6= C ′′.
With each event E we associate the following subset
of CJn CJn(E) = {C ∈ CJn : C ⊆ E}. Notice that for
each pair of events EiHi,Hi, since EiHi ⊆ Hi ⊆ HJn ,
it follows that CJn(EiHi) ⊆ CJn(Hi) ⊆ CJn(HJn).

Example 1. Let FJ3 = {E1|H1, E2|H2, E3|H3} =
{ABC|D,B|AC,C|AB} be a family of three condi-
tional events. The set CJ3 of the constituents associ-
ated with FJ3 is

CJ3 = {R6, R8, R13, R14, R18, R20, R24, R26} =
= {C1, C2, C3, C4, C5, C6, C7, C8},

where

C1 = ABCcD, C2 = ABCcDc, C3 = ABCD,
C4 = ABCDc, C5 = ABcCD, C6 = ABcCDc,
C7 = (Ac ∨BcCc)D, C8 = (Ac ∨BcCc)Dc .
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Moreover, we have that HJ3 = {D ∨AC ∨AB} and

CJ3(HJ3) = CJ3 \ {C8} = {C1, C2, . . . , C7}. (1)

2.3 Coherence and g-coherence

Given an arbitrary family of conditional events F
and a real function P on F , for every n ∈ N, let
FJn = {Ei|Hi, i ∈ Jn} be a subfamily of F and PJn
the vector (pi, i ∈ Jn), where pi = P(Ei|Hi). We use
the same symbols for events and their indicator. Then,
considering the random gain

GJn =
∑

i∈Jn
siHi(Ei − pi),

with si, i ∈ Jn, arbitrary real numbers, we denote by
GJn |HJn the restriction of GJn to HJn . Then, based
on the betting scheme, we have

Definition 1. The function P is said coherent iff

maxGJn |HJn ≥ 0, ∀n ≥ 1,∀FJn ⊆ F ,∀si ∈ R, i ∈ Jn.

Given an interval-valued probability assessmentAJn =
([a1, b1], . . . , [an, bn]) on a family FJn = {Ei|Hi, i ∈
Jn} we adopt the following condition of generalized co-
herence (g-coherence) given in Biazzo and Gilio [2000].

Definition 2. The interval-valued probability assess-
ment AJn on FJn is said g-coherent if and only if there
exists a precise coherent assessment PJn = (pi, i ∈ Jn)
on FJn , with pi = P (Ei|Hi), which is consistent with
AJn , that is such that ai ≤ pi ≤ bi for each i ∈ Jn.

Given an interval-valued probability assessment AJn
on FJn , we denote by (SJn) the following system, as-
sociated with the pair (FJn ,AJn), with nonnegative
unknown λ = (λC , C ∈ CJn(HJn)):

(SJn)





∑

C∈CJn (EiHi)
λC ≤ bi ·

∑

C∈CJn (Hi)
λC ,∀i ∈ Jn

∑

C∈CJn (EiHi)
λC ≥ ai ·

∑

C∈CJn (Hi)
λC ,∀i ∈ Jn

∑

C∈CJn (HJn )
λC = 1 , λC ≥ 0,∀C ∈ CJn(HJn).

In an analogous way, given a subset J of Jn, we denote
by (FJ ,AJ) the pair corresponding to J , by (SJ) the
system associated with (FJ ,AJ) and by CJ the set of
constituents associated with FJ .
We recall a result given in Gilio [1995a], where the
notion of g-coherence (see Biazzo and Gilio [2000]) was
simply named coherence.

Theorem 1. The interval-valued probability assess-
ment AJn on FJn is g-coherent if and only if, for every
J ⊆ Jn, the system (SJ) is solvable.

2.4 Conditional probabilities

Given an algebra of events E and a non empty subfam-
ily X of E , with ∅ /∈ X , a (finitely-additive) conditional
probability on A×X is a real-valued function P defined
on E × X satisfying the following properties (Dubins
[1975], see also Rényi [1955], Császár [1955], Regazzini
[1985], Coletti [1994], Coletti and Scozzafava [2002]):

(i) P (·|H) is a finitely additive probability on E , for
each H ∈ X ;

(ii) P (H|H)=1, for each H ∈ X ;

(iii) P (E1E2|H) = P (E2|E1H)P (E1|H), for every
E1, E2, H, with E1 ∈ E , E2 ∈ E , H ∈ X and
E1H ∈ X .

As in Rényi [1955] we do not suppose any restrictions
regarding the class of conditioning events X of the con-
ditional probability P . In Dubins [1975], in order to
define a finitely-additive conditional probability, it is
required that X ∪ {∅} must be a subalgebra of E .

2.5 Quasi additivity and coherence

Let P be a conditional probability on E×X , the family
X of conditioning events is said a P−quasi-additive
class (or quasi additive w.r.t. P ) if, for every H1 ∈
X , H2 ∈ X , there exists K ∈ X such that (Császár
[1955])

(i) H1 ∨H2 ⊆ K,
(ii) P (H1|K) + P (H2|K) > 0.

(2)

We observe that, given any conditional probability P
on E×X , if X is additive or X∪{∅} is a subalgebra of E ,
then X is P−quasi additive. Some sufficient conditions
for coherence of a conditional probability are given in
Gilio [1989] from which we recall the following result

Theorem 2. If P is a conditional probability on E×X ,
with E algebra and X quasi additive class w.r.t. P ,
then P is coherent.

3 From g-coherent to coherent
lower/upper probabilities

Let AJn = ([ai, bi], i ∈ Jn) be a g-coherent interval-
valued probability assessment on FJn = {Ei|Hi, i ∈
Jn}. Of course, we can assume that, if Ei|Hi ∈ FJn ,
then Eci |Hi /∈ FJn . Moreover, if we replace each upper
bound P (Ei|Hi) ≤ bi by the equivalent lower bound
P (Eci |Hi) ≥ 1− bi, the assessment AJn on FJn can be
seen as a lower probability (ai, 1 − bi, i ∈ Jn) on the
family {Ei|Hi, E

c
i |Hi, i ∈ Jn}. Then, using a suitable

alternative theorem, it can be shown that g-coherence
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and avoiding uniform loss (AUL) property of lower and
upper probabilities (Walley [1991]) are equivalent (see
Biazzo and Gilio [2002], Theorem 10).
Given a further conditional event En+1|Hn+1, as it
can be verified (Biazzo and Gilio [2000]), there exists
a suitable interval [p◦, p◦] such that

Theorem 3. The interval-valued assessment AJn+1
=

([ai, bi], i ∈ Jn+1) with an+1 = bn+1 = pn+1 on the
family FJn+1

= {Ei|Hi, i ∈ Jn+1}, is g-coherent if
and only if pn+1 ∈ [p◦, p◦].

Then, it immediately follows

Theorem 4. Given a g-coherent interval-valued as-
sessment AJn = ([ai, bi], i ∈ Jn) on the family
FJn = {Ei|Hi, i ∈ Jn}, the extension [an+1, bn+1]
of AJn to a further conditional event En+1|Hn+1 is
g-coherent if and only if [an+1, bn+1] ∩ [p◦, p◦] 6= ∅ .

The values p◦, p◦ can be determined by exploiting a
suitable algorithm given in Biazzo and Gilio [2000]. By
the same algorithm, starting with a g-coherent assess-
ment AJn on FJn , we can make the ”least-committal”
correction (see Pelessoni and Vicig [1998]) of AJn .
In this way, we obtain the coherent (lower and upper)
probability A∗Jn on FJn which would be produced by
applying the natural extension principle proposed in
Walley [1991].
To determine A∗Jn , we just need to apply n times
such algorithm, by replacing each time En+1|Hn+1 by
Ej |Hj , j ∈ Jn, using as probabilistic constraints on
the conditional events of FJn the g-coherent assess-
ment AJn .
Example 1 (continued)
Let AJ3 = ([ 12 , 1], [0, 12 ], [ 13 ,

2
3 ]) be an imprecise prob-

ability assessment on FJ3 = {ABC|D,B|AC,C|AB}.
By applying the algorithm for checking g-coherence
given in Biazzo and Gilio [2000] it can be proved that
AJ3 is g-coherent. Moreover, AJ3 is coherent 1 and
then AJ3 = A∗J3 .

4 Construction of classes of
conditional probabilities with quasi
additive families of conditioning
events

In this section, starting with a finite interval-valued
probability assessment, we will construct classes of
conditional probabilities with quasi additive families
of conditioning events. Quasi additivity will assure
coherence for the obtained conditional probabilities.

Remark 1. We observe that CJn = CJn(HJn)∪{HcJn}.
In particular, CJn = CJn(HJn), if HJn = Ω. Moreover,

1 Coherence can also be checked by the CkC-package
(Baioletti et al.) available at
http://www.dmi.unipg.it/~upkd/paid/software.html

the system (SJn) is solvable if and only if the following
system is solvable

(S∗Jn)





∑

C∈CJn (EiHi)
λC ≤ bi ·

∑

C∈CJn (Hi)
λC ,∀ i ∈ Jn

∑

C∈CJn (EiHi)
λC ≥ ai ·

∑

C∈CJn (Hi)
λC ,∀ i ∈ Jn

∑

C∈CJn (HJn )
λC > 0 , λC ≥ 0 ∀ C ∈ CJn .

In fact, given a solution λ∗ = (λ∗C , C ∈ CJn) of (S∗Jn),
the vector λ′ = (λ′C , C ∈ CJn(HJn)), defined by

λ′C =
λ∗C∑

C⊆HJn λ
∗
C

, ∀ C ∈ CJn(HJn) ,

is a solution of (SJn). Conversely, given a solu-
tion λ′ = (λ′C , C ∈ CJn(HJn)) of (SJn), any vector
λ∗ = (λ∗C , C ∈ CJn), with

λ∗C = αλ′C , ∀C ∈ CJn(HJn) , α > 0 , λ∗HcJn
≥ 0 ,

is a solution of (S∗Jn). Of course, the variable λHcJn in

(S∗Jn) disappears when HcJn = ∅.
In what follows, we will use system (S∗Jn) in the equiv-
alent formulation given below

(S∗Jn)





∑

C∈CJn (EiHi)
λC ≤ bi ·

∑

C∈CJn (Hi)
λC ,∀i ∈ Jn

∑

C∈CJn (EiHi)
λC ≥ ai ·

∑

C∈CJn (Hi)
λC ,∀i ∈ Jn

∑

C∈CJn

λC =
∑

C∈CJn (HJn )
λC = 1 ,

λC ≥ 0 ,∀C ∈ CJn .

Remark 2. We denote by Π the set of coherent precise
assessments P = (pE|H , E|H ∈ FJn) on FJn which
are consistent with AJn . Let A∗Jn = ([a∗i , b

∗
i ], i ∈ Jn)

be the coherent assessment associated with AJn , com-
puted by the procedure cited in the previous sec-
tion. We recall that coherence of A∗Jn amounts to
the existence, for any given j ∈ Jn and any xj ∈
[a∗j , b

∗
j ], of a coherent precise probability assessment

(pEi|Hi , i ∈ Jn) on FJn , which is consistent with A∗Jn
and is such that pEj |Hj = xj . We observe that, de-
noting by Π∗ the set of coherent precise assessments
P = (pE|H , E|H ∈ FJn) on FJn which are consistent
with A∗Jn , it holds that Π = Π∗.

To construct the classes of conditional proba-
bilities associated with a given pair (FJn ,AJn),
we will use a suitable finite sequence (F0,A0),
(F1,A1), . . . , (Fk,Ak), with (F0,A0) = (FJn ,AJn)
and F0 ⊃ F1 ⊃ · · · ⊃ Fk, where Aj is the sub-
assessment associated with Fj .
Rather than discuss this in full generality, let us look at
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(F0,A0). Let C0 be the set of constituents associated
with F0 and Π0 the set of coherent precise assessments
P on F0 which are consistent with A0 . Then, given

a precise coherent assessment P0 = (p
(0)
E|H , E|H ∈

F0) ∈ Π0 on F0 we consider the following system (S0)
in the unknowns λ = (λC , C ∈ C0) associated with
(P0,F0)

(S0)





∑

C∈C0(EH)

λC = pE|H ·
∑

C∈C0(H)

λC , ∀E|H ∈ F0

∑

C∈C0
λC =

∑

C∈C0(H0)

λC = 1 , λC ≥ 0 ∀C ∈ C0,

where H0 =
∨
E|H∈F0

H.
We observe that P0 is a particular interval-valued
probability assessment on F0 where each upper bound
coincides with the respective lower bound. Therefore,
based on Theorem 1 and Remark 1, the system (S0) is
solvable. Denoting by E0 the algebra generated by the
elements of C0, we introduce the following real function
of the pair (E, λ), with E in E0 and λ = (λC , C ∈ C0)
a vector of non-negative numbers,

φ0(E, λ) =

{ ∑
C∈C0(E) λC , if C0(E) 6= ∅

0, otherwise.
(3)

Next, let λ? = (λ?C : C ∈ C0) be a solution of the
system (S0) and D0 = {H : E|H ∈ F0} be the set
of conditioning events of F0, we consider the following
partition of D0

Dz
0 = {H ∈ D0 : φ0(H,λ?) = 0}, (4)

D+
0 = D0 \Dz

0 = {H ∈ D0 : φ0(H,λ?) > 0 }. (5)

Remark 3. Note that the subset D+
0 cannot be empty

(that is Dz
0 ⊂ D0). In fact, as λ? is a solution of (S0)

we have
∑

H∈D0

φ0(H,λ?) ≥
∑

C∈C0(H0)

λ?C =
∑

C∈C0
λ?C = 1.

Hence, there exists an event H ∈ D0 such that
φ(H,λ?) > 0, that is D+

0 6= ∅.

Let X0 = D+
0 ∪{H0} be a family of conditioning events

and λ? be a solution of (S0), we set

P0(E|H) =
φ0(EH,λ?)

φ0(H,λ?)
,∀E|H, with E ∈ E0, H ∈ X0.

(6)
Then, we have

Theorem 5. The real function P0 is a conditional
probability on E0 × X0, with X0 quasi-additive w.r.t.
P0.

Proof. In order to prove that P0 is a conditional prob-
ability on E0 × X0 we need to show that P0 satisfies
properties (i), (ii), (iii). Then, such a proof will be
divided into three steps.

1) Let H be a conditioning event in X0. We obviously
have

P0(Ω|H) =
φ0(H,λ?)

φ0(H,λ?)
= 1.

Moreover, for every E ∈ E0 one has P0(E|H) ≥
0. Finally, for every couple of incompatible events
E1, E2 in E0, we have

P0(E1 ∨ E2|H) = φ0(E1H∨E2H,λ
?)

φ0(H,λ?)
=

φ0(E1H,λ
?)

φ0(H,λ?)
+ φ0(E2H,λ

?)
φ0(H,λ?)

=

P0(E1|H) + P0(E2|H).

Therefore, for each H ∈ X0, P0(·|H) is a finitely ad-
ditive probability on E0; that is P0 satisfies property
(i).

2) For each conditioning event H ∈ X0 we trivially
have P0(H|H) = 1. Then, P0 satisfies property
(ii).

3) Let E1, E2, H be three events in E0 such that H
and E1H are in X0. Then, one has φ0(H,λ?) > 0
and φ0(E1H,λ

?) > 0. Therefore, we obtain

P0(E1E2|H) = φ0(E1E2H,λ
?)

φ0(H,λ?)
,

P0(E2|E1H) = φ0(E1E2H,λ
?)

φ0(E1H,λ?)
,

P0(E1|H) = φ0(E1H,λ
?)

φ0(H,λ?)
.

Hence, it is easily seen that P0(E1E2|H) =
P0(E2|E1H)P0(E1|H), so that P0 satisfies property
(iii).

Therefore, P0 is a conditional probability on E0 × X0.
Next, we prove that X0 is a P0−quasi additive class.
Given two conditioning events H1, H2 ∈ X0 we have
H1 ∨ H2 ⊆ H0. In addition, as φ0(H1, λ

?) > 0 and
φ0(H2, λ

?) > 0, it follows that P0(H1|H0) > 0 and
P0(H2|H0) > 0. Hence, conditions (i) and (ii) in (2)
hold with K = H0. Hence, X0 is a P0−quasi additive
class.

From Theorem 5 and Theorem 2, it immediately fol-
lows

Corollary 1. The conditional probability P0 on
E0 ×X0 is coherent.

We define the following partition of F0

Fz0 = {E|H ∈ F0 : H ∈ Dz
0}

F+
0 = {E|H ∈ F0 : H ∈ D+

0 }.
Remark 4. Note that as λ? is a solution of system
(S0) one has

P0(E|H) = p
(0)
E|H , ∀E|H ∈ F+

0 . (7)
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If Fz0 6= ∅, setting F1 = Fz0 , we consider the pair
(F1,A1). Note that, since D+

0 cannot be empty it fol-
lows that F1 is a strict subset of F0. Then, repeating
what has already been done to construct P0, replacing
index 0 by 1, we are able to define a real function P1

on E1×X1 which is a coherent conditional probability
on E1 ×X1, with X1 quasi additive w.r.t. P1.
Consequently, if Fz1 6= ∅, we set F2 = Fz1 and so on.
We continue in this way until we obtain Fzk = ∅ for
some integer k. Therefore, we construct a strictly de-
creasing sequence (F0,A0), (F1,A1), . . . (Fk,Ak). In-
cidentally, we also have a sequence {F+

0 ,F+
1 , . . . ,F+

k }
which is a partition of FJn . In this way we are able
to construct a finite sequence P0, P1, . . . , Pk such that,
for each i = 0, 1, . . . , k, Pi is a conditional probability
on Ei×Xi, with Xi quasi additive w.r.t. Pi. Moreover,
each Pi is also coherent. Based on a reasoning as in
Remark 4, for each i = 0, 1, . . . , k, we have

Pi(E|H) = p
(i)
E|H ,∀E|H ∈ F+

i . (8)

Finally, we note that the finite sequence
{E0, E1, . . . , Ek} is not increasing and given two
sets Xi,Xj in {X0,X1, . . . ,Xk}, with i 6= j, one has

Xi ∩ Xj = ∅. (9)

Example 1 (continued)
We set (F0,A0) = (FJ3 ,AJ3). The set C0(H0) of the
constituents associated with F0 and contained inH0 =
{D∨AC∨AB} is given in (1). By setting P0 = ( 1

2 , 0,
1
3 )

as a precise assessment on F0, it can be proved that
P0 ∈ Π0; moreover the system (S0) associated with
(F0,P0) is

(S0)





λ3 = 1
2 (λ1 + λ3 + λ5 + λ7)

λ3 + λ4 = 0(λ3 + λ4 + λ5 + λ6)
λ3 + λ4 = 1

3 (λ1 + λ2 + λ3 + λ4)
λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 = 1
λh ≥ 0, h = 1, 2, . . . , 7 .

Coherence of P0 requires that system (S0) is solvable.
The vector λ∗ = (λ∗h, h = 1, . . . , 7) with λ∗6 = 1 and
λ∗h = 0, if h 6= 6, is a solution of (S0). Moreover, we
have φ0(D,λ∗) = λ∗1 +λ∗3 +λ∗5 +λ∗7 = 0, φ0(AC, λ∗) =
λ∗3 + λ∗4 + λ∗5 + λ∗6 = 1 and φ0(AB, λ∗) = λ∗1 + λ∗2 +
λ∗3 + λ∗4 = 0. Thus, Dz

0 = {D,AB} and D+
0 = {AC}.

Then, we set P0 : E0 × X0 as in (6), where E0 is the
algebra generated by the constituents given in (1) and
X0 = {AC,D ∨AC ∨AB} is trivially a quasi additive
class w.r.t. P0. In particular, the value

P0(E2|H2) = P0(B|AC) =
λ∗3 + λ∗4

λ∗3 + λ∗4 + λ∗5 + λ∗6
= 0

is consistent with AJ3 . Now, since F+
0 = {B|AC},

we set F1 = F0 \ {B|AC} and we consider the pair

(F1,A1) = ({ABC|D,C|AB}, ([ 12 , 1], [ 13 ,
2
3 ])). The set

C1 of the constituents associated with the family F1 is

C1 = {R0, R2, R4, R5, R6, R7} = {C1, . . . , C6},

where C1 = ABCcD, C2 = ABCcDc, C3 = ABCD,
C4 = ABCDc, C5 = (Ac ∨ Bc)D,C6 = (Ac ∨ Bc)Dc.
Moreover H1 = {D ∨ AB} and C1(H1) = C1 \ {C6}.
We choose the sub-assessment ( 1

2 ,
1
3 ) of P0 on F1 as the

precise coherent assessment P1 on F1 consistent with
A1 (we could have chosen any other coherent assess-
ment P1 on F1 consistent with A1). The system (S1)
associated with the pair (F1,P1), where P1 = ( 1

2 ,
1
3 ),

is

(S1)





λ3 = 1
2 (λ1 + λ3 + λ5)

λ3 + λ4 = 1
3 (λ1 + λ2 + λ3 + λ4)

λ1 + λ2 + λ3 + λ4 + λ5 = 1
λh ≥ 0, h = 1, 2, . . . , 5 .

Since coherence of P0 requires coherence of each sub-
vector, we have that the assessment P1 on F1 is co-
herent. Then, system (S1) is solvable and a solution
is given by λ∗ = (λ∗h, h = 1, . . . , 5) with λ∗1 = λ∗2 =
λ∗3 = 1

3 and λ∗4 = λ∗5 = 0. We have φ1(D,λ∗) =
λ∗1+λ∗3+λ∗5 = 2

3 and φ0(AB, λ∗) = λ∗1+λ∗2+λ∗3+λ∗4 = 1.

Thus, Dz
1 = ∅ and D+

1 = {D,AB}. Then, we set
P1 : E1 ×X1 as in (6) where index 0 is replaced by in-
dex 1, E1 is the algebra generated by the constituents
C1, . . . , C5 and X1 is the class of conditional events
{D,AB,D ∨AB}. In particular, the values

P1(ABC|D) =
λ∗
3

λ∗
1+λ

∗
3+λ

∗
5

=
1
3
2
3

= 1
2 ,

P1(C|AB) =
λ∗
3+λ

∗
4

λ∗
1+λ

∗
2+λ

∗
3+λ

∗
4

=
1
3

1 = 1
3

are consistent with AJ3 . Moreover, X1 is quasi ad-
ditive w.r.t. P1 (X1 is also additive); in particular
P1(D|H1) + P1(AB|H1) > 0.

5 Extension of the probability Pi on
Ei ×Xi to P 0

i on E0 ×Xi

In this section, for each i = 1, . . . , k (supposing k ≥ 1),
we introduce a conditional probability P 0

i on E0 ×Xi,
with Xi quasi additive w.r.t. P 0

i , such that its restric-
tion on Ei × Xi is the probability Pi defined above.
Rather than discuss this in full generality, let us look at
i = 1. Based on definition (6), where we have replaced
index 0 by 1, for every E|H with E ∈ E1, H ∈ X1 the
probability P1 is defined as follows

P1(E|H) =
φ1(EH, δ?)

φ1(H, δ?)
, (10)
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where δ? is a solution of the following system (S1) in
the unknown δ = (δB , B ∈ C1)

(S1)





∑

B∈C1(EH)

δB = pE|H ·
∑

B∈C1(H)

δB ,∀E|H ∈ F1

∑

B∈C1
δB =

∑

B∈C1(H1)

δB = 1 , δB ≥ 0 ∀B ∈ C1.

Since E0 ⊇ E1, each constituent B ∈ C1 can be writ-
ten as the disjunction of the constituents contained in
C0(B), such as

B =
∨

C∈C0(B)

C. (11)

We note that, as C0 is a partition of Ω, each set C0(B)
is non empty. Moreover, given two constituents B′ and
B′′ belonging to C1, as B′B′′ = ∅, we have

C0(B′) ∩ C0(B′′) = ∅. (12)

Next, adding, for each component δB of δ, the follow-
ing constraints

δB =
∑

C∈C0(B)

λC , λC ≥ 0, ∀C ∈ C1(B) (13)

to system (S1), we obtain the following system (S0
1) in

the unknown λ = (λC , C ∈ C0) associated with (S1)





∑

B∈C1(EH)

(
∑

C∈C0(B)

λC) = pE|H ·
∑

B∈C1(H)

(
∑

C∈C0(B)

λC),

∀E|H ∈ F1,∑

B∈C1

(
∑

C∈C0(B)

λC) =
∑

B∈C1(H1)

(
∑

C∈C0(B)

λC) = 1,

δB =
∑

C∈C0(B)

λC , ∀B ∈ C1,

λC ≥ 0, ∀ C ∈ C0(B) , ∀ B ∈ C1.

Then, from (11) and (12) we deduce that for each so-
lution of (S1) there exists at least a solution (in general
infinite solutions ) of (S0

1). In particular, indicating by
r0(·) the cardinality of C0(·), a solution of (S1) could
be λ∗ = (λ∗C , C ∈ C0) with

λ∗C =
δ?C

r0(B)
, ∀C ∈ C0(B) , B ∈ C1 . (14)

Therefore, choosing a solution λ∗ of S01 we set

P 0
1 (E|H) =

φ0(EH,λ∗)
φ0(H,λ∗)

,∀E|H, with E ∈ E0, H ∈ X1.

(15)
Then, we have

Proposition 1. The restriction to E1×X1 of the func-
tion P 0

1 defined on E0 ×X1 is P1.

Proof. It is sufficient to prove that for every event
E ∈ E1 it must be φ1(E, δ?) = φ0(E, λ∗). From (11)

and (12) we have C0(E) =
∨
B∈C1(E)

(∨
C∈C0(B) C

)
.

Then, we obtain

φ1(E, δ?) =
∑

B∈C1(E)

δ?B =
∑

B∈C1(E)

∑

C∈C0(B)

λ∗C =

∑

C∈C0(E)

λ∗C = φ0(E, λ∗).

Finally, we have

Theorem 6. The real function P 0
1 is a conditional

probability on E0×X1. Moreover, the class X1 is quasi-
additive w.r.t. P 0

1 .

Proof. By repeating the reasoning done in the first
part of the proof of Theorem 5, it can be shown that
P 0
1 is a conditional probability on E0×X1. In addition,

we observe that quasi additive property involves only
conditioning events in X1 ⊆ E1, where X1 is P1−quasi
additive. Then, from Proposition 1 it follows that X1

is a quasi additive class w.r.t. P 0
1 .

By repeating the reasoning above for i = 2 . . . k and by
setting P 0

0 = P0 we are able to construct a sequence
of conditional probabilities P 0

i defined on E0×Xi, i =
0, . . . k, such that, for each i, Xi is quasi additive w.r.t.
P 0
i . Furthermore, by Theorem 2, each P 0

i is a coherent
conditional probability on E0 ×Xi.

6 A quasi additive class with all
conditioning events of F .

In this section we will construct a conditional proba-
bility P01...k on E × X , where E = E0 and X is the
union of the classes X0,X1, . . . ,Xk. Therefore, each
conditioning event of F will belong to X . Next, we
will show that X is a quasi additive class respect to
this probability. Finally, we will see that P01...k coin-
cides with P on F .
Let {P 0

i , i = 0, . . . , k} be the sequence of conditional
probabilities introduced in the previous section, with
P 0
i defined on E0 × Xi. For every E|H with E ∈ E0

and H ∈ X , where X = X0 ∪ X1 ∪ . . . ∪ Xk, we set

P01...k(E|H) = P 0
i (E|H), with i such that H ∈ Xi

(16)

Remark 5. The previous definition of P01...k is not
ambiguous. In fact, given an event H ∈ X , by relation
(9) there exists a unique Xi in {X0,X1, . . . ,Xk} such
that H ∈ Xi.

Then, we have
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Theorem 7. The real function P01...k is a conditional
probability on E0×X . Moreover, the class X is quasi-
additive w.r.t. P01...k.

Proof. In order to prove that P01...k is a conditional
probability on E0 × X we have to show that P01...k

satisfies properties (i), (ii), (iii). Let H be a condi-
tioning event in X , we have that H ∈ Xr for some
r = {0, 1, . . . , k}. Since both properties (i) and (ii) are
known to hold for P 0

r , from definition (15) it follows
that they also hold for P01...k. Next, given three events
E1, E2 and H, with E1, E2 ∈ E0 and H,E1H ∈ X , the
proof that P01...k satisfies property (iii) falls naturally
into two cases.
a) If H ∈ Xr and E1H ∈ Xr for some r ∈ {0, 1, . . . , k},
then property (iii) holds for P01...k since it holds for
P 0
r .
b) If H ∈ Xr and E1H ∈ Xs, for some r, s ∈
{0, 1, . . . , k} with r < s , then it follows that E1H /∈
Xr. Therefore, we have P 0

r (E1H|Hr) = 0. Moreover,
as E1E2H ⊆ E1H one has P 0

r (E1E2H|Hr) = 0. Thus,
we obtain

P01...k(E1E2|H) =
P 0
r (E1E2H|Hr)
P 0
r (H|Hr)

= 0

and

P01...k(E1|H) =
P 0
r (E1H|Hr)
P 0
r (H|Hr)

= 0.

Then, property (iii), that is P01...k(E1E2|H) =
P01...k(E2|E1H)P01...k(E1|H), is satisfied by 0 = 0.
To prove that X is a quasi additive class w.r.t.P01...k

we have to show that, the conditions (i) and (ii) in (2)
are satisfied by P01...k. Let H1 and H2 be two condi-
tioning events in X , we distinguish two cases:
a) H1, H2 ∈ Xr, for some r ∈ {0, 1, . . . , k}. Quasi ad-
ditivity conditions (i) and (ii) in (2) hold for P01...k

since they hold for P 0
r ;

b) H1 ∈ Xr and H2 ∈ Xs for some r, s ∈ {0, 1, . . . , k}.
In this case, we consider Hm, where m = min{r, s}.
Since Hm is the disjunction of the conditioning events
contained in Dm, it follows that Hm ∈ Xm. Moreover,
we have

H1 ∨H2 ⊆
∨

H∈Dm
H = Hm,

then condition (i) in (2) is satisfied by K = Hm. Next,
we have

P01...k(H1|Hm) + P01...k(H2|Hm) > 0.

In fact, if m = r, then P01...k(H1|Hm) = P 0
r (H1|Hr) >

0, otherwise if m = s, then P01...k(H2|Hm) =
P 0
s (H2|Hs) > 0. We can conclude that condition (ii)

in (2) is satisfied by K = Hm.

Remark 6. We observe that in the first part of the
previous proof the further case H ∈ Xr and E1H ∈ Xs,

with r > s, cannot be possible. In fact, if it were true,
as H /∈ Xs, there would be Ps(H|Hs) = 0. Therefore,
as E1H ⊆ H we would have

0 = P 0
s (H|Hs) ≥ P 0

s (E1H|Hs) > 0,

which is absurd.

Finally, based on Theorem 7 and Theorem 2 we can
conclude that P01...k is a coherent probability on E0 ×
X . Moreover, given a conditional event E|H ∈ FJn
as (F+

0 ,F+
1 , . . . , F

+
k ) is a partition of FJn there exist

i ∈ {0, 1, . . . , k} such that E|H ∈ F+
i . Then, from

(15) and (8), for each i = 0, 1, . . . , k it follows that

P01...k(E|H) = p
(i)
E|H , ∀E|H ∈ F+

i .

Therefore P01...k is consistent with AJn .

Remark 7. Since any restriction of a coherent con-
ditional probability is coherent too, then the restric-
tion of P01...k on FJn is coherent. We observe that
P01...k is, in general, not unique, although we start
from the same precise coherent assessment. More-
over, two obtained conditional probabilities P01...k and
P ′01...k could be defined on different sets of conditioning
events.

Example 1 (continued)
We set P 0

0 = P0 and, by applying (15), we extend the
conditional probabilities P1 : E1×X1 to P 0

1 on E0×X1.
Then, the function P01 : E0 ×X defined as

P01(E|H) =

{
P 0
0 (E|H), if H ∈ {AC,D ∨AC ∨AB}
P 0
1 (E|H), if H ∈ {D,AB,D ∨AB} ,

where X = {AC,D ∨AC ∨AB,D,AB,D ∨AB}, is a
coherent conditional probability on E0×X ⊇ F More-
over, we have that: (a) P01 is consistent with AJ3 ; (b)
P01(E|H) = pE|H for every E|H ∈ FJ3 , that is

P01(ABC|D) = 1
2 , P01(B|AC) = 0, P01(C|AB) = 1

3 ;

(c) X is P01-quasi additive. We observe that the class
X is not additive (for instance D ∨AC /∈ X ).

7 Further results

In this section we will give a characterization theorem
of coherent precise assessment on a finite family of con-
ditional events and a relevant way of introducing quasi
additive classes.
Let P be a precise coherent assessment on a finite
family FJn of conditional events. We recall that P
is a particular interval-valued probability assessment
on FJn where each upper bound coincides with the re-
spective lower bound, then by setting AJn = P and
based on the results obtained in previous we are able
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to construct (in a direct way) a coherent conditional
probability P01...k on E0 ×X ⊇ FJn , with X quasi ad-
ditive w.r.t. P01...k, such that the restriction of P01...k

on FJn coincides with P. Moreover, as any restriction
of a coherent conditional probability is coherent too,
we have

Theorem 8. A real-valued function P on a finite fam-
ily of conditional events FJn is coherent if and only if
P can be extended as a conditional probability P01...k

on E0 ×X ⊇ FJn , with X quasi additive w.r.t. P01...k.

A similar result, which also has been proved when the
family of conditional events is infinite, has been given
in Coletti and Scozzafava [2002] (see also Coletti and
Scozzafava [1999]) by assuming X additive. Moreover,
given a precise coherent assessment P on a finite fam-
ily of conditional events FJn , let D be the associated
set of conditioning events. By the results of the pre-
vious section we can show that the cardinality of the
quasi additive set X ⊇ D w.r.t. any coherent exten-
sion P01...k is always at most 2n, where n denotes the
cardinality of D. We observe that for an additive set
X ′ ⊇ D the cardinality could be at most 2n − 1.

Remark 8. The problem of giving an algorithm that
characterizes the whole set of conditional probabilities
consistent with the initial imprecise assessment seems
not easy and we do not consider it in this paper. How-
ever, we illustrate a procedure for constructing rele-
vant cases of conditional probabilities by considering
the algorithm for checking g-coherence of imprecise as-
sessments given in Biazzo and Gilio [2000]. Based on
(3), denoting by Λ0 the set of solutions of system S0,
we introduce the following sets of conditional events

I0 = {H ∈ D0 : φ0(H,λ) = 0, ∀λ ∈ Λ0} ,
Γ0 = D0 \ I0 .

We observe that I0 is equivalent to the set, denoted
by the same symbol, used in the algorithm for check-
ing g-coherence given in Biazzo and Gilio [2000]. As
for any given H ∈ I0 there exists a solution λH such
that φ0(H,λH) > 0, then (by a convex linear combina-
tion of the vectors λH ’s, with coefficients all positive)
there exists a solution λ such that φ0(H,λ) > 0 for
all H ∈ I0. Therefore, by recalling (5), Γ0 is the set
D+

0 associated with the solution λ, while in general the
sets D+

0 , D
z
0 associated with any other solution λ∗ 6= λ

are such that Γ0 ⊇ D+
0 and I0 ⊆ Dz

0 . Then, for each
I ⊆ Γ0 and for each J such that I ⊆ J ⊆ D0, the
class I ∪ {HJ}, where HJ =

∨
H∈J H, is a quasi ad-

ditive class which can be introduced at the first step
of the procedure. Similar quasi additive classes can be
introduced in the other steps of the procedure; at the
end, based on the union of these quasi additive classes,
we obtain a conditional probability consistent with the
initial imprecise assessment.

We can apply the procedure above to any subset Λ′0 of
the set of solutions Λ0 of the system S0; in this way we
can determine other quasi additive classes of condition-
ing events and the associated conditional probabilities
consistent with the initial assessment.
Concerning the computational complexity, we observe
that the procedure to construct the coherent proba-
bility P01...k is related to the problem of the global
checking of coherence of the initial assessment, which
tends to become intractable when the cardinality of
the starting family of conditional events increases (for
an analysis of complexity on this kind of problems see
e.g. Biazzo et al. [2005]). Local methods for reducing
the computational difficulties have been developed in
some papers (see e.g. Biazzo et al. [2003], Capotorti
and Vantaggi [2002], Capotorti et al. [2003]).

Example 2. Let be given an algebra of event E0 and a
probability P0 on E0. Of course, P0 is coherent. More-
over, let X = {H1, H2, . . . ,Hn,Ω} be any subset of
E0 \ {∅}, with P0(Hi) > 0, i = 1, . . . , n. The probabil-
ity P0 can be extended to a conditional probability P
on E0 ×X defined as

P (E|Hi) =
P0(EHi)

P0(Hi)
, ∀E ∈ E , Hi ∈ X ,

with P (E|Ω) = P0(E), for every E . We remark that:
(i) Hi∨Hj ⊆ Ω for every subset {i, j} of {1, 2, . . . , n};
(ii) P (Hi|Ω) + P (Hj |Ω) > 0; thus, X is P -quasi ad-
ditive and, of course, the conditional probability P is
coherent. As we can see, the property of quasi addi-
tivity is implicitly exploited in all the cases in which
we construct a (coherent) conditional probability by
means of ratios of unconditional probabilities.

8 Conclusions

In this paper starting from a g-coherent interval-valued
probability assessment AJn on a finite family FJn we
first have constructed a sequence of conditional prob-
abilities with quasi additive classes of conditioning
events. Then we have extended each probability in
this sequence to obtain a new sequence of conditional
probabilities with quasi additive classes of conditioning
events. Moreover, we have defined a conditional prob-
ability P01...k on E × X , where E is the algebra gener-
ated by the constituents associated with FJn and X is
a quasi additive class of conditioning events which con-
tains all conditioning events of FJn . We have shown
that P01...k is coherent and consistent with the impre-
cise assessment AJn on FJn . Finally, we have given
a characterization theorem of coherent precise assess-
ments and a relevant way of introducing quasi additive
classes.
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Abstract

We consider the linear programming relaxation
of an energy minimization problem for Markov
Random Fields. The dual objective of this prob-
lem can be treated as a concave and uncon-
strained, but non-smooth function. The idea
of smoothing the objective prior to optimiza-
tion was recently proposed in a series of papers.
Some of them suggested the idea to decrease
the amount of smoothing (so called temperature)
while getting closer to the optimum. However,
no theoretical substantiation was provided.

We propose an adaptive smoothing diminishing
algorithm based on the duality gap between re-
laxed primal and dual objectives and demonstrate
the efficiency of our approach with a smoothed
version of Sequential Tree-Reweighted Message
Passing (TRW-S) algorithm. The strategy is ap-
plicable to other algorithms as well, avoids ad-
hoc tuning of the smoothing during iterations,
and provably guarantees convergence to the opti-
mum.

1 INTRODUCTION

We consider the problem of computing the most likely con-
figuration x for a given graphical model, i.e. a distribution
pG(x; θ) ∝ exp(−EG(θ, x)). The problem to compute the
most likely labeling x (MAP labeling problem) amounts to
minimizing the energy function1

min
x∈X

EG(θ, x) = min
x∈X

{∑

v∈V
θv,xv +

∑

uv∈E
θuv,xuv

}
. (1)

While problem (1) is known to be NP-hard, we will con-
centrate mainly on the linear programming (LP) relaxation

1We describe our notation in Section 2.

of the problem, originally proposed by Schlesinger [16] –
see [24] for a recent review.

A popular approach for solving the relaxed problem is
based on maximization of its dual objective, which con-
stitutes a lower bound for the initial objective (1). It is
well-known that the dual can be treated as a concave but
non-smooth unconstrained problem (see e.g. [17]). There
are a number of algorithmic schemes targeting it in its orig-
inal non-smooth form, e.g. [16, 24, 8, 17, 9, 4]. Some of
them, namely sub-gradient algorithms [17, 9] are guaran-
teed to reach its solution, but are extremely slow, others –
message passing (e.g. [8, 4, 11]) – typically perform faster,
but may get stuck in non-optimal points, since they can be
considered as (block-)coordinate ascent.

Slow convergence of sub-gradient methods and stalling of
message-passing ones are caused by the non-smoothness
of the objective. Hence the idea of applying smoothing
was proposed in a series of recent papers [6, 25, 7, 15].
However to reach a good approximate solution of the ini-
tial non-smooth objective the smoothing degree should be
selected properly. There are two approaches how this can
be done:
(i) Precision oriented smoothing approach [7, 15], follow-
ing the fundamental paper [12]. The smoothing degree de-
pends on the precision to be achieved and is selected and
held fixed (or it changes only slightly) during the algorithm
iterations.
(ii) Iterative or diminishing smoothing approach follows
the idea to decrease the smoothing degree as the current it-
erate gets closer to the optimum. So far we are not aware of
any algorithm employing this scenario for the problem (1),
although the basic idea is mentioned in several papers,
cf. [6, 25].

The idea of the diminishing smoothing corresponds to the
following intuition: as long the iterate is far from the op-
timum one can use a coarse (very smooth) approximation
of the objective, since it allows for faster optimization. The
closer the iterate is to the optimum, the finer (and thus less
smooth and computationally more costly) the approxima-
tion is required to guarantee a certain solution accuracy.
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Both, precision oriented and diminishing smoothing ap-
proaches operate with the smoothing gap i.e. the largest
difference between an objective function and its smooth
approximation. The smoothing gap however can be con-
trolled only indirectly via some smoothing parameter. In
its turn the smoothing parameter can be set based on a
worst-case analysis describing its influence on the smooth-
ing gap. Alternatively this influence can be estimated
adaptively, as discussed in [15].

For our diminishing smoothing approach some method for
estimating the upper bound for the LP relaxation of the
energy minimization problem is required. There are sev-
eral recent papers addressing this issue [26, 18, 15] and
we found that the method proposed in [15] fits our needs
best. Our algorithm itself was inspired by [13], but in con-
trast we consider a purely dual optimization instead of the
primal-dual one (to avoid massive memory allocation for
the primal problem). Furthermore we focus on efficiency
of the algorithm on average rather than in the worst-case
by exploiting the specific structure of our problem.

We demonstrate the efficiency of our approach with a
smooth version of the Sequential Tree-Reweighted Mes-
sage Passing (S-TRWS) algorithm evaluated on the Mid-
dlebury database [20] and a series of computer generated
examples. This algorithm, proposed for fixed smoothing
in [11] and partially analyzed in [25] estimates the tree-
reweighted free energy and can be considered as a smooth
version of TRW-S [8]. Contrary to the fixed smoothing
we consider a diminishing sequence of the smoothing pa-
rameter and show that this solves the LP relaxation of
the energy minimization problem (1) up to a given preci-
sion. We compare our approach to the S-TRWS algorithm
with a final precision oriented smoothing and a Nesterov
first-order smoothing based optimization scheme proposed
in [7] and [15] and show that it significantly outperforms
all of them.

Without loss of generality, we concentrate on the common
special case of grid-structured models here (as the bench-
mark [20] deals with this setting), but our results apply to
non-grid-structured graphs as well.

Contribution. The contribution of this paper is four-fold:

1. We describe a diminishing smoothing algorithm for
the LP relaxation of the problem (1), based on the du-
ality gap of the relaxed problem.

2. We analyze the method of adaptive selection of the
smoothing parameter proposed in [15] and show that
in general it does not guarantee attainment of the pre-
scribed precision (as implicitly stated in [15]). We
propose a modification of the method, which elimi-
nates this disadvantage, while preserves its efficiency.

3. Additionally, we propose a method for obtaining the
sound stopping criterion for algorithms which max-

imize the tree-reweighted free energy [22] via mini-
mizing its dual [5, 3, 11]. To this end we provide a
method for computing a primal bound from a current
dual iterate. This bound approaches the optimum of
the tree-reweighted free energy together with the dual
iterates.

4. We evaluate the S-TRWS algorithm with different
smoothing selection strategies as a method for solv-
ing the LP relaxation of the MRF energy minimization
problem (1).

Paper Organization. Section 2 briefly describes basic no-
tions. Section 3 is devoted to estimation of upper (primal)
bounds for the dual objective and its smooth approxima-
tion. Section 4 describes possible strategies of smoothing
selection. And finally Sections 5 and 6 contain results of
experimental evaluation and conclusions respectively.

2 PRELIMINARIES

We denote by G = (V, E) the undirected graph with nodes
V and edges E ⊂ V × V . Associated with the nodes
v ∈ V are finite sets of labelsXv . The Cartesian product set
X = ⊗v∈VXv is the space of possible labelings x ∈ X , i.e.
a labeling is a collection (xv : v ∈ V) of labels. We use the
short-hand notation xuv for a pair of labels (xu, xv), and
Xuv for the corresponding space Xu × Xv . The cost func-
tions θv : Xv → R, v ∈ V , and θuv : Xuv → R, uv ∈ E ,
are referred to as unary and pairwise potentials, respec-
tively, with the complete set of potentials associated with
the graph denoted as θ.

As mentioned in the introduction, our objective function
is the dual of a linear programming relaxation of the en-
ergy minimization problem (1). As is widely known (see
e.g. [24]), the linear programming relaxation of the prob-
lem (1) reads

min
µ

∑

v∈V

∑

xv∈Xv
θv,xvµv,xv +

∑

uv∈E

∑

xuv∈Xuv
θuv,xuvµuv,xuv

s.t.





∑
xv∈V µv,xv = 1, v ∈ V ,∑
xv∈V µuv,xuv = µu,xu , xu ∈ Xu, uv ∈ E ,∑
xu∈V µuv,xuv = µv,xv , xv ∈ Xv, uv ∈ E ,

µuv,xuv ≥ 0, xuv ∈ Xuv, uv ∈ E .
(2)

Such a formulation in terms of relaxed indicator vectors µ
is commonly referred to as the overcomplete representa-
tion of a discrete graphical model, in which the local poly-
tope L(G), as defined by the constraints of (2), represents
a simpler outer bound to the marginal polytope, i.e. the
convex hull of all indicator vectors of allowable labelings,
cf. [23]. The linear program (2) can be written in short as
minµ∈L(G) 〈θ, µ〉. Abusing notation we will denote 〈θ, µ〉
by E(µ).

It turns out that a dual problem for (2) has a simpler struc-
ture and less variables, hence its optimization is easier than
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the direct optimization of (2). There are several ways how
the dual problem can be derived and represented. We will
follow a dual decomposition approach [21, 9], since it al-
lows for efficient optimization of real-sized problems (see a
comparison in [19]). For the sake of simplicity we consider
a special case typical for grid graphs.

Let Gi = (Vi, E i), i ∈ {1, 2}, be two acyclic subgraphs
of the master graph G. Let V1 = V2 = V , E1

⋃ E2 = E
and E1

⋂ E2 = ∅ (e.g. if G is a grid graph, E1 may contain
all horizontal edges of G and E2 all vertical ones). Then
the overall energy becomes the sum of the energies corre-
sponding to these subgraphs,

EG(θ, x) =
2∑

i=1

∑

v∈Vi
θiv,xv +

∑

uv∈Ei
θiuv,xuv

= EG1(θ1, x) + EG2(θ2, x), (3)

provided θiuv = θuv, uv ∈ E i, i = 1, 2 and θ1
v,xv+θ2

v,xv =
θv,xv , ∀v ∈ V, xv ∈ Xv . The latter condition can be rep-
resented in a parametric way as θ1

v,xv =
θv,xv

2 + λv,xv and
θ2
v,xv =

θv,xv
2 − λv,xv , v ∈ V, xv ∈ Xv , where λv,xv ∈ R.

The dual space {λv,xv ∈ R|v ∈ V, xv ∈ Xv} will be de-
noted as Λ. Thus we consider θi as a function of λ and
obviously have

min
x∈X

EG(θ, x) ≥ max
λ∈Λ

2∑

i=1

min
x∈X

EGi(θ
i(λ), x). (4)

It has been shown [10] that all decompositions into acyclic
subgraphs which cover the original graph yield the same
lower bound as the one in (4). Furthermore, it is estab-
lished that this bound equals the solution of the linear pro-
gramming problem (2).

Hence, in order to solve the relaxed problem (2) we will
maximize its dual, the concave but non-smooth function U
defined by the maximand of (4), i.e.

U(λ) =
2∑

i=1

min
x∈X

EGi(θ
i(λ), x) . (5)

We note that the function U(λ) can be easily evaluated by
dynamic programming for any acyclic graph Gi.
Smoothed Dual Objective and its Primal Counterpart.
There is a number of approaches to maximize (5). Along
with [6, 25, 7, 15] we propose to use a smoothing tech-
nique [12] to obtain a smooth approximation of U(λ). This
would allow both to utilize powerful smooth optimization
algorithms (e.g. [15]) and to obtain guarantees for conver-
gence to the optimum of the smooth (and as we will see
strictly convex) function for efficient (block-)coordinate
descent methods similar to TRW-S [8].

The way we construct the smooth approximation is dictated
by the need to preserve the efficiency of the decomposition.

The smooth function should be easily computable over sub-
graphs Gi, like its non-smooth counterpart U .

Each summand in (5) may be written as the inner product
of the potential vector θi and a suitable binary indicator
vector φ(x), i.e.

U i(λ) := min
x∈X

EGi(θ
i(λ), x) = min

x∈X

〈
θi(λ), φ(x)

〉
. (6)

As this minimum is non-smooth in λ, the same holds for the
objective function (5). To obtain a smooth approximation,
we replace min (or rather −max) by the well-known log-
sum-exp (or soft-max) function (cf. [12]), yielding

Ũ iρ(λ) = −ρ log
∑

x∈X
exp

〈
−θi(λ)/ρ, φ(x)

〉
(7)

with smoothing parameter ρ. The resulting function Ũ iρ
uniformly approximates U i, that is

Ũ iρ(λ) + ρ log |X | ≥ U i(λ) ≥ Ũ iρ(λ). (8)

This directly implies

Ũρ(λ) + 2ρ log |X | ≥ U(λ) ≥ Ũρ(λ) (9)

for Ũρ :=
∑2
i=1 Ũ

i
ρ.

Please note that for acyclic graphs Gi evaluating Ũ iρ (and
thus Ũρ) is as easy as U i, and can be done by dynamic
programming.

Inequality (9) provides a possibility to exchange optimiza-
tion of the non-smooth function U with the optimization
of its smooth approximation Ũρ. Selecting the smoothing
parameter ρ small enough (see Section 4.1) or properly de-
creasing it during optimization (Section 4.2), one can guar-
antee attainment of the optimum of U with a given preci-
sion.

Additionally for ρ = 1 the function Ũρ has another impor-
tant meaning: it is a dual function for the tree-reweighted
free energy [22] and can be used to estimate approximate
marginals [5, 3, 11].

Let us denote by Nuv the number of subgraphs containing
the edge uv ∈ E and by Nv the number of subgraphs con-
taining the node v ∈ V . In our special case Nuv = 1 and
Nv = 2.

Theorem 1 ([22, 25]) The tree-reweighted free energy

Ẽρ(µ) := 〈θ, µ〉 − ρ
(∑

v∈V

∑

xv∈Xv
Nvµv,xv logµv,xv

+
∑

uv∈E

∑

xuv∈Xuv
Nuvµuv,xuv log

µuv,xuv
µv,xvµu,xu

)
(10)

defined over L(G) is a Lagrange dual for Ũρ(λ). And since
strict duality holds min

µ∈L(G)
Ẽρ(µ) = max

λ∈Λ
Ũρ(λ).
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S-TRWS Algorithm There are a number of approaches to
optimize Ũρ (see e.g. [11, 15, 5]). In this paper we evaluate
the S-TRWS algorithm originally devoted to computation
of the function Ũρ with a fixed value ρ = 1 [11]. Con-
trary to this we will operate ρ in a way to obtain a good
(up to a given precision) approximation for the maximum
of the non-smooth function U . We selected this algorithm
because its original, non-smoothed analogue [8] is one of
the most efficient schemes for optimizing U . The second
advantage of S-TRWS is that it is guaranteed to converge
to the optimum of Ũρ for any fixed ρ contrary to TRW-S,
which does not converge to the optimum of U in general.

We introduce vector of “marginals“
νiρ(λ) ∈ R

∑
w∈V∪E |Xw|, i ∈ {1, 2} by

νiρ(λ)
w,xw

:=

∑
x′∈X ,x′w=xw

exp
〈
−θi(λ)/ρ, φ(x′)

〉

exp(−Ũ iρ(λ)/ρ)
. (11)

It is well-known (see e.g. [15, Lemma 1]), that the coordi-
nates of the gradient∇Ũρ ∈ R

∑
v∈V |Xv| are equal to

∇Ũρ(λ)v,xv = ν1
ρ(λ)v,xv − ν2

ρ(λ)v,xv . (12)

The S-TRWS algorithm is a specially organized coordinate
descent procedure applied to the smoothed function Ũρ. It
sequentially updates variables λ according to the rule

λv,xv := λv,xv+(log ν1
ρ(λ)v,xv−log ν2

ρ(λ)v,xv )/2 . (13)

Applying this rule corresponds to a coordinate ascent step
w.r.t. variable λv,xv . The power of this algorithm stems
from an extremely efficient way of processing updates (13).
Namely, updates are done sequentially, but the computa-
tional cost to perform all these

∑
v∈V |Xv| updates is ba-

sically the same as just computing gradient coordinates
νiρ(λ) (see [8] for details), which makes it superior to any
general-purpose gradient based algorithm. Due to (12), it
is easy to see that an optimum of Ũρ is a fix-point of this
algorithm. We refer to [11] for a proof of convergence. We
also note that the implementation of this algorithm is far
from trivial because of the necessity to exponentiate very
large numbers, corresponding to small values of ρ in (11).
We coped with this difficulty efficiently based on the idea
provided in [12, p.140].

3 UPPER BOUNDS ESTIMATION

There are at least two reasons why it is important to be
able to reconstruct a sequence of primal feasible points
µt ∈ L(G) converging to a solution of the problem (2)
or (10), from a sequence λt converging to the maximum
of the corresponding dual objective. The first reason is the
values µt themselves: for ρ = 1 they can be considered
as approximate marginal probabilities [27, 22]. The second

reason is an upper bound E(µt) or Ẽρ(µt), which can be
used for sound stopping criteria [15]. We will use the upper
bound to construct a diminishing sequence of smoothing
parameters ρ to get an ε-approximation for a maximum of
the non-smooth function U via optimization of its smooth
approximation Ũρ, see Section 4.2.

Primal LP Objective Estimation The simplest (and thus
quite popular) way of computing upper bounds for maxi-
mum of (5) is rounding schemes [14]. It allows to estimate
an integer solution x ∈ X , from a dual iterate λ. However,
the energy E(θ, x) corresponding to the integer solution x
may not achieve the minimal value of objective (2) even in
case the labeling was estimated based on the optimal value
λ∗ delivering the maximum of the dual objective U .

Alternatively we use the primal LP-bound con-
struction introduced in [15]. We denote by
R+(G) = R

∑
v∈V |Xv|+

∑
uv∈E |Xuv|

+ a nonnegative linear
half-space containing the local polytope L(G). Addition-
ally we use the notation Luv(µu, µv) ⊂ R|Xuv|+ for the
domain of pairwise marginals µuv, uv ∈ Xuv satisfying
the constraints of (2) for given unary marginals µu, µv . We
use the following reformulation of [15, Thm. 2]:

Theorem 2 Let µ̂ρ(λ) ∈ R+(G) be computed as

µ̂ρ(λ)v,xv =
ν1
ρ(λ)v,xv + ν2

ρ(λ)v,xv
2

, (14)

µ̂ρ(λ)uv,xuv = arg min
µuv,xuv∈Luv(µ̂ρ(λ)u,µ̂ρ(λ)v)

〈θuv, µuv〉 . (15)

Then for λ̃ = arg maxλ∈Λ Ũρ(λ) holds

U(λ̃) + 2ρ log |X | ≥ E(µ̂ρ(λ̃)) ≥ U(λ), λ ∈ Λ . (16)

The inequality (16) basically states that the bound
E(µ̂ρ(λ̃)) becomes exact as ρ vanishes.

As noted in [15], evaluating (15) constitutes a transporta-
tion problem – a well-studied class in linear programing.
Since the size of each individual problem is small, these
can be easily solved by any appropriate method of linear
programming. We found a specialization of the simplex
method [1] to be quite efficient in our case.

Tree-Reweighted Free Energy Estimation. The upper
bound for the minimum of the tree-reweighted energy (10)
can be estimated in the same manner as in Theorem 2.

Theorem 3 Let µ̃ρ(λ) ∈ R+(G) be computed as

µ̃ρ(λ)v,xv =
ν1
ρ(λ)v,xv + ν2

ρ(λ)v,xv
2

,

µ̃ρ(λ)uv,xuv = arg min
µuv,xuv∈Luv(µ̃ρ(λ)u,µ̃ρ(λ)v)

〈θuv, µuv〉

− ρ
∑

xuv∈Xuv
Nuvµuv,xuv log

µuv,xuv
µv,xvµu,xu

. (17)
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Then Ẽρ(µ̃ρ(λ)) ≥ U(λ′) for any λ, λ′ ∈ Λ and for
λ̃ = arg maxλ∈Λ Ũρ(λ) holds U(λ̃) = Ẽρ(µ̃ρ(λ̃)).

Please note that evaluating (17) constitutes a small-sized
convex problem (an entropy maximization kind problem)
with linear constraints. It can be efficiently solved e.g. by
interior point methods.

As we already mentioned, Theorem 3 defines a method for
estimating an upper bound for the optimal value of the tree-
reweighted energy (10), which can be utilized to construct-
ing a sound stopping criterion based on the duality gap for
algorithms maximizing Ũρ.

4 SMOOTHING SCHEDULING

In this section we will discuss how to estimate an optimum
of U via optimization of its smooth approximation Ũρ, i.e.
how the smoothing parameter ρ can be selected or/and up-
dated to guarantee the achievement of an ε-approximate so-
lution of U .

We consider two approaches of controlling the smoothing
gap ∆ = maxλ∈Λ U(λ) − Ũρ(λ): precision oriented and
diminishing smoothing. Each of them will be considered
in connection to both worst-case and adaptive estimation
of the smoothing parameter ρ for a given value of ∆.

4.1 PRECISION-ORIENTED SMOOTHING

Precision-Oriented Worst-Case Smoothing Parameter
Selection. The simplest way to select the parameter ρ is
to fix it small enough. Let λ∗ and λ̃ denote optimal points
of U and Ũρ respectively. By applying the inequality (9) to
λ̃ and λ∗ and taking into account that Ũρ(λ̃) ≥ Ũρ(λ∗) and
U(λ∗) ≥ U(λ̃) we obtain

Ũρ(λ̃) + 2ρ log |X |︸ ︷︷ ︸
=:∆(ρ)

≥ U(λ∗) ≥ Ũρ(λ̃) . (18)

Hence if the inequality

∆(ρ) < ε (19)

holds, the optimal value U(λ∗) can be estimated with pre-
cision ε by optimizing Ũρ. Inequality (19) can be trans-
formed into a range of allowed values for the smoothing
parameter: 0 ≤ ρ < ε

2 log |X | . However selecting an opti-
mal value ρ from this range is not straightforward and de-
pends on the algorithm used for the optimization of Ũρ.
Lemma 3 in [15] claims that if the convergence rate of the
optimization algorithm reads O( 1

ρ ) as a function of ρ, then
the optimal value of ρ equals to a half of the upper bound
of the range, i.e.

ρ =
ε

4 log |X | . (20)

However since little is known about the convergence rate of
the considered S-TRWS algorithm, we employ this lemma
as a hypothesis.

Precision-Oriented Adaptive Smoothing Parameter Se-
lection. Indeed, as mentioned in [15], the estimation
2ρ log |X | for the smoothing gap is typically loose. Hence
it was proposed by the authors to perform a local estimation
the smoothing gap as

∆̂t(ρ) := max
t
U(λt)− Ũρ(λt) (21)

for iterates λt of the optimization algorithm. The value ρ
has to be selected such that ∆̂t(ρ) < ε, even more, using
Lemma 3 in [15] it was proposed to select ρ to satisfy

∆̂t(ρ) <
ε

2
. (22)

Since this simple (and seemingly quite natural!) approach
guarantees fulfillment of (19) only locally with respect to
the sequence {λt}, it does not guarantee attainment of

(i) precision ε in general. Latter can be demonstrated by
an example, when the difference U(λ̃) − Ũρ(λ̃) in an op-
timum λ̃ of the smoothed function Ũρ is smaller than the
one U(λ∗)− Ũρ(λ∗) in the optimum λ∗ of the non-smooth
one, U , and U(λ∗) − Ũρ(λ̃) > ε. Starting an algorithm
optimizing Ũρ in the point λ̃ with

∆̂t(ρ) = U(λ̃)− Ũρ(λ̃) <
ε

2
(23)

makes it stall in the starting point, since (a) the point λ̃ is
already an optimum of Ũρ and the algorithm can not get
better with respect to Ũρ; (b) changing of the smoothing ρ
is not performed since (22) holds.

(ii) the stopping condition E(µρ(λ
t)) − U(λt) ≤ ε even

if (22) holds together with

U(λ∗)− Ũρ(λ̃) ≤ ε

2
. (24)

Condition (24) guarantees only the attainment of the accu-
racy ε for the dual objective U , but not for the duality gap.

Even though we did not encounter such unfortunate cases
in practice, there is a general cure for these. Due to Theo-
rem 3 we can estimate the Lagrange dual function Ẽρ for
Ũρ and decrease ρ by a factor η > 1 together with restarting
the algorithm from the current point as soon as

Ẽρ(µ̃ρ(λ
t))− Ũρ(λt) >

ε

2
(25)

is not satisfied. In other words, one has to select the
smoothing parameter ρ such that both conditions (22)
and (25) hold. We prove this in the supplementary mate-
rial because of the space limitations.
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Algorithm 1 Generic diminishing smoothing algorithm.

• Given: target solution accuracy ε

• Initialize: λ0 ∈ Λ, ρ0 > 0, E0
min = E(µ̂ρ0(λ0)).

• Iterate (for t ≥ 0):

1. If Etmin − U(λt) < ε Exit and return λt.

2. ρt+1 := min
{
ρt, F (Etmin, Ũρt(λ

t))
}

.

3. λt+1 := ψ[Ũρt+1 ](λt).
4. Et+1

min := min{Etmin, E(µ̂ρt+1(λt+1))}.
5. t := t+ 1. Goto 1.

4.2 DIMINISHING SMOOTHING

Instead of using a fixed value of ρ satisfying (19) or keeping
it rarely changed when estimation ∆̂(ρ) of the smoothing
gap does not satisfy (22), we will construct a diminishing ρ-
sequence depending on the duality gap. This idea is based
on the assumption that maximization of Ũρ is more efficient
for larger values of ρ.

Let us consider a generic algorithm - Algorithm 1 - for the
diminishing smoothing. Step 1 checks the stopping con-
dition based on the duality gap. Minimization in steps 2
and 4 is required to ensure monotone decreasing of ρ and to
keep the best upper bound Etmin so far. A (for the moment)
unknown mapping F : R × R → R+ determines how the
smoothing parameter ρ should be updated. The mapping
ψ[Ũρ] corresponds to one or more iterates of the S-TRWS
algorithm (see (11) and (13)) applied to the function Ũρ.

Our goal is to determine such mappings F , which at least
guarantee convergence of Algorithm 1 iterates to the opti-
mum of the non-smooth function U .

Definition 1 A mapping ψ[Ũ·] : R+ × Λ→ Λ is called an
optimizing mapping if
(i) for any ρ > 0 and any λ0 ∈ Λ the iterative process
λt+1 = ψ[Ũρ](λ

t) converges to the set Λ∗(Ũρ) of optimal
solutions of Ũρ;
(ii) Ũρ(ψ[Ũρ](λ)) ≥ Ũρ(λ), moreover for λ /∈ Λ∗(Ũρ)
holds Ũρ(ψ[Ũρ](λ)) > Ũρ(λ),
(iii) ψ[Ũρ](λ) is continuous w.r.t. ρ for any λ ∈ Λ.

Due to continuity of exp,
∑

and log, the iterates of the S-
TRWS algorithm depend continuously on ρ. Theorem 6
in [25] proves that every iteration of the algorithm strictly
increases the value of Ũρ for a fixed ρ; the convergence
of the S-TRWS algorithm to the optimum of the function
Ũρ for any fixed ρ is proved in [11]. Hence one or more
iterations of the algorithm satisfy the conditions of Def. 1.
We explain the practical importance of using more than a
single iteration of the algorithm at the end of this paragraph.

Theorem 4 Let ψ[Ũ·] : R+ × Λ → Λ be an optimizing
mapping and let the mapping F : R × R → R+ satisfy
the condition

∆
(
F (Etmin, Ũρt(λ

t))
)
≤ Etmin − Ũρt(λt)

2
(26)

where equality holds only when Etmin− Ũρt(λt) = 0. Then
iterates λt of Algorithm 1 converge to the optimum of the
function U .

Proof. From the first property of an optimizing mapping
(see Def. 1) follows that it suffices to prove that ρt t→∞−−−→ 0
and ρt > 0, ∀t. Since E(µ) > Ũρ(λ) for any µ, λ /∈
Λ∗(U) and ρ ≥ 0, from step 2 follows that ρt > 0, ∀t.
Sequence ρt is monotone and bounded by 0 from below,
thus it converges to some ρ∗ ≥ 0. We will prove that
ρ∗ = 0. Let ρ∗ 6= 0. From (26), which is strict while
Etmin − Ũρt(λt) 6= 0, follows that Ũρt(λt) + ∆(ρt+1) <
E(µ̂ρ(λ

t))−∆(ρt+1). Taking the limit as t tends to infin-
ity, denoting λ̃ = arg minλ∈Λ Ũρ∗(λ) and using continuity
in ρ and λ of U(λ), Ũρ(λ), E(µ̂ρ(λ)) and ψ we obtain
Ũρ∗(λ̃) + ∆(ρ∗) < E(µ̂ρ∗(λ̃)) − ∆(ρ∗). Since ∆(ρ) =

2 log |X |, from (16) follows E(µ̂ρ∗(λ̃)) − ∆(ρ∗) ≤ U(λ̃)

and thus Ũρ∗(λ̃) + ∆(ρ∗) < U(λ̃). From (9) follows the
contradiction, which implies ρ∗ = 0. �
As follows from the proof nothing prevents to improve the
upper bound Etmin by using any available method of its es-
timation align with the one provided by Theorem 2. In our
experiments we use rounding schemes [14], which some-
times allows to get better estimation of Etmin and hence
speed-up Algorithm 1.

Number of cycles of the S-TRWS algorithm, used for com-
puting the optimizing mapping ψ, should be carefully se-
lected because of the fact, that performing 1 cycle of the
S-TRWS without prior change of the smoothing parameter
is computationally 2 times cheaper than performing it with
the change. This is caused by peculiarities of the S-TRWS
algorithm. Namely, to compute values νiρ(λ)

v,xv
(see (11))

it has to perform both so-called forward and backward
moves of a dynamic programming algorithm. And if after a
given run no changes where made to smoothing, the result
of the forward (backward) move do not need to be recom-
puted. It means, that computing n cycles of the S-TRWS
algorithm with a constant smoothing costs only n + 1 or-
acle calls (additional one oracle call for the initial forward
move) instead of 2n.

Diminishing Worst-Case Smoothing Parameter Selec-
tion. Theorem 4 implies that for some γ > 1

F (Etmin, Ũρt(λ
t)) = ∆−1(

Etmin − Ũρt(λt)
2γ

) , (27)

at the step 2 of Algorithm 1. Here γ is some con-
stant (which indeed can differ from iteration to iteration)
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and ∆−1(·) denotes the inverse mapping to ∆(·). Since
∆(ρ) = 2ρ log |X | it reads ∆−1(A) = A

2 log |X | . Hence

F (Etmin, Ũρt(λ
t)) =

Etmin − Ũρt(λt)
4γ log |X | , γ > 1 , (28)

and Algorithm 1 is defined up to a parameter γ. We refer
to Section 5 for experimental evaluation of this parameter.

Diminishing Adaptive Smoothing Parameter Selection.
As we already mentioned the estimate 2ρ log |X | for the
smoothing gap is often too loose in practice, which can po-
tentially slow down optimization algorithms. In this sec-
tion we show how the adaptive estimate (21) can be used
together with an appropriate approximation of the inverse
mapping ∆−1 to speed up the algorithm. Additionally we
will use a procedure similar to the one presented in (25) to
prevent the algorithm from stalling.

The method is based on a local approximation of ∆̂t(ρ)
near the current point λwith an affine function ∆̂t(ρ) := δ ·
ρ+ α, where δ = ∂∆̂t

∂ρ =
∂(U−Ũρ)

∂ρ = −∂Ũρ∂ρ and assigning

∆̂−1(d) := (d− α)/δ. Hence step 2 of Algorithm 1 takes
the form

δt := −∂Ũρt
∂ρ

(λt), αt := ∆̂t − δtρt, (29)

ρt+1 := min

{
ρt,

(
Etmin − Ũρt(λt)

2δtγ
− αt

δt

)}
. (30)

Parameter αt of this approximation depends on the esti-
mate ∆̂t defined by (21).

To avoid stalling of the algorithm one should decrease ρ as
soon as

Ẽρ(µρ(λ
t))− Ũρ(λt) ≤

Etmin − Ũρt(λt)
2γ

. (31)

The proof for that is based on comparing (23) and (25)
to (27) and (31). Note that they become equivalent when
ε = (Etmin − Ũρt(λt))/γ.

We sum up the above considerations in Algorithm 2. This
algorithm additionally depends on the parameter η defining
how much the smoothing parameter ρ should be decreased.
In our experiments we use η = 2, but we observed the
inequality (31) being fulfilled only for γ close to 1 (which
we found to be non-optimal) and thus the value η does not
influence results of our experiments.

It remains only to note that the derivative
∂Ũρt (λ

t)

∂ρ can be
computed efficiently, since it is given by a ready-to-apply
formula in the following proposition.

Proposition 1 Let νiρ(λ) ∈ R
∑
w∈V∪E |Xw| be defined

Algorithm 2 Adaptive diminishing smoothing (ADSal)

• Given: a prescribed solution accuracy ε.

• Initialize: λ0 ∈ Λ, ρ0 > 0, γ > 1, η > 1,
E0

min = E(µ̂ρ0(λ0)).

• Iterate (for t ≥ 0):

1. If Etmin − U(λt) < ε Exit and return λt.

2. δt := −∂Ũρt∂ρ (λt), αt := ∆̂t − δtρt.

3. ρt+1 := min

{
ρt,

(
Etmin−Ũρt (λt)

2δtγ − αt

δt

)}
.

4. If Ẽρ(µ̃ρ(λt)) − Ũρ(λ
t) ≤ Etmin−Ũρt (λt)

2γ then

ρt+1 := ρt+1

η .

5. λt+1 := ψ[Ũρt+1 ](λt).
6. Et+1

min := min{Etmin, E(µ̂ρt+1λt+1)}.
7. t := t+ 1. Goto 1.

by (11). Then

∂Ũρ(λ)

∂ρ
=
Ũρ(λ)

ρ
−1

ρ

2∑

i=1

∑

w∈Vi∪Ei

∑

xw∈Xw
θi(λ)w,xwν

i
ρ(λ)w,xw .

5 EXPERIMENTAL EVALUATION

For an experimental evaluation we used datasets from the
Middlebury MRF benchmark [20] (datasets tsukuba, venus,
family) and a computer generated grid model of size 256×
256 with 4 labels. The unary and pairwise factors of this
model were randomly selected uniformly in the interval
[0, 1]. This dataset will be denoted as artificial. Complete
results of all our experiments are present in the supplemen-
tary material. In the main body of the paper we present
only subset of plots and a summary Table 5 to save space.

We consider the following four smoothing-based algo-
rithms described in the paper: (i) adaptive diminishing
smoothing algorithm (A-DSal) – Algorithm 2; (ii) dimin-
ishing worst-case smoothing (WC-DSal) is defined by Al-
gorithm 1, where the mapping F is specified by (28);
(iii) precision oriented adaptive smoothing (A-STRWS),
where the smoothing degree is controlled by (21), (22)
and (25); (iv) precision oriented worst-case smoothing
(WC-STRWS), where the smoothing degree is fixed and
given by (20). In all cases we use the S-TRWS algorithm
as an optimizing mapping.

We compare our approaches also to the original TRW-S
code [8] and to the accelerated first-order Nesterov opti-
mization scheme [15] (NEST), for which an implementa-
tion was kindly provided by the authors.

Additionally to the upper ∆(ρ)-bound computed due to
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Table 1: Results of algorithms evaluation. Req. OC 0.1% and Req. OC 1 – number of oracle calls required to achieve the
relative precision 0.1% and the absolute precision 1 respectively; primal/dual bound–the best upper/lower bounds achieved
during the iterations: about 8000-10000 oracle calls for NEST, TRW-S and other methods. In case the best primal bound
is an integer one we print it without decimal point. Please note that A-DSal turned out to be the most efficient solver for
all datasets except family We did not mark ”dual bounds winner” for tsukuba dataset, because in this case all algorithms
except TRW-S were terminated as soon as the duality gap dropped below 1.

Algorithm A-DSal WC-DSal A-STRWS WC-STRWS NEST TRWS

ts
uk

ub
a req. OC 0.1% 52 47 45 33 576 266

req. OC 1 107 151 405 789 6244 >10000
primal bound 369218 369218 369218 369218 369218 369252
dual bound 369217.38 369217.12 369217.99 369217.99 369217.99 369217.58

ve
nu

s req. OC 0.1% 111 131 123 129 1746 266
primal bound 3047993.47 3048546.82 3048411 3048534.23 3050376 3048098
dual bound 3047965.20 3047920.27 3047936.20 3047934.25 3047938.84 3047929.95

fa
m

ily req. OC 0.1% >8516 >10006 >8013 >8001 >9023 3012
primal bound 186636 184927 185144.02 185142.87 6136365 184825
dual bound 184769.13 184742.11 184735.80 184734.96 145396.26 184788.00

ar
tifi

ci
al req. OC 0.1% 514 >10004 639 >8001 1515 >10000

primal bound 56785.86 56838.03 56956.08 57258.31 56815.01 81118
dual bound 56779.98 56777.10 56764.87 56724.52 56780.24 56720.56

Theorem 2 we also estimate a so-called integer upper
bound, which corresponds to integer values of variables
µ in (2). The latter bound turns to be often better at the
beginning of the optimization process, but contrary to the
non-integer one it does not posses a crucial property of con-
vergence to the optimum of the relaxed problem (2).

Since the performance of the precision-oriented smooth-
ing algorithms (A-STRWS, WC-STRWS and NEST) de-
pends on the target precision we run each algorithm on each
dataset twice: with target relative precision 0.1% and with
target absolute precision 1. Since potentials of all consid-
ered problem from the Middlebury benchmark are integers,
getting an integer upper bound within the latter precision
would mean solving the corresponding problem exactly in
its original, non-relaxed formulation (1). Indeed it has hap-
pen for the tsukuba dataset – see below.

We use the notion of oracle calls for measuring the speed of
the algorithms to eliminate the influence of different imple-
mentations. One oracle call corresponds to a single (either
forward or backward) move of the S-TRWS algorithm. It
requires approximately 1.5 seconds for the tsukuba dataset,
3.5 s for venus, 4.5 s for the family and less than 0.5 s for the
artificial dataset, on a 2.5GHz machine. Such an oracle call
approximately corresponds to the oracle call used in NEST,
it is 5 times slower than a single (either forward or back-
ward) move of the original non-smooth TRWS algorithm in
our implementation and 10 times slower than the original
implementation by Kolmogorov [8] for general-form pair-
wise potentials. The non-smooth TRWS is faster because
of the evaluation of the exp-operation needed for smooth-
ing. Preliminary experiments show that simply switching

to GPU would already reduce this operation’s cost to that
of a simple multiplication operation. Hence we ignore the
mentioned time difference and consider a single move of
the TRW-S algorithm as an oracle call. Additionally we
count computations needed to estimate a primal solution
µ̂ρ(λ

t) according to (14)-(15) as an oracle call, since the
time it requires is close to that of a single oracle call.

For different values of γ and different numbers of inner S-
TRWS iterations we measured the number of oracle calls
of the A-DSal and WC-DSal algorithms to attain precision
1%. We found γ = 4 and 3 inner iterations (4 oracle calls)
in the optimizing mapping ψ to be optimal for both A-DSal
and WC-DSal. Indeed we found the algorithms quite in-
sensitive to the value of γ, unlike for instance the step-size
selection in subgradient-based schemes. Our experiments
show similar performance for the interval 2 ≤ γ ≤ 5.

Tsukuba dataset. Fig. 1(bottom left) This dataset seems
to be the easiest among investigated. The relative precision
0.1% was achieved by all algorithms within few dozens of
oracle calls. Moreover, all algorithms except TRW-S at-
tained the optimum of the non-relaxed problem (1). Num-
ber of oracle calls for that, i.e. to get the duality gap less
than 1 is the smallest for A-DSal. Other algorithms, de-
scribed in the paper perform not much worse and indeed
much faster than NEST.

Venus dataset. Fig. 1 (top left) Contrary to tsukuba there
remains a big (� 1) relaxation gap between obtained in-
teger solutions and the lower (dual) bound. Simultane-
ously the upper (primal) bound for the relaxed LP problem
demonstrates a fast convergence to the lower one, which
makes A-DSal quite efficient. Other algorithms described
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Figure 1: Venus (top left), artificial (top right), tsukuba (bottom left) and family (bottom right) datasets. Precision-oriented
smoothing algorithms A-STRWS, WC STRWS and NEST were run with a target precision 0.1%. The curves show pri-
mal (upper) (pLP) and dual (lower) (dLP) LP bounds, as well as the best integer primal bound (ILP) achieved. Colors
correspond to different algorithms – see legend. For all datasets except tsukua the A-DSal demonstrates one of the best
convergence rates. For the family the primal LP bound of A-DSal shows a very slow convergence, which makes the
algorithm significantly less efficient.

in the paper show significantly worse performance. TRW-
S is a bit slower at the beginning, but at the end shows the
second good result after A-DSal in terms of both upper and
lower bounds.

Family dataset. Fig. 1(bottom right) This dataset seems
to be quite difficult for dual methods (methods considered
in the paper and NEST, TRW-S) because the pairwise fac-
tors contain infinite (very large) numbers. This makes dual
variables λ badly conditioned, i.e. a small change in their
values corresponds to a big change of the estimated primal
objective. This is why the estimations of the upper (pri-
mal) bound constructed according to Theorem 2 converge
very slow and thus the smoothing parameter, selected ac-
cording to the duality gap estimation, takes too large val-
ues. This influences A-DSal at most because it uses ad-
ditionally adaptive smoothing parameter selection, which
makes ρ even larger. However even for this setting the
lower bound attained by A-DSal outperforms lower bound
of all other approaches except TRW-S (see Table 5), which
does not suffer from bad primal estimates.

Artificial dataset. Fig. 1 (top right) This dataset targets
the situations when there is no local evidence in the data.
This could be a typical setting when the inference is used in
a loop of a learning algorithm, e.g. the structural SVM [2].
At the beginning of the learning process the potentials to
be learned could take nearly random values, which makes

the problem harder. This dataset clearly shows advantage
of methods with an adaptive selection of the smoothing pa-
rameter: only those methods attained the precision 0.1%.
The A-SDal again shows the best performance, whereas
TRW-S – the worst one.

Summary. As our experiments show, the proposed adap-
tive diminishing smoothing algorithm (A-DSal) is compet-
itive to or even outperforms the state-of-the-art methods,
except in the case when the pairwise factors contain very
large values. This issue has to be considered in future work.

6 CONCLUSIONS

We proposed an adaptive diminishing smoothing optimiza-
tion algorithm for an LP relaxation of the energy minimiza-
tion problem. The algorithm enjoys provable and fast con-
vergence to the optimum, and often outperforms even one
of the fastest state-of-the-art methods – TRWS, but con-
trary to that does never get stuck in non-optimal points.
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Abstract

Multi-fidelity methods combine inexpensive
low-fidelity simulations with costly but high-
fidelity simulations to produce an accurate
model of a system of interest at minimal cost.
They have proven useful in modeling physical
systems and have been applied to engineer-
ing problems such as wing-design optimiza-
tion. During human-in-the-loop experimen-
tation, it has become increasingly common to
use online platforms, like Mechanical Turk,
to run low-fidelity experiments to gather hu-
man performance data in an efficient manner.
One concern with these experiments is that
the results obtained from the online environ-
ment generalize poorly to the actual domain
of interest. To address this limitation, we ex-
tend traditional multi-fidelity approaches to
allow us to combine fewer data points from
high-fidelity human-in-the-loop experiments
with plentiful but less accurate data from
low-fidelity experiments to produce accurate
models of how humans interact. We present
both model-based and model-free methods,
and summarize the predictive performance of
each method under different conditions.

1 Introduction

The benefit of using high-fidelity simulations of a sys-
tem of interest is that it produces results that closely
match observations of the real-world system. Ideally,
algorithmic design optimization would be performed
using such accurate models. However, the cost of high-
fidelity simulation (computational or financial) often
prohibits running more than a few simulations dur-
ing the optimization process. The high-fidelity models

built from such a small number of high-fidelity data
points tend not to generalize well. One approach to
overcoming this limitation is to use multi-fidelity op-
timization, where both low-fidelity and high-fidelity
data are used together during the optimization pro-
cess (Robinson et al., 2006).

When the system of interest involves humans, tra-
ditionally human-in-the-loop (HITL) experimentation
has been used to build models for design optimization.
A common approach in HITL experimentation is to
make the simulation environment match the true envi-
ronment as closely as possible (Aponso et al., 2009). A
major disadvantage of this approach is that designing a
good high-fidelity HITL simulation requires substan-
tial human and technological resources. Experimen-
tation requires highly trained participants who need
to physically visit the test location. As a consequence,
collecting large amounts of high-fidelity data under dif-
ferent conditions is often infeasible.

In many cases, one could cheaply implement a lower fi-
delity simulation environment using test subjects who
are not as extensively trained, allowing for the collec-
tion of large amounts of less accurate data. Indeed,
this is the idea behind computational testbeds like
Mechanical Turk (Kittur et al., 2008; Paolacci et al.,
2010). The goal of this paper is to extend multi-fidelity
concepts to HITL experimentation, allowing for the
combination of plentiful low-fidelity data with more
sparse high-fidelity data. This approach results in an
inexpensive model of interacting humans that general-
izes well to real-world scenarios.

In this paper, we begin by outlining the self-separation
scenario used as a testbed to study multi-fidelity mod-
els of interacting humans. In Section 3 we introduce
the multi-fidelity methods used in this paper. In Sec-
tion 4, we present model-free approaches to multi-
fidelity prediction, and in Section 5 we present model-
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based methods. Results, summarized in Section 6,
show the benefit of incorporating low-fidelity data to
make high-fidelity predictions and that model-based
methods out-perform model-free methods. Section 7
concludes with a summary of our findings and future
directions for investigation.

2 Modeling Interacting Humans

In order to ground our discussion of multi-fidelity
methods in a concrete scenario, we will begin by pre-
senting our testbed for studying the behavior of inter-
acting humans. We model the interaction of two pilots
whose aircraft are on a near-collision course. Both pi-
lots want to avoid collision (Fig. 1a), but they also
want to maintain their heading. For simplicity, we
model the pilots as making a single decision in the
encounter. Their decisions are based on their beliefs
about the other aircraft’s position and velocity, their
degree of preference for maintaining course, and their
prediction of the other pilot’s decision.

We use a combination of Bayesian networks and game-
theoretic concepts (Lee and Wolpert, 2012) to model
this scenario. The structure of the model is shown in
Fig. 1b. The state of aircraft i is a four-dimensional
vector representing the horizontal position and veloc-
ity information. The initial distribution over states is
described in Section 3. The action ai taken by the pilot
of aircraft i represents the angular change in heading,
away from their current heading. Each pilot observes
the state of the other aircraft based on their view out
the window oiow and their instrumentation oiin. Each
pilot has a weight wi in their utility function reflecting
their relative desire to avoid collision versus maintain-
ing heading. We consider the situation where each
player knows their own type (i.e., the value of the
weight term in their utility function) in addition to
the type of the other player (Myerson, 1997).

As described in this section, the pilots chose their ac-
tions based on their observations and utility function.
After both pilots select an action, those actions are ex-
ecuted for 5 s, bringing the aircraft to their final states
sif . Without loss of generality we describe the sce-
nario from the perspective of one of the pilots, Player
1, with the other aircraft corresponding to Player 2.
The model assumptions, detailed below, are symmet-
ric between players. It should be noted that the ap-
proaches described in this paper are not limited to
cases in which there are only two humans interacting,
although scenarios with more humans would increase
the amount of data required to make accurate predic-
tions.

o2

o1

s1

s2

s1f

s2f

a1

a2

(a) Example geometry with model variables depicted.

s1 s2

a1 a2

s1f s2f

o1ow o2owo1in o2in

(b) Model structure. Shaded circles are observable variables,
white circles are unobservable variables, squares are deci-
sion nodes, and arrows represent conditional relationships
between variables.

Figure 1: Visual self-separation game.
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2.1 Visual inference

Player 1 infers the state of the intruder based on vi-
sual information out the window and instrumentation.
Player 1 is not able to exactly infer the state of Player
2 as humans are not able to perfectly estimate posi-
tion and velocity based on visual information (Graf
et al., 2005; Schlicht and Schrater, 2007), and the in-
struments also have noise associated with their mea-
surements (Fig. 1b).

We model the out-the-window visual observation
as Gaussian with a mean of the true state of
the intruder aircraft and covariance matrix given
by diag(900 ft, 900 ft, 318 ft/s, 318 ft/s). The instru-
ment observation is Gaussian with a mean of the
true state of the intruder with covariance given
by diag(600 ft, 600 ft, 318 ft/s, 318 ft/s). The out-the-
window velocity uncertainties are derived from the vi-
sual psychophysics literature (Weis et al., 2002; Graf
et al., 2005).

2.2 Decision-making

Theoretical models of multi-agent interaction offer a
framework for formalizing decision-making of inter-
acting humans. Past research has focused on game-
theoretic approaches (Myerson, 1997) and their graph-
ical representations (Koller and Milch, 2003; Lee and
Wolpert, 2012) where agents make a single decision
given a particular depth of reasoning between op-
ponents. Such approaches have been successfully
used for predicting human decision-making in compet-
itive tasks (Camerer, 2003; Wright and Leyton-Brown,
2010, 2012).

In cases when it is important to capture how people
reason across time, sequential models of human inter-
action can be used (Littman, 1994). Such models can
reflect either cooperative settings where agents are at-
tempting to maximize mutual utility (Amato et al.,
2009) or competitive contexts where agents are at-
tempting to maximize their own reward (Doshi and
Gmytrasiewicz, 2005, 2006). Graphical forms of se-
quential decision processes have also been developed
(Zeng and Xiang, 2010).

Since humans often reason over a relatively short time
horizon (Sellitto et al., 2010), especially in sudden,
stressful scenarios, we model our interacting pilots
scenario as a one-shot game. Like Lee and Wolpert
(2012), we use level-k relaxed strategies as a model for
human decision-making. A level-0 strategy chooses ac-
tions uniformly at random. A level-k strategy assumes
that the other players adopt a level-(k − 1) strategy
(Costa-Gomes et al., 2001). In our work, we assume
k = 1 because humans tend to use shallow depth-of-

reasoning (Wright and Leyton-Brown, 2010), and in-
creasing k > 1 had little effect on the predicted joint-
decisions for our scenario.

The focus on bounded rationality stems from observ-
ing the limitations of human decision making. Hu-
mans are unable to evaluate the probability of all out-
comes with sufficient precision and often make deci-
sions based on adequacy rather than by finding the
true optimum (Simon, 1956, 1982; Caplin et al., 2011).
Because decision-makers lack the ability and resources
to arrive at the optimal solution, they instead ap-
ply their reasoning only after having greatly simplified
the choices available. This type of sampling-based,
bounded-rational view of perceptual processing has
been used in computational models of human visual
tracking performance (Vul et al., 2010) and has been
shown to predict human decision-making (Vul et al.,
2009).

To align our model with a bounded-rational view of
human performance, we assume that Player 1 makes
decisions based on m′ sampled intruder locations and
m candidate actions sampled from a uniform distribu-
tion over ±1 radian. In other words,

o(1), . . . , o(m
′) ∼ p(o1ow | s2)p(o1in | s2) (1)

a(1), . . . , a(m) ∼ U(−1, 1) (2)

Player 1 selects the sampled action that maximizes the
expected utility over them′ sampled states of the other
aircraft:

a = arg max
i

∑

j

w1d(s1f|a(i) , s
2
f|o(j))− (1− w1)|a(i)| (3)

In the equation above,

• s1
f|a(i) is the final state of Player 1 after performing

action a(i),

• s2
f|o(j) is the expected final state of Player 2 given

observation o(j) and assuming a random heading
change,

• d(·, ·) represents Euclidean distance, and

• w1 is the relative desire of Player 1 to avoid the
intruder versus maintaining their current heading.

The first term in the utility function rewards dis-
tance between aircraft, and the second term penalizes
the magnitude of the heading change. Fig. 2 shows
how joint-actions change across different w1 and w2

combinations. When weights are relatively low (e.g.,
w1 = 0.80, w2 = 0.80), joint-actions are centered
around (0, 0), indicating pilots tend to make very small
heading change maneuvers. Conversely, when weights
are relatively high (e.g., w1 = 0.98, w2 = 0.98), pilots
tend to make large heading change maneuvers.
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Figure 2: Influence of utility weights on joint-decision densities. Red regions depict areas with high probability
joint-decisions (i.e., heading change, in degrees), while blue regions represent low probability joint-decisions.

2.3 Executing Actions

After choosing an appropriate action, the pilots then
execute the maneuver. Although it is known that hu-
mans have uncertainty associated with their move-
ments (Harris and Wolpert, 1998), we simulate the
case in which pilots perfectly execute the action se-
lected by level-k relaxed strategies, since uncertainty
in action execution is not a focus of this study.

Recall that the action of the player is the change in
heading angle of the aircraft, away from the current
heading. From the initial state and the commanded
heading change of the aircraft, the final state is ob-
tained by simulating the aircraft for 5 seconds assum-
ing point-mass kinematics, no acceleration, and instan-
taneous heading change.

3 Multi-fidelity Prediction

There are two ways one could distinguish a low-fidelity
and high-fidelity model of this encounter. The first
is using “low-fidelity humans” versus “high-fidelity
humans,” where low-fidelity humans would represent
people who have been trained in flight simulators but
who are not commercial pilots. The second way is to
have both a low-fidelity and high-fidelity simulation
environment, say having low-fidelity environment be-
ing a flight simulator that does not perfectly match

the conditions of an actual commercial jet. For this
paper, our low-fidelity simulators are the same as the
high-fidelity simulation except there is no instrument
panel. The low-fidelity simulation has the oin nodes
removed in Fig. 1b.

We used separate training and testing encounters,
all sampled with Player 2 being in Player 1’s field
of view, and a heading such that a collision occurs
if an avoidance maneuver is not performed (dashed
lines in Fig. 1a). Training encounters were initialized
with Player 2 randomly approaching at −45◦, 0◦, and
+45. Test encounters were initialized with Player 2
randomly approaching at −22.5◦ and +22.5◦. Initial
headings for both train and test encounters were sam-
pled from a Gaussian distribution with a mean around
a heading direction that would result in a collision with
a standard deviation of 5◦.

The goal of multi-fidelity prediction is to combine the
data in the high and low-fidelity training encounters to
predict the joint-decisions of pilots in the high-fidelity
game. The next two sections describe different ap-
proaches to achieving this type of prediction, and the
notation is summarized in Table 1.
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Table 1: Notation used for multi-fidelity prediction

Description

A Observed joint-actions (a1, a2)

Â Predicted joint-actions (â1, â2)
S Encounter geometry (s1, s2)
N Number of encounters
w Joint utility-weights (w1, w2)
z Regression weight
(.)tr Superscript indicating training encounters
(.)te Superscript indicating test encounters
(.)l Subscript indicating low-fidelity game
(.)h Subscript indicating high-fidelity game

4 Model-Free Prediction Approaches

A model-free approach is one where we do not use
any knowledge of the underlying game or the decision-
making process. This section discusses a traditional
model-free approach to predicting joint-actions as well
as a model-free multi-fidelity method.

4.1 Locally Weighted, High-fidelity

The simplest approach to model-free prediction is to
use the state and joint-action information from the
high-fidelity training data to predict the joint-actions
given the states in the testing data. Using only the
high-fidelity training data, we trained a high-fidelity
predictor Rh that predicts joint-actions Atrh given the
training encounters Strh . Then, the test encounters
were used as inputs to the predictor, to predict the
joint-actions at the new states Âte = Rh(Ste). The
regression model we considered was locally weighted
(LW) regression, where the predicted high-fidelity
joint-decisions for a particular test encounter is the
weighted combination of high-fidelity joint-decisions
from the training encounters. The weights are deter-
mined by the distance between the training encounters
and the test encounter:

Âtei =

Ntrh∑

j

zi,jA
tr
h,j (4)

zi,j =
e−di,j∑
j e
−di,j (5)

where di,j is the standardized Euclidean distance be-
tween the state in the ith testing encounter and the
jth training encounter. This approach does not use
any of the low-fidelity data to make predictions, so
the quality of the predictions is strictly a function of
the amount of high-fidelity training data. This method
represents how well one might do without taking ad-

vantage of multi-fidelity data, and serves as a baseline
for comparison against the multi-fidelity approach.

4.2 Locally Weighted, Multi-fidelity

Our model-free multi-fidelity method uses an approach
similar to the high-fidelity method, but it also takes
advantage of the low-fidelity data. We use LW regres-
sion on the low-fidelity training data to obtain a low-
fidelity predictor Rl that predicts joint-actions Âtrl for
the training encounters Strl .

We use the the low-fidelity predictor to augment the
high-fidelity training data. The augmented input
(Strh , Rl(S

tr
h )) is used to train our augmented high-

fidelity predictor Rh′ that predicts joint-actions based
on the high-fidelity data. The test encounters Ste were
used as inputs to the augmented high-fidelity predic-
tor to predict the joint-action for the test encounters as
Âte = Rh′(Ste, Rl(S

te)). In essence, we are using the
predictions from the low-fidelity predictor as features
for training the high-fidelity predictor.

5 Model-Based Prediction
Approaches

The model-free methods described above ignore what
is known about how the pilots make their decisions. In
many cases, we have a model of the process with some
number of free parameters. In our case, we model the
players interacting in a level-k environment, and treat
the utility weights wh as unknown parameters that
can be learned from data, allowing the prediction of
behavior in new situations. Such an approach is used
in the inverse reinforcement learning literature (Baker
et al., 2009; Ng and Russell, 2000), where the goal is
to learn parameters of the utility function of a single
agent from experimental data. This section outlines
three model-based approaches where the data comes
from experiments of varying fidelities. The first two
are based on maximum a posteriori (MAP) parameter
estimates, and the third is a Bayesian approach.

5.1 MAP High-fidelity

To demonstrate the benefit of multi-fidelity model-
based approaches, we use a baseline method that ex-
clusively relies on high-fidelity data to make predic-
tions. Since we have a model of interacting humans,
we can simply use the test encounters Ste as inputs
into the model and use the resulting joint-actions as
predictions. However, to make accurate predictions,
we must estimate the utility weights used by the pi-
lots. To find the MAP utility weights w∗h, we first need
to estimate p(A | S,w), which is the probability of the
joint-actions A given encounters S and weight w.
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As an approximation, we estimate p(A | S,w) by simu-
lating the high-fidelity game using a set of 1000 novel
encounters (Sn), under different utility weight com-
binations. We stored the resulting joint-actions for
the jth utility weight combination, and then estimated
p(Anh | wjh) =

∑
S p(A

n
h | Sn, wjh) using kernel density

estimation via diffusion (Botev et al., 2010). Fig. 2
shows how p(Anh | wh) changes across a subset of wh
settings.

We can find the MAP utility weight combination by
using the joint-actions Atrh we observe for our training
encounters Strh . For each joint-action from the train-
ing data, we find the nearest neighbor joint-action in
Anh. We sum the log-likelihood of the nearest-neighbor
joint-actions for the training encounters, under each
utility weight combination. The MAP utility weight
combination is defined by

w∗h = arg max
wh

[ln p(wh) +
∑

n

ln p(Anh | wh)] (6)

where p(wh) is the prior of weight vector wh. In our
experiments, we assume p(wh) is uniform over util-
ity weight combinations. Once we have estimated the
MAP utility weights, we can simulate our high-fidelity
game using the test encounters and the MAP utility
weights to obtain the predicted joint-action. The pre-
dicted joint-action is obtained by generating Ns = 10
samples from p(Ateh | Stei , w∗h) and averaging them to-
gether:

A(1), . . . , A(Ns) ∼ p(Ateh | Stei , w∗h) (7)

Âteh,i =
1

Ns

Ns∑

`=1

A(`) (8)

The amount of high-fidelity data impacts the quality
of the utility-weight estimate (w∗h), thereby limiting
its effectiveness in situations when there is little data.
The method described next overcomes this limitation
by fusing both high- and low-fidelity data to find the
utility weights to use for prediction.

5.2 MAP Multi-fidelity

In situations when there is little high-fidelity data to
estimate the utility weights, it is beneficial to fuse both
low- and high-fidelity data to increase the reliability
of the estimate. In this approach, the predicted high-
fidelity joint-actions for test encounters (Âte) are being
computed according to Eq. (8), and our MAP utility
weight is still found by maximizing Eq. (6). However,
instead of only using the high-fidelity data to estimate
the utility weights, we use both the low-fidelity and the
high-fidelity data to estimate the weights. Specifically,

we find the log-likelihood of the nearest-neighbor joint-
action An for both the low- and high-fidelity joint-
actions Atrh and Atrl . Once we have estimates for the
utility weights in the decision model, we can use the
test encounters Ste as inputs to the high-fidelity model
to obtain predictions Âte, similar to what was done in
Eq. (8).

Although this is a straightforward way to use both low-
and high-fidelity training data, it assumes that the de-
cision makers in the low-fidelity and high-fidelity en-
counters are identical. While it is plausible that the
decision makers have similar utility functions to make
this a valid assumption, it could also be the case that
highly trained humans have very different utility func-
tions from lesser-trained ones, or that changes in the
simulation environment also cause changes in the util-
ity function (for example, due to the decreased sense of
immersion). Therefore, we would like a method that
relaxes the equal utility assumption, allowing us to
make predictions for games that are different for low-
and high-fidelity.

5.3 Bayesian Multi-fidelity

The approaches described above use the test encoun-
ters as inputs into the high-fidelity model and sample
joint-actions from p(Ateh | Steh , w∗h) using the MAP util-
ity weight estimate w∗h to compute the predicted joint-

actions Âteh . In contrast, a Bayesian approach to multi-
fidelity makes its predictions by sampling joint-actions
from p(Ateh | Ste, wjh) under each of the j high-fidelity
utility weight combinations, and then weighting the
predicted joint-actions by the probability of the utility
weights, given the low- and high-fidelity joint-actions
observed from the training encounters:

Âteh,i =
∑

j

p(Ateh,k | Stei , wjh)p(wjh | Atrl , Atrh ) (9)

where

p(wjh | Atrl , Atrh ) = p(wjh | Atrh )
∑

k

p(wkl | Atrl )p(wkl , w
j
h)

The probability distribution p(wjh | Atrh ) was estimated
using the method outlined in Section 5.1. The low-
fidelity version of this distribution p(wkl | Atrl ) was
estimated in a similar manner for each of the k low-
fidelity utility weight combinations by simulating the
low-fidelity game using the same novel encounters Sn

and kernel density estimation via diffusion methods.

Finally, p(wl, wh) = p(w1
l , w

2
l , w

1
h, w

2
h) is a prior prob-

ability over low- and high-fidelity utility weights, and
can be selected based on the degree of similarity be-
tween the high-fidelity and low-fidelity simulations.
For our case, we assume a Gaussian prior with a mean
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corresponding to the ground-truth utility weights (Sec-
tion 6) and covariance given by:
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0 .0017 0 .0013

.0013 0 .0017 0
0 .0013 0 .0017




This covariance assumes that there is variation among
players at the same fidelity, but also that the weights of
the players are similar (but not identical) across fideli-
ties. However, it assumes that the utilities of the two
players within any specific encounter are independent.

A Bayesian approach to multi-fidelity allows for pre-
dictions to be made that account for the uncertainty
in how well the utility weights account for the joint-
actions observed in training. Such an approach also re-
laxes the assumption of identical utility weights across
games through a prior distribution that encodes the
coupling of these parameters.

6 Results

In order to assess the performance of both model-free
and model-based approaches to multi-fidelity predic-
tion, we evaluated each method with different amounts
of high-fidelity training data. We assessed the benefit
of incorporating an additional 100 or 1000 low-fidelity
training examples, depending on the condition.

Since novices may employ different strategies than do-
main experts, we also simulated the scenario under
different ground-truth utility weight relationships be-

tween the low- and high-fidelity games. For the sce-
nario where experts and novices employ similar behav-
ior, the ground-truth utility weights were set to:

wgtl =
{
w1 = 0.89, w2 = 0.90

}
(10)

wgth =
{
w1 = 0.89, w2 = 0.90

}
(11)

For the scenario where there is a small difference in
how novices act, the ground-truth low-fidelity utility
weights were changed to:

wgtl =
{
w1
l = 0.88, w2

l = 0.89
}

(12)

For the scenario where novices perform much differ-
ently than experts, the low-fidelity ground-truth util-
ity weights were:

wgtl =
{
w1
l = 0.80, w2

l = 0.81
}

(13)

Performance is measured in terms of “predictive effi-
ciency,” which is a number typically between 0 and
1. It is possible to obtain a number above 1 because
the normalization factor is an estimated lower-bound
of the test-set error. The test-set error is given by

D =
∑

i

d(Âi, A
te
i ), (14)

where d(·, ·) is the Euclidean distance, Âi is the pre-
dicted action for the ith encounter, and Atei is th-e
joint-action of the ith test encounter. A lower-bound
on the test-set error Dlb can be approximated by esti-
mating the error when using the ground-truth model
in conjunction with Eq. (8). The predictive efficiency
is given by Dlb/D.
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Figure 4: Predictive performance curves for various methods across different numbers of high-fidelity training
samples. Lines depict mean predictive efficiency across the 10 simulations per sample-size condition, and the
shaded-areas represent standard error. Results are shown for conditions in which the low- and high-fidelity utility
weights have small (left) and large (right) differences between them.

Figure 3 shows how average predictive efficiency
changes as a function of the amount of low- and high-
fidelity training data for the identical utility weight
condition. Figure 4 shows how average predictive effi-
ciency is impacted by the level of discrepancy between
low- and high-fidelity utility weights.

Multi-fidelity model-free approaches (blue solid lines)
predicted better than methods that used only high-
fidelity data (blue dashed lines), except for the case in
which there was little (100 samples) low-fidelity avail-
able to train the model (Figure 3).

Model-based multi-fidelity approaches had better pre-
dictive performance (red and green solid lines) than
high-fidelity methods (red dashed line) in cases when
there was a large amount of low-fidelity data (1000
samples), and there was little or no difference in the
utility weights used by the low-fidelity and high-fidelity
humans in the task (Figures 3 and 4).

7 Conclusions and Further Work

We developed a multi-fidelity method for predicting
the decisions of interacting humans. We investigated
the conditions under which these methods produce
better performance than exclusively relying on high-
fidelity data. In general, our results suggest that multi-
fidelity methods provide benefit if there is a sufficient
amount of low-fidelity training data available and the
differences between expert and novice behavior is not
too large. Future effort will investigate these distinc-
tions in greater detail.

This approach can also be extended to many domains
beyond aviation. For example, work is currently be-
ing conducted that uses a ‘power-grid game’ to pro-
duce low-fidelity data to train algorithms that detect
attacks on the system. This data could be combined
with relatively sparse high-fidelity data (e.g., historical
data involving known attacks) to increase the predic-
tive performance of the model.
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Abstract

Latent variable models are used to estimate vari-
ables of interest – quantities which are observ-
able only up to some measurement error. In many
studies, such variables are known but not pre-
cisely quantifiable (such as “job satisfaction” in
social sciences and marketing, “analytical abil-
ity” in educational testing, or “inflation” in eco-
nomics). This leads to the development of mea-
surement instruments to record noisy indirect ev-
idence for such unobserved variables such as sur-
veys, tests and price indexes. In such problems,
there are postulated latent variables and a given
measurement model. At the same time, other
unantecipated latent variables can add further un-
measured confounding to the observed variables.
The problem is how to deal with unantecipated
latents variables. In this paper, we provide a
method loosely inspired by canonical correlation
that makes use of background information con-
cerning the “known” latent variables. Given a
partially specified structure, it provides a struc-
ture learning approach to detect “unknown un-
knowns,” the confounding effect of potentially
infinitely many other latent variables. This is
done without explicitly modeling such extra la-
tent factors. Because of the special structure of
the problem, we are able to exploit a new varia-
tion of composite likelihood fitting to efficiently
learn this structure. Validation is provided with
experiments in synthetic data and the analysis
of a large survey done with a sample of over
100,000 staff members of the National Health
Service of the United Kingdom.

1 CONTRIBUTION

We present a method for learning the structure of a latent
variable model, where latent variables are divided into two

categories: i. latent variables which we would like to es-
timate, as in any smoothing task (e.g., to generate latent
representations of data points for visualization, clustering,
and ranking, among other tasks); ii. all other latent vari-
ables, which we are not interested in estimating but which
can add further confounding among observed variables and
as such cannot be ignored. They are nuisance variables.

This setup is motivated by many practical problems in the
applied sciences where target latent variables are chosen
upfront, with observed variables designed to measure the
unobservable variables of interest. Consider the simple il-
lustrative example of Figure 1.

X1 X2

Y1 Y2 Y3
Y4 Y5 Y6

Figure 1: A latent variable model with a mixed graphical
representation (that is, more than one type of edge).

Here, eachXi is a latent variable and eachYi an observed
variable. For instance,X1 could represent a latent vari-
able quantifying the level of job satisfaction, postulated
to be measured by answers to questions such asY1 ≡ “I
can choose my own method of working” andY2 ≡ “I have
strong support from my manager”.X2 could represent a la-
tent level of job responsibility, measured by questions such
asY4 ≡ “I know what my responsibilities are” andY5 ≡ “I
am regularly consulted by my team”.

Other nuisance latent factors might correlate, say, the em-
ployee support from her manager and the level of interac-
tion with her team. That is, associations not accounted by
X1 and X2. This is represented graphically in Figure 1
by a bi-directed edge between two observed items, a no-
tation widely used in the structural equation model litera-
ture (Bollen, 1989) and futher formalized by Richardson
and Spirtes (2002). In a linear Gaussian model, for in-
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stance, this could be parameterized by the measurement
model equationYi = XTβ + ǫi, where the covariance of
the error terms forY2 andY4 is allowed to be non-zero.
More details will be given in the sequel.

Conditioned on the background knowledge of a model
where we specify the “known unknowns” – the latent fea-
tures we would like to estimate by a postulated relationship
to observations – we would like to identify the remaining
dependence structure given by all remaining factors we did
not specify in advance – the “unknown unknowns.” This
provides a meeting point between the common practice
of designing measurement models for the practical goal
of quantifying specific latent factors (Bollen, 1989), and
purely data-driven approaches for discovering latent struc-
ture (Elidan et al., 2000; Silva et al., 2006).

The structure of the paper is as follows. A formal prob-
lem definition is given in Section 2, where we specifiy pre-
cisely the goals, classes of models and assumptions em-
bedded in our procedure. Algorithms for structure learn-
ing are described in detail in Section 3, based on varia-
tions of the composite likelihood method integrated within
a expectation-maximization framework. Further context
and related work is discussed in Section 4. Experiments
with synthetic and real data are discussed in Section 5, fol-
lowed by a Conclusion in Section 6.

2 PROBLEM SPECIFICATION AND
MODEL SPACE

In this section, we first define the space of graphical models
which is assumed to contain the data generating process of
interest. We then present further details on the parametric
assumptions and a formulation based oncumulative distri-
bution networks(Huang and Frey, 2008; Silva et al., 2011).

2.1 Structural Conditions

In our setup, we assume the following:

1. that the data is generated according toG, an underly-
ing directed acyclic graph (DAG) (Koller and Fried-
man, 2009) composed of latent and observed vari-
ables. InG, observed variables are not parents of any
other variable, as in typical models of factor analysis
(Bartholomew and Knott, 1999);

2. that an expert provides a partition of the set of ob-
served variablesY, such that each setSi ⊂ Y in
this partition corresponds to the observed children
of a latent variableXi. For example, in Figure 1,
the partition is given by setsS1 ≡ {Y1, Y2, Y3} and
S2 ≡ {Y4, Y5, Y6};

3. let XS be this set of latent variables associated with
the partition (e.g.,{X1, X2} in Figure 1). We also
allow for a (possibly infinite) set of latent variables

X∞ that is disjoint ofXS ;
4. elements ofXS are arbitrarily connected to each other

in G, and elements ofX∞ are also arbitrarily con-
nected to each other. However, anyXi ∈ XS is
marginally independent of anyXj ∈ X∞ in G.

2.2 Problem Specification

We want to account for any association among elements of
Y that is due toX∞, so that functionals of the conditional
distributionP(XS | Y) can be correctly estimated from
data.

Instead of modeling the number of elements inX∞ and
how they relate to each other as in a nonparametric latent
variable model formulation (e.g. Wood et al., 2006), we
will treat the existence ofX∞ as a black-box. We model di-
rectly the dependencies that arise from its existence within
amixed graphformulation (Richardson and Spirtes, 2002).
A mixed graph is a graph with more than one type of edge.

Let Gm be a graph with verticesY ∪ XS , and directed
edges from eachXi to each element ofSi. For simplic-
ity, the structure among elements ofXS is assumed to be
a fully connected network of undirected edges. If two ob-
served variablesYi andYj have a common ancestor inX∞
in G, add a bi-directed edgeYi ↔ Yj to Gm. We say that
Gm is the mixed graph induced byG andXS . The condi-
tional independence constraints entailed byGm all hold in
G (Richardson and Spirtes, 2002). Hence, identifiability is-
sues aside, fitting a model based on a graph different from
Gm should in general result in a misspecified distribution
and give a inadequate model forP(XS |Y).

Our goal can then be summarized as:learn the structure of
Gm by finding the correct bi-directed substructure.In the
example of Figure 1, this means returning the information
thatY2 ↔ Y4 is the only bi-directed edge inGm.

Thepractical assumption here is that the bi-directed com-
ponent ofGm is sparse. Sparsity in a bi-directed component
corresponds to a marginal independence constraint among
elements ofX∞: the lack of an edgeYi ↔ Yj corresponds
to the parents ofYi in X∞ being marginally independent
of the parents ofYj in X∞. The extent to which this as-
sumption is valid will depend on how well the dependence
between elements ofY is captured byXS and it is ver-
ified empirically in Section 5. This complements Wood
et al. (2006), which makes fewer assumptions but has to
deal with a much harder problem.

2.3 Comments

The setup where observed variables are partitioned into sets
corresponding to particular semantic groups is a key idea
behindcanonical correlation analysis(CCA). The standard
CCA corresponds to a partition into two sets. For rank-one
CCA, this corresponds to a graphical model with a single
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latent variable being a parent of all observations, variables
in each partition connected to each other by bi-directed
edges. There are no bi-directed connections across vari-
ables in different sets of the partition, but CCA in general
allows for several independent latent variables being com-
mon parents of all observations. A general latent variable
model interpretation of canonical correlation analysis was
originally introduced in a series of reports by Wegelin et al.
(2001, 2002), and by Bach and Jordan (2005). In contrast,
we are assuming that a single latent variable is (explicitly)
a parent of each given group of variables, that such latent
variables can be mutually dependent, but that extra fac-
tors are allowed. Common between our model space and
CCA is the idea of having a partition of the observed vari-
ables. As such, we refer to the problem of searching for a
structure in the space of graphs with a known partition as
thestructured canonical correlation analysisproblem. We
once again emphasize that a major motivation for this type
of analysis is a domain-dependent assumption about which
latent variables are being measured, and that such variables
have a prior interpretation.

2.4 Parametric Assumptions

For a fixed level ofXS , observed variablesY should have
marginal independence constraints as implied by the corre-
sponding bi-directed structure. In a Gaussian parameteri-
zation, for instance, this would mean that the covariance of
Yi andYj givenXS is constrained to be zero ifYi is not
adjacent toYj , and free otherwise (Richardson and Spirtes,
2002).

For this paper, we will model binary data. Latent variables
XS are assumed to follow a zero mean Gausssian with an
unknown covariance matrixΣ. For the rest of this section,
we discuss models for the conditional distribution of ob-
served variables givenXS . We will assume a linear model
for each univariate dependenceP(Yi = 0 | Xj = xj) ≡
Φ(0; βi1xj + βi0, 1) for Yi ∈ Sj . FunctionΦ(0; µ, σ2) is
the probability of a Gaussian of meanµ and varianceσ2

being negative. Coefficients{βi1, βi0} are unknown.

Given these univariate conditionals, a conditional joint is
needed. Models of marginal independence for binary data
can be obtained from a Gaussian parameterization, as dis-
cussed by Silva and Ghahramani (2009). However, in our
context we will be also interested in performing Bayesian
model selection. Although priors for sparse covariance ma-
trices exist, performing model selection in a large space
is computationally problematic: we are particularly moti-
vated by the modeling of surveys with a large sample size.
More details on that are discussed in Section 4.

2.4.1 Brief review of CDNs

Instead, we will adopt the cumulative distribution network
framework (CDN) of Huang and Frey (2008, 2011). Given

a symmetric graph, a CDN model defines the cumulative
distribution functionF (y) of a multivariate distribution by
a product off factors. Each factorFi(·) has as arguments
the variables in a cliqueYfi of the graph:

F (y) ≡
f∏

i=1

Fi(yfi )

As shown by Silva et al. (2011), this can be extended to
accommodate conditional distributions and integrated with
a copula modeling framework (Nelsen, 2007)1. For a fixed
instantiationx of the parentsX of a set of random variables
Y, its conditional CDFP(Y ≤ y | X = x) ≡ F (y | x)
can be parameterized as

F (y | x) ≡
f∏

i=1

Ci(ux(yfi;1)
efi ;1 , . . . , ux(yfi;n(i))

efi;n(i))

(1)
whereCi(·) is a copula function,yfi;j denotes the instan-
tiation of thej-th variable in cliquefi, exponentefi;j is a
non-negative parameter, andn(i) the number of elements
in cliquefi. Moreover,

ux(yi) ≡ P(Yi ≤ yi | x) (2)

Also, for eachYi, the sum of its respective exponentse⋆,
across all factors containingYi, is equal to 1. For simplic-
ity, we fix each exponent associated withYi to be1/h(i),
with h(i) being the number of factors containingYi.

A powerful property of CDNs is its simple marginaliza-
tion procedure: calculation of the marginal of a CDF by
marginalizing a subsetYmarg consists of evaluating the
CDF whereYmarg = ∞. For instance,P(Y1 ≤ y1, Y2 ≤
y2) = P(Y1 ≤ y1, Y2 ≤ y2, Y3 ≤ ∞, . . . , YN ≤ ∞).

In a graph such asY1 ↔ Y2 ↔ Y3, the CDF is given by
a CDN modelF1(y1, y2)F2(y2, y3) and the corresponding
marginal forY1 andY3 is given byF1(y1,∞)F2(∞, y3) ≡
g(y1)h(y3), corroborating the fact thatY1 andY3 should
be marginally independent. In the case of a model

1A full description of copula models is beyond the scope of
this paper. Nelsen (2007) provides further details, and Huang and
Frey (2011), Silva et al. (2011) provide examples within thecon-
text of CDNs. For the purposes of this paper, it suffices to un-
derstand that a copula is nothing but ad-dimensional CDF with
(continuous) uniform marginals in[0, 1]d. Its motivation can then
be understood: it allows for the construction of a joint distribution
where marginals can be parameterized separately. By defining
each univariate marginalP(yi | x) separately, the transformation
ux(yi) = P(Yi ≤ yi | x) gives an uniform[0, 1] random vari-
able. These transformed variables can then be plugged into ajoint
distribution with uniform marginals, which becomes a distribution
with arbitrary marginals in the original space. This, amongother
uses, allows for the use of plug-in estimates for marginals to be
combined with other estimators for joints. In this case, no further
bias will be introduced into the marginal models even if the joint
is misspecified or if the copula estimator is biased.
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for F (y1, y2, y3 | x), according to (1), we have that
F (y1, y2, y3 | x) is given by

C1(ux(y1), ux(y2)
1/2)C2(ux(y2)

1/2, ux(y3))

Recall that, ifC(u, v) is a copula function, thenC(u, 1) =
u (since copulas are CDFs withU(0, 1) marginals).
One can then verify thatF (y1, y3 | x) = P(Y1 ≤
y1 | x)P(Y3 ≤ y3 | x) andF (y2 | x) = P(Y2 ≤ y2 | x) as
desired.

Another advantage of the CDN formulation is that param-
eters across factors are functionally independent. This isin
contrast with, for instance, the sparse covariance models of
Richardson and Spirtes (2002) and Silva and Ghahramani
(2009), where a positive definite constraint ties all param-
eters. Having no constraints across different factors will
be a fundamental property to be exploited in our learning
procedure. We call this propertyparameter modularity.

The difficulty with the CDN formulation is that in order
to calculate the likelihood function, as required for any
likelihood-based learning procedure, one has to convert the
conditional CDFs into probability mass functions (PMFs)
(Huang and Frey, 2011). This can potentially take an ex-
ponential amount of time on the number of variables in the
graph. However, the marginalization property and the pa-
rameter modularity property of the CDNs leads to an attrac-
tive way of performing efficient learning, as we will see in
the next section.

3 A LATENT COMPOSITE
LIKELIHOOD APPROACH

Let D = {Y(1), . . . ,Y(N)} be our data, a set of bi-
nary measurements of dimensionp. For a given graphi-
cal structureGm and fixed coefficient parameters{βi1, βi0}
and latent covariance matrixΣ, the marginal likelihood of
{Gm, {βi1, βi0}, Σ} is

P(D | Gm, {βi1, βi0}, Σ) =

∫
P(D,X1:N , θ | Gm, β, Σ) dX1:N dθ (3)

whereX1:N is a shorthand notation for{X(1), . . . ,X(N)},
β is a shorthand notation for{β1,1, β1,0, . . . , βp,1, βp,0},
and parameter setθ describes parameters associated with
copula functions.

One approach for model selection is to assign a prior
π(Gm) over possible graph structures and then chooseGm

that maximizesP(D | Gm, {βi1, βi0}, Σ)π(Gm). Since
{{βi1, βi0}, Σ} are also unknown, we could marginalize
then away. However, such parameters do not affect the
complexity of the model, and with the goal of having an
efficient computational procedure, we will treat these pa-
rameters also as nuisance parameters and maximize with

respect to them along withGm. In this paper, we will as-
sume that individual pairwise factors are associated with
each bi-directed edge inGm. Our prior forθ is indepen-
dent2 of Gm and factorizes as

π(θ | Gm) = π(θ) =
∏

1≤i<j≤p

π(θij) (4)

Maximizing any expression that depends on (3) poses a
formidable computational problem. Moreover, it depends
on conditional probability expressionsP(Y | x). Such
conditional mass functions need to be obtained from the
canonical CDFF (·) to PMF P(·) transformation (Joe,
1997), which for binary data boils down to:

P(Y = y) =
1∑

z1=0

· · ·
1∑

zp=0

(−1)
∑p

i=1 ziF (y − z) (5)

This is of course exponential inp, but if the corresponding
bi-directed component is a symmetric graph of low tree-
width, the expression can be calculated efficiently by dy-
namic programming and used by any learning method that
requires the likelihood function. The original derivationby
Huang et al. (2010) is quite complex and provides insights
on how approximate methods should behave. However, in
the sequel we will make use of exact methods only, and as
such we provide in the Supplementary Material a straigh-
forward reduction of (5) to a standard inference problem in
factor graphs – making the method easier to implement.

Integrating awayθ andX is harder in general and large
tree-width graphs are still a possibility. As such we avoid
methods that attempt to maximize (3). The core procedure
is based on structural composite likelihood learning. It is
described in Section 3.1, and refined in Section 3.2. Further
implementation details are given in Section 3.3. An alter-
native to these methods is to emulate a constraint-based ap-
proach (Spirtes et al., 2000) for structure discovery, provid-
ing a non-iterative procedure to identify which bi-directed
edges are needed. This is done in Section 3.4. A brief
discussion on model identification is provided in the Sup-
plementary Material.

3.1 Basic Structural Composite Likelihood

A composite likelihood function (Varin et al., 2011) for a
parameter of interestθ is defined as

CL(θ;D) =
∏

k∈K

Lk(θ;D)wk

whereLk(·) is the likelihood function resulting from the
conditional probability (or density) function of a subset of

2Parameterθij will not, of course, affect the likelihood func-
tion if Yi ↔ Yj is not inGm. One could otherwise interpretθij

as simply not existing in this case, but this way of interpreting θij

will make the presentation easier without being less precise.
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Y given another subset, andwk are user-specified weight
parameters. It is intuitive to understand why a composite
likelihood function can provide consistent estimates ofθ:
if an unique model is identifiable from the marginal con-
ditional densities used in eachLk(·), then maximizing the
log-composite likelihood is equivalent to minimizing the
KL-divergence between each marginal conditional and the
empirical distribution. By matching each marginal as the
divergence goes to zero, one recovers the parameters.

Joreskog and Moustaki (2001) applied this concept in the
context of latent variable models, by fitting a probit model
using univariate and bivariate marginals with equal weight.
A key fact is that bivariate likelihoods can be integrated
numerically, since only two underlying latent variables are
present. Although still computationally demanding, this
approach does not require any Markov chain Monte Carlo
within a stochastic EM procedure, nor requires biased ap-
proximations such as mean-field methods. We initially pro-
pose a similar idea, where our (penalized) composite like-
lihood function is given by

PCL(Gm, β, Σ) ≡ F (β,Σ)
Gm

+ log π(Gm), (6)

F (β,Σ)
Gm

≡
∑

i<j

logP(Y1:N
i ,Y1:N

j | Gm, β, Σ)

When using one-parameter copula functions (Nelsen,
2007), each bivariate termP(Y1:N

i ,Y1:N
j | Gm, β, Σ) re-

quires the numerical integration of at most three terms: the
copula parameterθij corresponding to the edgeYi ↔ Yj

and up to two latent variables per data point configuration,
as explained in Section 3.3.

A greedy procedure for optimizingPCL(·, ·, ·) is outlined
in table Algorithm 1. It takes as input a partition over ob-
served variables (S) and a datasetD. Algorithm 1 alter-
nates between optimizing the objective function with re-
spect to the continuous parameters (Step 5), and optimiz-
ing structure (Steps 6). Optimization in Step 5 is done with
respect to the coefficient spaceΩβ and correlation matrix
spaceΩΣ, as explained in further detail in Section 3.3. The
structural update is a standard greedy algorithm that picks
the best choice of graph within the graph spaceG+/−

m : the
space that includesGm and all mixed graphs that differ
from Gm by exactly one bi-directed edge. Finally, pro-
cedure GETDAG(S) at the beginning of Algorithm 1 just
returns the variable space (Y, XS ) and the initial mixed
graph without any bi-directed edges. The initialization of
parameters is discussed in the Supplementary Material.

3.2 Learning via Distributed EM Bounds

Even for problems with large sample sizes, one might be
concerned that using only pairwise regions might imply
low statistical efficiency. Higher (statistical) efficiency can

Algorithm 1 Pairwise Structured CCA Learning
1: procedure LEARNSTRUCTUREDCCA-I(S,D)
2: {Y,XS ,Gm} ← GETDAG(S)
3: {β, Σ} ← INITPARAMETERS(Gm,D)
4: repeat
5: {β, Σ} ← argmax(Ωβ ,ΩΣ) PCL(Gm, β, Σ)
6: Gm ← argmax

(G+/−
m )

PCL(Gm, β, Σ)

7: until Gm has not changed.
8: return Gm

9: end procedure

be obtained by using components with more than two ob-
served variables. This is undesirable, as it might require
sophisticated integration methods, including MCMC. We
present a different way of sharing statistical power among
different pairwise likelihood functions without requiring
an integration procedure on dimensions higher than in the
pairwise procedure of the previous Section. It is based
on ideas adapted from the expectation-maximization (EM)
family of optimization methods (Dempster et al., 1977).

Using the standard Jensen bound for convex combinations,
but applied independently to different terms in a summa-
tion, it is possible to lower-boundF (β,Σ)

Gm
as

∑

i<j

∫
qij(θij) log

Pij(Y
1:N
i ,Y1:N

j , θij | Gm, β, Σ)

qij(θij)
d θij

(7)
The bound holds for any choice ofqij(·) and it is
well-known to be maximized by choosingqij(·) to be
P(θ |Y1:N

i ,Y1:N
j ,Gm, β, Σ) (Neal and Hinton, 1998).

We will further modify the idea in (7) with a different
matching between functionalsqij(·) and log-likelihood
functions. LetXi ∈ XS and recallSi are the observed
children ofXi in Y. Let |S| be the number of latent vari-

ables. The trick is to first rewriteF (β,Σ)
Gm

as in Equation (8)
displayed in Table 1. Using an arbitrary set of distributions
{qmn(·)}, 1 ≤ m < n ≤ |S|, PCL(Gm, β, Σ) can then be
rewritten and elementwise bounded as

PCL(Gm, β, Σ) ≥ Q(β,Σ,{qmn(·)})
Gm

+logπ(Gm)+κ (10)

where Q(β,Σ)
Gm

is defined as Equation (9) in Table 1,
and constantκ does not depend on the free parameters
{Gm, β, Σ}.
Given this setup, we finally defineqmn(Θmn) to be the
joint distributionP(Θmn | Y1:N

mn ,Gm, β, Σ), whereYmn

are thejoint childrenof Xm andXn, andΘmn are the cop-
ula parameters used in the corresponding marginal model
for Ymn. Functionqmn(θij) is then the corresponding
(univariate) marginal ofqmn(Θmn).

The desirable property of (10) is that, while it still re-
quires only a three-dimensional integration (details in Sec-
tion 3.3), information fromYk, not in {Yi, Yj}, can be
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Table 1: Components of a Pairwise Composite Likelihood Score Function

F (β,Σ)
Gm

=
∑

m<n

∑

Yi∈Sm

∑

Yj∈Sn

logP(Y1:N
i ,Y1:N

j | Gm, β, Σ) +

|S|∑

m=1

1

|S| − 1

|S|−1∑

n=1

∑

{Yi,Yj}⊂Sm

logP(Y1:N
i ,Y1:N

j | Gm, β, Σ)

(8)

Q(β,Σ,{qmn(·)})
Gm

=
∑

m<n

∑

Yi∈Sm

∑

Yj∈Sn

∫
qmn(θij) logP(Y1:N

i ,Y1:N
j | Gm, β, Σ, θij)d θij +

1

|S| − 1

|S|∑

m=1

∑

n6=m

∑

{Yi,Yj}⊂Sm

∫
qmn(θij) logP(Y1:N

i ,Y1:N
j | Gm, β, Σ, θij)d θij

(9)

Algorithm 2 Modified Pairwise Structured CCA Learning
1: procedure LEARNSTRUCTUREDCCA-II(S,D)
2: {Y,XS ,Gm} ← GETDAG(S)
3: {β, Σ} ← INITPARAMETERS(Gm,D)
4: repeat
5: for 1 ≤ m < n ≤ |S| do
6: qmn(·)← P(Θmn |Y1:N

mn , β, Σ,Gm)
7: end for
8: {β, Σ} ← argmax(Ωβ ,ΩΣ) Q

(β,Σ,{qmn(·)})
Gm

9: Gm ← argmax
(G+/−

m )
PCL(Gm, β, Σ)

10: until Gm has not changed.
11: return Gm

12: end procedure

passed around. Consider the graph in Figure 1 again. There
is a d-connecting path betweenY2 andY6 givenY4 (or “m-
connecting,” using the nomenclature from Richardson and
Spirtes, 2002). Hence, there is a three-way interaction be-
tweenY2, Y4 andY6 that varies according to the copula be-
tweenY2 ↔ Y4, and information fromY6 is propagated to
the estimation ofβ2;1 andβ4;1 via the distribution ofθ2;4.

A modification of Algorithm 1 is shown in Algorithm 2.
The parameter fitting procedure is now expanded into Steps
5-8, with the structure learning step unmodified. The pos-
teriorP(Θmn |Y1:N

mn ,Gm, β, Σ) needs to be calculated ef-
ficiently and it has to lead to efficient integration in Step
8. This is discussed in Section 3.3. Moreover, it might
be surprising that in Step 9 we do not optimize structure
with respect to the same function of Step 8. Optimizing
the bound of Equation (10) with respect to the graph is
equivalent to a composite likelihood Structural EM proce-
dure (Friedman, 1998). While Structural EM procedures
are definitely useful, we prefer to not apply it uncritically
to our special situation. EM is a coordinate ascent method
(Neal and Hinton, 1998), and as such it is more prone to get
stuck in a local maxima compared to optimizing marginal
likelihoods directly. This is particularly true when optimiz-
ing with respect to a discrete structure – in this case, it is

common to prematurely converge to a structure with fewer
bi-directed edges than expected if we optimize the Struc-
tural EM lower bound starting with an empty bi-directed
component. Since for each data point we have no more than
two latent variables per log-likelihood term inPCL(·, ·, ·),
we avoid maximizing a lower bound in Step 9. Conver-
gence issues are discussed in the Supplementary Material.

3.3 Implementation Details

For Algorithm 2, we obtain the posterior distribution
qmn(Θmn) using the Laplace approximation (MacKay,
2003). Our goal is to use Algorithms 1 and 2 in problems
with large sample sizes, and hence such an approximation
can provide a reasonably accurate replacement for the ex-
act posterior – which has no closed form and would require
a numerical method in any case.

Even the Laplace approximation procedure requires an-
other inner approximation. Recall that in order to obtain
the mean vector and covariance matrix required to approx-
imate the distribution ofΘmn with a Gaussian, we need
to maximizelogP(Y1:N

mn | Gm, β, Σ, Θij) + log π(Θmn).
Let P be the total number of children betweenXi andXj .
ThenP(Y1:N

mn | Θmn,Gm, β, Σ) can be rewritten as

∏

ymn∈{0,1}P

(

∫
P(ymn, xm, xn |Θmn, . . . )d xmd xn)Nmn

which takes constant time in sample size3 given pre-
computed sufficient statisticsNmn, the count of events
Ymn = ymn in datasetD, and under an approximation
to each of the two-dimensional integrals.

In our implementation, we use an approximation for the

3Assuming that the marginal ofGm overYmn has a bounded
tree-width, this expression is tractable in the dimensionality of the
problem using the CDN inference method to obtain the likelihood
function (Huang and Frey, 2011, see also the Supplementary Ma-
terial). The full graphGm might have a large tree-width, as long
as the subgraph given byYmn does not.
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integral ofP(ymn, xm, xn | Θmn, β, Σ,Gm) of the form

≈
∑

k

wk(σmn)P(ymn, x(k)
m , x(k)

n | Θmn, β, Σ,Gm)

(11)
for a fixed set of grid points{(x(k)

m , x
(k)
n )} regardless of

the values ofm and n, but a function of the covariance
σmn ≡ (Σ)mn. Any quadrature method could be used.

We opted for an admittely crude but simple implementa-
tion which uses an arguably excessive number of points
compared to adaptive quadrature methods, but which is
relatively amortized taken into account such integrations
need to be done several thousand times – we need to cal-
culate our weightswk only once. Without loss of general-
ity, Σ can be assumed to be a correlation matrix. For each
marginal{xm, xn}, we naively space the grid points uni-
formly between the 0.01 and 0.99 quantiles of the standard
Gaussian. The result is a division of the space into squares
centered at each{(x(k)

m , x
(k)
n )} which does not depend on

m andn. We definewk(σmn) to be the probability mass
of each square. This can be pre-computed only once in the
whole procedure, also using the following simplification of
Σ: we allow each entryσmn to lie only within the discrete
set of choices{−0.99,−0.97, . . . , 0.97, 0.99} and cache
wk(σmn) for everyk and possible value ofσmn. Since
they correspond to bivariate Gaussian integrals, recomput-
ing these weightsO(p2) times at each iteration would oth-
erwise be very costly.

Equations (8) and (9) require integrals overθmn. Given the
approximation for the bivariate likelihood of each pairwise
data point configuration, we introduced a discrete approx-
imation for the priorπ(θmn) (Algorithm 1) or univariate
Gaussian marginalqmn(θmn) that results from the Laplace
approximation (Algorithm 2). The grid points are naively
a number of quantiles corresponding to uniformly spread
cumulative probabilities in[0, 1]. These quantiles are re-
computed at every iteration, since this is relatively cheap.

When optimizing parameters, we optimizeβ for a fixedΣ
by gradient methods4. We then optimizeΣ given{βi1, βi0}
without enforcing positive definiteness: the evaluation ofF
andQ does not require this condition. The objective func-
tions decouple over the entries ofΣ and hence each en-
try σmn can be optimized separately – by searching over
the discretized space{−0.99,−0.97, . . . , 0.97, 0.99}, as
required to allow for the caching ofwk(σmn).

3.4 Bivariate Residual Search

An alternative to the expensive iterative methods from the
previous section is to do a single hypothesis test for each

4In order to reduce the number of parameters, we calculate
each interceptβi0 as a function of the slopeβi1 such that the
marginal probabilityP(Yi = 0 |β, Σ) matches the empirical
probability. Hence the only free parameters are the slopes{βi1}.

Algorithm 3 Single-shot Structured CCA Learning
1: procedure LEARNSTRUCTUREDCCA-0(S,D)
2: {Y,XS ,Gm} ← GETDAG(S)
3: {β, Σ} ← arg max(Ωβ ,ΩΣ) PCL(Gm, β, Σ)
4: for 1 ≤ i < j ≤ |Y| do
5: Gij

m ← arg max
(Gij(+/−)

m )
PCL(Gm, β, Σ)

6: end for
7: return ∪ijGij

m

8: end procedure

bi-directed edge. If one knew parameters{β, Σ}, a possi-
bility is to do aχ2-like measure of fitness of the implied
bivariate contingency table for each{Yi, Yj}, and add the
corresponding bi-directed edge if there is evidence of mis-
fit. Without knowledge of{β, Σ}, a possibility is to fit the
model without bi-directed edges as a surrogate, in the hope
that such estimates are good enough to detect misfit. In
Algorithm 3, we outline a procedure where the test of mis-
fit is to choose between two models with the single edge
Yi ↔ Yj and none (our definition of the spaceGij(+/−)

m )
based onPCL(·, ·, ·) – essentially a Bayesian test for the
edge in the bivariate modelP(Yi, Yj | β, Σ). The final
graph is given by the union of all edges that were selected
by the bivariate tests. The shortcoming of course is that
the initial parameter estimate might be bad if there are rea-
sonably strong dependencies due to the unaccounted latent
variables. Iterating the procedure, however, gives a proce-
dure that is essentially Algorithm 1, albeit with a “parallel”
testing of the edges. For simplicity, we do not consider
the continuum between sequential and parallel tests (e.g.,
methods where initial iterations would modify one edge
only per parameter update, allowing multiple edge modi-
fications later on) and evaluate Algorithm 3 only.

4 RELATED WORK

More conventional uses of EM in the context of compos-
ite likelihod have been discussed by Varin et al. (2011) and
Gao and Song (2011). CCA has been applied in other con-
texts in machine learning, such as analysing text data under
different languages (Hardoon et al., 2004). This setup and
usage is very different from our motivation, which focus on
applications with several small sets of measurements, and
where the special structure of the latent space (a one-to-
one association between latent variables and groups of ob-
servable variables) is motivated by particular applications
in measurement error problems (Bollen, 1989). Concern-
ing model selection in structured latent spaces, Silva and
Ghahramani (2009) provides an approach based on Gaus-
sian distributions, and a Gaussian copula method can be
readily applied to the binary modeling case. However, we
want to avoid a full likelihood approach for scalability rea-
sons. While Silva and Ghahramani (2009) provides pri-
ors over sparse covariance matrices, it is not clear what
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the marginals of such priors are over subsets of the ob-
servations: sparse inverse Wishart priors do not have a
closed form for their marginals. This makes the Bayesian
Gaussian approach seemingly hard to apply in the compos-
ite likelihood scenario. The use of composite likelihood
methods in model selection (Varin and Vidoni, 2005) has
been increasing in recent years, including variations where
parameters across different likelihood components do not
need to be constrained to be the same: a postprocessing
method can be used to combine estimates from different
regions into a single point estimate (e.g., Meinshausen and
Buehlmann, 2006). Further consequences of ignoring asso-
ciation due to unspecified factors in a latent variable model
are discussed by Westfall et al. (2012). It is also important
to mention that the method here introduced generalizes the
learning methods of Huang and Frey (2011), since the CDN
is a special case. It is also an alternative to maximum like-
lihood estimation for networks of large tree-width.

5 EVALUATION

We evaluate the approach with a synthetic and a real-world
experiment. The prior over graphical structures is given
by an independent probability of 0.1 for each bi-directed
edge. We use Frank copulas for the dependence struc-
ture (Nelsen, 2007). The prior for parameterθij is defined
by first sampling a standard GaussianZ ∼ N (0, 1) and
squashing it asθij = [1/(1+e−z)]×50−25, which gener-
atesθij in the interval[−25, 25] – beyond which the Frank
copula gives numerically unstable results in our code.

5.1 Synthetic Studies

We simulate5 20 networks with 4 latent variables and 4
children per latent variable. Bi-directed edges were added
independently with probability 0.2. The network is then
pruned randomly so that each latent variable d-separates at
least three children, and that each observed variable has no
more than 3 adjacent bi-directed edges. The average num-
ber of resulting edges was approximately 18. Results for
three evaluation measures are shown in Figure 2. We com-
pare the three methods of Section 3, doing a comparison at
three different sample sizes (1000, 5000 and 10000). We
show the average paired difference over 20 trials between

5Other details about the simulation: a “signal factor” (the ra-
tio between the varianceβ2

i1 implied by the GaussianXm, and
β2

i1 + 1 given by the added variance of the probit model) is the
sampled uniformly within the interval[0.2, 0.6] for each variable
Yi. Slopeβi1 is then set accordingly as a function of the signal
factor, with its sign chosen with probability 0.5. A “marginal fac-
tor” (the marginal probabilityP(Yi = 0)) is uniformly sampled
within the interval[0.1, 0.9], and interceptβi0 is set according
to the marginal factor and the sampled value ofβi1. We sample
each copula parameter independently, uniformly in the interval
[10, 15]. Finally, we generateΣ by rescaling as a correlation ma-
trix the result of

∑4
k=1 zkzT

k , whereZK ∼ N (0, 1).

LEARNSTRUCTUREDCCA-II (LSC-II) and LSC-I, and
between LSC-II and LSC-0. The first criterion is the root
mean squared error of the average slope coefficients{β1}
with respect to the true model; the second criterion is “edge
omission,” the number of incorrectly removed edges di-
vided by the total number of edges; the third criterion is
“edge commission,” incorrect addition of an edge divided
by the total number of possible additions. The number of
times where the difference is positive with the correspond-
ing p-values for a Wilcoxon signed rank test are given be-
low (stars indicate numbers less than 0.05):

1000 5000 10000
Slope I 0 I 0 I 0

number 13 6 17 15 15 13
p-value 0.22 0.25 * * * 0.06

Omission I 0 I 0 I 0
number 11 18 6 14 6 9
p-value 0.17 * 0.82 * 0.62 0.22

Commision I 0 I 0 I 0
number 5 2 15 16 16 18
p-value 0.28 * * * * *

The upshot is that Algorithm 2 does at least as well as
the others concerning edge omission, but with substantially
fewer false positives – a problem that particularly affects
the single-shot algorithm. Algorithm 2 is also more robust
concerning parameter estimation. It has to be said, how-
ever, that all methods do badly concerning edge omission
at sample size 1000: in more than 10 trials, Algorithm 2
had edge omission rates over 0.5. At sample size 5000, this
substantially decreased (17 trials under 0.2, 10 under 0.15).
Algorithm 2 commission errors are typically low (< 0.05)
for all datasets. It is also relevant that Algorithm 2 typically
converges faster than Algorithm 1 despite the extra step on
approximating posteriors with the Laplace approximation.

5.2 Analysis of the NHS Staff Survey

We present a simple application to the modeling of re-
sponse patterns in the 2009 National NHS Staff Survey
(Care Quality Comission and Aston University, 2010). We
now emphasize less an evaluation of the structure and
more the initial goal described in Section 2.2 on showing
how finding bi-directed structures helps in estimating func-
tionals ofP(XS | Y). The NHS (National Health Ser-
vice) is the public healthcare system of the United King-
dom. A survey concerning different aspects of job satis-
faction, work conditions, training and other factors takes
place regularly. We provide an analysis of the 2009 sur-
vey, which was returned by 156,951 respondents. Un-
der the assumption that sections in the questionnaire trans-
late to particular trait factors, we evaluate how much is
gained by allowing a latent variable model to be adaptive
to external factors not originally included in the model.
Responses to questions are either binary Yes/No ques-
tions or encoded in an ordinal scale (varying in 5 points
from strong disagreement to strong agreement). We en-
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Figure 2: Differences between LEARNSTRUCTUREDCCA-II (LSC-II) and LSC-I are labeled, at three different samples
sizes, as 1000-I, 5000-I and 10000-I. Differences between LSC-II and LSC-0 are labeled analogously.

coded ordinal data as binary, assigning the value of 1 to
“Agree” and “Strongly agree” responses, and 0 otherwise
(including missing or not applicable responses). We gen-
erated 9 factors out of the questionnaire with a total of
50 observed variables. The selection and partitioning pro-
cess is described in detail in the Supplementary Mate-
rial. We randomly selected 100,000 respondents as a train-
ing set and fit a model using LEARNSTRUCTUREDCCA-
II. A total of about 40 bi-directed edges was gener-
ated. We also fit the model without any bi-directed
edges. Since we cannot calculate marginal likelihoods
easily as a way of comparing the models, we resort to
evaluating the predictive ability of the latent representa-
tions. Given these two models, we generate latent em-
beddings of the observations6 in the test set by maximiz-
ing

∑
ij logP(Y

(d)
i , Y

(d)
j , X

(d)
i , X

(d)
j | β, Σ,Gm), for each

data pointd, with respect to the latent variables. HereXi

andXj are the (possibly unique) latent parents ofYi and
Yj . This results in over 50,000 points in a 9-dimensional
space. Half of these points were used to build 11 logis-
tic regression models to predict answers to questions not
included in the model7. We calculated the area under the
curve for predictions done in the test set of approximately
28,000 points. Results are shown in the Table 2, which
illustrates that the mixed model does at least as well or bet-
ter at generating a latent representation of the observations,
while preserving the interpretability of the model.

6 CONCLUSION

We summarize the main features of our method:

• it searchs only over a projection of an infinite di-
mensional latent space into a mixed graph structure,

6After fitting both models, 5 of the observed variables were
given extreme coefficients in their measurement equations (in
both models). In order to make the embedding process numeri-
cally stable, we removed these 5 variables from the testing.

7Questions concerned job satisfaction. See Supp. Material.

Table 2: Comparison of the mixed graph CCA model
(MCCA) against the standard, fixed structure, model
(SCCA) in 11 binary classification tasks, as measured by
the area under the curve.

MCCA SCCA MCCA SCCA
Q1 0.71 0.71 Q7 0.80 0.79
Q2 0.75 0.75 Q8 0.82 0.81
Q3 0.86 0.82 Q9 0.86 0.83
Q4 0.90 0.82 Q10 0.69 0.69
Q5 0.79 0.80 Q11 0.78 0.75
Q6 0.73 0.72

instead of explicitly adding latent variables. Condi-
tioned onXS , the composite likelihood function can
be calculated analytically. This is possible due to the
implicit latent variable representationof the CDN;
• assuming no missing data, it requires only the suf-

ficient statistics for regions of bounded size, com-
putable with a single pass through the data, possible
due to themarginalization propertyof the CDN;
• optimization is unconstrained, thanks to theparame-

ter modularityproperty of the copula formulation;
• it allows for the use of simple deterministic integration

methods, while still providing a mechanism to prop-
agate information beyond simple pairs of observed
variables – anovel variation of composite likelihood
estimation, to the best of our knowledge.

Although the approach scales well in the sample size,
the parameter fitting step is still particularly expensive in
high-dimensions, as also noted by Joreskog and Mous-
taki (2001). A more efficient algorithm can be achieved
by a smarter implementation of the gradient optimization
method, or by relaxing the restriction that parameter esti-
mates need to be the same across different likelihood com-
ponents (Meinshausen and Buehlmann, 2006). Moreover,
having an adaptive structure for the partition of the random
variables is also an important direction.
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Abstract

Shotgun proteomics is a high-throughput tech-
nology used to identify unknown proteins in a
complex mixture. At the heart of this process
is a prediction task, the spectrum identifica-
tion problem, in which each fragmentation
spectrum produced by a shotgun proteomics
experiment must be mapped to the peptide
(protein subsequence) which generated the
spectrum. We propose a new algorithm for
spectrum identification, based on dynamic
Bayesian networks, which significantly out-
performs the de-facto standard tools for this
task: SEQUEST and Mascot.

1 Introduction

Shotgun proteomics is the dominant technology used
to identify which proteins are present in a cell or tis-
sue sample, and is widely used in the biological sci-
ences (Marcotte, 2007; Steen and Mann, 2004). At the
heart of shotgun proteomics is a machine learning prob-
lem. Proteins are broken down into small fragments,
called peptides. Although shotgun proteomics cannot
directly determine the sequence of these peptides, the
technology can rapidly generate indirect information
about peptide sequences, called fragmentation spectra.
The task of identifying the peptide string responsible
for generating an observed fragmentation spectrum is
known as the spectrum identification problem. This
problem is similar in form to speech recognition, in
which a spoken utterance (fragmentation spectrum) is
mapped to its corresponding natural language string
(peptide sequence).

This paper applies dynamic Bayesian networks (DBNs)
to the spectrum identification problem. We draw on
ideas from the graphical models community to build
an algorithm for spectrum identification which is sig-
nificantly more accurate than the most popular tools

in wet-lab use, SEQUEST (Eng et al., 1994) and Mas-
cot (Perkins et al., 1999), as well as other representative
tools which have been proposed for spectrum identifi-
cation. We call our algorithm Didea1.

2 Background

Spectrum identification is a machine learning problem,
but like many problems in computational biology, one
which has a high barrier to entry for computer scientists.
Therefore, we present a self-contained introduction to
shotgun proteomics, explaining how peptides generate
fragmentation spectra (Section 2.1). One of the reasons
for using a dynamic Bayesian network is that it allows
us to use qualitative knowledge about the physics of
peptide fragmentation (in the structure of the DBN)
and a small number of trainable parameters to improve
predictive power.

We review the literature on spectrum identification,
which falls into two broad categories: database search
(Section 2.2) and de novo identification (Section 2.3).
Database search uses additional biological information
about the sample being analyzed to constrain the statis-
tical complexity of spectrum identification. Database
search is more accurate than de novo, and is the pre-
ferred technique in practice (Kim et al., 2010). The two
most popular tools in wet-lab practice, SEQUEST and
Mascot, are both database search tools, as is Didea.

2.1 Shotgun Proteomics

A typical shotgun proteomics experiment proceeds in
three steps, as illustrated in Figure 1(a). The input to
the experiment is a collection of proteins, which have
been isolated from a complex mixture. Each protein
can be represented as a string of amino acids, where the
alphabet is size 20 and the proteins range in length from
50–1500 amino acids. A typical complex mixture may

1A portmanteau of the words ’Dynamic’, ’Peptide’, and
’Algorithm’.
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(a) The three steps—(1) cleaving proteins into peptides, (2)
separation of the peptides using liquid chromatography, and
(3) tandem mass spectrometry analysis.
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(b) Red ticks indicate where we expect to detect ions from
the fragmentation of peptide EAMCGHN.

Figure 1: The schematic for a typical shotgun proteomics experiment (a), with an example of a real fragmentation
spectrum annotated by the theoretical spectrum, in red, of a candidate peptide EAMCGHN (b).

contain a few thousand proteins, ranging in abundance
from tens to hundreds of thousands of copies.

In the first experimental step, the proteins are digested
into peptides, or protein subsequences, using a molecu-
lar agent called trypsin. On average, the length of the
peptides for the model organisms we consider is 14-15,
with no peptides being longer than 50 amino acids.
Digestion is necessary because whole proteins are too
massive to be subject to direct mass spectrometry anal-
ysis without using very expensive equipment. In the
second experimental step, peptides are subjected to a
process called liquid chromatography, in which the pep-
tides pass through a thin glass column that separates
the mixture of peptides based on a particular chem-
ical property (e.g., hydrophobicity). This separation
step reduces the complexity of the mixtures of peptides
going into a mass spectrometer. The third experimen-
tal step, which occurs inside the mass spectrometer,
involves two rounds of mass spectrometry. Approxi-
mately every second, the device analyzes the population
of approximately 20,000 intact peptides that most re-
cently exited from the liquid chromatography column.
Then, based on this initial analysis, the machine selects
five distinct peptide species for fragmentation. Each
of these fragmented species is subjected to a second
round of mass spectrometry analysis. The resulting
“fragmentation spectra” are the primary output of a
shotgun proteomics experiment.

A fragmentation spectrum is shown in Figure 1(b). We
explain how such a spectrum is generated using a con-
crete example. Assume that, from the population of
20,000 intact peptides, we isolate a distinct peptide
species: a collection of peptide molecules, each with
sequence EAMCGHN. Each peptide molecule has extra
protons, which allows it to be isolated and accelerated
using magnetic fields. Molecules with extra protons
are called ions; the number of extra protons, its charge.
These isolated peptide molecules are collided into a

neutral gas, which causes each molecule to break, typ-
ically along one of the amino acid bonds at random.
For a peptide of length n, there are n− 1 bonds which
can be broken, each yielding a (prefix, suffix) pair: e.g.,
(E, AMCGHN), (EA, MCGHN), . . ., (EAMCGH, N).
When an amino acid bond is broken, the extra protons
migrate to either the prefix or suffix, at random. The
charged prefix is called a b-ion; the charged suffix is
called a y-ion. Collectively, the ionized products of
fragmentation are called product ions. We assume all
product ions are either b- or y-ions. The sequence of
peptides or product ions cannot be directly measured,
but we can measure how often product ions with a par-
ticular mass-to-charge (m/z) ratio are detected. These
measurements are represented in a plot with m/z (mea-
sured in Daltons) on the horizontal axis and intensity
(unitless, but roughly proportional to ion abundance)
on the vertical axis.

Real fragmentation spectra are noisy. The isolation of
peptide species is imperfect, so fragmentation spectra
can contain product ions from peptides with different
sequences (chimeric spectra). Mass analyzers can mea-
sure subatomic mass differences, so even the smallest
unfiltered contaminant adds noise to the fragmenta-
tion spectrum. Product ions without charge cannot
be detected, and we do not always know how many
protons are adopted by a product ion—i.e., variable
charge. There are a host of secondary fragmentations
and degradations of product ions, which are measured.
Finally, intensity measurements are quite noisy.

The input to the spectrum identification problem is
a fragmentation spectrum, along with the observed
(approximate) mass of the intact peptide whose frag-
mentation produced the spectrum. The output is the
sequence of the unknown peptide, the fragmentation of
which generated the spectrum. A peptide paired with
a spectrum is called a peptide-spectrum match (PSM).
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2.2 Database Search

A tandem mass spectrometry experiment produces a
set of fragmentation spectra S = {s1, . . . , sr}. Each
spectrum is also associated with a measurement of
the mass of the unknown peptide which generated the
spectrum, m(si). Let U be the universe of all peptides.
We assume as input a database of possible peptides,
P ⊂ U . The key assumptions behind database search
are that (i) we know the organisms from which the
proteins came from, and (ii) we have a set of all known
proteins for the organism, which can be computed
given the organism’s genome. We need only search
over peptides in P , not all peptides in U . Formally,
spectrum identification is the task of assigning a peptide
pi ∈ P to each spectrum si. Let Ψ : S×P → R denote
a scoring function, where a higher score corresponds
to a higher confidence that a peptide-spectrum match
is correct (i.e., the peptide generated the spectrum).

Since we have measured m(si), we can further constrain
the search space over peptides to those whose mass is
close to m(si), a set of candidate peptides,

C(si, P, δ) = {p : p ∈ P, |m(p)−m(si)| < δ}, (1)

where m(p) is the mass of the peptide p. In our exper-
iments, we use δ = 3.0 Daltons. The database search
itself involves scoring all candidate peptides, return-
ing the highest scoring one for each spectrum. For
i = 1 . . . r,

pi = argmax
p∈C(si,P,δ)

Ψ(si, p). (2)

The first computer program to use a database search
procedure to identify fragmentation spectra was SE-
QUEST (Eng et al., 1994), whose scoring function is
defined in terms of inner products between the quan-
tized observed spectrum and a theoretical spectrum
φ(p) generated from a simple model of peptide fragmen-
tation. Observed and theoretical spectra are vectors
of real numbers, so a peptide can be compared to a
spectrum using inner products,

XCorr(s, φ(p)) = αx − βx, where

αx = 〈s, φ(p)〉, βx =
1

150

75∑

τ=−75
〈s, φτ (p)〉, (3)

and where φτ (p) is just φ(p) shifted by |τ | units to the
right (τ > 0) or left (τ < 0). Intuitively, a peptide
is a good match if the observed spectrum s is highly
correlated to the theoretical spectrum (αx high), but
not to shifted versions of the theoretical spectrum (βx
low). Didea’s scoring function has an analogous α− β
representation, where the analogues of correlation (α)
and cross-correlation (β) are calculated using graphical
model inference (Section 3.2).

There are a number of different tools for database
search: e.g., SEQUEST (Eng et al., 1994), Mas-
cot (Perkins et al., 1999), OMMSA (Geer et al., 2004),
X!Tandem (Craig and Beavis, 2004), PepHMM (Wan
et al., 2006), Riptide (Klammer et al., 2008), An-
dromeda (Cox et al., 2011), InsPecT (Tanner et al.,
2005) and MS-GFDB (Kim et al., 2010). Separate from
these approaches are post-processors, such as Peptide-
Prophet (Keller et al., 2002) and Percolator (Käll et al.,
2007), which refine the scores of a set of prescored
peptide-spectrum matches, instead of scoring spectra
in a streaming fashion. We note that statistical tools
also exist for identifying proteins from peptide iden-
tifications, which can also refine peptide scores like a
post-processor (e.g., (Li et al., 2010)). Some of the
tools cited do not have implementations available for
benchmarking (e.g., Riptide). Indeed, each of the above
papers supports its predictive power claims by bench-
marking against a representative subset of prior work.
We have opted for a large set of competitors, on a
diverse panel of data sets: SEQUEST, Mascot, MS-
GFDB, OMMSA. SEQUEST and Mascot are the two
most popular tools in wet-lab practice: e.g., each has
been cited over 3000 times in Google Scholar, and both
are commercial products.2 MS-GFDB is a new scoring
tool; the authors have demonstrated superior perfor-
mance on the same kinds of fragmentation spectra that
we study (collision-induced dissociation of tryptic pep-
tides) against many of the tools listed above. OMMSA
is open-source, and readily available. We do not com-
pare against post-processors, as they use information
not available to the other tools.

2.3 De Novo vs. Database Search

Early work on spectrum identification framed the prob-
lem as an exhaustive search over all possible pep-
tides (Sakurai et al., 1984), an approach which came to
be known as de novo spectrum identification, a.k.a. de
novo peptide sequencing (Bafna and Edwards, 2003;
Bandeira et al., 2008; Bartels, 1990; Bern and Goldberg,
2005; Bhatia et al., 2011; Dancik et al., 1999a,b; Datta
and Bern, 2008; Fischer et al., 2004; Frank and Pevzner,
2005; Frank et al., 2005; Jeong et al., 2010). De novo
tools select all candidate peptides that are within a
mass tolerance of m(si), not just those peptides that
occur in a per-organism peptide database P .

De novo and database search methods cannot be eq-
uitably compared. Database search uses knowledge
about the organism from which the protein sample
is drawn, as well as knowledge of the proteome of
that organism. De novo does not assume that such
information is available. De novo searches over pep-

2Mascot is a black box, the details of its spectrum iden-
tification engine, as currently implemented, are proprietary.
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Figure 2: Basic Didea model. Dark gray nodes are ob-
served random variables, light gray nodes are variables
whose value is a deterministic function of its parents,
and unshaded nodes are hidden random variables. Bold
circles indicate vectors of random variables.

tides in C(si, U, δ); database search searches over pep-
tides in C(si, P, δ), where for any reasonable value of
δ, |C(si, P, δ)| � |C(si, U, δ)|.

3 Generative Model of Peptide
Fragmentation

Didea encodes much of the physical process of peptide
fragmentation by collision-induced dissociation within
a dynamic Bayesian network. To maximize predictive
performance, we take advantage of the idea of spectrum
shifting (Equation 3) within our model, to derive a
scoring function for peptide-spectrum matches based
on inference within the DBN. The resulting inference-
based scoring function can be viewed as an α−β score,
where instead of dot products, we use the DBN to
induce analogues of correlation and cross-correlation.

Figure 2 shows the basic Didea model; Sections 3.1–3.3
describe all the conditional probability distributions.
Many of the conditional probability distributions are
deterministic, which allows the scoring function to be
computed in polynomial time.

An advantage of Didea is that adding more knowledge
to the model (e.g., Sections 3.4-3.5) yields a new scoring
function without any changes to the code. We just
compute the same posterior on a new model.

3.1 Mapping the peptide to theoretical
product ions

A DBN is a structured probability distribution over
variable-length sequences of random variables, and is a
strict generalization of the more familiar hidden Markov
model (HMM). In Didea, a peptide containing n amino
acids is represented by a sequence of random variables

(At : t = 1 . . . n). Each variable At takes on the value
of one of the 20 standard amino acids. In database
search the peptide is given, so the amino acid variables
are observed: p = (At = at : t = 1 . . . n). To simplify
the main text, we equivalently refer to a peptide as a
sequence of amino acids p = a1a2 . . . an.

In collision-induced dissociation, most of the product
ions are either b- or y-ions. If the peptide p is cleaved
between at and at+1, then the resulting (respectively
b- and y-) product ions are referred to as bt = a1 . . . at
and yt = at+1 . . . an. We use the function c(·) to denote
the charge of a peptide, c(p); the charge of the product
ions, c(bt) and c(yt); and the observed charge(s) of
the fragmentation spectrum, c(s) ⊆ {+1,+2,+3}.3
For now, we assume that c(p) = +2 (two adopted
protons) and that the product ions each adopt one
proton from the peptide during fragmentation, i.e.,
∀t, c(bt) = c(yt) = +1. These charge assumptions
simplify exposition, and are relaxed in Section 3.5.

The structure of the Didea model is shown in Figure 2.
Random variables are grouped into frames, indexed
by t = 0 . . . n. The first frame (frame 0) is referred
to as the prologue; the last frame (frame n), the epi-
logue. The variables in the prologue and epilogue do not
themselves correspond to b- or y-ions, but do contain
variables needed to define recursions used to compute
the mass of product ions. For a peptide of length n,
the chunk frame is repeated once for a1, . . . , an−1, in
the same way that variables are repeated in an HMM
to accommodate variable length sequences.

A product ion (a.k.a. fragmentation) spectrum s is a
collection of peaks s = {(xj , hj)}j , where xj is a point
on the mass-to-charge, or m/z, axis (x-axis), and hj is
the corresponding intensity. To check whether the bt
or yt ion appears in the observed spectrum, we need
the mass of each product ion. The neutral masses of
the bt and yt ions are represented by random variables
Nt ≡ m(A1 . . . At) and Ct ≡ m(At+1 . . . An), where
m(·) returns the neutral masses of a sequence of amino
acids. In Didea, the mass of each amino acid is rounded
to the nearest whole Dalton, so that Nt and Ct are
multinomial random variables over the neutral mass
of the bt and yt ions—Nt, Ct ∈ {0, . . . , D} ⊂ Z++. By
definition, N0 = 0 and Cn = 0, so that the masses of
the product ions can be computed recursively: Nt =
Nt−1 + m(At), Ct = Ct+1 + m(At). Note that C0 =
Nn = m(A1 . . . An). Unlike HMMs, DBNs can have
both left-to-right and right-to-left arcs (as long as there
are no directed cycles), which allows us to implement
the two recursions in the same model. Since {At}t
are observed, both Nt and Ct become deterministic

3In our experiments, the mass spectrometer operates in
positive-ion mode, and the reported charge of each spectrum
is either c(s) = +1, c(s) = +2, or c(s) ∈ {+2,+3}.
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random variables: p(Nt = m(a1 . . . at)) = 1 and p(Ct =
m(at+1 . . . an)) = 1.

3.2 Mapping theoretical product ions to the
fragmentation spectrum

We now have the mass of each product ion, and we
have assumed that the charge of each product ion is
+1. To finish the basic Didea model, we need to (i)
encode the spectrum as observed random variables, (ii)
introduce random variables which map from mass and
charge to a specific m/z region in the spectrum, and
(iii) define a conditional probability distribution which
measures the value of finding a peak of intensity h in
the m/z region where a product ion is expected to be.

From the settings used to collect our spectra, we know
that xj ∈ [0, 2000] m/z units. For simplicity, we quan-
tize the m/z scanning range into bins that are 1Da
wide. In Figure 2, the bins correspond to a vector of
random variables S = (Si : i = 1 . . . B = 2000). A
spectrum is an instantiation of the random variables
s = (Si = si : i = 1 . . . B), where each si ≥ 0.

Spectra may differ by orders of magnitude in both total
intensity (

∑
j hj) and maximum intensity (max{hj}).

To control for intensity variation, we rank-normalize
each spectrum: peaks are sorted in order of increasing
intensity, and the ith peak is assigned intensity i/|s|, so
max{hj} = 1.0. If bin i contains no peak, then si = 0.
Otherwise, si is the highest rank-normalized peak, so
si ∈ [0, 1]. We represent the vector of random variables
S using a single, bold-edged node in Figure 2.

Each repetition of the chunk frame represents one pair
of b- and y-ions, denoted (bt, yt). The random vari-
ables Bt, Yt ∈ {1, . . . B} represent, respectively, the
bin where the bt and yt ions are to be expected.4 We
want to be able to shift the theoretical spectrum, in
much the same fashion as Equation 3. We do so us-
ing the discrete random variables τt ∈ [−M . . .+M ],
for some M ∈ {1 . . . B} (we use M = 37). We ex-
pect to see a peak corresponding to the bt ion in SBt ,
and a peak corresponding to the yt ion in SYt . The
mass-to-m/z mappings are Bt = round(Nt + 1) and
Yt = round(Ct + 19), where 1 is the mass of a proton,
and 19 the mass of a proton plus a water molecule. τt
shifts all the theoretical product ion peaks. To ensure
that Bt, Yy ∈ [0, . . . B], values less than 1 are changed
to 1; values greater than B are changed to B. To
ensure that all the product ion peaks are shifted by
the same amount, we copy the value of τ0 from the
prologue frame into each subsequent one: ∀t = 1 . . . n,
τt = τt−1. As will be seen in Equation 6, to mimic the

4Since there is no ambiguity, we also use bt and yt to
represent assignments to random variables, Bt = bt and
Yt = yt.

arithmetic average over shifts in the background term
in XCorr, we assume that τ0 is uniformly distributed
over all shifts, p(τ0) = (2M + 1)−1.

Most of the conditional probability distributions in
Figure 2 are deterministic, which leads to a concise
form for the joint distribution. For now, we refer to
the contribution of a spectrum peak to the likelihood
as non-negative function g:

p(τ0, s,p) = p(τ0)
n−1∏

t=1

B∏

i=1

g(S, i, bt, yt, τt), (4)

g(· · · ) , P (Si | bt, yt, τt)1(i=bt+τt∨i=yt+τt). (5)

Equation 4 is the likelihood of the model in Figure 2.

The values of Bt and Yt, for each t, are deterministically
determined from the peptide sequence. Assignment
{Bt = bt}t forces the model to assign some score, based
on the intensity of the peaks found in {Sbt}t (likewise
with {Yt = yt}t). The choice of P (Si | bt, yt, τt) deter-
mines how the spectrum influences the score; details
are deferred to Section 3.3.

One way to use the proposed model to score a PSM
would be to set τ0 = 0 and use Equation 4, which
would be analogous to dropping the βx term in XCorr.
Instead, to achieve an analogue to XCorr, we propose a
score that can be interpreted as the difference between
the Didea analogues of spectrum correlation (αd) and
cross-correlation (βd):

θ(s,p) , log p(τ0 = 0 |p, s) = αd − βd,
αd = log p(τ0 = 0,p, s),

βd = log p(τ0)
∑

τ0

p(p, s | τ0).
(6)

Both αx and αd are biased, assigning higher scores to
spectra that tend to be close matches to many peptides
(e.g., spectra with more non-zero peaks will tend to
have higher α, regardless of which peptide is evaluated
against it). The βd term, like the βx term, penalizes
spectra which tend to match many peptides, which is
why α− β scores tend to be more discriminative than
α. Equation 6 is a (posterior) probability; Equation 3
is not probabilistic.

3.3 Modeling spectrum peak intensity

Here, we define Equation 5, which determines the in-
fluence of the spectrum on the likelihood, and thus the
PSM score θ(s,p). The cost of inference is proportional
to the number of times P (Si | bt, yt, τt) is evaluated.
Since the spectrum is fixed across all t = 1 . . . n − 1,
the values of P (Si | bt, yt, τt), for all (Si = si, bt, yt, τt),
can be precomputed and stored in a lookup table:
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w : {1 . . . B} → R+, a transformation of the spec-
trum into non-negative weights. When a predicted
product ion matches peak si in the spectrum, w(i) is
the contribution of that peak match to the PSM score.

In a graphical model, any conditional probability dis-
tribution on discrete variables can be reparameterized
into a lookup table using virtual evidence (Pearl, 1998),
allowing us to re-express Equation 4 as

p(τ0,p, s) ∝ p(τ0)
n−1∏

t=1

w(Bt + τt)w(Yt + τt), (7)

where w(i) = f(si), for user-chosen transformation
f > 0. Logically, we prefer to match theoretical product
ions to higher intensity peaks in the observed spectrum.
Our experiments with f focused on scaled and shifted
exponential distributions, restricted to [0, 1], since si ∈
[0, 1]. Based on these experiments, a class of f which
performs well on a wide variety of data sets is

fλ(S) = 1− λe−λ + λe−λ(1−S). (8)

The parameter, λ > 0, dictates the value placed on
matching higher intensity peaks in the scoring function.
The larger λ is, the higher the preference for matching
b- and y-ions to high intensity peaks. There is no
simple threshold for determining peak relevance based
only on intensity; a PSM can have a high score even
if most of the peaks identified are of low intensity.
The unusual form of fλ came out of an attempt to
use exponential distributions to model peak intensity.
Since fλ(S) is nearly log-linear on [0, 1], one can instead
use f ′λ2

(S) = exp(λ2S), where λ2 > 0 is chosen to make
f ′λ2
≈ fλ. We get slightly better results using fλ.

To optimize λ with respect to θ(s,p), we use a grid
search on a development set of 1000 yeast spectra;
λ = 0.5 yielded the best results. λ acts as a tuning
parameter for soft peak filtering. Both SEQUEST and
MS-GFDB have to decide whether a peak is relevant
before scoring, which can affect which PSM is selected.

3.4 Modeling fragmentation of charge +3
peptide ions

Thus far, we have assumed that the precursor ion has
two protons, which are divided equally between prod-
uct ions. However, electrospray ionization frequently
produces peptide precursor ions with more than two
protons (Trauger et al., 2002). That is, the charge of
the spectrum is higher than +2. In this section, we
extend Didea to model the fragmentation of charge +3
peptides.5

5It is possible for electrospray ionization of tryptic pep-
tides to produce peptide ions with a higher charge than +3,

Here, we have that c(p) = +3, with c(bt) and c(yt)
denoting the charges of the product ions. Since charge
is conserved in fragmentation we have ∀t, c(p) = c(bt)+
c(yt). The charge of bt is modeled as a multinomial
ξt ∈ {0,+1,+2,+3}. It is unusual for a product ion to
consume all the protons, and uncharged products are
not detectable. In the absence of prior knowledge, we
assume that the remaining choices are equally probable,
p(ξt = +1) = p(ξt = +2) = 0.5. Figure 3(a) is the
model for charge +3 peptide ions.

The definition of the scoring function, Equation 6,
remains unchanged. The inference still uses
log p(τn = 0 |p, s) as the score of a PSM. However, the
values of αd and βd change, because the joint distribu-
tion over PSMs has changed:

pch3(τ0,p, s) ∝ p(τ0)

n−1∏

t=1

∑

ξt

p(ξt)Ω(t), (9)

Ω(t) = [w(Bt(Nt, ξt) + τt)w(Yt(Ct, ξt) + τt)] ,

Bt(Nt, ξt) = round ((Nt + ξt)/ξt) , (10)

Yt(Ct, ξt) = round ((Ct + 18 + ξt)/ξt) . (11)

Equations 10–11 are the mass to quantized m/z map-
pings for b- and y-ions. For each pair of ions (bt, yt),
inference integrates over all divisions of the charge.

SEQUEST has a very different treatment of charge-
variants of product ions. The theoretical spectrum
in SEQUEST consists of the union of peaks where
c(bt) = +1 and c(bt) = +2. As a thought experiment,
consider what peaks need to be in the observed spec-
trum to maximize the SEQUEST score. The αx term
is maximized when all the theoretical peaks appear
in the spectrum; the βx term is minimized when no
shifted version of the spectrum matches the theoretical
peaks. To maximize the SEQUEST score, the observed
spectrum would have to contain all peaks correspond-
ing to all charge variants of the product ions, except
those that would contribute significantly to the βx term.
There can be an exponentially large gap between the
number of peaks in the SEQUEST theoretical spec-
trum, and the observed spectrum. In contrast, our
approach averages the score over all 2n−1 assignments
to ξ = (ξ1 . . . ξn−1).6 Each assignment to ξ corresponds
to a particular combination of product ion peaks. Max-
imizing the score with respect to a peptide does not
make the assumption that all charge-variants of the

though doing so depends both on the mass spectrometer,
and properties of the peptide (Kinter and Sherman, 2000,
p. 69). Our data does not include such spectra, but it
is straightforward to extend the model described here to
charge > +3 spectra.

6Because of conditional independencies in Figure 3(a),
p(ξ) factors such that integrating over ξ is done in O(n)
time.
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Figure 3: Didea models which are used to handle
multiply-charged spectra (a) ξn is the charge of the
b-ion. (b) κ0 is a Bernoulli random variable over spec-
trum charge {+2,+3}, and is copied in each frame,
∀t, κt = κ0.

product ions exist in the spectrum. In our approach,
if many possible peaks are missing from the spectrum,
then p(ξ) will get smaller as the disagreement between
ξ and the spectrum increases. It is possible for p(ξ) to
be infinitesimally small for all but a few values of ξ.
That is, a high score can be achieved even if only a few
ξ have significant probability.

3.5 Multiply-charged spectra

Electrospray ionization routinely produces peptide pre-
cursor ions where charge c(s) ∈ {+1,+2,+3}. When
c(s) = +1, the spectrum is referred to as singly-charged;
when c(s) = +2, the spectrum is referred to as doubly-
charged; when c(s) has more than one possible value, we
are unable to distinguish which charge with certainty,
and the spectrum is referred to as multiply-charged.7

Existing database search algorithms analyze multiply-
charged spectra by doubling the amount of computation
(Eng et al., 1994). Each peptide-spectrum match is
searched at c(s) = +2 and again at c(s) = +3, and
the higher scoring match is used. If Ψc is the search
algorithm specialized to charge c, replace Equation 2
with

p∗ = argmax
p∈C(m,P,δ)

max
c∈{+2,+3}

Ψc(s, p). (12)

We could do the same search over charges with Didea.
Evaluating θ(·, ·) using Figure 2 corresponds to Ψ+2;
using Figure 3(a) corresponds to Ψ+3. However, a
concern with Equation 12 is that it assumes that the
per-charge scoring functions are calibrated,

Es∼S,p∼P [Ψ+2(s, p)] = Es∼S,p∼P [Ψ+3(s, p)] . (13)

7The only multiply-charged spectra in our data have
c(s) ∈ {+2,+3}. Extending the material of this section to
other forms of multiply-charged spectra is straightforward.

A multiply-charged spectrum is an expression of uncer-
tainty as to the charge state of the precursor. The mass
window in the MS1 step is such that selecting the same
peptide, at different charges, in the same MS2 scan,
is almost impossible. It is not plausible that a single
spectrum represents a mixture of the same peptide at
different charges. So while taking the max of a set of
charge-specific scoring function {Ψc}c allows one to
make identification decisions, it provides no measure
of uncertainty as to a spectrum’s true charge—either
charge +2 or charge +3 is selected, but no distribution
over spectrum charge state can be produced.

Thus, rather than taking a maximum over scores for
different charge states, we alter Didea to model un-
certainty as to the value of c(s). In Figure 3(b) we
introduce a Bernoulli random variable κ0 ∈ {+2,+3},
which is copied into each chunk frame. Moreover,

p(ξt |κt) =

{
p(ξt = +1) = 1.0 κt = +2,

p(ξt = +1) = 0.5 κt = +3,
(14)

We assume no prior knowledge about the distribution
of c(s), p(κ0 = +2) = 0.5. The rest of the parameters
remain unchanged from Section 3.4. When κ0 = +2,
the model is identical to Figure 2. When κ0 = +3, the
model is identical to Figure 3(a). Since κ0 is uncertain,
when θ(·, ·) is computed the score will be an average of
both models. Note, however, that the resulting score
is not the same as averaging the scores output by the
+2 and +3 model. In each frame t > 0, the scoring
inference is using an estimate of the spectrum charge
based on the product ions considered—i.e., p(κt) differs
at each t. We conjecture that p(κn | a1, . . . , an) can be
used as an estimate of the uncertainty in the charge of
the peptide-spectrum match chosen by Didea.

4 Experiments

Evaluating spectrum identification algorithms is com-
plicated by the lack of test data. One cannot collect
realistic spectra from known peptides. Section 4.1 de-
scribes how to estimate absolute ranking curves, which
are the standard approach for comparing spectrum iden-
tification algorithms. We benchmark Didea against a
panel of spectra from three different organisms (Sec-
tion 4.2), presenting results in Section 4.3.

4.1 Evaluation Without Ground Truth

A correct peptide-spectrum match (PSM) (pi, si) is one
where si is the result of the fragmentation of peptide
pi, and an incorrect PSM is any match that is not
correct. Clearly, database search scores vastly more in-
correct PSMs than correct ones. Moreover, evaluation
is greatly complicated by the lack of ground truth. Con-
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ceptually, ground truth for a spectrum identification
could be generated by feeding a purified peptide p∗ into
the tandem mass spectrometer. Unfortunately, there is
no way of purifying p∗ to the point where contaminants
are undetectable. Moreover, even if one could run a
pure peptide sample through the mass spectrometer,
the resulting spectrum s∗ would exhibit an unrealisti-
cally low level of noise; the test data would not reflect
a real shotgun proteomics experiment. The standard
solution in shotgun proteomics is to perform an eval-
uation without ground truth: measure the number of
matches at a bound on the false discovery rate (Elias
and Gygi, 2007; Käll et al., 2008).

For any peptide-spectrum match (pi, si) with score
vi, there are two possibilities: either the peptide pi
generated spectrum si, or it did not. We refer to
these events as hypotheses H1 and H0, respectively. If
the scoring function is any good, then we expect the
likelihood of vi to be low under H0, if (pi, si) is the
correct match. We can quantify what “low” means
here using a hypothesis test,

H0 : vi ≤ c, H1 : vi > c, (15)

where the choice of c ∈ R determines the stringency of
the test. Informally, the null hypothesis (H0) is that
the match is incorrect; the alternate (H1) is that the
match is correct.

Characterizing the accuracy at different values of c is
greatly simplified by converting the scores to p-values,
the probability of obtaining a score at least as large as c
under the null hypothesis. Denote the cumulative distri-
bution of scores under the null G0(c) , P(T ≤ c |H0),
where T is a random variable representing the PSM
score. Given PSM scores {vi}i the corresponding p-
values are pi = 1−G0(vi). Computing p-values for a
wide range of scores vi is tantamount to estimating the
null distribution. Estimated p-values {p̂i}i are gener-
ated by replacing the exact (unknown) null distribution
with an estimate Ĝ0(c).

For spectrum identification, a widespread approach
for estimating the null distribution is target-decoy
search (Balgley et al., 2007; Elias and Gygi, 2007; Käll
et al., 2008), in which a second search is performed
against each spectrum using a set of decoy peptides
d ∈ D, each of which could not have generated the
spectrum. The original peptides t ∈ P are referred
to as targets. Under the constraint that P ∩ D = ∅,
decoys are used to generate a sample from the null
distribution

v̄i = max
d∈D

Ψ(si, d), ∀i = 1 . . . r. (16)

The samples {v̄i}i are then used in a Monte Carlo
estimate of the p-values: p̂i is just the fraction of sam-
pled decoy scores that exceed vi. In our experiments,

decoy peptides are generated by randomly permuting
the reference proteome, which induces a set of random
peptides under a trypsin digest.

Since there are r hypothesis tests (spectra), we can
measure the tradeoff between the number of PSMs that
are accepted and the stringency of the threshold on the
score using false discovery rates. Visually, the tradeoff
is represented using an absolute ranking plot (Figure 4),
where each point on the x-axis is a q value q̃ ∈ [0, 1], a
measure of the false discovery rate (Storey, 2002), and
the corresponding value on the y-axis is the number
of PSMs accepted at that q-value. At q = 1, all r
identifications are accepted. Because peptide-spectrum
matches are often used as input to another estima-
tion task (e.g., protein identification or quantification)
our concern is with maximizing performance at small
q-values, so we only plot q ∈ [0, 0.1]. One method dom-
inates another if its absolute ranking curve is strictly
above the absolute ranking curve for the other method.

Absolute ranking measures what the end-user cares
about: maximizing the number of spectra identified at
their chosen false discovery rate tolerance.

4.2 Data sets

The spectra we study are generated from complex pro-
teins samples drawn from three organisms: tryptic di-
gests of a whole-cell lysate of Saccharomyces cerevisiae
(yeast), whole-cell lysate of Caenorhabditis elegans
(worm), and liver tissue from Mus musculus (mouse).
The yeast and worm data are freely available at http://
noble.gs.washington.edu/proj/percolator, with
a description of the sample preparation procedure, liq-
uid chromatography protocol, and mass spectrometer
settings in Käll et al. (2007).

4.3 Results

Our primary claim is that Didea outperforms compet-
ing systems under absolute ranking, the metric that
end-users actually care about. To support our empirical
claim, we benchmark Didea against competitors. All
algorithms have access to the same peptide database,
created by a fully-tryptic in silico digest of reference
yeast, worm, and mouse proteomes. Candidate pep-
tides are chosen using a mass tolerance of δ = 3.0
Daltons. A static modification is applied to account
for cysteine carbidomethylation in all the algorithms.
No variable modifications to amino acids are permit-
ted. All spectra are either singly-charged or multiply-
charged. All Didea-type scoring functions preprocess
the spectra using Equation 8 and use exact inference to
compute the PSM score. For Didea, we use the version
of the model which integrates over uncertainty in the
precursor charge (Section 3.5).
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Figure 4: Absolute ranking curves on eight different data sets. Didea significantly outperforms all competitors
in (a-f). Didea significantly outperforms all competitors, save MS-GFDB (g-h). If q = 0.05, then the expected
fraction of false discoveries (incorrect PSMs) in the matches accepted is 0.05. The goal is to maximize the number
of spectra identified for q ∈ [0, 0.1].

The absolute ranking plots for the benchmark are in
Figure 4. At an estimated 1% false discovery rate,
Didea outperforms MS-GFDB. While we often out-
perform MS-GFDB, there are cases where it beats
Didea (Figures 4(g)-4(h)). Surprisingly, Didea is able
to beat MS-GFDB even though it models less of the
complexity of peptide fragmentation physics: we use
no a-ions, nor neutral losses, nor do we account for
errors in the m/z measurements in a fragmentation
spectrum, like MS-GFDB does. Even more surprising
is that Didea achieves high predictive power with only
one trained parameter, λ. Even using a coarse grid
search, the chosen value of λ works well across a variety
of data sets. Training λ on a per-organism basis does
not significantly increase the absolute ranking curve
for Didea. Furthermore, we filter no peaks from the
spectrum, even though real spectra are extremely noisy.
In contrast, both SEQUEST and MS-GFDB require
extensive preprocessing of the spectrum to work well.

All spectrum identification tools make an empirical
claim, that their system identifies more spectra at a
given q-value, or range of q-values. We compare fa-
vorably on such evaluations, against a wide range of
competitors, using a relatively simple model and prob-
abilistic inference.

5 Summary and Future Work

We have formulated a scoring function for spectrum
identification based on a polynomial-time inference in
a dynamic Bayesian network. Didea is significantly
more accurate than both SEQUEST and Mascot, the
primary tools used for this task in real-world use. More-
over, we outperform even recently developed competi-
tors, like MS-GFDB, on many spectra. We anticipate
that adding additional information, e.g., a-ions, neutral
losses, relationships between ion yield and ion compo-
sition, will further improve the accuracy of Didea.

We believe that Didea is suggestive of the promise
of applying techniques popular in speech recognition,
such as dynamic Bayesian networks, to spectrum iden-
tification. For example, natural language processing
often uses a compressed representation of a natural
language corpora, which can be seen as analogous to
compressed representations of a peptide database. Es-
pecially exciting would be a variant of Didea which
replaces database search with direct Viterbi decoding
of the peptide sequence.

Acknowledgements: This work was funded by NIH
awards R01 GM096306 and P41 GM103533.
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Abstract

As a new method for detecting change-points
in high-resolution time series, we apply Max-
imum Mean Discrepancy to the distributions
of ordinal patterns in different parts of a
time series. The main advantage of this ap-
proach is its computational simplicity and ro-
bustness with respect to (non-linear) mono-
tonic transformations, which makes it partic-
ularly well-suited for the analysis of long bio-
physical time series where the exact calibra-
tion of measurement devices is unknown or
varies with time. We establish consistency of
the method and evaluate its performance in
simulation studies. Furthermore, we demon-
strate the application to the analysis of elec-
troencephalography (EEG) and electrocar-
diography (ECG) recordings.

1 INTRODUCTION

Detecting changes in the temporal evolution of a sys-
tem (biological, physical, mechanical, etc.) is of ma-
jor importance, e.g. in medical diagnostics, industrial
quality control, or the analysis of financial markets.
In statistics, the problem of inferring the time point
of a change from a sequence of observations is known
as change-point detection. There is a vast literature
on parametric and non-parametric methods for testing
the presence of change-points and for estimating their
locations. For an overview, we refer to the monographs
of Chen and Gupta (2000) and Brodsky and Dark-
hovsky (1993, 2000). Recently, Harchaoui et al. (2009)
have introduced an estimator for change-points based
on kernels.

In this paper, we propose to detect change-points by
comparing the distributions of ordinal patterns in dif-
ferent parts of a time series. In order to capture differ-
ences among the distributions automatically, we apply

the Maximum Mean Discrepancy (MMD) criterion re-
cently introduced by Gretton et al. (2007a, 2007b).
The proposed method is computationally fast and ro-
bust with respect to (non-linear) monotonic transfor-
mations of the observations, which makes it particu-
larly attractive for the exploration of high-resolution
biophysical time series where the exact calibration of
measurement devices is unknown or varies with time.
In real-life applications, such changes in the calibration
occur, e.g., for electroencephalography (EEG) record-
ings where small displacements of electrodes result in
changes of the conductivity.

Detecting changes in the dynamics of a time series by
looking at ordinal pattern distributions has first been
proposed by Bandt and Pompe (2002). More specifi-
cally, they consider permutation entropy, which is the
Shannon entropy of ordinal pattern distributions, as
a measure for detecting changes in the complexity of
time series. Permutation entropy has been applied to
the analysis of epileptic activity in EEG data (Li et
al., 2007; Bruzzo et al., 2008) and to measuring anaes-
thetic drug effects (Li et al., 2008; Olofsen et al., 2008).
In methodological studies, Keller et al. (2007a, 2007b)
define further statistics of ordinal pattern distributions
besides permutation entropy and investigate proper-
ties of the distributions themselves. Bandt and Shiha
(2007) derive formulas for ordinal pattern probabilities
in stochastic processes; Sinn and Keller (2011) study
statistical properties of estimators of these probabili-
ties.

This paper is organized as follows: In Section 2, we
formalize the change-point problem and review the
definition of ordinal pattern distributions. Section 3
shows how MMD can be used to automatically de-
tect change-points and discusses related work. In Sec-
tion 4, we evaluate the performance of our methods in
simulation studies and demonstrate the application to
real-life time series. Section 5 concludes the paper.
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2 OUTLINE OF THE METHOD

In this paper, we consider the problem of inferring
the time point of a change in the distribution of an
observed time series. The basic idea is to look at the
order structure in different parts of the time series;
if we find a time point with a clear difference between
the order structure before and afterwards, we conclude
that it is a change-point.

Formally, we describe the problem as follows: Let
N denote the set of natural numbers and Z the set
of integers. Consider a real-valued stochastic pro-
cess X = (Xt)t∈Z on some probability space (Ω,A,P),
where Ω denotes the sample space, A the set of mea-
surable events and P the probability measure. Let
Y = (Yt)t∈Z be the process of increments given by
Yt := Xt−Xt−1 for t ∈ Z. Throughout this paper, we
always assume the following holds:

(A1) The process Y is non-degenerate, i.e., all finite-
dimensional distributions of Y are absolutely con-
tinuous with respect to the Lebesgue measure.

(A2) The processes (Y0, Y−1, . . .) and (Y1, Y2, . . .) are
strictly stationary and ergodic.

Note that as a consequence of (A1), the values of X
are pairwise distinct P-almost surely, that is,

P(Xt1 6= Xt2) = 1 (1)

for all t1, t2 ∈ Z with t1 6= t2.

Now let m,n ∈ N. Suppose that we observe a time
series of length m+n with a change in the underlying
distribution after the first m time points, and m,n are
unknown (only the length m+ n is observable). Then
finding the location of the change-point is equivalent
to estimating the pair (m,n). We model this situation
by assuming the observed time series is a realization
of X at times t = −m,−m+ 1, . . . , n− 2, n− 1. If the
distributions of (Y0, Y−1, . . .) and (Y1, Y2, . . .) are dif-
ferent, then t = 0 is a change-point in X and we obtain
m observations before and n observations afterwards.

A generalization of the situation with only one change
in the distribution is the multiple change-point prob-
lem where the time series potentially has more than
one change-point. A common approach to solve this
problem is to iteratively apply a method for detect-
ing single change-points, i.e., after the detection of the
first change-point, the method is applied to the time
segments before and afterwards to search for further
change-points. In Section 4.1, we will consider this
approach in more detail.

2.1 ORDINAL PATTERN
DISTRIBUTIONS

We use the concept of ordinal pattern distributions to
describe the order structure of a time series. An ordi-
nal pattern represents the order relations among suc-
cessive values of a time series; if the values are pairwise
different, it is natural to identify ordinal patterns with
permutations. Counting the number of occurrences of
the permutations in a time series (or parts of it) yields
the empirical distribution of ordinal patterns.

Here we give a formal definition of ordinal patterns.
Let d ∈ N be fixed. By Π we denote the set of per-
mutations {0, 1, . . . , d}, which we represent by (d+ 1)-
tuples containing each of the numbers 0, 1, . . . , d ex-
actly one time. Let the permutations be denoted by
π1,π2, . . . ,π(d+1)! so that Π = {π1,π2, . . . ,π(d+1)!}.
Now consider the partition of Rd+1 obtained by iden-
tifying vectors whose components are correspondingly
ordered: For π = (r0, r1, . . . , rd) ∈ Π, let B(π) be the
subset of Rd+1 containing every vector (x0, x1, . . . , xd)
satisfying

(i) xr0 ≥ xr1 ≥ . . . ≥ xrd ,

(ii) if xri = xri+1
, then ri > ri+1.

Obviously, the union of all subsets B(π1), B(π2), . . . ,
B(π(d+1)!) is equal to Rd+1, and by condition (ii) the
pair of subsets B(πi), B(πj) is disjoint if i 6= j. By
saying that the ordinal pattern of order d at time t ∈ Z
is given by π = (r0, r1, . . . , rd), we designate the event

(Xt, Xt−1, Xt−2, . . . , Xt−d) ∈ B(π).

According to (1), this event is equivalent to

Xt−r0 > Xt−r1 > . . . > Xt−rd

P-almost surely. Note that a more general definition
of ordinal patterns includes an additional parameter
τ ∈ N (called the delay) which allows us to consider
the events (Xt, Xt−τ , . . . , Xt−dτ ) ∈ B(π) (see Keller
et al. (2007a)).

Figure 1 shows all the possible outcomes for ordinal
patterns of order d = 3. For example, if ω ∈ Ω is such
that Xt(ω) > Xt−1(ω) > Xt−2(ω) > Xt−3(ω) (thus,
the time series roughly looks like the upper left plot in
Figure 1), then the ordinal pattern at time t is given by
(0,1,2,3). If Xt(ω) > Xt−1(ω) > Xt−3(ω) > Xt−2(ω),
then the ordinal pattern is given by (0, 1, 3, 2), and so
on. The dark gray patterns (0, 1, 2, 3) and (3, 2, 1, 0) in
Figure 1 occur if the underlying time series is mono-
tonically increasing and decreasing, respectively. The
light gray patterns occur if the past two increments
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H0,1,2,3L H0,1,3,2L H0,3,1,2L H3,0,1,2L H0,2,1,3L H0,2,3,1L

H0,3,2,1L H3,0,2,1L H2,0,1,3L H2,0,3,1L H2,3,0,1L H3,2,0,1L

H1,0,2,3L H1,0,3,2L H1,3,0,2L H3,1,0,2L H1,2,0,3L H1,2,3,0L

H1,3,2,0L H3,1,2,0L H2,1,0,3L H2,1,3,0L H2,3,1,0L H3,2,1,0L

Figure 1: Possible outcomes for ordinal patterns of order d = 3.

have the same sign, and the white patterns occur after
changes between “upwards” and “downwards”.

Next, we consider the distribution of ordinal patterns
in the process X. For t ∈ Z and k = 1, 2, . . . , (d + 1)!
define

pk(t) := P( (Xt, Xt−1, . . . , Xt−d) ∈ B(πk) ),

that is, pk(t) denotes the probability that the ordinal
pattern at time t is given by πk. By the distribution
of ordinal patterns at time t we mean the stochastic
vector

p(t) := (p1(t), p2(t), . . . , p(d+1)!(t)) .

Note that the ordinal pattern at time t actually
only depends on the increments Yt, Yt−1, . . . , Yt−d+1

(see Sinn and Keller (2011)). Hence, a sufficient
condition for the ordinal pattern distributions p(t1)
and p(t2) to be identical is that the random vectors
(Yt1 , Yt1−1, . . . , Yt1−d+1) and (Yt2 , Yt2−1, . . . , Yt2−d+1)
have the same distribution. According to assumption
(A2), we obtain that

. . . = p(−1) = p(0) and p(d) = p(d+ 1) = . . . ,

i.e., the ordinal pattern distribution at times t ≤ 0
and t ≥ d, respectively, are identical. In general, the
distributions p(t) with t = 1, 2, . . . , d − 1 are equal
neither to p(0) nor to p(d) because they depend on
increments both before and after t = 0.

In the following, we write p− and p+ to denote the
generic distributions p(0) and p(d), respectively. Ob-
viously, a necessary condition for p− 6= p+ is that

X has a change-point at t = 0. The key idea of our
method for change-point detection is to measure the
difference between the empirical ordinal pattern dis-
tributions in different parts of a time series.

2.2 EMPIRICAL ORDINAL PATTERN
DISTRIBUTIONS

In the following, let 1{·} denote the function which
evaluates to 1 if the statement in the brackets is true,
and to 0 otherwise. For w ∈ N and t ∈ Z, define

p̂k(w, t)

:=
1

w

wt+w∑

s=wt+1

1
{

(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)
}
,

that is, p̂k(w, t) is the relative frequency of time points
in the time window {wt+1, wt+2, . . . , wt+w} at which
the ordinal pattern is πk. The parameter w determines
the size of the time window; as we will see in Theorem
1 below, the larger w, the closer we can expect p̂k(w, t)
be to pk(t).

Now, taking into account all the estimates p̂k(w, t) for
k = 1, 2, . . . , (d + 1)! gives us the empirical ordinal
pattern distribution

p̂(w, t) :=
(
p̂1(w, t), p̂2(w, t), . . . , p̂(d+1)!(w, t)

)
.

As the following theorem shows, p̂(w, t) converges to
p− if t < 0, and to p+ if t ≥ 0 (P-almost surely). This
result also holds if the “calibration” of X changes at a
number of points that grows sublinearly in time.
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Theorem 1 Suppose that conditions (A1)and (A2)
hold. Then

lim
w→∞

p̂(w, t) =

{
p− if t < 0,
p+ if t ≥ 0,

P-almost surely. This result also holds if we observe
the “distorted” process (h(Xt, t))t∈Z instead of (Xt)t∈Z
with

h(x, t) :=
∑

j∈Z
1{t ∈ (tj−1, tj ] }hj(x),

where the mappings hj : R→ R are strictly increasing
for all j ∈ Z, and (tj)j∈Z is an increasing sequence in
Z which satisfies

lim
w→∞

]
{
j ∈ Z : tj ∈ [−w,w]

}

w
= 0.

Proof. First, we consider the case t < 0. Since
(Y0, Y−1, . . .) is ergodic and

E
[
1{(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)}

]
= pk(0)

for all s ≤ w(t+ 1) with w ∈ N, the Ergodic Theorem
shows that p̂k(w, t) converges to pk(0) P-almost surely
(Cornfeld et al., 1982). If t > 0, then wt + 1 ≥ d for
sufficiently large w, and hence

E
[
1{(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)}

]
= pk(d)

for all s ≥ wt+1. Since (Y1, Y2, . . .) is ergodic, the Er-
godic Theorem shows that p̂k(w, t) converges to pk(d)
P-almost surely. In the case t = 0, we have

p̂k(w, t)

=
1

w

d−1∑

s=1

1{(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)}

+
1

w

w∑

s=d

1 {(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)}.

Since the first term on the right hand side tends to 0
and the second one converges to pk(d) P-almost surely,
the result follows.

Now suppose that we observe (h(Xt, t))t∈Z instead
of X. Note that if t, j ∈ Z satisfy t − d ≥ tj−1 and
t ≤ tj , then (h(Xt), h(Xt−1), . . . , h(Xt−d)) lies in
B(πk) if and only if (Xt, Xt−1, . . . , Xt−d) lies in
B(πk). Therefore, for any t ∈ Z, the number of time
points s ∈ {wt+ 1, wt+ 2, . . . , wt+ w} at which the
indicator functions of these two events are unequal is
bounded by (d + 1)-times the number of j ∈ Z for
which tj ∈ [wt + 1, wt + w]. Since the latter number
divided by w tends to 0 as w → ∞, we obtain the
result. �

2.3 DETECTING CHANGE-POINTS

Based on the definition of ordinal pattern distribu-
tions and the consistency result of Theorem 1, we now
present our method for change-point detection. Sup-
pose that X has a change-point at time t = 0 which re-
sults in a difference between the ordinal pattern distri-
butions p− and p+. Furthermore, suppose that we ob-
serve X at times t = −wm+1,−wm+2, . . . , wn−1, wn
where w ∈ N is “large” and m,n ∈ N are unknown
(only the sum m+ n is observed). In this setting, the
problem of estimating the location of the change-point
is equivalent to estimating the unknown values m and
n. Our proposed method proceeds as follows:

1. We partition the observations of X into (m + n)
non-overlapping blocks of size w each.

2. For each block, we compute the empirical ordinal
pattern distribution, which gives us the (m+ n)-
dimensional vector

z(w) := (2)

(p̂(w,−m), p̂(w,−m+ 1), . . . , p̂(w, n− 1)).

According to Theorem 1, we have

lim
w→∞

z(w) = ( p−, . . . , p−︸ ︷︷ ︸
m times

, p+, . . . , p+︸ ︷︷ ︸
n times

) (3)

P-almost surely. Thus, if the m + n ordinal pattern
distributions can be divided into two clearly distinct
groups, the sizes of these groups can be taken as es-
timates for m and n. In the following section, we ap-
ply Maximum Mean Discrepancy to determine these
groups.

Before discussing related work, let us make some re-
marks:

Remark 1. Our method is robust with respect
to changes in the “calibration” of the process
X. In particular, if h− and h+ are both strictly
increasing functions, then the ordinal pattern dis-
tributions p− and p+ in the transformed process
(. . . , h−(X−1), h−(X0), h+(X1), h+(X2), . . .) are
identical. As mentioned in the introduction, this
robustness is often desirable for the analysis of
biophysical time series the exact calibration of which
is unknown or varies with time.

Remark 2. If d is large enough, then our method does
detect changes of the complexity of X measured by the
permutation entropy (Bandt and Pompe, 2002; Keller
and Sinn, 2009). Furthermore, it is capable to detect
changes in the autocorrelation structure of Gaussian
processes (Bandt and Shiha, 2007).
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Remark 3. There is some trade-off between the
choice of the order of the ordinal patterns d and the
time window size w. In general, a larger order d per-
mits to detect changes of the higher-order autocorre-
lations of Y or, equivalently, in the lower frequency
domain. On the other hand, the time window size w
needs to be much larger than (d+1)! in order to obtain
reliable estimates of all the ordinal pattern probabili-
ties, however, the larger w, the less accurate the local-
ization of the change-points. For our experiments in
Section 4, we have chosen d = 3 and w = 500, that is,
we consider 24 different ordinal patterns and are capa-
ble to localize change-points with a precision of ±250
time points which, for the EEG and ECG recordings,
corresponds to approximately ±1 second. See also Sec-
tion 3.3 for a further discussion on this issue.

3 MAXIMUM MEAN
DISCREPANCY

In order to group the components of the vector z(w)
defined in (2), we use a recently proposed criterion
called Maximum Mean Discrepancy (MMD). Let Z be
an arbitrary set and z = (z1, z2, . . . , zm+n) ∈ Zm+n

with m,n ∈ N. MMD is a new criterion for testing
whether z1, z2, . . . , zm and zm+1, zm+2, . . . , zm+n come
from different distributions (Gretton et al., 2007a,
2007b). The basic approach is to measure the simi-
larity of points z, z′ ∈ Z using a kernel k(z, z′). In
our case, Z is the set of (d+ 1)!-dimensional stochas-
tic vectors, and for k(z, z′) we choose the Radial Basis
Function (RBF) kernel

k(z, z′) = exp

(
−‖z − z

′‖2
2σ2

)

where ‖·‖ denotes the Euclidean norm and σ2 > 0 is a
smoothing parameter. For m′, n′ ∈ N with m′ + n′ =
m+ n, the Maximum Mean Discrepancy is given by

MMD(z,m′, n′) :=
(

K1(z,m′, n′)
m′m′

− 2 K2(z,m′, n′)
m′n′

+
K3(z,m′, n′)

n′n′

) 1
2

where

K1(z,m′, n′) :=

m′∑

i=1

m′∑

j=1

k(zi, zj) ,

K2(z,m′, n′) :=
m′∑

i=1

n′∑

j=1

k(zi, zm′+j) ,

K3(z,m′, n′) :=
n′∑

i=1

n′∑

j=1

k(zm′+i, zm′+j) .

The terms 1
m′m′ K1(z,m′, n′) and 1

n′n′ K3(z,m′, n′) can
be regarded as the average similarity of points within
the groups z1, z2, . . . , zm′ and zm′+1, zm′+2, . . . ,
zm′+n′ , respectively, while 1

m′n′ K2(z,m′, n′) measures
the average similarity between the two groups. The
maximal MMD value is obtained for that partition of
z which yields maximum similarity within the groups
and maximum dissimilarity between them. The next
theorem shows how the MMD criterion can be used to
locate change-points in X.

Theorem 2 Suppose that conditions (A1) and (A2)
hold and let z(w) be as defined in (2). Then for all
m′, n′ ∈ N with m′ + n′ = m+ n, we have

lim
w→∞

MMD(z(w),m′, n′)

= min
{ n
n′
,
m

m′

}√
2
(
1− k(p−,p+)

)

P-almost surely. In particular, if p− 6= p+, then

lim
w→∞

(
arg max

(m′,n′)∈N2,
m′+n′=m+n

MMD(z(w),m′, n′)
)

= (m,n)

P-almost surely.

Proof. Suppose that m′ ≤ m. By equation (3) and
the fact that k(z, z) = 1 for all z ∈ X , the limits of
K1(z(w),m′, n′), K2(z(w),m′, n′) and K3(z(w),m′, n′)
are given by m′m′, m′(m −m′) + m′nk(p−,p+) and
n′(n′−2n)+2n(n′−n) k(p−,p+), respectively. Putting
all terms together, we obtain

lim
w→∞

MMD(z(w),m′, n′) =
n

n′

√
2
(
1− k(p−,p+)

)
.

In the case m′ > m, which is equivalent to n′ ≤ n, the
result follows by symmetry. Now the second statement
is obvious. �

3.1 BIAS CORRECTION

Theorem 2 shows that if the ordinal pattern dis-
tributions p− and p+ are different, then the argu-
ment (m′, n′) which maximizes MMD(z(w),m′, n′) is
a strongly consistent estimator of (m,n). For finite w,
however, practical experiments suggest that this esti-
mator is biased towards (1,m+n−1) and (m+n−1, 1),
particularly when the difference between p− and p+ is
small (see Section 4.1). Here we give a heuristic expla-
nation: suppose that the similarity between any two
components of z = (z1, z2, . . . , zm+n), as measured by
the RBF kernel, is approximately equal to some con-
stant δ > 0. For the random vector z(w), this is likely
to be the case if the difference between p− and p+ is
so small that all estimates are scattered in the same
region. A simple calculation shows that

MMD(z,m′, n′) ≈
(
1 − δ

) m+ n

m′n′
(4)
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Figure 2: Top: Realization of an AR(1) process with
a change-point at t = 0. Middle: Ordinal pattern dis-
tributions in time windows of size w = 500. Bottom:
Resulting values for MMD (gray) and CMMD (black).

for m′, n′ ∈ N with m′ + n′ = m + n, and hence the
argument maximizing MMD(z,m′, n′) is likely to be
(m′, n′) = (1,m+ n− 1) or (m′, n′) = (m+ n− 1, 1).
Next we propose a correction for the bias: define the
Corrected Maximum Mean Discrepancy

CMMD(z,m′, n′) := MMD(z,m′, n′)

− m+ n− 1

m′n′
max

(m̃,ñ)∈N2,
m̃+ñ=m+n

MMD(z, m̃, ñ).

The correction term on the right hand side can be re-
garded as an estimate of the bias of the MMD statis-
tic (compare to (4)). Experimental results show the
superiority of using CMMD instead of MMD (see Sec-
tion 4.1). Note that the estimator of (m,n) based
on CMMD is no longer consistent; in order to pre-
serve consistency, the correction term would have to
be scaled by a factor that tends to 0 as w →∞.

3.2 EFFICIENT COMPUTATION

Let us discuss the computational complexity of our
method. The computation of the ordinal pattern dis-
tributions is linear in the length of the input sequence
and can be realized by very efficient algorithms (Keller
et al., 2007b). Computing the estimate of (m,n) by di-
rectly evaluating MMD(z(w),m′, n′) for all m′, n′ ∈ N
with m′+n′ = m+n requires O((m+n)3) arithmetic
operations (Gretton et al., 2007a). For a more efficient
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Figure 3: Distribution of the change-point estimators
based on MMD (left) and CMMD (right).

computation, note that

K1(z,m′ + 1, n′ − 1) = K1(z,m′, n′)

+ 2
m′∑

i=1

k(zi, zm′+1) + k(zm′+1, zm′+1),

K2(z,m′ + 1, n′ − 1) = K2(z,m′, n′)

−
m′∑

i=1

k(zi, zm′+1) +
n′−1∑

i=1

k(zm′+1, zm′+1+i),

K3(z,m′ + 1, n′ − 1) = K3(z,m′, n′)

− 2
n′∑

i=1

k(zm′+1, zm′+i) + k(zm′+1, zm′+1).

Using these formulas, MMD(z(w),m′, n′) can be eval-
uated iteratively for all (m′, n′) = (1,m + n −
1), . . . , (m + n − 1, 1). Thus, computing the argu-
ment which maximizes MMD(z(w),m′, n′) requires
O((m+ n)2) arithmetic operations.

3.3 RELATED WORK

There is an extensive literature on change-point detec-
tion, including both parameteric and non-parametric
approaches (Chen and Gupta, 2000; Brodsky and
Darkhovsky, 1993, 2000). Recently, a kernel-based
method been proposed by Harchaoui et al. (2009). The
main difference to our approach is that all these meth-
ods aim to find the exact location of change-points
and give some guarantees on the significance level.
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Figure 4: Detection of multiple change-points. The black coloring corresponds to the maximum frequencies
34.0% (left), 15.1% (middle) and 2.2% (right), the white coloring corresponds to 0%.

This precision comes at the price of a high compu-
tational burden; for example, Harchaoui’s method has
a running time which is cubic in the input size. Our
method is designed to find the approximate location
of change-points, where the precision is controlled by
the time window size w. Because of its computational
efficiency, our method is particularly attractive for the
fast exploration of high-resolution time series such as
EEG recordings, which often consist of hundreds of
thousands of data points. Note that our approach can
be combined with existing methods in order to first
obtain the approximate locations of a set of candidate
change-points before determining their exact locations
and testing for significance.

4 EXPERIMENTS

4.1 SIMULATED DATA

Change of the autoregressive coefficient. Let
us first illustrate our method for simulated data. The
top plot of Figure 2 shows a realization of a first order
autoregressive (AR(1)) process with standard normal
innovations where, at time t = 0, the autoregressive co-
efficient changes from 0.1 to 0.3. There are two changes
of the process “calibration”: at time t = −2000, the
variance increases from 1 to 2, and at time t = 2000,
the variance decreases to 1

2 and values greater than 2
and smaller than −2, respectively, are scaled by the
factor 2. According to Remark 1 at the end of Section
2, we are not interested in detecting these changes of
the calibration, but only in the change-point at t = 0.

The middle plot of Figure 2 shows the distribution
of ordinal patterns in time windows of size w = 500.
The order is d = 3, so there are 24 different patterns
(compare to Figure 1). Their relative frequencies are
represented by the space between horizontal lines: the
space between the bottom line and the first line from

below represents the relative frequency of the ordinal
pattern (0,1,2,3) (the first pattern in Figure 1), the
space between the first and the second line from be-
low represents the relative frequency of (0,1,3,2) (the
second pattern in Figure 1), and so on. In the frame-
work of Section 2, we have m = n = 10, i.e., there are
10 time windows before and after the change-point.
As can be seen, the distributions before and after the
change-point are slightly different. The bottom plot of
Figure 2 shows the resulting MMD and CMMD values
for (m′, n′) = (1, 19), (2, 18), . . . , (19, 1). In all our
experiments, we used σ2 = 1 in the RBF kernel, how-
ever, we found that the results were not very sensitive
with respect to the choice of σ2. The maximal MMD
value is obtained for (m′, n′) = (19, 1), while maxi-
mizing the argument of CMMD yields the true value
(10, 10).

Comparing MMD and CMMD. In Figure 3, we
compare the distribution of the change-point estima-
tors based on MMD and CMMD. Again, the underly-
ing model is an AR(1) process of length 10, 000 and
the time window size is w = 500. In this experiment,
we chose (m,n) = (5, 15), and the autoregressive co-
efficient changes from 0.1 to 0.2 (top), from 0.1 to 0.3
(middle) and from 0.1 to 0.4 (bottom). The distribu-
tions of the estimators are obtained by 1, 000 Monte
Carlo replications. As can be seen, the estimator based
on CMMD performs better in all three cases; the one
based on MMD is biased towards (1,19) and (19,1),
particularly if the change of the autoregressive coeffi-
cient is small.

Multiple change-point detection. Figure 4
shows the results obtained for the detection of
multiple change-points. The underlying model is
an AR(1) process of length 10, 000 with a change
of the autoregressive coefficient at 2, 500 and 7, 500
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Figure 5: Top: 250 seconds long part of an EEG
recording. Middle: Ordinal pattern distributions.
Bottom: Resulting MMD values.

time points, namely, from 0.1 to 0.4 and 0.4 to 0.1
(left), from 0.1 to 0.3 and 0.3 to 0.1 (middle), and
from 0.1 to 0.2 and 0.2 to 0.1 (right). To localize
these change-points, we applied our method twice:
first to the entire sequence, then to the longer one of
the resulting two time segments. Figure 4 displays
the distribution of the estimates obtained by 1, 000
Monte Carlo replications. The coloring of the cell
(x, y) represents the frequency of replications with
the first change-point detected at 500x time points
and the second one at 500y time points. As can be
seen, the localization in the first two experiments is
fairly precise. In the third experiment, the estimates
are more scattered, however, this is true even in the
single change-point setting (compare to Figure 3).

4.2 REAL-LIFE TIME SERIES

Epileptic activity in EEG time series. The top
plot of Figure 5 shows a 250 seconds long part of
an EEG recording which was digitized with a sam-
pling rate of 256 Hertz, so the time series consists of
250 · 256 = 64, 000 data points. The increase in am-
plitude after 160 seconds is related to the onset of an
epileptic seizure. The middle plot shows the distribu-
tion of ordinal patterns in non-overlapping time win-
dows of 2 seconds, that is, w = 512. Same as in Figure
2, the order of the patterns is d = 3. The bottom plot
displays the resulting MMD values. The maximum is
obtained at the onset of the seizure, thus indicating
the presence of a change-point after 160 seconds.
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Figure 6: Top: 10 seconds of an ECG before and after
an increase of the heart rate. Middle: Ordinal pattern
distributions. Bottom: Resulting MMD values.

Heart rate changes in ECG data. Figure 6 shows
the application of our method to the detection of heart
rate changes in electrocardiography (ECG) recordings.
The middle plot displays the distribution of ordinal
patterns in 100 non-overlapping time windows of 2
seconds, again corresponding to the time window size
w = 512. After 100 seconds, there is a slight change in
the heart rate from approximately 90 to 105 beats per
minute (compare to the plots in the top row). As the
bottom plot shows, this change-point is easily detected
even by the non-corrected MMD values.

5 CONCLUSIONS

We have presented a new method for detecting change-
point in time series based on measuring the maxi-
mum mean discrepancy of ordinal pattern distribu-
tions. The main advantages of our approach are its
computational efficiency and robustness towards (non-
linear) signal distortions. These properties make it
particularly attractive for the fast exploration of bio-
physical time series the exact calibration of which is
unknown or varies with time. We believe that our
approach can be efficiently combined with existing
change-point detection methods to first approximately
localize of a set of candidates before determining the
exact location and testing for significance. We have es-
tablished asymptotical properties of our method and
evaluated its performance both for simulated and real-
life data, including the application to multiple change-
point problems.
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Abstract

Dual decomposition provides a tractable
framework for designing algorithms for
finding the most probable (MAP) configu-
ration in graphical models. However, for
many real-world inference problems, the
typical decomposition has a large integral-
ity gap, due to frustrated cycles. One way
to tighten the relaxation is to introduce ad-
ditional constraints that explicitly enforce
cycle consistency. Earlier work showed
that cluster-pursuit algorithms, which it-
eratively introduce cycle and other higher-
order consistency constraints, allows one
to exactly solve many hard inference prob-
lems. However, these algorithms explicitly
enumerate a candidate set of clusters, lim-
iting them to triplets or other short cycles.
We solve the search problem for cycle con-
straints, giving a nearly linear time algo-
rithm for finding the most frustrated cy-
cle of arbitrary length. We show how to
use this search algorithm together with the
dual decomposition framework and cluster-
pursuit. The new algorithm exactly solves
MAP inference problems arising from rela-
tional classification and stereo vision.

1 Introduction

Graphical models such as Markov random fields have
been successfully applied to many fields, from com-
puter vision and natural language processing, to
computational biology. Exact probabilistic inference
is generally intractable in complex models having
many dependencies between the variables. Here we
consider the problem of finding the most probable

(MAP) assignment in graphical models with discrete
states.

Dual decomposition provides a powerful frame-
work for designing tractable MAP inference al-
gorithms [19]. This approach attempts to mini-
mize an upper bound on the MAP assignment by
reparameterization of the potentials. Many opti-
mization algorithms have been proposed to mini-
mize the dual, such as those based on subgradients
[10, 13], message-passing approaches based on block
coordinate-descent [6, 11, 14, 23], and provably con-
vergent algorithms [7, 9, 16]. Every decomposition
corresponds to a particular linear programming (LP)
relaxation. The dual LP that is most frequently
solved by these algorithms corresponds to the pair-
wise LP relaxation, which enforces local consistency
constraints between factors that share variables.

However, for many real-world inference problems,
the pairwise LP relaxation has a large integrality
gap. These situations arise because there are frus-
trated cycles where a fractional solution can obtain a
higher objective value by letting the edge marginals
along the cycle be globally inconsistent. We can try
to avoid these fractional solutions by instead op-
timizing over a tighter LP relaxation. There are
well-known methods for tightening relaxations, such
as the Sherali-Adams hierarchy of relaxations which
uses cluster consistency constraints to enforce the
consistency of all edge marginals in a cluster, for all
clusters of some fixed size [15]. However, these linear
programs are typically computationally infeasible to
solve because they tighten the relaxation uniformly
across all of the problem. For graphical models of
moderate size, even the first lifting of the Sherali-
Adams hierarchy (all triplet clusters, also called the
cycle relaxation) is too slow to optimize over.

Several authors have proposed cluster-pursuit algo-
rithms that iteratively tighten the dual using cycle

795



consistency constraints [3, 9, 12, 21, 24]. These ap-
proaches are based on dictionary enumeration. They
consider a small set of candidate cycles (e.g., all 3-
cycles in a graph, or 4-cycles for grids), and evaluate
a score to decide which cycle clusters to add to the
decomposition. This explicit enumeration limits the
applicability of these algorithms to graphical models
where it is obvious where to look for the candidate
cycles. However, many difficult inference problems
are on sparse graphical models with few short cy-
cles, such as the factor graphs used for low-density
parity check codes, or Markov random fields whose
structure follows that of a social network or the web
graph (frequently used for relational classification).

In this paper, we address the most significant short-
coming of these cluster-pursuit algorithms: the dif-
ficulty of finding where to tighten the relaxation in
sparse graphs. We show in Section 4 that, for non-
binary graphical models, it is NP-hard to find the
best cycle according to the bound criterion score
used in earlier work [21]. Thus, we need an alter-
native approach to address the search problem of
finding where to tighten the relaxation.

We describe a new approach where, as before, we
solve the dual of the pairwise LP relaxation, but
where we now search for k-ary cycle inequalities [20]
to tighten the relaxation rather than cluster con-
sistency constraints. We consider the same greedy
bound minimization criterion used earlier for clus-
ter consistency constraints, corresponding to the
amount that the dual objective would decrease with
just one coordinate descent step on the new dual
variable(s). We show that one can, in near-linear
time (in the size of the projection graph), find a
k-ary cycle inequality whose guaranteed bound de-
crease is a constant fraction of the best possible
bound decrease according to this criterion. The re-
sulting algorithm is similar to the separation algo-
rithm given in [20] for finding the most violated cycle
inequality in the primal, but is not based on shortest
paths. We use the cycle inequalities only as a means
of obtaining an efficient search algorithm, and we
add the full cycle cluster to the dual decomposition
as in previous work.

Somewhat surprisingly, in Section 4 we show that,
for binary graphical models and when the dual has
been solved to optimality, the two bound criterions
(the one given in [21] and this one) coincide. Thus,
at least for binary graphical models, the algorithm
that we present completely solves the open problem
from [21] of how to efficiently search over cycle clus-
ters.

2 Background

We consider MAP inference problems on factor
graphs with n variables X1, . . . , Xn, where each vari-
able takes discrete states xi ∈ Vals(Xi). The MAP
inference problem is then

MAP(θ) = max
x

∑

c∈C
θc(xc), (1)

where C denotes the set of factors, and θc(xc) is
the log of the potential function for factor c. Let
G = (V,E) be the Markov network corresponding to
this factor graph, with one edge ij ∈ E for every two
variables i and j that appear together in some factor.
The notation N(i) refers to the set of variables that
neighbor i in the Markov network.

2.1 Dual Decomposition

The dual decomposition approach [19] attempts to
address the intractability of the joint maximization
in Eq. 1 by introducing dual variables δ and mini-
mizing an upper bound on the MAP assignment:

min
δ
L(δ), L(δ) =

∑

c∈C
max
xc

θδc(xc), (2)

where the reparameterizations θδc(xc) are given by

θδi (xi) = θi(xi) +
∑

j∈N(i)

δij→i(xi) ∀i ∈ V,

θδij(xi, xj) = θij(xi, xj)− δij→i(xi)− δij→j(xj)
+

∑

c:|c|≥3, i,j∈c
δc→ij(xi, xj) ∀ij ∈ E,

θδc(xc) = θc(xc)−
∑

i,j∈c
δc→ij(xi, xj) ∀|c| ≥ 3.

The key property of the function L(δ) is that it only
involves maximization over local assignments xc, a
task which we assume to be tractable. The dual thus
decouples the original problem, resulting in a prob-
lem that can be optimized using local operations.

If we ever find a global assignment x which locally
maximizes all of the subproblems, then x is guaran-
teed to be the MAP assignment. Thus, the dual so-
lution δ has the ability to provide a certificate of op-
timality. Even in cases when the relaxation is loose,
the dual provides an upper bound, MAP(θ) ≤ L(δ),
that can be useful within branch-and-bound.

The algorithms described in this paper make use of
the reparameterized edge potentials θδij(xi, xj) when
searching for frustrated cycles. For notational clar-
ity and to be consistent with earlier work, we use
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bij(xi, xj) to denote θδij(xi, xj) for the current dual
variables δ, also calling these the edge “beliefs”.

2.2 Cluster Pursuit

If there still remains an integrality gap after solv-
ing the current dual, i.e. MAP(θ) < L(δ∗), one
can tighten the relaxation by introducing new zero-
valued potentials θc(xc) for clusters c not originally
in the factor graph [21, 24]. The advantage of doing
this together with dual decomposition is that one
can warm start, initializing the new dual’s variables
using the previous dual solution. The resulting al-
gorithm alternates between minimizing the current
dual for some number of iterations (not necessarily
to optimality) and searching for new clusters to use
in tightening the relaxation. If the dual is solved
using coordinate-descent, then every step of the al-
gorithm monotonically improves the upper bound on
the MAP value.

The key problem addressed by earlier work was how
to choose which clusters to use to tighten the relax-
ation. In particular, Sontag et al. [21] proposed to
evaluate the utility of adding a cycle C to the relax-
ation by the greedy bound minimization criterion

d(C) =
∑

e∈C
max
xe

be(xe)−max
xC

[∑

e∈C
be(xe)

]
. (3)

Note that only the edges in the cycle C are used in
the maximization over xC . As a result, d(C) can be
computed in O(k3|C|) time, where k is the number
of states for each variable. The criterion corresponds
to the amount that the dual would decrease if we add
this cycle cluster and perform one block coordinate
descent step on all dual variables corresponding to
the new cluster. Once a cycle is selected for addi-
tion, [21] triangulates the cycle and adds each of the
triplet clusters; we do this too.

2.3 Linear Programming Relaxation

The dual decomposition for MAP inference given in
Eq. 2 can be shown to be equivalent, by LP duality,
to the following linear programming relaxation:

max
µ∈ML

∑

c

∑

xc

θc(xc)µc(xc) (4)

where the local marginal polytope ML enforces that
{µi(xi),∀xi} and {µc(xc),∀xc} correspond to valid
(local) probability distributions and that, for each
factor c, µc(xc) is consistent with µi(xi) for all i ∈

c, xi:

ML =




µ ≥ 0 :

∑
xi
µi(xi) = 1, ∀i∑

xc\i
µc(xc) = µi(xi)∑

xc\{i,j}
µc(xc) = µij(xi, xj)




,

where the second set of constraints is for all c, i ∈
c, xi, and the third set of constraints is for all factors
c such that |c| ≥ 3, i, j ∈ c, xi, xj .

The exact MAP inference problem would be ob-
tained if we instead had maximized Eq. 4 over the
marginal polytope [22], which enforces that all fea-
sible points µ correspond to marginals arising from
some exponential family distribution with the same
sufficient statistics. For most graphical models the
marginal polytope is intractable to optimize over,
which is why we use the relaxation ML.

2.4 k-ary Cycle Inequalities

The main contribution of this paper is to show how
to solve the search problem for cycle consistency con-
straints (within the framework of dual decomposi-
tion) by introducing a new bound criterion based on
the k-ary cycle inequalities [20].

The cycle inequalities [1, 2, 4] are a set of constraints
for the marginal polytope of graphical models with
binary variables, which arises from the observation
that a cycle must have an even (possibly zero) num-
ber of cut edges. Suppose we start at node i, where
xi = 0. As we traverse the cycle, the assignment
changes each time we cross a cut edge. Since we must
return to xi = 0, the assignment can only change an
even number of times. This concept can be gener-
alized to obtain the k-ary cycle inequalities, which
are valid constraints for graphical models with non-
binary variables [20].

For each variable i, let πqi be a partition of all of
its states into two disjoint non-empty sets. Let πi
denote the set of all partitions of variable i. The
k-ary cycle inequalities are defined using the projec-
tion graph Gπ = (Vπ, Eπ), which has one node for
each partition in each set πi and all such nodes are
fully connected across adjacent variables. That is,
we have Vπ =

⋃
i∈V πi, and

Eπ = {(πqi , πrj ) | (i, j) ∈ E, q ≤ |πi|, r ≤ |πj |}. (5)

We obtain a different projection graph depending on
the quantity and type of partitions that we choose
for each variable. The algorithms in this paper are
applicable for any projection graph. In our exper-
imental results, we primarily use the k-projection
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graph, which simply has a partition πxii = {xi} (ver-
sus all other states) for every variable i and state xi.
Thus, if every variable takes k states, the projec-
tion graph will have k|V | nodes and k2|E| edges.
In the supplementary material we describe an al-
gorithm which finds the optimal partition for each
variable with respect to each edge. If using the k-
projection graph does not succeed in finding a frus-
trated cycle, we re-run the cycle search method using
this expanded set of partitions.

There is one k-ary cycle inequality for every cycle C
in the projection graph Gπ and for every set of edges
F ⊆ C such that |F | is odd:
∑

mn∈C\F

∑

xi,xj :
πqi (xi) 6=
πrj (xj)

µij(xi, xj)+
∑

mn∈F

∑

xi,xj :
πqi (xi)=
πrj (xj)

µij(xi, xj) ≥ 1

where mn = (πqi , π
r
j ) ∈ Eπ. Although there are

exponentially many k-ary cycle inequalities, [20]
showed how the most violated inequality can be
found in polynomial time, using a shortest-path al-
gorithm. However, unlike [20] we use these inequal-
ities in the dual. In the next section, we will give a
new algorithm to efficiently find violated k-ary cycle
inequalities while working within the framework of
dual decomposition.

3 Cycle Inequalities in the Dual

In this section we give a column-generation approach
for adding cycle inequalities within the dual decom-
position framework. Consider the terms of the dual
objective (Eq. 2) that would be affected by adding
a single dual variable λC,F,π corresponding to one
k-ary cycle inequality specified by C ⊆ E, F ⊆ C
(recall that |F | must be odd), and π.1 After adding
λC,F,π, the new dual has the following terms (see
supplementary material for derivation):

∑

ij∈F
max
xi,xj

(
bij(xi, xj) + λC,F,π1[πi(xi) = πj(xj)]

)

+
∑

ij∈C\F
max
xi,xj

(
bij(xi, xj) + λC,F,π1[πi(xi) 6= πj(xj)]

)

− λC,F,π.

For each edge ij ∈ C, define the weight

sπij = maxxi,xj :πi(xi)=πj(xj) bij(xi, xj)−
maxxi,xj :πi(xi)6=πj(xj) bij(xi, xj).

1When used in the context of a cycle in the graphical
model, C ⊆ E, as opposed to a cycle in the projection
graph, the notation π specifies a particular partition for
each variable along the cycle.

We show in the supplementary material that the co-
ordinate descent step for λC,F,π is given by λC,F,π =

minij∈C w
π,F
ij , where wπ,Fij = sπij for ij 6∈ F and

wπ,Fij = −sπij for ij ∈ F .

The amount that the dual objective decreases with
one coordinate descent step on λC,F,π, assuming that
λC,F,π was previously zero, is

d(C,F, π) = max(0, min
ij∈C

wπ,Fij ). (6)

Example 1. Consider a triangle on three edges
(C = {12, 23, 31}), with xi ∈ {0, 1}, where θi(xi) =
0 ∀i, xi and θij(xi, xj) = 1 if xi 6= xj , and 0 oth-
erwise. Since this example is binary, we simply use
πi(xi) = xi. Let all of the dual variables δ be 0, and
assume that initially there are no cycle inequalities.
The best integer solution has value 2, while the pair-
wise LP relaxation gives only a loose upper bound
of 3 (note: δ as defined can be shown to be optimal
for the dual, i.e. Eq. 2).

Consider the problem of finding the best cycle in-
equality according to arg maxC,F d(C,F ). First,
note that bij(xi, xj) = θij(xi, xj), so wFij = 1 for

ij ∈ F and wFij = −1 for ij 6∈ F . If F = ∅, then

wFij = −1 for all edges, and so d(C,F ) = 0. On the

other hand, if F = C, then wFij = 1 for all edges,
which gives a bound decrease of d(C,F ) = 1, corre-
sponding to λC,F = 1.

3.1 Separation Algorithm

The bound criterion d(C,F, π) given in Eq. 6 is anal-
ogous to the bound criterion d(C) used by [21] (see
Eq. 3) to evaluate the utility of adding a cycle C
to the relaxation. We now consider the algorithmic
problem of finding the best dual variable λC,F,π to
add, according to d(C,F, π):

max
C,F⊆C s.t. |F | odd,π

d(C,F, π). (7)

We show that this can be computed efficiently using
a variation on the shortest-path based separation al-
gorithm for k-ary cycle inequalities [20]. We first
note that Eq. 7 is equal to

max
(

0, max
C,F⊆C s.t. |F | odd,π

min
ij∈C

wπ,Fij

)
. (8)

We can simplify this further by noticing that for
d(C,F, π) to be positive, we need ij ∈ F when
sπij < 0, and ij 6∈ F when sπij > 0. Thus, ignor-
ing the maximization over the partitioning π, Eq. 8
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Algorithm FindOddCycle (Graph Gπ, edge weights {smn : (m,n) ∈ Eπ})
1 Construct a spanning tree T of Gπ. Set r to be the root of T .
2 sign[r]← +1
3 for each vertex t ∈ T (in order of increasing distance from r in T ):
4 sign[t]← sign[pa(t)] · st,pa(t)
5 for each (m,n) ∈ Eπ \ T :
6 if sign[m] 6= sign[n] · smn
7 return cycle given by the edge (m,n) and the path m r  n in T
8

9 return no odd signed cycle found

Figure 1: Assuming that the edge weights smn are in {−1, 1}, this algorithm will find a cycle with an odd
number of −1 edges, if one exists. pa(t) refers to the parent of node t in the spanning tree T .

is equivalent to

max
(

0, max
C⊆E s.t.∏

ij∈C sign(sπij)=−1

min
ij∈C
|sπij |

)
. (9)

We conclude that the maximum bound decrease is
achieved by the cycle in G with an odd number of
negative weight edges that maximizes the minimum
of the absolute value of the weights along the cycle.

For Markov networks with non-binary variables, we
also wish to maximize over the partition for each
variable. Let Gπ denote the projection graph, where
the variables and edges are as defined in Eq. 5. All
subsequent quantities will use the partitions for the
variables specified by the edges mn = (πqi , π

r
j ) ∈ Eπ

in the projection graph. Assign weights to the edges2

smn = maxxi,xj :πqi (xi)=πrj (xj) bij(xi, xj)− (10)

maxxi,xj :πqi (xi)6=πrj (xj) bij(xi, xj),

and remove all edges with smn = 0. The algorithm
that we describe next will find the maximum of

max
(

0, max
C⊆Eπ s.t.∏

mn∈C sign(smn)=−1

min
mn∈C

|smn|
)
. (11)

Suppose that smn ∈ {+1,−1}. Then,
minmn∈C |smn| = 1 and the optimization problem
simplifies to finding a cycle with an odd number
of −1 edges. This can be solved in linear time by
the algorithm given in Figure 1 (if the graph is not
connected, do this for each component).3

2For the k-projection graph, this step can be imple-
mented efficiently, taking time O(k2|E|) to compute all
edge weights instead of O(k2|Eπ|).

3In the case when there is more than one cycle with an
odd number of−1 edges, the particular cycle that we find
depends on the choice of spanning tree. However, the
algorithm is always guaranteed to find some cycle with
an odd number of −1 edges, when one exists, regardless
of the choice of spanning tree.

Now consider the case of general smn. We can solve
the optimization in Eq. 11 by doing a binary search
on |smn|. There are only |Eπ| possible edge weights,
so to do this search we first sort the values {|smn| :
mn ∈ Eπ}. At each step, we consider the subgraph
G′ consisting of all mn ∈ Eπ such that |smn| > R,
where R is the threshold used in the binary search.
We then let sm′n′ = sign(smn) for m′n′ ∈ G′, and
search for a cycle with an odd number of negative
edges using the algorithm described in Figure 1. The
binary search will find the largest R such that there
is a negative-signed cycle C ∈ G′, if one exists. The
best choice of λC,F,π is then given by this cycle C,
the edges F corresponding to the negative-weight
edges in C, and π given by the partitions used in C.
The total running time is only O(|Eπ| log |Eπ|).
If the cycle that is returned uses each variable only
once (i.e., does not consider more than one partition
for a single variable), the corresponding cycle and
choice of partitions will be optimal for Eq. 8. Oth-
erwise, one can show that the guaranteed bound de-
crease after one coordinate descent step on the new
cycle inequality’s dual variable is a constant fraction
of that guaranteed by Eq. 8.

When we use this algorithm in the experiments of
Section 6, we ignore F and π, instead fully enforc-
ing cycle consistency for the cycle C that is best
according to this bound criterion.

4 Theoretical Results

Consider the restricted set of clusters Ccycles(G) cor-
responding to cycles of arbitrary length,

Ccycles(G) =

{
C ⊆ E | C forms a cycle in G

}
. (12)

A natural question is whether it is possible to find
the best cycle cluster to add to the relaxation accord-
ing to the greedy bound minimization criteria d(C)

799



[21]. It is easily shown that maxF,π d(C,F, π) ≤
d(C) for all cycles C. Thus, if it were not for com-
putational concerns, searching using d(C) would be
optimal. Unfortunately, we show a number of nega-
tive results proving that searching for the best cycle
according to d(C) is computationally intractable.

We show the following, where k refers to the number
of states per node.

1. For k = 2, when the beliefs be(xe) are dual op-
timal, maximizing Eq. 3 is equivalent to finding
the best cycle inequality in the dual.4

2. For k = 2, maximizing Eq. 3 is NP-hard when
the beliefs be(xe) are not dual optimal.

3. For k > 2, maximizing Eq. 3 is always NP-hard.

By dual optimal, we mean that the beliefs corre-
spond to a dual optimal solution of the current LP
relaxation. Note that, before solving the dual LP
to optimality, be(xe) can be almost anything. For
example, we can set θe(xe) arbitrarily and consider
the separation problem at the first iteration.

Theorem 4.1. When k = 2 and the beliefs
bij(xi, xj) correspond to a dual optimal solution,
maxC∈Ccycles(G) d(C) = maxC,F :|F | odd d(C,F ).

The proof of Theorem 4.1 makes use of the assump-
tion that bij(xi, xj) corresponds to a dual optimal
solution in only one step, when applying the comple-
mentary slackness conditions for the edge variables.
Thus, Theorem 4.1 holds for any dual decomposition
for MAP which is at least as tight as the pairwise LP
relaxation. In particular, adding cycle constraints
does not change the premise of the theorem.

One conclusion that is immediate given Theorem 4.1
is that (for binary MRFs) the cycle inequalities give
at least as tight of a relaxation as the cycle relax-
ation. In fact, for a single cycle, just one cycle in-
equality suffices to make the LP relaxation tight for
a given instance. This is precisely what we observed
in Example 1.

4.1 NP-Hardness Results

It is often possible to obtain much better results
by tightening the relaxation even before the dual
is solved to optimality [21]. Unfortunately, although
we showed in Section 3 that for k-ary cycle inequali-
ties maxC,F,π d(C,F, π) can be computed efficiently,
the corresponding problem for cycle consistency con-
straints is significantly more difficult:

4This result is for binary variables only, so we let the
projection be πi(xi) = xi and omit the π notation.

Theorem 4.2. The optimization problem
maxC∈Ccycles(G) d(C) is NP-hard for k = 2 and
beliefs bij(xi, xj) arising from a non-optimal dual
feasible point.

We next show that, for k > 2, not even dual opti-
mality helps:

Theorem 4.3. The optimization problem
maxC∈Ccycles(G) d(C) is NP-hard for k ≥ 3 even
for beliefs bij(xi, xj) corresponding to a dual
optimal solution of the pairwise relaxation.

Both proofs use a reduction from the Hamiltonian
cycle problem. Full proofs can be found in the sup-
plementary material.

5 Related Work

Our new algorithm is closely related to two earlier
approaches for tightening the dual using cycle con-
straints. First, Komodakis et al. proposed to tighten
the pairwise LP relaxation by a sequence of cycle
repairing operations [12]. Their algorithm is appli-
cable to graphical models with non-binary variables.
For binary graphical models, when the dual is at op-
timality, two cycle repairs – corresponding to the two
anchors of any variable (using their terminology) –
can be seen to be equivalent to one coordinate de-
scent step on a new cycle inequality for this cycle.
We solve the open problem of how to find the cycles
where cycle repairs are necessary. In their experi-
ments, [12] explicitly enumerated over short cycles.

Second, Johnson proposed an algorithm to find in-
consistent cycles in the dual [9]. His approach ap-
plies only to binary-valued graphical models, and
only when the dual is close to optimality. In these
cases, his algorithm can be shown to find a cycle C
such that d(C,F ) > 0 for some F ⊆ C, |F | odd. His
algorithm, which inspired our approach, constructs
sij ∈ {+1,−1} and looks for inconsistent cycles us-
ing the linear time method described in Section 3.1.
Because of numerical difficulties, Johnson needed to
use an edge-wise correlation measure, computed us-
ing the primal solution obtained from the smoothed
dual [9, p.134]. By drawing the connection to cycle
inequalities, we obtain a weighted approach whereas
his was unweighted. As a result, there are no numer-
ical difficulties, and our algorithm can be applied
long before solving the dual to optimality.

It may seem surprising that the dual separation al-
gorithm is so much faster than the primal separation
algorithm for k-ary cycle inequalities [20]. However,
this is because the dual searches over a smaller class
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of cycle inequalities. Consider the case where we
have solved the dual to optimality for the current
relaxation. Then, using the complementary slack-
ness conditions one can show that, for any cycle in-
equality C,F, π such that d(C,F, π) > 0, and for any
primal solution µ,

∑

mn∈C\F

(
µπmn(0, 1) + µπmn(1, 0)

)
(13)

+
∑

mn∈F

(
µπmn(0, 0) + µπmn(1, 1)

)
= 0.

The right hand side could be anything less than 1
for us to obtain a violated cycle inequality, and it is
always non-negative because µij(xi, xj) ≥ 0. But,
since the right hand side of Eq. 13 is 0, we con-
clude that the dual separation algorithm is only able
to find cycle inequalities to add to the relaxation
that are very violated. By Theorem 4.1, the same
conclusion holds for binary graphical models for the
cluster-pursuit algorithm given in [21], when applied
to a dual optimal solution – if a triplet cluster C is
found such that d(C) > 0, then there exists a cycle
inequality C,F that is very violated by all primal
solutions. It is also possible to give a O(|Eπ|) time
separation algorithm in the primal that would sepa-
rate this smaller class of k-ary cycle inequalities.

6 Experiments

In this section we report experimental results for the
new cycle search algorithm (we call this the “cy-
cle” method) applied to MAP inference problems
arising from predicting protein-protein interactions
[5, 8], protein side-chain placement [25], and stereo
vision [25]. We compare the cycle method to cluster-
pursuit using dictionary enumeration with triplet
clusters [21], which we call the “triplet” method.
Both algorithms were implemented using C++, and
differ only in the mechanism used for cycle search.
All experiments were performed on a 2.4 GHz AMD
Opteron(tm) machine with 128 GB of memory.

We use the Max-Product Linear Programming
(MPLP) algorithm to minimize the dual [6]. On all
problems, we start by running MPLP for 1000 iter-
ations. If the integrality gap is less than 10−4, the
algorithm terminates. Otherwise, we alternate be-
tween further tightening the relaxation (using either
the cycle or triplet method) and running another 20
MPLP iterations, until the problem is solved opti-
mally or a time limit is reached. For the triplet al-
gorithm, we add between 5 and 20 triplets per outer
iteration, and for the cycle algorithm, we add from

1 to 5 cycles per outer iteration (we required at least
5 new triplet clusters).

In our experiments we also consider a combina-
tion of the two approaches, which we call the
“triplet+cycle” method, where we add the clusters
found by both cycle search algorithms.

Biasing toward short cycles. Whereas previ-
ous cluster-pursuit approaches considered clusters
of only three or four variables, our algorithm could
potentially choose to add a cycle involving a large
number of variables. Consequently, the length of the
cycle added can significantly affect the per-iteration
running time. Our algorithm must balance between
(a) choosing cycles which most improve the dual
objective and (b) keeping the per-iteration running
time reasonable.

The length of the cycles found depends both on the
initial choice of the spanning tree (line 1 of algorithm
FindOddCycle, given in Figure 1) and on which edge
is chosen to create the cycle (lines 5–7). Notice that
the length of any cycle returned by FindOddCycle is
at most twice the depth of the spanning tree T . We
found that using breadth-first search to create the
spanning tree results in much more shallow trees,
and as a result significantly shorter cycles compared
to depth-first search.

After creating the spanning tree and propagating the
signs, any edge that has opposite signs on its end-
points could be chosen to create the cycle (lines 5–7).
The cycle corresponds to the union of the edge and
the paths from each endpoint to their least common
ancestor (LCA) in T . We find the lengths of each of
these cycles by running a LCA algorithm (we note
that this can be done in amortized constant time us-
ing the algorithm of [17]). Then, we sort the edges
in increasing order according to the length of the
corresponding cycles, and return the shortest few.

We also experimented with an algorithm which is
guaranteed to find the shortest cycles, but found
that its running time was too long to be practical.

6.1 Protein-Protein Interaction

We consider 8 inference problems arising from the
relational classification task of protein-protein in-
teraction prediction [5, 8]. This inference prob-
lem aims at predicting protein-protein interactions
(PPIs) given high-throughput protein-protein inter-
action and other cellular experimental data. The
PPI problems are Markov networks with over 14,000
binary variables denoting the cellular localization of
the proteins and whether any particular pair of pro-
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Figure 2: Comparison of the cycle search algorithms on a MAP inference problem from protein-protein
interaction prediction. The time shown is for the tightening stage, after the initial 1000 iterations of ADLP.

teins interact. The Markov network has over 30,000
node and triad potentials. These inference problems
are difficult to solve because the triad potentials in-
duce many frustrated cycles. Each of the 8 infer-
ence problems corresponds to the parameters found
at some iteration during learning, and the difficulty
of inference varies substantially among them.

For 2 of the PPI problems, the cycle method finds
the MAP assignment in less than a minute after solv-
ing the initial dual to optimality (see Figure 2).5 For
the other 6 problems, the cycle method obtains a
slightly better dual objective value than the triplet
method when we terminated at half an hour.

In contrast, the triplet method is unable to exactly
solve any of the PPI problems. We noticed that the
bound criterion [21] for most triplets found in these
problems is close to 0, which explains the consid-
erable difficulty for the triplet algorithm to quickly
choose the best clusters to add to the relaxation.

These results indicate that the cycle algorithm has
a significant advantage over the triplet algorithm on
inference problems on sparse graphs.

6.2 Side-Chain Prediction

We next considered 30 protein side-chain placement
inference problems, corresponding to the 30 proteins
from [25] for which the pairwise LP relaxation is
not tight. Previous work has shown that the triplet
method exactly solves these [21]. The triplet algo-
rithm’s running time ranges from 1.12 to 182.18 sec-
onds with a median of 20.42 seconds.

5For the PPI problems MPLP converges very slowly,
so we instead use the ADLP algorithm [16] to solve the
initial dual, before tightening.

The cycle method also finds the MAP assignment for
all 30 proteins. The cycle algorithm’s running time
is between 2.92 and 3788 seconds, with a median of
24.83 seconds. The outlier which took 3788 seconds
to solve was ‘1kmo’. The cycle method performs
significantly worse on this example than the triplet
method because the former needs 94 tightening it-
erations to find the single cluster that solves MAP
exactly, whereas the latter finds it immediately.

The cycle algorithm using only the k-projection
graph does not exactly solve ‘1qb7’ and ‘1rl6’.6 We
show in Figure 3 the dual objective for ‘1qb7’. At
around 50 seconds the cycle method, not finding
any useful cycle with the k-projection graph, runs
the partition finding algorithm explained in the sup-
plementary section, finds the necessary cluster, and
solves the protein to optimality.

The “triplet+cycle” method solves all of the side-
chain placement problems quickly. As seen in Fig-
ure 3, it is slightly slower than the triplet method
because of the additional time for running the cycle
search method. From these results, we conclude that
it is best to use both search methods, when feasible.

6.3 Importance of bound criterion

As we mentioned in the related work, for graphi-
cal models with binary variables, our cycle search
method is similar to the algorithm earlier proposed
by Johnson [9]. The key difference is that our ap-
proach has a bound criterion which is used to select
which frustrated cycle to include, whereas Johnson’s
approach was unweighted (finding any odd-signed
cycle). In this section we illustrate the importance
of having the weighted bound criterion. In addition

6[20] also needed the full projection graph for ‘1rl6’.
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Figure 3: Comparison of all 3 methods on the
protein-side chain placement problem ‘1qb7’.

to the 30 protein side-chain placement problems that
we solved exactly, we also consider 4 inference prob-
lems arising from stereo vision (all variants of the
“Tsukuba” image sequence), which were previously
studied by [21, 25].

After finding the optimal value of the bound cri-
terion, R (the threshold used in the binary search,
described in Section 3.1), we prune the projection
graph to consider only those edges with |smn| ≥ R/c
for c = 1, 4, and 128. c = 1 corresponds to the usual
cycle method, whereas c = 128 is more similar to an
unweighted bound criterion (analogous to [9]).

We considered a protein failed if we could not obtain
a certificate within 15 minutes. On the protein side-
chain problems, we found that c = 4 worked best,
solving all proteins but ‘1kmo’ within 3.2 minutes.
With c = 1, the cycle method additionally failed
to solve ‘1ug6’. With c = 128, the cycle method
additionally failed to solve ‘1a8i’, ‘1et9’ and ‘1gsk’
(5 failures in total). One reason why c = 4 may
be preferable over c = 1 for non-binary problems
is because – since more edges are considered – the
cycle method is more likely to find a shorter length
cycle which uses each variable only once, rather than
multiple times with different partitions.

When testing on stereo vision data, we found that
the cycle algorithm was able to solve all 4 problems
exactly within 1 hour with c = 1, but could not solve
any of them within 3 hours for c = 128. We conclude
that the bound criterion is essential for the cycle
method to quickly solve MAP inference problems.

After observing that varying the number of MPLP
iterations in each of the outer loops (i.e., after adding
cycles) had a very minor effect on the overall running

times, we also conclude that the cycle method is
robust to the dual not being solved to optimality.

6.4 Summary of results

Using the “triplet+cycle” method, we exactly and
quickly solved all 30 protein side-chain problems and
2 protein-protein interaction problems.

The cycle algorithm solved all 4 stereo problems ex-
actly within 24–48 minutes using only 9–33 tighten-
ing iterations. The number of clusters added by the
algorithm were between 227 and 1217.

7 Discussion

We believe that our algorithm for finding frustrated
cycles may also be useful in graphical models that
are not sparse. In these settings, dictionary enu-
meration methods which tighten the relaxation one
triplet cluster at a time can eventually succeed at
making all cycles consistent. However, the cycle
method has several theoretical advantages. First,
the dual bound criterion can be zero for some triplet
clusters, but non-zero for a larger cycle involving the
same variables; we give a concrete example of this
in the supplementary material. In these cases, the
cycle method would succeed at improving the dual
objective, whereas the triplet method would obtain
no guidance from the bound criterion and as a result
would randomly choose a triplet to use in tightening
the relaxation. Second, if a frustrated cycle is long,
the triplet method – which adds clusters one at a
time – would take several iterations before eventu-
ally adding all triplet clusters which triangulate the
cycle, thus enforcing cycle consistency. In contrast,
the cycle method would take a single iteration.

In this paper, we used the dual variables correspond-
ing to the cycle inequalities only as a means for find-
ing a frustrated cycle, after which we fully enforce
cycle consistency. When the variables have a large
number of states, enforcing even one cycle consis-
tency constraint can significantly increase the com-
putation time [18]. In these situations, it may be
preferable to instead directly do coordinate descent
with respect to the cycle inequality dual variables.

Finally, although in this paper we used the dual al-
gorithm as a stand-alone MAP solver, for some prob-
lems it may be more effective to use within branch-
and-bound, giving a branch-and-cut approach. The
efficient cycle search algorithm can also be used to-
gether with any method for solving the dual decom-
position, such as ADLP [16].
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Abstract

Stochastic domains often involve risk-averse
decision makers. While recent work has
focused on how to model risk in Markov
decision processes using risk measures, it
has not addressed the problem of solving
large risk-averse formulations. In this paper,
we propose and analyze a new method for
solving large risk-averse MDPs with hybrid
continuous-discrete state spaces and continu-
ous action spaces. The proposed method it-
eratively improves a bound on the value func-
tion using a linearity structure of the MDP.
We demonstrate the utility and properties of
the method on a portfolio optimization prob-
lem.

1 Introduction

It is common for decision makers to be risk-averse
when uncertainty is involved. For example, risk-averse
financial portfolio managers prefer an investment port-
folio that mitigates the worst-case plausible losses even
if the corresponding expected return is suboptimal.
Since the worst-case losses corresponding to solutions
that optimize the expected returns can be unaccept-
able to such decision-makers, there is a need to ex-
plicitly model risk-averse objectives. While it is com-
mon to use utility functions to capture the decision
maker’s tolerance of risk, this approach cannot capture
many empirically observed risk-averse preferences (e.g.
[13]). In addition, decision makers are often unable to
provide appropriate utility functions, and non-linear
utility functions can complicate the application of dy-
namic programming [12]. In this paper, we focus on
coherent risk measures—an alternative model of risk-
aversion.

Coherent measures of risk were developed in the field
of finance and represent an alternative model of risk-
avoidance to utility functions [2, 5]. A coherent risk

measure % is a generalization of the risk-neutral expec-
tation operator that maps a random variable X to a
real number. Informally, while the risk-neutral expec-
tation computes the average corresponding to a given
reference probability distribution, a coherent risk mea-
sure takes the worst average assessed over a suitably
defined neighborhood around the reference distribu-
tion. As such, a coherent risk measure is also inter-
pretable as a conservative way to account for ambi-
guity in the precise knowledge of the reference distri-
bution. To be a coherent risk measure, the function
% must satisfy properties that include convexity and
monotonicity, which we describe in detail later.

The properties of coherent risk measures in static set-
tings have been studied extensively and are very well
understood [5]. Their application to dynamic settings,
in which decisions are taken sequentially as additional
stochastic information arrives, is more complicated.
Dynamic risk measures have been usually studied in
stochastic programming settings which we discuss in
Section 6. Recently, dynamic risk measures have been
used to formulate risk-averse Markov decision pro-
cesses [21, 13]. Unfortunately, the methods proposed
in these papers only solve small MDPs in which both
the states and actions can enumerated. In this paper,
we extend the modeling methodology of [21] and [13]
to solve structured MDPs with continuous state and
action spaces.

To illustrate an MDP with continuous state and action
spaces, consider the problem of managing a stock port-
folio [11]. In this problem, the decision maker must
allocate the investment among a portfolio of stocks in
order to maximize the financial gain. The one-step
gain of each stock is stochastic, but depends on the
current market state; i.e. the distribution of returns is
different for volatile and calm markets. The objective
is to maximize the expected returns while minimizing
the risk of significant losses.

The main components of a Markov decision process are
the state and action spaces. For example, the state in
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the portfolio management problem is represented by
the current position in the stocks and cash, and the
state of the market. While the current position may
be modeled as a continuous vector, it is common to
model the market in terms of a finite set of possible
market states [11]. The resulting state space is natu-
rally a hybrid discrete-continuous state space. The ac-
tions represent the change in the investments in every
period and are also continuous. Because of the contin-
uous aspects of the state and action sets, this problem
cannot be solved using the methods proposed in [13].
Large MDPs such as this one are typically solved using
approximate dynamic programming, a reinforcement
learning method [18]. The method that we propose is
related to approximate dynamic programming, but it
also exploits the linearity of the domain and the co-
herent risk measure.

The remainder of the paper is organized as fol-
lows. First, Section 2 introduces coherent risk mea-
sures and describes their properties in multi-stage
optimization. Section 3 then defines risk-averse hy-
brid linearly controlled MDPs. These problems have
both continuous and discrete states, continuous ac-
tions, linear transitions, and their objective is formu-
lated in terms of a coherent risk measure. In Sec-
tion 4, we propose Risk-averse Dual Dynamic Pro-
gramming (RDDP)—a method to solve hybrid risk-
averse MDPs. Our method is related to stochastic
dual dynamic programming and point-based methods
for solving POMDPs [16]. In Section 5, we evaluate the
algorithm on the portfolio management problem and
analyze the solution properties. Finally, Section 6 dis-
cusses the connections to relevant work on risk-averse
objectives in multi-stage stochastic programs.

2 Risk Measures in Markov Decision
Processes

In this section, we briefly overview the state of the
art in applying risk measures in dynamic settings. We
formally define risk-averse Markov decision processes
and other necessary notation. We omit some minor
technical assumptions needed for continuous state and
action sets; refer for example to Sections 4.3 and 4.4
of [19] for the technical details.

A Markov decision process is a tuple (S,A,W, P, c) de-
fined for time steps T = {0 . . . T} as follows. Let S be
a compact state space and A ⊆ Rm be a compact con-
tinuous action space. Let W : S ⇒ A denote a mea-
surable set-valued function (or a multimap) that maps
each state to the compact set of permissible actions and
let P : S ×A → P(S) denote the transition probabili-
ties where P(S) is the set of all probability measures on
S; P (s, a) represents the next-state probability mea-
sure for any s ∈ S and a ∈ A. Let c : S × A× S 7→ R

represent the transition cost; c(st, at, st+1) represents
the cost incurred when transiting from st to st+1 upon
taking action at. Finally, let s0 denote a deterministic
initial state. In the final time-step T + 1, we assume
that there is no action taken and the problem termi-
nates.

The focus of this paper is on finite-horizon total return
models. The solution of a finite-horizon MDP is a
policy which is composed of decision rules. A decision
rule dt : S → A at time t determines the action to be
taken in each state. A collection of decision rules, one
per each time step, is a deterministic Markov policy
π : T ×S 7→ A. The set of all policies is denoted as Π.

The objective in solving risk-neutral MDPs is to min-
imize the total cost, or return, which is defined for
π = (d1, . . . , dt) as:

ς(π) = EPπ

[∑

t∈T
c(St, dt(St), St+1)

]
, (1)

where St is a random variable that represents the state
at time t, distributed according to the probability dis-
tribution Pπ induced by the policy π. The optimal
return is ς? = minπ∈Π ς(π). It is well-known that
there exists an optimal Markov deterministic policy,
so it suffices to restrict our attention to this class of
policies.

Risk averse MDPs have been formalized recently in
[21] and [13]. Informally, given a reference probabil-
ity distribution for each transition, these formulations
modify the objective Eq. (1) by specifically penalizing
a subset of the most adverse realizations of the in-
duced cost distribution. In particular, the expectation
is replaced by a dynamically consistent risk measure %.
Risk measures that are dynamically consistent can be
applied to multistage optimization problems without
violating the dynamic programming principle [22].

Assume that the one-step random MDP costs corre-
sponding to action at taken at time step t are repre-
sented by {Zt+1}t∈T where Zt+1 ∈ Zt+1, and Zt+1 is
the space of random variables adapted to the informa-
tion filtration at time t+1, i.e. the history of the under-
lying stochastic process at time t+1. An ordinary risk
measure would assign the objective based on the total
sum of the costs %({Zt+1}t∈T ) = ρ(

∑
t∈T Zt+1). A dy-

namically consistent risk measure, on the other hand,
is defined as a composition of one-step risk mappings:

%(Z1, . . . , ZT+1) = ρ0 (Z1 + ρ1 (Z2 + . . .+ ρT (ZT+1))) .

The one-step conditional risk mappings ρt : Zt+1 → Zt
must satisfy the following properties:

(A1) Convexity: ρt+1 (α · Z + (1− α) · Z ′) ≤ α ·
ρt+1 (Z) + (1 − α) · ρt+1 (Z ′) for all Z,Z ′ ∈ Zt+1

and α ∈ [0, 1].
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(A2) Monotonicity: If Z � Z ′ then ρt+1 (Z) �
ρt+1 (Z ′).

(A3) Translation equivariance: If a ∈ Zt, then
ρt+1 (Z + a) = ρt+1 (Z) + a.

(A4) Positive homogeneity: If t > 0, then ρt+1 (t · Z) =
t · ρt+1 (Z).

Note that the value ρt (Z) is a random variable in Zt
and the inequalities between random variables are as-
sumed to hold almost surely.

A general dynamically consistent risk measure may be
cumbersome to use due to two reasons. The parame-
ters that specify the particular choice of the mapping
ρt could in general depend on the entire history until
time t, and further, the argument on which the map-
ping applies, namely, Zt+1 could in general depend on
the entire history until time t + 1, therefore requiring
non-Markov optimal policies. We, therefore, further
restrict our treatment to Markov risk measures [21].

Markov risk measures require that the parameters that
specify the particular choice of the conditional risk
mappings ρt are independent of the history, given the
current state, and further that the mapping operation
is also independent of the history, given the current
state. This is a natural choice for MDPs because the
source of uncertainty is the stochastic transition cor-
responding to any given state-action pair (st, at), and
the reference probability distribution for this stochas-
tic transition is independent of the history, given the
current state. Intuitively, an input to a conditional
risk mapping of a Markov risk measure ρt is the ran-
dom variable of the costs incurred during a transition
from a state st ∈ S and the output of the risk mapping
is a single number for each st.

The simplest example of a conditional risk mapping is
the expectation in which case the objective becomes
risk-neutral. The risk neutral objective would be:

%(Z1, . . . , ZT+1) = E [Z1 + E [. . .+ E [ZT+1]]] .

A more general risk measure that allows a convenient
specification of the appropriate level of risk tolerance
is the Average Value at Risk (AV@Rα) parameterized
at a chosen level α > 0 which is defined as [5]:

AV@Rα(Z) = max
q∈Qα

Eq [Z] , (2)

Qα =
{
q : q(ω) ≤ p(ω)

α
, 0 ≤ q(ω) ≤ 1, ω ∈ Ω

}
.

Here, Ω is the finite sample space and p is a reference
distribution which, in our case, is the distribution in-
duced by the transition probabilities. It is easy to see
that AV@R1(Z) = E [Z] and AV@R0(Z) is the worst-
case (or robust) realization. In plain words, average
value at risk is the conditional expectation beyond the
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Figure 1: Comparison of two distributions with iden-
tical expectations and different AV@R0.1 values. The
filled-in regions illustrate the quantiles, while the ver-
tical lines indicate the expectations and values at risk.

α quantile. Average value at risk, therefore, will as-
sign a higher overall cost to a scenario with heavier
tails even if the expected value stays the same. Fig. 1
illustrates how a AV@R is computed in comparison
with a plain expectation.

In the interest of clarity, we concentrate in the remain-
der of the paper on conditional risk mappings that are
a convex combination of average value at risk and ex-
pectation and defined as follows:

ρt (X) = (1− λ)Ep [X] + λAV@Rα(X) (3)

We will use the fact that the set Qα is polyhedral
to derive the algorithms. However, it is well known
that any conditional risk mapping that satisfies the
assumptions (A1)-(A4) can be represented as:

ρt (Z) = sup
Q∈Q(st,at)

EQ [Z]

where Q(st, at) ⊆ P(S) is a closed bounded convex set
of probability measures on S. In addition, when the
conditional risk mapping satisfies the comonotonicity
assumption [5], the set Q is polyhedral. The proposed
algorithm can be, therefore, applied to any dynami-
cally consistent risk measure in which the conditional
risk mappings satisfy the comonotonicity assumption.

To derive RDDP, we need yet another representation
of AV@R as a minimization linear program. Because
the set Qα is a polytope, the optimization in Eq. (3)
can be written as a linear program. The dual of this
linear program yields the following representation:

ρt (Z) = (1−λ)Ep [Z]+λ




min
µ,ξ

µ+
1

α
pTξ

s.t. ξ + 1µ ≥ Z
ξ ≥ 0


 (4)

The duality we used above for finite spaces can be
generalized to more general sample spaces under rea-
sonable technical assumptions [20]. The optimal value
of µ corresponds to the quantile of Z at level α.
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One attractive property of dynamically consistent risk
measures is that they not only model risk aversion,
but also preserve most of the structure of MDPs that
makes them easy to solve. In particular, there ex-
ists an optimal deterministic Markov policy in risk-
averse MDPs with Markov risk measures [21], under
some mild additional technical assumptions. The ad-
ditional technical conditions that are needed are the
continuity of P (st, ·) and lower semicontinuity of W
and c(st, at, st+1) with respect to at.

It is also possible to define the value function in risk-
averse MDPs with Markov risk measures. The finite-
horizon value function vt : S → R is defined identically
as for the risk neutral case, except the expectations are
replaced by a risk measure; that is for some policy π
the value function represents the return obtained when
starting in a given state. The action-value function
qπ : T × S × A 7→ R for a policy π, also known as
Q-function [1, 18], represents the value function in a
state s after taking an action a. The optimal value
function is a value function that corresponds to an
optimal policy.

The optimal value function in risk-averse MDPs must
satisfy the Bellman optimality conditions, which are
stated in the following theorem.

Theorem 1 ([21]). A finite-horizon value function
v?(t) is optimal if and only if it satisfies for all s ∈ S
and t ∈ T the following equality:

v?t (st) = min
a∈A

q?t (st, a)

q?t (st, a) = ρt
(
ct(st, a, St+1) + v?t+1(St+1)

)
.

Here, St+1 is a random variable representing the state
at t + 1 distributed according to the transition proba-
bility P (st, a) and vT+1(s) = 0.

We will use RDDP to compute an approximately opti-
mal value function for a risk averse MDP. The actual
solution is the greedy policy with respect to this value
function. A policy π is greedy with respect to a value
function q when it is defined for any st ∈ S at time t
as:

π(st) ∈ arg min
a∈A

qt(st, a) .

Using the greedy policy is the most common method
of computing a policy from a value function.

This section introduced a very general model for risk-
averse Markov decision processes. In the remainder
of the paper, Section 3 defines a linear structure of
the state and action spaces that is common in some
domains, and Section 4 derives RDDP that exploits
this structure to efficiently approximate the optimal
value function.

3 Hybrid Linearly Controlled
Problems

Standard MDP solution methods, such as value or pol-
icy iteration, do not scale easily to large or continu-
ous Markov decision processes. Unfortunately, many
practical applications involve MDPs with continuously
many states and actions. In this section, we describe
a specific class of risk averse MDPs with linear transi-
tions and costs that can be solved more efficiently.

Informally, a hybrid linearly controlled problem is an
MDP with a state set that has both a discrete and
a continuous component. The actions are continuous.
The transition probabilities are independent of contin-
uous states and the transitions for continuous states
can be described linearly in terms of the continuous
states and actions. The following definition describes
the problem formally.

Definition 1. A hybrid linearly controlled problem is
an MDP (S,A,W, P, c) such that:

• States S = D×X where X ⊆ Rn is a closed poly-
hedral set of continuous states and D is a (small)
finite set of discrete states.
• Actions A ⊆ Rm is a closed convex polyhedral set

for some m.
• Admissible actions for (d, x) ∈ S are restricted by

the set-valued map W : S ⇒ A defined as:

W (d, x) = {a ∈ A : Ada = bd−Xdx, ld ≤ a ≤ ud}.

• Transitions P : S ×A → P(S) are defined as fol-
lows. Assume a finite sample space Ωd for each
d ∈ D with a given reference probability distribu-
tion PD. Ωd can be seen as a d−specific, one-step
finite sample space corresponding to the evolution
of an underlying exogenous, stationary, stochas-
tic process. Further, assume the following random
variables are specified: D : Ωd → D, Tx : Ωd →
Rn×n, Ta : Ωd → Rn×m, U : Ωd → Rn. The map-
ping D captures the action-independent transition
from one discrete state to another in the set D.
Now define a random variable:

X = Txx+ Taa+ U .

The mapping X captures the transition from one
continuous state to another in the set X upon
taking action a. Both the discrete and continu-
ous state transitions are induced by PD. In other
words, P ((d, x), a) is the probability distribution
induced by PD over all (random) pairs (D,X).
• Cost function c : S × A × S → R is a linear

function in terms of states and actions:

c(s, a, s′) = c((d, x), a, (d′, x′))

= cTaa+ cTxx+ cTnx
′.
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For sake of simplicity, we assume that there exists an
admissible action for every state (W is non-empty).
This is equivalent to the complete recourse assump-
tion, which is common in stochastic programming.

Dynamic Portfolio Management

We now use a portfolio optimization problem—
described in [11]—to illustrate the above model of a
hybrid linearly controlled system; later we use this
model to experimentally evaluate RDDP. The model
assumes three risky assets, cash, and a market state.
The one-step returns of the risky assets are denoted by
a vector rt = (r1

t , . . . , r
3
t ) for any time t. In addition,

there is assumed to be a risk-free asset—cash—with
a constant and known return rf . All returns are in-
flation adjusted. The monetary holdings of the assets
at time t are denoted by a vector xt = (x1

t , . . . , x
3
t )

and the risk-free cash position is ct. The decision
maker decides on trades that are bought (positive) and
sold (negative) on a daily basis, which are denoted by
at = (a1

t , . . . , a
3
t ). The transaction costs κ(at) for a

trade are proportional and defined as:

κ(at) =
3∑

i=1

δ+
i

[
ait
]
+
− δ−i

[
ait
]
−

for some non-negative δ+
i and δ−i . The asset holdings

xt and cash position ct evolve according to:

xit+1 = rit+1 · (xit + ait) ∀i
ct+1 = rf · (ct − 1Tat − κ(at)) .

The return rates evolve with the state of the market,
as we describe below. The goal of the investor is to
maximize a function of the total terminal wealth; it is
necessary to not only maximize the expected wealth
but also account for the associated risk.

The returns for risky assets evolve according to an ex-
ogenous stochastic process that is independent of the
investor’s position. In particular, the market state is
a one-dimensional continuous real variable zt which
partially predicts the returns. The market state and
the returns evolve linearly with a jointly normally dis-
tributed noise as:

(
ln rt+1

zt+1

)
=

(
ar + brzt
az + bzzt

)
+

(
et+1

vt+1

)
, (5)

where the stochastic variables (et+1, vt+1) are dis-
tributed according to a multivariate normal with zero
mean and variance Σ for all times. The values
ar, br, az, bz, σ were estimated from NYSE data for
1927-1996 [11]. Note that rt+1 depends only on zt
and is independent of rt. We describe the values of
these variables in more detail in Appendix A.

The one-dimensional market state variable and the
market rates transitions are discretized [11, 3]. The
market state variable is discretized uniformly to 19
points. The distributions for market rates are then
estimated for the discrete grid using Gaussian quadra-
ture methods with 3 points per each dimension (27 to-
tal) to precisely match the mean and the variance [10].

The dynamic portfolio optimization problem can then
be naturally modeled as a hybrid linearly controlled
problem. The state space S = (D,X ) is factored into
discrete states D = {1 . . . 19} that represent the mar-
ket state z and continuous states X ⊂ R4 that repre-
sent the asset investment and the monetary position.
The first three elements of x ∈ X represent the asset
positions and the last element represents the cash.

The set of actions A represents the feasible trades
at ∈ R3 for each of the three assets. The cash posi-
tion is adjusted accordingly, depending on the balance
of the trades and transaction costs. The actions are
constrained by W (s) in order for the asset and cash
positions to remain non-negative as follows:

W (d, x) =

{
a :

x(4)− 1Ta− κ(a) ≥ 0
x(i) + a(i) ≥ 0 i = 1 . . . 3

}
.

The costs represent the total change in wealth, which
is a function of the capital gains and the transaction
costs. Formally, for any (d, x) ∈ S, a ∈ A, (d′, x′) ∈ S
the cost is the reduction in total wealth:

c((d, x), a, (d′, x′)) = 1T(x− x′) .

The evolution of the dynamic portfolio optimization is
depicted in Fig. 2. The round nodes indicate states,
while the square nodes indicate intermediate state-
action positions. The solid arrows represent the op-
timization decisions to rebalance the portfolio and the
dashed arrows represent stochastic transitions that de-
termine the next market state and the returns. The
figure also indicates at which point the risk mappings
are applied.

4 Risk Averse Dual Dynamic
Programming

In this section, we describe a new approximate al-
gorithm to solve hybrid linearly controlled problems.
This algorithm is loosely based on value iteration but
uses the polyhedral structure of the MDP to simulta-
neously update value functions over a range of states.
The method is approximate because it uses simulation
to identify the relevant states.

The Bellman optimality equations, as described in
Theorem 1, can be easily adapted for the hybrid lin-
early controlled problem as follows.
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Figure 2: Transitions in the portfolio optimization problem.

Corollary 1 (Bellman optimality condition). A
finite-horizon value function v?(t) is optimal if and
only if it satisfies for all s ∈ S and t ∈ T the following
equality:

v?t (st) = min
a∈W (st)

q?t (st, a) (6)

q?t (st, a) = ρt
(
c(st, a, St+1) + v?t+1(St+1)

)
(7)

Here, St+1 is a random variable representing the state
at time t + 1 distributed according to the transition
probability P (st, a) and vT+1(sT+1) = 0.

Assume a state s = (d, x) and consider D and X to
be random variables representing the next state as in
Definition 1. Then Eq. (7), which is in particular a
composition of a risk measure with an affine map, can
be written as:

q?t (s, a) = q?t ((d, x), a)

= ρt
(
cTaa+ cTxx+ cTnX + vt+1(D,X)

)

= ρt
(
cTaa+ cTxx+ cTnTxx+ cTnTaa+ cTnU+

+ vt+1(D,Txx+ Taa+ U)
)

= ρt (Zt+1(d, x, a)) ,

for the finite vector-valued (random) variable
Zt+1(d, x, a) = cTaa + cTxx + cTnTxx + cTnTaa + cTnU +
vt+1(D,Txx+ Taa+ U), which has dimension |Ωd|.
To derive RDDP, we now show that the Bellman opti-
mality conditions for linearly controlled hybrid prob-
lems can be formulated as a linear program. The op-
timization variables in the problem correspond to ac-
tions and the risk measure. The constraints are a func-
tion of the state. Using Eq. (4), it can be readily shown
that Eq. (7) a linear program. This representation can
then be coupled with the optimization over the action
a in Eq. (6) to get the following linear program repre-
sentation of the Bellman optimality conditions:

v?t (d, x) =



min
a,µ,ξ

(1− λ)pTdZt+1(d, x, a) + λ
(
µ+

pTdξ

α

)

s.t. Ada = bd −Bdx
ld ≤ a ≤ ud
ξ + 1µ ≥ Zt+1(d, x, a)

ξ ≥ 0




, (8)

where pd is the measure PD for d ∈ D. The notation
above assumes that random variables are represented

as vectors as the following equality illustrates:

pTdZt+1(d, x, a) =
∑

ω∈Ωd

pd(ω)Zt+1(d, x, a, ω) ,

where: Ωd is the finite sample space and
Zt+1(d, x, a, ω) = cTaa+ cTxx+ cTnTx(ω)x+ cTnTa(ω)a+
cTnU(ω) + v?t+1(D(ω), Tx(ω)x+ Ta(ω)a+ U(ω)).

Now, using Eq. (8), it is easy to show the following
proposition that describes the structure of value func-
tions.

Proposition 1. Assuming that W (s) is non-empty
for all s ∈ S, the optimal value function is piecewise
affine convex function of x for each d ∈ D:

v?t (d, x) = max
i∈It(d)

(qTx,ix+ qc,i) , (9)

where It(d) is a finite non-empty set. In addition, the
state-action value function q?t (s, a) is piecewise affine
convex in a for any s ∈ S.

Proof. We prove the proposition by a backward in-
duction on t. The proposition holds trivially for vT+1
(since vT+1 = 0). Consider t = T . The linear program
in Eq. (8) may be simplified as,

v?T (d, x) =



min
a,µ,ξ,z

λ · µ+
∑

ω∈Ωd

pd(ω)
(
(1− λ) · z(ω)+

+
λ

α
· ξ(ω)

)

s.t. δ|1 : Ada = bd −Bdx
δ|2 : z(ω)− (cTa + cTnTa(ω))a =

= (cTx + cTnTx(ω))x+ cTnU(ω)

δ|3 : ld ≤ a, δ|4 : a ≤ ud
ξ(ω) + µ− z(ω) ≥ 0, ξ ≥ 0 .




(10)

Due to the assumption of a non-empty and bounded
W (s) for all s ∈ S, the set of extreme points cor-
responding to the dual polytope of the above linear
program is a non-empty, finite set that is independent
of x, and depends only on d. Let It(d) denote this
finite set. By duality, we have

v?T (d, x) = max
i∈It(d)

(
δi|T1 (bd −Bdx)

+
∑

ω∈Ωd

δi|2(ω)
(
(cTx + cTnTx(ω))x+ cTnU(ω)

)

+ δi|T3 ld + δi|T4ud
)

.
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The above expression is indeed a piecewise affine con-
vex function of x, where we may readily identify qx,i
and qc,i by algebraically grouping terms that are linear
in x and the additive constant, for each i. Thus the
proposition is true for t = T . Assuming that it is true
for any t+ 1 ≤ T , we can show next that it is true for
t as well.

Now, for any t < T , the mathematical optimization in
Eq. (8) with the representation of v?t+1 as in Eq. (9) is
the following linear program.

v?t (d, x) =


min
a, µ,
ξ, z, y

λ · µ+
∑

ω∈Ωd

pd(ω)
(
(1− λ) · z(ω)+

+
λ

α
· ξ(ω)

)

s.t. δ|1 : Ada = bd −Bdx
δ|2 : z(ω)− (cTa + cTnTa(ω))a =

= (cTx + cTnTx(ω))x+ cTnU(ω) + y(ω)

δ|3 : ld ≤ a, δ|4 : a ≤ ud
δ|5 : y(ω)− qTx,jTa(ω)a ≥ qTx,j ·
·
(
Tx(ω)x+ U(ω)

)
+ qc,j

∀j ∈ It+1(D(ω))

ξ(ω) + µ− z(ω) ≥ 0, ξ ≥ 0 .




(11)

The constraint family indexed by δ|5 is a consequence
of the induction hypothesis, where y(ω) is an auxiliary
variable that captures v?t+1(D(ω), X(ω)). A similar
argument using duality for Eq. (11) gives:

v?t (d, x) = max
i∈It(d)

(
δi|T1 (bd −Bdx)+

+
∑

ω∈Ωd

δi|2(ω)
(
(cTx + cTnTx(ω))x+ cTnU(ω)

)
+

+ δi|T3 ld + δi|T4ud+
+

∑

ω∈Ωd,
j∈It+1(D(ω))

δi|5(ω, j) ·
(
qTx,j(Tx(ω)x+ U(ω))+

+ qc,j
))
,

(12)

thereby giving a piecewise affine convex function of x
for v?t (d, x).

Note that the convex representation in Eq. (9) has an
exponentially large number of pieces in general, and is
not usable in its exact form. The algorithm we pro-
pose, RDDP, takes advantage of the piecewise linear
representation of the optimal value function to approx-
imate it efficiently. This method is related to value
iteration; it iteratively grows an approximation of the
large set It(d) by adding one element in each step.
Fortunately, it is not necessary to compute the opti-
mal value function to get a good policy—a good value
function will suffice. We propose an algorithm that
approximates the value function from below by using

only a subset of It(d). The algorithm is summarized
in Algorithm 1.

In particular, we identify the relevant linear pieces
of each value function by successively refining lower
bounds on the value function. Because the represen-
tation as shown in Eq. (9) is convex, a subgradient
inequality of the function may be readily derived at
any (d, x) which will serve as a lower bound. The fol-
lowing proposition summarizes this property.

Proposition 2. Consider v?t (d, x) described as in
Proposition 1, and let x̂ ∈ X be any fixed continuous
component of the hybrid state. For any chosen value
d, let δî be the corresponding optimal dual solution of

Eq. (11), where î ∈ It(d), and f?(x̂) be the correspond-
ing optimal objective value. Then: eTxx+ ec ≤ v?t (d, x)
where:

eTx = −δ?
î
|T1Xd +

∑

ω∈Ωd

(
δ?
î
|2(ω)cTnTx(ω)

)

+
∑

ω∈Ωd,
j∈It+1(D(ω))

(
δ?
î
|5(ω, j)qTx,jTx(ω)

)

ec = f?(x̂) .

In addition, with such lower bounds added in Algo-
rithm 1, we are guaranteed to converge to the optimal
value function.

Proof. The lower bounding inequality for v?t (d, x) fol-
lows directly from the subgradient of the convex value
function as established in Proposition 1. It is a direct
consequence of Eq. (12), since î ∈ It(d). In particular,
starting with an empty set Jt(d) as our approxima-
tion for It(d), at each time step we iteratively improve
Jt(d) by adding an additional element î. The con-
vergence to the optimal solution follows because the
scenario tree that represents all T -step realizations of
the uncertainty is finite. Then, using backward induc-
tion, finite termination of the algorithm can be readily
shown.

5 Empirical Results

In this section, we present numerical results of RDDP
on the portfolio optimization domain described in Sec-
tion 3. The results not only demonstrate the utility
of RDDP in modeling and solving risk-averse MDPs
but also illustrate the properties of risk-averse behav-
ior in portfolio optimization. Please note that it is
impractical to solve the portfolio optimization prob-
lem using discretization since the state-actions space
is 8-dimensional. Even with a moderate discretization
with 8 points per each dimension, computing the value
of the risk measure Eq. (2) for all states and actions
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Algorithm 1: Risk-sensitive Dual Dynamic Program-
ming (RDDP)

Data: MDP Model
Result: Lower bound on value function: v?t
Jt(d)← {} ∀d ∈ D ∀t ;
while iterations remain do

// Forward pass: sample states

s0 = (d0, x0)← initial state ;
for t ∈ 0 . . . T do

at ← Solve LP Eq. (11) with Jt+1(d) ;
ωt+1 ← sample from Ωdt .
xt+1 ← Tx(ωt+1)xt + Ta(ωt+1)at + U(ωt+1);
dt+1 ← D(ωt+1);

// Backward pass: compute lower bounds

for t ∈ T . . . 1 do
for d′ ∈ D do

Solve LP Eq. (11) for (d′, xt) ;

Compute î, qx,̂i = ex, qc,̂i = ec from

Proposition 2 ;

Jt(d′)← Jt(d′) ∪ {̂i} ;

Update lower bound for initial state. Solve LP
Eq. (11) for (d0, x0) ;

involves a linear program with 88 ∗ 19 ∗ 27 ≈ 9 · 109

variables; here 19 and 27 represent the number of tran-
sitions.

We start by evaluating RDDP convergence in a risk-
neutral setting; it is easy to evaluate the quality of
such a policy by simulation. The policy computed
by RDDP for this objective is simple: it always in-
vests the full wealth in the small-cap stock which has
the highest expected value. As Proposition 2 shows,
RDDP updates a guaranteed lower bound on the op-
timal value function in each iteration. Because this is
a minimization problem, a lower bound on the value
function corresponds to an upper bound on the to-
tal wealth. Fig. 3 shows the convergence of the lower
bound for the consecutive iterations of RDDP. The fig-
ure compares the upper bound with simulated returns
for 5 time steps and 3000 runs for each policy. The
results show that the bound converges close to the op-
timal solution in 10 iterations. Each iteration involves
solving 100 linear programs in Eq. (11).

The opposite of the risk-neutral formulation is the
worst-case—or robust—formulation with λ = 1 and
α = 0. The robust formulation essentially corresponds
to replacing the expectation over the outcomes by the
worst case value. The optimal solution in this set-
ting is to invest the entire wealth in cash, which has
a constant return and RDDP converges to it in a sin-
gle iteration. While the worst-case solution is easy to
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Figure 3: Simulated returns and an upper bound com-
puted by RDDP. The confidence bounds correspond to
2 standard deviations.

compute, it is hard to evaluate its value by simulation.
This is because one needs to sample all realizations to
find the worst one.

Finally, we evaluate a mildly risk-averse solution with
λ = 0.2 and α = 0.7. Given this objective, the decision
maker optimizes the expected return with a weight
of 80% and the 70% tail expectation with a weight
of 20%. The solution computed for this risk-averse
objective invests in a mix of cash and the small-cap
stock that depends on the market state. There is no
investment in large or medium-cap stock.

Fig. 4 compares the investment value for risk neutral
and averse solutions. The investment for the risk-
averse solution is 90% in cash and 10% in small-cap
stop; the fractions are reversed for the risk-neutral
solution. The value of the risk-neutral solution in-
creases with market state because the expected return
of stocks increases with higher volatility. The value
of the risk averse solution increases for calm market
states (1-5) but decreases with higher market volatil-
ity as the portfolio mix becomes more biased towards
cash. The value function the decreases sharply when
the volatility is high because of trading fees charged
when rebalancing towards cash.

The risk-averse solution achieves an average return of
about 0.6%, which is much lower than 5.4% for the risk
neutral solution. However, the variance of the risk-
averse solution is close to 0 and the return is about 5
times greater than the return of pure cash investment
0.1%. RDDP also efficiently optimizes the dynamically
consistent risk measure reducing the lower bound by a
factor of 26.9 in the first three iterations.

It is interesting to compare the RDDP solution to ex-
isting methods for solving portfolio optimization prob-
lems. The risk aversion in previous work was mod-
eled by a concave utility function and the solutions
were heuristics based on frictionless models [11, 3].
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Figure 4: Value of investment as a function of the mar-
ket state (negated value function). Market volatility
increases with increasing state.

The utility-based risk aversion, coupled with the as-
sumption of no transaction fees, led to diversification
of the portfolio between middle and large capitaliza-
tion stocks. On the other hand, the RDDP solution
with the AV@R risk measure prefers diversification
into cash to other stocks. Future work will need to
address whether this difference is due to different risk
objectives or different approximation techniques used
to compute the solutions.

6 Related Work and Discussion

In this section, we discuss connections between RDDP
and related work in both stochastic programming and
artificial intelligence communities. Large or contin-
uous risk-neutral MDPs, such as the hybrid linearly
controlled problems, are often solved by approximate
dynamic programming or reinforcement learning. Ap-
proximate dynamic programming overcomes the large
size of these problems by restricting value functions to
a small linear space [18]. We are not aware, however,
of any approximate dynamic programming methods
that optimize risk-averse objectives. RDDP is similar
to approximate dynamic programming, except the fea-
tures are constructed automatically using the special
structure of the problem. As a result, RDDP is easier
to apply to compatible problems, but is less general
because it cannot be applied to non-linear problems.

RDDP is also related to stochastic dual dynamic pro-
gramming (SDDP). SDDP is an approximate method
for solving large multistage linear programs with cer-
tain independence assumptions [14, 15, 22].Some of
these methods have been extended to risk averse ob-
jectives [9, 6, 17, 7]; although they typically assume
a different independence structure from the proposed
linearly controlled problems.

In a parallel stream of work on risk-averse optimiza-
tion, models with polyhedral risk measures have been
studied [4, 8]. Unlike the Markov risk measures, poly-
hedral risk measures are not dynamically consistent,

Large-cap Mid-cap Small-cap Cash
Mean (ar , az) 0.0053 0.0067 0.0072 0.0000
Coefficient (br ,bz) 0.0028 0.0049 0.0062 0.9700

Table 1: Regression coefficients of rate means

Large-cap Mid-cap Small-cap Cash
Large-cap 0.002894 0.003532 0.003910 -0.000115
Mid-cap 0.004886 0.005712 -0.000144
Small-cap 0.007259 -0.000163
Dividend Yield 0.052900

Table 2: Noise covariance Σev

but must satisfy other properties that make the re-
sulting problems easy to solve.

7 Conclusion

The paper describes RDDP, a new algorithm for solv-
ing Markov decision processes with risk averse objec-
tives and continuous states and actions. We model the
risk-aversion using dynamically consistent convex risk
measures, which is an established approach in stochas-
tic finance. Our experimental results on a portfolio op-
timization problem indicate that RDDP can be con-
verge quickly to a close-to-optimal solution for both
risk-averse and risk-neutral objectives. Our risk averse
solutions also provide new insights into the properties
of risk-aversion in the portfolio optimization setting.

While the focus of this paper is on a financial appli-
cation, there are numerous other domains that exhibit
similar linear properties, such as stochastic inventory
management, or hydrothermal energy management.
The portfolio optimization problem represents a good
benchmark, because it is relatively simple to describe
and fit to real data, and a similar structure can be
found in many domains that involve optimal utiliza-
tion of finite resources.

One significant weakness of RDDP is that the con-
vergence criterion is not well defined and risk-averse
objectives may be hard to evaluate by simulation. It
is not hard, however, to remedy both these issues. Us-
ing the convexity of the optimal value function and
the lower bound computed by RDDP, it is also possi-
ble to compute an upper bound on the value function
based on Jensen’s inequality. The difference between
the upper and lower bounds then provides a reliable
stopping criterion and an empirical value of a policy.

A Numerical Values

The values ar, br, az, bz, σ were estimated from NYSE
data for 1927-1996 [11]. Table 1 summarizes the re-
gression coefficients ar, br, az, bz and Table 2 summa-
rizes the covariance of the noise σ. The risk-free return
on cash is rf = 1.00042. The initial market state is
z0 = 0.
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Abstract

A market-maker-based prediction market lets
forecasters aggregate information by editing
a consensus probability distribution either di-
rectly or by trading securities that pay off
contingent on an event of interest. Combi-
natorial prediction markets allow trading on
any event that can be specified as a com-
bination of a base set of events. However,
explicitly representing the full joint distri-
bution is infeasible for markets with more
than a few base events. A factored repre-
sentation such as a Bayesian network (BN)
can achieve tractable computation for prob-
lems with many related variables. Standard
BN inference algorithms, such as the junction
tree algorithm, can be used to update a repre-
sentation of the entire joint distribution given
a change to any local conditional probability.
However, in order to let traders reuse assets
from prior trades while never allowing assets
to become negative, a BN based prediction
market also needs to update a representation
of each user’s assets and find the conditional
state in which a user has minimum assets.
Users also find it useful to see their expected
assets given an edit outcome. We show how
to generalize the junction tree algorithm to
perform all these computations.

1 INTRODUCTION

Prediction is a fundamental task for AI systems. There
is strong theoretical and empirical support for the su-
periority of ensemble forecasts over individual fore-
casts (Solomonoff, 1978). While weighted forecasts
are theoretically optimal, it has been surprisingly dif-
ficult to beat a simple unweighted average. Predic-
tion markets have emerged as a simple and robust

way to give high-performing forecasters more influence
on the aggregated forecast. Not only do prediction
markets typically out-perform both individual human
forecasters and näıve unweighted averages (c.f., Chen
and Pennock 2010), they show promise as an infor-
mation combination method for machine aggregation
as well. Barbu and Lay (2011) show that combining
machine learners with prediction markets often out-
performs top ensemble predictors like Random Forest
on UCI datasets. A key advantage is that “the mar-
ket mechanism allows the aggregation of specialized
classifiers that participate only on specific instances.”
That is, learners can opt to bid only on cases they
understand. So while most prediction markets use
only human traders, they need not. Indeed, smart
traders use algorithms, and Nagar and Malone (2011)
provide strong evidence that human-machine combi-
nations outperform either: machines do well when the
rules hold, while humans recognize “broken leg” situ-
ations where they don’t.

We focus on market-scoring-rule systems which create
prediction markets from the sequential application of
proper scoring rules, sidestepping impossibility theo-
rems that apply to simultaneous aggregation of fore-
casts (Hanson, 2003; Chen and Pennock, 2010). In-
dependent of whether traders are human and/or ma-
chine, we address the question of how to make the mar-
ket itself more expressive by allowing combinatorial
trades. While traditional prediction markets ignore
dependencies among events, combinatorial prediction
markets explicitly consider and exploit dependencies
among base events. As Chen and Pennock (2010) ar-
gue:

Why do we need or want combinatorial-
outcome markets? Simply put, they allow
for the collection of more information. Com-
binatorial outcomes allow traders to assess
the correlations among base objects, not just
their independent likelihoods, for example
the correlation between Democrats winning
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in Ohio and Pennsylvania.

We prove some new results regarding combinatorial
prediction markets and report on an implementation
using Bayesian networks.

1.1 PREDICTION MARKETS

Prediction markets make probabilistic forecasts by al-
lowing participants to trade contingent assets. Prices
in such a market can be interpreted as probabilities: if
an asset paying $1 contingent on event E is currently
selling for $0.75, then the current market probability of
E is 75%. Prediction markets are an increasingly pop-
ular way to aggregate information and judgments from
groups (Tziralis and Tatsiopoulos, 2007). Traders self-
select to speak on the topics they think they know best.
Those with more knowledge achieve greater influence
by acquiring more assets, and market prices inform
everyone of trader information.

In a market-maker-based prediction market, an auto-
mated trader stands ready to buy or sell assets on
any relevant event. The prices it offers can be seen
as a current trader consensus on the probabilities of
those events, and trades can be seen as edits of con-
sensus probabilities. In a logarithmic market scoring
rule based (LMSR-based) prediction market, the mar-
ket maker varies its price exponentially with the quan-
tity of assets it sells. Tiny trades are fair bets at the
consensus probabilities (Hanson, 2003). Larger trades
change the consensus probabilities; we call such trades
“edits.” Users make edits in an attempt to maximize
assets, thereby forming a consensus distribution that
aggregates information from all market participants.

1.2 COMBINATORIAL PREDICTION
MARKETS

In a combinatorial prediction market, one can trade on
any event that can be specified as a combination (e.g.
‘and’ or ‘or’) of a base set of events. A market-maker-
based combinatorial prediction market, therefore, de-
clares a complete consistent probability distribution
over a combinatorial space of events, and lets partici-
pants edit any part of that distribution. In a combi-
natorial LMSR-based market, users can make condi-
tional bets that satisfy intuitive independence proper-
ties. For example, letting “¬” denote “not”, a trader
who increases the value of p(A|B) gains if B and A oc-
cur and loses if B and ¬A occur. Such an edit changes
neither p(B) nor p(A|¬B) and the trader neither gains
nor loses if ¬B occurs (Hanson, 2007).

With a large set of base events, the number of event
combinations becomes astronomical, making it in-
tractable in general to compute market prices and

trades. In particular, it is in general NP-hard to main-
tain correct LMSR prices across an exponentially large
outcome space (Chen et al., 2008a).

One way to achieve tractability is to limit the com-
plexity of the consensus probability distribution by
using a factored representation of the joint distribu-
tion. Examples include Bayesian networks (BNs) and
Markov networks, which admit standard algorithms to
efficiently compute conditional marginals and perform
evidential updating (e.g. Pearl 1988; Jensen 1996;
Shachter et al., 1990). Graphical models are widely
used in many applications, often achieving tractable
inference in networks with thousands of variables.

Bayesian networks have been used to represent joint
distributions in prediction markets. Chen et al.
(2008b) used a BN to represent prices in a tournament,
and Pennock and Xia (2011) used a BN to represent
probabilities in a LMSR-based combinatorial predic-
tion market.

Pennock and Xia (2011) proved that probabilities can
be updated in polynomial time for edits which do not
violate the conditional independence assumptions of a
decomposable BN of fixed treewidth. However, they
do not show how to accomplish two other tasks that
are important in practical prediction markets. They
do not show how to let traders reuse assets purchased
in previous trades to pay for new trades. They also do
not show how to calculate a trader’s expected assets
to see if the trader is already ‘long’ or ‘short’ on an
issue before making an edit.

1.3 REUSING ASSETS

In the LMSR framework of Pennock and Xia (2011),
each edit takes the form of a participant paying cash
to a market maker to obtain an event contingent as-
set, which pays cash if a certain event happens. A
trader who has run out of cash is not permitted to
make any more trades. Yet the assets one has ob-
tained from prior trades are often sufficient to guar-
antee many more trades. For example, suppose a user
buys an asset “Pays $10 if A,” and then later buys an
asset “Pays $10 if ¬A.” Because one of these assets
is guaranteed to pay off, the two assets are together
worth $10 in cash, and could be used to support fu-
ture purchases. However, in a näıve implementation,
this $10 is unnecessarily tied up until the truth-value of
A is resolved. While we might imagine that a system
could easily notice the guaranteed payoff and trade
those assets in for cash, it would be difficult to notice
more complex combinations of trades worth a guaran-
teed amount of cash.

In a market that allows conditional trades, a consen-
sus probability p(A|B) = x corresponds to a market
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price of $x for a trade that pays $1 if events B and
A both occur, pays nothing if B and ¬A both occur,
and is called off (returning the purchase price to the
user) if ¬B occurs. Although Pennock and Xia (2011)
do not use conditional securities, conditional probabil-
ities are established by trading securities that depend
on joint states. A consensus probability p(A|B) = x
corresponds to a market price of $x to purchase two
separate securities, one paying $1 if B and A both
occur and the other paying $x if ¬B occurs.

Now, suppose a user wants to trade on event A given
N mutually exclusive conditions Bi, where the cur-
rent market probabilities are p(A|Bi) = xi, i = 1 . . . N .
Without asset reuse, such a user would have to pur-
chase N separate pairs of assets, where the ith pair
costs $xi and pays $1 if A and Bi occur, 0 if ¬A and
Bi occur, and xi if ¬Bi occurs. The total purchase
price of

∑
xi would be tied up until one of the Bi

occurred, although the collection of assets is guaran-
teed to pay off at least

∑
$xi−max{$xi}. If N is large

and the probabilities are non-negligible, a considerable
sum could be unnecessarily tied up.

1.4 OUR CONTRIBUTIONS

In order to be able to reuse assets, we first need to
represent the user’s assets in a form that allows ef-
ficient computation to find the minimum asset state
after the user’s edits. Further, a factored representa-
tion of assets will provide significant savings in space
and improve efficiency of asset management. In this
paper, we show how to exploit the junction tree to ef-
ficiently maintain a representation of a trader’s state-
dependent assets, i.e., for each state the final cash this
trader would hold if this state were revealed in the end
to be the actual state. We also show how to use these
data structures to efficiently find the largest amount by
which the user could raise or lower the probability of
an event of interest, before the change might result in
the trader holding negative assets in some state. Keep-
ing edits within these limits ensures that traders can
reuse assets while never ‘going broke.’ Asset reuse en-
ables more efficient information aggregation (i.e., users
can make more trades before running out of assets) for
a given amount of assets.

A trader about to make an edit also usually finds it
useful to know whether she is ‘long’ or ‘short’ on the
issue she is about to trade. For example, a user edit-
ing the value of p(A|B) might like to know whether
she should currently expect to gain more if B and A
happens, or if B and ¬A happens. Learning that she
already stands to gain more if A and B happens should
make a risk-averse trader more reluctant to raise the
value of p(A|B), thereby acquiring more such assets.
In this paper we show how to efficiently maintain a

representation of each trader’s expected assets, where
the expectation is with respect to the market consen-
sus probabilities. We also show how to efficiently cal-
culate the conditional expectations relevant for being
‘long’ or ‘short’ on a given edit.

The key word here is “efficiently”. Existing combina-
torial implementations follow the näıve joint-state enu-
meration described by Hanson (2007), and are there-
fore limited to at most about 20 related binary vari-
ables. Pennock and Xia (2011) proved that one can use
Bayesian networks for combinatorial prediction mar-
kets. However, they treat an inverse system where
assets are easy to calculate and prices are the bot-
tleneck. Further, they did not have an implementa-
tion of their method. We use a single Bayesian (or
Markov) network for representing the market proba-
bility distributions, stored as clique potentials in the
associated junction tree. Further, we prove that assets
can be represented using the same factorization as the
joint distribution. Thus, our method maintains a par-
allel junction tree data structure for each user’s assets.
We describe algorithms for updating these asset junc-
tion trees when users make edits. Asset factorization
is an important advance in space and computational
efficiency. We have developed a complete MATLAB
implementation and a partial Java implementation of
our algorithms. To our knowledge, ours is the first
published implementation of BN-based combinatorial
prediction markets.

Although arbitrary graphical probability models are
of course intractable, in this paper we show how to
adapt the junction tree algorithm to perform the de-
sired computations in models whose treewidth is not
too large. It follows trivially that for a fixed treewidth,
complexity is polynomial in the number of variables
and linear in the number of simultaneous edits. This is
a major improvement over existing näıve implementa-
tions, which are equivalent to a fully-connected graph
and therefore exponential in the number of variables.
We describe numerical experiments that demonstrate
the anticipated exponential savings in space and time
for given bounds on treewidth.

Organization of this paper: The next section states our
definitions and notation. Section 3 briefly describes
relevant work on Bayesian networks and the junction
tree algorithm. Section 4.3 presents our probability
and asset updating algorithm. In Section 5, we first
walk through the algorithm using a simple 3-node BN
model. We then examine the scalability of our algo-
rithm in a simulation study. Sections 6 and 7 provide
discussion and conclusion.
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2 DEFINITIONS AND NOTATION

Capital letters such as A,Bi, X denote random vari-
ables. Bold capital letters (e.g., A,Bi,X) denote vec-
tors of random variables. Corresponding lowercase let-
ters (e.g., a, bi, x,a,bi,x) denote particular instantia-
tions of the random variables. Unless stated other-
wise, symbols p and φ denote probability distributions
and likelihoods respectively. B represents a BN, T the
corresponding clique tree, and C,S the set of cliques
and set of separators, respectively. The conditional
probability distribution of X given Y is denoted by
p(X|Y ). For a Bayesian network on random variables
X = 〈X1, X2, . . . ., Xn〉, we use Pa(Xi) to denote the
parents of Xi in the directed acyclic graph correspond-
ing to the BN. Thus, the conditional probability dis-
tribution (CPD) of the random variable Xi is denoted
by p(Xi|Pa(Xi)). We denote negation with “¬”, so
(X = ¬x) ≡ (X 6= x).

Each user u has an asset value Sx associated with each
joint outcome x. When necessary to index assets by
user, we add a superscript, Sux . The expected assets S̄
for user u is the user’s net worth:

S̄u =
∑

x∈Ω

p(x)Sux (1)

where Ω is the Cartesian product of the state spaces
of all random variables. We denote the cardinality of
the joint state space by L = |Ω|.

3 PRELIMINARIES

If we represent the prediction market’s probability dis-
tribution as a Bayesian network, then edits in the pre-
diction market correspond to soft evidence on vari-
ables in the Bayesian network (see Section 3.1 below),
and probability updating can be done using standard
algorithms. Allowable edits are determined by the
user’s assets, and in particular that state which has
the fewest assets for the edit being considered. We
show below that the same junction tree can be used to
represent a factorization of both probabilities and as-
sets. The minimum asset state can be found by using
min-propagation in the asset junction tree. That can
be done is a consequence of a theorem by Dawid (1992)
showing that min-propagation works for any function
of the probabilities in a junction tree. We use this fact
in Section 4.3.

A Bayesian network B factors the joint distribution
for the random vector X into a product of local distri-
butions:

p(x) =
∏

1≤k≤n
p(Xk = xk|XPa(Xk) = xPa(Xk))

This factorization in turn can be compiled into an
undirected tree structure called a junction tree. The
junction tree is composed of cliques and separators,
such that p is the product of all clique marginal dis-
tributions divided by the product of all separator
marginal distributions:

p(x) =

∏
c∈C pc(xc)∏
s∈S ps(xs)

. (2)

Here, xc and xs denote the states of the variables in
clique c and separator s, respectively, and pc and ps are
the marginal distributions for the clique and separator
variables, respectively. The junction tree algorithm
(Lauritzen and Spiegelhalter, 1988) uses this transfor-
mation to perform exact inference on the BN. We note
that although we focus on BNs, our algorithms apply
equally well to any representation that can be com-
piled into a junction tree.

3.1 SOFT EVIDENCE & BELIEF
UPDATING

General BN inference computes the posterior distri-
bution given observations, also known as hard ev-
idence. In prediction markets, we need to update
market distributions given user edits that revise some
non-extreme p to another non-extreme p′ on variables.
That is, evidence from user edits is in general uncer-
tain. The literature considers two kinds of uncertain
evidence. Soft evidence specifies a new probability dis-
tribution of the variable regardless of its previous dis-
tribution (Koski and Noble, 2009; Langevin and Val-
torta, 2008; Valtorta et al., 2002), whereas virtual ev-
idence, also known as likelihood evidence, represents
the relative likelihood of the evidence given the true
state. These likelihood values do not necessarily sum
to 1 over all states. Virtual evidence is often imple-
mented as observations on a hidden “dummy” node as
the child node of the node on which virtual evidence
is specified. In our case, we implement user edits as
soft evidence. We use φ(X) to denote soft evidence on
variable X. Usually, soft evidence on a single variable
can be implemented as virtual evidence (Pearl, 1990),
allowing standard junction tree inference algorithms
to apply.

In our prediction market, a user edits the probability
that the target variable T is in one of its states t, for
example, changing p(T = t) = a into p(T = t) = b.
We then assign 1− b to T ’s other states in proportion
to their previous probabilities, and represent this edit
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as soft evidence on T . Similarly, if the user would like
to edit p(T = t|A = a) conditional on the values of
other variables A = a, we represent this conditional
edit as conditional soft evidence. An unconditional
edit corresponds to an empty assumption set A = ∅.

3.2 MIN-CALIBRATION OF JUNCTION
TREE

In the standard junction tree algorithm for discrete
BNs, marginalization is done by summing out vari-
ables. When we replace summation with maximization
in the propagation algorithm, a max-calibrated junc-
tion tree with max potentials for all cliques will be
returned. It is then straightforward to find the con-
figurations over all states with maximum joint proba-
bility based on these max-potentials. Similarly, min-
calibration of the junction tree can be performed by
replacing summation with minimization, and the min-
imum probability configuration can be found accord-
ingly. Further, Dawid (1992) proved that min/max-
calibrations are valid for functions on the potentials.
We will use this fact to find the boundary conditions
for a user’s assets, thus allowing asset reuse while pre-
venting the possibility of assets going negative.

4 PROBABILITY AND ASSET
UPDATING ALGORITHM

Once again, any edit in the prediction market is imple-
mented by asserting soft evidence in the corresponding
BN. We use the junction tree inference algorithm to
update the consensus joint probability distribution af-
ter each edit. Then we use LMSR as the market maker
to update the user’s assets accordingly. We assume a
market trading on purely discrete variables and so the
representing BN is a purely discrete network. After
updating, each clique in the junction tree maintains
the correct joint distribution of variables in the clique.

A given user has assets Sx associated with every joint
state x of the domain variables. LMSR dictates that
assets change in proportion to the log of the ratio of
probabilities:

∆Sx = b ln
p′(x)

p(x)
,

where p′(x) is the new probability for the joint state x
arising from the user’s edit, p(x) is the previous proba-
bility, and b is a constant defining the unit of currency.
Allowed changes must respect the rule that the mini-
mum across all states of the user’s assets must not be
allowed to drop below zero, i.e., minx Sx ≥ 0. After an
edit to the consensus distribution, the asset data struc-
ture changes for the user making the edit; the asset
data structures for all other users remain unchanged.

4.1 ASSET FACTORIZATION

It is convenient to define a transformation q(x) of the
assets Sx, such that

Sx = b ln(q(x)). (3)

We then have
q′(x)

q(x)
=
p′(x)

p(x)
, (4)

where q(x)′ is the updated asset for joint state x, corre-
sponding to the probability change p′(x). The deriva-
tion is:

S′x = Sx + ∆Sx

= Sx + b ln
p′(x)

p(x)

= b ln(q(x)) + b ln
p′(x)

p(x)

= b ln(q′(x))

⇒ b ln(q′(x)) = b ln(q(x)) + b ln
p′(x)

p(x)

⇒ ln(q′(x))− ln q(x) = ln
p′(x)

p(x)
.

Therefore, the identity ln a − ln b = ln a/b establishes
Equation (4).

To interpret b, note that if the user changes the prob-
ability at state x from p(x) to p′(x) = 1 and x turns
out to be true, the user gains ∆Sx = −b ln p(x). The
maximum possible gain is therefore −b ln p(x∗), where
x∗ is the minimum probability state. If all states start
out equally likely, i.e., p(x) = 1/L for all x, then the
maximum gain to users, and the maximum loss to the
market maker, is b lnL, where L is the total number of
states. Therefore to bound losses to be no more than
M , we usually initialize all market states to be equally
likely at the start of trading and set b = M/ lnL.

Because q starts out independent of the state and
changes in proportion to changes in p, we can decom-
pose q in a similar manner to the decomposition of p,
shown in Equation (2). Specifically,

q(x) =

∏
c∈C qc(xc)∏
s∈S qs(xs)

, (5)

where qc and qs are local asset components defined on
the clique and separator variables, respectively. No-
tice the similarity to (2). This factored representation
for assets is preserved long as edits are confined to
variables in the same clique, i.e., trades are structure
preserving (Pennock and Xia, 2011). This allows us to
do all calculations locally in every clique and separa-
tor, because Equation (4) is valid for the joint space of
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each clique and separator. Namely, we can establish
the same junction tree structure for the assets q and
make local updates when edits occur. When there is a
probability edit, we propagate the soft evidence in the
junction tree to obtain the correct probability update
for every clique and separator. For structure preserv-
ing trades, assets can be updated simply by choosing
a clique c containing the variables being traded and
multiplying qc(xc) by the probability ratio:

q′c(xc) = qc(xc)
p′c(xc)
pc(xc)

. (6)

Combining this with Equation (5) gives the same re-
sult as Equation (4). However, we usually do not need
to compute global assets q for each possible joint state.
For space and computational efficiency, a representa-
tion of the user’s assets is stored locally in cliques of
the asset junction tree. This asset junction tree is used
to compute the minimum asset value and its associated
state, as well as the expected value user’s expected as-
sets.

To ensure that the user’s assets remain non-negative
in all states, we must place limits on the edits a user
is allowed to make. Equivalently, no edit may allow
the transformed assets q as defined in Equation (3)
to become less than 1. We must find the limits on
edits beyond which the probability change will result
in negative assets in some state. Let us assume that
the user is editing p(T = t|A = a), denoted as pt,
to p#. Let mt denote her current minimum q given
(A = a, T = t). Let m¬t denote her current minimum
q given (A = a, T 6= t). If (A = a, T = t) occur after
the edit, we have to ensure that the updated minimum
q# remains greater than 1. That is:

q# = mt
p#

pt
≥ 1.

Then

p# ≥ pt

mt
.

Similarly, if (A = a, T 6= t) occurs after the edit, the
updated minimum assets qu must remain greater than
1. That is:

qu = m¬t
1− p#

1− pt ≥ 1.

It follows that

p# ≤ 1− 1− pt
m¬t

.

Summarizing the above results, the allowable edit
range for p(T = t|A = a) is:

[
p(T = t|A = a)

mt
, 1− 1− p(T = t|A = a)

m¬t

]
. (7)

Note that the minimum assets can be found by min-
calibration over the asset junction tree, as mentioned
in Section (3.2).

For every user, we maintain a separate asset junction
tree in which the affected clique is updated only after
this particular user makes an edit. Edits made by a
given user will have no effect other users’ assets. But
because every edit changes the market probability, we
update market distribution after each edit accordingly
(where the updates are stored as clique potentials of
the junction tree).

4.2 EXPECTED VALUE / SCORE

A user typically wants to know the expected value of
her assets given the current market consensus prices.
If she is contemplating an edit to event A, she would
want to know what her expected assets will be if A
happens and if ¬A happens. These expectations can
be calculated efficiently given the factorization repre-
sented in the junction tree. The expected score is ob-
tained as follows (recall that c indexes cliques and s
indexes separators).

S̄ =
∑

c

∑

xc

Sc(xc)pc(xc)−
∑

s

∑

xs

Ss(xs)ps(xs), (8)

where

Sc(xc) = b ln(qc(xc)), (9)

and

Ss(xs) = b ln(qs(xs)). (10)

This result is derived as follows. First, we substitute
(5) into (3) and then substitute (9) and (10) into the
result to obtain the following expression for Sx:

Sx =

[∑

c

Sc(xc)−
∑

s

Ss(xs)

]
. (11)

Next, we substitute (11) into (1), suppressing the su-
perscript u, to obtain:

S̄ =
∑

x

p(x)

[∑

c

Sc(xc)−
∑

s

Ss(xs)

]

=
∑

c

∑

x

Sc(xc)p(x)−
∑

s

∑

x

Ss(xs)p(x).

Letting x¬c and x¬s denote the states of the variables
not in clique c and separator s, respectively, we obtain:

S̄ =
∑

c

∑

xc

Sc(xc)
∑

x¬c

p(x)−
∑

s

∑

xs

Ss(xs)
∑

x¬s

p(x)

=
∑

c

∑

xc

Sc(xc)pc(xc)−
∑

s

∑

xs

Ss(xs)ps(xs),
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which establishes (8). Further, let

S̄c =
∑

xc

Sc(xc)pc(xc),

and

S̄s =
∑

xs

Ss(xs)ps(xs).

Then for brevity, we can write

S̄ =
∑

c

S̄c −
∑

s

S̄s.

Clearly, the values S̄c and S̄s represent local expected
scores for cliques and separators, respectively. This
local score decomposition demonstrates once again the
beauty of factorization.

4.3 PROBABILITY AND ASSET
UPDATING ALGORITHM

To summarize our procedure for updating probabili-
ties and assets, please see Algorithm 1. The algorithm
maintains a consensus probability distribution and an
asset structure for each user. The probability distri-
bution and the asset structures factor according to the
same junction tree. After each edit, the assets of the
user making the edit and the consensus distribution
are updated.

Algorithm 1 Update probability and user assets for
a BN representing a combinatorial prediction market

Require: a BN model B over a set of domain variables
X that represents the combinatorial prediction market
joint distribution, the clique tree T corresponding to B,
consisting of cliques C and separators S.

Require: The current market probability distribution p
represented by a probability junction tree.

Require: The current assets q for user u represented by
an assets junction tree.
for each conditional edit p′ on the target variable T = t
with assumptions A = a by user u: do

- Tell the user the expected scores S̄(T = t,A = a)
and S̄(T 6= t,A = a) indicating the user’s long/short
status.
- Calculate the edit limits for p(T = t|A = a) using
Equation (7).
- Allow user to trade p′(T = t|A = a) within the edit
limits. And apply p′(T = t|A = a) as soft evidence to
the junction tree.
- Update probability distributions of cliques and sepa-
rators to be p′c, p

′
s, c ∈ C, s ∈ S by calling the junction

tree inference algorithm.
- Find the clique c containing target variable T and
assumed variables A, and update the assets clique cor-
responding to c using Equation (6).

end for
return User’s expected assets after the edit; user’s min-
q value and its associated min-q states.

A D P(D) 0.5 0.5

d1 d2

A
B

D ( )

X
C E F

P(F|D)

d1 0.3

f1 f2

0.7

W d2 0.1 0.9P(E|D)

d1 0.9

e1 e2

0.1

d2 0.4 0.6

6

Figure 1: BN-DEF : An Example network With Three
Binary Nodes D,E, and F .

5 NUMERICAL EVALUATION

5.1 TEST CASES FOR BN-DEF

We developed a complete MATLAB implementation
for our algorithm using BNT (Murphy, 2001) and cur-
rently we are developing a Java implementation in
UnBBayes (Matsumoto et al., 2011). Our implemen-
tation requires the target variable and all assumed
(conditioning) variables to belong to the same clique.
Cross-clique conditioning is possible, but requires ap-
proximations (see Section 6).

In this section, we illustrate how the algorithm works
using the simple 3-node BN model BN-DEF, shown
in Figure 1. The CPDs for nodes in BN-DEF are
shown in the picture next to the corresponding nodes.
This network has only two cliques {D,E} and {D,F}.
We work through the algorithm, showing intermediate
results.

We begin by initializing q to be 100 for every cell in
the asset tables. The scale parameter b is specified as
10/ ln(100), making the initial asset score 10 for every
state for all users. We imagine two users, Joe and
Amy, making successive edits.

Joe’s first edit - Suppose Joe thinks the current mar-
ket probability of E = e1 (0.65) is not reasonable,
and wants to increase it. Since this will be his first
trade, his initial uniform q makes his current position
neutral because both min-q values given E = e1 and
E 6= e1 are equal to 100. Using Equation (7), we cal-
culate his edit limits on E = e1 to be [0.0065, 0.9965].
Based on his private information, Joe chooses 0.8 as
the new p(E = e1). The market distribution is then
updated such that marginal probabilities of D,E, F
are now [0.58, 0.42], [0.8, 0.2], and [0.22, 0.78] respec-
tively. Joe’s expected assets are S̄ = 10.12, and his
min-q is 57.14 at two min-states - {d2, e2, f1}, and
{d2, e2, f2}.
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Amy’s first edit - Now Amy is interested in chang-
ing p(D = d1|F = f2), which due to Joe’s edit is
currently 0.52. Again, since this will be Amy’s first
trade, she has neutral positions. Using Equation (7),
we find her edit limits on D = d1 given F = f2 to
be [0.0052, 0.9952]. Suppose Amy wants to move the
probability to 0.7. Now, the market distribution is up-
dated such that the marginal probabilities of D,E, F
are now [0.72, 0.28], [0.85, 0.15], and [0.22, 0.78] respec-
tively. Note that F is unaffected – it was assumed.
Amy’s expected assets are S̄ = 10.11, and her min-q is
62.54 at two min-states - {d2, e1, f2}, and {d2, e2, f2}.
Note that Amy’s edit does not affect any other users’
asset data.

Joe’s second edit - Let us now consider an ex-
treme edit example. Joe comes back and wants to
see what will happen if he makes a big move on
p(E = e1|D = d2) (currently equal to 0.59). First
of all, Joe finds that he has a long position for this
trade since his S̄(E = e1, D = d2) = 10.45, and
S̄(E 6= e1, D = d2) = 8.79. Second, his edit lim-
its returned by the algorithm are [0.0048, 0.9928]. If
he decides to move p(E = e1|D = d2) to 0.99, then
the marginal probabilities of D,E, F can be updated
to [0.72, 0.28], [0.96, 0.04] and [0.22, 0.78], respectively.
Joe’s expected assets after this trade are S̄ = 10.67,
and his min-q is 1.39 at two min-states - {d2, e2, f1},
and {d2, e2, f2}. Note that in this case, Joe’s min-q is
very close to the threshold.

5.2 SCALABILITY STUDY

To investigate scalability, we first tested our algo-
rithms on randomly generated networks of varying
sizes. Our random networks were generated using BN-
Generator 0.3 (Ide et al., 2004). We varied the number
of variables from 30 to 960 and the treewidth bound
from 5 to 20. For each combination of number of vari-
ables and the treewidth, three random BNs were gen-
erated. All random variables were binary. For each
randomly generated network, we calculated the sys-
tem lock time, defined as the CPU time required to
update the probability distribution after an edit is con-
firmed by the user. While the system is locked, new
edits have to be rejected or queued; thus lock time is
a key performance metric. We ran this test on our
Java implementation. Although not fully complete,
the Java implementation performs probability updat-
ing, the part of the calculation required to determine
the system lock time.

Figure 2 shows the results of our scalability study. As
is well known, the complexity of the junction tree al-
gorithm – and therefore the maximum lock time – is
polynomial in the treewidth. We can see from the fig-
ure that the system can easily handle binary networks

Figure 2: Edit Lock Time versus Network Size

of treewidth 10, but performance begins to degrade
noticeably with treewidth 20. The algorithm is not
very sensitive to increases in the number of variables
when the treewidth is held constant.

We also investigated another key performance parame-
ter, the potential rejection rate under different market
environments, modeled by frequency of edits. As noted
above, edits attempted while the system is locked may
have to be rejected. For this study, we used Alarm
(Beinlich et al., 1989), a 37-node BN with treewidth
of 4 often used as a benchmark for graphical model
algorithms. We chose Alarm because its size and
treewidth are at the upper end of the range we expect
for our live combinatorial prediction market. The ob-
jective of this test is to investigate how our approach
performs with frequent edits by multiple users.

We simulated a market with 100 participants, and ex-
pected edits of 2/minute, 8/minute, and 30/minute,
assuming a Poisson distribution for edit arrivals. For
comparison, on Super Tuesday, InTrade had 18,629
trades from 780 unique users, for an average of 13
trades per minute. Prediction market trades are quite
lumpy in both questions and time; we think our fig-
ures span a plausible range. The system lock time for
Alarm is 0.3 seconds in our MATLAB implementa-
tion. We did not implement enhancements such as lazy
propagation (Madsen and Jensen, 1998) that would
give further edit-dependent reductions in lock time.
1000 edits were simulated by randomly chosen users
from 100 market participants, given randomly chosen
assumed variables and betting on randomly chosen tar-
get variable from randomly chosen cliques among the
27 cliques of Alarm’s junction tree. If the randomly
chosen clique had more than 3 variables, we then ran-
domly chose two variables with their randomly chosen
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states to be assumed values on which the edit was con-
ditioned. Inter-arrival times between edits were mod-
eled by exponentially distributed variables with means
of 2, 7.5 and 30 seconds respectively, representing mar-
ket intensities of 30, 8 and 2 edits per minute, corre-
spondingly. Table 1 presents the average number of
rejects and the rejection rates for our experiments.

Table 1: Alarm: Simulation Results for 1000 Edits

Market Average Average
Intensity rejects rejection rate

2 edits/minute 11.3 1.2%
8 edits/minute 39.2 4%
30 edits/minute 142.6 14.3%

In this network, the system could sustain an arrival
rate of 8 edits/minute (11,520/day) with less than a
5% rejection rate. By queuing edits and rejecting only
those whose terms have become worse for the user, this
can be at least halved. A compiled language would be
much faster for all the non-matrix operations, and with
a good choice of library, not much slower at matrix
operations.

6 NON STRUCTURE-PRESERVING
EDITS

When we have conditional edits such that the target
variable and the assumed variables are not in the same
clique, then the edits are not structure preserving. In
that case, if we keep our sparser structure, then the
minimum KL-distance approximation to the true pos-
terior distribution will be the one that has the same
marginal distributions for all the cliques (Darwiche,
2009).

7 CONCLUSION AND FUTURE
WORK

In this paper, we describe a method to update both
the probabilities and assets in a combinatorial pre-
diction market. The approach uses a junction tree
compiled from the associated Bayesian network to rep-
resent the consensus probability distribution, and a
structurally identical junction tree to represent each
participant’s assets. Allowable edits are calculated us-
ing min-propagation in the assets junction tree, and an
allowable edit is chosen. The probability distribution
is updated by applying soft evidence to the (shared)
probability junction tree, and propagating. Assets are
updated by simple multiplication in a single clique,
without requiring a separate propagation. We devel-
oped a complete implementation of our algorithm and

demonstrated its scalability by performing computa-
tional experiments on randomly generated BNs with
varying sizes from 30 to 960 variables, and treewidth
of 5 to 20. Further, we conducted a simulation study
to illustrate the robustness of our method under vary-
ing market environments. Test results show that the
system performs well for networks with treewidth of
up to 10, and can sustain a simulated market with ex-
pected arrival rate of 8 edits/minute with less than 5%
rejection rate.

Future work will measure the computational savings
(or increase in network size) compared to a more
straightforward combinatorial prediction market algo-
rithm. We also plan use this technique in an online
forecasting system, and to examine the tradeoff be-
tween a minimum-KL approximation (which may con-
fuse users) and a less accurate but simpler set of as-
sumptions.
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Abstract

Cardinality potentials are a generally use-
ful class of high order potential that affect
probabilities based on how many of D bi-
nary variables are active. Maximum a poste-
riori (MAP) inference for cardinality poten-
tial models is well-understood, with efficient
computations taking O(D log D) time. Yet
efficient marginalization and sampling have
not been addressed as thoroughly in the ma-
chine learning community. We show that
there exists a simple algorithm for comput-
ing marginal probabilities and drawing ex-
act joint samples that runs in O(D log2 D)
time, and we show how to frame the algo-
rithm as efficient belief propagation in a low
order tree-structured model that includes ad-
ditional auxiliary variables. We then develop
a new, more general class of models, termed
Recursive Cardinality models, which take ad-
vantage of this efficiency. Finally, we show
how to do efficient exact inference in mod-
els composed of a tree structure and a car-
dinality potential. We explore the expressive
power of Recursive Cardinality models and
empirically demonstrate their utility.

1 Introduction

Probabilistic graphical models are widely used in ma-
chine learning due to their representational power and
the existence of efficient algorithms for inference and
learning. Typically, however, the model structure
must be restricted to ensure tractability. To enable
efficient exact inference, the most common restriction
is that the model have low tree-width.

A natural question to ask is if there are other, differ-
ent restrictions that we can place on models to ensure
tractable exact or approximate inference. Indeed, a

celebrated result is the ability of the “graph cuts” algo-
rithm to exactly find the maximum a posteriori (MAP)
assignment in any pairwise graphical model with bi-
nary variables, where the internal potential structure
is restricted to be submodular. Along similar lines,
polynomial-time algorithms can exactly compute the
partition function in an Ising model if the underlying
graph is planar (Fisher, 1961).

Extensions of these results have been a topic of much
recent interest, particularly for the case of MAP in-
ference. Gould (2011) shows how to do exact MAP
inference in models with certain higher order terms
via graph cut-like algorithms, and Ramalingham et al.
(2008) give results for multilabel submodular models.
Tarlow et al. (2010) provide efficient algorithms for a
number of other high-order potentials.

Despite these successes in finding the optimal config-
uration, there has been relatively less progress in effi-
cient high order marginalization and sampling. This
partially stems from the difficulty of some of the com-
putations associated with summation in these models.
For example, computing the partition function for bi-
nary pairwise submodular models (where graph cuts
can find the MAP) is #P-complete, so we do not ex-
pect to find an efficient exact algorithm.

One important high-order potential where such hard-
ness results do not exist is the cardinality potential,
which expresses constraints over the number of vari-
ables that take on a particular value. Such potentials
come up in natural language processing, where they
may express a constraint on the number of occurrences
of a part-of-speech, e.g., that each sentence contains at
least one verb. In computer vision, a cardinality po-
tential might encode a prior distribution over the re-
lationships between size of an object in an image and
distance from camera. In a conference paper matching
system, cardinality potentials could enforce a require-
ment that e.g. each paper have 3-4 reviews and each
reviewer receive 8-10 papers.

825



A simple form of model containing a cardinality poten-
tial is a model over binary variables, where the model
probability is a Gibbs distribution based on an energy
function consisting of unary potentials θd and one car-
dinality potential f(·):

−E(y) =
∑

d

θdyd + f(
∑

d

yd) (1)

p(y) =
exp {−E(y)}∑
y′ exp {−E(y′)} , (2)

where no restrictions are placed on f(·). We call this
the standard cardinality potential model. Perhaps the
best-known algorithm in machine learning for comput-
ing marginal probabilities is due to Potetz and Lee
(2008); however, the runtime is O(D3 log D), which is
impractical for larger problems.

We observe in this paper that there are lesser-known
algorithms from the statistics and reliability engineer-
ing literature that are applicable to this task. Though
these earlier algorithms were not presented in terms
of a graphical modeling framework, we will present
them as such, introducing an interpretation as a two
step procedure: (i) create auxiliary variables so that
the high order cardinality terms can be re-expressed
as unary potentials on auxiliary variables, then (ii)
pass messages on a tree-structured model that includes
original and auxiliary variables, using a known efficient
message computation procedure to compute individual
messages. The runtime for computing marginal prob-
abilities with this procedure will be O(D log2 D). This
significant efficiency improvement over the Potetz and
Lee (2008) approach makes the application of cardinal-
ity potentials practical in many cases where it other-
wise would not be. For example, exact maximum like-
lihood learning can be done efficiently in the standard
cardinality potential model using this formulation.

We then go further and introduce a new high or-
der class of potential that generalizes cardinality po-
tentials, termed Recursive Cardinality (RC) poten-
tials, and show that for balanced RC structures, ex-
act marginal computations can be done in the same
O(D log2 D) time. Additionally, we show how the
algorithm can be slightly modified to draw an exact
sample with the same runtime. We follow this up by
developing several new application formulations that
use cardinality and RC potentials, and we demonstrate
their empirical utility. The algorithms are equally ap-
plicable within an approximate inference algorithm,
like loopy BP, variational message passing, or tree-
based schemes. This also allows fast approximate in-
ference in multi-label models that contain cardinality
potentials separately over each label.

Finally, we show that cardinality models can be com-
bined with a tree-structured model, and again assum-

ing a balanced tree, exact inference can be done in the
same O(D log2 D) time (for non-balanced trees, the
runtime is O(D2)). This leads to a model class that
strictly generalizes standard tree structures, which is
also able to model high order cardinality structure.

2 Related Work

2.1 Applications of Cardinality Potentials

Cardinality potentials have seen many applications, in
diverse areas. For example, in worker scheduling pro-
grams in the constraint programming literature, they
have been used to express regulations such “each se-
quence of 7 days must contain at least 2 days off” and
“a worker cannot work more than 3 night shifts every
8 days” (Régin, 1996). Milch et al. (2008) develop car-
dinality terms in a relational modeling framework, us-
ing a motivating example of modeling how many peo-
ple will attend a workshop. In error correcting codes,
message passing-based decoders often use constraints
on a sum of binary variables modulus 2 (Gallager,
1963). Another application is in graph problems, such
as finding the maximum-weight b-matching, in which
the cardinality parameter b constrains the degree of
each node in the matching (Huang & Jebara, 2007),
or to encode priors over sizes of partitions in graph
partitioning problems (Mezuman & Weiss, 2012).

More recently, cardinality potentials have become pop-
ular in language and vision applications. In part-of-
speech tagging, cardinalities can encode the constraint
that each sentence contains at least one verb and noun
(Ganchev et al., 2010). In image segmentation prob-
lems from computer vision, they have been utilized
to encourage smoothness over large blocks of pixels
(Kohli et al., 2009), and Vicente et al. (2009) show that
optimizing out a histogram-based appearance model
leads to an energy function that contains cardinality
terms.

2.2 Maximization Algorithms

As noted previously, there is substantial work on per-
forming MAP inference in models containing one or
more cardinality potentials. In these works, there is
a division between methods for restricted classes of
cardinality-based potential, and those that work for
arbitrary cardinality potentials. When the form of the
cardinality potential is restricted, tractable exact max-
imization can sometimes be performed in models that
contain many such potentials, e.g., Kohli et al. (2009);
Ramalingham et al. (2008); Stobbe and Krause (2010);
Gould (2011). A related case, where maximization
can only be done approximately is the “pattern poten-
tials” of Rother et al. (2009). For arbitrary functions
of counts, the main approaches are that of Gupta et
al. (2007) and Tarlow et al. (2010). The former gives
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a simple O(D log D) algorithm for performing MAP
inference, and the latter gives an algorithm with the
same complexity for computing messages necessary for
max-product belief propagation.

2.3 Summation Algorithms

Relatively less work in the machine learning commu-
nity has examined efficient inference of marginal prob-
abilities in models containing cardinality potentials.
The best-known approach is by Potetz and Lee (2008)
(here PL). Also related is the line of work including de
Salvo Braz et al. (2005) and Milch et al. (2008), but
these works assume restrictions on unary potentials,
and it is not clear that they are efficient in the case
where there are many distinct unary potentials.

PL works with potentials θ(y;w) = f(y · w), where y
and w are real-valued vectors. This is a general case
that is more involved than cardinality potentials, re-
quiring a clever strategy for representing messages,
e.g., with adaptive histograms. However, if y is binary
and w is the all-ones vector, then f(·) is a standard
cardinality potential.

The starting point for PL is to to write down the ex-
pression for a sum-product message from f to, say, the
last variable yD:

mfD(yD)=
∑

y\{yD}


f(

∑

d

yd)
∏

d′ "=D

md′f (yd′)


 . (3)

Next, PL defines a change of variables into a new set
of integer-valued variables, z, as follows:

z1 =y1 z2 =z1 + y2 . . . zD−1 =zD−2 + yD−1.

Eq. (3) can then be expressed in terms of z as∑
z\{zd}

[
f(yD + zD−1)

∏
d′ "=d md′f (zd′ − zd′−1)

]
.1 Fi-

nally, the sums can be pushed inwards as in variable
elimination, and the internal sums can be computed
from inside outwards naively in time O(D2). There
are D summations to perform, so computing one mes-
sage takes O(D3) time. As observed by Felzenszwalb
and Huttenlocher (2004) and noted by PL, the inter-
nal sums can be performed via FFTs in O(D log D)
time. Computing all D messages or marginals, then,
requires O(D3 log D) time.

3 Other Summation Algorithms

Here, we review lesser-known work from the statistics
and reliability engineering literature, where efficient
algorithms for very similar tasks have been developed.

The idea of a recursive procedure that sums configura-
tions in a chain-structure i.e. by using a definition of z

1For notational convenience, assume we have z0 = 0.

variables similar to that of PL, dates back at least to
Gail et al. (1981). In this work, the algorithmic chal-
lenge is to compute the probability that exactly k of D
elements are chosen to be on, given that elements turn
on independently and with non-uniform probabilities.
Naively, this would require summing over

(
D
k

)
config-

urations, but Gail et al. shows that it can be done in
O(Dk) time using dynamic programming.

A similar task is considered by Barlow and Heidtmann
(1984) and Belfore (1995) in the context of reliability
engineering. The task considered computing the prob-
ability that exactly k elements are chosen to be on,
or the probability that between k and l elements are
chosen to be on. Belfore gives a divide-and-conquer
algorithm that recursively calls an FFT routine, lead-
ing to an O(D log2 D) algorithm. This algorithm is
very similar to the approach we take in this work, and
in the case of ordinary cardinality potentials (i.e. not
RC potentials), it is equivalent to the upward pass of
message passing that we will present in Section 5.

Finally, there is work in statistics on Poisson-Binomial
(PB) distributions, which are the marginal distribu-
tions over cardinalities that arise if we have a model
that contains only unary potentials. These distribu-
tions have been used in several applications in the
statistics literature. We refer the reader to Chen and
Liu (1997) and references therein for more details on
applications.

One algorithm for computing the cumulative distri-
bution function (CDF) of the PB distribution that
uses an FFT was proposed in Fernandez and Williams
(2010) and analyzed by Hong (2011). The idea is to
first compute the characteristic function of the distri-
bution, and then directly apply the inverse FFT in or-
der to recover the CDF. The benefit of this approach
is that the FFT only needs to be applied once, how-
ever computing the characteristic function still takes
O(D2) time.

For further discussion of other algorithms similar to
the ones discussed above, we recommend Hong (2011)
and references therein.

4 Recursive Cardinality Potentials

4.1 Model Structure

The first contribution in this paper is to generalize the
structure of the cardinality potential to the Recursive
Cardinality potential. Recursive Cardinality poten-
tials are defined in terms of a set of subsets S of a
set of D binary variables. The joint probability over
vector y is defined as

p(y) ∝
∏

sk∈S
fk(

∑

yd∈sk

yd), (4)
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(a) Nested (b) Not nested

Figure 1: Examples of nested and non-nested subsets.

where the only constraint is that S is nested, as illus-
trated in Fig. 1. We call a set of subsets S nested if for
every pair of subsets in S, either they are disjoint or
one is a subset of the other. Each fk can be arbitrary,
and different per k. By defining subsets over single
variables, we can represent unary potentials, so we do
not explicitly separate them out here.

This new construction extends the standard cardinal-
ity potential to handle multiple scales, ranging from
purely local (e.g., for a pair of variables) to global,
and potentially including all scales in between.

4.2 Example Cardinality Potentials

Cardinality potentials can be applied in diverse ways
in order to capture a variety of interesting properties.
Here we give some examples, and note that this list is
far from exhaustive.

4.2.1 Ordinary Cardinality Potentials

Noisy-OR: Consider a set of D binary variables y
along with a single binary variable t that depends on y:
P (t = 1|y) = 1−(1−ε)

∏D
d=1(1−λd)

yd . For the special
case where each λd is equal, we can represent this as
a conditional model with a cardinality potential:

P (t = 1|y) =1− (1− ε)(1− λ)
PD

d=1 yd (5)

This is simply a function of
∑

d yd, and can therefore
be viewed as a cardinality potential.

Smoothness and Competition: Note that even
unimodal cardinality potentials have interesting prop-
erties. A convex cardinality potential is related to
smoothness: it will tend to favor configurations where
all of the variables are either on together or off to-
gether. In a similar manner, a concave function will
cause competition amongst the binary variables.

4.2.2 Recursive Cardinality Potentials

Group and structured sparsity: By placing a car-
dinality potential over subsets of variables consisting
of a uniform distribution over counts (or any general
distribution) along with a spike at 0, one can repre-
sent the preference that variables should tend to turn
off together in groups. Indeed, one can represent hi-
erarchical sparsity using a recursive model. This gives
an interesting alternative to the traditional approaches

of $0 and $1 priors, as well as their group counterparts
that are commonly used in structured sparsity (Zhao
et al., 2006).

Hierarchical CRFs: A common approach to image
segmentation in the computer vision literature is to
construct a hierarchy of increasingly coarse segmen-
tations, then to perform the segmentation jointly at
the different levels of coarseness. To enforce consis-
tency across levels of coarseness, a widely-used form
of potential is the Pn (Kohli et al., 2009) potential,
which encourages sets of variables to all take on the
same label. If the segmentations at different levels of
granularity have a nested structure, then this model
can be represented using an RC potential, and thus
exact marginal inference (and therefore learning) can
be done efficiently.

5 Fast Sum-Product Formulation

Overview. Here, we present the fast FFT algorithm
as an auxiliary variable method, where auxiliary vari-
ables are invented in such a way that the distribution
over y remains unchanged, but inference in the ex-
panded model can be done very efficiently. In other
words, we are defining an augmented model q(y,z)
that has the property that

∑
z q(y,z) = p(y), but

where computing all marginals in q (for both y and
z variables) can be done more efficiently than directly
computing marginals for each y in the original p(y) (at
least by using any existing method).

More specifically, the algorithm can be described as
follows: auxiliary variables z will be integer-valued
variables that represent the count over subsets of origi-
nal variables y. The auxiliary variables are structured
into a binary tree, as illustrated in Fig. 2, with orig-
inal y variables at leaves of the tree, so z variables
at higher levels of the tree represent sums of increas-
ingly large subsets of y. There is one auxiliary variable
at every internal binary tree node, so with a balanced
tree structure, the joint model over y and z is a tree of
depth log D. The utility of this formulation is that we
can now represent cardinality potentials over subsets
of y variables as unary potentials over z variables.

Having constructed the auxiliary variable model, the
algorithm will be simply to run an inwards and out-
wards pass of sum-product belief propagation. The
key computational point is that due to the structure of
potentials over auxiliary variables, sum-product mes-
sages can be computed efficiently even when z vari-
ables have large cardinality, by using FFTs.

5.1 Detailed Description

The algorithm takes as input a binary tree T with
D leaf nodes, where each leaf corresponds to one yd
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Figure 2: Each internal node z represents the count
over the subset of original y variables that are descen-
dants of the internal node. Cardinality potentials on
the subset then can trivially be added as unary poten-
tials on internal nodes. Here, in addition to a standard
cardinality potential f7, we add subset cardinality po-
tentials f2, f3, f5, and f6.

variable. To instantiate latent variables z, traverse up
the tree from leaves to root, associating a z variable
with each internal node. When instantiating a new
variable zp, set a deterministic relationship between
it and its two children, zl and zr, as zp = zl + zr. In
graphical model terms, for each parent in the tree, add
a deterministic potential gp(zp, zl, zr) = 1{zp=zl+zr} to
the model. With these definitions, we can define the
distribution q as,

q(y,z) ∝ p(y)
∏

p∈P
1{zp=zl(p)+zr(p)}, (6)

where P is the set of parent nodes in T , and l(p) and
r(p) are indices of the left and right children of zp.

Define the set of leaf node descendants of zp as sp =
{yd | zp is an ancestor of yd}. For any setting of z to
have nonzero probability, it clearly must be the case
that zp =

∑
yd∈sp

yd. Thus, a high order potential
over subset sp can equivalently be represented as a
unary potential on zp. Expanding the definition of
p from within Eq. (6), the computational benefit be-
comes clear, as we can rewrite all high order potentials
as unary potentials:

q(y,z)∝
∏

k|sk∈S
fk(

∑

yd∈sk

yd)
∏

d

θd(yd)
∏

p∈P
1{zp=zl(p)+zr(p)}

=
∏

k|sk∈S
fk(zk)

∏

d

θd(yd)
∏

p∈P
1{zp=zl(p)+zr(p)} (7)

The following proposition justifies correctness and
makes the relationship between p and q precise:

Proposition 1. For all y, p(y) =
∑

z q(y,z).

Proof. There is exactly one joint setting of z with
nonzero probability for each joint setting of y. To

see this, observe that given a setting of y, the one and
only setting of z that satisfies all the deterministic re-
lationships is for each zp to set zp =

∑
yd∈sp

yd. The
proposition then follows directly.

5.2 Aligning Nested Subsets with T
We have shown how adding auxiliary variables z en-
ables us to convert high order cardinality potentials
fk(
∑

yd∈sk
yd) into a unary potential on an individual

zk variable. However, this transformation only works
if there is an internal z variable for each subset sk that
we wish to put a cardinality potential over. This re-
striction is what leads to the nested property that we
require of sets of subsets S. For any nested set of sub-
sets S, however, it is possible to construct a binary tree
T such that an internal node in the tree is created for
every subset sk. A question for future work is whether
a weaker condition than nestedness can be enforced
while still guaranteeing efficient exact inference.

Finally, all that remains is to show how sum-product
messages can be computed efficiently.

5.2.1 Upward Messages

Let g(zp, zl, zr) be a factor that enforces the determin-
istic relationship zp = zl + zr between parent zp and
children zl and zr. The upward message vectors that
we need to compute take the following form:

mg,zp
(zp) =

cl∑

zl=0

cr∑

zr=0

g(zp, zl, zr)mzl,g(zl)mzr,g(zr)

=

cl∑

zl=zp−zr

mzl,g(zl)mzr,g(zp − zl).

Expressed in this way, it becomes clear that the entire
message vector (the above quantity, for all values of
zp ∈ {0, . . . , cp}) can be computed as a 1D discrete
convolution. Since 1D discrete convolutions of vectors
of length N can be computed in O(N log N) time us-
ing FFTs, these message vectors can be computed in
O(cp log cp) time.

5.2.2 Downward Messages

Let g(zp, zl, zr) be a factor that enforces the deter-
ministic relationship zp = zl + zr between parent zp

and children zl and zr. The downward message vec-
tors that we need to compute take the following form
(assume w.l.o.g. that the message is to zl):

mg,zl
(zl) =

cr∑

zr=0

mzp,g(zl + zr)mzr,g(zr).

This also can be computed as a 1D discrete convolu-
tion, after reversing the message vector mzr,g.
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5.2.3 Asymptotics

Assuming balanced binary trees, the algorithm runs
in O(D log2 D) time. This can be seen by us-
ing the Master theorem to solve the recurrence
T (n) = 2T (n/2) + n log n. If binary trees are not bal-
anced, the worst case runtime can be O(D2). The
algorithm uses O(D log D) space.

5.3 Minor Extensions

We argue that a main benefit of the auxiliary variable
formulation is that it allows for several variants and
elaborations. We discuss some of them in this section,
to illustrate the range of other similar models models
where learning and inference can be done tractably.

Drawing a Joint Sample. Given the auxiliary
variable formulation, drawing a joint sample from a
RC model is straightforward: pass messages inward to
the root as before; compute the belief at the root,
which is a distribution over global counts, and draw
the value for the root variable from that distribu-
tion; now proceed outwards from the root towards the
leaves. The one non-triviality is that values for the two
children given a parent must be drawn simultaneously.
To do this, first construct the belief at the trinary fac-
tor f(zp, zl, zr) conditioned on the value of zp, which
has been sampled already. Given zp, there is a diago-
nal along the belief matrix corresponding to the values
of zl and zr such that zl + zr = zp. To draw the joint
sample for zl and zr, normalize this diagonal to sum
to 1, then draw a value from that distribution. This
gives the values for zl and zr. Recurse downwards.

Other minor extensions appear in the Appendix.

5.4 Major Extension

Up until now, we have presented RC models as if
the modeler who desires efficient exact inference must
choose between standard pairwise trees or RC models.
In fact, this is not necessary. It is possible to do exact
inference in the following model in O(D log2 D) time:

p(y) ∝
∏

(d,d′)∈E
θdd′(yd, yd′)

∏

sk∈S(E)

fk(
∑

yd∈sk

yd), (8)

where E is an acyclic set of edges over variables y,
and S(E) is a set of nested subsets with subset struc-
ture that is “compatible” with E . In other words, the
modeler can choose the structure of either E or S(E)
arbitrarily, and there is some non-degenerate choice of
the other that allows for efficient inference, but not all
combinations of trees and subset structures are com-
patible. Note that this structure cannot be represented
by a standard Recursive Cardinality potential, because
having e.g., edges (d, d′) and (d′, d′′) would violate the
nested subset structure requirement. The approach is

similar to the base algorithm, but it involves construct-
ing a junction tree that has separator sets involving
one y variable and one z variable. We give details in
the Appendix.

6 Experiments

In this section, we empirically explore the properties
of the RC model, and demonstrate its usage in sev-
eral interesting scenarios. Code will be made available
implementing the convolution tree algorithm for com-
puting marginals over y and z, and for joint sampling.

6.1 Chain vs Tree as D grows

The version of the RC algorithm that we presented in
Section 5 is the most efficient that we have discovered.
There are, however, other approaches that are more
efficient than O(D3 log D), but which are less efficient
than the algorithm with the best asymptotic runtime.
In this section, we compare the runtime of our algo-
rithm (the “FFT Tree”) against two baselines, both
of which are improvements over the PL algorithm re-
viewed in Section 2.3.

The first baseline introduces auxiliary variables in a
chain rather than tree structure. If we then follow
the approach as in Section 5, this would lead to a
O(D2 log D) algorithm. It turns out that in this case,
messages can be computed via a summation of two
arrays, so using FFTs is unnecessary. This yields a
O(D2) algorithm equivalent to that of Barlow and Hei-
dtmann (1984), which we term the “Chain” algorithm.
A drawback of this algorithm is that it also requires
O(D2) space. However, we note that if cardinalities
greater than k are disallowed by the cardinality poten-
tial, then this algorithm can be made to run in O(Dk)
time, and it is perhaps the best choice.

The second baseline is the fast algorithm where FFTs
are not used to compute messages, and instead we use
an efficient but brute-force computation of the 1D con-
volutions required inside the message computations.
We refer to this as the “Tree” algorithm. Solving the
recurrence T (n) = 2T (n/2)+n2 using the Master the-
orem, we see that the runtime is again O(D2). The
space usage is O(D log D).

We run these algorithms on problems of size up to 219

variables with a single random cardinality potential.
The runtimes are reported in Fig. 3. The Chain al-
gorithm fails after D = 16000 due to memory limits.
The Tree algorithm is faster than the chain algorithm
for larger D, but its quadratic time usage causes it to
become quite slow once D nears 100k. The FFT Tree
algorithm behaves nearly linearly in practice, running
on problems with half a million variables in less than
100 seconds. We note that in practice, for large values
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Figure 3: Runtimes of the different algorithms versus
problem size. For very small D, the Chain algorithm is
slightly faster, but it runs out of memory after around
D = 15000, due to its quadratic memory usage. The
FFT Tree algorithm runtime grows near linearly up
through all experiments.

of D, care must be taken to avoid numerical issues for
certain settings of model parameters.

6.2 Generalized Bipartite Matching

We have variables y = {yij}(i,j)∈DI×DJ
, where DI is

the number of rows, and DJ is the number of columns.
Here, we consider the Gibbs distribution defined by the
following energy function:

E(y) =
∑

ij

θijyij +
∑

i

fc(
∑

j

yij) +
∑

j

fr(
∑

i

yij),

where fr and fc are functions of row and column
counts. Note that if a constraint is placed on each row,
saying that exactly one binary variable in each col-
umn can be on, then this formulation can also be used
to represent cardinality potentials for multilabel prob-
lems. One motivation for this model comes from the
problem of paper-to-reviewer matching, where yij rep-
resents the event that paper i is matched to reviewer j.
The row and column functions can then be used to en-
force the constraints that each paper should be given
to e.g., 3 to 4 reviewers, and each reviewer should be
assigned e.g., 6 to 8 papers. Note that the energy func-
tion can clearly represent the bipartite matching prob-
lem (by constraining row and column counts to be ex-
actly 1), so computing marginals is #P-complete. Our
approach will be to perform approximate inference us-
ing loopy belief propagation (LBP), where messages
are computed using the FFT tree algorithm.

We compare against several baselines on small and
medium-sized problems where we constrain columns
to have 1 or 2 variables labeled 1, and rows are con-
strained to have 2 or 3 variables labeled 1. The first,
“Node Marginals” is a naive approximation that sim-
ply ignores the constraints and computes marginals
under the factorized distribution consisting of just the

(a) 3x6 Grid (b) 20x40 Grid

Figure 4: Mean absolute error between inferred
marginals and ground truth marginals.

node potentials. The second is to find the exact MAP
solution to the problem using a linear program (LP)
and assume that the marginals are 0 or 1. The final
baseline, which we take as the ground truth for the
intractable medium-sized problem, is to use a block
Gibbs sampler where blocks are chosen as the four vari-
ables yi1,j1 , yi1,j2 , yi2,j1 , yi2,j2 for some choice of rows
i1 and i2 and columns j1 and j2. To find a valid initial
configuration, we initialize the sampler with the LP
solution. We attempted multiple runs using random
parameter settings. The results in Fig. 4 show that
LBP achieves a low bias in a relatively short amount
of time. For small problems, the constraints do not
always greatly influence the marginals, as exhibited
by the low bias of the naive approach in some runs;
however, they clearly influence the larger problems.
Finally, the LP method tends to be slower than LBP,
becomes relatively slower on larger problems, and ex-
hibits significant bias. We have run our algorithm on
larger problems, and it converges quickly even on e.g.,
100x100 problems, but we are unable to measure accu-
racy, because accurate baselines are prohibitively slow.

It is worth mentioning that this is a hard problem, and
designing sampling schemes for many cases is nontriv-
ial. Indeed, the Gibbs sampler we used will not be
ergodic for disjoint cardinality constraints (e.g. only
3 or 10). By contrast, our method is relatively fast,
accurate, and applies to a wide variety of constraints.

6.3 Multiple Instance Learning

In multiple instance learning (MIL), we are given
“bags” of instances, which are labeled as either “pos-
itive” (at least one instance in the bag is positive) or
“negative” (all instances in the bag are negative). This
can be framed as a problem of learning with weak la-
bels, where the weak labels take the form of a cardinal-
ity potential over individual instance labels. Indeed,
MIL models where bag labels are modeled as noisy-
OR can be seen as exactly this formulation, using the
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form of noisy-OR from Eq. (5). However, given the fast
algorithms for Recursive Cardinality potentials devel-
oped in this work, it becomes tractable to assert other
forms of the distribution over within-bag counts. In
this section, we experiment with this alternative.

More formally, for variables y appearing in a bag la-
beled as t = 0 (negative) or t = 1 (positive), we can
rewrite the likelihood of a label as

∑
y p(t, y), where

p(t, y) ∝ f (t)(
∑

d

yd)
∏

d

exp{θd · yd}, (9)

where f (t) is some cardinality function that imposes a
preference on the number of binary variables turned on
for bags labeled as t, and θd is a unary potential. All of
the required quantities for learning can be computed
in two calls to our algorithm (corresponding to t = 0
and t = 1).

The standard data set for evaluating MIL learners is
the Musk dataset from Dietterich et al. (1997). In the
data, bags molecules are labeled as to whether they are
“musks.” A molecule is considered to be a musk if any
low energy conformations of the molecule is a musk.
The bags in this data set correspond to molecules, and
the instances are features of many different low en-
ergy conformations. We compared two methods on
the musk1 version of the dataset: a standard Noisy-
OR model, and a “Normal” model, where f (0)(c) =
exp{−( c

D )/2σ2} and f (1)(c) = exp{−(µ− c
D )/2σ2}.

As is common in the MIL literature, we divide the
data into 10 evenly-sized folds and run 10-fold cross-
validation. We use 20% of bags for validation, and
10% for testing in each split. To set an L1 regulariza-
tion parameter, and to choose the σ and ε parameters
in the Normal and Noisy-OR models, respectively, we
do a grid search and choose the setting that produced
the best average validation error across folds. Fig. 5
(a) reports results showing how error varies as a func-
tion of the µ and λ parameters for Normal and Noisy-
OR, respectively. We note that the musk1 dataset has
only 92 instances, and the standard deviation of errors
across validation folds was high, so these results are
not statistically significant. However, we do see a trend
where varying the f functions can affect performance,
and that a Normal cardinality potential out-performs
the standard Noisy-OR. For this problem, it appears
that setting the µ parameter to be large is beneficial
for learning, but in general this should be a parame-
ter that is set via prior knowledge or cross validation.
Also note that Gehler and Chapelle (2007) enforced a
similar bias on bag counts within an SVM formulation,
and their results also suggested that encouraging the
model to turn on more binary variables within posi-
tive bags improved performance on the musk1 data.
In Fig. 5 (b), we show how parameter values in the

(a) Error (b) # on in Positive Bags

Figure 5: Multiple instance learning results.

cardinality potential affects the expected number of
instances labeled as “on” within positive bags. The
trend in this plot shows that varying f does indeed
affect how many instances within a positive bag that
the model chooses to label as positive examples.

6.4 Generative Image Models

In this set of experiments, we attempt to distinguish
between the representational abilities of pairwise tree-
structured graphical models, and the RC model. We
consider a synthetic dataset that has been sampled
from an Ising model near the critical temperature re-
sulting in images with highly correlated regions. The
pairwise edges form a grid structure, and the result-
ing data consists of 1000 16 × 16 images. In order to
compare the pairwise tree and the RC models we first
learn their parameters on each dataset using nonlin-
ear conjugate gradients to minimize the negative log-
likelihood. After learning each model, we generate the
same number of samples as the original dataset and
use these to compare statistics. After learning, the
log-likelihoods for the pairwise tree model was 145.22,
while the log-likelihoods for the RC model was 146.78.
We hypothesize that this difference is because the pair-
wise tree model is able to do a better job at directly
capturing pairwise statistics, however the RC model is
better at capturing long-range, higher-order statistics.
We demonstrate this in our experiments below.

Heuristic choice of transformation structure.
For each dataset, in order to determine the structure
of the nested cardinality potential, we run hierarchical
agglomerative clustering on images, where the simi-
larity between pixels is determined by how often they
take the same label. This gives us a full tree struc-
ture over the pixels, which we then directly use to give
the nested subset structure. We leave a study of other
ways for choosing trees to future work.

Pairwise statistics. We analyze the pairwise statis-
tics of the learned distributions in comparison to the
original datasets. Fig. 6 shows the pairwise correla-
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(a) Actual data (b) Pairwise tree (c) RC

Figure 6: Zoomed pairwise correlation matrices from
the Ising dataset.

tions between each pixel, with lighter shading corre-
sponding to stronger correlation. The Ising model en-
forces strong correlation between neighbouring pixels,
and this is reflected in the banded nature of the corre-
lation matrix. Visually, we can see that the RC model
does a better job of capturing long range correlations
corresponding to the more faded bands away from the
main diagonal.

Higher-order statistics. As a final comparison, we
analyze the ability of both models to capture higher-
order statistics in the data. Specifically, we test the
ability of the RC model to capture higher-order count
statistics over subsets that it does not directly encode.
To do this, we first build a nested tree over the vari-
ables using hierarchical clustering. Using this tree, we
look at the count distributions of subsets and compare
the empirical and model distributions. In Fig. 7, we
show the root mean squared error between the empiri-
cal and model distributions as a function of the number
of variables in a subset for the Ising dataset. We com-
pare both models on nested trees constructed from two
heuristics: the first is the same scheme we use to pa-
rameterize the RC model, which we call adaptive clus-
tering. For the second, we attempt to create a “worst
case” clustering by taking the distance values used for
the adaptive method and negating them before clus-
tering; we call this scheme anti-clustering. We also
tried random clusterings, however the results were not
qualitatively different from the anti-clustering scheme.
Our results show that the RC model does a better
job than the pairwise tree model at capturing higher-
order count statistics, even if it does not encode them
directly. Particularly interesting is that for the adap-
tive tree, the pairwise model does significantly worse
than the RC model. This is due to the confluence of
two effects: first, the hierarchical clustering that de-
termines the RC structure seeks to choose subsets of
variables that are highly correlated to merge into a
subset; second, the spanning tree is unable to model
this “all-or-none” effect, and instead tends towards a
binomial-like distribution with mode near the 50% full
point. This leads to large errors.

(a) Adaptive clustering (b) Anti-clustering

Figure 7: Error in higher-order count statistics be-
tween the empirical and model distributions as a func-
tion of the number of variables in a subset.

7 Discussion

We have presented a new class of high order model
where exact inference can be done very efficiently. This
model can be used on its own, and it is already able to
capture a mix of high and low order statistics that
would be difficult for other tractable models. The
model can also be used as a subcomponent within
outer approximate inference procedures, allowing ef-
ficient approximate marginal inference for hard prob-
lems that few other approaches are able to tackle.

The general approach—of adding a set of auxiliary
variables with highly structured interactions so as to
guarantee efficient message passing inference—leads to
efficient exact inference in other extended models such
as tree structured models augmented with a cardinal-
ity potential, and we believe the approach to extend
even beyond that.

Finally, we have presented a diverse set of applications
and shown how many problems that are not naturally
thought of in terms of cardinality potentials can be
cast as such. We believe that the highly efficient algo-
rithms discussed here will only increase the number of
applications where cardinality potentials are useful.
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Abstract

Recently, Petrik et al. demonstrated that L1-
Regularized Approximate Linear Programming
(RALP) could produce value functions and poli-
cies which compared favorably to established
linear value function approximation techniques
like LSPI. RALP’s success primarily stems from
the ability to solve the feature selection and
value function approximation steps simultane-
ously. RALP’s performance guarantees become
looser if sampled next states are used. For
very noisy domains, RALP requires an accurate
model rather than samples, which can be unre-
alistic in some practical scenarios. In this pa-
per, we demonstrate this weakness, and then in-
troduce Locally Smoothed L1-Regularized Ap-
proximate Linear Programming (LS-RALP). We
demonstrate that LS-RALP mitigates inaccu-
racies stemming from noise even without an
accurate model. We show that, given some
smoothness assumptions, as the number of sam-
ples increases, error from noise approaches
zero, and provide experimental examples of
LS-RALP’s success on common reinforcement
learning benchmark problems.

1 Introduction

Markov Decision Processes (MDPs) are applicable to a
large number of real-world Artificial Intelligence prob-
lems. Unfortunately, solving large MDPs is computation-
ally challenging, and it is generally accepted that such
MDPs can only be solved approximately. This approxima-
tion is often done by relying on linear value function ap-
proximation, in which the value function is chosen from a
low-dimensional vector space of features. Generally speak-
ing, agent interactions with the environment are sampled,
the vector space is defined through feature selection, a
value function is selected from this space by weighting fea-

tures, and finally a policy is extracted from the value func-
tion. Each of these steps contains difficult problems and is
an area of active research. The long-term hope for the com-
munity is to handle each of these topics on increasingly
difficult domains with decreasing requirements for expert
guidance (providing a model, features, etc.) in application.
This will open the door to wider application of reinforce-
ment learning techniques.

Previously, Petrik et al. [12] introduced L1-Regularized
Approximate Linear Programming (RALP) to combine and
automate the feature selection and feature weighting steps
of this process. Because RALP addresses these steps in tan-
dem, it is able to take advantage of extremely rich feature
spaces without overfitting. However, RALP’s hard con-
straints leave it especially vulnerable to errors when noisy,
sampled next states are used. This is because each sam-
pled next state generates a lower bound on the value of the
originating state. Without a model, the LP will not use the
expectation of these next state values but will instead use
the max of the union of the discounted values of sampled
next states. Thus, a single low probability transition can de-
termine the value assigned to a state when samples are used
in lieu of a model. This inability to handle noisy samples
is a key limitation of LP based approaches.

In this paper, we present Locally Smoothed L1-Regularized
Approximate Linear Programming (LS-RALP), in which a
smoothing function is applied to the constraints of RALP.
We show this smoothing function reduces the effects of
noise, without the requirement of a model. The result is
a technique which accepts samples and a large candidate
feature set, and then automatically chooses features and ap-
proximates the value function, requiring neither a model,
nor human-guided feature engineering.

Standard ALP approaches produce value functions and re-
quire a model at policy execution time to determine the op-
timal action with respect the value function returned by the
LP. We extend LS-RALP to produce Q-functions, rather
than value functions, thereby removing the dependence on
a model from both value function learning and policy exe-
cution.
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After introducing notation, this paper first examines RALP
in Section 3 to demonstrate the effect of noise on solution
quality. Section 4 then introduces LS-RALP, and explains
the approach. In Section 5, we prove that as samples are
added, the error from noise in LS-RALP’s value function
approximation approaches zero. Finally, in Section 6, we
empirically demonstrate LS-RALP’s success in high-noise
environments, even with a small number of samples. Fi-
nally, in Section 7, we make our concluding remarks.

2 Framework and Notation

In this section, we formally define Markov decision pro-
cesses and linear value function approximation. A Markov
decision process (MDP) is a tuple (S ,A, p, R, γ), where S
is a measurable subset of Euclidean space, andA is a finite
set of actions. p is a transition kernel, where p(s′|s, a) rep-
resents the conditional density for next states. The function
R : S 7→ < is a measurable reward function, and γ is a
discount factor.

We are concerned with finding a value function V that maps
each state s ∈ S to the expected total γ-discounted reward
for the process. Value functions can be useful in creating
or analyzing a measurable policy function π : S × A →
[0, 1] such that for all s ∈ S , ∑a∈A π(s, a) = 1. The tran-
sition and reward functions for a given policy are denoted
by Pπ and Rπ . We denote the Bellman operator for a given
policy as T̄π , and the max Bellman operator simply as T̄.
That is, for some state s ∈ S :

T̄πV(s) = R(s) + γ
∫

S
P(s′|s, π(s))V(s′)ds′

T̄V(s) = max
π∈Π

T̄πV(s).

We additionally denote the Bellman operator for a policy
which always selects action a as

T̄aV(s) = R(s) +
∫

S
P(s′|s, a)V(s′)ds′.

If S is finite, the above Bellman operators can be expressed
for all states using matrix notation, in which V and R are
vectors of values and rewards for each state, respectively,
and P is a matrix containing probabilities of transitioning
between each pair of states:

T̄πV = Rπ + γPπV

T̄V = max
π∈Π

T̄πV

T̄aV = R + γPaV

The optimal value function V∗ satisfies T̄V∗ = V∗.

Because T̄ computes an exact expectation over next states,
we refer to T̄ as the Bellman operator with expectation.

This requires sampling with expectation, defined as Σ̄ ⊆
{(s, a, E [R(s)]), p(·|s, a)|s ∈ S , a ∈ A}. This kind of
sampling assumes that the complete density over next states
is provided with every sample, a rather unrealistic assump-
tion. It is therefore usually convenient to use one-step sim-
ple samples Σ ⊆ {(s, a, r, s′)|s, s′ ∈ S , a ∈ A}, where s′

is a single draw from p(s′|s, a). An individual (s, a, r, s′)
sample from sets Σ̄ and Σ will be denoted σ̄ and σ, re-
spectively. An individual element of a sample σ will be
denoted with superscripts; that is, the s component of a
σ = (s, a, r, s′) sample will be denoted σs. Simple samples
have an associated sampled Bellman operator Tσ, where
TσV(σs) = σr + γV(σs′).

We will also define the optimal Q-function Q∗(s, a) as the
value of taking action a at state s, and following the optimal
policy thereafter. More precisely, Q∗(s, a) = R(s, a) +
γ
∫
S P(s′|s, a)V∗(s′)ds′.

We focus on linear value function approximation for dis-
counted infinite-horizon problems, in which the value func-
tion is represented as a linear combination of nonlinear ba-
sis functions (vectors) which are assumed to be measurable
on S. For each state s, we define a vector Φ(s) of features.
The rows of the basis matrix Φ correspond to Φ(s), and
the approximation space is generated by the columns of the
matrix. That is, the basis matrix Φ, and the value function
V are represented as:

Φ =

(− Φ(s1) −
...

)
V = Φw.

This form of linear representation allows for the calculation
of an approximate value function in a lower-dimensional
space, which provides significant computational benefits
over using a larger or complete basis; if the number of fea-
tures is small, this framework can also guard against over-
fitting any noise in the samples though small features sets
alone cannot protect ALP methods from making errors due
to noise.

3 L1-Regularized Approximate Linear
Programming

This section includes our discussion of L1-Regularized Ap-
proximate Linear Programming. Subsection 3.1 will re-
view the salient points of the method, while Subsection 3.2
will discuss the weaknesses of the method and our motiva-
tion for improvement.

3.1 RALP Background

RALP was introduced by Petrik et al. [12] to improve the
robustness and approximation quality of Approximate Lin-
ear Programming (ALP) [13, 1]. For a given set of samples
with expectation Σ̄, feature set Φ, and regularization pa-
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rameter ψ, RALP calculates a weighting vector w by solv-
ing the following linear program:

min
w

ρTΦw
s.t. T̄σa Φ(σs)w ≤ Φ(σs)w ∀σ ∈ Σ

‖w‖1,e ≤ ψ,
(1)

where ρ is a distribution over initial states, and ‖w‖1,e =
∑i |e(i)w(i)|. It is generally assumed that ρ is a constant
vector and e = 1−1, which is a vector of all ones but for
the position corresponding to the constant feature, where
e(i) = 0.

Adding L1 regularization to the constraints of the ALP
achieved several desirable effects. Regularization ensured
bounded weights in general and smoothed the value func-
tion. This prevented missing constraints due to unsam-
pled states from leading to unbounded or unreasonably low
value functions. By using L1 regularization in particular,
the well-known sparsity effect could be used to achieve au-
tomated feature selection from an extremely rich Φ. Fi-
nally, the sparsity in the solution could lead to fast solution
times for the LP even when the number of features is large
because the number of active constraints in the LP would
still be small.

As a demonstration of the sparsity effect, RALP was run on
the upright pendulum domain (explained in detail in Sec-
tion 6) using a set of features for each action consisting of
three Gaussian kernels centered around each sampled state,
one polynomial kernel based around each sampled state,
and a series of monomials calculated on the sampled states.
On one randomly-selected run of 50 sample trajectories (a
trajectory consists of states reached as a result of randomly
selected actions until the pendulum falls over), to represent
the Q-values of the first action RALP selected zero of the
narrowest Gaussian kernels, nine of the intermediate-width
Gaussian kernels, five of the widest Gaussian kernels, five
of the polynomial kernels, and zero of the monomials. For
the second action, the Q value was represented with zero
narrow, seven intermediate, and four wide Gaussian ker-
nels, six polynomial kernels, and one monomial. For the
final action, these numbers were one, four, four, seven,
and zero. Selecting this same mixture of features by hand
would be extremely unlikely.

Petrik et al. [12] demonstrated a guarantee that the error on
the RALP approximation will be small, as will be further
discussed in the next subsection. Additionally, in exper-
iments, policies based on RALP approximations outper-
formed policies generated by Least-Squares Policy Itera-
tion [9], even with very small amounts of data.

RALP is not the only approach to leverage L1 regular-
ization in value function approximation; others include
LARS-TD [7], and LC-MPI [6], which both attempt to cal-
culate the fixed point of the L1-penalized LSTD problem.
Unlike RALP, this solution is not guaranteed to exist when

samples are drawn off-policy. These methods have the ad-
vantage of handling noise more gracefully than LP based
approaches, but require on-policy sampling for reliable per-
formance. On-policy sampling is often a challenging re-
quirement for real-life applications.

3.2 RALP Weaknesses

The RALP constraints in LP 1 are clearly difficult to ac-
quire – samples with expectation require a model that pro-
vides a distribution over next states, or access to a simula-
tor that can be easily reset to the same states many times to
compute an empirical next state distribution for each con-
straint.

Petrik et al. [12] previously presented approximation
bounds for three constructions of RALP, depending upon
the sampling regime. In the Full ALP, it is assumed ev-
ery possible state-action pair is sampled with expectation.
The Sampled ALP contains constraints for only a subset
of state-action pairs sampled with expectation. The third
form, the Estimated ALP, also has constraints defined on
sampled state-action pairs, but of the form

Φ(σs)w ≥ TσΦ(σs)w ∀σ ∈ Σ.

Note that the Estimated ALP uses one-step simple samples
and the sampled Bellman operator.

These three forms are presented in order of decreasing ac-
curacy, but increasing applicability. The Full ALP requires
a manageably small and discrete state space, as well as a
completely accurate model of the reward and transition dy-
namics of the system. The Sampled ALP still requires the
model, but allows for constraint sampling; this introduces
constraint violation error (denoted εp), as the approxima-
tion may violate unsampled constraints. Finally, the Esti-
mated ALP requires neither the model nor experience at
every state; because replacing an accurate model with a
sample is likely to be imprecise in a noisy domain, this
introduces model error (denoted εs). However, this is the
most realistic sampling scenario for learning problems that
involve physical systems.

For reference, and to understand the effect of model error,
we reproduce the RALP error bounds for the Sampled and
Estimated ALP here. We denote the solution of the Sam-
pled ALP V̄, and the solution of the Estimated ALP V. εc
is error from states that do not appear in the objective func-
tion because they were not samples. Since ρ is often chosen
fairly arbitrarily, we can assume the unsampled states have
0 weight and that εc = 0.

‖V̄ −V∗‖1,ρ ≤ε + 2εc(ψ) + 2
εp(ψ)

1− γ
(2)

‖V −V∗‖1,ρ ≤ε + 2εc(ψ) +
3εs(ψ) + 2εp(ψ)

1− γ
(3)
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To understand the source of model error εs, consider a case
where a state-action pair is sampled twice. Further sup-
pose that in one of these samples, the agent transitions to
a high-value state; in the other, it transitions to a lower-
valued state. The resulting value function is constrained by
the high-valued sample, while the constraint related to the
low-valued experience remains loose; that sample might as
well have not occurred. The approximate value at that state
will be inaccurately high. This scenario is depicted in Fig-
ure 1.

s
(a)

V ∗

(b)

Figure 1: Subfigure 1(a) illustrates two samples beginning
at state s; one transitions to the low-valued circle state,
while the other transitions to the high-valued star state.
Subfigure 1(b) illustrates the resulting constraints and value
function approximation. V∗ is the actual value of this state,
but the red line representing the approximate function is
constrained by the max of the two constraints. Under re-
alistic sampling constraints, it is more likely this scenario
would occur with two samples drawn from very nearly the
same state, rather than both originating from the same sam-
ple s.

The inability of LP approaches to value function approxi-
mation to handle noisy samples is well known. One pro-
posed solution is Smoothed Approximate Linear Program-
ming (SALP), in which the LP is given a budget with which
to violate constraints [2]. Note, however, that there is noth-
ing connecting the constraint violation budget to the prob-
lem dynamics unless additional information is provided.
In Figure 1, for example, SALP could fortuitously choose
the right amount of constraint violation to mix between the
next state values for state s in the proportions dictated by
the model. However it is also possible for SALP to yield
exactly the same value for this state as ordinary ALP, hav-
ing spent its constraint violation budget on some other state
which might not even be noisy.

4 Locally Smoothed L1-Regularized
Approximate Linear Programming

To address the weaknesses introduced in Subsection 3.2,
we introduce Locally Smoothed L1-Regularized Approx-

imate Linear Programming (LS-RALP). The concept be-
hind LS-RALP is simple; by averaging between nearby,
similar samples, we can smooth out the effects of noise
and produce a more accurate approximation. We define
“nearby” to mean two things: one, the states should be
close to each other in the state space, and two, the actions
taken should be identical. The goal is to achieve the per-
formance of the Sampled ALP with the more realistic sam-
pling assumptions of the Estimated ALP.

We now introduce the smoothing function kb(σ, σi). A
smoothing function spreads the contribution of each sam-
pled data point σi over the local neighborhood of data point
σ; the size of the neighborhood is defined by the bandwidth
parameter b. If σa

i 6= σa, the function returns zero. We
also stipulate that ∑σi∈Σ kb(σ, σi) = 1 for all σ, and that
kb(σ, σi) ≥ 0 for all σ, σi. Smoothing functions of this
sort are commonly used to perform nonparametric regres-
sion; as sampled data are added, the bandwidth parameter
is tuned to shrink the neighborhood, to allow for a balance
between the variance from having too few samples in the
neighborhood and the bias from including increasingly ir-
relevant samples which are farther away.

Observation 4.1 Consider the regression problem of esti-
mating the function f of the response variable y = f (x) +
N(x), given n observations (xi, yi)(i = 1, · · · , n), where
N(x) is a noise function. Assume the samples xi are drawn
from a uniform distribution over a compact set G, that f (x)
is continuously differentiable, and that N(x) satisfies cer-
tain regularity conditions. There exists a smoothing func-
tion kb(x, xi) and associated bandwidth function b(n) such
that ∀x ∈ G, as n → ∞, ∑i kb(n)(x, xi)yi → f (x) , al-
most surely.

Smoothing functions that suffice to provide the consistency
guarantees in the above observation include kernel estima-
tors [3] and k-nearest-neighbor averagers [4]. Similar re-
sults exist for cases without uniform sampling [5, 3].

The regularity conditions on the noise function depend
upon the type of estimator and allow for a variety of noise
models [3, 4]. In some of these cases, other assumptions in
Observation 4.1 can be weakened or discounted altogether.

Literature on nonparametric regression also contains exten-
sive theory on optimal shrinkage rates for the bandwidth
parameter; in practice, however, for a given number of sam-
ples, this is commonly done by cross-validation.

We now modify our LP to include our smoothing function:

min
w

ρTΦw
s.t. ∑σi∈Σ kb(σ, σi)Tσa Φ(σs

i )w ≤ Φ(σs
i )w ∀σ ∈ Σ

‖w‖1,e ≤ ψ.
(4)

In this formulation, we are using our smoothing function
to estimate the constraint with expectation T̄Φ(σs)w by
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smoothing across our easily obtained TσΦ(σs)w.

Note that unsmoothed RALP is a special case of LS-RALP,
where the bandwidth of the smoothing function is shrunk
until the function is a delta function. Therefore, LS-RALP,
with correct bandwidth choice, can always do at least as
well as RALP.

We note that smoothing functions have been applied to re-
inforcement learning before, in particular by Ormoneit and
Sen [11], whose work was later extended to policy iteration
by Ma and Powell [10]. In this formulation, a kernel esti-
mator was used to approximate the value function; this dif-
fers significantly from our approach of using a smoother to
calculate weights more accurately for a parametric approx-
imation. Additionally, because their approximation simply
averages across states and does not use features, it will tend
to have a poor approximation for novel states unless the
space is very densely sampled. More recently, and indepen-
dently from our work, Kroemer and Peters [8] proposed an
approach to policy evaluation that first used kernel density
estimation to approximate the dynamics and then solved
for the value function of resulting approximate system us-
ing dynamic programming.

5 Convergence Proof

The goal of this section is to demonstrate that the applica-
tion of a smoothing function to the constraints of the Esti-
mated ALP will mitigate the effects of noise. In particular,
we show that as the number of samples approaches infinity,
the LS-RALP solution using one-step samples approaches
the RALP solution using samples with expectation.

We begin by providing an explicit definition of εs that is
consistent with the usage in Petrik et al. [12]. For a set of
samples Σ,

εs = max
σ∈Σ
|T̄Φ(σs)w− TσΦ(σs)w| . (5)

We now introduce and prove our theorem. We denote the
number of samples |Σ| as n.

Theorem 5.1 If the reward function, transition function,
and features are continuously differentiable, samples are
drawn uniformly from a compact state space, and the noise
models of the reward and transition functions satisfy the
conditions of Observation 4.1 that would make kernel re-
gression converge, then there exists a bandwidth function
b(n) such that as n → ∞, the LS-RALP solution using
one-step samples approaches the Sampled RALP solution
for all states in the state space.

We begin by restating the definition of εs:

εs = max
σ∈Σ
|T̄Φ(σs)w− TσΦ(σs)w| .

We then expand upon the portion within the max operator
for some arbitrary σ:

T̄Φ(σs)w− TσΦ(σs)w

=

[
R(σs) + γ

∫

S
P(ds′|σs, σa)Φ(s′)w

]
−
[
σr + γΦ(σs′ )w

]

We now introduce the smoothing function so as to match
the constraints of LS-RALP; that is, we replace TσΦ(σs)w
with ∑σi∈Σ kb(σ, σi)TσΦ(σs

i )w.

εs remains the maximum difference between the ideal con-
straint T̄Φ(σs)w and our existing constraints, which are
now ∑σi∈Σ kb(σ, σi)TσΦ(σs

i )w.

T̄Φ(σs)w− ∑
σi∈Σ

kb(σ, σi)TσΦ(σs
i )w

=

[
R(σs) + γ

∫

S
P(ds′|σs, σa)Φ(s′)w

]

− ∑
σi∈Σ

kb(σ, σi)
[
σr

i + γΦ(σs′
i )w

]

=R(σs)− ∑
σi∈Σ

kb(σ, σi)σr
i

+ γ
∫

S
P(ds′|σs, σa)Φ(s′)w− γ ∑

σi∈Σ
kb(σ, σi)Φ(σs′

i )w

The smoothing function is performing regression on all ob-
served data, rather than just the single, possibly-noisy sam-
ple. The first two terms of the above equation are the dif-
ference between the expected reward and the predicted re-
ward, while the second two are the difference between the
expected next value and the predicted next value. The more
accurate our regression on these two terms, the smaller εs
will be.

It follows from Observation 4.1 that as n increases, if
R(s), P(s′|s, a), and Φ(s) are all continuously differen-
tiable with respect to the state space, and if samples are
drawn uniformly from a compact set, and the noise model
of the reward and transition functions is one of several al-
lowed noise models, there exists a bandwidth shrinkage
function b(n) such that ∑σi∈Σ kb(σ, σi)TσΦ(σs

i )w will ap-
proach T̄Φ(σs)w almost surely, and εs will approach 0 al-
most surely.

When εs = 0, the smoothed constraints from one-step sam-
ples of LS-RALP are equivalent to the constraints with ex-
pectation of the Sampled RALP.

The assumptions on R(s), P(s′|s, a), and Φ(s) required for
our proof may not always be realistic, and are stronger than
the bounded change assumptions made by RALP. However,
we will demonstrate in the next section that meeting these
assumptions is not necessary for the method to be effective.

This theorem shows that sample noise, the weak point of all
ALP algorithms, can be addressed by smoothing in a prin-
cipled manner. Even though these results address primarily
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the limiting case of n → ∞, our experiments demonstrate
that in practice we can obtain vastly improved value func-
tions even with very few samples.

6 Experiments

In this section, we apply LS-RALP to noisy versions of
common reinforcement learning benchmark problems to
demonstrate the advantage of smoothing. We will use two
domains, the inverted pendulum [15] and the mountain-
car [14]. While we have proved that LS-RALP will im-
prove upon the value function approximation of RALP
as the number of samples grows large, our experiments
demonstrate that there is significant improvement even with
a relatively small number of samples.

In the mountain-car domain, we approximate the value
function, and then apply the resulting greedy policy. We
generate the policy via the use of a model; at each state, we
evaluate each candidate action, and calculate the approxi-
mate value at the resulting state. The action which resulted
in the highest value is then chosen in the trajectory.

In the pendulum problem, we extend the method to the ap-
proximation of Q-functions, and again apply the resulting
greedy policy. When using Q-functions, the model is un-
necessary; the action with the highest Q-value is chosen.

6.1 Mountain Car

In the mountain car problem, an underpowered car must
climb a hill by gaining momentum. The state space is
two-dimensional (position and velocity), the action space
is three-dimensional (push, pull, or coast), and the discount
factor is 0.99. Traditionally, a reward of −1 is given for
any state that is not in the goal region, and a reward of 0
is given for any state that is. For this problem we applied
Gaussian noise with standard deviation .5 to the reward to
demonstrate the ability of LS-RALP to handle noisy re-
wards. This is a very large amount of noise that greatly
increases the difficulty of the problem.

Features are the distributed radial basis functions suggested
by Kolter and Ng [7]; however, because LSPI with LARS-
TD requires a distinct set of basis functions for each ac-
tion, while RALP methods do not, our dictionary is one-
third of the size. For sake of a baseline comparison, we
note that in the deterministic version of this problem, we
repeated experiments by Kolter and Ng [7] and Johns et
al. [6] on LARS-TD and LC-MPI, respectively and RALP
outperformed both.

Sample trajectories started at a random state, and were al-
lowed to run with a random policy for 20 steps, or until the
goal state was reached. After the value function was calcu-
lated, it was tested by placing the car in a random state; the
policy then had 500 steps for the car to reach the goal state.

Unlike the paper which introduced RALP [12], only one
action at each state was sampled.

Figure 2 shows the success rate over 50 trials for both
RALP and LS-RALP. The regularization parameter for the
RALP methods was 1.4, and the smoothing function for
LS-RALP was a multivariate Gaussian kernel with a stan-
dard deviation spanning roughly 1/85 of the state space
in both dimensions. These parameters were chosen using
cross validation.
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Figure 2: Percentage of successful trials vs. number of
sample trajectories for the mountain-car domain with value
functions approximated by RALP (blue, dotted) and LS-
RALP (green, solid).

6.2 Inverted Pendulum

The focus of this paper is value function approximation,
but our theory extends trivially to Q-function approxima-
tion. We demonstrate this by using RALP and LS-RALP
to approximate Q-functions; this completely removes the
need for a model in policy generation.

In the inverted pendulum problem the agent tries to bal-
ance a stick vertically on a platform by applying force to
the platform. The state space is the angle and angular ve-
locity of the stick, and the action space contains three ac-
tions: a push on the table of 50N, a pull on the table of
50N, and no action. The discount factor is 0.9. The goal is
to keep the pendulum upright for 3000 steps. The noise in
the pendulum problem is applied as Gaussian noise of stan-
dard deviation 10 on the force applied to the table. This is
significantly greater than the noise traditionally applied in
this problem, resulting in much worse performance even by
the best controller we could produce.

We compare RALP and LS-RALP, using the same set of
features; Gaussian kernels of three different widths, a poly-
nomial kernel of degree 3, s[1], s[2], s[1] ∗ s[2], s[1]2, s[2]2,
and a constant feature, where s[1] is the angle, and s[2] is
the angular velocity. For a number of samples n, this was
therefore a total of 4n + 6 features for each action. We also
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compare against LSPI, using the radial basis functions used
by Lagoudakis and Parr [9], and LARS-TD wrapped with
policy iteration, using the same features used by RALP and
LS-RALP.

Sampling was done by running 50 trajectories under a ran-
dom policy, until the pendulum fell over (around six steps).
For the LP methods, the regularization parameter was set to
4000, and for LS-RALP, the smoothing function was a mul-
tivariate Gaussian kernel. These parameters were chosen
by cross validation. 50 trials were run for each method, and
the number of steps until failure averaged; if a trial reached
3000 steps, it was terminated at that point. As with the
mountain car experiments, only one action for each sam-
pled state was included. Results are presented in Figure
3.

Notice that while LSPI was competitive with the Q-
functions approximated with RALP, the addition of the
smoother resulted in superior performance even with very
little data.
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Figure 3: Average number of steps until failure vs. num-
ber of sample trajectories for the pendulum domain with
Q-functions approximated with LARS-TD with policy it-
eration (violet, hashed), LSPI (red, hashed), RALP (blue
[dark gray], dotted), and LS-RALP (green, solid).

7 Conclusion

In this paper, we have demonstrated the difficulties RALP
can have in using noisy, sampled next states, and we have
shown that the introduction of a smoothing function can
mitigate these effects. Furthermore, we proved that as the
amount of data is increased, error from inaccurate samples
approaches zero. However, our experiments show drastic
improvement with only a small number of samples.

In fairness, we also point out some limitations of our ap-
proach: LS-RALP makes stronger smoothness assump-
tions about the model and features than does RALP (con-
tinuous differentiability vs. the Lipschitz continuity nec-
essary for the RALP bounds). LS-RALP also requires an

additional parameter that must be tuned - the kernel band-
width. We note, however, that the RALP work provides
some guidance on choosing the regularization parameter
and that there is a rich body of work in non-parametric re-
gression that may give practical guidance on the selection
of the bandwidth parameter.

The nonparametric regression literature notes that the band-
width of a smoother can be adjusted not just for the to-
tal number of data points, but also for the density of data
available in the particular neighborhood of interest [5]. The
addition of this type of adaptiveness would greatly increase
accuracy in areas of unusual density.

There are further opportunities to make better use of
smoothing. First, we note that while smoothing the entire
constraint has proven to be extremely useful, it is inevitable
that applying two separate smoothing parameters to the re-
ward and transition components would be even more help-
ful. For example, in the mountain-car experiments of Sub-
section 6.1, only the reward was noisy; applying smoothing
to the reward, and not to the transition dynamics, would im-
prove the approximation. The introduction of an automated
technique of setting bandwidth parameters on two separate
smoothing functions would likely result in more accurate
approximations with less data.

Additionally, while the experiments done for this paper
were extremely quick, this was due to the small number
of samples needed. For larger, more complex domains, the
LP can get large and may take a long time to solve; while
LP solvers are generally thought of as efficient, identifica-
tion of constraints doomed to be loose or features which
will not be selected could cause a drastic improvement in
the speed of this method.
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Abstract

Multi-modal data collections, such as corpora
of paired images and text snippets, require
analysis methods beyond single-view compo-
nent and topic models. For continuous ob-
servations the current dominant approach is
based on extensions of canonical correlation
analysis, factorizing the variation into com-
ponents shared by the different modalities
and those private to each of them. For count
data, multiple variants of topic models at-
tempting to tie the modalities together have
been presented. All of these, however, lack
the ability to learn components private to
one modality, and consequently will try to
force dependencies even between minimally
correlating modalities. In this work we com-
bine the two approaches by presenting a novel
HDP-based topic model that automatically
learns both shared and private topics. The
model is shown to be especially useful for
querying the contents of one domain given
samples of the other.

1 INTRODUCTION

Analysis of objects represented by multiple modalities
has been an active research direction over the past few
years. If the analysis of a single modality is character-
ized as learning some sort of components that describe
the data, the task in analysis of multiple modalities
can be summarized as learning components that de-
scribe both the variation within each modality but also
the variation shared between them (Klami and Kaski,
2008; Jia et al., 2010). The fundamental problem is in
learning how to correctly factorize the variation into
the shared and private components, so that the com-
ponents can be intuitively interpreted. For continuous
vector-valued samples the problem can be solved effi-

ciently by a structural sparsity assumption (Jia et al.,
2010; Virtanen et al., 2011), resulting in an extension
of canonical correlation analysis (CCA) that models
not only the correlations but also components private
to each modality.

One prototypical example of multi-modal analysis is
that of modeling collections of images and associated
text snippets, such as captions or contents of a web
page. When both text and image content can natu-
rally be represented with bag of words -type vectors,
the assumptions made by the above methods fail. In-
stead, such count data calls for topic models such as
latent Dirichlet allocation (LDA): several extensions
of LDA have been presented for multi-modal setups,
including Blei and Jordan (2003); Mimno and McCal-
lum (2008); Salomatin et al. (2009); Yakhnenko and
Hovavar (2009); Rasiwasia et al. (2010) and Puttivid-
hya et al. (2011). However, none of these extensions
are able to find shared and private topics in the same
sense as the CCA-based models do for continuous data.
Instead, the models attempt to enforce strong corre-
lation between the modalities, which is a reasonable
assumption when analyzing e.g. multi-lingual textual
corpora with similar languages but that does not hold
for analysis of images associated with free-flowing text.
In most cases, the images will contain a considerable
amount of information not related to the text snippet,
and it is not even guaranteed that the text is related
at all to the visual content of the image.

In this work, we introduce a novel topic model that
combines the two above lines of work. It builds on the
correlated topic models (CTM) by Blei and Lafferty
(2007) and Paisley et al. (2011), by modeling correla-
tions between topic allocations and by using a hierar-
chical Dirichlet process (HDP) formulation for auto-
matically learning the number of the topics. The pro-
posed factorized multi-modal topic model integrates
the technical improvements of these single-modality
topic models to the multi-modal application, and in
particular automatically learns to make some topics
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specific to each of the modalities, implementing the
factorization idea of Klami and Kaski (2008) and Jia
et al. (2010) used for continuous data. The compo-
nent selection plays a crucial role in implementing this
property, implying that the HDP-based technique for
automatically selecting the complexity is even more
important for factorized multi-modal models than it
would be a for a regular topic model.

The primary advantage of the new model is that is
does not enforce correlations between the modalities,
like the earlier multi-modal topic models do, but in-
stead factorizes the variation into interpretable topics
describing shared and private structure. The model
is very flexible and does not enforce any particular
factorization structure, but instead learns it from the
data. For example, the model can completely ignore
the shared topics in case the modalities are indepen-
dent or find almost solely shared topics when they are
strongly correlated. In this work we demonstrate the
model in analyzing modalities that have only weak re-
lationships, a scenario for which the previous models
would not work. In particular, we analyze a collec-
tion of Wikipedia pages that consist of images and the
whole text on the page. Such a collection has rela-
tively low between-modality correlation and in partic-
ular includes considerable amount of text that is not
related to the image at all, necessitating topics private
to the text modality. The proposed model is shown to
clearly outperform alternative HDP-based topic mod-
els as well as correspondence LDA (Blei and Jordan,
2003) in the task of inferring the contents of a missing
modality.

2 BACKGROUND: TOPIC MODELS

To briefly summarize the topic models and to intro-
duce the notation used in the paper, we describe the
standard topic model of Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) through its generative pro-
cess. We assume that words occurring in a document
are drawn from K topics. Each topic specifies a multi-
nomial probability distribution over the vocabulary,
parameterized through ηk drawn from the Dirichlet
distribution Dir(γ1), and the topic proportions are
multinomial with parameters θ ∼ Dir(ν1). The doc-
uments are generated by repeatedly sampling a topic
indicator z ∼ Multi(θ) and then drawing a word from
the corresponding topic as x ∼ Multi(ηz).

We will also heavily depend on the concept of corre-
lated topic models (CTM) (Blei and Lafferty, 2007). In
the standard LDA the topic proportions θ drawn from
the Dirichlet distribution become independent except
for weak negative correlation stemming from the nor-
malization constraint. CTM replaces this choice by

logistic normal distribution, first drawing an auxiliary
variable from a Gaussian distribution ξ ∼ N(µ,Σ) and
specifying the topic distribution as θ ∝ exp(ξ). The
topics become correlated when Σ is not diagonal, and
empirical experiments show increased predictive accu-
racy.

Finally, our model will be formulated through a hi-
erarchical Dirichlet process (HDP) formulation (Teh
et al., 2006), to enable automatic choice of the num-
ber of topics. As mentioned in the introduction, the
choice is even more critical for multi-modal models,
since we will have several sets of topics instead of
just a single one; specifying the complexity for all of
those in advance would not be feasible. Our model
will use elements from the recently introduced Dis-
crete Infinite Logistic Normal (DILN) model by Pais-
ley et al. (2011), which incorporates HDP into CTM.
The key idea of DILN is that the topic distribu-
tions θ are made sparse by multiplying the exp(ξ)
by sparse topic-selection terms. The topic distribu-
tion is given by θk ∝ Gamma(βpk, exp(−ξk)), where
both β and pk come from a stick-breaking process:
β is the second level consentration parameter, and
pk = Vk

∏k−1
i=1 (1 − Vi), where Vk ∼ Beta(1, α) with

α as the first level concentration parameter. The ex-
pected value of θk is proportional to βpk exp(ξk), illus-
trating the way the different parameters influence the
topic weights. For any finite data collection, pk > 0
only for a finite subset of topics and hence the model
automatically selects the number of topics.

3 FACTORIZED MULTI-MODAL
TOPIC MODEL

Consider a collection of documents each containing M
weakly correlated modalities, where each modality has
its own vocabulary. In the application of this paper
the two vocabularies are textual and visual words col-
lected from Wikipedia pages with text and a single
image (though the model would directly generalize to
multiple images). We introduce a novel multi-modal
topic model that can be used to learn dependencies
between these modalities, enabling e.g. predicting the
textual content associated with a novel image. The
problem is made particularly challenging by the weak
relationship between the modalities; several of the doc-
uments will contain large amounts of text not related
to the image content.

For modeling the data, we will use M separate vo-
cabularies, so that words (or visual words) for each
modality are drawn from separate dictionaries η(m)

specific to each view m. The topic proportions θ(m)

will also be specific to each modality, whereas the ac-
tual words are sampled independently for each modal-
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ity given the topic proportions. The essential model-
ing question is then how the topic proportions are tied
with each other, in order to achieve the factorization
into shared and private topics. In brief, we will do
this by (i) modeling dependencies between topics both
within and across modalities and (ii) automatically se-
lecting the number of topics for each type (shared or
private to any of the modalities).

The topic proportions θ(m) are made dependent by
introducing auxiliary variables ξ(m), denoting by ξ =
(ξ(1), ..., ξ(M)) the concatenation of them, and using
the CTM prior ξ ∼ N(µ,Σ). This part of the model
corresponds to the ’multi-field CTM with different
topic sets’ by Salomatin et al. (2009), and the differ-
ent blocks in Σ describe different types of dependen-
cies between the topic proportions. In particular, the
blocks around the diagonal describe dependencies be-
tween the topic proportions of each modality, whereas
the off-diagonal blocks describe dependencies in topic
proportions between the modalities.

Having a CTM for the joint topic distribution is not
yet sufficient for separating the shared topics from pri-
vate ones, since we can only control the correlation
between the topic proportions. A large correlation
between two topics for different modalities would im-
ply that it is shared, but lack of correlation (that is,
Σkl = 0) would not make either component private.
Instead, the weights would simply be determined in-
dependently. To create separate sets of shared and pri-
vate topics we need to be able to switch some of the
topics off in one or more of the modalities, similarly to
how Jia et al. (2010) and Virtanen et al. (2011) switch
off components to make the same distinction in con-
tinuous data models. In the case of multi-field CTM
this could only be done by driving µk (the mean of the
Gaussian prior for ξk) towards minus infinity, which is
not encouraged by the model and is difficult to achieve
with mean-field updates.

We implement the shared/private choice by separate
HDPs, one for each modality, switching a subset of
topics off for each modality separately by a mech-
anism similar to how the single-view DILN model
(Paisley et al., 2011) selects the topics. We intro-
duce β(m) and p(m) for each modality m = 1, ...,M ,
and draw them from separate HDPs, resulting in
θ(m) ∝ Gamma(β(m)p(m), exp(−ξ(m))) as the final
topic proportions. The topic distributions are still
shared through ξ(m) that were drawn from a single
high-dimensional Gaussian, but for each modality the
stick weights p(m) select different subsets of topics to
be switched off. In the end, a finite number of topics
remain for each modality, and the private topics can
be identified as ones that have non-zero weight for one
modality and are not correlated with topics active in
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Figure 1: A graphical representation of the factorized
multi-modal topic model. The data has D documents
described by M modalities. For each modality, the
words x(m) are drawn from dictionary specific to that
modality, according to topic proportions θ(m) also spe-
cific to the modality. The topic proportions are gener-
ated by logistic transformation of latent variables ξ(m)

that model the correlations between the topics both
within and across modalities, followed by topic selec-
tion with a HDP (denoted by V and β in the plate;
see text for details) for each modality. As a result,
the model learns both topics modeling correlations be-
tween the modalities as well as topics private to each
modality.

other modalities.

The final generative model motivated by the above
discussion results in a collection of M correlated BOW
data sets X(m), generated as follows (see Figure 1 for
graphical representation). For the whole collection we:

• create a dictionary of T (m) topics for each modal-

ity by drawing η
(m)
k ∼ Dir(γ(m)1) for k =

1, .., T (m)

• draw the parameters α(m), β(m), V (m) of the
DILN distribution for each modality from the
stick-breaking formulation and construct p(m).

For each document d we then draw ξ ∼ N(µ,Σ)
and partition it into the different modalities as ξ =
(ξ(1), ..., ξ(M)). For each modality, we then generate
the words independently as follows:

• form the topic proportion by drawing Y
(m)
k ∼

Gamma(β(m)p
(m)
k , exp(−ξ(m)

k )) and set θ
(m)
k =

Y
(m)
k∑T (m)

i=1 Y
(m)
i

• draw N (m) words by choosing a topic z ∼
Multi(θ(m)) and drawing a word x ∼ Multi(η

(m)
z )
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3.1 INFERENCE

For learning the model parameters we use a truncated
variational approximation following closely the algo-
rithm given by Paisley et al. (2011), the main differ-
ence being that we have M separate sets of η, β and p,
one for each modality. The above generative process

is truncated by setting V
(m)

T (m) = 1, forcing the stick

lengths beyond the truncation level T (m) to be zero,
and the resulting factorized approximation is given by

Q =
M∏

m=1

D∏

d=1

Nm∏

nm=1

T∏

k=1

q(z
(m)
dnmk

)q(Y
(m)
dnmk

)q(ξ
(m)
dk )q(η

(m)
k )

q(V
(m)
k )q(αm)q(βm)q(µ)q(Σ),

where to simplify notation we assume Tm = T ∀ m.
The algorithm proceeds by updating each factor in
turn while keeping the others fixed, using either gra-
dient ascent or analytic solution for maximizing the
lower bound of the approximation for each of the terms
(see Paisley et al. (2011) for details).

The main difference in the algorithms comes from up-
dating ξ, since in our case it goes over M sets of top-
ics instead of just one, yet the activities within each
set are governed by separate HDPs. We use a diag-
onal Gaussian factor q(ξ) = N(ξ̃,diag(ṽ)), where ṽ
denotes the variances of the dimensions, and use gra-
dient ascent for jointly updating the parameters. To
simplify notation we use ξ and v to denote the expec-
tation and variance of the factorial distribution. The
relevant part of the lower bound is

Lξ,v = −
M∑

m=1

β(m)p(m)T ξ(m) (1)

−
M∑

m=1

E[θ(m)]TE[exp(−ξ(m))]

− (ξ − µ)TΣ−1(ξ − µ)/2

− diag(Σ−1)Tv/2 + log(v)T1/2.

Here Σ−1 couples the separate ξ(m) terms in the par-
tial derivatives as

∂Lξ,v
∂ξ(m)

= −β(m)p(m) + E[θ(m)]E[exp(−ξ(m))]

− (Σ−1)m,m(ξ(m) − µ(m))

−
∑

j 6=m
(Σ−1)m,j(ξ

(j) − µ(j)),

with (Σ−1)i,j denoting a block of Σ−1 correspond-
ing to modalities i and j. The inverse of Σ remains
constant during the gradient descent, and hence only
needs to be evaluated once for every time the factor
q(ξ) is updated.

We use maximum marginal likelihood to update µ and
Σ resulting in closed form updates

µ =
1

D

D∑

d=1

ξd

Σ =
D∑

d=1

(
(ξd − µ)(ξd − µ)T + diag(vd)

)
/D.

3.2 PREDICTION

The model structure is well suited for prediction tasks,
where the task is to infer missing modalities for a new
document given that one of them is observed (e.g. infer
the caption given the image content). This is because
the correlations between the topic proportions provide
a direct link between the modalities, and the private
topics explain away all the variation that is not useful
for predictions.

Here we present the details of the prediction for the
special case with just one observed modality (j) and
one missing modality (i). Given the observed data we

first infer the topic proportions θ̂
(j)

and then auxiliary

variable ξ̂
(j)

by maximizing a cost similar to (1), but
only using the newly inferred topic proportions of the
observed modality and the corresponding part of Σ.
As ξ̂ comes from a Gaussian distribution we can infer

ξ̂
(i)

given ξ̂
(j)

with the standard conditional expecta-
tion as

ξ̂
(i)

= µ(i) + Σi,jΣ
−1
j,j (ξ̂

(j) − µ(j)) (2)

= µ(i) + W(ξ̂
(j) − µ(j)).

Here W involves the corresponding part of the
between-topic covariance matrix Σ as indicated above,
and can be seen as a projection matrix transforming
the components of one modality to another. Finally,

the newly estimated ξ̂
(i)

for the missing views is con-
verted back to the expecteed topic proportion θ̂ by
exponentiation and multiplying with the correspond-
ing stick lengths p(i).

3.3 SHARED AND PRIVATE TOPICS

The key novelty of the model is its capability to learn
both topics that are shared and that are private to each
modality, without needing to specify them in advance.
Since the way these topics appear is by no means trans-
parent in the above formulation, we will here discuss
the property in more detail. In brief, the distinct na-
ture for the topics comes from an interplay of the cor-
relations between the topics of different modalities and
the HDP procedure that turns some of the topics off
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for each modality. In particular, neither of these prop-
erties alone would be sufficient.

As mentioned already in Section 3, merely having sep-
arate ξ(m) drawn from a single Gaussian is not suffi-
cient for finding private topics. At best, the correlation
structure can specify that the weights will be indepen-
dent for the modalities. Next we explain how the other
key element of the model, separate selection of active
topics for each modality, is not sufficient alone either.
We do that by considering a special case of the model
that assumes equal ξ = ξ(m) for all views but has sep-
arate stick-breaking processes switching some of the
topics off for each of the views. We call this alterna-
tive model mmDILN, due to the fact how it imple-
mentes multi-modal LDA of Blei and Jordan (2003)
with DILN-style component selection.

Intuitively, mmDILN model could find private topics

simply by setting p
(m)
k to small value for topics that are

not needed in that modality. However, it cannot make
correct predictions from one modality to another, and
hence fails in achieving one of the primary goals for

shared-private factorizations. If p
(m)
k is small then the

model has no information for inferring ξk from that
view, and hence also all other elements ξl that cor-
relate with ξk will be incorrect. If ξk was an impor-
tant topic for the other view, the predictions will be
severely biased. Our model avoids this issue by hav-
ing the separate ξ(m) parameters, leading to correct
across-modality predictions as described in the previ-
ous section. In the experimental section we will em-
pirically compare the proposed model with mmDILN,
demonstrating how mmDILN indeed has very poor
predictive accuracy despite modeling the training data
almost as well. Hence, even though the structure is
in principle sufficient for learning private topics, the
model has no practical value as a shared-private fac-
torization.

In order to recognize the nature of each of the topics,
we need to look at both the covariance Σ between the
topic weights and the modality-specific stick weights

p
(m)
k . Since the topics can be (potentially strongly)

correlated both within and across modalities, we can
identify private topics only by searching for topics that
do not correlate with any topic that would be active
in any other modality. In the experiments we demon-
strate how the topics can be ranked according to how
strongly they are shared with another modality, by in-
specting the elements of Σ.

4 RELATED WORK

In this section we relate the model to other approaches
for modeling multi-modal count data.

4.1 MULTI-MODAL TOPIC MODELS

The multi-modal extension of LDA (mmLDA) by Blei
and Jordan (2003) and its non-parametric version
mmHDP by (Yakhnenko and Hovavar, 2009) assume
all modalities to share the same topic proportions, and
essentially extend LDA only by having separate dictio-
naries for each modality and generating the words for
the domains independently. For many real world data
sets the assumption of identical topic proportions is
too strong, and the model tries to enforce correlations
even when they do not exist. While the assumption
may help in picking up topics that would be weak in
either modality alone, it makes identifying the true
correlations almost impossible.

Such models fail especially when modeling data having
strong private topics in one modality. Since the topic
proportions are shared, the topic must be present in
other modalities as well and becomes associated with a
dictionary that merely replicates the overall distribu-
tion of the words. Such topics are particularly harmful
for prediction tasks. When the dictionary of a topic
matches that of the background word distribution, it
will be present in every document in that modality.
For example, when predicting text from images we
could learn to associate politics (a strong topic private
to the text modality) with the overall visual word dis-
tribution, resulting in all of the predictions including
terms from the politics topic.

Salomatin et al. (2009) took a step towards our model
with their multi-field CTM. It extends CTM by in-
troducing separate ξ(m) for each modality, similarly
to our model. However, as described in the previous
section the separate topic proportions are not yet suf-
ficient for separating the shared topics from private
ones.

4.2 CONDITIONAL TOPIC MODELS

Lots of recent work on multi-modal topic modeling
framework has focused on building conditional mod-
els, largely for image annotation task. Correspondence
LDA (corrLDA) proposed simultaneously to mmLDA
in (Blei and Jordan, 2003) is a prominent example, as-
suming that the image is generated first and the text
depends on the image content. Both modalities are
assumed to share the same topic weights. While such
models are very useful for modeling the conditional re-
lationship, they do not treat the modalities symmet-
rically as in our model. Recently Puttividhya et al.
(2011) proposed an extension of corrLDA, replacing
the identical topic distributions with a regression mod-
ule from image topics to the textual annotation topics.
The added flexibility results in better predictive per-
formance, but the model remains a directional one,
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in contrast to our model that generates all modalities
with equal importance. For applications treating only
two modalities and having a specific task that makes
one of them more important (say, image annotation)
the conditional models often work well. However, they
do not easily generalize to multiple modalities and are
not flexible in terms of the eventual application.

Other conditional models focus on conditioning on
meta-data, such as author or link structure (Mimno
and McCallum, 2008; Hennig et al., 2012). Such mod-
els allow integrating data that are not necessarily in
count format, but the same distinction of directional
versus generative applies. However, this family of
models could be integrated with our solution, incorpo-
rating a meta-data link into our multi-modal model.
In essence, the choice of whether meta-data is modeled
or not is independent of the choice of how many count
data modalities the data has.

4.3 CANONICAL CORRELATIONS

As described earlier, the model bears close resemblance
to how CCA models correlations between continuous
data, the similarities being most apparent with the re-
cent re-interpretations of CCA as shared-private fac-
torization (Klami and Kaski, 2008; Jia et al., 2010).
The technical details of the solutions are, however,
very different as the normalization of topic propor-
tions makes the techniques used for continuous data
not feasible for topic models.

Despite the mismatch of data types, CCA can be used
for modeling count data as well. The most promising
direction would be to apply kernel-CCA, but there are
no obvious choices for the kernel function that would
directly match the analysis of image-text pairs. As one
practical remedy, (Rasiwasia et al., 2010) combined
CCA and LDA directly by first estimating a separate
LDA model for each modality and then combining the
resulting topic proportions with CCA. Our approach
does not rely on two separate analysis steps that do
not result in directly interpretable private topics.

5 EXPERIMENTS AND RESULTS

5.1 DATA AND MEASURES

We validate the model on real data collected from
Wikipedia1. We constructed a data collection with
D = 20, 000 documents, each consisting of a single im-
age represented with 5000 SIFT patches and text (the
contents of the whole Wikipedia page) represented
with a vocabulary of 7500 most frequent terms, after

1Available from http://www.eecs.berkeley.edu/

~jiayq/

stopword removal. We make a random 50/50-split into
test and train data. To demonstrate the ability of the
proposed model to correctly model the relationships
between the two modalities, we evaluate the model
with conditional perplexity of a missing modality for
a new sample:

P(m)
train = exp

(
−
∑
d∈Dtrain log p(x

(m)
d )

∑
d∈Dtrain x

(m)
d

)

P(i)|(j)
test = exp

(
−
∑
d∈Dtest log p(x

(i)
d |x

(j)
d )

∑
d∈Dtest x

(i)
d

)
,

where x
(m)
d denotes concatenation of N

(m)
d words.

These quantities measure how well the model can re-
late the visual content to the textual content, corre-
sponding to the document completion task of Wallach
et al. (2009) but computed across modalities.

We compare our model to three alternatives repre-
senting various kinds of multi-modal topic models:
mmDILN (Section 3.3), mmHDP (Section 4.1) and
corrLDA (Section 4.2). Both mmDILN and mmHDP
are comparable to our model in making automatic
topic number selection and modeling both modalities
symmetrically. Consequently, the experiments will fo-
cus on demonstrating the importance of finding the
correct factorization into shared and private topics.
The corrLDA is included as an example of a con-
ditional model that gives an alternative approach to
solving a similar prediction task. Note that we need
to learn two separate corrLDA models, one for predict-
ing text from images and one for the other direction,
whereas the other models can do both types of predic-
tions. For corrLDA we use 100 topics (the threshold
we used for nonparametric models).

5.2 INFERENCE SPEED

First we show that the variational approximation used
for inference is efficient. Figure 2 shows how the al-
gorithm converges for both N = 400 and N = 10000
documents already after some tens of iterations. For
both experiments we used a maximum of T = 100
topics. The convergence of mmHDP and mmDILN is
similar (not shown).

5.3 PREDICTING TEXT FROM IMAGES
AND VISE VERSA

Figure 3 shows the evaluation for training and test sets
for the proposed model and the comparison methods,
measured as the perplexity on training data and the
conditional perplexity of images given the text and
text given the images. The proposed method, which
is more flexible than the alternatives, reaches better
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Figure 2: Training perplexity as function of algorithm
iterations.

(lower) perplexity on the training and testing data due
to being able to describe both variation not shared by
the other modality without needing to introduce noise
topics.

A notable observation is that the baseline meth-
ods perform worse at predicting text from images as
the amount of training data increases. This illus-
trates clearly the fundamental problem in modeling
multi-modal collections without separate private top-
ics. Since the text documents are easier to model than
the images, the alternative models start to focus more
and more on modeling the text when there is large
amount of data. The dominant topics start describ-
ing the text alone, yet they are also active in the im-
age modality but with a topic that does not contain
any information. Given a new image sample, the es-
timated topic proportions will be arbitrary and hence
do not enable meaningful prediction. The proposed
model, however, learns to make those textual topics
private to the text modality, while capturing weaker
correlations between the two modalities with shared
topics. The model still cannot predict textual infor-
mation not correlated with the image content, but it
learns correctly not to even attempt that and manages
to make accurate predictions for the aspects that are
correlated.

5.4 SHARED AND PRIVATE TOPICS

To illustrate how the HDP-formulation chooses the
topics, we visualize the stick parameters p in Figure
4. First, we notice that the last sticks have close to
zero weight, indicating that the chosen truncation level
T = 100 is sufficient. More importantly, we see that
the weights for the text and image topics are different
(the image topics are more spread out), motivating the
choice of separate weights for the modalities.

To further understand how the proposed model is able
to find both shared and private topics, we explore the
nature of the individual topics. Since the SIFT vocab-
ulary is not easily interpretable by visual inspection,
we illustrate the property for the textual topics. For
each textual topic we measure the amount of corre-
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Figure 4: Visualization of stick parameter p of the
proposed model for the text modality (a) and the im-
age modality (b) reveals how they are not identical for
the two modalities. Both figures show the weights for
two models learned with 400 and 10, 000 documents,
revealing how the distribution is learned fairly accu-
rately already from a small collection.

lation between the other modality by inspecting the
correlation structure in Σ, and then rank the topics
according to this measure. This results in a ranked
list of the text topics, the first ones being strongly
shared by the two modalities while the last ones are
private to the text modality.

More specifically, denoting the separate blocks in the
covariance matrix as

Σ =

(
Σt,t Σt,i

Σi,t Σi,i

)
, (3)

we convert it to a correlation matrix, Ω, threshold
small values out (we used a threshold of 0.2) and ex-
tract the cross-correlation between textual (rows) and
visual topics (columns), to get Ωt,i. Then for each tex-
tual topic we define visual relevance, ρk, as row mean
of absolute values of Ωt,i, written as ρ = 1

T |(Ωt,i)|1 2.
This quantity captures general and rich visual combi-
nations that co-occur with the textual topics, and it
is worth noticing how the measure is very general: It
allows multiple visual topics to correlate with one tex-
tual topic (and vise versa), and includes both positive
and negative correlations that are typically equally rel-
evant (negative correlation can be seen as absence of a
visual component) (See Figure 5 for demonstration).

The textual topics are ranked according to ρ in Fig-
ure 6 . There are a few very strong shared topics
between text and image modalities, and at the end
of the list we have several topics private to the text
modality, indicated by zero correlation with the im-
age modality. This matches with the intuition that
the full text of a Wikipedia page cannot be mapped
to the image content in all cases. Table 1 summarizes
the six text topics most strongly correlating with the
image modality, as well as six topics that are private

2We also tried using the maximum element instead of
the mean; it results in fairly similar ranking.
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Figure 3: Training and test perplexities (lower is better) for the two modalities. For training data we show the
perplexity of modeling the text (a) and images (b) separately. For test data, we show the conditional perplexity of
predicting text from images (c) and predicting images from text (d), corresponding to the document completion
task used for evaluating topic models. The proposed method outperforms the comparison ones in all respects.
The comparison methods mmHDP, mmDILN and corrLDA that are not able to extract topics private to either
modality are not able to learn good predictive models, demonstrated especially by the error increasing as a
function of training samples in (c). The image prediction perplexity for mmDILN is outside the range depicted
in (d), above 5400 for all training set sizes.
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Figure 5: Illustration of part of cross-correlation be-
tween text topics and image topics corresponding to
subset of Ω(t,i), where yellow represents positive cor-
relations, and blue represents negative ones. The size
of the boxes corresponds to the absolute value.

to the text modality, revealing very clear interpreta-
tions. The most strongly correlating topic covers air-
planes, which are known to be easy to recognize from
the images due to the distinct shapes and background.
The second topic is about maps that also have clear vi-
sual correspondence, and the other strongly correlated
topics also cover clearly visual concepts like buildings,
cars and railroads. The topics private to the text do-
main, in turn, are about concepts with no clear visual
counterpart: economy, politics, history and research.
In summary, the model has separated the components
nicely into shared and private ones, and provides ad-
ditional interpretability beyond regular multi-modal
topic models.
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Figure 6: Text topics ordered according to visual rel-
evance ρ. We see that there are a few strongly cor-
relating topics, and that the model has found roughly
10 topics that are private to the text domain. Note
that such topics may still be important for modeling
the whole multi-modal corpus, whereas they do not
contribute to the cross-modal information transfer.

6 DISCUSSION

Our paper ties together two separate lines of work for
analysis of multi-modal data. In particular, we cre-
ated a novel multi-modal topic model which extends
earlier tools for analysis of multi-modal count data by
incorporating elements found useful in the continuous-
valued case. We explained how learning topics private
to each modality is of crucial importance while model-
ing modalities with potentially weak correlations, and
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Table 1: Text topics ranked according to visual relevance, summarized by the words with highest probability.
The topic indices match the ranking in Figure 6. The shared topics have clear visual counterparts, whereas the
private ones do not relate with any kind of visual content.

Shared topics
T1 airport flight airlines air international aircraft aviation terminal passengers airline boeing flights airways service airports passenger accident

T2 format dms latd dm longm latm longs lats launched mi broken mill sold renamed dec captured rapids class feet coordinates built lake located

T3 building house built buildings street hall st century tower houses west designed design castle south north east side main square large end site

T4 car engine cars model models ford engines race rear series front racing wheel year driver speed vehicles vehicle production hp motor drive

T5 retrieved album song music video released single awards number billboard chart top release mtv songs media love show uk jackson hot albums

T6 line railway station rail trains train service lines bus transport services system railways stations built railroad passenger main metro transit

Topics private to the text domain
T95 president washington post united american national states secretary december november september times military dc kennedy press security

T96 ottoman turkish turkey kosovo armenian war greek serbia bulgarian serbian government border bulgaria turks forces croatian albanian republic

T97 research science development institute university management scientific technology design world national engineering work human international

T98 government state national european policy council international states members act union political countries system nations article parliament

T99 nuclear weapons anti power protest bomb people protests united protesters government strike peace states march reactor atomic april test

T100 economic trade economy world production industry oil million growth development government agricultural market agriculture industrial

demonstrated empirically how such a property can
only be obtained by combining two separate elements:
modeling correlations between separate topic weights
for each modality, and learning modality-specific in-
dicators switching unnecessary topics off. For imple-
menting these elements we combined state-of-art tech-
niques in topic models, integrating the DILN distribu-
tion (Paisley et al., 2011) into a model similar to the
multi-field correlated topic model of Salomatin et al.
(2009), to create an efficient learning algorithm readily
applicable for relatively large document collections.
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Abstract

Understanding the adaptation process of
plants to drought stress is essential in improv-
ing management practices, breeding strate-
gies as well as engineering viable crops
for a sustainable agriculture in the coming
decades. Hyper-spectral imaging provides
a particularly promising approach to gain
such understanding since it allows to discover
non-destructively spectral characteristics of
plants governed primarily by scattering and
absorption characteristics of the leaf internal
structure and biochemical constituents. Sev-
eral drought stress indices have been derived
using hyper-spectral imaging. However, they
are typically based on few hyper-spectral im-
ages only, rely on interpretations of experts,
and consider few wavelengths only. In this
study, we present the first data-driven ap-
proach to discovering spectral drought stress
indices, treating it as an unsupervised la-
beling problem at massive scale. To make
use of short range dependencies of spec-
tral wavelengths, we develop an online varia-
tional Bayes algorithm for latent Dirichlet al-
location with convolved Dirichlet regularizer.
This approach scales to massive datasets and,
hence, provides a more objective complement
to plant physiological practices. The spectral
topics found conform to plant physiological
knowledge and can be computed in a frac-
tion of the time compared to existing LDA
approaches.

1 Introduction

Water scarcity is a principal global problem that
causes aridity and serious crop losses in agriculture. It

∗Both authors contributed equally. ◦Contact author:
mirwaes.wahabzada@iais.fraunhofer.de
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Figure 1: What are the specific spectral characteris-
tics of plants suffering from drought stress? (Left) A
collection of hyper-spectral images (projected to RGB
space) within the flowering period. Stressed plants are
indicated by red dots, control plants by green dots. Vi-
sually it is difficult to distinguish between control and
stressed plant; compare e.g. the 2nd and 3rd image
in the bottom row. (Right) Example spectral signa-
tures taken from a hyper-spectral image for leaf and
background pixels. (Best viewed in color)

has been estimated that drought can cause a deprecia-
tion of crop yield up to 70% in conjunction with other
abiotic stresses (Boyer, 1982; Pinnisi, 2008). Climate
changes and a growing human population in parallel
thus call for a sincere attention to advance research on
understanding of plant adaptation under drought. A
deep knowledge of the adaptation process is essential
in improving management practices, breeding strate-
gies as well as engineering viable crops for a sustainable
agriculture in the coming decades. Accordingly, there
is a dire need for crop cultivars with high yield and
strong resistance against biotic and abiotic stresses.

Unfortunately, understanding stress is not an easy
task. Stress resistance is the result of a complex web
of interactions between the genotype and the environ-
ment leading to phenotypic expressions. It is con-
tributed by a number of related traits that are con-
trolled mostly by polygenic inheritance. In the past,
a slow progress in the development of improving culti-
vars was mainly due to poor understanding of genetic
factors that impact tolerance to drought (Passioura,
2002). Recently, progress has been made in under-
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standing the genetic basis of drought related quan-
titative trait loci (QTL), see e.g. (Lebreton et al.,
1995; McKay et al., 2008). More recently, OMICS ap-
proaches have offered a direct molecular insight into
drought tolerance mechanism, see e.g. (Rabbani et al.,
2010; Guo et al., 2010; Abdeen et al., 2010). However,
genetic and biochemical approaches are time consum-
ing and still fail to fully predict the performance of new
lines in the field. In recent years it is discussed that
phenomic approaches, that measure the structural and
functional status of plants may overcome the limited
predictability and some authors have attributed this
lack of high throughput phenomic data as the ”phe-
nomic bottleneck” (Richards et al., 2010).

Hyper-spectral imaging provides a particularly
promising approach to sensor-based phenotyping.
Its measurements were observed to contain early
indicators of plant stress, see e.g. (Rascher et al.,
2007; Rascher and Pieruschka, 2008). In contrast
to conventional cameras, which record only 3 wave-
lengths per pixel, hyper-spectral cameras record a
spectrum of several hundred wavelengths ranging
from approximately 300nm to 2500nm resulting in big
data cubes. These spectra contain information as to
changes of the pigment composition of leaves which
are the result of metabolic processes involved in plant
responses to biotic or abiotic stresses. This informa-
tion can be used e.g. using SVMs for classification of
hyper-spectral signatures and in turn for prediction
of biotic stress before symptoms become visible to the
human eye, see e.g. (Rumpf et al., 2010; Römer et al.,
2010), or for finding archetypical signatures (Kersting
et al., 2012).

More important for the present study, hyper-spectral
imaging was proven to be successful in discovering re-
lationship between the spectral reflectance properties
of vegetation and the structural characteristics of veg-
etation and pigment concentration in leaves (Govender
et al., 2009); the spectral characteristics of vegetation
are governed primarily by scattering and absorption
characteristics of the leaf internal structure and bio-
chemical constituents, such as pigments (e.g. chloro-
phyll a and b), water, nitrogen, cellulose and lignin,
see (Curran et al., 1990; Gitelson and Merzlyak, 1996;
Blackburn, 2007; Govender et al., 2009) and references
in there). For instance, Gitelson and Merzlyak (1996)
observed a increase of reflectance for the band 670nm
if the amount of chlorophyll in the leaf was dropped
as it is case in the presence of drought stress.

However, since stress reactions are the result of a com-
plex web of interactions between the genotype and
the environment, indices involving very few distinct
wavelengths only run the risk of providing a over-
simplified and actually wrong spectral characterization

of drought reactions. In this study, we present a data-
driven approach to discovering spectral drought stress
indices, treating it as an unsupervised labeling prob-
lem at massive scale and solving it using an online
variational Bayes approach (Hoffman et al., 2010; Wa-
habzada and Kersting, 2011) to latent Dirichlet alloca-
tion (Blei et al., 2003). Although, there are other data-
driven approaches, such as low-rank matrix factoriza-
tion based on sub-sampling (Mahoney and Drineas,
2009; Sun et al., 2008) or computing extreme data
points (Thurau et al., 2012), these methods have a
major limitation: they are not part-based. Part-based
methods such as NMF, however, do not easily deal
with additional information, e.g. relational informa-
tion and short range dependencies.

Using a topic model is a sensible idea since it is com-
mon practice in plant physiology to talk about integral
wavelength-reflectance pairs only (the words) within
signatures (the documents). However, we have to be
a little bit more careful. Signatures are still ”curves”
showing important short range dependencies among
spectral wavelengths. In order to preserve the depen-
dencies, we develop an online variational Bayes ap-
proach with convolved Dirichlet regularizer (Newman
et al., 2011). Indeed, one may argue that subsampling
is a valid alternative to deal with the massive amount
of data at hand. However, plant physiologists often do
not get used to the idea of throwing away information
and actually do not trust the results of sample-based
methods. In contrast, our regularized online VB scales
well to massive datasets and does not throw away in-
formation, hence, provides a more objective comple-
ment to plant physiological practices. Moreover, the
spectral topics found by LDA conform to plant physi-
ological knowledge and can be computed in a fraction
of the time compared to existing LDA approaches.

We proceed as follows. We start off by reviewing online
variational Bayes for LDA. Afterwards, we develop the
regularized variant. Before concluding we will present
our main experimental evaluation on hyper-spectral
images of plants with two treatments (control and
stressed) as well as supplemental evaluations on two
additional real world datasets, the network of human
diseases and Wikipedia articles.

2 Online Variational Bayes for LDA

LDA is a Bayesian probabilistic model of collections of
text documents (Blei et al., 2003). It assumes a fixed
number of K underlying topics in a document collec-
tion. Topics are assumed to be drawn from a Dirichlet
distribution, βk ∼ Dir(η), which is a convenient con-
jugate to the multinomial distribution of words ap-
pearing in documents. According to LDA, documents
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are generated by first drawing topic proportions ac-
cording to θd ∼ Dir(α), where α is the parameter of
the Dirichlet prior on the per-document topic distribu-
tions. Then for each word i a topic is chosen according
to zdi ∼Mult(θd) and the observed word wdi is drawn
from the selected topic, wdi ∼Mult(βzdi).

In this paper, we focus on variational Bayesian (VB)
inference. Here, the true posterior is approximated
using a simpler, fully factorized distribution q. Fol-
lowing Blei et al. (2003); Hoffman et al. (2010), we
choose q(z, θ, β) of the form q(zdi = k) = φdwdik,
q(θd) = Dir(θd, γd), and q(βk) = Dir(βk, λk). The
variational parameters φ, γ, and λ are optimized to
maximize the Evidence Lower BOund (ELBO)

log p(w | α, η) ≥ L (w, φ, γ, λ)

, Eq [log p(w, z, θ, β | α, η)]− Eq [log q(z, θ, β)] ,

which is equivalent to minimizing the Kullback -
Leibler divergence between q(z, θ, β) and the true pos-
terior p(z, θ, β | w,α, η).

Based on VB, Hoffman et al. (2010) have introduced an
online variant that we here present for the batch case
running over mini-batches (chunks of multiple obser-
vations). That is, we assume that the corpus of docu-
ments has been sorted uniformly at random and chun-
ked into l mini-batches B1, B2, . . . , Bl of size S. That
is, the ELBO L is set to maximize L (w, φ, γ, λ) ,∑
Bi

∑
d∈Bi ` (nd, φd(nd, λ), γd(nd, λ), λ) , where nd is

the word count vector and ` (nd, φd(nd, λ), γd(nd, λ), λ)
denotes the contribution of document d to the ELBO.
As Hoffman et al. (2010) have shown this mini-batch
VB-LDA corresponds to a stochastic natural gradient
algorithm on the variational objective L. Using mini-
batches reduces the noise in the stochastic gradient
estimation as we consider multiple observations per
update: λ̃kw = η +D/S

∑
s∈Bi nswφskw where nsw is

the s-th document in the i-th mini-batch and D de-
note the number of documents. The rate of change ρt
is set to ρt , (τ0 + t)−κ where τ0 ≥ 0 and κ ∈ (0.5, 1].

3 Regularized Variational Bayes

For introducing a structured prior to regularize the
word-topic probabilities, we are inspired by the re-
cent regularized Gibbs (regGS) approach due to New-
man et al. (2011), who have demonstrated that regu-
larization improves the topic coherence. Specifically,
we view each topic as a mixture of word probabili-
ties given by the word-pair dependency matrix C (a
W ×W matrix, where W denotes the size of vocabu-
lary and Cij ≥ 0), that is

βk ∝ Cbk where bk ∼ Dir(η), (1)

In VB the true posterior is approximated using
fully factorized distributions q. Consequently, we
parametrize the word probabilities b by introducing a
new variational parameter ν, i.e. q(bk) = Dir(bk, νk).
The per-word topic assignments z are parametrized
by φ, and the posterior over the per-document topic
weights θ are parametrized by γ, as for the standard
LDA (Blei et al., 2003). With this, the part of the
likelihood including the specific parameter ν can be
written as

L[ν] =Eq[log p(w | z, C, b)]
+ Eq[log p(b | η)]− Eq[log q(b)] . (2)

The remaining part of the ELBO does not change.
To approximate the first term of Eq. (2) we
adapt the lower bound on the log-sum-exp func-
tion (Boyd and Vandenberghe, 2004, page 72),
Eq[log

∑
iXi] ≥ log

∑
i exp(Eq[logXi]) (for a detailed

proof see e.g. (Paisley, 2010)) to our case, which fol-
lows by applying Jensen’s inequality: Eq[log p(w | z =
k,C, b)]

=
∑W

i
ΦikEq[log

∑W

j
Cijbjk]

≥
∑W

i
Φik log

∑
j

exp(Eq[logCijbjk])

=
∑W

i
Φik log

∑
j
Cij exp(Eq[log bjk]) (3)

where
∑W
w Φwk =

∑D
d

∑W
w φdwk. This is still a

lower bound, so maximizing it will improve the ELBO.
The expectation of log b under the distribution q is:
Eq[log bwk] = Ψ(νwk) − Ψ(

∑
s νsk). The remaining

terms of the Eq. (2) (for a topic k) are

Eq[log p(b | η)][k] = log Γ(Wη)−W log Γ(η)

+
∑W

w
(η − 1)(Ψ(νwk)−Ψ(

∑W

s
νsk)) ,

Eq[log q(b)][k] = log Γ(
∑W

s
νwk)−

∑W

w
log Γ(νwk)

+
∑W

w
(νwk − 1)(Ψ(νwk)−Ψ(

∑W

s
νsk)) .

To derive a VB approach, we compute the derivative of
Eq. (2) with respect to the variational parameter νwk.
After applying the chain rule and rearranging terms,
this gives e.g. ∂Eq[log p(w | z, C, b)]/∂νwk =

= Ψ1(νwk)
∑

i
Φik

Ciw exp(Eq[log bik])∑
j Cij exp(Eq[log bjk])

−Ψ1(
∑

s
vsk)

∑
i
Φik .

Taking the derivatives for all terms together we arrive
at: ∂L�∂νwk =

Ψ1(νwk)(
∑W

i
Φik

Ciw exp(Eq[log bik])
∑W
j Cij exp(Eq[log bjk])

+ η − νwk)

−Ψ1(
∑W

s
νsk)

∑W

i
(Φik + η − νik) . (4)
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Setting the above derivative to zero, we get the follow-
ing fixed point update:

νwk =η +
∑W

i
Φik

Ciw exp(Eq[log bik])
∑W
j Cij exp(Eq[log bjk]))

. (5)

This is a proper generalization of the standard VB
approach. To see this simply set the word-pair depen-
dency matrix C to the identity matrix. Then, it follows
that νkw = η+

∑
d ndwφdwk; see also (Blei et al., 2003)

for more details.

To derive a learning algorithm, i.e., to actually opti-
mize L, we follow a coordinate ascent on the varia-
tional parameters φ, γ and ν. Given the word topic
probabilities β from Eq. (1), this yields the following
per-document updates for φ and γ in the E-step:

φdwk ∝ βwk ∗ exp(Eq[log θdk]) , (6)

γdk = α+
∑W

w
ndwφdwk . (7)

In the M step, we perform fixed point updates, as given
in Eq. (5), and compute the values βwk using Eq. (1)
as follows:

βwk ∝
∑W

i
Ciw exp(Ψ(νik)−Ψ(

∑W

s
νsk)) . (8)

However, recall that one of our main goals is the ap-
plication of regularised VB to hyper-spectral images
of plants. Since a single image can already consists
of hundreds of thousands of signatures (documents) so
that several images (as in our experiments) easily scale
to several million documents, batch VB is likely to
be overtaxed in terms of running time. Consequently,
we will develop an online variant of regularized VB
(regVB) that scales well to massive datasets.

4 Online Regularized VB

Since setting the word-dependency matrix C to iden-
tity matrix results in standard VB, it is intuitively
clear that we can extend the regularized VB to the on-
line case (regOVB) by adapting (Hoffman et al., 2010).
Specifically, the variational lower bound for the regVB
can be written as L =

∑D

d

{
Eq [log p(wd | θd, zd, C, b)] + Eq [log p(zd | θd)]

−Eq [log q(zd)] + Eq [log p(θd | α)]− Eq [log q(θd)]

+ (Eq [log p(b | η)]− Eq [log q(b)]) /D
}

,
∑D

d
` (nd, φd, γd,CCC,ννν) , (9)

where ` (nd, φd, γd,CCC,ννν) is the dth document’s contri-
bution to the variational bound. The per-corpus terms

Algorithm 1: Online regularized LDA. The changes
to online LDA are highlighted using blue fonts.

Input: D (documents), S (batchsize), RegIter (fixed
updates in M step), C (word-dependency
matrix)

Define ρt , (τ0 + t)
−κ

with κ ∈ (0.5, 1];
Initialize ννν randomly and set t = 0;
repeat

Select S documents randomly forming the
mini-batch D̃;
/* Compute E step */

foreach document d in D̃ do
repeat

Set φdwk ∝ βwk ∗ exp(Eq[log θdk]);

Set γdk = α+
∑W
w φdwkndw;

until 1
K

∑
k |change in γdk| < 0.00001 ;

/* Compute M step */

Initialize ν̃ randomly;
for i = 1 : RegIter do

ν̃wk = D
S

∑
d∈D̃

∑W
i φdik

Ciw exp(Eq [log bwk])∑
j Cij exp(Eq [log bjk]))

+ η;

Set ννν = (1− ρt)ννν + ρtν̃νν;

βwk ∝
∑W
i Ciw exp(Ψ(νik)−Ψ(

∑
s νsk));

Increment t := t+ 1;
until converged ;

are summed together and divided by the number of
documents D. Doing so allows one to derive the on-
line approach since the optimal ν is the one for which L
maximized after fitting the per-document parameter.
In other words, we can use the regularized updates in a
per-document manner. This is summarized in Alg. 1.
That is, we start off by randomly selecting documents
form entire dataset by forming a mini-batch D̃. Then
an E step is performed to find locally optimal values
of γ and φ holding β fix. In the M step several fixed
point updates for ν̃ are computed using ν̃wk =

D

S

∑
d∈D̃

∑
i
φdik

Ciw exp(Eq[log bik])∑
j Cij exp(Eq[log bjk]))

+ η (10)

given the document-specific parameter φd with d ∈ D̃
(currently observed mini-batch), where we rescale by
D
S to update as though we would have seen all doc-
uments. Multiple documents are used per update to
reduce variance. The parameter ννν is updated through
a weighted average of its previous value, and ν̃ (com-
puted for the current mini-batch using fixed point up-
dates as in Eq. (10)). Furthermore, the new values
of β are computed given ννν and word-dependency ma-
trix C. Following Hoffman et al. (2010), the rate of
change ρt is set to ρt , (τ0 + t)−κ with κ ∈ (0.5, 1]
in order to guarantee convergence. Note, as in the
non-regularized case, we recover regularized batch VB
when setting the batch size to S = D and κ = 0.
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(a) Low reflectance for
wavelengths <680nm
with a small peak at
550nm, which indi-
cate high chlorophyll
content (Gitelson and
Merzlyak, 1996)

(b) Low reflectance for
wavelengths <680nm
with a small peak at
550nm, which indicate
high chlorophyll
content (Gitelson and
Merzlyak, 1996)

(c) ”Red-Edge”: High
reflectance for near-
infrared spectral bands
>700. Sensitive to
chlorophyll content
(Curran et al., 1990;
Seager et al., 2005)

(d) ”Red-Edge”: High
reflectance for near-
infrared spectral
bands >700. Sensitiv
to chlorophyll content
(Curran et al., 1990;
Seager et al., 2005)

(e) Top words for
chlorophyll specific
wavebands between
600nm-680nm (Black-
burn, 1998).

(f) High sensitivity to
chlorophyll concentra-
tion near wavelength
550nm (Blackburn,
2007; Gitelson and
Merzlyak, 1996).

(g) High sensitivity to
chlorophyll concentra-
tion near wavelength
550nm (Blackburn,
2007; Gitelson and
Merzlyak, 1996).

(h) High reflectance for
spectral bands be-
tween 600nm-680nm
indicate low chloro-
phyll content (Gitelson
and Merzlyak, 1996).

(i) High reflectance for
spectral bands between
580nm-680nm indi-
cate low chlorophyll
content (Gitelson and
Merzlyak, 1996).

(j) High reflectance for
spectral bands between
580nm-680nm indi-
cate low chlorophyll
content (Gitelson and
Merzlyak, 1996).

Figure 2: Example topics learned by regularized online VB (K = 15). Most of the topics can be found to reflect
results received by experts (see Table 1 in (Govender et al., 2009) and references in there). Top words (here
in dark red) consists mostly of highly correlated spectral bands. Furthermore, given the reflectances one can
identify whether a topic represent a healthy (e.g. low reflectance in chlorophyll specific bands, large reflectance
in near infrared wavebands (Blackburn, 2007)) or non-healthy signature. (Best viewed in color)

5 Uncovering Spectral Drought Stress
Characteristics

In our main experiment, drought stress was applied
to barley cultivar Scarlett. Hyper-spectral images of
the 5 stressed and 5 control Barleys were taken with
a resolution of 640x640 pixels, where each pixel is a
vector with 120 recorded wavelengths from the range
of 394-891nm with approximately 4nm spectral reso-
lution, using the SOC-700 hyper-spectral imaging sys-
tem (Rascher et al., 2007), manufactured by Surface
Optics. A normalization of the images was done by
calculating the spectral reflectance for each pixel. For
that, the spectrum of a pixel was divided by the spec-
trum of the incoming radiation estimated from a white
reference panel that exhibits Lambertian reflectance
located in each scene. Because the monitoring started
with the flowering time of Barley, both the control and
stressed Barleys developed senescent leaves. In our
experiments we used 7 measurements for 10 plants,
which were done every 3-4 day. Five control plants
grew in a fully water capacity of the substrate condi-
tions while the 5 stressed plants were exposed to 50%
water supply reduction (at BBCH 30; BBCH is a scale
used to identify the phenological development stages
of a plant). This yielded 70 data cubes of resolution

640x640x120. Although the SOC-700 measured from
394nm to 890nm, the wavelengths below 470nm and
above 750nm were discarded because they appeared
to be very noisy. The reason for this is most likely an
unstable source of illumination for these frequencies.
Therefore, only the bandwidths from 470nm to 750nm
were used. We transform each cube into a dense ’pixel
x spectra’ matrix. This resulted in 70 data matrices
of soze 69x409,600; overall a dataset with about 30
Million signatures.

Furthermore, for our analysis we are interested in find-
ing not just specific wavelength patterns but also re-
flectance values. For that reason, and to get the data
sparse, we discretize the corresponding signatures in
the following way: we decompose the space covering
the full signatures (withWl = 69 spectral bands) addi-
tionally into R = 50 possible reflectance words. Thus,
in a signature each wavelength can consist of one of
the R distinct reflectance words, which results in a to-
tal number of Wl×R different possible spectral words.
The use of discretised values instead of continuous is
also motivated by the fact that according to plant
physiologist small difference in reflectance values are
not of great importance. They instead study the spec-
tral characteristics of plants in order to get spectral
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(a) Low reflectance for
wavelengths <680nm
with a small peak at
550nm, which indi-
cate high chlorophyll
content (Gitelson and
Merzlyak, 1996)

(b) Low reflectance for
wavelengths <680nm
but no small peak at
550nm

(c) Peak at 550nm but no
low reflectance for for
wavelengths <680nm

(d) Top words for
chlorophyll specific
wavebands between
600nm-680nm but also
for lower waveband

(e) High reflectance for
spectral bands between
600nm-680nm indi-
cating low chlorophyll
content but also for
other spectral bands

(f) Increasing slope but
high reflectance for
spectral bands below
600nm-680nm.

(g) Mixture of ”red
edge”, peak at 550nm
and increasing slope.

(h) Mixture of top words
for chlorophyll specific
wavebands between
600nm-680nm and
peak at 550nm.

(i) Junc topic with ele-
ments of ”red edge”

(j) Junc topic with ele-
ments of ”red edge”
and peak at 550nm

Figure 3: Topics learned by standard online VB (K = 15). As one can see the topics are less distinct compared
to the regularized ones and actually mix known indices in particular for stressed and controlled plants.

indices more sensitive to pigment content. Further-
more, we excluded all biologically implausible signa-
tures (”background” signatures) using Simplex Volume
Maximization (SiVM) (Thurau et al., 2012) algorithm,
by taken out all signatures with a high coefficient to an
extreme spectra which was identified as ”background”
(non-leaf). This resulted in a dataset with about 9, 2
Million signatures (documents).

The word-dependency matrix C was created using
pointwise mutual information (PMI) (Newman et al.,
2011). For plants, in order to also get the cooccur-
rences between different reflectance’s within a wave-
length, we proceeded as follows: we first aggre-
gated the signatures in the images within each non-
overlapping squares of 5x5 pixel. Spectral word cooc-
currences were computed using a sliding window
of length 1 in each direction (wavelength and re-
flectances) in the aggregated signatures. We com-
pute the PMI only for the 1000 words with the high-
est frequency. The matrix C was computed from 8
plants (56 images, with approx. 7, 3 Million signa-
tures), for the remaining two plants (one control and
one stressed, with approx. 1, 9 Million signatures) an
regularized/non-regularized online LDA was learned
on non aggregated signatures. For both methods we
set the batchsize S = 1024, κ close to 0.5, α = 0.01,
η = 0.01 and (for the regularized online VB) 10 fixed
point iterations in the M step. For both methods
we stopped when each signature (document) was seen

once. The computation took for both methods less
than one hour (for K = 15) on a standard Intel-
Quadcore 3.4 GHz computer, but only using a single
core. In contrast, running batch LDA on two plants
took more than 15 hours.

5.1 Uncovered Characteristics

Fig. 2 shows examples of topics discovered by regular-
ized online VB (K = 15). The topics conform to com-
mon plant physiological knowledge (see also Table 1
in (Govender et al., 2009) and references in there).
For example topics (a), (b), (f) and (g) clearly show
that high probable words appear for the spectral band
550nm. This wavelength was found to have a max-
imum sensitivity to a wide range of chlorophyll con-
tents (Blackburn, 2007; Gitelson and Merzlyak, 1996),
which are the most important pigments as they are
necessary for photosynthesis. Furthermore, topics (a)
and (b) show a high probability wavelengths close to
500nm and 670nm. As mentioned by Gitelson and
Merzlyak (1996), these bands/wavelength have high
correlation for yellow-green to dark-green leaves. Ad-
ditionally Gitelson and Merzlyak report that the re-
flectance in 550nm does not exceed 0.1 in green leaves
(for Maple and Chestnut). This is also supported by
topics (a) and (b) but now for Barley. An up-rising
slope between bands 690nm and 750nm is known as
the ”red edge” and is due to the contrast between the
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Figure 4: (Left) Evolution of ”non-healthy” and
”healthy” topics shown in Fig.2 over time. Each row
stands for different measurement days 1-7. The larger
the bar the more prominent a topic is. As one can
see, the most prominent topics for control plants con-
sists of ”healthy” yellow-green topics, whereas for the
stressed plants the probabilities of ”healthy” topics
drop rapidly and ”stress” topics (brown) become more
likely in latter days. (Right) The ratio of relative im-
portance of a ”non-healthy” and ”healthy” topic. Be-
ginning by measurement day 3 we have a significant
difference (paired t-test, p = 0.05) between stressed
and control plants. (Best viewed in color)

strong absorption of chlorophyll and the otherwise re-
flective leaf (Seager et al., 2005). The ”red edge” is
detected by topics (c) and (d). The discovered impor-
tant wavelengths in the topics (h)-(j) (between 580nm-
680nm) also closely mirror known indices. Blackburn
(1998) define the ”optimal” individual bands for pig-
ment estimation as 680 nm for chlorophyll a and 635
nm for chlorophyll b. Gitelson and Merzlyak (1996)
observed a increase of reflectance for the band 670nm
if the amount of chlorophyll in the leaf drops, as it
is the case for stressed plants. Taking both results
together, topics (h)-(j) clearly describe ”non-healthy”
resp. ”drought-stressed” topics and also conform to
plant physiological knowledge.

The discovered topics/indices can be used in various
ways to investigate drought stress reactions. For in-
stance, we can computed the distributions of topics
for plants over time. Fig. 4 (left) shows this topic
distribution over all the measurement days 1-7 (recall
that images were taken every 2-3 days so we cover
several weeks). Since, LDA is giving us a topic distri-
bution per signature only, we actually estimated the
concentration parameters of the Dirichlet distribution
over the topics induced by all signatures of single im-
ages (Minka, 2000). Then, we used the expected prob-
ability of each topic for visualization.

As one can see, the probability of ”non-healthy” topics
increases for the stressed plant over time, whereas for
the control plant ”healthy” yellow-green to green top-
ics have higher weights. Furthermore, Fig. 4 (right)
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Figure 5: Regularization produces more specific top-
ics. Shown are the averages per topic KL-distance to
a ”background topic” when taking (a) all days as a
function of the number of topics, (b) for 5 topics and
(c) 15 topics as a function of measurement days. The
topic proportions of the signatures from each images
were taken separately in order to compute the distance
to ”background topic”. As one can see the regular-
ized topics are more specific than non-regularized ones;
they have significantly larger KL-distance. Interest-
ingly, for the last three measurement days the picture
gets more diverse. Actually, regularized topics cap-
ture the spectral characteristics less well for smaller (b)
than for large number of topics (c). This indicates that
their is a diverse set of spectral characteristics required
to capture drought stress. Furthermore, (d) regular-
ized VB converges significantly faster than regularized
semi-collapsed Gibbs-Sampling (Wikipedia, K = 20).
Shown are the expected change of word probabilities
in topics over time. This speed-up puts high through-
put hyper-spectral topic models of several plants per
day for several weeks in reach. (Best viewed in color)

show the ratio between the expected probability of a
”non-healthy” and ”healthy” topic (ratio = h/b, for
topics (b) and (h) in Fig. 4 (left)). For this experi-
ment we also computed the distribution of topics for all
plants and measurement days using the model shown
in Fig. 2. Beginning by measurement day 3 this ratio
shows a significant difference (paired t-test, p = 0.05)
between stressed and control plants. This are yet an-
other validations that the discovered topics capture
drought stress relevant characteristics.
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Topic 20: kidney disease
581 Nephrotic syndrome
583 Nephritis and nephropathy
588 Disorders resulting from impaired renal function
403 Hypertensive kidney disease
585 Chronic kidney disease (ckd)
405 Secondary hypertension
589 Small kidney of unknown cause
582 Chronic glomerulonephritis
587 Renal sclerosis unspecified
584 Acute kidney failure

Topic 8: viral infections
326 Late effects of intracranial abscess or pyogenic infection
49 Other non-arthropod-borne viral diseases
75 Infectious mononucleosis
323 Encephalitis myelitis and encephalomyelitis
321 Meningitis due to other organisms
88 Other arthropod-borne diseases
54 Herpes simplex
82 Tick-borne rickettsioses
371 Corneal opacity and other disorders of cornea
324 Intracranial and intraspinal abscess

Figure 6: Regularized VB LDA can discover composite topics in Human Disease Network: (Left) A graph
representing topics learned by regularized VB (K = 20). Topics (big circles) are connected with top 10 diseases
(small circles). The different colors indicate different categories of ICD9 codes. As one can see, most of the topics
are dominated by one of the categories. But there are also mixed topics of common diagnosed diseases across
several categories. (Right) Two example topics learned with regularized VB LDA about ”kidney diseases” and
”viral infections”. (Best viewed in color)

5.2 Regularization improves the topic
coherence

To accommodate the qualitative results so far with
quantitative ones, we compared the results produced
by regularized and non-regularized oLDA in terms of
their topic coherence. A topic is specific or has au-
thentic identity if it is far from generating words in
wide range of documents. To measure this, Alsumait
et al. (2009) define a ”background topic” to be a topic
that is equally probable in all the documents, i.e.,
P (dm | ξ) = 1/D for m ∈ (1, 2, ..., D). In turn, the
distance between a topic and the ”background topic”
can be viewed as measure for how much background
or common the information is provided by the topic.
Since we are interested in overall performance of a
model, we measured the average per topic distance to
the ”background topic” using KL-Divergence:

Ms =
1

K

∑
k
Dkl(θθθk, ξ) where θθθk = (θ1k, θ2k, ..., θDk) .

The results are summarized in Fig.5 (a)-(c). As one
can see, the regularized topics are more specific than
non-regularized ones (a), i.e. they have larger KL-
distance . More interestingly, for the last three mea-
surement days regularized online LDA does worst for
lower number of topics (b) than for large number of
topics (c). This can be due to wide range of different
signatures in the images (in terms of ”non-healthy”
signatures). This can be also seen in Fig.4 where for
the first days there just a few topics with high probabil-
ity, whereas for the latter days more topics are needed
to represent the data.

6 Supplementary Evaluation

To further investigate the performance of regularized
VB works even if LDA fails to learn anything mean-
ingful, and that it is comparable with semi-collapsed
Gibbs Sampling inference by Newman et al. (2011) we
provide experiments with two additional datasets.

Human Disease Network: Here we investigate the
question: can regularized VB learn meaningful and
interpretable topics models even if ”no information”
in documents are available? To answer this we make
use of human disease network dataset (Hidalgo et al.,
2009), which consist originally of approximately 32
Million inpatient claims, pertaining 13039018 individ-
uals of 65 years and older patients. The corresponding
human disease network includes cooccurrences of diag-
nosis (specified by ICD9 codes) and up to 9 secondary
diagnosis.

Here we applied regularized VB by using disease de-
pendency matrix which was computed using PMI. We
used only diseases with more than 500 occurrences, re-
sulted in a total of 742 diseases. In order to learn a reg-
ularized topic model, we created a synthetic datasets
of D = W documents each consisting of one word (ac-
tually an identity matrix with W×W dimensionality).
We used the following settings: α = 0.01, η = 0.01 and
10 fixed point iterations in the M step. The results of
the regularized VB (for K = 20) are shown in Fig.6.
As one can see, regularized VB LDA can discover co-
herent topics in human disease network, even if LDA
would fail. Topics (big circles) are connected with top
10 diseases (small circles). The different colors indi-

859



cate different categories of ICD9 codes. As one can
see, most of the topics are dominated by one of the
categories. But there are also mixed topics of common
diagnosed diseases across several ICD9 categories, as
shown in the table on Fig.6, with topic about ”kidney
diseases” and ”viral infections”.

Wikipedia Dataset: Further, to compare regular-
ized VB with regularized Gibbs Sampling we used a
small set of D = 5000 Wikipedia articles, with W =
7312 words in the vocabulary and N ≈ 750000 to-
tal number of terms. The word cooccurrences were
computed using an extern data of 3441010 titles of
Wikipedia articles. The titles include naturally the
short range word dependencies of words. Here we used
the normalized cooccurrences (matrix C) for all reg-
ularized methods. We set α = 0.05 N

DK (as suggested
by Newman et al. (2011)), η = 0.01 and the num-
ber of topics was set to K = 20, and in each M step
10 fixed point iterations were applied. For the on-
line case the batchsize was set to S = 500, κ close to
0.5 and τ0 = 1024. The regularized Gibbs LDA was
run for 1250 iterations where we applied regulariza-
tion (10 fixed point updates) every 50 iterations. The
VB methods were run until each document was seen
50 times. The results are shown in Table 1. As one
can see, all methods produce topic models of similar
quality in terms of the interpretability. Additionally,
to show convergence of the different methods, we com-
puted the change of the probabilities of words βββ be-
tween two iterations when βββ was computed. To mea-
sure this, we use: GRT =

∑
w

∑
k | βtkw − βt−1

kw | ,
where t indicate the current iteration. The results are
represented in Fig.5 (d). As one can see, the regu-
larized batch VB converges faster than semi-collapsed
Gibbs-Sampling. Moreover, regularized online VB
outperforms regularized batch VB and is comparable
in terms of the interpretability of the topics.

7 Conclusion

Understanding drought stress in plants is not an easy
task. In this context, hyper-spectral image sensors are
an established, sophisticated method for discovering
spectral stress indices. However, they gather massive,
high dimensional data clouds over time, which together
with the demand of physical meaning of the predic-
tion model present unique computational problems in
scale and interpretability. Motivated by this, we devel-
oped a regularized variational Bayes approach to latent
Dirichlet allocation and presented the — to the best of
our knowledge — the first application of probabilistic
topic models to discovering drought stress character-
istics from hyper-spectral image sequences. Our ex-
perimental results on a large-scale plant phenotyping
dataset demonstrate that the estimated spectral char-

music
regGS music, band, song, released, live,

new, single, rock, songs, records +
regVB music, band, song, released, live,

new, songs, single, rock, records +
regOVB music, band, song, released, single,

songs, rock, live, records, track +
league

regGS league, team, season, game, first,
years, games, club, two, new +

regVB league, team, club, world, cup,
years, first, national, won, season +

regOVB league, season, team, club, years,
new, state, career, played, born +

university
regGS university, new, american, college, school,

science, research, professor, national, born +
regVB university, new, united, born, states,

american, national, school, first, party +
regOVB university, book, research, professor, science,

published, work, new, first, school +
church

regGS school, high, church, new, schools,
district, year, students, education, college +

regVB church, war, king, first, century,
great, new, history, city, catholic +

regOVB church, house, building, century, city,
town, new, village, built, old +

Table 1: Gibbs, batch VB and online VB for regular-
ized LDA produce qualitatively comparable topics: An
example of topics (for Wikipedia Dataset) represented
by 10 words with highest weights (K = 20).

acteristics are meaningful, conform to existing plant
physiological knowledge, and are fast to compute. In
contrast to indices established in plant physiology, top-
ics are not based on single or few wavelengths but
provide a distributional view on the characteristics of
complete signatures. Overall, our results are an en-
couraging sign that the vision of high throughput pre-
cision phenotyping is not insurmountable. Detailed
measurements of plant characteristics can be analysed
at massive scale to collectively provide estimates of
trait phenotypes for many of the underlying genotypes
that comprise a typical plant breeding population.

Our work provides several interesting avenues for fu-
ture work. Next to experiments under field condi-
tions e.g. in an experimental agricultural site, one
should aim at improving the topics quality even fur-
ther by applying hierarchical, (semi-)supervised and
relational versions of topic models. Active LDA ap-
proaches could speed up computations even further.
Ultimately, the models should be used to identify the
most relevant moment when biologists have to gather
samples for invasive, molecular examinations.
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C. Römer, K. Bürling, T. Rumpf, M. Hunsche,
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Abstract

We describe theoretical bounds and a practi-
cal algorithm for teaching a model by demon-
stration in a sequential decision making en-
vironment. Unlike previous efforts that
have optimized learners that watch a teacher
demonstrate a static policy, we focus on the
teacher as a decision maker who can dynam-
ically choose different policies to teach dif-
ferent parts of the environment. We develop
several teaching frameworks based on previ-
ously defined supervised protocols, such as
Teaching Dimension, extending them to han-
dle noise and sequences of inputs encountered
in an MDP. We provide theoretical bounds on
the learnability of several important model
classes in this setting and suggest a practical
algorithm for dynamic teaching.

1 Introduction

In situations where one agent teaches another, the
AI community has largely focused on teachers that
demonstrate a static policy to the learning agent
[Abbeel and Ng, 2005; Walsh et al., 2010]. However,
demonstration of even an optimal policy is often not
the best way to teach. For instance, consider a learner
being trained to play billiards by observing a near-
optimal player. Since a hallmark of good play is sim-
plifying the next shot, an optimal player will likely
only demonstrate easy shots. But if we really want
to teach the learner to shoot pool, we need to show
it difficult shots and novel situations that the optimal
policy will rarely encounter. More generally, teach-
ers can improve learning efficiency by showing highly
informative examples that a static policy might not of-
ten encounter. In this paper, we show how to cast the
problem of optimal teaching as a decision problem in
its own right, and provide bounds on the teachability

of several important model classes in Reinforcement
Learning (RL) [Sutton and Barto, 1998].

Our approach uses lessons from the supervised-
learning community, which has established a num-
ber of frameworks for quantifying the teachability of
a domain class. Specifically, we extend the classi-
cal Teaching Dimension framework (TD) [Goldman
and Kearns, 1992] and the recently described Subset
Teaching Dimension (STD) [Zilles et al., 2011], which
quantify the teachability of deterministic hypothesis
classes. We adapt these frameworks for the type of
data encountered in RL, particularly handling noise
and sequential inputs. This allows us to characterize
the teachability of several RL concept classes such as
Bernoulli distributions, k-armed bandits and DBNs in
a supervised setting.

These supervised algorithms and analyses form the
foundation for our teaching algorithms in the sequen-
tial decision making setting, where teachers are con-
strained in the examples they can select by the dy-
namics of their environment and their current state.
We show how to cast the problem of optimal teach-
ing as a decision problem in its own right and that
exact optimization is often intractable. We then use
our results from the supervised setting to construct
approximations to the optimal teaching strategy that
are successful in practice. The end result is a gen-
eral algorithm for a teacher in a Markov Decision Pro-
cess (MDP) [Puterman, 1994] that, in contrast to work
on demonstrating static policies, dynamically chooses
highly informative examples to teach the model.

2 Alternate Approaches

We now describe competing protocols for teaching in
the RL setting. We will cover previous work on teach-
ing in the supervised setting in later sections.

Static policies for teaching RL agents have been stud-
ied in Inverse Reinforcement Learning (IRL) [Abbeel
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and Ng, 2004, 2005] and Apprenticeship Learning
[Walsh et al., 2010]. However, in both of these set-
tings, the emphasis is on better learning algorithms to
interpret a static teaching policy repeated over many
episodes. By contrast, we are providing algorithms for
the teaching side so that the teacher can show trajec-
tories built to teach, not just to demonstrate. Also,
learning efficiency with static demonstrators is mea-
sured by either the time needed to achieve the same
policy as the teacher (IRL) or perform as well or bet-
ter than the teacher (Apprenticeship). In our current
work we will focus on algorithms to teach the entire
model of a given environment rather than a specific
policy. We note this is a different problem because
the learner cannot rely on a policy bias towards the
teacher demonstrations.

There has been significant work on human teachers
guiding RL agents, including by direct demonstration
[Argall et al., 2009] and providing shaping rewards
[Knox and Stone, 2010]. Most of these works focus
on either optimizing the learner for human inputs or
studying how different human interfaces or reward sig-
nals impact the learner. An area of future work is
studying how similar our optimal teaching policies are
to human teachers, as results indicate these behaviors
may be very different [Khan et al., 2011].

In some domains, teaching a model may be less effi-
cient than directly teaching the optimal policy or value
function. For instance, in the bandit setting, teaching
the model (the payout of all arms) requires pulling
each arm a number of times, but teaching the optimal
policy directly might require (if the learner knows only
one arm is optimal) only pulling the optimal arm once.
This situation is similar to behavioral cloning [Bain
and Sammut, 1995; Khardon, 1999], where supervised
learning techniques are employed in the policy space,
though the focus of that field is on learning algorithms,
not teaching. We focus on teaching a model because in
large structured domains, the number of parameters in
the model is usually much smaller than the number of
parameters needed to encode the value function or pol-
icy, though our techniques could be extended to teach
in the policy space.

3 Teachers and Learners

In this section, we begin by describing several teaching
frameworks from the supervised-learning literature.
We then describe modifications to these protocols to
accommodate teaching in an RL setting. Specifically,
we need to account for (1) noise in the labels and (2)
sequences of instances rather than sets. We deal with
the first problem in this section and then describe sev-
eral domain classes that can be taught in this noisy

supervised model.

3.1 Supervised Teaching Frameworks

We now describe two frameworks that can be used to
measure the sample complexity of teaching in a super-
vised setting where a teacher is picking the examples.
These frameworks differ considerably in how much the
teacher and learner can infer about one another. First,
we consider the classical Teaching Dimension model
[Goldman and Kearns, 1992] where the teacher is pro-
viding helpful examples to the learner, but the learner
is unaware that it actually has a teacher.

Definition 1. The Teaching Dimension of a concept
class {c ∈ C} : X 7→ Y over instance space X and la-
bels Y is TD(C) = maxc∈C min|S|(Cons(S,C) = {c}),
with Cons being the concepts in C consistent with S.
This makes S a teaching set TS(c,C) for c.

Intuitively, TD represents the minimum number of ex-
amples needed to uniquely identify any c ∈ C. Be-
cause the learner may not know it is being taught and
the teacher does not know what learner it is provid-
ing samples to, TD teachers may not act optimally
for a specific learner. However, a natural extension
is a protocol where the learner and teacher both un-
derstand they are interacting with a shared goal (for
the learner to realize a concept). Such notions were
formalised first by Balbach and Zeugmann [2009] who
devised a protocol where the learner would make in-
ferences about hypotheses that the teacher was clearly
not trying to teach based on the size of the teaching
set. This reasoning between the teacher and learner
was further formalised in the Subset Teaching Dimen-
sion (STD) [Zilles et al., 2011] where the learner and
teacher both assume the other is optimal.

Definition 2. The Subset Teaching Dimension
(STD) of a hypothesis class {c ∈ C} : X 7→ Y
(STD(C)) is equal to the worst case number of sam-
ples needed to teach a learner when both the teacher
and the learner know that the other is performing their
task optimally. This is done by iteratively construct-
ing Subset Teaching Sets STSi(c, C) starting from
STS0(c, C) = TS(c, C), such that STSi ⊆ STSi−1 and
STSi(c, C) is not a subset of STSi−1(c′, C) for c′ 6= c
(a “consistent subset”).

Intuitively, STD captures the fixed point behavior of a
learner and teacher that recursively assume the other
is doing their job optimally. One can think through the
process of reaching this fixed point iteratively starting
with the teaching sets for all concepts in the original
TD framework, denoted STS0 = TS. In the first step
of reasoning, the learner assumes it is being taught us-
ing STS0, and therefore it can assume the instances it
will see will come from an optimal teaching set. This
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in turn allows it to notice when it has seen subsets of
instances that must be leading to one (and only one)
set from STS0. The next step of reasoning goes back to
the teacher, who infers it can teach using one of these
subsets from STS1. The process repeats until there are
no more changes to STS. The uniqueness and reach-
ability of this fixed point is detailed by Zilles et al.
While the reasoning process may be complicated, the
resulting behavior can be quite intuitive. For instance,
in the original TD setting, when teaching any single-
ton concept over n variables with the empty set also
a possibility, n negative instances are needed to show
the empty hypothesis is correct. However in STD, all
hypotheses can be taught using just one example (pos-
itive for the singleton, negative for empty).

3.2 Teaching Frameworks for Noisy Concepts

In this section, we extend the protocols above to the
setting where the concept being learned is noisy. We
begin by defining a stochastic concept and unordered
collection (a “set” that may contain duplicates):

Definition 3. A stochastic concept c : X 7→ D(Y )
maps each possible instance x ∈ X to a distribution
over the label space (D(Y )). An unordered example
collection U of a concept c consists of (potentially over-
lapping) pairs of inputs and labels {x0, y0...xn, yn} with
each yi drawn from c(xi).

Next, we need to address the consistency of the learner,
which can no longer be expected to predict the exact
label of every instance. Instead, we consider learners
that predict a distribution of labels for a given input.

Definition 4. A distribution consistent learner with
parameters ε and δ makes predictions for input x based
on the current unordered collection U in the form of
a predicted distribution D′(x) over the label space Y .
Consistency means ||D̂(x)−D′(x)||TV ≤ ε with prob-
ability 1− δ, where || · ||TV is the total variation (half
the L1-norm) over the labels and D̂ is the distribution
observed in U (in most cases D̂ is the distribution de-
termined by the maximum-likelihood estimate).

Now we can extend the notion of a teaching set from
Definition 1 in three ways. First, instead of sets, we
consider collections with duplicates. Second, we as-
sume the teacher does not control the label associated
with a given input, but can see the label (produced
by the true concept) once an instance is added to the
teaching collection. Therefore, the teacher can choose
instances one at a time to add to the collection and al-
ways knows how all the current examples have been la-
beled. In practical terms, the teacher will then be able
to choose when to execute a stop action to declare the
collection finished but notice that the learner will not
be aware of the order in which examples were added.

Finally, we say such a collection is a teaching collection
(denoted TS in an abuse of notation) if any distribu-
tion consistent learner must have ||D(x)− D̂(x)|| ≤ ε,
with probability 1− δ after seeing that sequence.

We now have all of the components to define the noisy
teaching dimension (NTD):

Definition 5. The noisy teaching dimension (NTD)
with parameters ε and δ of a stochastic concept class
C (NTD(C)) is the maximum size minimum teaching
collection τ ∈ TS(c) over all concepts c ∈ C. That is,
maxcminτ∈TS(c)|τ |

Next, we consider the case of a Noisy Subset Teach-
ing Dimension (NSTD), which will extend STD. Here,
we need to redefine the notion of subset used in the
original STD to account for duplicates and the incre-
mental construction of the teaching collection. To do
so we introduce the consistent subcollection relation:

Definition 6. A collection U ′ is a consistent subcol-
lection of another collection U (U ′ ⊆ U) if (1) every
element of U ′ is mapped by a function to an element
of U and (2) the range and probability of distributions
represented by U and U ′ are the same.

Replacing the original “consistent subset” requirement
from Definition 2 with a requirement that each itera-
tion of reasoning must produce a consistent subcollec-
tion and assuming the learner is distribution consis-
tent gives us a full definition of NSTD. In most cases
the original NTD collection (NSTD0) will not be im-
proved upon in the worst case, but in many cases the
teachers ability to stop constructing the collection will
cause a significant decrease in the expected teaching
time for NSTD over NTD (see Theorems 2 and 3).
While the definitions above assumes the teacher’s con-
struction ordering is hidden from the learner, we will
later see the sequential setting reveals this order and
allows stronger inference.

4 Concept Classes

We now describe several concept classes that are rel-
evant for RL agents. Our analysis in this section is
carried out in the supervised setting.

4.1 Monotone Conjunctions

Conjunctions of terms are a simple but important
model for pre-conditions of actions and simple con-
ditional outcomes. A monotone conjunction over an
input space of n boolean terms is labeled 1 if all of
the relevant variables are 1, and 0 otherwise. In the
TD setting, the complexity of learning a monotone
conjunction is O(n) [Goldman and Kearns, 1992], but
the types of examples are slightly different than in the
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classical mistake-bound [Littlestone, 1988] case, which
only requires positive examples. This is because in
TD we cannot assume anything about how the learner
defaults in its predictions. Instead, the TD teacher
should present the most specific positive example (only
relevant variables set to 1), and then negative exam-
ples with each relevant variable alone set to 0.

In the STD protocol, the bound actually becomes 1
[Zilles et al., 2011]. The optimal STD strategy is to
show the positive example from the TD case because
the learner can infer all of the other negative exam-
ples. These results provide intuition about how pre-
conditions or conditional effects can be taught in the
sequential setting, a topic we return to in Section 5.3.

4.2 Coin Learning

One of the fundamental noisy hypothesis classes in
model-based RL is the Bernoulli distribution learned
through observation outcomes, (i.e. determining the
bias (p∗) of a coin by observing flips). In the NTD
case, because the teacher has to provide samples that
may be interpreted by any type of consistent learner,
the following strategy produces the optimal teaching
set with high probability.

Theorem 1. In the NTD setting, the proper teaching
strategy is to collect m = H(ε, δ) = 1

2ε2 ln( 2
δ ) samples

of the Bernoulli distribution and then say stop.

Proof. This strategy produces enough samples for
learners that requires m samples before they make any
predictions (e.g. KWIK learners [Li et al., 2011]). Sup-
pose a learner existed that made inaccurate (> ε er-
ror) predictions with probability > δ after seeing these
samples with empirical mean p̂. Then by Definition 4
this learner would be inconsistent because Hoeffding’s
inequality states Pr[|p̂− p∗| > ε] < δ.

This is not surprising since this is also the sample com-
plexity as an autonomous coin learner [Li et al., 2011].
However, in NSTD, the teacher has a significant im-
pact. The following two theorems lay out (1) the rea-
soning that leads to the different behavior and (2) the
sample complexity of coin learning in this protocol.

Theorem 2. The general NSTD teaching policy for
teaching the probability of a weighted coin is to flip the
coin at most H(ε, δ) times, but the teacher can stop
building the collection whenever the empirical mean p̂
of the coin’s bias is within ε/2 of the true probability.

Proof. After processing a teaching collection of some
size m, a learner can construct a confidence interval
(using Hoeffding’s inequality), denoting the upper and
lower limits of p∗ (the true probability of heads) with

probability 1 − δ. We call this region the consistent
region and the hypotheses outside of this region are
deemed inconsistent. In addition, we can define the
empirical mean p̂ =

∑m
i=1 yi/m and a region [p̂− ε

2 , p̂+
ε
2 ] that we call the instantaneous region.

In NTD (NSTD0) we just saw the teacher’s only re-
course is to provide m = H(ε, δ) samples. For NSTD1,
where the learner is aware it is being taught, suppose
the teacher presents a collection of size m′ < m to the
learner. If p∗ is in the inconsistent region, then the la-
bel set has probability < δ, so the teacher was correct
in stopping early. If p∗ was in the consistent region
but not in the instantaneous region, then the teacher
would not have stopped construction, because treating
this as a consistent subcollection will not guarantee the
learner picks a distribution within ε of p∗. Therefore,
in the case where the teacher stops the construction
while the consistent region is still larger than the in-
stantaneous region, the teacher’s current collection is
a consistent subcollection of a possible NTD collec-
tion and the learner can pick any hypothesis from the
instantaneous region and be correct.

We will now prove that the expected time for teaching
a distribution in the NSTD framework is significantly
smaller than the standard Hoeffding bound (H(ε, δ))
that determines the number of samples needed to learn
in the NTD protocol. We believe the result is interest-
ing in its own right as it describes a useful fact about
the expected time the empirical average needs to first
hit an interval of interest centered at the true expected
value of a random variable.

The key technique we will use is formulating the evo-
lution of the empirical average as a random walk and
reducing the problem of hitting the desired interval to
the problem of computing the mean first passage time
through a fixed barrier. The models we introduced so
far use Bernoulli as the standard example of learning
a noisy concept. In the interest of technical brevity,
we will actually prove the result for the case where
the noise model is a Normal distribution. The reason
is that the proof is more insightful for a continuous
distribution and it is known in the literature [Redner,
2001; Feller, 1968] that the first passage time proper-
ties in the continuous case approximate the discrete
version well.

Theorem 3. Given a Normal distribution with un-
known mean p, and the ability to sample from it, the
expected number of samples a teacher needs to teach p
in the NSTD protocol scales with O( 1

ε ) (the variance
is considered known).

Proof. The above theorem statement is equivalent to
stating that the expected first time the empirical av-
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erage of a sequence of i.i.d. samples from a D =
Normal(p, 1) distribution hits the interval [p−ε, p+ε]
is O( 1

ε ). Let Xi, i = 1, 2, ... be i.i.d. samples from dis-
tribution D and let St =

∑
i=1..tXi be a random walk

on R (with step values sampled from D). The empiri-
cal average at any time t > 0 is of course X̂t = St

t . Let
Yi = Xi − p (thus Yi ∼ Normal(0, 1)) and let Wt =∑
i=1..t Yi. We can thus write St = pt+Wt,∀t > 0.

Proving a bound on the expected time it takes X̂t to
first hit interval [p − ε, p + ε] is equivalent to showing
a bound on the expected time it takes the random
walk St to hit the dynamic interval [pt − εt, pt + εt].
Let At = pt + εt be a process that encodes the time
evolution of the upper bound of the dynamic interval.

We will first focus on the expected time it takes for
the random walk to first be inside the interval from
the perspective of the upper bound. Let Bt = At −
St = εt−Wt = εt+Wt where the last equality follows
from Wt being a symmetric stochastic process around
0. Since we are looking for the expected time t that
At first becomes larger than St, this is equivalent to
asking what is the expected first time that Bt hits the
origin if it first starts on the negative side (if it starts
on the positive side, this first time will be 1).

We will now approximate the discrete-time stochastic
process Bt by a continuous-time process with the goal
of getting a qualitative result about the expected mean
time. This technique is commonly used to study first
passage-time properties of discrete time random pro-
cesses (see for instance the Integrate-and-Fire Neuron
model in section 4.2 in [Redner, 2001]). Viewed from
this perspective, Bt = εt+Wt is actually the standard
Brownian motion with positive drift ε. But it is well
known that the mean first passage time over a fixed
positive constant α for a Brownian motion with posi-
tive drift ε is governed by the Inverse Gaussian Dis-
tribution (IG) with parameters IG(αε , α

2) [Chhikara
and Folks, 1989]. The expected value of the IG distri-
bution is α

ε and if we take α = 1 we get that the ex-
pected first time that Bt will become larger that 1 is 1

ε .
Since the expected time to first hit the origin if started
on the negative side is naturally upper bounded by the
expected time to hit 1, we get a bound on the expected
time At needs to first ’catch up’ with the random walk
St.

Symmetrically we can show that the expected time
for St to become larger than the lower bound of the
dynamic interval (the process pt− εr) is also 1

ε .

Figure 1a shows empirical validation of this result in
the coin-flipping case for increasingly smaller values of
ε (1000 runs, δ = .05). While NTD grows quadrati-
cally in accordance with H(ε, δ), the NSTD expected

time grows only linearly in 1
ε .

4.3 k-armed Bandits

A natural extension of coin-learning is teaching a com-
plete model in the k-armed bandit case [Fong, 1995],
that is teaching the expected payout of all k arms,
each of which may have a different noisy (but bounded
[0, 1]) payout function. We note again that we are
teaching the full model here, not the optimal policy.
Each arm can be treated as a Bernoulli distribution
that needs to be learned within ε with probability δ/k
to ensure total failure probability at most δ . Note ε
does not change with k because each arm corresponds
to a different input parameter x (a different action).
Hence for k arms, the NTD solution is to pull each arm
H(ε, δ/k) times, giving us an NTD bound of k

2ε2 ln( 2k
δ ).

For NSTD, the teacher can again pull the arms in some
ordering, but can stop pulling an arm when it has ei-
ther (1) been pulled m = H(ε, δ/k) times or (2) its
empirical average is within ε/2 of its true payout. The
expected savings over NTD is a factor of 1

ε for each
arm, so the speedup effect is actually multiplied across
the arms. Figure 1b illustrates this in the bandit set-
ting for increasing k (1000 runs, ε = 1/45, δ = .05).
The algorithms just described are labeled NTD-IND
and NSTD-IND (for “individual” pulls). The growth
of NTD-IND is actually kln(k) but quickly diverges
from the other approaches here, showing the increas-
ingly better (than NTD-IND) expected performance
for NSTD-IND.

While not applicable in RL, the complexity of teaching
by pulling all of the arms in parallel will be informa-
tive in the next section, so we investigate it here. The
goal is still to learn each arm’s expected payout with
ε-accuracy, but the teacher has access to an action that
pulls all of the arms at once and reports their individ-
ual payouts. NTD in this case (NTD-PAR in Figure
1b) performs H(ε, δ/k) parallel pulls, saving a factor of
k over the individual NTD above. But in NSTD, the
parallel pulls introduce a tension between the speedup
from parallelizing and the previously noted speedup
from being able to stop pulling an arm when its em-
pirical mean is close to the true mean. Now if some
arms are close to their empirical mean but others are
not, a parallel pull may disturb the empirical means of
the “learned” arms. Figure 1b shows the NSTD-PAR
strategy that is forced to either perform a parallel pull
or stop, which it only does when all the empirical pay-
outs are within ε/2 of their true payout or have been
pulled H(ε, δ/k) times. For small k, the sequential
pulls are actually more efficient, but for a larger num-
ber of arms, the parallel pulls have a significant benefit
despite the danger of “unlearning” an arm.
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Figure 1: TD and STD comparisons for (a) coin flipping, (b) k-armed bandits and (c) the Bitflip DBN

4.4 Dynamic Bayesian Networks

We now consider Dynamic Bayesian Networks [Dean
and Kanazawa, 1989], or DBNs, where multiple noisy
factors are learned in parallel. This case is similar
to the parallel bandit case but here because the to-
tal error (ε) is an aggregate of the subproblem errors,
the NSTD strategy will be dramatically different. A
Dynamic Bayesian Network is composed of n discrete
valued factors. At every timestep, the next value for
factor xi is determined by a probability distribution
P (xi|ρ(xi)) where ρ maps the factor to its k “parent
factors”. We assume here that k = O(1) and we only
consider the binary case (all factors are either 0 or 1)
as the bounds generalize to ordinal values from 1 to D
with extra terms including Dk+1 (see [Li et al., 2011]).

Mapping this back to our learning protocols, the input
space is all possible configurations of the DBN factors
and predictions should be made on the distribution
of the factors at the next timestep. As a simple ex-
ample, consider the case where every variable is the
parent of only one other variable. Assume that the
structure is known and the DBN is deterministic, so
all that has to be learned is the relationship between
each parent value and its child value. In the traditional
mistake bound setting, where the teacher has no con-
trol over the inputs, the worst case learning bound is
O(n), because each example after the first one could
show the same parent (input) pattern as the first, ex-
cept with a single bit flipped. Because of the connec-
tion between mistake bound learnability and teaching
by demonstration [Walsh et al., 2010] this is the worst-
case bound for teaching this type of DBN by demon-
stration of a static policy. However, with our dynamic
teaching protocols we can do much better. Specifically,
in the TD case the sample complexity is O(1), because
the teacher can pick the parent values. In the first ex-
ample, the teacher can pick an arbitrary setting of the
factors and show the result. Then all it needs to do is
show the complement of this bit string in the second

example. Thus, deterministic binary DBNs with k = 1
are teachable with 2 examples. The STD bound is the
same in this case and the generalization to multiple
parents adds only a constant term.

In the stochastic setting, the consequences of teaching
the factor probabilities in parallel are more compli-
cated than the deterministic case. Unlike the bandit
case, the total error in predicting the next state prob-
ability is based on the aggregate error (total variation
by Definition 4) of all the subproblems. So each factor
needs to be predicted with ε/n accuracy. This means
that for an NTD teacher, we need H(ε/n, δ/nk) =

O(n
2

ε2 kln(nδ )) samples to learn the probabilities.

The stochastic setting is even more complicated in the
NSTD case, where once again there is competition be-
tween the desire to teach factor probabilities in parallel
and the desire to stop showing certain conditions once
they have been taught. The parallel and individual
teaching styles in the bandit case manifest themselves
here in the following ways. NSTD-PAR tries to teach
multiple factors at once, using the same “complement”
input selection as NTD but can stop providing sam-
ples whenever all of the factors are ε/2n accurate. The
worst case time for this approach is bounded by NTD’s
bound above but again on expectation this will usually
perform better than NTD. However, if one wishes to
minimize expected teaching time when there is back-
ground knowledge that says certain conditions are al-
ready known, a variant of the NSTD-IND strategy is
likely better. In NSTD-IND, the teacher presents in-
puts with only one unknown condition for a single fac-
tor, and all other factors have their parent values set
to configurations matching the background knowledge.
As in the bandit case, this avoids “unteaching” but
sacrifices parallelization. Once the factor outcome be-
ing taught has its empirical distribution within ε/2n
of the true probability, the algorithm moves on to the
next condition. The worst-case time for NSTD-IND
is O(n

3

ε2 kln(nδ )), worse than TD and NSTD-PAR, but

868



its expected time is only O(n
2

ε kln(nδ )) since it targets
individual conditions.

An empirical demonstration of these teaching strate-
gies is shown in Figure 1c for a DBN representation of
a noisy Bitflip domain [Givan et al., 2003]. The input
for this DBN is simply a bit string of length n and there
are two actions, one to flip bit 0 and one to shift each
bit up (with a 0 always incoming to bit 0). However,
the effect of the shift is noisy for each bit: with prob-
ability pi the shift to bit i is successful, and otherwise
the bit retains the same value it currently has. Figure
1c shows the number of steps needed to teach all of
the pi’s for ε = .3 (aggregate error) and δ = .05 for the
three teaching protocols described above (500 runs).
NTD teaches by setting the inputs (current state) to
an alternating string of 0’s and 1’s ending in a one,
so that each bit’s shift probability is observed on ev-
ery step (ensuring parallel teaching). NSTD-PAR uses
the same alternating bit string for every example, but
stops building the collection if all of the pi values are
within ε/2n of their true value. NSTD-IND sets up
the state to have all 1’s from bit 0 up to the highest
bit it has not yet taught, and then all 0′s above that.
This teaches the probability of shifting each bit one at
a time with deterministic outcomes for the other bits.
We see here that unlike the bandit case, NSTD-IND
dominates the other strategies, even as the number of
bits increases. This is because the continually shrink-
ing accuracy requirements increase the chances of the
parallel strategy unteaching a factor. However, NSTD-
PAR still outperforms NTD, so in situations where no
background knowledge is available (for NSTD-IND)
and the teacher and learner are aware of each other,
this may be the preferred strategy.

Finally, we note Bitflip also showcases the benefit of
teaching versus demonstration from an optimal policy.
Consider Bitflip with a reward only when all bits are
1. The optimal policy is to flip if bit 0 is a 0, other-
wise shift. However, this strategy produces very few
useful samples because once a bit is turned to 1 in an
episode, it will never be a 0 (even if the shift fails the
bit retains its current value). Even if pi = .5, the ex-
pected number of useful samples in an episode for bit i
is only 2, and the probability of more samples drops off
exponentially. So the optimal performance policy will
almost always take far more steps to teach the domain
than any of the teaching protocols described above.

5 Teaching in an MDP

Above, we established the teachability of several RL
concept classes in a supervised setting. However, we
are interested in teachers acting out lessons in an MDP,
where a transition function T : X,A 7→ Pr[X] governs

agent movement, and therefore the teacher may not
have access to all possible states at every timestep.
We now extend the previously defined frameworks to
the sequential setting, forcing them to handle teaching
sequences drawn from an MDP. We then describe the
teaching process in an MDP as a planning problem in
its own right and present and demonstrate a heuristic
solution based on our supervised learning results.

5.1 Sequential Teaching Frameworks

In sequential domains, the teacher may not be able
to access all possible states at every timestep, but in-
stead may have to take multiple steps (each of which
will be seen by the learner) to reach its target teaching
state. Hence, we now adapt the TD and STD defini-
tions to consider sequences of states and actions rather
than randomly accessed inputs and labels. More for-
mally, we need each protocol to handle the following
constrained teaching sequences.

Definition 7. An MDP teaching sequence
MTS(c, C,M) for MDP M = 〈X,A, T,R, γ〉
and c : X,A 7→ Pr[X] or c : X,A 7→ < is a sequence
〈〈x0a0r0〉...〈xT , aT , rT 〉〉 with each 〈xi, ai, ri, xi+1〉
reachable by taking action ai from xi in M , starting
from x0 = s0. After witnessing this sequence, the ĉ
learned by a consistent learner must either be c (de-
terministic) or distributionally consistent (Definition
4) to c with high probability (stochastic concepts).

In the definition above, c is a concept that may be part
of the transition or reward function (or both) of M .
For TD, instead of considering a set of instances and
labels, one now needs to consider a sequence of states
and actions drawn from M based on the teacher’s
potentially non-stationary policy π. We denote the
distribution of such sequences as MTSπ(c, C,M).
Formally, we define Sequential Teaching Dimension
(TDS) in an MDP as:

Definition 8. The sequential teaching dimension
TDS(C,M) of concept class C being taught in MDP
M with accuracy parameters ε and δ is the maximum
of the minimum expected length of an MDP teach-
ing sequence for any individual concept in the class,
TDS(C,M) = maxc minπ E[MTSπ(c, C,M)], where
π is an arbitrary, potentially non-stationary, policy
(any possible teaching algorithm).

This definition is very general and using it construc-
tively in the full stochastic case is a topic of future
work, but there are cases where the optimal dynamic
teaching policy is clear. For instance, when the tran-
sition function is deterministic (including cases where
we are teaching a noisy reward function), the teacher
simply needs to find the shortest-length teaching se-
quence starting from s0 that contains enough samples
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to teach c to any consistent learner. Also, heuristic so-
lutions for approximating optimal teaching defined in
this manner (e.g. Algorithm 1) can successfully teach
in both the deterministic and stochastic setting.

The conversion of Zille’s STD protocol to the sequen-
tial setting is even more complicated because in STD
the learner makes inferences about why the teacher is
showing certain instances, but now not every instance
is accessible at every step. The main intuition we can
use to resolve these difficulties in the case where T
is deterministic is to instead apply the recursive rea-
soning to the teaching sequences defined above. Intu-
itively, this should allow the learner to reason that a
teacher is trying to teach a concept c when the teacher
chooses a path that leads to a state consistent with c
instead of other paths that would teach different con-
cepts. This saves the teacher from walking the entire
path. We can formalize this using the notion of an
example subsequence and prefix.

Definition 9. An example subsequence Σ′ of example
sequence Σ is a contiguous series of inputs and labels
〈xi, yi...xj ...yj〉 for i ≥ 0, j ≤ T . A prefix (Σ′ <pre Σ)
is a subsequence with i = 0 and a suffix is a subse-
quence with j = T .

Using this definition, we can replace previous defini-
tions of subsets and collections in STD and NSTD and
define a SubSequence Teaching Dimension (SSTD) in
a natural way for MDPs with a deterministic transi-
tion function (see the appendix).

As a concrete example of the more powerful reasoning
about sequences in SSTD and NSSTD (its noisy ver-
sion), consider coin learning, but instead of predicting
a probability, assume the learner only needs to pre-
dict whether the coin is biased more towards heads or
tails (assuming p∗ 6= 0.5). Without loss of generality
assume the coin is biased towards tails but comes up
heads on the first trial. In NSTD, because the order-
ing of examples is hidden to the learner (Def. 3), we
need to keep flipping the coin until we have observed
more tails than heads. But in NSSTD we only need
one more flip and then the teacher can end teaching,
no matter what the outcome of the second flip (and
even though the empirical distribution will not indi-
cate a tails bias). This is because if the coin was biased
heads the teacher would not have made the second flip;
it would have stopped after the first heads observation.
Similar reasoning can be done when predicting p∗ as
every choice to flip indicates p∗ is not in the previous
step’s instantaneous region (see Theorem 2).

5.2 Practical Teaching in MDPs

If teaching is to be done in an MDP, the best policy will
directly optimize the TDS or SSTD criteria described

above. However, even for TDS in the deterministic
setting, the problem of determining the exact optimal
teaching sequence may be intractable.

Theorem 4. Determining the optimal teaching se-
quence for a concept in a deterministic MDP under
the conditions of Definition 8 is NP-Hard.

Proof. We can encode the graph of a Traveling Sales-
man Problem (TSP) with integer edge costs as a deter-
ministic MDP with unit costs by adding in the same
number of “dummy” states between cities as their dis-
tance in the original graph. Then consider teaching a
reward function that is known to be 0 at every non-city
state but has an unknown value at each of the cities.
The shortest tour for teaching such a reward function
provides a solution to the original TSP.

This is in line with previous results on the intractabil-
ity of determining teaching sets in the supervised set-
ting [Servedio, 2001]. However, tractable approxi-
mations such as Algorithm 1 are certainly possible.
There we perform two approximations: first we use a
greedy approximation of the supervised (random ac-
cess) teaching collection construction to find a set of
instances that will teach the target concept and then
greedily construct a tour of all instances in this set.

Algorithm 1 Heuristic teaching in an MDP

input: Concept c ∈ C to be taught, MDP M with
start state s0, Learning protocol P
TS(c, C) = ∅
R = 〈s, a, r, s′〉 ∈M reachable from s0
while TS(c, C) is not a teaching set for c in P do
X = 〈s, a, r, s′〉 ∈ R and /∈ TS(c, C) that teaches
the most parameters of c
TS(c, C) = {X} ∪ TS(c, C)

while TS(c, C) 6= ∅ do
X ′ = closestX ∈ TS(c, C) to current state, reach-
able fastest with policy π
Demonstrate π until X ′ is demonstrated
TS(c, C) = TS(c, C)\X ′

In the SSTD setting, the first approximation by itself
could be problematic because the inference process is
based on optimality assumptions shared by the learner
and teacher. If the teacher uses a suboptimal teaching
sequence, then the learner can make the wrong infer-
ence. So for extending SSTD or NSSTD to the practi-
cal setting, any approximations used by the teacher to
construct the teaching set or the touring policy need
to be shared between the teacher and the learner, al-
lowing them to simulate each other’s behavior. The
motivation behind this sharing is to engender natu-
ral teacher-student interactions by having the learner
and teacher share a set of common assumptions about
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one another (such as optimality or consistency in the
original STD and TD).

Finally, we consider noise in the transition function for
states and actions that are not part of the target con-
cept being taught. In that case, we would ideally like
to create a tour of instances with the shortest stochas-
tic path length (in expectation), but this is certainly
as hard as the deterministic touring case. However,
we can modify the heuristic algorithm used above to
simply find the state with the shortest stochastic path
and then focus on reaching that state. This allows the
heuristic to teach concepts in arbitrary MDPs.

5.3 An Example in the Taxi Domain

To demonstrate our heuristic teaching algorithm
we conducted experiments with the Object-Oriented
MDP encoding of a Taxi Domain [Diuk et al., 2008].
This environment consists of a square grid (5 by 5 for
us) and a controllable taxi with actions {up, down,
left, right}. There are also several landmarks in the
grid, one of which initially contains a passenger and
another of which is the passenger’s destination. The
taxi’s goal is to go to the passenger, execute its pickup
action, transport her to the destination, and then ex-
ecute dropoff. In the OOMDP encoding of this do-
main, every state has a set of predicates (e.g. Wall-
ToRight(taxi)) associated with it, and actions have pa-
rameters stipulating which objects are in its scope(e.g.
pickup(T,P,L) for taxi, passenger and landmark). The
predicates in this domain include indicators of walls
and clearness in every direction from an object, as
well as predicates indicating when two objects are in
the same square and when the passenger is in the
taxi. Also, each action has a conjunction over the
variablized predicates that serves as a pre-condition for
this action. We focus on teaching these pre-conditions.

We perform our experiments in a deterministic Taxi
domain, starting with a modified TD-style conjunc-
tion teacher as the set constructor for Algorithm 1.
The modification to the conjunction learner from Sec-
tion 4.1 is that instead of using the most specific posi-
tive example, it may have to use one that contains ir-
relevant predicates (like WallNorth for putDown) be-
cause of state-space restrictions. The teacher must
show more positive examples to discredit these irrel-
evant predicates in addition to the negative examples
(action failures) to indicate the relevant variables.

To demonstrate the benefits of STD, we used an ap-
proximation of the STD behavior described in Section
4.1 that shows the most specific state it can, then
shows positive examples for all of the irrelevant vari-
ables and then stops demonstrating (since the learner
can infer all other variables are relevant). Table 5.3

Table 1: Teaching steps for selected action sets in taxi

Action(s) TD STD Approximation
pickup 20 15

pickup / putdown 23 17
movement 37 27

all 63 45

shows the number of steps needed to fully teach the
pre-conditions of several sets of actions with all others
being known. The agent in all cases starts from the
middle of the grid and there are 2 landmarks in the
bottom-left and top-right corners.

Several interesting behaviors were observed, including
the teacher using the landmarks in the corners as areas
to gather many positive examples (because the irrele-
vant predicates can be dispelled en masse there). The
teacher also made use of the lack of type constraints
on most of the variables to create negative instances
(where the pre-conditions failed) by swapping the or-
der of arguments to indicate specific relations were
relevant. These results compare favorably to previ-
ous result on teaching taxi conditions by static-policy
demonstration [Walsh et al., 2010] but static policy
approaches can be made to look arbitrarily bad in this
situation because they will not teach subtle aspects of
the domain (like how the corners work) unless they are
actually on the way to the goal. By contrast, our ap-
proach ignores the current goal and focuses on being
the best teacher, not the best performer.

We also experimented with a sequential Bitflip domain
(Section 4.4) where all but two of the bits (the mid-
dle and one from the end) had deterministic shift out-
comes. Our experiments again showed the approxi-
mations using NSTD significantly outperforming those
using NTD. The average steps to teach the 10 bit
version were 362.35 (NSTD-Par), 869.61 (NSTD-IND)
and 14610.41 (NTD-PAR). The parallel versions were
all more efficient despite flipping every other action.

6 Conclusions

We have extended two supervised learning frameworks
(TD and STD) to handle noisy observations and se-
quential data. These frameworks provide efficient
ways to teach several RL classes, including DBNs and
Bernoulli distributions. We also presented a practical
heuristic algorithm for leveraging TD and STD to per-
form efficient teaching in an MDP and demonstrated
its effectiveness in the taxi domain. Unlike previous
efforts at teaching domains with a static policy, these
new algorithms actually target the individual parame-
ters of a domain in a task-independent manner, leading
to agents that truly teach, rather than just show.
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Abstract

In practical machine learning systems, graph
based data representation has been widely
used in various learning paradigms, rang-
ing from unsupervised clustering to super-
vised classification. Besides those applica-
tions with natural graph or network structure
data, such as social network analysis and re-
lational learning, many other applications of-
ten involve a critical step in converting data
vectors to an adjacency graph. In particular,
a sparse subgraph extracted from the original
graph is often required due to both theoretic
and practical needs. Previous study clearly
shows that the performance of different learn-
ing algorithms, e.g., clustering and classifi-
cation, benefits from such sparse subgraphs
with balanced node connectivity. However,
the existing graph construction methods are
either computationally expensive or with un-
satisfactory performance. In this paper, we
utilize a scalable method called auction algo-
rithm and its parallel extension to recover a
sparse yet nearly balanced subgraph with sig-
nificantly reduced computational cost. Em-
pirical study and comparison with the state-
of-art approaches clearly demonstrate the su-
periority of the proposed method in both ef-
ficiency and accuracy.

1 INTRODUCTION

Graph based data representation treats data points as
graph nodes and builds pairwise edges between these
nodes which are often weighted by the similarity or
correlations between the corresponding data samples.
In the past decade, graph based data representation
has become very popular and widely used in many ma-
chine learning algorithms due to both practical needs

and theoretical advantage. First, under many practi-
cal situations, the data come in a natural way of graph
representation, where the links or connections between
items can be treated as directed or undirected edges.
Typical examples include social networks, the Inter-
net, and citations networks [13, 21]. Second, for the
conventional vector space based data representation, a
data graph can be easily generated using pre-defined
similarity or correlation measurement.

Given the popularity of data graph representation,
many graph based machine learning algorithms have
been developed, including graph based clustering and
semi-supervised learning algorithms. For instance,
representative graph based clustering approaches in-
clude those formulated as a graph cut problem [16, 20].
In addition, graph has also been integrated into semi-
supervised learning paradigm, resulting in a wide
range of approaches, such as graph Laplacian regular-
ization framework [2, 23, 25] and random walk based
methods [1, 22]. Other popular methods include graph
based ranking algorithms [17, 24]. In many real ap-
plications and systems, graph based approaches have
shown empirical success, especially for those with ag-
nostic setting and given no prior knowledge of the data
distributions.

As indicated in [12, 15], constructing a suitable data
graph is the vital step for ensuring the learning perfor-
mance. The sparse structure of the constructed graph
is desired for learning algorithms to remain efficiency
to memory usage and robustness to noisy samples.
Given an adjacency graph, a typical way to recover
a sparse graph without losing the global structure of
the data is to build a neighborhood graph. The ob-
jective is to connect each data point with its near-
est neighbors and prune all other connections. How-
ever, since the nearest neighborhood method prune the
edges through a greedy process, it can only produce
an asymmetric graph with some adhoc symmetriza-
tion processes. As a result, the constructed neighbor-
hood graph is often irregular and imbalanced, where
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the learning performance could be significantly de-
graded [12]. Therefore, this drawback of nearest neigh-
bor method motivated one to consider matching tech-
nique, such as b-matching, to build a balanced graph
structure [11, 12]. Instead of achieving symmetriza-
tion by post-processing, b-matching sets the symme-
try as additional constraints and directly extracts a
symmetric solution. But this modification imposes
much high computation and memory cost and the one
of the known fast approximated solution using belief
propagation has the space complexity of O(n) and the
time complexity O(n2.5) [10], where n is the number
of graph nodes (refer to Table 1).

Considering the trade off between computational effi-
ciency and performance, in this paper, we propose a
fast and scalable solution for constructing nearly bal-
anced graphs using the auction algorithm proposed
in [3]. In order to remain performance superiority
and reduce computation cost, our method tends to
extract an approximately balanced graph though pre-
serving the regularity as much as possible. We show
that this method has the space complexity O(n) and
time complexity O(|E| ·max |aij |/ϵ), where max |aij |/ϵ
is a constant determined by the data and the learn-
ing parameter ϵ. It is much less expensive than the
existing regular graph construction methods, e.g. b-
matching technique. In addition, the auction algo-
rithm based graph construction is naturally paralleliz-
able and therein the computational efficiency can be
further improved using multiple processes. We pro-
vide extensive experiments and comparison study with
the state-of-the-arts on both synthetic and real bench-
mark datasets. The experimental results clearly show
that the graphs created by parallel auction algorithm
(PAA) provide superior performance than neighbor-
hood graphs for different machine learning algorithms.
Although PAA graphs have slightly lower quality than
b-matching graphs, we observe that PAA method re-
duces the computational cost by hundreds of times
than b-matching method. Therefore, the PAA method
is very suitable for handling large scale applications
with massive data graphs.

The remainder of this paper is organized as follows. In
Section 2, we give a brief introduction of related work
on graph construction process. A new graph construc-
tion and sparsification method using a parallel auction
algorithm is presented in Section 3. The experiments
are reported in Section 4 followed by conclusions and
discussions in Section 5.

2 RELATED WORKS

Although graph based machine learning methods have
been extensively studied and explored, there have

been limited efforts for building effective data graphs
in the community. Although some recent methods
use sampling techniques to approximate large scale
graphs [14], it still remains as a challenging issue to
efficiently construct large scale graphs with good qual-
ities, such as sparsity and regularity. In this section,
we will provide a brief introduction about related work
for graph construction and then motivate our proposed
method.

Given a data set X, graph construction aims in con-
verting the data to a weighted graph G = {X,E,W}
where graph nodes are the samples and W ∈ Rn×n is
a weight matrix of edges E. As summarized in [12],
two important steps for graph constructions are spar-
sifying the adjacency matrix A = {aij} ∈ Rn×n and
assigning weights to edges. In many practical settings,
the adjacency matrix is computed using a similarity
function for all pairs of nodes, i.e. aij = sim(xi,xj).
For other applications, such as social network analysis
and relational learning, the adjacency or connection
matrix A might be given in a natural way without the
above process of computing pair-wise similarity. In
the second step, graph sparsification tries to recover a
sparse binary matrix B = {bij} ∈ Bn×n to preserve the
global structure of data using local information. The
final edge matrix can be easily derived as W = B •A,
where the symbol • indicates element-wise multipli-
cation. Such an extract sparse subgraph often leads
better learning performance and requires less storage
and computation cost [11, 12].

The most popular method for constructing a sparse
graph is the nearest neighbor (NN) approach, includ-
ing different variants such as k-nearest neighbor and
ϵ-nearest neighbor methods. Since ϵ-nearest neigh-
bor often generate fragile subgraphs and does not
provide satisfactory performance, kNN graph remains
more popular in many applications [15]. Briefly speak-
ing, kNN graph construction performs a greedy search
process to select the edges with the most significant
weights for each node, and remove all the other in-
significant ones. The objective of kNN approach in-
deed solves the following maximization problem

max
bij

∑

i

∑

j

bijaij

s.t.
∑

j

bij = k,

bii = 0, bij ∈ {0, 1},∀i, j = 1, · · · , n .

(1)

Since the greedy search for k nearest neighbors does
not guarantee to produce symmetric B, it usually
needs some postprocessing to achieve symmetrization
by max(B,B⊤) or min(B,B⊤). However, this adhoc
symmetrization often leads to imbalanced connectivity
for nodes, which could seriously degrade the learning
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Table 1: Comparison of the time and space complexity for different graph construction approaches. Assume
the input adjacency graph has n nodes and |E| edges. The compared methods are: Loopy Belief Propagation
(LBP) [9], Sufficient Selection Belief Propagation (SSBP) [10], and the auction algorithm.

Method Time Space

LBP Method O(n|E|) O(n + |E|)
SSBP Method O(n2.5) O(n)

Nearest Neighbor Method O(n2) O(1)

Auction Method O(|E| · max |aij |/ϵ) O(n)

performance, as observed in [12].

As a valuable alternative for extracting sparse graph
structure, weighted b-matching technique [18] has been
applied to build graph with balanced node connectiv-
ity. Similarly to the objective of kNN approach, b-
matching recovers a sparse graph with the maximized
edge weights. Furthermore, b-matching enforces the
symmetry of connectivity through directly imposing a
set of constraints bij = bji. Essentially, b-matching
is a generalized version of the well-known linear as-
signment problem, which can be solved by Hungar-
ian method with a cubic complexity O(n3) (n = |X|)
in time. Various methods have been proposed to
solve b-matching problem with less memory and time
cost, including the reduction based method [8] and be-
lief propagation based approaches [9, 10], for which
the computational complexity is summarized in Ta-
ble 1. Although b-matching method yields clear ad-
vantage for different machine learning algorithms, in-
cluding spectral clustering and semi-supervised clas-
sification [11, 12], it is a much more expensive pro-
cedure than the intuitive kNN method. Due to both
time and memory constraints, the existing b-matching
based graph construction is infeasible for large scale
datasets.

3 AUCTION ALGORITHM FOR
GRAPH CONSTRUCTION

In this section, we describe the procedure to utilize
an auction algorithm to identify bn significant edges
from the given bipartite graph corresponding to the
adjacency matrix A. In particular, each node is con-
nected with at most b edges. If given an arbitrary
graph, it is straightforward to convert it to a bipartite
graph though creating a shadow node for each graph
node and only connect the original graph nodes to the
shadow nodes. In order to utilize distributed comput-
ing systems to process massive data graphs, we also
describe the parallelization technique for the proposed
graph construction method.

3.1 Auction Algorithm for Linear
Assignment

Here, we first describe the solution for a single-edge
matching problem using an auction algorithm, and
then provide general extensions. For a standard max-
imum 1-matching problem (also known as a linear as-
signment problem) over a bipartite graph with a non-
negative weight matrix A, the objective can be written
as:

max
B

tr(A⊤B) (2)

s.t. B1⃗T = 1⃗, BT 1⃗ = 1⃗, B ∈ Bn×n,

where 1⃗ = (1, 1, · · · , 1)T . This linear program can be
interpreted as selecting a permutation matrix B, so
that after permutation of A, the sum of entries on the
diagonal is maximized. The edges corresponding to
the permutation matrix B is as known as a matching
in A. Thus, the solution of this program can be used
to sparsify A with constraints of regularity. To gen-
eralize the standard linear assignment problem to the
objective of extracting a balanced graph where each
node connects to b edges, we can simply replace 1⃗ with
b⃗ = b · 1⃗. However, this solution for such a b-matching
problem can be approximated by solving the above
linear assignment problem for b/2 times and removing
the selected edges after each iteration.

As discussed earlier, we seek fast and scalable solutions
for graph sparsification due to the demand of process-
ing large scale graphs in many domains. Conventional
approach for solving Eq. 2 is based on increasing aug-
menting paths, which leads to low concurrency and
limited scalability [3, 19]. Thus, we propose to use
the auction algorithm introduced by Bertsekas in [3].
Since the constrained problem in Eq. 2 can be con-
verted into a dual form, the auction algorithm deals
with the above linear programming by solving its dual
problem. In particular, we are solving the following
dual problem of the original primal linear program:

min
p,π

1⃗T p + 1⃗T π (3)

s.t. 1⃗pT + π1⃗T ≥ A,
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where p = (p1, p2, · · · , pn)T and π = (π1, π2, · · · , πn)T

are known as the dual vectors. The constraints
1⃗pT + π1⃗T ≥ A indicate the element wise relation-
ship between the matrices 1⃗pT + π1⃗T and A, i.e.
(⃗1pT + π1⃗T )ij ≥ aij , i, j = 1, · · · , n. The auction algo-
rithm computes the dual variables through an iterative
auction process. Intuitively, we view each row i as a
buyer and each column j as an object; aij is the benefit
of object j to buyer i; pj is the price of object j (ini-
tialized to 0 at the beginning); πi is the profit for buyer
i, defined as (aij − pj), in case object j is assigned to
i. The auction algorithm proceeds as follows: Each
buyer i bids for an adjacent object j that offers the
highest profit, i.e., maxj∈adj(i)(aij − pj), where adj(i)
denotes the set of adjacent nodes of i. The bid is the
difference between the highest profit and the second
highest profit. An object j is assigned to the buyer
offering the highest bid, say buyer i. Thus, row i and
column j are matched and price pj is increased by the
bid. Price increment makes an object expensive for
competitors, so that they can choose other objects.
The above steps are repeated for all unmatched rows
until every row is matched or the matching does not
change.

The naive auction algorithm described above has a
defect caused by price war [3]. When the highest
and second highest profits are equal for some buyers,
the bid becomes 0 and the object price remains un-
changed. Therefore, buyers can indefinitely compete
for the same object without increasing its price. The
object will be alternately assigned to them and the
auction will not progress. To overcome this issue, a
small positive scalar ϵ is added to the price of an ob-
ject once it is assigned to a buyer. A smaller ϵ leads to
better accuracy; a greater ϵ results in an accelerated
auction process.

3.2 Auction for Graph Sparsification

The auction algorithm described in Section 3.1 selects
a single edge for each node while maximizing the total
weight of the selected edges. For selecting b edges,
there are two straightforward approaches to generalize
the auction. The first approach is to perform auction
multiple times. Every time the algorithm selects an
edge for each node, if exists, without having two edges
connect to the same node. The other approach is to
select up to b edges in each iteration process, following
the same criteria for edge selection. The details are
discussed in below.

Note that the above algorithm does not ensure that if
a node i connects to a shadow node j′, node j will also
connect to node i′. This can cause adverse impact on
graph regularity. We propose a heuristic strategy to
reduce such negative impact. When such inconsistence

Algorithm 1 Fast Graph Construction Using Parallel
Auction Algorithm

Graph partitioning: partition graph G into L
disjoint subgraphs {Gl}L

l=1 with weight matrices
{Al}L

l=1, where Al = {al
ij}

Initialization: Dual vectors p = 0⃗, initial π = 0⃗,
the set of selected edges M = ∅
while price keeps changing do

[1]. For each subgraph corresponding to the
weight matrix Al = {al

ij}, compute for nodes in
Xl that have not identified b edges:

jl
1 = arg max(al

ij − pl
j), ∀j ∈ adj(i)

......

jl
b+1 = arg max(al

ij − pl
j), ∀j ∈ adj(i), j ̸= j1, · · · jb

[2]. Remove earlier selected edges that conflict

M = M\{(i′, jl
t) ∈ M, ∀1 ≤ t ≤ b, i′ ∈ Xl}

[3]. Add current selected edges

M = M ∪ {(i, jl
t) ∈ M, ∀1 ≤ t ≤ b

[4]. Update price

pl
jl
t
= al

ijl
t
− al

ijl
t+1

+ pl
jl
t+1

+ ϵ,∀t = 1, · · · , b

[5]. Synchronize price globally pl
j = maxP

t=1 pt
j

end while

occurs, saying node j selects node ĩ′ instead of node i′,
we compare the percentile of edge (j, ĩ′) with respect
to all incident edges of j and the percentile of (i, j′)
with respect to all incident edges of i. By percentile,
we mean the index of the selected edge among all in-
cident edges sorted in descending order. We accept
the edge with smaller percentile while reject the other
one. The intuition that we select edges according to
the percentile instead of edge weight is that all inci-
dent edges for the boundary nodes in a graph can be
weighed much higher than even the lightest incident
edge of an internal node.

3.3 Parallelization

In this subsection, we discuss a parallelization strat-
egy of the auction algorithm for graph sparsifica-
tion. Given the weight matrix A of a bipartite graph,
we first partition A into L disjoint sub-matrices,
where each sub-matrix Al = {al

ij} is of size nl × n,∑L
l=1 nl = n. Therefore, sub-matrix Al is the

weight matrix of a bipartite subgraph Gl, which con-
tains disjoint node sets Xl and Yl. Although A
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Table 2: Average running time (seconds) on the synthetic bipartite and unipartite graphs using different methods
for constructing sparse graphs. The graphs have nodes from 100 to 2000 and the value of b is set as 10 uniformly.
The compared methods include Loopy Belief Propagation (LBP) [9], kNN, and the proposed parallel auction
algorithm (PAA).

n Bipartite Unipartite

|E| LBP kNN PAA |E| LBP kNN PAA

100 5 × 103 0.2 8 × 10−4 4 × 10−3 9.9 × 103 0.3 4 × 10−3 1.1 × 10−2

200 2 × 104 2.8 3 × 10−3 1.5 × 10−2 3.98 × 104 0.7 0.01 0.04

500 1.25 × 105 18.7 0.02 0.11 2.495 × 105 6.2 0.07 0.28

1000 5 × 105 37.9 0.11 0.53 9.99 × 105 23.2 0.39 1.26

2000 2 × 106 609.7 0.47 2.42 3.998 × 106 111.4 1.31 5.39

can also be partitioned by columns or into checker-
board structures [4], the above horizontal partitioning
along row direction is more natural since large scale
sparse graphs/matrices are often stored in the com-
press sparse rows format. After partitioning, we can
rewrite the linear assignment problem in Eq. 2 as:

max
L∑

l=1

∑

i∈Xl

∑

j∈Yl

aijbij (4)

s.t.
∑

j∈Yl

bij = 1, ∀i ∈ Xl, l = 1, · · · , L

L∑

l=1

∑

i∈Xl

bij = 1, ∀j ∈ Yl, bij ≥ 0, ∀i, j.

Eq. 4 implies a straightforward parallelization of auc-
tion algorithm for graph sparsification. In Algorithm
chart 1, we summarize the major steps of parallel auc-
tion for graph sparsification. Here we set the initial
values for p⃗ and π⃗ are both 0⃗. The maximum number
of edges allowed for a node is denoted by b and the
set for selected edges is M, which is initialized as an
empty set ∅.

The above algorithm allows concurrent auction on a
maximum of L processors, each of which handles one
single bipartite subgraph. The only communication
between processors occurs when synchronizing price
vectors in step 5 of the above parallel algorithm. Note
that the solution of the other dual variable π⃗ is up-
dated implicitly, which is given by πl

i = al
ij −pl

j , where
(i, j) is selected. The parallel auction typically acceler-
ates computation due to the concurrent auction activ-
ities in each sub-matrix. However, it does not change
the complexity. That is, in the worst case (the input
graph is a chain), it is equivalent to a serial auction
process.

3.4 Complexity Analysis

The time complexity for auction algorithm depends on
the number of auction iterations and the workload for

each iteration. In an auction process, a price of node
increases at least for ϵ [3], i.e., the minimum bid in-
crement. Since the profit for bidder i that matched
with object j is given by (aij − pj), the profit be-
comes negative after |aij |/ϵ iterations, i.e., i will seek
other objects for possibly higher profit. In each itera-
tion, we visit at most |E| edges (the number typically
decreases dramatically after a few iterations), so the
overall complexity is O(|E| max |aij |/ϵ). During the
auction process, the only information we must keep is
the price of objects. There are n objects, so the space
complexity is O(n). Note that the space for storing
the data or graph itself is not counted for evaluating
space complexity. In Table 1, we summarize the time
and space complexity of the proposed parallel auction
algorithm based graph construction process and com-
pare with other methods. From this analysis, it is
easy to see the proposed parallel auction algorithm
(PAA) based method is extremely efficient for large
scale sparse graph data, which is indeed very common
in real applications, such as social network and geom-
etry analysis [7].

4 EXPERIMENTS

In this section, we provide empirical study of the pro-
posed parallel auction algorithm (PAA) based graph
construction method and compare with the-state-of-
art approaches. In particular, we are interested in
comparing with the belief propagation (BP) based
methods [9, 10] since these method tends to generate
high quality graphs with balanced node connectivity,
similar as our proposed method. Note that there are
two variants of the BP approach, loopy belief propaga-
tion (LBP) and a speed-up version, sufficient selection
belief propagation (SSBP). However, in the empirical
study, we notice that these two methods share very
similar computational performance. Hence, we only
report the results of LBP for comparison. In addition,
we also implement the nearest neighbor search based
graph construction using the standard sorting pro-
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Figure 1: Illustration of the constructed graphs and clustering results over the toy datasets using different
methods: a) original data; b) k-nearest neighbor graph (k = 8); c) b-matching graph (b = 8); d) PAA graph.
Different color indicate the extract clusters using: e) kNN graph; f) b-matching graph; g) PAA graph.

cess as another baseline. Extensive experimenters over
both synthetic and real benchmark datasets are per-
formed to evaluate the computational efficiency and
performance for different learning algorithms, as dis-
cussed below.

4.1 Speed Comparison

We first evaluate the running time of different graph
construction methods. Similar to the settings in [9],
here we randomly generate bipartite and unipartite
graphs with 100 ≤ n ≤ 2000 nodes, where the weights
of graph edges are independently sampled from a uni-
form distribution U(0, 1). For bipartite graph, each
of the two disjoint node sets has n/2 nodes. For con-
structing a sparse graph, the degree of each nodes of
the extracted sparse graph is uniformly set for all the
experiments. For instance, in kNN approach, the value
of k is set as 10, and accordingly b = 10 for b-matching
methods. For fair comparison, all the experiments are
conducted on the same platform with identical hard-
ware and software environment.

For the LBP method, we use the default parameters in
the software package 1, except setting the maximum
iteration as 5000. Table 2 shows the comparison of the
running time for the synthetic data. It is obvious that
kNN provides the most efficient graph construction
method due to its fast greedy search process. How-
ever, comparing LBP and PAA, both of which tend

1http://www.cs.umd.edu/b̃ert/code/bmatching/

to generate balanced graphs, PAA improves the speed
of graph construction in the magnitude of 102. In ad-
dition, we found that the propose method has more
stable running performance for different random data,
while both LBP method relies more on the properties
of the synthetic graph data.

4.2 Performance Comparison

Graph representation has been widely used for differ-
ent machine learning algorithms, including clustering
and classification. In this subsection, we present the
performance comparison study of clustering and clas-
sification through using different graph construction
approaches. For clustering analysis, spectral cluster-
ing has been developed and shown effective in prac-
tice [16]. In a standard spectral clustering process,
there are three key steps. The first step is to con-
struct a data graph that connects sample points. Then
one has to perform eigen-decomposition over the graph
Laplacian. Finally, K-means algorithm is applied to
derive the final clusters. In this study, we use the toy
data [12] to construct different graphs, namely kNN
graph, b-matching graph, and the graph built by the
parallel auction algorithm (PAA-graph). Figure 4(a)-
1(d) show the original data and different graphs. Then
we feed these graph into standard spectral clustering
algorithm to compare the results.

Figure 2 shows the error rate for the clustering re-
sults. The number of connected edges for graph nodes
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Figure 2: The performance comparison of spectral
clustering using different graphs. The horizontal axis
indicates the number of connected edges for graph
nodes and the vertical axis shows the error rate of clus-
tering results.

varies from 6 to 24. For all the tests, we use the same
Gaussian kernel based weighting scheme with the ker-
nel bandwidth informally set as 0.1. Clearly, kNN
graph provides the worst performance and b-matching
graph has the best performance. The proposed parallel
auction based graph construction method has slightly
worse performance than b-matching. However, it sig-
nificantly increases the by the magnitude of 102 in
practice. Figure 1(e)-1(g) shows the examples of con-
structed sparse graphs using different approaches. Due
to the greedy search process, kNN method generates
highly irregular graph and breaks the data structure
by creating more cross-manifold edges. In contrast, b-
matching and the proposed PAA method create more
balanced graphs and have much less edges across the
two clusters. When the node degree increases, it is
easy to generate more cross-cluster edges. Hence, all
the clustering performance of all three graph construc-
tion methods accordingly decreases.

In addition, we also compare the performance of graph
based semi-supervised learning for classification tasks,
i.e. classifying USPS handwritten digits [5] and face
recognition [6]. In particular, we apply the method
developed by Zhou et.al in [23] as the testbed for dif-
ferent graph construction methods. In the tests, we
fix the number of node degree as 7 and use the same
weighting scheme, similar to the settings used in the
above clustering experiments. The number of initially
given labels is varied from 4 to 20 for digits data and 3
to 18 for the face data. For each setting, we randomly
run 50 independent trials and compute the average er-
ror rates of the classification results. Figure 3(a) and
3(b) show the performance curves with error bars for
digits classification and face recognition, respectively.
Again, b-matching approach builds the most balanced
graph and therein achieves the best performance. The
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Figure 3: The performance comparison of graph based
semi-supervised learning method using different graph
construction methods: a) digits classification; b) face
recognition. The horizontal axis indicates the number
of initially given labels and the vertical axis shows the
error rate of classification results.

proposed PAA method has slightly worse performance
but almost as fast as kNN method, which tends to
create the highly imbalanced graphs.

4.3 Evaluation of Parallel Efficiency

Since all the above experiments involve the graphs
with relatively small scales, there is no extra bene-
fit to parallelize the algorithm. However, when han-
dling large scale data, it is very important to perform
parallel process for fast graph construction. Note that
the time complexity of the PAA based graph construc-
tion is linear with respect to the number of edges.
This property makes the approach very suitable to
the applications with large scale sparse data graphs.
In order to validate the parallelization efficiency of
the proposed method for such applications, here we
used two real benchmark datasets about circuit simu-
lation problems from the sparse matrix collection [7].
The first graph data “ASIC 680ks” contains 682, 712
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(a) (b)

Figure 4: The visualization of the two large graph
data: a) ASIC 680ks, and b) ASIC 680k.

nodes and 2, 329, 176 edges (after reverse process) 2,
and the second data “ASIC 680k” has 682, 862 nodes
and 3, 871, 773 edges (after reverse process) 3. Figure 4
presents the visualization of these two large graphs4.
From this figure, it is easy to see that both graphs are
heavily irregular and the boundary nodes are with ex-
tremely sparse connectivity. Here we apply the pro-
posed PAA method to recover sparse and balanced
graphs from the original graph data.

Our experiments are performed using a computer clus-
ter on which each compute node contains two 2.33 GHz
Intel Xeon E5410 quadcore processors. The eight cores
share 32 GB DDR2 RAM running at 800 MHz. The
OS is Ubuntu 9.10 with GCC 4.10 installed. All codes
were compiled with -O3 level option. We spawn par-
allel processes using MPICH2 to evaluate the parallel
performance of the proposed PAA based graph con-
struction method. In addition, we utilize MPICH2 so
that our proposed technique can scale up to multiple
compute nodes when the scale of the input graph is
large enough. The graphs are partitioned evenly and
launched to each process with equal number of nodes
along with all the neighbor information.

For both graph data, graph construction is performed
for two scenarios: b = 2 and b = 4. For those nodes
with less than b edges in the original graph, all the
connected edges will be preserved. We vary the num-
ber of used processes from 1 to 8, where each process
is hosted by a separate core. The computational cost
includes the time for generating parallel process, parti-
tioning the graph, assigning tasks to each process, and
performing the auction process (The time for loading
data is not considered). Table 3 provides the run-
ning time in seconds for each tested case. From this
table, it is easy to see that the proposed PAA-based

2http://www.cise.ufl.edu/research/sparse/matrices/
Sandia/ASIC 680ks.html

3http://www.cise.ufl.edu/research/sparse/matrices/
Sandia/ASIC 680k.html

4The visualization examples are available from the web-
site: http://www.cise.ufl.edu/research/sparse/matrices/

Table 3: Evaluation of the parallel efficiency of the
proposed PAA-based graph construction method. The
numbers give the computational cost in seconds using
different number of processes.

Data ASIC 680ks ASIC 680k

# of processes b = 2 b = 4 b = 2 b = 4

1 3.09 18.92 1.76 11.62

2 2.74 18.73 1.49 10.83

4 2.70 11.60 1.33 7.29

8 2.47 8.92 1.26 5.03

graph construction method achieves lower execution
time when multiple processes were used. However, the
speedup is sublinear instead of linear because the ex-
tra time used for parallelization and communication.
In general, when performing the graph construction
in 8 parallel processes, the time cost will be reduced
from one quarter to more than half. Especially for
more complex problems (e.g., b = 4), the speed up is
usually more significant.

5 CONCLUSION

Data graph has been widely used for different machine
learning and data mining algorithms. It is critical to
build high quality graphs with affordable cost. Com-
monly, one aims in extracting sparse yet regular graph
from data for both theoretic and practical advantages.
Popular methods for constructing sparse graphs in-
clude nearest neighbor method and b-matching algo-
rithm. The former is very efficient since it essentially
perform greedy search to pick up the significant graph
edges. However, it often generates highly imbalanced
graphs with unsatisfactory performance. The later can
provide fairly balanced regular graphs but suffers from
extremely high computational cost.

In order to remain computational efficiency, while
achieving certain properties of the extracted graph,
such as sparsity and regularity, in this paper, we pro-
posed a novel graph construction method through ex-
ploring the auction algorithm. In particular, the pro-
posed method is almost as fast as kNN method, while
maintain stratificatory regularity property. Experi-
mental results show that the parallel auction algorithm
based graph construction provides comparable per-
formance to the b-matching algorithm, but improves
the speed in the magnitude of 102. Finally, we also
provide the empirical study of the parallelization ef-
ficiency over large data sets with up to 680K nodes.
One of our future direction is to extend the proposed
graph construction to semi-supervised and supervised
scenarios, where partial label information are given to
help improve accuracy of the auction process.
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Abstract

We introduce a new cluster-cumulant expansion
(CCE) based on the fixed points of iterative belief
propagation (IBP). This expansion is similar in
spirit to the loop-series (LS) recently introduced
in [1]. However, in contrast to the latter, the CCE
enjoys the following important qualities: 1) it is
defined for arbitrary state spaces 2) it is easily ex-
tended to fixed points of generalized belief prop-
agation (GBP), 3) disconnected groups of vari-
ables will not contribute to the CCE and 4) the
accuracy of the expansion empirically improves
upon that of the LS. The CCE is based on the
same Möbius transform as the Kikuchi approxi-
mation, but unlike GBP does not require storing
the beliefs of the GBP-clusters nor does it suffer
from convergence issues during belief updating.

1 Introduction

Graphical models play a central role in knowledge repre-
sentation and reasoning across a broad spectrum of scien-
tific disciplines, in which probabilistic queries, or inference
must be performed. A classic goal is to calculate the par-
tition function, or sum over all possible configurations of
the model; this task is central to many problems, such as
computing the probability of observed data (“probability
of evidence”), learning from data, and model comparisons.

Exact inference in these systems is typically NP-hard, mo-
tivating the need for efficient and accurate approxima-
tions. One of the most successful algorithms is itera-
tive belief propagation (IBP) [7], which approximates the
marginal probabilities of the distribution via an iterative,
message-passing procedure. IBP can also be interpreted
as a variational optimization, in which the messages and
their approximate marginals, or beliefs, minimize a partic-
ular free energy approximation called the Bethe approxi-
mation [11, 3]. IBP is approximate on graphs with cycles,
but is often empirically very accurate.

The wide success of IBP has also led to several techniques
for improving its estimate quality. Generalized belief prop-
agation (GBP) performs IBP-like updates on a set of re-
gions, consisting of collections of variables. However, re-
gion selection is often difficult, and can even lead to con-
vergence problems and degraded estimates [10]. An alter-
native is to use “series corrections” to the partition func-
tion such as the loop series and its generalizations, which
compute modifications to the estimate provided by a given
fixed point of IBP [1]. Such series expansions can be used
to provide “any-time” algorithms that initialize to the IBP
estimate and eventually converge to the exact solution.

In this paper we propose an alternative series correction
to IBP estimates based on a cluster cumulant expansion
(CCE). We show that the CCE has several benefits over the
loop series representation, including more accurate partial
estimates and more efficient aggregation of terms. We also
show that our CCE representation is closely related to GBP,
and that it can naturally be extended to GBP fixed points.
We show the effectiveness of our approach empirically on
several classes of graphical models.

2 Background

Let X = {Xi} be a collection of random variables, each
of which takes on values in a finite alphabet, Xi = xi ∈
X . For convenience, in the sequel we will not distinguish
between the random variable Xi and its instantiation xi.
Suppose that the distribution on X factors into a product of
real-valued, positive functions {ψf : f ∈ F}, each defined
over a subset f of the variables:

p(x) =
1

Zψ
ψ(x) =

1

Zψ

∏

f∈F
ψf (xf )

where xf = {xi | i ∈ f} represents the arguments of fac-
tor ψf , and Zψ is the partition function, Zψ =

∑
x ψ(x),

which serves to normalize the distribution. We denote by
Fi the set of factors that have xi in their argument. A factor
graph represents this factorization using a bipartite graph,
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in which each factor (represented by a square) is connected
to the variables (circles) in its argument. See Figure 1-Left.

2.1 Iterative Belief Propagation

With each factor or variable node in the factor graph (FG)
we will associate a belief, denoted with bf (xf ) and bi(xi)
respectively. Iterative (or Loopy) Belief Propagation (IBP)
is a message passing algorithm on the factor graph that at-
tempts to make these beliefs consistent with each other. In
particular, at a fixed point of IBP we require

∑

xf\xi
bf (xf ) = bi(xi) (1)

for every pair of factor and variables nodes that are con-
nected in the factor graph. IBP expresses these beliefs in
terms of a set of messages mfi:

bi(xi) ∝
∏

f∈Fi
mfi(xi)

bf (xf ) ∝ ψf (xf )
∏

i∈f

∏

g∈Fi\f
mgi(xi)

(2)

and updates the messages iterative to achieve Eqn. (1):

mnew
fi (xi)← δ(xi)m

old
fi (xi), δ(xi)

.
=

∑
xf\xi bf (xf )

bi(xi)

If the factor graph contains no cycles, at convergence the
beliefs exactly equal the marginal probabilities of p(x).

[11] showed that IBP fixed points correspond to stationary
points of the Bethe variational free energy F , giving an
approximation to the log-partition function:

log ẐBP = −F({ψf}, {bf , bi}) (3)

=
∑

f∈F
Ebf [logψf ] +

∑

f∈F
H(bf ) +

∑

i∈V
(1− |Fi|)H(bi)

where V is the set of variables, Ebf denotes the expectation
under bf and H(bf ) = −∑x b(xf ) log b(xf ) is its entropy.

We may view the IBP updates as a reparameterization of
the original distribution [9]. In particular, if we apply the
message update from factor f to variable i, according to
Eqn. (2) we change bi(xi)← bi(xi)δ(xi) and also a total of
|Fi|−1 factor beliefs bg(xg)← bg(xg)δ(xi) with g ∈ Fi\f
(see Figure 1-Left). As a result, the expression

1

Zb
b(x) =

1

Zb

∏

f∈F
bf (xf )

∏

i∈V
bi(xi)

1−|Fi| (4)

remains invariant under message updating, where Zb is the
partition function of the reparameterization b(x). More-
over, if we initialize all messages to 1, we immediately see
that Eqn. (4) is also equal to 1

Zψ
ψ(x).

Since ψ(x) and b(x) correspond to the same normalized
distribution p(x), they differ by a constant multiplicative
factor. Using (3) and noting that F({b}, {bf , bi}) = 0

shows that this factor is exactly ẐBP , and so

Zψ = ẐBP · Zb (5)

This shows that the true partition function Zψ can be com-
puted from IBP’s estimate ẐBP and the reparameteriza-
tion’s normalization constant, Zb.

2.2 Generalized Belief Propagation

Generalized BP, or GBP [11], generalizes (3) to include
higher-order interactions than the original factors of the
model. In GBP, one identifies a set of regions R, in which
each region α ∈ R is defined to be a subset of the factors,
α ⊆ F . Each region is also given a “counting number” cα,
and messages are passed between regions; a data structure
called a region graph is used to organize the message pass-
ing process. The GBP estimate of the partition function is

log ẐGBP =
∑

f∈F
Eb[logψf ] +

∑

α∈R
cαH(bα). (6)

BP on the factor graph constitutes a special case of GBP,
in which the regions R = F ∪ V and counting numbers
cf = 1 and ci = 1 − |Fi|. Regions form a partial order-
ing defined by their set inclusion; the ancestors of region
α are an(α) = {γ ∈ R|xα ⊂ xγ} and its descendants
are de(α) = {β ∈ R|xα ⊃ xβ}, where xα is the set of
variables in region α.

The counting numbers should satisfy some basic proper-
ties; in [11], a RG is considered valid or 1-balanced if

∑

α∈R(f)

cα = 1 ∀ f
∑

α∈R(i)

cα = 1 ∀ i

where R(f), R(i) are those regions that contain factor f
and variable i, respectively.

Validity can be ensured by assigning each factor f to a sin-
gle outer region, setting cα = 1 for outer regions (i.e. re-
gions with no parents) and recursively for inner regions as:

cα = 1−
∑

β∈an(α)

cβ . (7)

The GBP message updates can again be interpreted as repa-
rameterization updates on the region graph. Any two re-
gions that are connected through a directed edge will ex-
change messages from parent to child region. We write the
beliefs in terms of the potentials and messages to α and its
descendants, ∆α = α ∪ de(α),

bα(xα) =
1

Zα

∏

f∈α
ψf (xf )

∏

γ∈{an(∆α)\∆α}
β∈∆α

mγβ(xβ)
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Figure 1: Left: A reparameterization update on a factor graph. Middle: A region graph GBP reparameterization update. Right: Factor
subgraph Gα corresponding to a cluster-cumulant.

and write a fixed-point message update as,

mnew
αβ (xβ)← δ(xβ)mold

αβ(xβ) =

∑
xα\xβ bα(xα)

bβ(xβ)
mold
αβ(xβ)

In words, to compute the belief at region α we collect mes-
sages from all regions that are either ancestors or ancestors
of descendants of that region, and that flow into α or its
descendants. Those messages that originate in α or its de-
scendants are not used.

It is now not difficult to see that these updates constitute a
reparameterization. Namely, if we update a message mαβ ,
the update factor δ is multiplied into the expressions for bβ
and all its ancestors, except bα and all its ancestors. Using
the expression for the counting numbers (7) we thus see
that we accumulate a total number of terms,

ctotal = [cβ +
∑

γ∈an(β)

cγ ]− [cα +
∑

δ∈an(α)

cδ] = 0

where we used that cβ = 1 −∑γ′∈an(β) cγ′ and similarly
for cα. This is illustrated in Figure 1-Middle.

As a result, the following expression will stay invariant un-
der the GBP updates:

1

Zψ

∏

f

ψf (xf ) =
1

Zb

∏

α

bα(xα)cα (8)

We can now use similar arguments as in Section 2.1 to show
that Zψ = ẐGBP · Zb again holds.

2.3 The Loop Series Expansion

The loop series [1, 8, 2] expresses Zb as a finite series ex-
pansion of terms related to the generalized loops of the
graph. Starting from Eqn. (4) we rewrite the terms:

bf (xf )∏
i∈f bi(xi)

= 1 +
bf (xf )−∏i∈f bi(xi)∏

i∈f bi(xi)
= 1 + Uf (xf )

where Uf is like a covariance in that it measures depen-
dence among the variables xi, i ∈ f . We can then write

Zb = Eb̃
[ ∏

f∈F
(1 + Uf )

]
where b̃(x) =

∏

i

bi(xi).

Expanding the product gives one term for each element in
the power set of F . If we expect the individual terms Uf to
be small, it makes sense to organize this series (for exam-
ple) in order of increasing number of Uf terms, and trun-
cate it once some computational limit is reached. Each term
corresponds to a subset α ⊆ F , and thus to a subgraph of
the factor graph. One can show that if this subgraph con-
tains any factor f that is not part of a loop (a.k.a. part of a
dangling tree), then the corresponding term will be zero.

To make the connection with the formulation of [1], we
must assume a binary alphabet xi ∈ (0, 1). Following [8]
we can re-express,

bf (xf )−∏i∈Vf bi(xi)∏
i∈Vf bi(xi)

=
∑

v⊆Vf ,|v|≥2

βv
∏

i∈v
(xi − E[xi])

βv =
E[
∏
i∈v(xi − E[xi])∏
j∈v V(xj)

(9)

where V(x) denotes the variance of x. In the process we
have created even more terms than the powerset of all fac-
tors because each factor itself is now a sum over all its sub-
sets of variables with cardinality larger than one. The total
set of terms is in one-to-one correspondence with all the
“generalized loops” of the factor graph (graphs where ev-
ery variable and factor node have degree at least two). The
advantage for the binary case is that the final expansion
can now be written in terms of expectations of the form
E[(xi − E[xi])

d] which admit closed form expressions in
terms of the beliefs bi obtained from IBP at its fixed point.
We refer to [1, 8] for further details.

3 The Cluster-Cumulant Expansion

We now develop an alternative expansion of the log-
partition function which we call the cluster-cumulant ex-
pansion (CCE). As with the loop series, we begin analysis
at a fixed point of IBP; we will later relate our expansion to
GBP and extend its definition to include GBP fixed points.

The CCE is defined over an arbitrary collection of sub-
sets of factors which we will denote with α. We define
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a partial ordering on this set through subset inclusion, i.e.
α ≤ β iff α ⊆ β and α < β iff α ⊂ β. We will de-
note this poset with Ω. We also define a factor subgraph,
Gα = {i, f |i ∈ Vα, f ∈ α, α ∈ Ω} where Vα corresponds
to the set for variables that occur in the arguments of the
factors f ∈ α. An example of such a factor subgraph is
provided in Figure 1-Right. Finally we will define the par-
tial probability distribution over this factor subgraph as Pα
and the corresponding partial log partition function, logZα
as its log normalization constant:

Pα(xα) =
1

Zα

∏

i∈Vα
bi(xi)

∏

f∈α

bf (xf )∏
i∈Vf bi(xi)

(10)

logZα = log
∑

xα

∏

i∈Vα
bi(xi)

∏

f∈α

bf (xf )∏
i∈Vf bi(xi)

(11)

We first observe that if we choose α = F (the set of all fac-
tors) then logZF is the exact log partition function logZb.
We now show that logZα = 0 when the corresponding
factor subgraph Gα is a tree:

THEOREM 1. If the factor subgraph Gα is singly con-
nected, then logZα = 0.

Proof. When Gα is a tree, the expression (10) represents
the exact joint probability distribution expressed in terms
of its marginals with Zα = 1. Thus the result follows.

As a corollary we observe that logZα vanishes if α consists
of a single factor f . The theorem also allows us to remove
all “dangling trees” from any factor subgraph by marginal-
izing out the variables that correspond to the dangling tree.
We will thus define the “core” of a factor subgraph as the
part of the factor subgraph that remains after all dangling
trees have been removed (see also [2]).

We are now ready to define the cluster-cumulants (CCs).
The idea is to decompose each partial log partition function
as a sum of cluster-cumulant contributions from clusters in
the same or lower levels of the partially ordered set α ∈
Ω. In this manner, we expect that the lowest order CCs
generate the largest contribution and that higher order CCs
subsequently represent increasingly small corrections. The
definition of the CCs is provided by the expression [5, 4]

logZα =
∑

β≤α
Cβ (12)

This relation can be inverted using a Möbius transform,

Cα =
∑

β≤α
µβ,α logZβ (13)

where we define the Möbius numbers as,

µα,α = 1 and µγ,α = −
∑

β:γ<β≤α
µβ,α if γ < α.

Figure 2: A poset for a pairwise MRF on a 1×3 grid. Truncating
this poset at level 1 would include clusters over the faces of the
grid. Truncating at level 2 would add clusters α2,1 and α2,2.

To approximate logZ ≈ logZ` we truncate the cumulant
series by only including clusters α ∈ Ω` up to some level `
in the poset:

logZ` =
∑

α∈Ω`

Cα =
∑

α∈Ω`

∑

β≤α
µβ,α logZβ (14)

=
∑

β∈Ω`

∑

α∈Ω`

µβ,αI[β ≤ α] logZβ
.
=
∑

β∈Ω`

κβ logZβ

where I[·] is the indicator function. Moreover, κβ
.
=∑

α∈Ω`
µβ,αI[β ≤ α] can be computed recursively as

κβ = 1−
∑

α∈an(β)

κα (15)

with an(β) the ancestors of cluster β in the Hasse dia-
gram corresponding to the poset and with κα = 1 for
the clusters at the highest level of Ω` (i.e. the clusters
with no parents) [6]. It is important to realize that this
truncation is not equivalent to simply including all partial
log partitions from the the highest level in the poset, i.e.
logZ` =

∑
α∈Ω`

Cα 6=
∑
α∈Ω`

logZα.

Figure 2 illustrates the computation of logZ` on a sim-
ple pairwise MRF. On this 1 × 3 grid, the approximation
truncated at level 2 is logZ2 = logZα2,1

+ logZα2,2
−

logZα1,2 . The computation of each partial log partition
function requires exact inference on the partial factor sub-
graph. Thus, the time complexity for an approximation in-
cluding c clusters isO(c|V | exp(w)), wherew is the largest
induced width of the c clusters. However, the space com-
plexity of the truncated approximation is O(|V | exp(w))
since we need only retain logZα for each cluster.

This expansion is similar to the expansion of the free en-
ergy (or the entropy) in the cluster variation method of GBP
(see Section 2.2). However, there clusters serve as regions
between which messages are exchanged during the execu-
tion of GBP. In contrast, in this paper CCs are calculated
after IBP has converged in order to compute corrections.

The cumulant definition in Eqn. (13) immediately shows
that cumulants of singly connected subgraphs vanish:
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THEOREM 2. If the factor subgraph Gα is singly con-
nected, then the cluster-cumulant satisfies Cα = 0.

Proof. From Eqn. (13) we see that a cumulant can be writ-
ten as a linear combination of logZα and logZβ , β < α.
Using Theorem 1 together with the facts that every sub-
graph of a tree is a smaller tree (or a forest of trees) and
that at the lowest level of the poset we have Cα = logZα,
the result follows by induction.

Unlike the terms in the loop series [1] (see Section
2.3), cluster-cumulants corresponding to disconnected sub-
graphs also vanish, even if the disconnected components
are not singly connected.

THEOREM 3. If the factor subgraph Gα is disconnected,
then the cluster-cumulant satisfies Cα = 0.

Proof. If the graph Gα is disconnected, its probability Pα
factorizes: Pα = PαAPαB . Then, the partial partition func-
tion decomposes as logZα = logZαA + logZαB which
by Eqn. (12) we rewrite as logZα =

∑
βA≤αA CβA +∑

βB≤αB CβB . Again by Eqn. (12) we have

Cα = logZα −
∑

β<α

Cβ

=
∑

βA≤αA
CβA +

∑

βB≤αB
CβB −

∑

β<α

Cβ .

Clusters β < α in the poset fall into one of three categories:
either Cβ ≤ CαA , or Cβ ≤ CαB , or [(Cβ > CαA)∧(Cβ >
CαB )∧(Cβ < Cα)]. We now proceed by induction. Cumu-
lants in the first two categories will cancel in the expression
for Cα. Sufficiently small clusters will have no cumulants
in the third category, and so must be zero. For larger clus-
ters, cumulants in the third category correspond to smaller
clusters that must also be disconnected, which by the in-
ductive argument must vanish. The result follows.

This property is special to the cumulant expansion and
holds even though the partial log-partition function logZα
for the disconnected region does not vanish. Apart from
reducing the number of terms that must be considered, this
property also suggests (by continuity of the cumulants as
a function of their factor parameters) that cumulants with
nearly-independent components must also be small. Thus,
we expect significant contributions from tight, highly cor-
related sets of variables and factors, but small contributions
from clusters with components that are almost independent.

To emphasize this point, consider a cluster-cumulant cor-
responding to a subgraph Gα that has one uniform factor
ψf (xf ) = 1. Moreover, assume that the cluster α̃ given by
removing this factor from α is also in the poset. This cre-
ates a situation where cluster α is ranked higher in the poset
than α̃, i.e., α > α̃, yet their partial partition functions must
be the same: logZα = logZα̃. In this case, Cα = 0:

THEOREM 4. Consider a poset Ω that includes a factor
f with unit potential ψf (xf ) = 1, and a cluster α that
contains factor f . Assume that there is also a cluster α̃ < α
containing the same factors as α except f , i.e. α̃ = α\f .
Then, Cα = 0.

Proof. For both clusters {α, α̃|α > α̃} we must have
the same partial partition function, logZα = logZα̃.
Hence, from Eqn. (12) we have

∑
β≤α Cβ =

∑
β̃≤α̃ Cβ̃ .

Since α > α̃ it follows that
∑
β≤α Cβ =

∑
β̃≤α̃ Cβ̃ +∑

γ>α̃,γ≤α Cγ . However, since α̃ is defined to have exactly
one factor fewer than α we have that

∑
γ>α̃,γ≤α Cγ = Cα.

Combining these expressions we have Cα = 0.

The significance of Theorem 4 is illustrated by imagining a
situation where ψf (xf ) ≈ 1. By the continuity argument,
we expect Cα ≈ 0 if the cluster α̃ with factor f removed
is in the poset. Hence, a cluster-cumulant will only signif-
icantly differ from zero if it introduces new dependencies
that were not already captured by lower order cumulants.
This result strengthens the interpretation of CCE as an ex-
pansion in terms of orders of statistical dependency.

These considerations suggest a way to build posets that are
likely to deliver good truncated series approximations of
the log-partition function. We first choose a collection of
clusters which may be overlapping, but none are a subset
of any other cluster. These clusters should be chosen so
that 1) they are not disconnected and 2) they have no dan-
gling trees. Moreover, tightly coupled clusters with strong
interdependencies are preferred over ones with weak de-
pendence. We then generate all intersections, intersections
of intersections, etc., to construct our poset. Finally we
compute their partial log partition functions and combine
them using Eqn. (14).

4 CCE for Region Graphs

We now extend the cluster-cumulant expansion to region
graphs; see Section 2.2 and [11] for background on region
graphs. The CCE will be build on top of an existing region
graph. We will call the existing region graph “calibrated”
(abbreviated CRG) if the GBP fixed point equations have
converged.1 We will add new “uncalibrated” regions to the
region graph during the expansion (see Figure 3-Left). Any
new region will become a parent of all the existing regions
that it contains. We then define the region subgraph Gα =
G∆α

to be the collection of calibrated regions and parent-
child relations restricted to α and its descendants. Note that
Gα includes only regions in the calibrated part of the region
subgraph, i.e., below the dashed line in Figure 3-Left.

1We only consider CCEs on calibrated region graphs; although
an expansion can be established for uncalibrated RGs, Theorem 2
will not hold (increasing the number of non-zero cumulants) and
terms may not fall off quickly, leading to poor approximations.
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Figure 3: Left: Cluster-cumulant extension of the calibrated region graph. Middle: A tree-structured RG for which logZα = 0.
Right: Illustration of a disconnected RG for which Cα = 0.

We define counting numbers cαβ for regions β in Gα by

cαβ = 1−
∑

γ∈(Gα∩an(β))

cαγ

Note that a counting number cαβ can vanish for some re-
gions in Gα even though their counting number cβ in the
original region graph did not vanish. Regions with cαβ = 0
will not contribute to logZα and can be excluded fromGα.

The partial log-partition function for this region is,

logZα = log
∑

xα

∏

β⊆α
bβ(xβ)c

α
β (16)

To generate cumulants we again use Eqn. (13). The trun-
cated cumulant series is the sum of these cumulants up to
some level in the poset. More convieniently, we can in-
stead use Eqn. (14) to express the series in terms of partial
log partition functions. Note that this will require counting
numbers κα that should not be confused with the count-
ing numbers cα above. In particular, the cα are computed
strictly in terms of the calibrated part of the region graph
(e.g., the regions right below the dashed line in Figure 3-
Left have cα = 1), while the κα are computed strictly in
terms of the cluster-cumulants (e.g., the regions at the high-
est level in the extended region graph have κα = 1).

As with the IBP expansion, logZα vanishes for a region
subgraph Gα that is singly connected (after only regions
with cαβ 6= 0 have been retained):

THEOREM 5. If a region subgraph Gα consisting of re-
gions in the CRG that are descendants of α and that
have counting numbers cαβ 6= 0 is singly connected, then
the partial log partition function and the cumulant satisfy
logZα = 0, Cα = 0.

Proof. Since the marginals on Gα are calibrated (due to
the reparameterization property of GBP) and because Gα
is singly connected, we have Zα = 1. Since accord-
ing to Eqn. (13) cumulants are linear combinations of log-
partition functions over subsets and since all subsets must
also be singly connected (or disconnected), the cumulant
for a singly connected region must also vanish.

This idea is illustrated in Figure 3-Middle. More generally,
for any region subgraph we can remove “dangling trees” for
the purpose of computing the CCE. (Note that this removal
may change the counting numbers of regions connecting
the core to the dangling trees.) To see this, follow an elim-
ination order from the tree’s leaf regions to the core. Since
it is just message passing on the (hyper) tree and since the
tree was already at a fixed point of GBP, the marginaliza-
tion result will be equivalent to removing those regions.

Analogous to the factor graph case, cluster-cumulants de-
fined on a region subgraph with two or more disconnected
components vanish. The proof is identical to the one given
for Theorem 3, and so we simply state the result:

THEOREM 6. If a region subgraph Gα consisting of re-
gions in the CRG that are descendants of α and that have
counting numbers cαβ 6= 0 is disconnected, then the cluster-
cumulant satisfies Cα = 0.

This is illustrated in Figure 3-Right. Note again that the
partial log partition function may not vanish; rather, it will
equal the sum of two (or more) terms whose contributions
are already included in the lower order cumulants.

In building our CCE, it is clear that we should avoid CCs
that correspond to either disconnected or singly connected
region subgraphs. (However, if we happen to include them,
no harm is done to the approximation; their contribution
will be zero). More generally, Theorem 4 remains valid for
region graphs, suggesting to define CCs over tightly con-
nected groups of regions that are expected to exhibit strong
dependencies beyond what are already modeled by the cal-
ibrated region graph. This still leaves considerable freedom
to design a good CCE. The experiments in Section 5 will
provide further guidance in his respect.

We end this section with a different perspective of what is
accomplished with the CCE. Starting with Eqn. (5) we can
write

logZψ = log ẐBP + logZb (17)

= −
∑

α∈Rcalibrated

cαFα −
∑

α′∈Runcalibrated

κα′Fα′
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where Rcalibrated and Runcalibrated are calibrated and uncali-
brated regions and Fα = − logZα. The first term is the
standard decomposition of the variational free energy for
region graphs (see e.g. [11]) and the second term is the
cluster cumulant expansion. This expression highlights the
fact that CCE can be considered a correction to the varia-
tional free energy. Moreover, it suggests a procedure where
increasingly many regions are moved from the uncalibrated
part of the region graph to the calibrated part of the region
graph. We leave exploration of these ideas for the future.

5 Experiments

We conducted a variety of experiments to study the CCE.
Since the CCE is defined on a collection of clusters, we first
describe the cluster choices used in our experiments. This
description primarily refers to clusters that are sets of fac-
tors, i.e., for CCE on a factor graph. CCE on a region graph
considers clusters that are sets of calibrated regions. In the
sequel a k-cluster is a collection of k factors (or regions).

We considered two different collections of clusters in our
experiments. We first considered the poset Ωall contain-
ing all pairs of factors, all triplets of factors, and so forth.
Enumerating factors in this manner quickly becomes un-
manageable, so the expansion must be truncated. We will
use Ωlall to denote truncating the poset at level l, where for
example Ω4

all denotes the series truncated after all quintu-
plets of factors have been included.

The second collection of factors considered come from the
Truncated Loop Series (TLS) algorithm of [2]. The TLS
algorithm finds a subset of all generalized loops in a factor
graph. It does so by first finding a set of S simple loops
(i.e., cycles in the factor graph with degree 2) and then
merges these simple loops to create a set of generalized
loops (i.e., cycles with degree ≥ 2). In the TLS algorithm,
a generalized loop is formed from two simple loops l and
l′ by finding a path in the factor graph from some factor or
variable in l to some factor or variable in l′. Since many
paths may connect two simple loops, the set of generalized
loops is restricted to paths of at most length M .

The authors of [2] provide code that enumerates a set of
generalized loops l1,...,lN and computes the LS approxi-
mation to logZ after every loop. In [2], the set of loops
are placed in descending order by the magnitude of their
contributions, |Ul| (see 2.3 for details). To make the TLS
algorithm an “anytime” algorithm, we do not post-process
the set of loops and instead report the LS approximation on
the order in which the loops are discovered. A sequence
α1,...,αN of clusters can be constructed from a sequence of
loops l1, .., lN , where αi is the set of factors in generalized
loop li 2. In the experiments that follow ’LS (TLS)’ denotes

2Since many generalized loops are defined over the same set
of factors, we consider only the unique sets of factors.

the Loop Series approximation on the (unsorted) sequence
of loops from the TLS algorithm and ’CCE (TLS)’ is the
CC approximation on the unsorted sequence of loops.

When adding clusters to the CCE, it is important to note
that the collection of clusters may become imbalanced in
that the approximation in Eqn. (14) does not include all
intersections (and intersections of intersections etc.) of all
clusters, which leads to over-counting in the CCE. While
adding clusters bottom up along the poset Ωall guarantees a
balanced CCE, this is not always true for the TLS sequence
leading to suboptimal results. We thus emphasize that we
include CCE (TLS) results for the sake of comparison, but
that it is not the expansion that we recommend for the CCE.

We ran experiments on synthetic Markov Network (MN)
instances as well as benchmark instances from the UAI-
2008 solver competition. In all experiments, we take the
absolute difference of true and approximate log-partition
functions | logZ− log Ẑ| as our error measure. We stop BP
and GBP when L∞(bp(xc), bc(xc)) < 1e−8, where bc(xc)
is the belief at a child region c, bp(xc) is the marginal belief
of parent region p on variables xc and L∞ is the maximum
absolute difference between the two beliefs.

5.1 Grids

We first tested pairwise MNs defined on 10×10 grids. Each
grid instance has unary potentials of the form fi(xi) =
[exp(hi); exp(−hi)] and pairwise potentials of the form:

fij(xi, xj) =

[
exp(wij) exp(−wij)

exp(−wij) exp(wij)

]

The values of hi and wij were drawn from N (0, σ2
i ) and

N (0, σ2
ij) distributions, respectively. To study the behav-

ior of the CCE at various interaction strengths, we fixed
σi = 0.1 and varied σij from 0.1 to 1. Reported errors are
averages across 25 instances at each setting, and error bars
indicate the standard error.

Figure 4 compares the different series approximations on
grids. Following [2], the TLS algorithm was run on the
10× 10 grid instances with S = 1000 and M = 10.

’CCE (BP)’ is the CC approximation given a sequence of
terms efficiently enumerated in Ω15

all. All pairs and triplets
of factors on a pairwise grid have zero contribution and can
be ignored. The only 4-clusters with non-zero contribution
are the 81 faces of the 10×10 grid. To fill out the remaining
levels of Ω15

all, we enumerate pairs, triplets and quadruplets
of connected faces (sharing a vertex or edge), since the CC
for two disconnected faces in the grid is zero.

’CCE (GBP)’ is the CCE on a region graph. GBP was run
on a region graph with outer regions equal to the faces of
the grid. In this case, all pairs and triplets of faces give zero
contributions and can be ignored. Each 3 × 3 subgraph in
the grid is comprised of 4 faces forming a cycle. We take all
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Figure 5: Left: Comparison of the 4 series approximations on complete MNs of 15 variables at different coupling levels.
Right: ErrorZ as a function of the number of terms in each series.

64 of these to be the clusters in the ’CCE (GBP)’ approxi-
mation. Importantly, the intersection of any two such clus-
ters will be a cluster on either a disconnected or acyclic sub-
graph (having a zero contribution) implying that the whole
collection of clusters remains balanced.

Figure 4-Left compares the series approximations at a vari-
ety of coupling levels. The error reported is w.r.t. the final
logZ approximation of each series. All the approximations
offer a substantial error reduction over the Bethe approxi-
mation for instances with weak interactions. As interac-
tion strength is increased, the relative improvement of each
series declines. At the strongest coupling level, the error
in the LS approaches the Bethe approximation error, while
CCE remains an order of magnitude better.

Figure 4-Right shows a trace of the error as a function of the
number of terms included. Each LS term can be computed
very efficiently for binary MNs, while each CCE term re-
quires inference on a set of factors (or regions). Thus, com-
paring the series on the the number of terms may seem to
unfairly favor the CC approximations. However, the LS re-

quires enumerating generalized loops in the MN which is
more expensive than enumerating clusters.

5.2 Complete Graphs

We also experimented on pairwise MNs over a complete
graph of 15 variables. Here ’CCE (BP)’ is the CC approx-
imation given an efficient enumeration of terms in Ω14

all.
Since all pairs of factors are acyclic (and have zero con-
tribution), we begin by considering all cycles of length 3,
which is equivalent to all embedded K3 subgraphs. We
then proceed with adding all K4, all K5 and finally all K6

subgraphs to the CCE. Note that this enumeration is effi-
cient in that it skips certain contributions, such as cycles
over 4 variables because their contribution will be included
when we add the corresponding K4 subgraph.

’CCE (GBP)’ enumerates in a similar fashion. GBP is run
on a region graph formed using the “star” construction –
outer regions equal to all cycles of length 3 passing through
vertex 0. We then enumerate all complete graphs K4, K5

and K6 containing vertex 0. The set of K4 containing ver-
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Figure 6: Scatter plot of ErrorZ for the LS and CC approxima-
tions versus error in the Bethe approximation. Points below the
line are improvements upon IBP.

tex 0 is only a subset of all the K4’s embedded in the MN.
However, enumerating embedded complete graphs in this
fashion ensures that the collection of clusters remains bal-
anced.

Figure 5 compares the four series approximations across a
variety of interaction strengths. In these experiments the
TLS algorithm was run with S = 5000 and M = 10. On
complete graphs, the CC and LS approximations behave
similarly when using terms from the TLS algorithm. The
CCE as described above is much more accurate. This is
because while the TLS algorithm enumerates> 10K loops,
the loops contain at most 5 factors while the CCE up to K6

covers 15 factors.

5.3 UAI-2008 Benchmarks

In addition to the synthetic instances, we evaluated each
of the series approximations on instances from the 2008-
UAI solver competition. We selected 12 bn2o instances and
27 promedas instances that were solvable by our Junction
Tree implementation. The promedas instances have a very
sparse graph structure and contain between 400-1000 fac-
tors. As a result, enumerating all clusters in Ωlall is costly
and yields few non-zero terms even for small l. Thus, for
the promedas instances we only compare the LS and CC
approximations on the loops found by the TLS algorithm.
Figure 6 shows the error of the CC and LS approximations
versus the Bethe approximation. Points below the diago-
nal line indicate improvement over the Bethe approxima-
tion. The TLS algorithm was run on all 27 instances with
S = 100 andM = 10. These results are consistent with [2]
in that if the TLS algorithm finds most of the generalized
loops in an instance, the error is reduced by several orders
of magnitude, while if a small set of all generalized loops
are found, the series approximations offer no improvement.

Unlike the promedas instances, the bn2o instances have
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Figure 7: Scatter plot of ErrorZ for each series approximation
versus error in the Bethe approximation. Points below the line are
improvements upon IBP.

densely connected graph structures and contain far fewer
factors. These instance are thus better suited to enumera-
tion along Ωall. Figure 7 compares the error of the 4 series
approximations to the error of the Bethe approximation.
The TLS algorithm was run with S = 10K and M = 10,
producing more than 10K generalized loops. ’CCE (BP)’
was run on the set of clusters in Ω4

all.

6 Conclusion
We have introduced a new cluster-cumulant expansion
based on the fixed points of either BP or GBP. The expan-
sion was inspired by the LS of [1] but has certain advan-
tages over the latter. First, terms corresponding to discon-
nected clusters vanish. More generally, only tightly cou-
pled groups of variables are expected to make significant
contributions, which can be used to significantly cut down
on the number clusters that need to be considered. Second,
while the LS was only developed for binary variables, the
CCE is defined on arbitrary alphabets. Third, the CCE has
a natural extension to GBP on region graphs. Finally, the
accuracy of the CCE expansion improves upon the LS.

The CCE represents a very natural extension of the Kikuchi
approximation as it is based on the same type of expan-
sion. But unlike GBP on a region graph, the CCE does not
suffer from convergence issues and does not require stor-
ing beliefs during message passing. This makes it a use-
ful “anytime” tool to improve results obtained form GBP.
It also suggests new algorithms that move regions from the
CCE to regions used in GBP. The question of which regions
should be included in the GBP + CCE approximation and
whether a region should be included in GBP or be handled
by the CCE are left for future investigation.
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Abstract

Bidding in simultaneous auctions is challeng-
ing because an agent’s value for a good in one
auction may depend on the uncertain outcome
of other auctions: the so-called exposure prob-
lem. Given the gap in understanding of gen-
eral simultaneous auction games, previous works
have tackled this problem with heuristic strate-
gies that employ probabilistic price predictions.
We define a concept of self-confirming prices,
and show that within an independent private
value model, Bayes-Nash equilibrium can be
fully characterized as a profile of optimal price-
prediction strategies with self-confirming predic-
tions. We exhibit practical procedures to com-
pute approximately optimal bids given a proba-
bilistic price prediction, and near self-confirming
price predictions given a price-prediction strat-
egy. An extensive empirical game-theoretic
analysis demonstrates that self-confirming price-
prediction strategies are effective in simultane-
ous auction games with both complementary and
substitutable preference structures.

1 Introduction

One of the most attractive features of automated trading
is the ability to monitor and participate in many markets si-
multaneously. Compared to human traders, software agents
can take in data from multiple sources at very high through-
put rates. In principle, software agents can also process
massive quantities of information relevant to trading deci-
sions in short time spans. In practice, however, dealing
with multiple markets poses one of the greatest strategic
challenges for automated trading. When markets interact,
a strategy for bidding in one market must consider the im-
plications of and ramifications for what happens in others.

Markets are interdependent when an agent’s preference for
the outcome in one depends on results of others. For in-

stance, when value for one good is increased by obtaining
another, the goods are complements. Dealing with multi-
ple markets under complementary preferences presents an
agent with the classic exposure problem: before it can ob-
tain a valuable bundle, the agent must risk getting stuck
with a strict subset of the goods, which it may not have
wanted at the prevailing prices. Exposure is a potential is-
sue for substitute goods as well, as the agent risks obtaining
goods it does not want given that it obtains others.

The pitfall of exposure is a primary motivation for combi-
natorial auctions [Cramton et al., 2005], where the mech-
anism takes responsibility for allocating goods respecting
agents’ expressed interdependencies. Combinatorial auc-
tions are often infeasible, however, due to nonexistence
of an entity with the authority and capability to coordi-
nate markets of independent origin. Consequently, inter-
dependent markets are inevitable. Nonetheless, there is at
present very little fundamental understanding of agent bid-
ding strategies for these markets. Specifically, how should
an agent’s bidding strategy address the exposure problem?

We address this question in what is arguably the most ba-
sic form of interdependent markets: simultaneous one-shot
sealed-bid (SimOSSB) auctions. Despite the simplicity of
this mechanism and the practical importance of the expo-
sure issue, there is little available guidance in the auction
theory literature on the strategic problem of how to bid in
SimOSSB auctions. We aim to fill this gap by providing
computationally feasible methods for constructing bidding
strategies for the SimOSSB-auction environment, which
we justify with both theory and evidence from simulation-
based analysis. Specifically, we (i) characterize Bayes-
Nash equilibria of SimOSSB auctions as best responses
to price predictions (§3); (ii) provide bounds on approx-
imate Bayes-Nash equilibria in terms of the accuracy of
price predictions and the degree of optimality of responses
(§4); (iii) introduce methods to construct bidding strategies
that respect the equilibrium form (§5,6); and (iv) demon-
strate through a comprehensive empirical game-theoretic
analysis the efficacy of these strategies compared to a wide
variety of heuristics from the literature (§7).
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2 Previous Work

Theoretical results about general simultaneous auction
games are few and far between. The leading auction theory
textbook [Krishna, 2010] treats sequential but not simul-
taneous auctions, and most of the literature that addresses
simultaneity does so only in the context of ascending [Pe-
ters and Severinov, 2006] or multi-unit auctions.

In the first work to derive an equilibrium of a simultaneous-
auction game, Engelbrecht-Wiggans and Weber [1979]
tackle an example with perfect substitutes, where each
agent is restricted to bid on at most two items. Their analy-
sis was performed in the large-limit of auctions and agents,
and exhibited a mixed equilibrium where the agents diver-
sify their bids even though the items are indistinguishable.
Krishna and Rosenthal [1996] studied a second-price setup
with two categories of bidders: local bidders who have
value for a single item, and global bidders who have su-
peradditive values for multiple items. The authors charac-
terize an equilibrium that is symmetric with respect to the
global bidders, and show, somewhat surprisingly, that an
increase in the number of bidders often leads to less ag-
gressive bidding. Rosenthal and Wang [1996] tackled a
first-price setup, assuming synergies and common values.
Szentes and Rosenthal [2003] studied two-bidder auctions
with three identical objects and complete information.

Recently, Rabinovich et al. [2011] generalized fictitious
play to incomplete information games with finite actions
and applied their technique to a class of simultaneous
second-price auctions. They computed approximate equi-
libria in environments with utilities expressible as linear
functions over a one-dimensional type space.

Complementing these theoretical treatments, researchers
have designed trading strategies applicable to simultane-
ous auctions, which address the exposure problem through
heuristic means. In the Trading Agent Competition (TAC)
Travel game [Wellman et al., 2007], agents face an expo-
sure problem for hotels—they must obtain a room each
night for the client or the whole trip is infeasible. Expe-
rience from TAC and other domains has demonstrated the
importance of price prediction for bidding in interdepen-
dent markets [Wellman et al., 2004]. Given probabilistic
predictions of prices across markets, agents can manage
exposure risk, choosing bids that trade off the profits and
losses of the possible bundles of goods they stand to win.

Greenwald and Boyan [2004] framed the problem of bid-
ding across interdependent markets given probabilistic
price predictions. Follow-on work [Greenwald et al., 2009,
Wellman et al., 2007] formalized this bidding problem
in decision-theoretic terms and established properties of
optimal bidding assuming that bids do not affect other-
agent behaviors. Further experimental comparison was per-
formed by Greenwald et al. [2010]. These works intro-

duced a taxonomy of heuristic bidding strategies [Wellman,
2011], which we employ here.

Self-confirming price-prediction (SCPP) bidding strategies
were first explored in the context of simultaneous ascend-
ing auctions (SimAAs) [Cramton, 2005]. For the SimAA
environment, SCPP strategies were found to be highly ef-
fective at tackling the exposure problem [Wellman et al.,
2008]. To our knowledge, no other general price-prediction
methods have been proposed for SimOSSB auctions, other
than learning from historical observations.

3 Price-Prediction Strategies and
Equilibrium

We consider a market withm goods, X = {1, . . . ,m}, and
n agents. Agent i’s value for a bundle X ∈ 2X is given
by vi(X), where vi(X) ∈ [0, V̄ ]. We assume free dis-
posal: if X ⊆ X ′, then vi(X) ≤ vi(X

′). The m goods
are allocated to the agents via SimOSSB auctions, one per
good. That the mechanism is simultaneous means that each
agent i submits a bid vector bbbi = (b1i , . . . , b

m
i ) ∈ Rm+ be-

fore a specified closing hour. That the auctions are one-
shot means that all auctions compute and report their results
upon the closing hour. That the bids are sealed means that
agents have no information about the bids of other auction
participants until the outcome is revealed.

The second-price sealed-bid (SPSB) auction is an OSSB
auction in which the winning bidder pays the second-
highest bid rather than its own (highest) bid. The envi-
ronments studied in our empirical game-theoretic analysis
below employ the SPSB mechanism. For simplicity of de-
scription we focus on SPSB throughout, although our the-
oretical results hold as well for first-price sealed-bid auc-
tions, or indeed any auction mechanism where the outcome
to agent i (whether it gets the good and the price it pays) is
a function of i’s own bid and the highest other-agent bid.

Our investigation employs the familiar independent private
values (IPV) model (see, for example, [Krishna, 2010]),
where each agent i’s values are drawn independently from
a probability distribution that is common knowledge. Un-
der IPV, it is a dominant strategy for an agent to bid its
true value in a single SPSB auction. This result does not
generalize to simultaneous SPSB auctions, however, un-
less the agent’s value over bundles happens to be addi-
tive. When agents’ values for different goods interdepend
(e.g., through complementarity or substitutability), bidding
truthfully in simultaneous auctions is not even an option, as
the value for an individual good is not well-defined.

To deal effectively with interdependent markets, an agent’s
bid in each auction must reflect its beliefs about the out-
comes of others. We consider beliefs in the form of pre-
dictions about the prices at which the agent might obtain
goods in the respective auctions. Bidding strategies that are
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explicitly cast as functions of some input price prediction
are termed price-prediction (PP) strategies.

We denote by pj ∈ R+ a price for good j. The vector
ppp = 〈p1, . . . , pm〉 associates a price with each good. We
represent price predictions as probability distributions over
the joint price space. We use the symbol Π for such predic-
tions in the form of cumulative probability distributions,

Πppp(qqq) = Pr(ppp ≤ qqq), (1)

where ppp ≤ qqq holds iff pj ≤ qj for all j. We generally omit
the subscript ppp as understood.

We have previously argued [Wellman et al., 2007] that price
prediction is a key element of agent architecture for com-
plex trading environments. Here, we support a stronger
claim for the case of SimOSSB auctions: given IPV, PP
strategies are necessary and sufficient for optimal bidding.

Let w(bbb, qqq) = {j | bj > qj} denote the set of goods an
agent would win by bidding bbb when the highest other-agent
bids are qqq.1 Agent i’s utility for a bid given others’ bids can
thus be written as

ui(bbb, qqq) = vi(w(bbb, qqq))−
∑

j∈w(bbb,qqq)

qj . (2)

Definition 1 (Optimal PP Bidders). An optimal PP bidding
strategy s∗(Π) submits bids that maximize expected utility
given a price prediction Π,

s∗(Π) ∈ arg max
bbb

Eqqq∼Π[ui(bbb, qqq)]. (3)

In games of incomplete information, agent i’s strategy pro-
duces actions (here, bids) as a function of i’s type. Un-
der IPV, knowing other agents’ values tells agent i nothing
about its own value. The distribution of outcomes given i’s
bid bbbi depends only on bbbi and the marginal distribution of
other-agent bids. Agent i’s expected utility is thus condi-
tionally independent of other-agent valuations given their
bids [Wellman et al., 2011]. In particular, i’s best response
to a profile of other-agent strategies depends only on the
distribution of their bids [Rabinovich et al., 2011].

Let bk∗−i denote the highest bid submitted for good k by an
agent other than i. Since agent i’s utility depends only on
what it wins and what it pays, the distribution of highest
other-agent bids (i.e., the distribution of bk∗−i) is a sufficient
statistic for the other-agent bid distributions. This distribu-
tion can be expressed in the form of a price prediction (1).

Therefore, a best response to other-agent bidding strate-
gies takes the form of an optimal PP bidding strategy (3),

1In the case of ties, the winner is chosen uniformly from
among the high bidders. Our analysis ignores ties, which are rare
given our setup of real-valued bids and rich valuation functions.
Our theoretical results require that the highest other-agent bid is a
sufficient statistic for outcome, which is true as long as one’s bid
does not tie for best with two or more other bidders.

where the input PP is the distribution of highest other-
agent bids induced by those other-agent strategies. Since a
Bayes-Nash equilibrium (BNE) is a profile of mutual best-
response strategies, any profile of optimal PP strategies,
where the PP for each equals the distribution of highest bids
induced by the other agents’ optimal PP strategies, consti-
tutes a BNE. Moreover, any BNE can be characterized as a
profile of optimal PP strategies, or mixtures thereof.

Theorem 1. Suppose a SimOSSB auction game, with in-
dependent private values, where the outcome of each auc-
tion to agent i depends only on i’s bid and the highest
other-agent bid in that auction. Then the strategy profile
sss = (si, s−i) is a Bayes-Nash equilibrium if and only if,
for all i, si is equivalent to an optimal PP bidding strat-
egy with input Πi(qqq) = Pr((b1∗−i, . . . , b

m∗
−i ) ≤ qqq | s−i), or

equivalent to a mixture of such optimal PP strategies.

Price predictions that support strategic equilibrium are
themselves in a form of equilibrium. The bidding strate-
gies employ price predictions that are actually borne out
as correct (i.e., the distributions generated by the strategies
are as predicted) assuming that everyone follows the given
strategies. This situation can be viewed as a form of ratio-
nalizable conjectural equilibrium (RCE) [Rubinstein and
Wolinsky, 1994], where each agent’s conjecture is about the
distribution of highest other-agent bids. In this instance, the
RCE is also a BNE, since the conjecture provides sufficient
information to determine a best response.

An auction game with IPV is symmetric if all agents have
the same probability distribution over valuations. In earlier
work on simultaneous ascending auctions [Wellman et al.,
2008], we considered the symmetric IPV case and referred
to price predictions in this kind of equilibrium relationship
as self-confirming. Let Γ be an instance of a symmetric
IPV SimOSSB auction game, and s a bidding strategy that
employs price predictions (whether optimally or not).

Definition 2 (Self-Confirming Price Prediction (SCPP)).
The prediction Π is self-confirming for PP strategy s in Γ
iff Π is equal to the distribution of the highest other-agent
prices (b1∗−i, . . . , b

m∗
−i ) when all agents play s(Π).

The following theorem specializes Theorem 1 for the sym-
metric case, employing the language of SCPPs.

Theorem 2. In symmetric IPV SimOSSB auctions, a sym-
metric pure BNE comprises optimal PP bidders employ-
ing self-confirming price predictions. Hence, existence of
pure symmetric BNE in such games entails existence of self-
confirming price predictions.

In summary, for SimOSSB auctions under IPV, we can re-
strict attention to optimal PP strategies employing price
predictions that are in equilibrium with one another (which
for the symmetric case, means SCPPs). In the remainder of
this paper, we demonstrate that PP strategies are amenable
to effective approximation, are a convenient abstraction on
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which to design and implement trading strategies, and ex-
hibit a high degree of robustness across environments.

4 Approximate Price Prediction

We have shown that an optimal PP strategy is a best re-
sponse to the strategies of other agents if price predictions
Π exactly reflect the other-agent bid distributions. Since it
is unrealistic to expect perfect price prediction, we exam-
ine the consequences of employing PP strategies that use
inaccurate price predictions Π′.

We quantify the inaccuracy of Π′ in two ways. The first
is a multivariate form of the Kolmogorov-Smirnov (KS)
statistic: KS (Π,Π′) ≡ supqqq|Π(qqq) − Π′(qqq)|. Second,
we define the bundle probability distance, BP(Π,Π′, bbb),
with respect to a bid bbb:

∑
X⊆X |Prqqq∼Π(w(bbb, qqq) = X) −

Prqqq∼Π′(w(bbb, qqq) = X)|/2.
We first bound the difference between perceived and ac-
tual expected utility when incorrectly using Π′ instead of
Π. Let us denote the payment for bbb given highest other-
agent bids qqq by ψ(bbb, qqq), so that for SPSB we have ψ(bbb, qqq) =∑
j∈w(bbb,qqq) qj . Overall expected utility is the difference be-

tween expected value of winnings and payment:

Eqqq[ui(bbb, qqq)] = Eqqq[vi(w(bbb, qqq))]− Eqqq[ψ(bbb, qqq)]. (4)

To bound the difference between perceived and actual ex-
pected utility, we separately consider winnings and pay-
ment. The following bounds the amount a bidder can un-
derestimate its expected payment by using Π′.

Lemma 3. Let δKS = KS (Π,Π′) and ‖bbb‖1 ≡
∑m
j=1 b

j .
Then for all bbb,

Eqqq∼Π[ψ(bbb, qqq)] ≤ Eqqq∼Π′ [ψ(bbb, qqq)] + 2δKS (‖bbb‖1), (5)

Proof. See Appendix A.1 in the online supplement.

We similarly bound the amount a bidder can overestimate
its expected value of winnings by using Π′. A variant dis-
tribution Π can degrade expected value of winnings only
by decreasing the probability of winning valuable bundles.
By constraining BP distance, we can ensure, for any set of
bundles, that the total probability of winning a bundle from
that set at bbb decreases by at most δBP . This means that the
expected value of winnings can suffer by at most δBP V̄ .

Lemma 4. Let δBP = BP(Π,Π′, bbb). Then

Eqqq∼Π[vi(w(bbb, qqq))] ≥ Eqqq∼Π′ [vi(w(bbb, qqq))]− δBP V̄ . (6)

Combining the lemmas, we have the following bound.

Theorem 5. Let δKS = KS (Π,Π′) and δBP =
BP(Π,Π′, bbb). Then for all i,

Eqqq∼Π[ui(bbb, qqq)] ≥ Eqqq∼Π′ [ui(bbb, qqq)]− δBP V̄ − 2δKS‖bbb‖1.

We can use these bounds to limit how far an optimal PP
strategy with inaccurate price predictions Π′ can be from
equilibrium. Let us denote by b̄ the maximum payment,
that is, the L1-norm of the greatest possible bid vector. The
value of b̄ is bounded above bymV̄ for any rational bidding
strategy under any valuation distribution, but typically it
will be far less than that.

Theorem 6. Suppose that for all agents i, strategy ŝi is a
best response to other-agent highest-bid distribution Π̂−i,
and that Πŝ−i is the other-agent bid distribution actually
induced by ŝ−i. If for all i, KS (Π̂−i,Πŝ−i) ≤ δKS , and
for all bbb, BP(Π̂−i,Πŝ−i , bbb) ≤ δBP , then ŝss constitutes an
ε-Bayes-Nash equilibrium, for ε = 2δBP V̄ + 4δKS b̄.

Proof. See online Appendix A.2.

5 Heuristic PP Bidding Strategies

Having shown that optimal PP bidding strategies are theo-
retically ideal in that they comprise a BNE, we turn our at-
tention to practical PP bidding strategies. Building on prior
work [Wellman et al., 2007, Chapter 5], we explore a broad
range of heuristic bidding strategies. The most salient of
these are described here.

5.1 Marginal Values and Optimal Bundles

Interdependence dictates that the value of any individual
good must be assessed relative to a bundle of goods. This
idea is captured by the notion of marginal value.

Definition 3 (Marginal Value). Agent i’s marginal value,
µi(x,X), for good x with respect to a fixed bundle of other
goods X is given by: µi(x,X) ≡ vi (X ∪ {x})− vi (X).

Given a fixed vector of prices, ppp = 〈p1, . . . , pm〉, let
σi(X,ppp) denote agent i’s surplus from obtaining the set of
goods X at those prices:

σi(X,ppp) ≡ vi(X)−
∑

j|xj∈X
pj . (7)

Definition 4 (Acquisition [Boyan and Greenwald, 2001]).
Given price vector ppp, the acquisition problem selects an
optimal bundle of goods to acquire: X∗ = ACQi(ppp) ≡
arg maxX⊆X σi(X,ppp).

Faced with perfect point price predictions, an optimal bid-
ding strategy would be to compute X∗ = ACQi(ppp) and
then to buy precisely those goods in X∗. By definition,
this strategy yields the optimal surplus at these prices:
σ∗i (ppp) ≡ σi(ACQi(ppp), ppp).

To assess goods with respect to (typically imperfect) point
price predictions, we extend the concept of marginal value.
Let ppp[pj ← q] be a version of the price vector ppp with
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the jth element revised as indicated: ppp[pj ← q] =
〈p1, . . . , pj−1, q, pj+1, . . . , pm〉.
Definition 5 (Marginal Value at Prices). Agent i’s
marginal value µi(xj , ppp) for good xj at prices ppp is given
by: µi(xj , ppp) ≡ σ∗i (ppp[pj ← 0])− σ∗i (ppp[pj ←∞]).

Here, σ∗i (ppp[pj ← 0]) represents the optimal surplus at
the given prices, assuming good xj is free. Similarly,
σ∗i (ppp[pj ←∞]) represents the optimal surplus at the given
prices, if xj were unavailable. The difference is precisely
the marginal value of good xj with respect to the prices
of other goods. Note that Definition 5 generalizes Defini-
tion 3, under the interpretation that goods in X have zero
price, and all other goods have infinite price.

StraightMV The heuristic strategy StraightMV em-
ploys this concept directly, and simply bids marginal value
for all goods: StraightMVj = µ(xj , ppp).

5.2 Bidding with Price Distributions

A point price estimate fails to convey the uncertainty in-
herent in future prices. Probability distributions over prices
provide a more general representation, expressing degrees
of belief over the possible prices that might obtain.

The expected value method [Birge and Louveaux, 1997]
approximates a stochastic optimization by collapsing prob-
ability distributions into point estimates through expecta-
tion. Let p̂ppΠ = 〈p̂1, . . . , p̂m〉, where p̂j = Eppp∼Π[pj ] is the
expectation of pj under given price prediction Π.

Any bidding strategy defined for point price predictions
can be adapted to take as input distribution price predic-
tions through this expected value method, simply by using
p̂ppΠ for the point price prediction. For example, we define
StraightMU as the strategy that takes as input a distribu-
tion prediction, and bids as StraightMV at the mean prices.
“MU” stands for “marginal utility”, but its usage here is
simply to distinguish the name from its corresponding point
strategy ending with “MV”.

We implemented two approaches to calculating p̂ppΠ. The
first samples from Π, and the second computes the exact
expectation of a piecewise approximation of Π. For the
sampling method, accuracy depends on the number of sam-
ples k drawn; thus we indicate a version of the strategy by
appending “k” to the name. For example, StraightMU8
takes the mean of eight samples from Π, and employs
StraightMV with that average price vector as input.

AverageMU Whereas StraightMU bids the marginal
value of the expected price, the PP strategy AverageMU
bids the expected marginal value: AverageMUj =
Eppp∼Π[µ(xj , ppp)]. Our implementation samples from the
price distribution, calculates marginal values for each sam-
ple, and averages the results.

5.3 Explicit Optimization

Finally, we consider strategies that explicitly attempt to op-
timize bids given a distribution price prediction, as do the
optimal PP bidders introduced above (Definition 1).

BidEval One heuristic optimization approach is to gen-
erate candidate bid vectors, and evaluate them according to
the price prediction. The BidEval strategy uses other bid-
ding heuristics to propose candidates, and estimates each
candidate’s performance by computing its expected utility
given the price prediction. It then selects the candidate bid
vector with the greatest expected utility. There are many
variations of BidEval, defined by:

• the method used to generate candidates. When this
method is a named bidding strategy, we indicate this in
parentheses; for instance, BidEval(SMU8) generates
candidates using StraightMU8. Strategy BidEvalMix
employs a mix of previously described bidding strate-
gies to generate candidates.

• number of candidates generated. Methods based on
sampling naturally produce a diverse set of candidates.
For example, each invocation of StraightMU8 em-
ploys a new draw of eight samples from Π to estimate
p̂ppΠ, thus we generally obtain different bids.
• whether the candidates are evaluated by exact compu-

tation on a piecewise version of Π, or by sampling. If
by sampling, then how many samples are used.

LocalBid The LocalBid strategy (see Alg. 1) employs
a local search method in pursuit of optimal bids. Start-
ing with an initial bid vector proposed by another heuris-
tic strategy, LocalBid makes incremental improvements
to that bid vector for a configurable number of iterations.
Those incremental improvements are made good-by-good,
treating all other goods’ bids as fixed. Assuming bids for all
goods except j are fixed, the agent effectively faces a sin-
gle auction for good j, with the winnings for other goods
determined probabilistically. For a single SPSB auction, it
is a dominant strategy to bid one’s expected marginal value
for good j, which is given by Eppp∼Π[v(w(bbb,ppp) ∪ {j}) −
v(w(bbb,ppp) \ {j})], under these circumstances.

Algorithm 1 LocalBid
Input: prediction Π, heuristic strategy s, #iterations K
Output: bid vector bbb

Initialize bbb← s(Π)
for k = 1 to K do

for j = 1 to m do
bj ← Eppp∼Π[v(w(bbb,ppp) ∪ {j})− v(w(bbb,ppp) \ {j})]

return bbb

LocalBid is an iterative improvement algorithm: the ex-
pected utility of bbb is nondecreasing with each update. Fur-
ther, if LocalBid converges, it returns a bid vector that is
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consistent (unlike AverageMU), in the sense that each el-
ement of the vector is the average marginal value for its
corresponding good given the rest of the bid.

In an empirical comparison of bid optimization algorithms,
we found that the LocalBid method was highly effective. In
one representative environment, LocalBid achieved 98.8%
optimality (see Figure 1), whereas a version of BidE-
val produced bids with expected value 94.5% of optimal.
In that same environment, the bids generated by Aver-
ageMU64 were 66.1% as profitable as the optimal bid.
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Figure 1: Expected profit for LocalBid versus optimal, for
5000 sample valuations in SimSPSB environment U[5,5].
Points above the diagonal are suboptimal instances.

6 Self-Confirming Price Predictions

Now that we have a suite of strategies that employ price
predictions, we turn to the question of how to generate such
predictions. We propose here to employ self-confirming
price predictions (SCPPs) (Definition 2), originally intro-
duced and evaluated in the context of simultaneous as-
cending auctions [Osepayshvili et al., 2005]. A high-level
description of our iterative procedure for computing self-
confirming price predictions is shown in Alg. 2.

Algorithm 2 Self-Confirming Price Search
Input: PP strategy PP, parameters F 0, L, G, κt, τ
Output: price prediction F

Initialize F ← F 0

for t = 1 to L do
F ′ ← outcome of G runs with all playing PP(F )
if KSmarg(F, F ′) < τ then

return F
F ← κtF

′ + (1− κt)F
return F

We extend the flexibility of the existing SCPP-derivation
procedure by considering two interpretations of the “out-
come” prices resulting from each instance of the game. In

one, the resulting price is the actual transaction price of the
good (price), as in the earlier SimAA study. In the second,
we take the highest other-agent bid (HB) as the result.

To measure the difference between distributions at succes-
sive iterations, we adopt the Kolmogorov-Smirnov statis-
tic. Since we maintain our prediction in terms of marginal
distributions, our comparison takes the maximum of the
KS statistic separately for each good: KSmarg(F, F ′) ≡
maxj KS (Fj , F

′
j).

Our initial prediction F 0 considers all integer prices in
the feasible range equally likely. At each iteration, we
run G instances of game Γ, with all agents playing the
distribution-prediction strategy PP(F ). We tally the prices
resulting from each instance, and update the price predic-
tion as a weighted average of this tally F ′ and the previous
prediction F . When KSmarg(F, F ′) falls below threshold,
we halt and return F . Or, if this distance never falls below
threshold, then the procedure terminates and returns the re-
sult after L iterations.

Although not guaranteed to converge, we found that for
the heuristics of the previous section the iterative proce-
dure generally produced approximately marginally self-
confirming distribution predictions. For example, in one
environment with a range of strategies we ran the proce-
dure with G = 106 and L = 100, achieving an accuracy
KSmarg < 0.01 in all cases. Due to space constraints, we
relegate a full description and evaluation of this procedure
to the extended version of this paper.

7 Empirical Game-Theoretic Analysis

The heuristic strategies introduced in §5 represent plausible
but not generally optimal approaches to bidding in simulta-
neous auctions. Even the strategies based on explicit opti-
mization (§5.3) fall short of ideal due to inaccuracy in price
prediction and non-exhaustive search of bid candidates. To
evaluate the performance of these strategies, we conducted
an extensive computational study, simulating thousands of
strategy profiles—millions of times each—in five different
simultaneous SPSB environments. Analysis of the game
model induced from simulation data provides evidence for
the efficacy and robustness of approximately optimal PP
strategies across these environments.

7.1 Approach

The methodology of applying game-theoretic reasoning to
simulation-induced game models is called empirical game-
theoretic analysis (EGTA) [Wellman, 2006]. In EGTA,
we simulate profiles of an enumerated strategy set play-
ing a game, and estimate a normal-form game from the ob-
served payoffs. The result is a simulation-induced game
model, called the empirical game. By applying standard
game-theoretic solution concepts to the empirical game,
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we can draw conclusions about the strategic properties of
the strategies and profiles evaluated. Although the strategy
space in the empirical game is necessarily a severely re-
stricted subset of the original, by including a broad set of
strategies representing leading ideas from the literature, we
can produce relevant evidence bearing on the relative qual-
ity of heuristic strategies in the simulated environments.

Our EGTA study of SimSPSB followed these steps.

1. Define an environment: numbers of goods and agents,
and valuation distributions.

2. Specify a set of heuristic strategies. For PP strate-
gies, this includes deriving self-confirming distribu-
tion price predictions to be input to these strategies,
based on the environment defined in Step 1. The full
set of strategies included in our EGTA study is de-
scribed in online Appendix B.

3. Simulate select profiles among these strategies, sam-
pling from the valuation distributions for each simu-
lation instance (at least one million per profile, most
profiles two million or more). Calculate mean payoffs
for each strategy in each profile.

4. Analyze the empirical game defined by these mean
payoffs to identify Nash equilibria, dominance rela-
tionships, regret values, and other analytic constructs.

In actuality, Steps 2–4 were applied in an iterative and inter-
leaved manner, with intermediate analysis results inform-
ing the selection of strategies to explore and profiles to
sample. The exploration and sample selection were guided
manually, generally driven by the objective of confirming
or refuting equilibrium candidates among the profiles al-
ready evaluated. The process for each environment was
terminated when all of the following conditions were met:
(1) a broadly representative set of heuristic strategies were
covered, (2) all symmetric mixed profiles evaluated were
either confirmed or refuted as equilibria, and (3) all strate-
gies showing relative success in at least one environment
were evaluated against the equilibria in all other environ-
ments. Overall, the analysis commanded some tens of
CPU-years over a roughly six-month period.

7.2 Environments

We evaluated five simultaneous SPSB environments, in-
volving 3–8 agents bidding on 5 or 6 goods. The environ-
ments span two qualitatively different valuation distribu-
tions, from highly complementary to highly substitutable.
Both of these assume IPV and symmetry, so that each agent
receives a private valuation drawn independently from the
same distribution.

7.2.1 Scheduling Valuations

The first valuation distribution we employ in this study
is based on a model of market-based scheduling [Reeves
et al., 2005]. Goods represent time slots of availability for
some resource: for example, a machine, a meeting room, a
vehicle, or a skilled laborer. Agents have tasks, which re-
quire this resource for some duration of time to complete.

Specifically, the goods X = {x1, . . . , xm} comprise a set
of m time slots available to be scheduled. Agent i’s task
requires λi time slots to accomplish, and the agent values
a set of time slots according to when they enable comple-
tion of the task. If agent i acquires λi time slots by time
t, it obtains value V ti . Completion value with respect to
time is a nonincreasing function: for all i, if t < t′ then
V ti ≥ V t

′
i . If it fails to obtain λi slots, the agent accrues no

value (V∞i = 0). Let X ⊆ X denote a set of slots. The
expression |{xj ∈ X | j ≤ t}| represents the number of
these that are for time t or earlier. The overall valuation
function for agent i is vi(X) = V

T (X,λi)
i , where

T (X,λ) = min ({t s.t. |{xj ∈ X | j ≤ t}| ≥ λ} ∪ {∞})

is the earliest time by which X contains at least λ slots.

For each agent, a task length λi is drawn uniformly over
the integers {1, . . . ,m}. Values associated with task com-
pletion times are drawn uniformly over {1, . . . , 50}, then
pruned to impose monotonicity [Reeves et al., 2005]. The
valuations induced by this scheduling scenario exhibit
strong complementarity among goods. When λ > 1, the
agent gets no value at all for goods in a bundle of fewer
than λ. On the other hand, there is some degree of substi-
tutability across goods when there may be multiple ways of
acquiring a bundle of the required size.

We denote environments using this valuation by U [m,n],
with m and n the numbers of goods and agents, and “U”
indicating the uniform distribution over task lengths.

7.2.2 Homogeneous-Good Valuations

The second valuation distribution expresses the polar op-
posite of complementarity: goods are perfect substitutes,
in that agents cannot distinguish one from another. Agents’
marginal values for units of this good are weakly decreas-
ing. Specifically, valuation is a function of the num-
ber of goods obtained, constructed as follows. Agent i’s
value for obtaining exactly one good, vi({1}), is drawn
uniformly over {0, . . . , 127}. Its value for obtaining
two, vi({1, 2}), is then drawn from {vi({1}), vi({1}) +
1, . . . , 2vi({1})}. In other words, its marginal value for
the second good is uniform over {0, . . . , vi({1})}. Subse-
quent marginal values are similarly constrained not to in-
crease. Its marginal value for the kth good is uniform over
{0, . . . , vi({1, . . . , k − 1})− vi({1, . . . , k − 2})}.
We denote environments using this valuation by H[m,n],
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with “H” an indicator for homogeneity.

7.3 Regret

We evaluate the stability of a strategy profile by regret, the
maximal gain a player could achieve by deviating from the
profile. Formally, let Γ = {n, S, u(·)} be a symmetric
normal-form game with n players, strategy space S (the
same for each player, since the game is symmetric), and
payoff function u : S × Sn−1 → R. The expression
u(si, s−i) represents the payoff to playing strategy si in a
profile where the other players play strategies s−i ∈ Sn−1.

Definition 6 (Regret). The regret ε(sss) of a strategy profile
sss = (s1, . . . , sn) is given by

ε(sss) = max
i

max
s′i∈S

(u(s′i, s−i)− u(si, s−i)) .

A Nash equilibrium profile has zero regret, and more gen-
erally regret provides a measure of approximation to Nash
equilibrium. Using this regret definition, profile sss is an
ε(sss)-Nash equilibrium.

Regret is a property of profiles. Evaluation of a particu-
lar strategy is inherently relative to a context of strategies
played by other agents. Jordan et al. [2007] proposed rank-
ing strategies according to their performance when other
agents are playing an equilibrium.

Definition 7 (NE regret [Jordan, 2010]). Let sssNE be a
Nash equilibrium of game Γ. The regret of strategy si ∈ S
relative to sssNE , u(sNE

i , sNE
−i )−u(si, s

NE
−i ), is an NE regret

of si in Γ.

NE regret represents the loss experienced by an agent for
deviating to a specified strategy from a Nash equilibrium
of a game. The rationale for this measure comes from the
judgment that all else equal, Nash equilibria provide a com-
pelling strategic context for evaluating a given strategy. For
games with multiple NE, a given strategy may have multi-
ple NE-regret values.

7.4 Results

Table 1 summarizes the extent of simulation coverage of
the five SPSB environments investigated.2 The empirical
games comprise 600–14,000 profiles, over 29–34 strate-
gies. Evaluated profiles constitute a small fraction (as lit-
tle as 0.03%) of the entire profile space over these strate-

2The extended version includes an online data supplement
with full payoff data for the empirical games. The results we re-
port here subsume those of a preliminary study [Yoon and Well-
man, 2011]. That study set the groundwork for the current investi-
gation by developing the infrastructure for simulation and deriva-
tion of self-confirming price predictions, and tuning parameters
(e.g., number of evaluating samples) for several of the strategies.
However, the preliminary results reflected sparser coverage of rel-
evant profiles and a weaker overall set of strategy candidates.

Table 1: Strategies and profiles simulated for the environ-
ments addressed in our EGTA study.

Environment # Strategies # Profiles % Profiles
U [6, 4] 34 1165 1.76
U [5, 5] 30 5219 1.88
U [5, 8] 29 9096 0.03
H[5, 3] 32 608 10.16
H[5, 5] 34 13197 2.62

gies. Nevertheless, these are sufficient to confirm symmet-
ric Nash equilibria for each game. Whereas it is impossible
to rule out additional equilibria without exhaustive evalua-
tion, we have either confirmed or refuted every evaluated
symmetric mixed profile (i.e., every subset of strategies
for which all profiles are evaluated). Since this includes
every strategy in conjunction with those most effective in
other contexts, we doubt that there are any other small-
support symmetric equilibria, and expect few if any alter-
native symmetric equilibria among the explored strategies.

As it happens, our process identified exactly one symmet-
ric mixed-strategy NE in each game. Of the 44 distinct
strategies explored across environments, only seven were
supported in equilibrium in any environment. Variants of
SCLocalBid, a strategy that explicitly optimizes with re-
spect to self-confirming prices, predominate in equilibrium
in four out of five environments. LocalBid and the BidE-
valMix strategies also explicitly optimize, but with respect
to price predictions that are self-confirming for different
strategies (see Appendix B). AverageMU64 HB performs
remarkably well in the “U” environments, and is the sole
non-optimizing heuristic to appear in equilibria.

Whether a strategy is in equilibrium or not is a crude bi-
nary classification of merit. We measure relative degrees
of effectiveness by NE regret (Definition 7), as reported in
Table 2. The table depicts the NE-regret values for 12 top
strategies: all those ranked fourth or better in at least one
environment. The values are indicated on a horizontal scale
for each game environment, ranging from zero (indicating
the strategy is in the support of equilibrium) to the high-
est NE regret value among the listed strategies. We also
verified via a bootstrap technique that the results are statis-
tically robust: for each identified equilibrium the one-tailed
90% confidence bound on regret is at the far left end (1%
of the range) of the NE regret scale shown.

These results provide solid support for the SCLocalBid
strategy. For the one environment it fails to participate in
equilibrium, its NE regret is still quite low, thus we find it
to be a strong all-around strategy. This situation contrasts
starkly with prior findings for bidding in simultaneous as-
cending auctions [Wellman et al., 2008], where the best
strategies for complementary (scheduling valuation) envi-
ronments were awful in substitutes (homogeneous good)
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Table 2: NE regret for top strategies across five environments.

NE Regret

AverageMU64_HB
AverageMU64Z_HB

BidEvaluatorMix_E8S32K8_HB
BidEvaluatorMixA

BidXEvaluatorMix3_K16_HB
BidXEvaluatorMixA_K16_HB

LocalBidSearch_K16_HB
SCBidEvaluatorMixA_K16_HB
SCBidXEvaluatorMixA_K16_HB

SCLocalBidSearch_K16_HB
SCLocalBidSearch_K16Z_HB
SCLocalBidSearchS5K6_HB

0.0 0.1 0.2 0.3 0.4 0.5

U[6,4]

0.0 0.1 0.2 0.3 0.4 0.5

U[5,5]

0.0 0.1 0.2 0.3

U[5,8]

0 2 4 6 8 10 12

H[5,3]

0 2 4 6 8 10

H[5,5]
SC Local SC BidEval Local BidEval AvgMU

environments, and vice versa. The fact that SCLocalBid
performs so well aligns with our key theoretical finding, in
support of optimal PP bidders with self-confirming price
predictions. As the LocalBid search method is most effec-
tive in optimizing bids, it is consistent with our theory to
find that both examples of strategies in this class are lead-
ers among explicit optimizing strategies.

All the remaining top strategies are in the BidEval class
(also explicit optimizers), except for AverageMU64. In
contrast to the others, however, AverageMU64’s quality
is limited to one of the valuation distributions—the strat-
egy performs poorly in homogeneous-good environments.
This observation is consistent with the results reported by
Boyan and Greenwald [2001], where an example environ-
ment with perfect substitutes was contrived to demonstrate
the shortcomings of marginal-utility-based bidding. Given
such examples, it is perhaps unsurprising that the heuris-
tic strategies based on marginal value have a difficult time
competing with explicit optimizers. If anything it is the
observed success of AverageMU64 that is striking, but
this outcome is consistent with past experimental results in
an environment that exhibits substantial complementarity
[Stone et al., 2003]. Still, compared to optimal PP bidders,
AverageMU lacks robustness across valuation classes.

Finally, all the top strategies but one employ the highest-
bid (HB) statistic in deriving self-confirming price distribu-
tions, as opposed to the actual transaction price. This, too,
is aligned with what the theory would dictate. The lone ex-
ception in Table 2 is BidEvaluatorMixA, which performed
impressively in one of the homogenous-good environments
but not so well in the rest.

8 Conclusion

Our theoretical and experimental findings point to two key
ingredients for developing effective bidding strategies for
SimOSSB auctions with independent private values. The
first is an algorithm for computing approximately opti-

mal bid vectors given a probabilistic price prediction. We
have found that a simple local search approach (LocalBid)
achieves a high fraction of optimality, and that this trans-
lates into superior performance in strategic simulations
(§7). The second ingredient is a method for computing self-
confirming price predictions for a given price-prediction
bidding strategy and a specification of a simultaneous-
auction environment. We have found a simple iterative esti-
mation procedure (§6) to be effective at finding price distri-
butions that are approximately marginally self-confirming
for a range of strategies and environments.

Our theoretical results say that if these ingredients can
achieve their tasks perfectly, we have a solution (i.e., a
Bayes-Nash equilibrium) to the corresponding simultane-
ous auction game. Approximations to the ideal in these
ingredients yield approximate game solutions. Our compu-
tational experiments indicate that following this approach
produces results that are as good or better than any other
general method proposed for bidding in SimOSSB auc-
tions. The evidence takes the form of a comprehensive em-
pirical game-theoretic analysis, covering both complemen-
tary and substitutable valuation classes and a broad swath
of heuristic strategies from the literature.

There is still room for improvement in our proposed meth-
ods, as well as opportunity to subject our conclusions to
further empirical scrutiny. More sophisticated stochastic
search techniques may improve upon our best bid optimiza-
tion algorithms, and allow them to scale to larger environ-
ments with more complex valuations. Similarly, we do not
consider our simple iterative method to be a last word on
finding self-confirming price distributions. In particular,
we expect that substantial improvement could be obtained
by accounting for some joint dependencies in price predic-
tions. Finally, further testing against alternative proposals
or in alternative environments would go some way to bol-
stering or refuting our positive conclusions.
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Abstract

Many latent (factorized) models have been
proposed for recommendation tasks like col-
laborative filtering and for ranking tasks like
document or image retrieval and annotation.
Common to all those methods is that dur-
ing inference the items are scored indepen-
dently by their similarity to the query in the
latent embedding space. The structure of the
ranked list (i.e. considering the set of items
returned as a whole) is not taken into ac-
count. This can be a problem because the
set of top predictions can be either too di-
verse (contain results that contradict each
other) or are not diverse enough. In this pa-
per we introduce a method for learning latent
structured rankings that improves over ex-
isting methods by providing the right blend
of predictions at the top of the ranked list.
Particular emphasis is put on making this
method scalable. Empirical results on large
scale image annotation and music recommen-
dation tasks show improvements over existing
approaches.

1 INTRODUCTION

Traditional latent ranking models score the ith item
di ∈ RD given a query q ∈ RD using the following
scoring function:

f(q, di) = q>Wdi = q>U>V di, (1)

where W = U>V has a low rank parameterization,
and hence q>U> can be thought of as the latent rep-
resentation of the query and V di is equivalently the
latent representation for the item. The latent space
is n-dimensional, where n � D, hence U and V are
n ×D dimensional matrices. This formulation covers
a battery of different algorithms and applications.

For example, in the task of collaborative filtering, one
is required to rank items according to their similarity
to the user, and methods which learn latent represen-
tations of both users and items have proven very ef-
fective. In particular, Singular Value Decomposition
(SVD) (Billsus and Pazzani, 1998; Bell et al., 2009)
and Non-negative Matrix Factorization (NMF) (Lee
and Seung, 2001) are two standard methods that at
inference time use equation (1), although the meth-
ods to learn the actual parameters U and V them-
selves are different. In the task of document retrieval,
on the other hand, one is required to rank text docu-
ments given a text query. The classical method Latent
Semantic Indexing (LSI) (Deerwester et al., 1990) is
an unsupervised approach that learns from documents
only, but still has the form of equation (1) at test time.
More recently, supervised methods have been proposed
that learn the latent representation from (query, doc-
ument) relevance pairs, e.g. the method Polynomial
Semantic Indexing (SSI) (Bai et al., 2009). Finally,
for multiclass classification tasks, particularly when
involving thousands of possible labels, latent models
have also proven to be very useful, e.g. the Wsabie
model achieves state-of-the-art results on large-scale
image (Weston et al., 2011) and music (Weston et al.,
2012) annotation tasks. Moreover, all these models
not only perform well but are also efficient in terms of
computation time and memory usage.

Scoring a single item as in equation (1) is not the end
goal of the tasks described above. Typically for re-
comendation and retrieval tasks we are interested in
ranking the items. This is achieved by, after scoring
each individual item using f(q, di), sorting the scores,
largest first, to produce a ranked list. Further, typi-
cally only the top few results are then presented to the
user, it is thus critical that the method used performs
well for those items. However, one potential flaw in
the models described above is that scoring items indi-
vidually as in eq. (1) does not fully take into account
the joint set of items at the top of the list (even when
optimizing top-of-the-ranked-list type loss functions).
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The central hypothesis of this paper is that latent
ranking methods could be improved if one were to take
into account the structure of the ranked list during in-
ference. In particular this would allow the model to
make sure there is the right amount of consistency and
diversity in the predictions.

Let us suppose for a given query that some of the pre-
dictions at the top of the ranked list are accurate and
some are inaccurate. A model that improves the con-
sistency of the predictions might improve overall accu-
racy. A structured ranking model that predicts items
dependent on both the query and other items at the
top of the ranked list can achieve such a goal. To give
a concrete example, in a music recommendation task
you might not want to recommend both “heavy metal”
and “60s folk” in the same top k list. In that case, a
structured model which encodes item-item similarities
as well as query-item similarities could learn this by
representing those two items with very different latent
embedding vectors such that their pairwise item-item
contribution is a large negative value, penalizing both
items appearing in the top k. Note that a structured
ranking model can do this despite the possibility that
both items are a good match to the query, so an un-
structured model would find this difficult to achieve.

Conversely, if improved results are gained from encour-
aging the top ranked items to be a rather diverse set for
a particular query, then a structured model can learn
to predict that instead. For example in the task of doc-
ument retrieval, for ambiguous queries like “jaguar”,
which may refer either to a Panthera or to the car man-
ufacturer, diversity should be encouraged. The goal of
a structured ranker is to learn the optimal tradeoff be-
tween consistency and diversity on a case-by-case (per
query) basis. As latent parameters are being learnt for
each query type this is indeed possible.

In this work we propose a latent modeling algorithm
that attempts to do exactly what we describe above.
Our model learns to predict a ranked list that takes
into account the structure of the top ranked items by
learning query-item and item-item components. Infer-
ence then tries to find the maximally scoring set of doc-
uments. It should be noted that while there has been
strong interest in building structured ranking models
recently (Bakir et al., 2007), to our knowledge this is
the first approach of this type to do so for latent mod-
els. Further, the design of our algorithm is also partic-
ularly tuned to work on large scale datasets which are
the common case for latent models, e.g. in collabora-
tive filtering and large scale annotation and ranking
tasks. We provide empirical results on two such large
scale datasets, on a music recommendation task, and
an image annotation task, that show our structured
method brings accuracy improvements over the same

method without structure as well as other standard
baselines. We also provide some analysis of why we
think this is happening.

The rest of the paper is as follows. Section 2 describes
our method, Latent Structured Ranking (LaSR). Sec-
tion 3 discusses previous work and connects them to
our method. Section 4 describes our empirical results
and finally Section 5 concludes.

2 METHOD

Given a query q ∈ Q our task is to rank a set of doc-
uments or items D. That is, we are interested in out-
putting (and scoring) a permutation d̄ of the set D,
where d̄j is the jth item in the predicted ranked list.
Our ultimate goal will be to design models which take
into account not just individual document scores but
the (learned) relative similarities of documents in dif-
ferent positions as well.

2.1 SCORING PERMUTATIONS BY
SCORING INDIVIDUAL ITEMS

Let us begin by proposing methods for using the stan-
dard latent model of eq. (1) to score permutations.
We need a method for transforming the scores for
single documents into scores for permutations. Such
transformations have been studied in several previous
works, notably (Le and Smola, 2007). They show that
finding maximally scoring permutations from single
documents can be cast as a linear assignment prob-
lem, solvable in polynomial time with the Hungarian
algorithm.

For the vanilla model we propose here, however, we can
use a simple parameterization which allows for infer-
ence by sorting. For any given permutation we assign
a score as follows:

fvanilla(q, d̄) =

|d̄|∑

i=1

wi(q
>U>V d̄i), (2)

where for each position i in the permutation, we asso-
ciate a weight wi, where wi can be any weights such
that w1 > w2 > · · · > w|d̄| ≥ 0. For example, one can

just set wi = 1
i . Inference using this model is then

performed by calculating:

Fvanilla(q) = argmaxd̄′ [fvanilla(q, d̄′)].

In this case, computing the best-scoring assignment is
simply a matter of sorting documents by their scores
from eq. (1). To see this note that the score of any
unsorted pair can be increased by sorting, since the
positional weights wi are fixed and decreasing.
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2.2 LATENT STRUCTURED RANKING

The fundamental hypothesis of this paper is that in-
cluding knowledge about the structure of the rankings
at inference time will improve the overall set of ranked
items. That is, we want to define a model where the
score of a document d̄i does not only depend on the
query q but also on the other items and their respec-
tive positions as well. What is more, we would prefer
a model that places more weight on the top items in
a permutation (indeed, this is reflected by common
ranking losses like MAP and precision@k).

This leads us to propose the following class of Latent
Structured Ranking (LaSR) models:

flsr(q, d̄) =

|d̄|∑

i=1

wi(q
>U>V d̄i)+

|d̄|∑

i,j=1

wiwj(d̄
>
i S

>Sd̄j) .

(3)
In addition to the parameters of eq. (2), we now intro-
duce the additional parameter S. S takes into account
the structure of the predicted ranked list. S>S is a low
rank matrix of item-item similarities where S is a n×D
matrix, just like U and V , and must also be learnt by
the model using training data.

2.3 CHOICE OF THE wi PARAMETERS

The weights w are crucial to the usefulness of the ma-
trix in the second term of eq. (3). If wi = 1 for all i
then the entire second term would always be the same
no matter what choice of ranking d̄ one chooses. If the
position weights wi are decreasing, however, then the
structural term S is particularly meaningful at the top
of the list.

As suggested before in Section 2.1 we could choose
wi = 1

i . In that case the items that are at the top
of the predicted ranked list dominate the overall score
from the second term. In particular, the pairwise item-
item similarities between items in the top-ranked po-
sitions play a role in the overall choice of the entire
ranked list d̄. Our model can hence learn the consis-
tency vs. diversity tradeoff within the top k we are
interested in.

However, if one knows in advance the number of items
one wishes to show to the user (i.e. the top k) then one
could choose directly to only take into account those
predictions:

wi = 1/i, if i ≤ k, and 0 otherwise. (4)

As we will see this also has some computational ad-
vantages due to its sparsity, and will in fact be our
method of choice in the algorithm we propose.

2.4 MODEL INFERENCE

At test time for a given query we need to compute:

Flsr(q) = argmaxd̄′ [flsr(q, d̄
′)]. (5)

Just as inference in the vanilla model can be cast as
a linear assignment problem, inference in the LaSR
model can be cast as a quadratic assignment prob-
lem (Lacoste-Julien et al., 2006). This is known to be
NP hard, so we must approximate it. In this section,
we briefly discuss several alternatives.

• Linear programming relaxation: Since we know
we can cast our problem as quadratic assign-
ment, we could consider directly using the linear
programming relaxation suggested by (Lacoste-
Julien et al., 2006). In our experiments, however,
we have tens of thousands of labels. Solving even
this relaxed LP per query is computationally in-
feasible for problems of this size. We note that
Wsabie’s (Weston et al., 2011) sampling-based
technique is an attempt to overcome even linear
time inference for this problem.

• Greedy structured search: we could also consider
a greedy approach to approximately optimizing
eq. (5) as follows: (i) pick the document d̄1 ∈ D
that maximizes:

fgreedy(q, d̄1) = w1(qU>V d̄1) + (w1)2(d̄>1 S
>Sd̄1)

(6)
and then fix that document as the top ranked pre-
diction. (ii) Find the second best document de-
pendent on the first, by maximizing (for N = 2):

fgreedy(q, d̄N ) = wN (qU>V d̄N )q

+

N∑

i=1

wiwN (d̄>i S
>Sd̄N ).

Finally, (iii) repeat the above, greedily adding one
more document each iteration by considering the
above equation for N = 3, . . . , k up to the number
of desired items to be presented to the user.

This method has complexity O(k2|D|). Its biggest
drawback is that the highest-scoring document is
chosen using the vanilla model. Even if we could
improve our score by choosing a different docu-
ment, taking into account the pairwise scores with
other permutation elements, this algorithm will
not take advantage of it. Another way to look at
this is, precision@1 would be no better than using
the vanilla model of eq. (1).

The greedy procedure also permits beam search
variants. Using a beam of M candidates this gives
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a complexity of O(Mk2|D|). This is tractable at
test time, but the problem is that during (online)
learning one would have to run this algorithm per
query, which we believe is still too slow for the
cases we consider here.

• Iterative search: Motivated by the defects in
greedy search and LP relaxation, we propose one
last, iterative method. This method is analo-
gous to inference by iterated conditional modes
in graphical models (Besag, 1986). (i) On iter-
ation t = 0 predict with an unstructured model
(i.e. do not use the second term involving S):

fiter:t=0(q, d̄) =

|d̄|∑

i=1

wi(qU
>V d̄i). (7)

As mentioned before, computing the best ranking
d̄ just involves sorting the scores qU>V di and or-
dering the documents, largest first. Utilizing the
sparse choice of wi = 1/i, if i ≤ k, and 0 otherwise
described in Section 2.3 we do not have to sort the
entire set, but are only required to find the top k
which can be done in O(|D| log k) time using a
heap. Let us denote the predicted ranked list as
d̄0 and in general on each iteration t we are going
to make predictions d̄t. (ii) On subsequent itera-
tions, we maximize the following scoring function:

fiter:t>0(q, d̄) =

|d̄|∑

i=1

wi(qU
>V d̄i)

+

|d̄|∑

i,j=1

wiwj(d̄
>
i S

>Sd̄t−1
j ). (8)

As d̄t−1 is now fixed on iteration t, the per-
document di scores

(qU>V d̄i) +

|d̄|∑

j=1

wj(d̄
>
i S

>Sd̄t−1
j ) (9)

are now independent of each other. Hence, they
can be calculated individually and, as before, can
be sorted or the top k can be found, dependent
on the choice of w. If we use the sparse w of eq.
(4) (which we recommend) then the per-document
scores are also faster to compute as we only re-
quire:

(qU>V d̄i) +

k∑

j=1

wj(d̄
>
i S

>Sd̄t−1
j ).

Overall this procedure then has complexity
O(Tk|D|) when running for T steps. While this
does not look at first glance to be any faster than
the greedy or beam search methods at testing
time, it has important advantages at training time
as we will see in the next section.

2.5 LEARNING

We are interested in learning a ranking function where
the top k retrieved items are of particular interest as
they will be presented to the user. We wish to optimize
all the parameters of our model jointly for that goal.
As the datasets we intend to target are large scale,
stochastic gradient descent (SGD) training seems a vi-
able option. However, during training we cannot af-
ford to perform full inference during each update step
as otherwise training will be too slow. A standard
loss function that already addresses that issue for the
unstructured case which is often used for retrieval is
the margin ranking criterion (Herbrich et al., 2000;
Joachims, 2002). In particular, it was also used for
learning factorized document retrieval models in Bai
et al. (2009). The loss can be written as:

errAUC =

m∑

i=1

∑

d− 6=di
max(0, 1− f(qi, di) + f(qi, d

−)).

(10)
For each training example i = 1, . . . ,m, the posi-
tive item di is compared to all possible negative items
d− 6= di, and one assigns to each pair a cost if the neg-
ative item is larger or within a “margin” of 1 from the
positive item. These costs are called pairwise viola-
tions. Note that all pairwise violations are considered
equally if they have the same margin violation, inde-
pendent of their position in the list. For this reason
the margin ranking loss might not optimize the top k
very accurately as it cares about the average rank.

For the standard (unstructured) latent model case,
the problem of optimizing the top of the rank list
has also recently been addressed using sampling tech-
niques (Weston et al., 2011) in the so-called WARP
(Weighted Approximately Ranked Pairwise) loss. Let
us first write the predictions of our model for all items
in the database as a vector f̄(q) where the ith element
is f̄i(q) = f(q, di). One then considers a class of rank-
ing error functions:

errWARP =

m∑

i=1

L(rankdi(f̄(qi))) (11)

where rankdi(f̄(qi)) is the margin-based rank of the
labeled item given in the ith training example:

rankdi(f̄(q)) =
∑

j 6=i
θ(1 + f̄j(q) ≥ f̄i(q)) (12)

where θ is the indicator function, and L(·) transforms
this rank into a loss:

L(r) =

r∑

i=1

αi, with α1 ≥ α2 ≥ · · · ≥ 0. (13)
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The main idea here is to weight the pairwise viola-
tions depending on their position in the ranked list.
Different choices of α define different weights (impor-
tance) of the relative position of the positive examples
in the ranked list. In particular it was shown that by
choosing αi = 1/i a smooth weighting over positions is
given, where most weight is given to the top position,
with rapidly decaying weight for lower positions. This
is useful when one wants to optimize precision at k for
a variety of different values of k at once Usunier et al.
(2009). (Note that choosing αi = 1 for all i we have
the same AUC optimization as equation (10)).

We can optimize this function by SGD following the
authors of Weston et al. (2011), that is samples are
drawn at random, and a gradient step is made for each
draw. Due to the cost of computing the exact rank
in (11) it is approximated by sampling. That is, for
a given positive label, one draws negative labels until
a violating pair is found, and then approximates the
rank with

rankd(f̄(q)) ≈
⌊ |D| − 1

N

⌋

where b.c is the floor function, |D| is the number of
items in the database and N is the number of trials
in the sampling step. Intuitively, if we need to sample
more negative items before we find a violator then the
rank of the true item is likely to be small (it is likely
to be at the top of the list, as few negatives are above
it).

This procedure for optimizing the top of the ranked
list is very efficient, but it has a disadvantage with
respect to structured learning: we cannot simply sam-
ple and score items any longer as we need to somehow
score entire permutations. In particular, it is not di-
rectly applicable to several of the structured prediction
approaches like LP, greedy or beam search. That is be-
cause we cannot compute the score of f̄i independently
because they depend on the ranking of all documents,
which then makes the sampling scheme invalid. How-
ever, for (a variant of) the iterative algorithm which
we described in the previous section the WARP (or
AUC) technique can still be used.

The method is as follows. In the first iteration the
model scores in eq. (7) are independent and so we
can train using the WARP (or AUC) loss. We then
have to compute d̄0 (the ranking of items) for each
training example for use in the next iteration. Note
that using the sparse w of eq. (4) this is O(D log k) to
compute, and storage is also only a |D| × k matrix of
top items. After computing d̄0, in the second iteration
we are again left with independent scoring functions
f̄i as long as we make one final modification, instead

Algorithm 1 LaSR training algorithm

Input: Training pairs {(qi, di)}i=1,...,l.
Initialize model parameters Ut, Vt and St (we use
mean 0, standard deviation 1√

d
) for each t.

for t = 0, . . . , T do
repeat

if t = 0 then
f(q, d) = qU>

0 V0d.
else
f(q, d) = qU>

t Vtd+
∑k
j=1 wjd

>S>
t Std̄

t−1
j

end if
Pick a random training pair (q, d+).
Compute f(q, d+).
Set N = 0.
repeat

Pick a random document d− ∈ D, d 6= di.
Compute f(q, d−).
N = N + 1.

until f(q+, d+) < f(q+, d−) + 1 or N ≥ |D|−1
if f(q+, d+) < f(q+, d−) + 1 then

Make a gradient step to minimize:

L(
⌊
|D|−1
N

⌋
) max(1−f(q+, d+)+f(q+, d−), 0).

Project weights to enforce constraints,
i.e. if ||Uti|| > C then Uti ← (CUti)/||Uti||,

i = 1, . . . , D (and likewise for Vt and St).
end if

until validation error does not improve.
For each training example, compute the top k
ranking documents d̄ti, i = 1, . . . , k for iteration
t using f(q, d) defined above.

end for

of using eq. (8) we instead use:

fiter:t>0(q, d̄) =

|d̄|∑

i=1

wi(qU
>
t Vtd̄i)

+

|d̄|∑

i,j=1

wiwj(d̄
>
i S

>
t Std̄

t−1
j ). (14)

on iteration t, where Ut, Vt and St are separate matri-
ces for each iteration. This decouples the learning at
each iteration. Essentially, we are using a cascade-like
architecture of t models trained one after the other.
Note that if a global optimum is reached for each t
then the solution should always be the same or im-
prove over step t − 1, as one could pick the weights
that give exactly the same solution as for step t− 1.

So far, the one thing we have failed to mention is reg-
ularization during learning. One can regularize the
parameters by preferring smaller weights. We con-
strain them using ||Sti|| ≤ C, ||Uti|| ≤ C, ||Vti|| ≤ C,
i = 1, . . . , |D|. During SGD one projects the parame-
ters back on to the constraints at each step, following
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the same procedure used in several other works, e.g.
Weston et al. (2011); Bai et al. (2009). We can opti-
mize hyperparameters of the model such as C and the
learning rate for SGD using a validation set.

Overall, our preferred version of Latent Structured
Ranking that combines all these design decisions is
given in Algorithm 1.

3 PRIOR WORK

In the introduction we already mentioned several la-
tent ranking methods: SVD (Billsus and Pazzani,
1998; Bell et al., 2009), NMF (Lee and Seung, 2001),
LSI (Deerwester et al., 1990), PSI (Bai et al., 2009)
and Wsabie (Weston et al., 2011). We should men-
tion that many other methods exist as well, in partic-
ular probabilistic methods like pLSA (Hofmann, 1999)
and LDA (Blei et al., 2003). None of those methods,
whether they are supervised or unsupervised, take into
the structure of the ranked list as we do in this work,
and we will use several of them as baselines in our
experiments.

There has been a great deal of recent work on struc-
tured output learning (Bakir et al., 2007), particularly
for linear or kernel SVMs (which are not latent embed-
ding methods). In methods like Conditional Random
Fields (Lafferty et al., 2001), SVM-struct (Tsochan-
taridis et al., 2004) LaSO (Daumé III and Marcu,
2005) and SEARN (Daumé et al., 2009) one learns
to predict an output which has structure, e.g. for se-
quence labeling, parse tree prediction and so on. Pre-
dicting ranked lists can also be seen in this framework.
In particular LaSO (Daumé III and Marcu, 2005) is
a general approach that considers approximate infer-
ence using methods like greedy approximation or beam
search that we mentioned in Section 2.4. As we said
before, due to the large number of items we are rank-
ing many of those approaches are infeasible. In our
method, scalabality is achieved using a cascade-like
training setup, and in this regard is related to (Weiss
et al., 2010). However, unlike that work, we do not
use it to prune the set of items considered for ranking,
we use it to consider pairwise item similarities.

The problem of scoring entire permutations for rank-
ing is well-known and has been investigated by many
authors (Yue et al., 2007a,b; Le and Smola, 2007; Xia
et al., 2008). These works have primarily focused on
on using knowledge of the structure (in this case the
predicted positions in the ranked list) in order to op-
timize the right metric, e.g. MAP or precision@k.
In that sense, methods like Wsabie which uses the
WARP loss already use structure in the same way. In
our work we also optimize top-of-the-ranked-list met-
rics by using WARP, but in addition we also use the

ranking structure to make predictions dependent on
the query and the other predicted items during infer-
ence by encoding this in the model itself. That is, in
our work we explicitly seek to use (and learn) inter-
document similarity measures.

There has been work on taking into account inter-
document similarities during ranking. The most fa-
mous and prominent idea is pseudo-relevance feed-
back via query expansion (Rocchio, 1971). Pseudo-
relevance works by doing normal retrieval (e.g. us-
ing cosine similarity in a vector space model), to find
an initial set of most relevant documents, and then
assuming that the top k ranked documents are rele-
vant, and performing retrieval again by adjusing the
cosine similarity based on previously retrieved docu-
ments. In a sense, LaSR is also a pseudo-relevance
feedback technique, but where inter-document simi-
larities are learned to minimize ranking loss.

More recently, some authors have investigated incorpo-
rating inter-document similarity during ranking. Qin
et al. (2008) have investigated incorporating a fixed
document-document similarity feature in ranking. In
their work, however, they did not score permutations.
Instead, each document was associated with a rele-
vance score and the authors treated learning as a struc-
tured regression problem. For a situation with implicit
feedback, Raman et al. (2012) investigate an inference
technique similar to our greedy algorithm. Volkovs
and Zemel (2009) also explored listwise ranking us-
ing pairwise document interactions in a probabilistic
setup. To the best of our knowledge, however, none
of these methods investigate a learned inter-document
similarity (i.e. latent parameters for that goal), which
is the most powerful feature of LaSR.

4 EXPERIMENTS

We considered two large scale tasks to test our pro-
posed method. The first is a music recommenda-
tion task with over 170,000 artists (possible queries
or items) and 5 million training pairs. The second is a
task of large scale image annotation with over 15,000
labels and 7 million training examples.

4.1 MUSIC RECOMMENDATION TASK

The first task we conducted experiments on is a large
scale music recommendation task. Given a query
(seed) artist, one has to recommend to the user other
artists that go well together with this artist if one were
listening to both in succession, which is the main step
in playlisting and artist page recommendation on sites
like last.fm, music.google.com and programs such
as iTunes and http://the.echonest.com/.
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Table 1: Recommendation Results on the music rec-
ommendation task. We report for recall at 5, 10, 30
and 50 for our method and several baselines.

Method R@5 R@10 R@30 R@50
NMF 3.76% 6.38% 13.3% 17.8%
SVD 4.01% 6.93% 13.9% 18.5%
LaSR (t = 0) 5.60% 9.49% 18.9% 24.8%
LaSR (t = 1) 6.65% 10.73% 20.1% 26.7%
LaSR (t = 2) 6.93% 10.95% 20.3% 26.5%

Table 2: Changing the embedding size on the music
recommendation task. We report R@5 for various di-
mensions n.

Method n = 25 50 100 200
NMF 2.82% 3.76% 3.57% 4.82%
SVD 3.61% 4.01% 4.53% 5.28%
LaSR (t = 0) 5.23% 5.60% 6.24% 6.42%

We used the “Last.fm Dataset - 1K users” dataset
available from http://www.dtic.upf.edu/∼ocelma/
MusicRecommendationDataset/lastfm-1K.html.
This dataset contains (user, timestamp, artist, song)
tuples collected from the Last.fm (www.lastfm.com)
API, representing the listening history (until May
5th, 2009) for 992 users and 176,948 artists. Two
consecutively played artists by the same user are
considered as a (query, item) pair. Hence, both qi and
di are D = 176, 948 sparse vectors with one non-zero
value (a one) indicating which artist they are. One
in every five days (so that the data is disjoint) were
left aside for testing, and the remaining data was
used for training and validation. Overall this gave
5,408,975 training pairs, 500,000 validation pairs (for
hyperparameter tuning) and 1,434,568 test pairs.

We compare our Latent Structured Ranking approach
to the same approach without structure by only per-
forming one iteration of Algorithm 1. We used k = 20
for eq. (4). We also compare to two standard methods
of providing latent recommendations, Singular Value
Decomposition (SVD) and Non-negative Matrix Fac-
torization (NMF). For SVD the Matlab implemen-
tation is used, and for NMF the implementation at
http://www.csie.ntu.edu.tw/∼cjlin/nmf/ is used.

Main Results We report results comparing NMF,
SVD and our method, Latent Structured Ranking
(LaSR) in Table 1. For every test set (query, item)
pair we rank the document set D according to the
query and record the position of the item in the ranked
list. We then measure the recall at 5, 10, 30 and 50.
(Note that because there is only one item in the pair,
precision at k is equal to recall@k divided by k.) We
then average the results over all pairs. For all meth-

ods the latent dimension n = 50. For LaSR, we give
results for iterations t = 0, . . . , 2, where t = 0 does
not use the structure. LaSR with t = 0 already out-
performs SVD and NMF. LaSR optimizes the top of
the ranked list at training time (via the WARP loss),
whereas SVD and NMF do not, which explains why it
can perform better here on top-of-the-list metrics. We
tested LaSR t = 0 using the AUC loss (10) instead of
WARP (11) to check this hypothesis and we obtained
a recall at 5, 10, 30 and 50 of 3.56%, 6.32%, 14.8%
and 20.3% respectively which are slightly worse, than,
but similar to SVD, thus confirming our hypothesis.
For LaSR with t = 1 and t = 2 our method takes into
account the structure of the ranked list at inference
time, t = 1 outperforms iteration t = 0 that does not
use the structure. Further slight gains are obtained
with another iteration (t = 2).

Changing the Embedding Dimension The re-
sults so far were all with latent dimension n = 50. It
could be argued that LaSR with t > 0 has more capac-
ity (more parameters) than competing methods, and
those methods could have more capacity by increasing
their dimension n. We therefore report results for var-
ious embedding sizes (n = 10, 25, 50, 100) in Table 2.
The results show that LaSR (t = 0) consistently out-
performs SVD and NMF for all the dimensions tried,
but even with 200 dimensions, the methods that do not
use structure (SVD, NMF and LaSR t = 0) are still
outperformed by LaSR that does use structure (t > 0)
even with n = 50 dimensions.

Analysis of Predictions We give two example
queries and the top ranked results for LaSR with and
without use of structure ((t = 0) and (t = 1)) in Table
3. The left-hand query is a popular artist “Bob Dy-
lan”. LaSR (t = 0) performs worse than (t = 1) with
“Wilco” in positon 1 - the pair (“Bob Dylan”,“Wilco”)
only appears 10 times in the test set, whereas (“Bob
Dylan”, “The Beatles”) appears 40 times, and LaSR
(t = 1) puts the latter in the top position. In general
t = 1 improves the top ranked items over t = 0, re-
moving or demoting weak choices, and promoting some
better choices. For example, “Sonic Youth” which is
a poor match is demoted out of the top 20. The sec-
ond query is a less popular artist “Plaid” who make
electronic music. Adding structure to LaSR again im-
proves the results in this case by boosting relatively
more popular bands like “Orbital” and “µ − ziq”,
and relatively more related bands like “Four-Tet” and
“Squarepusher”, whilst demoting some lesser known
bands.
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Table 3: Music Recommendation results for our method LaSR with (t = 1) and without (t = 0) using the
structure. We show top ranked results for a popular query, “Bob Dylan” (folk rock music) and a less popular
query “Plaid” (electronic music). Total numbers of train and test pairs for given artist pairs are in square
brackets, and totals for all artists shown are given in the last row. Artists where the two methods differ are
labeled with an asterisk. Adding structure improves the results, e.g. unrelated bands like “Sonic Youth” are
demoted in the “Bob Dylan” query, and relatively more popular bands like Orbital and µ−ziq and more related
bands like Four-Tet and Squarepusher are boosted for the “Plaid” query.

LaSR t = 0 (no structure) LaSR t = 1 (structured ranking)
Query: Bob Dylan Query: Bob Dylan
Wilco [53,10] The Beatles [179,40]
The Rolling Stones [40,9] Radiohead [61,16]
The Beatles [179,40] The Rolling Stones [40,9]
R.E.M. [35,12] Johnny Cash [49,11]
Johnny Cash [49,11] The Cure [38,10]
Beck [42,18] David Bowie [48,12]
David Bowie [48,12] Wilco [53,10]
Pixies [31,4] Pink Floyd* [30,8]
Belle And Sebastian [28,4] U2* [40,16]
The Beach Boys* [22,6] The Smiths [25,7]
The Cure [38,10] Sufjan Stevens [23,4]
Arcade Fire* [34,6] R.E.M. [35,12]
Radiohead [61,16] Belle And Sebastian [28,4]
Sonic Youth* [35,9] Beck [42,18]
Bruce Springsteen [41,11] The Shins* [22,13]
The Smiths [25,7] Pixies [31,4]
The Velvet Underground* [29,11] Ramones* [36,8]
Sufjan Stevens [23,4] Bruce Springsteen [44,11]
Tom Waits* [19,13] Death Cab For Cutie* [32,7]
(Train,Test) totals = [835,213] (Train,Test) totals = [856,220]

LaSR t = 0 (no structure) LaSR t = 1 (with structured ranking)
Query: Plaid Query: Plaid
Boards Of Canada [27,5] Boards Of Canada [27,5]
Autechre [13,1] Aphex Twin [9,3]
Aphex Twin [9,3] Autechre [13,1]
Biosphere [6,1] Biosphere [6,1]
Wagon Christ [3,1] Squarepusher [11,2]
Amon Tobin [6,3] Future Sound Of London [5,2]
Arovane [5,1] Four Tet* [6,2]
Future Sound Of London [5,2] Massive Attack* [4,2]
The Orb [3,2] Arovane [5,1]
Squarepusher [11,2] Air [9]
Bola [5,2] The Orb [3,2]
Chris Clark* [4,2] Isan [3,1]
Kettel* [3,0] Amon Tobin [6,3]
Ulrich Schnauss [7,1] Bola [5,2]
Apparat* [3,0] Orbital* [7,1]
Isan [3,1] Murcof [4]
Air [9] Ulrich Schnauss [7,1]
Clark* [0,0] Wagon Christ [3,1]
Murcof [4,0] µ-Ziq* [5,3]
(Train,Test) totals = [126,27] (Train,Test) totals = [138,33]

Table 4: Image Annotation Results comparing Wsabie with LaSR. The top 10 labels of each method is shown,
the correct label (if predicted) is shown in bold. In many cases LaSR can be seen to improve on Wsabie by
demoting bad predictions e.g. war paint, soccer ball, segway, denture, rottweiler, reindeer, tv-antenna, leopard
frog (one example from each of the first 8 images). In the last 3 images neither method predicts the right label
(armrest, night snake and heifer) but LaSR seems slightly better (e.g. more cat, snake and cow predictions).

Input Image Wsabie LaSR

workroom, life
office, war paint,
day nursery,

homeroom, salon,
foundling hospital,
teacher, sewing
room, canteen

workroom, salon,
day nursery,

schoolroom, student,
homeroom,

clothespress, day
school, sewing room,

study

soccer ball, tent,
inflated ball, fly
tent, shelter tent,
camping, pack tent
magpie, field tent,

white admiral
butterfly

shelter tent, tent,
camping, pack tent,
fly tent, mountain
tent, tent flap,

two-man tent, field
tent, pop tent

roller skating,
skateboard,

cross-country skiing,
skating, segway,
hockey stick,
skateboarding,

skating rink, crutch,
roller skate wheel

roller skate wheel,
roller skating,

skateboard, in-line
skate, roller skate,
cross-country skiing,

skateboarding,
unicycle, skate,

skating

partial denture,
round-bottom flask,
flask, panty girdle,

night-light,
patchouly, organza,
organdy, baby, wig

round-bottom flask,
flask, rummer,

tornado lantern,
spotlight, foetus, oil

lamp, sconce,
infrared lamp,

decanter

rubber boot,
rottweiler, pillar,

combat boot, calf,
riding boot, trouser,
watchdog, shepherd

dog, leg

combat boot,
riding boot, rubber
boot, leg covering,
rubber, trouser,

tabis boot, trouser
leg, boot, lawn tool

reaper, reindeer,
cannon, steamroller,

seeder, plow,
tractor, combine,
cannon, caribou

reaper, seeder, gun
carriage, farm

machine, combine,
plow, caribou,

haymaker, tractor,
trench mortar,

Input Image Wsabie LaSR
tv-antenna,

transmission line,
shears, refracting
telescope, scissors,
electrical cable,
chain wrench,
astronomical

telescope, wire, boat
hook,

scissors, shears,
tinsnips, windmill,

garden rake,
tv-antenna, forceps,

safety harness,
medical

instrument,
plyers

leopard frog,
sauceboat, sugar

bowl, cream pitcher,
tureen, spittoon,

pitcher,
earthenware,

rainbow fish, slop
bowl

tureen, glazed
earthenware, slop
bowl, sauceboat,

spittoon, cullender,
earthenware, punch
bowl, sugar bowl,

cream pitcher

redpoll, frogmouth,
screech owl, possum,
grey parrot, finch,
gypsy moth, gray
squirrel, lycaenid
butterfly, cairn

terrier

frogmouth,
soft-coated wheaten

terrier, gray
squirrel, cairn

terrier, gypsy moth,
tabby cat, chinchilla
laniger, egyptian
cat, burmese cat,
abyssinian cat

grass snake, garter
snake, ribbon snake,
common kingsnake,

black rattler,
western ribbon
snake, european

viper, pickerel frog
spiny anteater,

eastern ground snake

garter snake,
european viper, grass

snake, california
whipsnake, common
kingsnake, eastern

ground snake,
northern ribbon

snake, puff adder,
whipsnake, black

rattler

black bear, black
vulture, labiated

bear, greater gibbon,
vulture, american
black bear, cuckoo,
black sheep, buffalo,

yak,

black bear, yak,
bear, american black
bear, stocky horse,

calf, wild boar, bull,
draft horse, black

angus
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Table 5: Summary of Test Set Results on Im-
agenet. Recall at 1, 5, 10, Mean Average Precision
and Mean Rank are given.
Algorithm r@1 r@5 r@10 MAP MR
One-vs-Rest 2.83% 8.48% 13.2% 0.065 667
Rank SVM 5.35% 14.1% 19.3% 0.102 804
Wsabie 8.39% 19.6% 26.3% 0.144 626
LaSR (t = 1) 9.45% 22.1% 29.1% 0.161 523

4.2 IMAGE ANNOTATION TASK

ImageNet (Deng et al., 2009) (http://www.
image-net.org/) is a large scale image database
organized according to WordNet (Fellbaum, 1998).
WordNet is a graph of linguistic terms, where each
concept node consists of a word or word phrase,
and the concepts are organized within a hierarchical
structure. ImageNet is a growing image dataset that
attaches quality-controlled human-verified images
to these concepts by collecting images from web
search engines and then employing annotators to
verify whether the images are good matches for those
concepts, and discarding them if they are not. For
many nouns, hundreds or even thousands of images
are labeled. We can use this dataset to test image
annotation algorithms. We split the data into train
and test and try to learn to predict the label (an-
notation) given the image. For our experiments, we
downloaded the “Spring 2010” release which consists
of 9 million images and 15,589 possible concepts (this
is a different set to (Weston et al., 2011) but our
baseline results largely agree). We split the data into
80% for training, 10% for validation and 10% for
testing.

Following (Weston et al., 2011) we employ a feature
representation of the images which is an ensemble of
several representations which is known to perform bet-
ter than any single representation within the set (see
e.g. (Makadia et al., 2008)). We thus combined mul-
tiple feature representations which are the concatena-
tion of various spatial (Grauman and Darrell, 2007)
and multiscale color and texton histograms (Leung
and Malik, 1999) for a total of about 5 × 105 di-
mensions. The descriptors are somewhat sparse, with
about 50,000 non-zero weights per image. Some of the
constituent histograms are normalized and some are
not. We then perform Kernel PCA (Schoelkopf et al.,
1999) on the combined feature representation using
the intersection kernel (Barla et al., 2003) to produce
a 1024 dimensional input vector for training.

We compare our proposed approach to several base-
lines: one-versus-rest large margin classifiers (One-vs-
Rest) of the form fi(x) = w>

i x trained online to per-
form classification over the 15,589 classes, or the same

models trained with a ranking loss instead, which we
refer to as Rank SVM, as it is an online version of
the pairwise multiclass (ranking) loss of (Weston and
Watkins, 1999; Crammer and Singer, 2002). Finally,
we compare to Wsabie a (unstructured) latent rank-
ing method which has yielded state-of-the-art perfor-
mance on this task. For all methods, hyperparameters
are chosen via the validation set.

Results The overall results are given in Table 5.
One-vs-Rest performs relatively poorly (2.83% re-
call@1), perhaps because there are so many classes
(over 15,000) that the classifiers are not well calibrated
to each other (as they are trained independently). The
multiclass ranking loss of Rank SVM performs much
better (5.35% recall@1) but is still outperformed by
Wsabie (8.39% recall@1). Wsabie uses the WARP
loss to optimize the top of the ranked list and its good
performance can be explained by the suitability of this
loss function for measure like recall@k. LaSR with
t = 0 is essentially identical to Wsabie in this case
and so we use that model as our “base learner” for
iteration 0. LaSR (t = 1), that does use structure,
outperforms Wsabie with a recall@1 of 9.45%.

Some example annotations are given in Table 4. LaSR
seems to provide more consistent results than Wsabie
on several queries (with less bad predictions in the top
k) which improves the overall results, whilst maintain-
ing the right level of diversity on others.

5 CONCLUSION

In this paper we introduced a method for learning
a latent variable model that takes into account the
structure of the predicted ranked list of items given
the query. The approach is quite general and can po-
tentially be applied to recommendation, annotation,
classification and information retrieval tasks. These
problems often involve millions of examples or more,
both in terms of the number of training pairs and the
number of items to be ranked. Hence, many other-
wise straight-forward approaches to structured predic-
tion approaches might not be applicable in these cases.
The method we proposed is scalable to these tasks.

Future work could apply latent structured ranking to
more applications, for example in text document re-
trieval. Moreover, it would be interesting to explore
using other algorithms as the “base algorithm” which
we add the structured predictions to. In this work, we
used the approach of (Weston et al., 2011) as our base
algorithm, but it might also be possible to make struc-
tured ranking versions of algorithms like Non-negative
matrix factorization, Latent Semantic Indexing or Sin-
gular Value Decomposition as well.
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Abstract

In many applications that require matrix
solutions of minimal rank, the underlying
cost function is non-convex leading to an
intractable, NP-hard optimization problem.
Consequently, the convex nuclear norm is
frequently used as a surrogate penalty term
for matrix rank. The problem is that in
many practical scenarios there is no longer
any guarantee that we can correctly estimate
generative low-rank matrices of interest, the-
oretical special cases notwithstanding. Con-
sequently, this paper proposes an alterna-
tive empirical Bayesian procedure build upon
a variational approximation that, unlike the
nuclear norm, retains the same globally min-
imizing point estimate as the rank func-
tion under many useful constraints. How-
ever, locally minimizing solutions are largely
smoothed away via marginalization, allow-
ing the algorithm to succeed when standard
convex relaxations completely fail. While
the proposed methodology is generally ap-
plicable to a wide range of low-rank appli-
cations, we focus our attention on the ro-
bust principal component analysis problem
(RPCA), which involves estimating an un-
known low-rank matrix with unknown sparse
corruptions. Theoretical and empirical evi-
dence are presented to show that our method
is potentially superior to related MAP-based
approaches, for which the convex principle
component pursuit (PCP) algorithm (Candès
et al., 2011) can be viewed as a special case.

1 INTRODUCTION

Recently there has been a surge of interest in finding
low-rank decompositions of matrix-valued data sub-

ject to some problem-specific constraints (Babacan
et al., 2011; Candès & Recht, 2008; Candès et al., 2011;
Chandrasekaran et al., 2011; Ding et al., 2011). While
the methodology proposed herein is applicable to a
wide range of low-rank applications, we will focus our
attention on the robust principal component analysis
problem (RPCA) described in Candès et al. (2011).
We begin with the observation model

Y = X + S + E, (1)

where Y ∈ Rm×n is an observed data matrix, X is an
unknown low-rank component, S is a sparse corrup-
tion matrix, and E is diffuse noise, with iid elements
distributed as N(0, λ). Without loss of generality, we
will assume throughout that n ≥ m. To estimate X
and S given Y , one possibility is to solve

min
X,S

1

λ
‖Y − X − S‖2

F + nRank [X ] + ‖S‖0, (2)

where ‖S‖0 denotes the matrix ℓ0 norm of S, or a
count of the nonzero elements in S. The reason for
the factor of n is to ensure that the rank and spar-
sity terms are properly balanced, meaning that both
terms range from 0 to nm, which reflects our balanced
uncertainty regarding their relative contributions to
Y . Unfortunately, solving (2) is problematic because
the objective function is both discontinuous and non-
convex. In general, the only way to guarantee that the
global minimum is found is to conduct an exhaustive
combinatorial search, which is intractable in all but
the simplest cases.

The most common alternative, sometimes called prin-
ciple component pursuit (PCP) (Candès et al., 2011),
is to replace (2) with a convex surrogate such as

min
X,S

1

λ
‖Y − X − S‖2

F +
√

n‖X‖∗ + ‖S‖1, (3)

where ‖X‖∗ denotes the nuclear norm of X (or the
sum of its singular values). Note that the scale factor
from (2) has been changed from n to

√
n; this is an
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artifact of the relaxation mechanism balancing the nu-
clear and ℓ1 norms.1 A variety of recent theoretical re-
sults stipulate when solutions of (3), particularly in the
limiting case where λ → 0 (reflecting the assumption
that E = 0), will produce reliable estimates of X and
S (Candès et al., 2011; Chandrasekaran et al., 2011).
However, in practice these results have marginal value
since they are based upon strong, typically unverifi-
able assumptions on the support of S and the struc-
ture of X . In general, the allowable support of S may
be prohibitively small and unstructured (possibly ran-
dom); related assumptions are required for the rank
and structure of X . Thus there potentially remains
a sizable gap between what can be achieved by min-
imizing the ‘ideal’ cost function (2) and the convex
relaxation (3).

In Section 2, as a motivational tool we discuss a
simple non-convex scheme based on a variational
majorization-minimization approach for locally min-
imizing (2). Then in Section 3 we reinterpret this
method as maximum a posteriori (MAP) estimation
and use this perspective to design an alternative em-
pirical Bayesian algorithm that avoids the major short-
comings of MAP estimation. Section 4 investigates
analytical properties of this empirical Bayesian alter-
native with respect to globally and locally minimizing
solutions. Later in Section 5 we compare a state-of-
the-art PCP algorithm with the proposed approach on
simulated data as well as a photometric stereo prob-
lem.

2 NON-CONVEX MAJORIZATION-
MINIMIZATION

One possible alternative to (3) is to replace (2) with
a non-convex yet smooth approximation that can at
least be locally minimized. In the sparse estimation
literature, one common substitution for the ℓ0 norm is
the Gaussian entropy measure

∑
i log |si|, which may

also sometimes include a small regularizer to avoid tak-
ing the log of zero.2 This can be justified (in part) by
the fact that

∑

i

log |si| ≡ lim
p→0

1

p

∑

i

(|si|p − 1) ∝ ‖s‖0. (4)

An analogous approximation suggests replacing the
rank penalty with log |XXT | as has been suggested for
related rank minimization problems (Mohan & Fazel,

1Actually, different scaling factors can be adopted to re-
flect different assumptions about the relative contributions
of low-rank and sparse terms. But we assume throughout
that no such knowledge is available.

2Algorithms and analysis follow through much the same
regardless.

2010), since log |XXT | =
∑

i log σi, where σi are the
singular values of XXT . This leads to the alternative
cost function

min
X,S

1

λ
‖Y −X−S‖2

F +n log |XXT |+2
∑

i,j

log |sij |. (5)

Optimization of (5) can be accomplished by a straight-
forward majorization-minimization approach based
upon variational bounds on the non-convex penalty
terms (Jordan et al., 1999). For example, because
log |s| is a concave function of s2, it can be expressed
using duality theory (Boyd & Vandenberghe, 2004) as
the minimum of a particular set of upper-bounding
lines:

log s2 = min
γ≥0

s2

γ
+ log γ − 1. (6)

Here γ is a non-negative variational parameter con-
trolling the slope. Therefore, for any fixed γ we have
a strict, convex upper-bound on the concave log func-
tion. Likewise, for the rank term we can use the anal-
ogous representation (Mohan & Fazel, 2010)

n log
∣∣XXT

∣∣ = min
Ψ�0

Trace
[
XXT Ψ−1

]
+ n log |Ψ| + C,

(7)
where C is an irrelevant constant and Ψ is a positive
semi-definite matrix of variational parameters.3 Com-
bining these bounds we obtain an equivalent optimiza-
tion problem

min
X,S,Γ≥0,Ψ�0

1

λ
‖Y − X − S‖2

F +
∑

ij

(
s2

ij

γij
+ log γij

)

+ Trace
[
XXT Ψ−1

]
+ n log |Ψ|, (8)

where Γ is a matrix of non-negative elements composed
of the variational parameters corresponding to each
sij . With Γ and Ψ fixed, (8) is quadratic in X and S
and can be minimized in closed form via

xj → Ψ
(
Ψ + Γ̄j

)−1
yj ,

sj → Γ̄j

(
Ψ + Γ̄j

)−1
yj , ∀j (9)

where yj , xj , and sj represent the j-th columns of
Y , X , and S respectively and Γ̄j is a diagonal matrix
formed from the j-th column of Γ. Likewise, with X
and S fixed, Γ and Ψ can also be obtained in closed
form using the updates

Ψ → 1

n
XXT

γij → s2
ij , ∀i, j. (10)

While local minimization of (5) is clear cut, finding
global solutions can still be highly problematic just as

3If X is full rank, then Ψ must be positive definite.
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before. Whenever any coefficient of S goes to zero, or
whenever the rank of X is reduced, we are necessarily
at a local minimum with respect to this quantity such
that we can never increase the rank or a zero-valued
coefficient magnitude in search of the global optimum.
(This point will be examined in further detail in Sec-
tion 4.) Thus the algorithm may quickly converge to
one of a combinatorial number of local solutions.

3 VARIATIONAL EMPIRICAL
BAYESIAN ALGORITHM

From a Bayesian perspective we can formulate (5) as
a MAP estimation problem based on the distributions

p(Y |X, S) ∝ exp

[
− 1

2λ
‖Y − X − S‖2

F

]

p(X) ∝ 1

|XXT |n/2

p(S) ∝
∏

i,j

1

|sij |
. (11)

It is then transparent that solving

max
X,S

p(X, S|Y ) ≡ max
X,S

p(Y |X, S)p(X)p(S) (12)

is equivalent to solving (5) after an inconsequential
−2 log(·) transformation. But as implied above, this
strategy is problematic because the effective posterior
is characterized by numerous spurious peaks render-
ing MAP estimation intractable. A more desirable
approach would ignore most of these peaks and focus
only on regions with significant posterior mass, regions
that hopefully also include the posterior mode. One
way to accomplish this involves using the bounds from
(6) and (7) to construct a simple approximate poste-
rior that reflects the mass of the original p(X, S|Y )
sans spurious peaks. We approach this task as follows.

From (6) and (7)) we can infer that

p(S) ∝ max
Γ≥0

p̂(S; Γ) (13)

p(X) ∝ max
Ψ�0

p̂(X ; Ψ) (14)

where

p̂(S; Γ) , exp


−1

2

∑

ij

(
s2

ij

γij
+ log γij

)
 (15)

p̂(X ; Ψ) , exp

[
−1

2
Trace

[
XXTΨ−1

]
− n

2
log |Ψ|

]
,

which can be viewed as unnormalized approximate pri-
ors offering strict lower bounds on p(S) and p(X). We

also then obtain a tractable posterior approximation
given by

p̂(X, S|Y ; Γ, Ψ) , p(Y |S, X)p̂(S; Γ)p̂(X ; Ψ)∫
p(Y |S, X)p̂(S; Γ)p̂(X ; Ψ)dSdX

.

(16)
Here p̂(X, S|Y ; Γ, Ψ) is a Gaussian distribution with
closed-form first and second moments, e.g., the means
of S and X are actually given by the righthand sides
of (9). The question remains how to choose Γ and
Ψ. With the goal of reflecting the mass of the true
distribution p(Y, X, S), we adopt the approach from
Wipf et al. (2011) and attempt to solve

min
Ψ,Γ

∫
|p(Y, X, S) − p(Y |S, X)p̂(S; Γ)p̂(X ; Ψ)| dXdS

(17)

= min
Ψ,Γ

∫
p(Y |S, X) |p(X)p(S) − p̂(S; Γ)p̂(X ; Ψ)| dXdS.

(18)

The basic idea here is that we only care that the
approximate priors match the true ones in regions
where the likelihood function p(Y |X, S) is significant;
in other regions the mismatch is more or less irrele-
vant. Moreover, by virtue of the strict lower varia-
tional bound, (18) reduces to

max
Ψ,Γ

∫
p(Y |S, X)p̂(S; Γ)p̂(X ; Ψ)dXdS ≡ min

Ψ,Γ
L(Ψ, Γ)

(19)
where

L(Ψ, Γ) ,
n∑

j=1

[
yT

j Σ−1
yj

yj + log
∣∣Σyj

∣∣
]

(20)

with
Σyj , Ψ + Γ̄j + λI. (21)

This Σyj can be viewed as the covariance of the j-th
column of Y given fixed values of Ψ and Γ. To re-
cap then, we need now minimize L(Ψ, Γ) with respect
to Ψ and Γ, and then plug these estimates into (16)
giving the approximate posterior. The mean of this
distribution (see below) can then be used as a point
estimate for X and S. This process is sometimes re-
ferred to as empirical Bayes because we are using the
data to guide our search for an optimal prior distribu-
tion (Berger, 1985; Tipping, 2001).

3.1 UPDATE RULE DERIVATIONS

It turns out that minimization of (20) can be accom-
plished concurrently with computation of the poste-
rior mean leading to simple, efficient update rules.
While (20) is non-convex, we can use a majorization-
minimization approach analogous to that used for
MAP estimation. For this purpose, we utilize simplify-
ing upper bounds on both terms of the cost function as
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has been done for related sparse estimation problems
Wipf & Nagarajan (2010).

First, the data-dependent term is concave with re-
spect to Ψ−1 and Γ−1 and hence can be expressed as a
minimization over (Ψ−1, Γ−1)-dependent hyperplanes.
With some linear algebra, it can be shown that

yT
j Σ−1

yj
yj = min

xj ,sj

1

λ
‖yj−xj−sj‖2

F+xT
j Ψ−1xj+

∑

i

s2
ij

γij

(22)
for all j. With a slight abuse of notation, we adopt
X = [x1, . . . , xn] and S = [s1, . . . , sn] as the varia-
tional parameters in (22) because they end up play-
ing the same role as the unknown low-rank and sparse
coefficients and provide a direct link to the MAP es-
timates. Additionally, the xj and sj which minimize
(22) turn out to be equivalent to the posterior means
of (16) given Ψ and Γ and will serve as our point esti-
mates.

Secondly, for the log-det term, we first use the deter-
minant identity

log
∣∣Ψ + Γ̄j + λI

∣∣ = log |Ψ| + log
∣∣Γ̄j

∣∣+ log |Aj | + C,
(23)

where

Aj , λ−1

[
I I
I I

]
+

[
Ψ−1 0
0 Γ̄−1

j

]
(24)

and C is an irrelevant constant. The term log |Aj | is
jointly concave in both Ψ−1 and Γ̄−1

j and thus can be
bounded in a similar fashion as (22), although a closed-
form solution is no longer available. (Other decompo-
sitions lead to different bounds and different candidate
update rules.) Here we use

log |Aj | = (25)

min
Uj ,Vj�0

Trace
[
UT

j Ψ−1 + V T
j Γ̄−1

j

]
− h∗(Uj , Vj)

where h∗(Uj , Vj) is the concave conjugate function of
log |Aj | with respect to Ψ−1 and Γ̄−1

i . Note that while
h∗(Uj , Vj) has no closed-form solution, the minimizing
values of Uj and Vj can be computed in closed-form
via

Uj =
∂ log |Aj |

∂Ψ−1
, Vj =

∂ log |Aj |
∂Γ̄−1

j

. (26)

When we drop the minimizations over the variational
parameters xj, sj , Uj , and Vj for all j, we arrive at
a convenient family of upper bounds on the cost func-
tion L(Ψ, Γ). Given some estimate of Ψ and Γ, we can
evaluate all variational parameters in closed form (see
below). Likewise, given all of the variational param-
eters we can solve directly for Ψ and Γ because now

L(Ψ, Γ) has been conveniently decoupled and we need
only compute

min
Ψ�0

∑

j

(
xT

j Ψ−1xj + Trace
[
UT

j Ψ−1
])

+ n log |Ψ|

(27)
and

min
γij≥0

s2
ij

γij
+

[Vj ]ii
γij

+ log γij , ∀i, j. (28)

We summarize the overall procedure next.

3.2 ALGORITHM SUMMARY

1. Compute κ , 1
nm‖Y ‖2

F

2. Initialize Ψ(0) → κI, and Γ̄
(0)
j → κI for all j.

3. For the (k + 1)-th iteration, compute the optimal
xj and sj via

x
(k+1)
j → Ψ(k)

(
Ψ(k) + Γ̄

(k)
j + λI

)−1

yj

s
(k+1)
j → Γ̄(k)

(
Ψ(k) + Γ̄

(k)
j + λI

)−1

yj (29)

4. Likewise, compute the optimal Uj and Vj via

U
(k+1)
j → Ψ(k) − Ψ(k)

(
Ψ(k) + Γ̄

(k)
j + λI

)−1

Ψ(k)

V
(k+1)
j → Γ̄

(k)
j − Γ̄

(k)
j

(
Ψ(k) + Γ̄

(k)
j + λI

)−1

Γ̄
(k)
j

(30)

5. Update Ψ and Γ using the new variational param-
eters via

Ψ(k+1) → 1

n

∑

j

[
x

(k+1)
j

(
x

(k+1)
j

)T

+ U
(k+1)
j

]

γ
(k+1)
ij →

(
s
(k+1)
ij

)2

+
[
V

(k+1)
j

]
ii

, ∀i, j (31)

6. Repeat steps 3 through 5 until convergence. (Re-
call that Γ̄j is a diagonal matrix formed from the
j-th column of Γ.) This process is guaranteed to
reduce or leave unchanged the cost function at
each iteration.

Note that if we set U
(k+1)
j , V

(k+1)
j → 0 for all j, then

the algorithm above is guaranteed to (at least locally)
minimize the MAP cost function from (5). Addition-
ally, for matrix completion problems (Candès & Recht,
2008), where the support of the sparse errors is known
a priori, we need only set each γij corresponding to a
corrupted entry to ∞. This limiting case can easily be
handled with efficient reduced rank updates.
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One positive aspect of this algorithm is that it is
largely parameter free. We must of course choose some
stopping criteria, such as a maximum number of itera-
tions or a convergence tolerance. (For all experiments
in Section 5 we simply set the maximum number of
iterations at 100.) We must also choose some value for
λ, which balances allowable contributions from a dif-
fuse error matrix E, although frequently methods have
some version of this parameter, including the PCP al-
gorithm. For all of our experiments we simply choose
λ = 10−6 since we did not include an E component
consistent with the original RPCA formulation from
Candès et al. (2011).

From a complexity standpoint, each iteration of the
above algorithm can be computed in O(m3n), where
n ≥ m, so it is linear in the larger dimension of Y and
cubic in the smaller dimension. For many computer
vision applications (see Section 5 for one example),
images are vectorized and then stacked, so Y may be
m =number-of-images by n = number-of-pixels. This
is relatively efficient, since the number of images may
be on the order of 100 or fewer (see Wu et al. (2010)).
However, when Y is a large square matrix, the up-
dates are more expensive to compute. In the future we
plan to investigate various approximation techniques
to handle this scenario.

As a final implementation-related point, when given
access to a priori knowledge regarding the rank of X
and/or sparsity of S, it is possible to bias the algo-
rithm’s initialization (from Step 1 above) and improve
the estimation accuracy. However, we emphasize that
for all of the experiments reported in Section 5 we as-
sumed no such knowledge.

3.3 Alternative Bayesian Methods

Two other Bayesian-inspired methods have recently
been proposed for solving the RPCA problem. The
first from Ding et al. (2011) is a hierarchical model
with conjugate prior densities on model parameters at
each level such that inference can be performed using
a Gibbs sampler. This method is useful in that the
λ parameter balancing the contribution from diffuse
errors E is estimated directly from the data. More-
over, the authors report significant improvement over
PCP on example problems. A potential downside of
this model is that theoretical analysis is difficult be-
cause of the underlying complexity. Additionally, a
large number of MCMC steps are required to obtain
good estimates leading to a significant computational
cost even when Y is small. It also uses an estimate of
Rank[X ] which can effect the convergence rate of the
Gibbs sampler.

A second method from Babacan et al. (2011) simi-

larly employs a hierarchial Bayesian model but uses
a factorized mean-field variational approximation for
inference (Attias, 2000). Note that this is an entirely
different type of variational method than ours, rely-
ing on a posterior distribution that factorizes over X
and S, meaning p(X, S|Y ) ≈ q(X |Y )q(S|Y ), where
q(X |Y ) and q(S|Y ) are approximating distributions
learned by minimizing a free energy-based cost func-
tion.4 Unlike our model, this factorization implicitly
decouples X and S in a manner akin to MAP estima-
tion, and may potentially produce more locally mini-
mizing solutions (see analysis below). Moreover, while
this approach also has a mechanism for estimating λ,
there is no comprehensive evidence given that it can
robustly expand upon the range of corruptions and
rank that can already be handled by PCP.

To summarize both of these methods then, we would
argue that while they offer a compelling avenue for
computing λ automatically, the underlying cost func-
tions are substantially more complex than PCP or our
method rendering more formal analyses somewhat dif-
ficult. As we shall see in Sections 4 and 5, the empirical
Bayesian cost function we propose is analytically prin-
cipled and advantageous, and empirically outperforms
PCP by a wide margin.

4 ANALYSIS

In this section we will examine global and local minima
properties of the proposed method and highlight po-
tential advantages over MAP, of which PCP can also
be interpreted as a special case. For analysis purposes
and comparisons with MAP estimation, it is helpful
to convert the empirical Bayes cost function (20) into
(X, S)-space by first optimizing over Uj , Vj , Ψ and Γ,
leaving only the unknown coefficient matrices X and
S. Using this process, it is easily shown that the es-
timates of X and S obtained by globally (or locally)
minimizing (20) will also globally (or locally) minimize

min
X,S

‖Y − X − S‖2
F + λgEB(X, S; λ), (32)

where the penalty function is given by

gEB(X, S; λ) , (33)

min
Γ≥0,Ψ�0

n∑

i=1

xjΨ
−1xj + sT

j Γ̄−1
j sj + log

∣∣Ψ + Γ̄j + λI
∣∣ .

Note that the implicit MAP penalty from (5) is nearly
identical:

gmap(X, S) , (34)

4Additional factorizations are also included in the
model.
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min
Γ≥0,Ψ�0

n∑

i=1

xjΨ
−1xj+sT

j Γ̄−1
j sj+log |Ψ|+log

∣∣Γ̄j

∣∣ .

The primary distinction is that in the MAP case the
variational parameters separate whereas in empirical
Bayesian case they do not. (Note that, as discussed
below, we can apply a small regularizer analogous to λ
to the log terms in the MAP case as well.) This implies
that gmap(X, S) can be expressed as some gmap(X) +
gmap(S) whereas gEB(X, S; λ) cannot. A related form
of non-separability has been shown to be advantageous
in the context of sparse estimation from overcomplete
dictionaries (Wipf et al., 2011).

We now examine how this crucial distinction can be
beneficial in producing maximally sparse, low-rank so-
lutions that optimize (2). We first demonstrate how
(32) mimics the global minima profile of (2). Later we
show how the smoothing mechanism of the empirical
Bayesian marginalization can mitigate spurious locally
minimizing solutions.

The original RPCA development from Candès et al.
(2011) assumes that E = 0, which is somewhat easier
to analyze. We consider this scenario first.

Theorem 1. Assume that there exists at least one so-
lution to Y = X+S such that Rank[X ]+maxj ‖sj‖0 <
m. Then in the limit as λ → 0, any solution that glob-
ally minimizes (32) will globally minimize (2).

Proofs will be deferred to a subsequent journal pub-
lication. Note that the requirement Rank[X ] +
maxj ‖sj‖0 < m is a relatively benign assumption, be-
cause without it the matrices X and S are formally
unidentifiable even if we are able to globally solve (2).
For E > 0, we may still draw direct comparisons be-
tween (32) and (2) when we deviate slightly from the
Bayesian development and treat gEB(X, S; λ) as an
abstract, stand-alone penalty function. In this context
we may consider gEB(X, S; α), with α 6= λ as a more
general candidate for estimating RPCA solutions.

Corollary 1. Assume that X(λ) and S(λ) are a

unique, optimal solution to (2) and that Rank
[
X(λ)

]
+

maxj ‖
[
s(λ)

]
j
‖0 < m. Then there will always exist

some λ′ and α′ such that the global minimum of

min
X,S

‖Y − X − S‖2
F + λ′gEB(X, S; α′), (35)

denoted X(λ′,α′) and S(λ′,α′), satisfies the conditions∥∥X(λ′,α′) − X(λ)

∥∥ < ǫ and
∥∥S(λ′,α′) − S(λ)

∥∥ < ǫ, where
ǫ can be arbitrarily small.

Of course MAP estimation can satisfy a similar prop-
erty as Theorem 1 and Corollary 1 after a minor mod-

ification. Specifically, we may define

gmap(X, S; α) , (36)

min
Γ≥0,Ψ�0

n∑

j=1

xjΨ
−1xj+sT

j Γ̄−1
j sj+log |Ψ + α|+log

∣∣Γ̄j + α
∣∣

and then achieve a comparable result to the above us-
ing gmap(X, S; α′). The advantage of empirical Bayes
then is not with respect to global minima, but rather
with respect to local minima. The separable, addi-
tive low-rank plus sparsity penalties that emerge from
MAP estimation will always suffer from the following
limitation:

Theorem 2. Let S
(a)
ij denote any matrix S with sij =

a. Now consider any optimization problem of the form

min
X,S

g1(X) + g2(S), s.t. Y = X + S, (37)

where g1 is an arbitrary function of the singular values
of X and g2 is an arbitrary function of the magnitudes
of the elements in S. Then to ensure that a global
minimum of (37) is a global minimum of (2) for all
possible Y , we require that

lim
ǫ→0

g2

[
S

(ǫ)
ij

]
− g2

[
S

(0)
ij

]

ǫ
= ∞ (38)

for all i and j and S. An analogous condition holds
for the function g1.

This result implies that whenever an element of S
approaches zero, it will require increasing the asso-
ciated penalty g2(S) against an arbitrarily large gra-
dient to escape in cases where this coefficient was in-
correctly pruned. Likewise, if the rank of X is prema-
turely reduced in the wrong subspace, there may be no
chance to ever recover since this could require increas-
ing g1(X) against an arbitrarily large gradient factor.
In general, Theorem 2 stipulates that if we would like
to retain the same global minimum as (2) using a MAP
estimation-based cost function, then we will necessar-
ily enter an inescapable basin of attraction whenever
either Rank[X ] < m or ‖sj‖0 < m for some j. This
is indeed a heavy price to pay.

Crucially, because of the coupling of low-rank
and sparsity regularizers, the penalty function
gEB(X, S; λ) does not have this limitation. In fact, we
only encounter insurmountable gradient barriers when
Rank[X ] + ‖sj‖0 < m for some j, in which case the
covariance Σyj from (21) becomes degenerate (with λ
small), a much weaker condition. To summarize (em-
phasize) this point then, MAP can be viewed as heav-
ily dependent on degeneracy of the matrices Ψ and Γ
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in isolation, whereas empirical Bayes is only sensitive
to degeneracy of their summation.

This distinction can also be observed in how the
effective penalties on X and S, as imbedded in
gEB(X, S; λ), vary given fixed values of Γ or Ψ re-
spectively. For example, when Ψ is close to being full
rank and orthogonal (such as when the algorithm is ini-
tialized), then the implicit penalty on S is minimally
non-convex (only slightly concave). In fact, as Ψ be-
comes large and orthogonal, the penalty converges to
a scaled version of the ℓ1 norm. In contrast, as Ψ be-
comes smaller and low-rank, the penalty approaches
a scaled version of the ℓ0 norm, implying that max-
imally sparse corruptions will be favored. Thus, we
do not aggressively favor maximally sparse S until the
rank has already been reduced and we are in the basin
of attraction of a good solution. Of course no heuristic
annealing strategy is necessary, the transition is han-
dled automatically by the algorithm.

Additionally, whenever Ψ is fixed, the resulting cost
function formally decouples into n separate, canoni-
cal sparse estimation problems on each sj in isolation.
With λ = 0, it not difficult to show that each of these
subproblems is equivalent to solving

min
sj

‖yj − Φsj‖2
2 + gEB(sj) (39)

where

gEB(sj) , min
γj≥0

n∑

j=1

sT
j Γ̄−1

j sj + log
∣∣ΦΓ̄jΦ

T + I
∣∣ (40)

is a concave sparsity penalty on sj and Φ is any ma-
trix such that ΦΨΦT = I.5 When Φ is nearly orthog-
onal, this problem has no local minima and a global
solution that approximates the hard thresholding of
the ℓ0 norm; however, direct minimization of the ℓ0

norm will have 2n local minima (Wipf et al., 2011).
In contrast, when Φ is poorly conditioned (with ap-
proximately low-rank structure, it has been argued in
Wipf et al. (2011) that penalties such as gEB(sj) are
particularly appropriate for avoiding local minima.

Something similar occurs when Γ is now fixed and
we evaluate the penalty on X . This penalty ap-
proaches something like a scaled version of the nu-
clear norm (less concave) when elements of Γ are set
to a large constant and it behaves more like the rank
function when Γ is small. At initialization, when Γ
is all ones, we are relatively free to move between
solutions of various rank without incurring a heavy
penalty. Later as Γ becomes sparse, solutions satisfy-
ing Rank[X ] + ‖sj‖0 < m for some j become heavily
favored.

5We have assumed here that Ψ is full rank.

As a final point, the proposed empirical Bayesian ap-
proach can be implemented with alternative varia-
tional bounds and possibly optimized with something
akin to simultaneous reweighted nuclear and ℓ1 norm
minimization, a perspective that naturally suggests
further performance analyses such as those applied to
sparse estimation in Wipf & Nagarajan (2010).

5 EMPIRICAL RESULTS

This section provides some empirical evidence for the
efficacy of our RPCA method. First, we present com-
parisons with PCP recovering random subspaces from
corrupted measurements. Later we discuss a photo-
metric stereo application. In all cases we used the the
augmented lagrangian method (ALM) from Lin et al.
(2010) to implement PCP. This algorithm has efficient,
guaranteed convergence and in previous empirical tests
ALM has outperformed a variety of other methods in
computing minimum nuclear norm plus ℓ1 norm solu-
tions.

5.1 RANDOM SUBSPACE SIMULATIONS

Here we demonstrate that the empirical Bayesian al-
gorithm from Section 3.2, which we will refer to as EB,
can recovery unknown subspaces from corrupted mea-
surements in a much broader range of operating condi-
tions compared to the convex PCP. In particular, for a
given value of Rank[X ], our method can handle a sub-
stantially larger fraction of corruptions as measured by
ρ = ‖S‖0/(nm). Likewise, for a given value of ρ, we
can accurately estimate an X with much higher rank.
Consistent with Candès et al. (2011), we consider the
case where E = 0, such that all the error is modeled by
S. This allows us to use the stable, convergent ALM
code available online.6

The first experiment proceeds as follows. We gener-
ate a low-rank matrix X with dimensions reflective of
many computer vision problems: number-of-images ×
number-of-pixels. Here we choose m = 20 and n = 104,
the later dimension equivalent to a 100 × 100 pixel
image. For each trial, we compute an m × n matrix
with iid N (0, 1) entries. We then compute the SVD
of this matrix and set all but the r largest singular
values to zero to produce a low-rank X . S is gen-
erated with nonzero entries selected uniformly with
probability ρ = 0.2. Nonzero values are sampled from
an iid Uniform[-10,10] distribution. We then compute
Y = X +S and try to estimate X and S using the EB
and PCP algorithms. Estimation results averaged over
multiple trials as r is varied from 1 to 10 are depicted
in Figure 1. We plot normalized mean-squared error

6http://perception.csl.uiuc.edu/matrix-rank/
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(MSE) as computed via
〈
‖X − X̂‖2

F/‖X‖2
F

〉
as well

as the average angular error between the estimated and
true subspaces. In both cases the average is across 10
trials.
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Figure 1: Estimation results where the corruption
probability ρ is 0.2 and Rank[X ]/m is varied from 0.05
to 0.50, meaning up to 50% of full rank. Top: Nor-
malized mean-squared error (MSE). Bottom: Average
angle (in degrees) between the estimated and true sub-
spaces.

From Figure 1 we observe that EB can accurately es-
timate X for substantially higher values of the rank.
Interestingly, we are also still able to estimate the cor-
rect subspace spanned by columns of X perfectly even
when the MSE of estimating X starts to rise (compare
Figure 1(Top) with Figure 1(Bottom)). Basically, this
occurs because, even if we have estimated the sub-
space perfectly, reducing the MSE to zero implicitly
requires solving a challenging sparse estimation prob-
lem for every observation column yj . For each column,

this problem requires learning dj , Rank[X ] + ‖sj‖0

nonzero entries given only m = 20 observations. For
our experiment, we can have dj > 14 with high prob-
ability for some columns when the rank is high, and
thus we may expect some errors in Ŝ (not shown).
However, the encouraging evidence here is that EB
is able to keep these corrupting errors at a minimum
and estimate the subspace accurately long after PCP
has failed. Moreover, if an accurate estimate of X is
needed, as opposed to just the correct spanning sub-
space, then a postprocessing error correction step can
potentially be applied to each column individually to
improve performance.

The second experiment is similar to the first only now
we hold Rank[X ] fixed at 4, meaning Rank[X ]/m =
0.2, and vary the fraction of corrupted entries in S
from 0.1 to 0.8. Figure 2 shows that EB is again able
to drastically expand the range whereby successful es-
timates are obtained. Notably it is able to recover the
correct subspace even with 70% corrupted entries.
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Figure 2: Estimation results with Rank[X ]/m = 0.2
and ρ varied from 0.1 to 0.8. Top: Normalized mean-
squared error (MSE). Bottom: Average angle (in de-
grees) between the estimated and true subspaces.

As a final comparison, we tested PCP and EB on a
400 × 400 observation matrix Y generated as above
with a Rank[X ]/m = 0.1 and ρ = 0.5. The estima-
tion results are reported in Table 1. PCP performs
poorly since the normalized MSE is above one, mean-
ing we would have been better off simply choosing
X̂ = 0 in this regard. Additionally, the angular er-
ror is very near 90 degrees, consistent with the error
from a randomly chosen subspace in high dimensions.
In contrast, EB provides a reasonably good estimate
considering the difficulty of the problem.

Table 1: Estimation results with m = n = 400,
Rank[X ]/m = 0.1 and ρ = 0.5.

PCP EB

MSE (norm.) 1.235 0.066
Angular Error 88.50 5.01
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5.2 PHOTOMETRIC STEREO

Photometric stereo is a method for estimating surface
normals of an object or scene by capturing multiple
images from a fixed viewpoint under different light-
ing conditions (Woodham, 1980). At a basic level,
this methodology assumes a Lambertian object sur-
face, point light sources at infinity, an orthographic
camera view, and a linear sensor response function.
Under these conditions, it has been shown that the
intensities of a vectorized stack of images Y can be
expressed as

Y = LT NΥ, (41)

where L is a 3 × m matrix of m normalized lighting
directions, N is a 3 × n matrix of surface normals at
n pixel locations, and Υ is a diagonal matrix of dif-
fuse albedo values (Woodham, 1980). Thus, if we were
to capture at least 3 images with known, linearly in-
dependent lighting directions we can solve for N us-
ing least squares. Of course in reality many common
non-Lambertian effects can disrupt this process, such
as specularities, cast or attached shadows, and image
noise, etc. In many cases, these effects can be modeled
as an additive sparse error term S applied to (41).

As proposed in Wu et al. (2010), we can estimate
the subspace containing N by solving (2) assuming
X = LT NΥ and E = 0. The resulting X̂, combined
with possibly other a priori information regarding the
lighting directions L can lead to an estimate of N . Wu
et al. (2010) propose using a modified version of PCP
for this task, where a shadow mask is included to sim-
plify the sparse error correction problem. However,
in practical situations it may not always be possible
to accurately locate all shadow regions in this man-
ner so it is desirable to treat them as unknown sparse
corruptions.

For this experiment we consider the synthetic Caesar
image from the INRIA 3D Meshes Research Database7

with known surface normals. Multiple 2D images with
different known lighting conditions can easily be gener-
ated using the Cook-Torrance reflectance model (Cook
& Torrance, 1981). These images are then stacked to
produce Y . Because shadows are extremely difficult to
handle in general, as a preprocessing step we remove
rows of Y corresponding to pixel locations with more
than 10% shadow coverage. Specular corruptions were
left unfiltered. We tested our algorithm as the number
of images, drawn randomly from a batch of 40 total,
was varied from 10 to 40. Results averaged across 5
trials are presented in Figure 3. The error metrics
have been redefined to accommodate the photometric
stereo problem. We now define the normalized MSE as

7http://www-roc.inria.fr/gamma/gamma/download/
download.php

〈
‖X − X̂‖2

F/‖X − Y ‖2
F

〉
, which measures how much

improvement we obtain beyond just using the obser-
vation matrix Y directly. Similarly we normalized the
angular error by dividing by the angle between Y and
the true X for each trial.
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Figure 3: Estimation results using photometric stereo
data as the number of images m is varied from 10 to
40. Top: Normalized MSE (see altered definition in
the main text). Bottom: Normalized angle between
the estimated and the true subspaces.

From Figure 3 it is clear that EB outperforms PCP in
both MSE and angular error, especially when there are
fewer images present. It is not entirely clear however
why the MSE and angular error are relatively flat for
EB as opposed to dropping lower as m increases. Of
course these are errors relative to using Y directly to
predict X , which could play a role in this counterintu-
itive effect.

6 CONCLUSIONS

In this paper we have analyzed a new empirical
Bayesian approach for matrix rank minimization in
the context of RPCA, where the goal is to decompose
a given data matrix into low-rank and sparse compo-
nents. Using a variational approximation and subse-
quent marginalization, we ultimately arrive at a novel
regularization term that couples low-rank and spar-
sity penalties in such a way that locally minimizing
solutions are effectively smoothed while the global op-
timum matches that of the ideal RPCA cost function.
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Abstract

Recently two search algorithms, A* and breadth-
first branch and bound (BFBnB), were developed
based on a simple admissible heuristic for learn-
ing Bayesian network structures that optimize a
scoring function. The heuristic represents a re-
laxation of the learning problem such that each
variable chooses optimal parents independently.
As a result, the heuristic may contain many di-
rected cycles and result in a loose bound. This
paper introduces an improved admissible heuris-
tic that tries to avoid directed cycles within small
groups of variables. A sparse representation is
also introduced to store only the unique optimal
parent choices. Empirical results show that the
new techniques significantly improved the effi-
ciency and scalability of A* and BFBnB on most
of datasets tested in this paper.

1 Introduction

Bayesian networks are often used to represent relation-
ships among variables in a domain. When the network
structure is unknown, we can learn the structure directly
from a given dataset. Several exact algorithms for learn-
ing optimal Bayesian networks have been developed based
on dynamic programming (Koivisto and Sood 2004; Ott,
Imoto, and Miyano 2004; Silander and Myllymaki 2006;
Singh and Moore 2005; Parviainen and Koivisto 2009;
Malone, Yuan, and Hansen 2011), branch and bound (de
Campos and Ji 2011), and linear and integer program-
ming (Cussens 2011; Jaakkola et al. 2010).

Recently, Yuanet al. (2011) proposed a shortest-path find-
ing formulation for the Bayesian network structure learning
problem, in which the shortest path found in an implicit
search graph called order graph corresponds to an optimal
network structure. An A* search algorithm was developed
to solve the search problem. Maloneet al. (2011) adopted

the same formulation, but realized that the search can be
performed in a layered, breadth-first order. External mem-
ory and delayed duplicate detection are used to ensure com-
pletion regardless of the amount of available RAM. This al-
gorithm, named breadth-first branch and bound (BFBnB),
was shown to have similar runtimes as A* but scale to many
more variables.

A simple admissible heuristic was used in the A* and BF-
BnB algorithms (Yuan, Malone, and Wu 2011; Malone et
al. 2011) to guide the search. Its main idea is to relax the
acyclicity constraint of Bayesian networks such that each
variable can freely choose optimal parents from all the
other variables. The heuristic provides an optimistic esti-
mation on how good a solution can be and, hence, is admis-
sible. However, the simple relaxation behind the heuristic
may introduce many directed cycles and result in a loose
bound.

This paper introduces a much improved admissible heuris-
tic namedk-cycle conflict heuristicbased on the addi-
tive pattern database technique (Felner, Korf, and Hanan
2004). The main idea is to avoid directed cycles within
small groups of variables, called patterns, and compute
heuristic values by concatenating patterns. Also, a set of
exponential-size parent graphs were created by the A* and
BFBnB algorithms to retrieve optimal parent choices dur-
ing the search. We introduce a sparse representation for
storing only unique optimal parent sets which can improve
both time and space efficiency of the search. Empirical re-
sults show that the new techniques significantly improved
the efficiency and scalability of A* and BFBnB on most of
the benchmark datasets we tested.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of Bayesian network structure
learning and the shortest-path finding formulation of the
problem. Section 3 introduces the improved heuristic. Sec-
tion 4 introduces the sparse representation of optimal par-
ent choices and discusses how to adapt A* and BFBnB al-
gorithms to use the new techniques. Section 5 reports the
empirical results on a set of benchmark datasets. Finally,
Section 6 concludes the paper with some remarks.

924



2 Background

This section reviews the basics of score-based methods for
learning Bayesian network structures.

2.1 Learning Bayesian network structures

A Bayesian network is a directed acyclic graph (DAG) in
which the vertices correspond to a set of random variables
V = {X1, ..., Xn}, and the arcs and lack of them rep-
resent dependence and conditional independence relations
between the variables. The relations are further quantified
using a set of conditional probability distributions. We con-
sider the problem of learning a network structure from a
datasetD = {D1, ..., DN}, whereDi is an instantiation
of all the variables inV. A scoring function can be used
to measure the goodness of fit of a network structure to
D. For example, the minimum description length (MDL)
scoring function (Rissanen 1978) uses one term to reward
structures with low entropy and another to penalize com-
plex structures. The task is to find an optimal structure that
minimizes the MDL score. MDL is decomposable (Heck-
erman 1998), i.e., the score for a structure is simply the
sum of the scores for each variable. All algorithms we de-
scribe here assume the scoring function is decomposable.
The remainder of the paper assumes the use of MDL score,
but our method is equally applicable to other decomposable
scoring functions, such as AIC, BIC or BDe.

2.2 The shortest-path finding formulation

Yuanet al. (2011) formulated the above structure learning
problem as a shortest-path finding problem. Figure 1 shows
the implicit search graph for four variables. The top-most
node with the empty set is thestart search node, and the
bottom-most node with the complete set is thegoal node.
An arc fromU to U ∪ {X} in the graph represents gen-
erating a successor node by adding a new variable{X} to
the existing variablesU; the cost of the arc is equal to the
cost of selecting the optimal parent set forX out ofU, and
is computed by considering all subsets ofU, i.e.,

BestScore(X,U) = min
PAX⊆U

score(X |PAX).

With the search graph thus specified, each path from the
start node to the goal is an ordering of the variables in the
order of their appearance. That is why the search graph is
also called anorder graph. Because each variable only se-
lects optimal parents from the preceding variables, putting
together all the optimal parent choices of a particular order-
ing generates a valid Bayesian network that is optimal for
that specific ordering. The shortest path among all possible
paths corresponds to a global optimal Bayesian network.

During the search of the order graph, we need to compute
the cost for each arc being visited. We use another data

Figure 1: An order graph of four variables

structure calledparent graphfor retrieving the costs. The
parent graph for variableX consists of all subsets ofV \
{X}. Figure 2 shows the parent graph forX1. Figure 2(a)
shows a parent graph containing the raw scores for using
each subset as the parent set ofX1, while Figure 2(b) shows
the optimal scores after propagating the best scores from
top to bottom in the graph. For the arc fromU to U∪{X},
we find its score by looking up the parent graph of variable
X to find the node that containsU.

Various search methods as well as dynamic programming
have been applied to solve the shortest-path finding prob-
lem (Malone, Yuan, and Hansen 2011; Malone et al. 2011;
Yuan, Malone, and Wu 2011). In (Yuan, Malone, and Wu
2011), an A* search algorithm was proposed based on the
following admissible heuristic function.

Definition 1. Let U be a node in the order graph, its
heuristic value is

h(U) =
∑

X∈V\U
BestScore(X,V\{X}). (1)

The A* algorithm is shown to be much more efficient than
existing dynamic programming algorithms. However, A*
requires all the search information, including parent and or-
der graphs, to be stored in RAM during the search, which
makes the algorithm easily run out of memory for large
datasets. Malone et al. (2011) developed a breadth-first
branch and bound (BFBnB) algorithm to search the order
graph in a layered, breadth-first order. By carefully coor-
dinating the parent and order graphs, most of the search
information can be stored on disk and are only processed
incrementally after being read back to RAM when neces-
sary. The BFBnB algorithm was shown to be as efficient
as the A* algorithm but was able to scale to much larger
datasets. Theoretically, the scalability of the BFBnB algo-
rithm is only limited by the amount of disk space available.
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Figure 2: A sample parent graph for variableX1. (a) The raw scores for all the parent sets. The first line in each node gives
the parent set, and the second line gives the score of using all of that set as the parents forX1. (b) The optimal scores for
each candidate parent set. The second line in each node givesthe optimal score using some subset of the variables in the
first line as parents forX1. (c) The unique optimal parent sets and their scores. The pruned parent sets are shown in gray.
A parent set is pruned if any of its predecessors has an equal or better score.

3 An Improved Admissible Heuristic

The heuristic function defined in Equation 1 is based
on a classic approach to designing admissible heuristics.
Pearl (1984) pointed out that the optimal solution to a re-
laxed problem can be used as an admissible bound for the
original problem. For structure learning, the original prob-
lem is to learn a Bayesian network that is anacyclic di-
rected graph (DAG). Equation 1 relaxes the problem by
completely ignoring the acyclicity constraint, so alldi-
rected graphsare allowed. This paper aims to improve the
heuristic by enforcing partial acyclicity. We will first moti-
vate our approach using a small example. We then describe
the specifics of the new heuristic.

3.1 A motivating example

According to Equation 1, the heuristic estimate of the start
node in the order graph allows each variable to choose
optimal parents from all the other variables. Suppose the
optimal parents forX1, X2, X3, X4 are {X2, X3, X4},
{X1, X4}, {X2}, {X2, X3} respectively. These parent
choices are shown as the directed graph in Figure 3. Since
the acyclicity constraint is ignored, directed cycles are in-
troduced, e.g., betweenX1 andX2. However, we know the
final solution cannot have cycles; three scenarios are possi-
ble betweenX1 andX2: (1) X2 is a parent ofX1 (soX1

cannot be a parent ofX2), (2) X1 is a parent ofX2, or (3)
neither of the above is true. The third case is dominated by
the other two cases because of the following theorem.

Theorem 1. Let U and V be two candidate parent
sets for X , and U ⊂ V, then BestScore(X,V) ≤
BestScore(X,U).

This theorem has appeared in many earlier papers,
e.g. (Teyssier and Koller 2005; de Campos and Ji 2010),
and simply means that an equal or better score can be ob-

X1 X2 

X4 X3

Figure 3: A directed graph representing the heuristic esti-
mate for the start search node.

tained if a larger set of parent candidates is available to
choose from. The third case cannot provide a better value
than the other two cases because one of the variables must
have fewer parents to choose from. Between the first two
cases it is unclear which one is better, so we take the min-
imum of them. Consider the first case first: We have to
delete the arcX1 → X2 to rule outX1 as a parent of
X2. Then we have to letX2 to rechoose optimal parents
from {X3, X4}, that is, we must check all the parent sets
not includingX1; the deletion of the arc alone cannot pro-
duce the new bound. The total bound ofX1 andX2 is com-
puted by summing together the original bound ofX1 and
the new bound ofX2. We call this total boundb1. The sec-
ond case is handled similarly; we call that total boundb2.
Because the joint heuristic forX1 andX2 must be opti-
mistic, we compute it as the minimum ofb1 and b2. Ef-
fectively we have considered all possible ways to break the
cycle and obtained a new but improved heuristic value. The
new heuristic is clearly admissible, as we still allow cycles
among other variables.

Often, the simple heuristic introduces multiple cycles. The
graph in Figure 3 also has a cycle betweenX2 and X4.
This cycle sharesX2 with the earlier cycle; we say they
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overlap. Overlapping cycles cannot be broken indepen-
dently. For example, suppose we break the cycle between
X1 andX2 by setting the parents ofX2 to be{X3}. This
effectively breaks the cycle betweenX2 andX4 as well,
but introduces a new cycle betweenX2 and X3. As de-
scribed in more detail shortly, we divide the variables into
non-overlapping groups and focus only on avoiding cycles
within each group. So ifX2 andX3 are in different groups,
they are allowed to form a cycle.

3.2 Thek-cycle conflict heuristic

The idea above can be generalized to compute the joint
heuristics for all groups of variables with a size up tok
by avoiding cycles within each group. We call the resulting
technique thek-cycle conflict heuristic. Note that Equa-
tion 1 is a special case of this new heuristic, as it sim-
ply contains heuristics for the individual variables (k=1).
The new heuristic is an application of theadditive pattern
databasetechnique (Felner, Korf, and Hanan 2004). We
first have to explain whatpattern database(Culberson and
Schaeffer 1998) is. Pattern database is an approach to com-
puting an admissible heuristic for a problem by solving a
relaxed problem. As an example, the 15 sliding tile puzzle
can be relaxed to only contain the tiles 1-8 by removing the
other tiles. Because of the relaxation, multiple states of the
original problem are mapped to one state in theabstract
state space of the relaxed problem. Each abstract state is
called apattern, and the exact costs for solving all the ab-
stract states are stored in a pattern database; each cost can
be retrieved as an admissible heuristic for any consistent
state in the original state space. Furthermore, we can re-
lax the problem in different ways and obtain multiple pat-
tern databases. If the solutions to a set of relaxed problems
are independent, the problems are said to have no inter-
actions between them. Again consider 15-puzzle, we can
also relax it to only contain the tiles 9-15. This relaxation
can be solved independently from the previous one, as they
do not share puzzle movements. The costs of their pattern
databases can beaddedtogether to obtain an admissible
heuristic, hence the name additive pattern databases.

In the learning problem, a pattern is defined as a set of vari-
ables, and its cost is the joint heuristic of the variables in-
volved. The costs of two patterns sharing no variables can
be added together to obtain an admissible heuristic because
of the decomposability of the scoring function.

We do not need to explicitly break cycles to compute the
k-cycle conflict heuristic. The following theorem offers a
straightforward approach to computing the heuristic.

Theorem 2. The cost of the patternU is equal to the short-
est distance from the nodeV \ U to the goal node in the
order graph.

The theorem can be proven by noting that avoiding cycles
between the variables inU is equivalent to finding an opti-

mal ordering of the variables with the best joint score, and
the different paths fromV\U to the goal correspond to the
different orderings of the variables, among which the short-
est path thus corresponds to the optimal ordering. Again
consider the example in Figure 3. The joint heuristic for the
pattern{X1, X2} is equal to the shortest distance from the
node{X3, X4} to the goal in Figure 1. Therefore, the new
heuristic can be computed by finding the shortest distances
from all the nodes in the lastk layers of the order graph to
the goal. We will describe a backward search algorithm for
computing the heuristic in Section 4.2.

Furthermore, thedifferencebetween the cost of the pattern
U and the simple heuristic ofV \U indicates the amount
of improvement brought by avoiding cycles within the pat-
tern. The differential cost can thus be used as a quality mea-
sure for ordering the patterns and for choosing patterns that
are more likely to result in a tighter heuristic. Also, we can
discard any pattern that does not introduce additional im-
provement over any of its subset patterns. The pruning can
significantly reduce the size of a pattern database and im-
prove the efficiency of accessing the database.

3.3 Computing the heuristic for a search node

Once thek-cycle conflict heuristic is computed, we can use
it to calculate the heuristic value for any node during the
search. For a nodeU, we need to partitionV \U into a set
of non-overlappingpatterns, and sum their costs together as
the heuristic value. There are potentially many ways to do
the partition; ideally we want to find the one with the high-
est total cost, which represents the most accurate heuristic
value. The problem of finding the optimal partition can be
formulated asmaximum weighted matchingproblem (Fel-
ner, Korf, and Hanan 2004). Fork = 2, we can define a
graph in which each vertex represents a variable, and each
edge between two variables representing the pattern con-
taining the same variables with an edge weight equal to the
cost of the pattern. The goal is to select a set of edges from
the graph so that no two edges share a vertex and the total
weight of the edges is maximized. The matching problem
can be solved inO(n3) time (Papadimitriou and Steiglitz
1982), wheren is the number of vertices.

For k > 2, we have to addhyperedgesto the matching
graph for connecting up tok vertices to represent larger
patterns. The goal becomes to select a set of edges and hy-
peredges to maximize the total weight. However, the three-
dimensional or higher-order maximum weighted matching
problem is NP-hard (Garey and Johnson 1979). That means
we have to solve an NP-hard problem when calculating the
heuristic value for a search node.

To alleviate the potential inefficiency, we elect to use a
greedy method to compute the heuristic value. The method
sequentially chooses patterns based on their quality. Con-
sider the nodeU; the unsearched variables areV \U. We
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first choose the pattern with the highest differential cost
from all patterns that are subsets ofV \U. We repeat this
process by choosing the next pattern for the remaining un-
searched variables until all the variables are covered. The
total cost of the chosen patterns is used as the heuristic
value for the nodeU.

3.4 Dynamic and static pattern databases

The version of thek-cycle conflict heuristic introduced
above is an example of thedynamically partitioned pattern
database(Felner, Korf, and Hanan 2004), as the patterns
are dynamically selected during the search algorithm. We
refer to it asdynamic pattern databasefor short. A poten-
tial drawback of dynamic pattern databases is that, even
using the greedy method, computing a heuristic values is
still more expensive than the simple heuristic in Equation 1.
Consequently, the running time can be longer even though
the tighter heuristic results in more pruning and fewer ex-
panded nodes.

We can resort to another version of thek-cycle con-
flict heuristic based on thestatically partitioned pattern
databasetechnique (Felner, Korf, and Hanan 2004). The
idea is to statically divide all the variables into several
groups, and create a separate pattern database for each
group. Consider a problem with variables{X1, ..., X8}.
We simply divide the variables into two equal-sized
groups,{X1, ..., X4} and {X5, ..., X8}. For each group,
say{X1, ..., X4}, we create a pattern database that contains
the costs ofall subsets of{X1, ..., X4} and store them as
a hash table. We refer to this heuristic as thestatic pattern
databasefor short.

It is much simpler to use static pattern databases to com-
pute a heuristic value. Consider the node{X1, X4, X8};
the unsearched variables are{X2, X3, X5, X6, X7}. We
divide these variables into two patterns{X2, X3} and
{X5, X6, X7} according to the static grouping. We then
simply look up the costs of these two patterns in the pat-
tern databases and sum them together as as the heuristic
value for the node. Better yet, every search step only pro-
cesses one variable and affects one pattern, so computing
the heuristic value can be done incrementally.

4 The Search Algorithms

Both computing thek-cycle conflict heuristic and solving
the shortest-path finding problem requires us to search the
order graph. The searches further require the parent graphs
to be calculated in advance or during the search. In this sec-
tion, we first introduce a sparse representation of the par-
ent graphs. We then discuss how to search the order graph
backward to compute thek-cycle conflict heuristic, and for-
ward to solve the shortest path-finding problem by adapting
the A* and BFBnB algorithms.

parentsX1 {X2, X3} {X3} {X2} {}
scoresX1 5 6 8 10

Table 1: Sorted scores and parent sets forX1 after pruning
parent sets which are not possibly optimal.

parentsX1 {X2, X3} {X3} {X2} {}
X2 1 0 1 0
X3 1 1 0 0
X4 0 0 0 0

Table 2: TheparentsX(Xi) bit vectors forX1. A “1” in
line Xi indicates that the corresponding parent set includes
variableXi, while a “0” indicates otherwise. Note that, af-
ter pruning, none of the optimal parent sets includeX4.

4.1 Sparse representation of parent graphs

The parent graph for each variableX exhaustively enu-
merates the optimal scores for all subsets ofV \ {X}.
Naively, this approach requires storingn2n−1 scores and
parent sets. Due to Theorem 1, however, the number of
uniqueoptimal parent sets is often far smaller. For example,
Figure 2(b) shows that each score may be shared by several
nodes in a parent graph. The parent graph representation
will allocate space for this repetitive information, resulting
in waste of space.

Instead of storing the complete parent graphs, we propose
a sparse representation whichsorts all the uniqueparent
scores for each variableX in a list, and also maintain a
parallel list that stores the associated optimal parent sets.
We call these sorted listsscoresX andparentsX . Table 1
shows the sorted lists for the parent graph in Figure 2(b).
In essence, this allows us to store and efficiently process
only scores in Figure 2(c). We do not have to create the full
parent graphs before realizing some scores can be pruned
(post-pruning). For example, we can use the following the-
orem (Tian 2000) to prune some scores before even com-
puting them (pre-pruning).

Theorem 3. In an optimal Bayesian network based on
the MDL scoring function, each variable has at most
log( 2N

log N ) parents, whereN is the number of data points.

Because of the pruning of duplicate scores, the sparse rep-
resentation requires much less memory than storing all the
possible parent sets and scores. As long as‖scores(X)‖ <
C(n− 1, n

2 ), it also requires less memory than the BFBnB
algorithm forX . In practice,‖scoresX‖ is almost always
smaller thanC(n − 1, n

2 ) by several orders of magnitude.
So this approach offers (usually substantial) memory sav-
ings compared to previous best approaches. In addition, the
sparse representation is also much more efficient to create
because of the pre-pruning.

The key operation in parent graphs is querying the opti-
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parentsX1 {X2, X3} {X3} {X2} {}
validX1 1 1 1 1
∼ X3 0 0 1 1
validnew

X1
0 0 1 1

Table 3: The result of performing the bitwise operation to
exclude all parent sets which includeX3. A “1” in the
validX1 bit vector means that the parent set does not in-
cludeX3 and can be used for selecting the optimal parents.
The first set bit indicates the best possible score and parent
set.

parentsX1 {X2, X3} {X3} {X2} {}
validX1 0 0 1 1
∼ X2 0 1 0 1
validnew

X1
0 0 0 1

Table 4: The result of performing the bitwise operation to
exclude all parent sets which include eitherX3 or X2. A
“1” in the validnew

X1
bit vector means that the parent set

includes neitherX2 nor X3. The initial validX1 bit vec-
tor had already excludedX3, so findingvalidnew

X1
only re-

quired excludingX2.

mal parents for variableX out of a candidate setU. With
the sparse representation, we can simply scan the list ofX
starting from the beginning. As soon as we find the first
parent set that is a subset ofU, we find the optimal par-
ent set and its score. However, scanning the lists can be
inefficient if not done properly. Since we have to do the
scanning for each arc, the inefficiency will have a large
impact on the whole search algorithm. We therefore pro-
pose the following incremental approach. Initially, we al-
low each variableX to use all the other variables as can-
didate parents, so the first element in the sorted score list
must be optimal. For example, the first score in Table 1
must beBestScore(X1, {X2, X3, X4}). Suppose we re-
moveX2 from consideration as a candidate parent; we scan
the list by continuing from where we last stopped and find
a parent set which does not includeX2, which must be
BestScore(X1, {X3, X4}) ({X3} in this example). If we
further removeX3, we continue scanning the list until find-
ing a parent set which includes neitherX2 nor X3 to find
BestScore(X1, {X4}) ({} it is).

To further improve the efficiency, we propose the follow-
ing efficient scanning technique. For each variableX , we
first initialize an incumbent bit vector of length‖scoresX‖
calledvalidX to be all 1s. This indicates that all the par-
ent scores inscoresX are usable; the first score in the
list will be the optimal score. Then, we createn − 1 bit
vectors also of length‖scoresX‖, one for each variable
in V \ {X}. The bit vector for variableY is denoted as
parentsX(Y ) and contains 1s for all the parent sets that
containY and 0s for others. Table 2 shows the bit vectors
for Table 1. Then, to exclude variableY as a candidate par-

ent, we perform the bit operationvalidnew
X ← validX& ∼

parentsX(Y ). The validnew
X bit vector now contains 1s

for all the parent sets that are subsets ofV \ {Y }. The
first set bitcorresponds toBestScore(X,V \ {Y }). Ta-
ble 3 shows an example of excludingX3 from the set of
possible parents forX1, and the first set bit in the new
bit vector corresponds toBestScore(X1,V \ {X3}). If
we further excludeX2, the bit vector resulting from the
last step becomes the incumbent bit vector, and a sim-
ilar bit operation is applied:validnew

X ← validX& ∼
parentsX1(X2). The first set bit of the result corresponds
to BestScore(X1,V \ {X2, X3}). Table 4 demonstrates
this operation. Also, it is important to note that we exclude
one variable at a time. For example, if, after excludingX3,
we wanted to excludeX4 rather thanX2, we could take
validnew

X ← validX& ∼ parentsX(X4).

4.2 Creating thek-cycle conflict heuristic

We have two versions of thek-cycle conflict heuristic: dy-
namic and static pattern databases. To compute the dy-
namic pattern database, we use thebreadth-first searchto
do a backward search fork layers in the order graph. The
search starts from the goal node and expands the order
graph backward layer by layer. A reverse arc fromU∪{X}
to U has a cost equal toBestScore(X,U). The reverseg
cost toU is updated whenever a new path with a lower
cost is found. Breadth-first search ensures that nodeU will
obtain its optimal reverseg cost once the whole layer is
processed. Its corresponding patternV \U is pruned if the
differential score is equal to that of any subset pattern. Oth-
erwise, it is added to the pattern database together with both
its pattern cost and differential cost.

The static pattern databases are calculated differently. For
a static groupingV =

⋃
i Vi, we need to compute a pat-

tern database for each groupVi, which is basically a full
order graph containing all subsets ofVi. We will also use
a backward breadth first search to create the graph layer by
layer starting from the nodeVi. However, the cost for any
reverse arc fromU ∪ {X} to U in this order graph will be
BestScore(X, (

⋃
j 6=i Vj) ∪U).

4.3 Solving the shortest-path finding problem

After the pattern database heuristics are computed, we
solve the shortest-path finding problem using a forward
search in the order graph. We adapt both the A* (Yuan,
Malone, and Wu 2011) and BFBnB (Malone, Yuan, and
Hansen 2011) algorithms to utilize the new heuristic and
the sparse parent graphs.

Originally, the A* algorithm first creates the full parent
graphs and then expands the order graph in a best-first or-
der starting from the top. For the improved version, we first
create the unique score lists and thek-cycle conflict heuris-
tic. During the search, the only difference appears in gener-
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Figure 4: The number of parent sets stored in the full
parent graphs (“Full”), the largest layer of the parent
graphs (“Largest Layer”), and the sparse representation
(“Sparse”).

ating the successors of a node. For each successorU∪{X}
of nodeU, we calculate its heuristic value according to
the methods described in Sections 3.3 and 3.4. Looking up
the costBestScore(X,U) for the arcU → U ∪ {X} is
achieved by using the sparse parent graphs.

The BFBnB algorithm is affected in a similar way. Orig-
inally it works by coordinating the expansion of the order
graph and parent graphs layer by layer. In the improved ver-
sion, the unique score lists and the heuristic are calculated
first. The search part of the algorithm only needs to expand
the order graph, during which generating successors works
similarly as in the improved A* algorithm.

5 Empirical Results

We tested our new techniques on the A* and BFBnB al-
gorithms by comparing to their original versions1. The ex-
periments were performed on a PC with 3.07 GHz Intel i7
processor, 16 GB of RAM, 500 GB of hard disk space, and
running Ubuntu 10.10. We used benchmark datasets from
the UCI machine learning repository (Frank and Asuncion
2010) to test the algorithms. For all the datasets, records
with missing values were removed. All variables were dis-
cretized into two states around their means.

5.1 Memory savings of sparse parent graphs

We first evaluated the memory savings made possible by
using the sparse representation in comparison to the full
parent graphs. In particular, we compared the maximum
number of scores that have to be stored for all variables at
once by each algorithm. A typical dynamic programming

1A software package namedURLearning(“you are learning”)
implementing the A* and BFBnB algorithms can be downloaded
athttp://url.cs.qc.cuny.edu/software.html.

algorithm stores scores for all possible parent sets of all
variables. BFBnB and memory-efficient dynamic program-
ming (Malone, Yuan, and Hansen 2011) (assuming imple-
mentation optimizations) store all possible parent sets only
in one layer of the parent graphs for all variables, so the size
of the largest layer of all parent graphs is an indication of
its space requirement. The sparse representation only stores
the unique optimal parent sets for all variables at all layers.

Figure 4 shows the memory savings by the sparse rep-
resentation. The number of unique scores stored by the
sparse representation is typically several orders of magni-
tude smaller than the number of parent sets stored by the
full representation. These results agree quite well with pre-
viously published results (de Campos and Ji 2010).

Due to Theorem 3, increasing the number of data records
increases the maximum number of candidate parents.
Therefore, the number of unique candidate parent sets in-
creases as the number of records increases; however, many
of the new parent sets are pruned. The number of variables
also affects the number of candidate parent sets. Conse-
quently, the number of unique scores increases as a func-
tion of the number of records and the number of variables.
The amount of pruning is data-dependent, though, and is
not easily predictable. In practice, we find the number of
records to affect the number of unique scores more than
the number of variables. Other scoring functions, such as
BDe, exhibit similar behavior.

The results also suggest that the savings increase as the
number of variables increases in the datasets. This implies
that, while more variables necessarily increases the number
of possible parent sets exponentially, the number of unique
optimal parent sets increases much more slowly. Intuitively,
even though we add more parents, only a small number of
them are “good” parents for any particular variable.

5.2 Heuristics vs sparse representation

Both the new heuristic and the sparse representation can
be used to improve the A* and BFBnB algorithms. It is
beneficial to have an understanding on how much improve-
ment each technique contributes. Also, the new heuristic
has two versions: static and dynamic pattern databases;
each of them can be parameterized in different ways. We
applied various parameterizations of the new techniques to
the algorithms on the datasets Autos and Flag. For the dy-
namic pattern database, we variedk from 2 to 4. For the
static pattern databases, we tried groupings 9-9-8 and 13-
13 for the Autos dataset and groupings 10-10-9 and 15-14
for the Flag dataset. The results are shown in Table 5.

The sparse representation helped both A* and BFBnB al-
gorithms to achieve much better efficiency and scalability.
A* ran out of memory on both of the datasets when using
full parent graphs, but was able to solve both Autos (with
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Pattern Database BFBnB, Full BFBnB, Sparse A*, Sparse
Dataset Type Size Time (s) Nodes Time (s) Nodes Time (s) Nodes

Autos Simple 26 2,690 62,721,601 461 62,721,601 674 35,329,016
Autos Dynamic, k=2 41 2,722 52,719,774 449 52,719,793 148 6,286,142
Autos Dynamic, k=3 116 2,720 49,271,793 468 49,271,809 76 2,829,877
Autos Dynamic, k=4 582 2,926 48,057,187 699 48,057,205 67 2,160,515
Autos Static, 9-9-8 1,280 2,782 57,002,704 495 57,002,715 228 9,763,518
Autos Static, 13-13 16,384 2,747 48,814,324 211 48,814,334 125 4,762,276

Flag Simple 29 OT OT OT OT OM OM
Flag Dynamic, k=2 45 OT OT 1,222 132,431,610 824 19,359,296
Flag Dynamic, k=3 149 OT OT 788 79,332,390 207 5,355,085
Flag Dynamic, k=4 858 OT OT 1,624 84,054,443 350 7,377,817
Flag Static, 10-10-9 2,560 OT OT 2,600 249,638,318 OM OM
Flag Static, 15-14 49,152 OT OT 720 88,305,173 136 4,412,232

Table 5: A comparison of the enhanced A* and BFBnB algorithmswith various combinations of parent graph representa-
tions (full vs. sparse) and the heuristics (simple heuristic, dynamic pattern database withk = 2, 3, and 4, and static pattern
databases with groupings 9-9-8 and 13-13 for the Autos dataset and groupings 10-10-9 and 15-14 for the Flag dataset).
“Size” means the number of patterns stored; “Sparse” means the sparse parent graphs; “Full” means the full parent graphs;
“Time” means the running time (in seconds), and “Nodes” means the number of nodes expanded by the algorithms; “OT”
means the algorithm fail to finish within a 1-hour time limit set for this experiment; and “OM” means the algorithm used
up all the RAM (16G). “A*, Full” is not included because it ranout of memory in all cases.

any heuristic) and Flag (with some of the best heuristics)
when using sparse parent graphs. Similarly, BFBnB ran out
of time on the Flag dataset within the one hour time limit
when using full parent graphs, but was able to solve the
dataset using the sparse representation (except when using
the simple heuristic); on Autos, the sparse representation
helped improve the time efficiency of BFBnB by up to an
order of magnitude. One last note here is the numbers of ex-
panded nodes by BFBnB are slightly different when using
the two representations; it is only because of the random-
ness in the local search method used to compute the initial
upper bound solution for BFBnB.

Both the static and dynamic pattern databases helped A*
and BFBnB algorithms to improve efficiency and scalabil-
ity. A* with both the simple heuristic and the static pattern
database with grouping 10-10-9 ran out of memory on the
Flag dataset. The other pattern database heuristics enabled
A* to finish successfully. The dynamic pattern database
with k = 2 helped to reduce the number of expanded nodes
significantly for both algorithms on the datasets. Setting
k = 3 helped even more. However, further increasingk to 4
often resulted in increased running time, and sometimes an
increased number of expanded nodes as well. We believe
that a largerk always results in a better heuristic; the oc-
casional increase in expanded nodes is because the greedy
strategy we used to choose patterns did not fully utilize the
larger pattern database. The longer running time is reason-
able though because it is less efficient to compute a heuris-
tic value in larger pattern databases, and the inefficiency
gradually overtook the benefit brought by the better heuris-
tic. Therefore,k = 3 seems to be the best parametrization

for the dynamic pattern database in general. For the static
pattern databases, we were able to test much larger groups
as we do not need to enumerate all groups up to a certain
size. The results suggest that larger groupings tend to result
in tighter heuristic.

The sizes of the static pattern databases are typically much
larger than the dynamic pattern databases. However, they
are still negligible in comparison to the number of ex-
panded search nodes in all cases. It is thus cost effective
to try to compute larger but affordable-size static pattern
databases to achieve better search efficiency. The results
show that the best static pattern databases typically helped
A* and BFBnB to achieve better efficiency than the best dy-
namic pattern database, even when the number of expanded
nodes is larger. The reason is calculating the heuristic val-
ues is more efficient when using static pattern databases.

5.3 Results on other datasets

Since static pattern databases seem to work better than dy-
namic pattern databases in most cases, we tested A* and
BFBnB using static pattern database and sparse representa-
tion on all the datasets against the original algorithms. We
used the simple static grouping of⌈n

2 ⌉ − ⌊n
2 ⌋ for all the

datasets, wheren is the number of variables. The results
are shown in Table 6.

For the BFBnB algorithm, the improved version was
around 5 times faster than the original version and some-
times even orders of magnitude faster (e.g. Flag). The re-
duction in the number of expanded nodes is not as dra-
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Dataset Results
Name n N BFBnB BFBnB (SP) A* A* (SP)
Hepatitis 20 126 Time (s) 9 1 6 0

Nodes 610,974 129,889 411,150 8,565
Parkinsons 23 195 Time (s) 100 19 100 15

Nodes 8,388,607 4,646,877 8,388,607 1,152,576
Sensor Readings 25 5,456Time (s) 632 3,121 OM 731

Nodes 33,554,431 33,554,430 OM 3,286,650
Autos 26 159 Time (s) 1,170 211 OM 111

Nodes 53,236,395 48,814,295 OM 4,762,276
Horse Colic 28 300 Time (s) 4,221 678 OM OM

Nodes 268,435,455 74,204,000 OM OM
Steel Plates Faults 28 1,941Time (s) 7,913 4,544 OM OM

Nodes 268,435,455 264,887,347 OM OM
Flag 29 194 Time (s) 12,902 421 OM 147

Nodes 354,388,170 88,305,173 OM 4,412,232
WDBC 31 569 Time (s) 93,382 26,196 OM OM

Nodes 1,353,762,809 273,746,036 OM OM

Table 6: A comparison on the number of nodes expanded and running time (in seconds) of the A* and BFBnB algorithms
enhanced by both static pattern database with grouping⌈n

2 ⌉ − ⌊n
2 ⌋, wheren is the number of variables, and sparse repre-

sentation of parent scores (denoted by “SP”) against the original versions of these algorithms. “n” is the total number of
variables, and “N” is the number of data points.

matic, however. The main reason is that the original BF-
BnB algorithm interleaves expanding the order graph and
the full parent graphs during the search, while the improved
version first calculates the sparse representation of parent
scores, and then performs the search. It is much more ef-
ficient to compute the sparse representation than comput-
ing the full parent graphs. However, on the dataset Sen-
sor Readings, the improved BFBnB algorithm runs slower
than the original version. There are two potential explana-
tions. First, this particular dataset has a large number of
data points, which makes the sparse representation not truly
sparse. Second, the new heuristic seems to be not much
tighter than the simple heuristic on this dataset, because the
numbers of expanded nodes are very similar in both cases.

The benefits of the new techniques are more obvious when
applied to A*. For the datasets on which the original al-
gorithm was able to finish, the improved algorithm was up
to one order of magnitude faster; the number of expanded
nodes is also significantly reduced. In addition, it was able
to solve three larger datasets: Sensor Readings, Autos, and
Flag. The running time on each of those datasets is pretty
short, which indicates that once the memory consumption
of the parent graphs was reduced, the A* algorithm was
able to use more memory for the order graph and solved
the search problems rather easily.

6 Concluding Remarks

The shortest-path finding formulation of the learning prob-
lem presented in (Yuan, Malone, and Wu 2011) makes

two orthogonal directions of research natural. One is the
development of search algorithms for learning optimal
Bayesian networks, represented by the A* and BFBnB
algorithms developed in (Yuan, Malone, and Wu 2011;
Malone et al. 2011). One contribution of this paper is the
sparse representation of the parent graphs which only store
the unique optimal parent sets and scores. The method im-
proves the time and space efficiency of the parent graph
part of the search and thus falls in the first direction.

The second direction, which we believe is equally impor-
tant, is the development of search heuristics. Another con-
tribution of this paper is a new admissible heuristic called
thek-cycle conflict heuristic developed based on the addi-
tive pattern databases. We tested the A* and BFBnB algo-
rithms enhanced by the new heuristic and the sparse rep-
resentation on a set of UCI machine learning datasets. The
results show that both of the new techniques contributed to
significant improvement in the efficiency and scalability of
the algorithms. We therefore believe the new methods rep-
resent another significant step forward in exact Bayesian
network structure learning.

As future work, we plan to investigate better approaches to
obtaining the groupings for the static pattern databases. It
could be based on prior knowledge, or some initial estima-
tion of the correlation between the variables. Such group-
ings are expected to work better than the simple grouping
we tested in this paper.
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Abstract

Planning in partially observable Markov decision
processes (POMDPs) remains a challenging
topic in the artificial intelligence community,
in spite of recent impressive progress in
approximation techniques. Previous research
has indicated that online planning approaches
are promising in handling large-scale POMDP
domains efficiently as they make decisions “on
demand” instead of proactively for the entire
state space. We present a Factored Hybrid
Heuristic Online Planning (FHHOP) algorithm
for large POMDPs. FHHOP gets its power
by combining a novel hybrid heuristic search
strategy with a recently developed factored state
representation. On several benchmark problems,
FHHOP substantially outperformed state-of-the-
art online heuristic search approaches in terms of
both scalability and quality.

1 Introduction

Partially observable Markov decision processes (POMDPs)
have been widely recognized as a powerful probabilistic
model for planning and control problems in partially
observable stochastic domains (Kaelbling et al. 1998).
Solving POMDP problems exactly can be impossible due
to their computational complexity (Madani et al. 1999).
In the past decade, researchers have made impressive
progress in designing approximate algorithms (Pineau et
al. 2006; Kurniawati et al. 2008; Ross et al. 2008a) and
have successfully applied them to various realistic robotic
tasks (Hoey et al. 2007; Hsu et al. 2008).

Planning algorithms can be categorized as offline planning
algorithms and online planning algorithms depending on
the ways of solving problems. Offline approaches separate
the policy-construction phase and the policy-execution
phase. They devote significant pre-processing time to

generate a policy over the whole belief space in the
policy-construction phase, then use the resulting policy
to make decisions during the policy-execution phase.
Offline approaches can be beneficial for repeated POMDP
planning tasks as the pre-processing time can be amortized
over the various runs. In contrast, online approaches
are a viable alternative for urgent or one-off POMDP
planning tasks. They do not allocate significant time
to pre-processing, but alternate between a time-limited
policy-construction step for the current state and a policy-
execution step (Ross et al. 2008a). Instead of finding
policies that generalize to all possible situations, they
focus on computing good local policies at each policy-
construction step, and therefore can potentially produce
a sequence of actions with high reward while spending
much less overall time for policy construction and policy
execution compared to offline algorithms.

In this paper, we aim to accelerate online POMDP planning
algorithms by taking advantage of a more efficient heuristic
search strategy and a factored state representation.

Our work on heuristics originates from the insight that
lower bounds on the optimal value function have not been
well exploited in current online algorithms. Current online
algorithms maintain both the lower and upper bounds as
a heuristic to find good policies. One key problem that
determines the overall performance of current approaches
is how to approximate the optimal policy according to the
lower and upper bounds. In previous work (Ross et al.
2008a), the upper bound was usually more popular than
the lower bound in the calculation. The search toward the
action with the highest upper bound guarantees that an ε-
optimal action can be found within finite time theoretically.
In contrast, the lower bound is more difficult to be exploited
since it can easily trap search into local optima. For
example, the result of always exploring toward the action
branch with the highest lower bound only makes us believe
that this action branch is optimal, although it tends not to
be so. However, the lower bound can guarantee the quality
of policy, which is an advantage that the upper bound does
not have. Thus, online algorithms typically return the best
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Figure 1: AEMS2’s computational profile on several
benchmark problems. The plot shows, for example, that on
RockSample 7 8 AEMS2 spends 54%, 27% and 16% of
its running time in computing new belief states, P (z|b, a),
and values over belief states given a value function,
respectively. See text for further explanations.

action with the highest lower bound but not with the highest
upper bound. In this paper, we discuss how to take full
advantage of both the lower and upper bound in a novel
hybrid way and avoid their disadvantages. The role of the
lower bound in our heuristic method is to guide the search
toward a set of promising policies whose quality may be
better than the current best policy.

Our work on factorization was inspired by profiling data
on several typical benchmark problems like those in
Figure 1. Ignoring the details of the tasks for the time
being, we can see that in all cases the anytime error
minimization search 2 (AEMS2) algorithm, one of the
most efficient online heuristic search algorithms (Ross
and Chaib-draa 2007; Ross et al. 2008a), spends more
than 95% of its overall running time in computing:
(1) new belief states; (2) P (z|b, a), the probabilities
of observing z after taking action a at belief state b;
and (3) values over belief states given a value function.
These dramatic observations drive us to decrease overall
computation time by reducing the time on these three
operations. We show theoretically and empirically that
it is possible to do so by taking advantage of the mixed
observability MDP (MOMDP) representation (Ong et al.
2010). The MOMDP representation can be considered
as an instance of a dynamic Bayesian network (DBN). It
exploits mixed observability where some state variables are
always observed and others are hidden to reduce the time
complexity of state related operations.

We refer to our new algorithm based on the above two
insights as Factored Hybrid Heuristic Online Planning

(FHHOP). Experimental results reveal that FHHOP
substantially outperformed the AEMS2 algorithm on all
test problems. Especially, on some well-known benchmark
problems, FHHOP has achieved more than an order of
magnitude improvement in terms of runtime.

The remainder of the paper is organized as follows.
Section 2 provides an overview of the POMDP model,
online algorithms and the MOMDP representation.
Section 3 describes the details in the FHHOP algorithm,
which is our key contribution. Section 4 describes a set of
experiments showing the efficacy of the FHHOP algorithm
in terms of both runtime and solution quality. We conclude
and discuss future work in Section 5.

2 Background and Related Work

In this section, we briefly introduce the POMDP model,
online algorithms, and the MOMDP representation.

2.1 POMDP Model

POMDPs provide a very powerful mathematical model
for an agent’s decision making in partially observable
domains. A discrete and discounted POMDP model can
be formally defined by a tuple (S,A,Z, T,Ω, R, γ). In
the tuple, S, A and Z are the finite and discrete state
space, action space and observation space, respectively,
T (s, a, s′) : S × A × S → [0, 1] is the state transition
function (P (s′|s, a)), Ω(a, s′, z) : A × S × Z → [0, 1]
is the observation function (P (z|a, s′)), R(s, a) : S ×
A → R is the reward function, and γ ∈ (0, 1) is
the discount factor on the summed sequence of rewards.
Because the agent’s current state is not fully observable,
the agent could have to rely on the complete history of
past actions and observations to select a desirable current
action. In the context of decision making, the belief state
b is a sufficient statistic for the history of actions and
observations (Smallwood and Sondik 1973). A belief state
b is a discrete probability distribution over the state space,
whose element b(s) gives the probability that the agent’s
state is s. Let B be the space of all possible belief states
and b0 be the agent’s initial belief state. Thus, B is an |S|-
dimensional space, where |S| is the number of states. In a
so-called flat POMDP, all operations on beliefs and value
functions are performed at the level of |S|-dimensional
belief states.

When the agent takes action a at a belief state b and receives
observation z, it will arrive at a new belief state ba,z:

ba,z(s′) =
1

η
Ω(a, s′, z)

∑

s∈S
T (s, a, s′)b(s), (1)

where η is a normalizing constant (Kaelbling et al. 1998).
The constant is the probability of receiving z after the agent
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takes a at b and can be specified as:

P (z|b, a) =
∑

s′∈S
Ω(a, s′, z)

∑

s∈S
T (s, a, s′)b(s). (2)

A key goal in solving POMDPs is to find an optimal
policy π∗ that maximizes the expected discounted reward
V π(b0) = E[

∑∞
t=0 γ

tR(st, at)|b0, π], where π denotes a
policy that maps from belief states to actions, and st and at
are the agent’s state and action at time step t, respectively.
The maximal expected discounted reward starting from any
initial belief state in the whole belief space is captured by
the optimal value function V ∗, which can be defined via
the fixed point of Bellman’s equation (Bellman 1957):

V ∗(b) = max
a∈A

Q∗(b, a), (3)

where Q∗(b, a) = R(b, a) + γ
∑
z∈Z P (z|b, a)V ∗(ba,z)

and R(b, a) =
∑
s∈S R(s, a)b(s). The function V ∗ can be

approximated infinitely closely by a piecewise linear and
convex function:

V (b) = max
α∈Γ

(α · b) = max
α∈Γ

∑

s∈S
α(s)b(s), (4)

where Γ is a finite set of |S|-dimensional hyperplanes,
called α-vectors, over B (Smallwood and Sondik 1973).
The piecewise linear and convex property makes several
exact and approximate value iteration algorithms feasible
for solving POMDPs (Kaelbling et al. 1998; Kurniawati
et al. 2008). Once V ∗ has been identified, computing
the optimal policy π∗ is a straightforward application of
π∗(b) = argmaxa∈AQ

∗(b, a).

2.2 Approximate Online Algorithms

Online POMDP algorithms can be classified into three
categories: branch-and-bound pruning, Monte-Carlo
sampling and heuristic search (Ross et al. 2008a). In
this paper, we only focus on one category, heuristic search
online algorithms. The central idea in heuristic search
online algorithms is to maintain lower and upper bounds
on the value function, V (b) ≤ V ∗(b) ≤ V̄ (b), and to
iteratively improve these bounds at the current belief state
bc by expanding an AND/OR tree of reachable belief states
from bc. We denote Q(b, a) and Q̄(b, a), respectively, as
the lower and upper bounds over Q∗(b, a). Each OR-node
in the tree represents a belief state and each AND-node
represents an action choice from the belief state (node)
above it, given the tree is drawn growing downwards. By
abuse of notation, we will use b to represent a belief node
in the tree and its associated belief state.

Algorithm 1 is a generic POMDP solver. It accepts three
parameters: b0, τ and ε, where b0 is the initial belief
state, τ is a bound on computation time allowed per policy-
construction step, and ε is the desired precision on V (bc).

Algorithm 1: Generic Online POMDP Solver

Function OnlinePOMDPAlgorithm(b0,τ ,ε)
1: Initialize the bounds by offline algorithms;
2: bc = b0;
3: Build an AND/OR tree to contain bc at the root;
4: while bc is not a goal state
5: a =Search(bc,τ ,ε);
6: Take action a and receive a new observation z;
7: bc = ba,zc ;
8: Update the tree so that bc is the new root;
9: end while

Algorithm 2: Policy Construction

Function Search(bc,τ ,ε)
1: StartTimer();
2: while ElapsedTime() ≤ τ and V̄ (bc)− V (bc) > ε
3: b∗ =ChooseBestNodetoExpand();
4: Expand(b∗);
5: UpdateAncestors(b∗);
6: end while
7: return argmaxa′∈AQ(bc, a

′);

Online algorithms use this tree to alternate between policy
construction and policy execution. The policy execution
procedure (see Lines 6–8 in Algorithm 1) is consistent
across all online algorithms.

Algorithm 2 is a general online policy-construction
function. The ChooseBestNodetoExpand() procedure
uses efficient heuristic search strategies to select a useful
belief node to expand among the leaf nodes. The
Expand() procedure expands a belief node, improving its
lower and upper bound over V ∗ in the process. The
UpdateAncestors() procedure concentrates on updating
the bounds of a belief node’s ancestors. On Line 7 of
Algorithm 2, it returns the action branch at the root with
the highest lower bound ofQ(bc, a

′). We define the current
best policy πbest to be the policy of always selecting the
action πbest(b) = argmaxa′∈AQ(b, a′).

To better describe our work on heuristics, we first use
Figure 2 as an example to further illustrate how online
algorithms work. Suppose that bc+k is the leaf belief
node that ChooseBestNodetoExpand() returns. Let bc+k
be a leaf node that is reachable from the root belief
node bc by following a k-step action-observation sequence,
a0z1a1z2 . . . ak−1zk. After expanding bc+k, an improved
V (bc+k) and V̄ (bc+k) can be obtained. Furthermore, the
invocation of UpdateAncestors() results in the improved
bounds at all belief nodes and Q nodes along this path.
In other words, given that bc+k is reachable from bc by
following some policy π, the execution of Line 3–5 in
Algorithm 2 will lead to improved V π(bc) and V̄ π(bc),
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Figure 2: A path from the root belief node bc to the leaf
belief node bc+k.

the lower and upper bounds on the expected discounted
reward generated by following π at bc. If V πbest(bc) in the
previous round is surpassed by the new improved V π(bc),
then a policy with higher lower bound will be found.

2.3 Heuristics in Current Online Algorithms

In current heuristic search online algorithms, each leaf
belief node has an associated heuristic value. The
invocation of ChooseBestNodetoExpand() returns the leaf
belief node with the maximal heuristic value. If an oracle
provides us with the optimal value function V ∗, a heuristic
function over a leaf node bc+k with good theoretical
guarantees can be defined as follows (Ross et al. 2008b):

H∗(bc+k) = e∗(bc+k)

k−1∏

t=0

ω∗(bc+t, at)ω(bc+t, at, zt+1),

(5)
where e∗(bc+k) = V ∗(bc+k) − V (bc+k),
ω(bc+t, at, zt+1) = γP (zt+1|bc+t, at), and

ω∗(bc+t, at) =

{
1 if at ∈ argmaxa′∈AQ

∗(bc+t, a′),
0 otherwise.

(6)
In such a heuristic function, each quantity plays an
important role in expanding the leaf nodes: e∗(bc+k)
encourages exploration of leaf nodes with loose bounds,
ω∗(bc+t, at) focuses the exploration toward the leaf nodes
that are reachable from bc under the optimal policy,
and ω(bc+t, at, zt+1) guides the search toward belief
nodes that are likely to be encountered in the future.
Empirical results in prior work (Ross et al. 2008a) teach
us that ignoring some quantities in Equation 5 would
damage the overall performance of online approaches.
For example, the lack of ω(bc+t, at, zt+1) in the BI-
POMDP algorithm (Washington 1997) may explain its
poor performance on some POMDP problems with large
observation spaces.

However, the optimal policy or value function is not
available for constructing H∗. Thus, the finding of a
set of “promising” policies is one of the core issues for
improving the speed of online algorithms. The approach
of Satia and Lave (Satia and Lave 1973) assumes the set
of promising policies are all possible optimal policies. In

this approach, little heuristic information about V and V̄
is exploited to focus its search toward actions that look
promising, and therefore the approach of Satia and Lave
is not able to scale well to large-scale POMDPs. The
AEMS1 algorithm (Ross et al. 2008a) takes both V and
V̄ into account by favoring exploration of action branches
with high average values of Q(b, a) and Q̄(b, a). Such
an algorithm loses its competitive capability in large-scale
POMDP problems partially because its search strategy does
not use the highest lower or upper bound well. In contrast
to AEMS1, the BI-POMDP and AEMS2 algorithms use V̄
as an estimated substitute for V ∗. HU (bc+k) is the AEMS2
algorithm’s heuristic:

HU (bc+k) = e(bc+k)

k−1∏

t=0

ω(bc+t, at)ω(bc+t, at, zt+1),

(7)
where e(bc+k) = V̄ (bc+k)− V (bc+k) and

ω(bc+t, at) =

{
1 if at ∈ argmaxa′∈A Q̄(bc+t, a

′),
0 otherwise.

(8)
From the definition of ω(bc+t, at), we can see AEMS2
assumes that the action with the maximal upper bound is
in fact the optimal action. Such a definition, sometimes
called the IE-MAX heuristic (Smith and Simmons 2004),
leads AEMS2 to find an ε-optimal action within finite
time (Ross et al. 2008b). The action branch according to
the highest lower bound is deliberately ignored in AEMS2
simply because choosing leaf nodes under such an action
branch to expand could only cause its lower bound to rise,
and therefore, easily trap search in local optima. However,
Q(b, a) may be a very useful heuristic in finding a better
policy. A direct insight is that the action that Algorithm 1
returns is the action corresponding to the maximal Q(b, a)

but not the maximal Q̄(b, a). One of our contributions
is to suggest that using the lower bound could provide
improvements compared to the heuristics used in AEMS2.

2.4 MOMDPs

A MOMDP can be generally specified as a tuple
(X ,Y, A, Z, TX , TY ,Ω, R, γ), where X is the set of
fully observable state variables, Y is the set of partially
observable state variables, S = X × Y , TX (x, y, a, x′) :
X × Y × A × X → [0, 1] and TY(x, y, a, x′, y′) : X ×
Y × A × X × Y → [0, 1] are the two corresponding
probabilistic state-transition functions (P (x′|x, y, a) and
P (y′|x, y, a, x′)), Ω(a, x′, y′, z) : A×X×Y ×Z → [0, 1]
is the observation function (P (z|a, x′, y′)), R(x, y, a) :
X × Y × A → R is the reward function, and the
other quantities are the same as a POMDP model’s
elements. Since x is fully observable, a belief state b
on the underlying state s = (x, y) can be represented
as (x, bY(x)). Let BY be the belief space over Y ,
and BY(x) = {(x, bY(x))|bY(x) ∈ BY}, then B =
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⋃
x∈X BY(x). Thus, computations involving updating

beliefs and value functions can be restricted to one of |Y|-
dimensional subspaces, BY(x). Please note that B has
|X ||Y| dimensions, while BY has only |Y| dimensions,
where |X | and |Y| are the number of fully and partially
observable state variables, respectively.

After taking a and receiving z from (x, bY(x)), a new belief
(xa,z, bY(xa,z)) results. The variable xa,z can be directly
inferred from z, and bY(xa,z) can be computed as follows:

bY(xa,z, y′) =
1

η
Ω(a, xa,z, y′, z)

∑

y∈Y
TXYbY(x, y), (9)

where TXY = TX (x, y, a, xa,z)TY(x, y, a, xa,z, y′) and η,
the probability of receiving z after taking a at (x, bY(x)) is

P (z|x, bY(x), a, xa,z) =
∑

y′∈Y
Ω(a, xa,z, y′, z)

∑

y∈Y
TXYbY(x, y). (10)

For any given x, V ∗(x, bY(x)) can be accurately
approximated by a finite set of |Y|-dimensional vectors
ΓY(x) over BY(x):

V (x, bY(x)) = max
α∈ΓY(x)

(α · bY(x)). (11)

From the description of MOMDPs, we can see any
MDP can be written as a MOMDP and any POMDP
can be written as a MOMDP. That is because the MDP
states can reside in the fully observable part of the
MOMDP description and the POMDP states can reside
in the partially observable part of a MOMDP description.
Similarly, any MOMDP can be written as a POMDP by
treating all states as partially observable (Ong et al. 2010).

3 Factored Hybrid Heuristic Online
Planning

In this section, we describe the FHHOP algorithm in
detail. First, we construct a novel hybrid heuristic
strategy by combining a new heuristic function using the
lower bound with an existing heuristic function using the
upper bound to improve the heuristic search mechanism
in the ChooseBestNodetoExpand() procedure. Then, we
concentrate on the reason that the MOMDP representation
is useful to reduce the running time in the Expand() and
UpdateAncestors() procedures. Finally, we discuss the
convergence property of the FHHOP algorithm.

3.1 Constructing a Heuristic Function Using the
Lower Bound

As mentioned in the last paragraph of Section 2.2, to find a
better policy, we need to select a policy π and expand the

Figure 3: An example of action branches at b. AL = {a2},
AS = {a1, a4}, and current second-best action is a4. The
action branch a3 is not included in AS because Q̄(b, a3) is
smaller than Q(b, a2).

leaf belief nodes that are reachable from bc by following
the policy π. Our goal here is to use the lower bound as
a heuristic to select a set of promising policies so that the
exploration toward them will lead to find an even better
policy as quickly as possible. Our idea is to elicit a set
of policies π from all possible policies, whose V π(bc) are
close to V πbest(bc), according to the lower bound.

First, define ω1(b, a), a term that guides the exploration
toward belief nodes that are reachable from bc under the
current best policy, as follows:

ω1(b, a) =

{
1 if a ∈ argmaxa′∈AQ(b, a′),
0 otherwise.

(12)

Then, we consider the action branches at a single belief
node b. We assume AL = argmaxa′∈AQ(b, a′) and AS =

{a ∈ A \AL|Q̄(b, a) > maxa′∈AQ(b, a′)}. Thus, AL is a
current best action branch at b and AS is a set of actions
without both AL and suboptimal action branches. The
condition Q̄(b, a) > maxa′∈AQ(b, a′) is used to prune
suboptimal action branches at b, just like the branch-and-
bound pruning technique in the approach of Satia and Lave.
Then, we define

ω2(b, a) =

{
1 if a ∈ argmaxa′∈AS Q(b, a′),
0 otherwise,

(13)

where argmaxa′∈AS Q(b, a′) is called the current second-
best action at b. So, ω2(b, a) is a term that encourages the
exploration toward belief nodes that are reachable from b’s
second-best action branch. We use Figure 3 to provide a
direct explanation of these notions. The current second-
best action looks a bit like the action branch with the second
highest upper bound in this figure, but they actually have
nothing to do with each other.

Finally, we figure out the way of eliciting a set of promising
policies according to the lower bound. Obviously, the
nodes that are reachable from bc by following the set of
promising policies constitute of a subtree of the current
AND/OR tree. We are interested in all leaf nodes of
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this subtree reachable from bc through one and only one
current second-best action branch and all other current best
action branches. Such a strategy can be well depicted by
ω1,2(bc+k):

ω1,2(bc+k) = max
i∈{0,1,...,k−1}

ω2(bc+i, ai)

k−1∏

t=0
t 6= i

ω1(bc+t, at),

(14)
where bc+i is the only belief node in which its current
second-best action branch is chosen. When ω1,2(bc+k)
equals 1, the leaf node bc+k is reachable from bc by
following one of such a set of promising policies. We
construct a new heuristic HL(b) for each leaf node using
ω1,2(bc+k) as follows:

HL(bc+k) = e(bc+k)ω1,2(bc+k)

k−1∏

t=0

ω(bt, at, zt+1).

(15)

From Equation 15, we can see that the leaf nodes being
selected to expand using HL(b) are not reachable from bc
under the current best policy. However, they are reachable
from bc under a set of promising policies that are very
similar to the current best policy since they have only one
action branch that is different from the current best action
branch. Such a heuristic HL(b) has several advantages, as
follows:

• First, a better policy according to the lower bound
would be quickly found using HL(b) only if the
improved Q-value at the second-best action branch
is greater than the Q-value at the current best action
branch.

• Second, it focuses search toward a set of promising
policies but not a single policy. The main drawback
of expanding the leaf nodes that are reachable under
a single policy is that the time of expanding is wasted
if such a single policy is not better than the current
best policy. Since HL(b) selects a set of promising
policies, suboptimal policies will be eliminated as the
depth of its leaf nodes increases. In other words,
HL(b) favors exploration toward the highest potential
policy among the set of promising policies as time
goes on.

• Third, such a set of promising policies is only a
very small subset in the set of all possible policies.
Therefore, the technique can avoid exploring a large
policy space to satisfy the requirement of real-time
limitations in online algorithms.

However, such a heuristic may still be at the risk of trapping
the search into local optima if the optimal policy is outside
of the set of promising policies and the current best policy.
Thus, our new heuristic function HL(b) might be only a
greedy heuristic and not lead to optimal behavior in the end.

3.2 Constructing a Hybrid Heuristic Strategy

Before we construct a hybrid strategy, recall the strength
and weakness of HL(b) and HU (b). HL(b) is a heuristic
that depends on the lower bound. Its advantage is to
guide search toward finding a better policy with a higher
lower bound guarantee quickly. However, HL(b) limits
its search effort to a set of promising policies. If both
the current policy and the set of promising policies are
suboptimal, the search led byHL(b) might become trapped
in a local optimum. HU (b) is a heuristic strategy that
depends on the upper bound. It favors exploration toward
an ε-optimal action branch. The ε-optimal action can be
found theoretically even if HL(b) is not used. However,
the process of finding an ε-optimal action is usually very
slow, especially in POMDP domains with large action
and observation spaces. Because their strengths are
complementary, it seems to be reasonable to combine
them for obtaining a hybrid heuristic search strategy that
leverages the advantages of both heuristics.

We suggest a way of constructing a hybrid strategy. Let L
be a set of leaf belief nodes in the AND/OR tree,

bU = argmax
b∈L

HU (b) (16)

and
bL = argmax

b∈L
HL(b). (17)

Then, our hybrid strategy selects b∗ by Equation 18:

b∗ =

{
bU if CUHU (bU ) > CLHL(bL),
bL otherwise, (18)

where Ci denotes expected change value of both V (bc) and
V̄ (bc) if bi is chosen to be expanded. We use the following
formula to compute Ci in our experiments:

Ci =
Ii + 1

Ni + 1
, (19)

where i = U or L, Ii denotes the accumulative total change
value of both V (bc) and V̄ (bc) caused by expanding bi
for Ni times, and Ni represents the number of expanding
bi. Both Ii and Ni are recalculated at the beginning of
each policy-construction step. The overhead of computing
Ci is negligible in comparison to the Expand() and
UpdateAncestors() procedures. Here, bU (or bL) refers
to all belief nodes generated when CUHU > CLHL

(or otherwise), and expanding bi once means calling
Expand(bi) and UpdateAncestors(bi) once. The ones
appearing in both numerator and denominator are used to
make CU and CL equal 1 at the beginning of the online
algorithm’s run. CU and CL are variables for adjusting the
importance of HU (b) and HL(b), respectively, in heuristic
search. For example, imagine the expansions of bU (in a
period) brought no or only small change in both V (bc) and
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V̄ (bc). As time goes on, the value of CU will decrease, and
the probability of selecting bU to expand will also drop.

Note that there are many other possible hybrid methods
that combine HL(b) and HU (b). Here is only one feasible
way. A further research in this direction may lead to a more
efficient hybrid method.

3.3 Leveraging the MOMDP Representation

Now, we analyze why the MOMDP representation is a
useful tool to reduce the time complexity of the operations
related with belief-state computation and value-function
computation. Reconsidering Equations 1, 2 and 4 in the
context of POMDPs, we can see that computing ba,z ,
P (z|b, a) and V (b) takes |X |2|Y|2 + 2|X ||Y|, |X |2|Y|2
and |Γ||X ||Y| multiplications, respectively. However,
by applying the MOMDP-specific versions of these
equations—Equations 9, 10 and 11—these costs can
be reduced to 2|Y|2 + 2|Y|, 2|Y|2 and |ΓY(x)||Y|
multiplications, respectively. That is, the time complexity
of computing ba,z , P (z|b, a) and V (b) can be reduced
by |X |

2|Y|2+2|X ||Y|
2|Y|2+2|Y| (= O(|X |2)), |X |

2

2 and |X ||Γ|
|ΓY(x)| times.

Since |Γ| = ∑
x∈X |ΓY(x)|, the expectation Ex∼X [ |Γ|ΓY(x) ]

is |X |. Thus, the MOMDP representation reduces each of
the three operations’ complexity by a factor of O(|X |2).

3.4 Convergence of FHHOP

The new online heuristic search algorithm using the hybrid
heuristics in Section 3.2 and the POMDP representation in
Section 3.3 is the FHHOP algorithm. Note that there are
substantial differences between our hybrid strategy and the
strategy included in AEMS1. AEMS1 merges V and V̄ at
the beginning of designing the action selection strategy in
its heuristic function. However, FHHOP first separates V
and V̄ in order to define two almost independent heuristic
functions, then merges the two heuristic functions with the
goal of taking full advantage of each heuristic function. As
a final note, Proposition 1 states the convergence property
of the FHHOP algorithm.
Proposition 1. Let ε > 0 and bc the current belief state.
Then, the FHHOP algorithm is guaranteed to find an ε-
optimal action for bc within finite time.

Proof. Because the FHHOP algorithm exploits the
MOMDP representation to accelerate the computation of
ba,z , P (z|b, a) and V (b) without losing accuracy, following
Theorem 2 in (Ross et al. 2008b), we only need to prove
that the probability of choosing bU to expand in the FHHOP
algorithm is always greater than 0 in this algorithm. The
following is the proof by contradiction.

Suppose that after the M th expansion of bU or bL, the
FHHOP algorithm never selects bU to expand, namely,
CUHU (bU ) ≤ CLHL(bL). Thus, IU and NU will never

change, and therefore, CU and HU (bU ) will never change
after the M th expansion. Let V 0(b) and V̄0(b) be b’s
initialized lower and upper bounds, and e0(b) = V̄0(b) −
V 0(b). Then, we have

HL(bL) ≤ e(bL) ≤ max
b∈B

e0(b),

and IL ≤ e0(bc). Now, let

NL > max{M,
[e0(bc) + 1] maxb∈B e0(b)

CUHU (bU )
− 1}.

Then,

CUHU (bU ) >
[e0(bc) + 1] maxb∈B e0(b)

NL + 1

≥ IL + 1

NL + 1
HL(bL)

= CLHL(bL).

There is a contradiction.

4 Experimental Results

In this section, we present detailed empirical results
designed to test the performance of the FHHOP algorithm.
In all test domains, we use the blind policy and the FIB
method (Hauskrecht 2000) to initialize the lower and upper
bounds, respectively. Except where stated otherwise, all
experiments were run on an AMD dual core processor
3600+ 2.00GHz with 2GB memory. We implemented
FHHOP and AEMS2 using C++, within APPL-0.931, an
efficient POMDP solver. Results about SARSOP without
attribution appeared in Table 1 were also obtained using
APPL-0.93 in our experimental platform.

4.1 Benchmark Problems

a) Hallway: The Hallway domain (Littman et al. 1995)
models a robot navigating in an office environment. The
task of the robot in this problem is to arrive in a single
goal location. The state of the robot is comprised of
its current position and its current orientation. However,
neither attribute is fully observable. There is a set of
5 actions for movements:{Forward, Turn-left, Turn-right,
Turn-around, Stay-in-place}. The robot can partially
observe the existence of walls in four directions using four
independent, short-range, and noisy sensors.

b) Tag: The Tag problem was first described in (Pineau
et al. 2003). In this environment, a mobile robot moves in
a grid map with 29 positions with the goal of tagging an

1The software package is available from the web-page:
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/. All test
problems in the MOMDP representation conform to the syntax
of pomdpx specified on the same web site.
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opponent that intentionally moves away. Both the robot
and the opponent are located initially in independently
selected random positions. The robot can choose either to
move into one of four adjacent positions by actions {North,
South, East, West} or to tag the opponent by a “Catch”
action. The effect of the robot’s action is deterministic.
The robot can know its current position exactly, but the
opponent’s position is not observable for the robot unless
they are in the same position. The robot tries to catch the
opponent as quickly as possible to receive a good reward
since each move for the robot is expensive. In the MOMDP
representation for Tag, the fully observable state variable
x represents the robot’s position. The partially observable
state variable y is the opponent’s position.

c) RockSample: The RockSample domain was originally
presented in (Smith and Simmons 2004) and has been
frequently used in recent work to test new POMDP
algorithms (Ross et al. 2008a; Bonet and Geffner 2009;
Ong et al. 2010; Silver and Veness 2010). This domain
models a planetary robot that has to explore an area
represented as a grid map and sample rocks with a scientific
value. The robot receives a positive or negative reward
depending on whether the sampled rock has a scientific
value. RockSample n k is a family of problems in the
RockSample domain with a map size n × n and k rocks.
In these problems, the robot’s action set consists of k + 5
actions: {North, South, East, West, Sample, Check1,. . .
Checkk}. The robot always knows its own position and
rock positions in the map exactly. That is rock locations
are fixed and encoded in the map and need not be encoded
in state variables. However, whether rock m has a
scientific value is only partially observed via the action
Checkm. The Checkm action is responsible for gathering
information about rock m using a noisy long-range sensor.
The accuracy of the information gathered depends on the
distance between the robot and the rock checked. In the
MOMDP representation for this domain, the x variable is
the robot’s position, and the y variable is a Boolean that
indicates whether a particular rock has a scientific value.

d) FieldVisionRockSample: The FieldVisionRockSample
domain was initially introduced in the work on
AEMS2 (Ross and Chaib-draa 2007). This domain
can be viewed as a variant of the RockSample domain.
The only difference between them is the way of perceiving
the rocks in the environment. In contrast to perform a
check action on a specific rock to observe its state in
RockSample, in FieldVisionRockSample the states of all
rocks are observed after any action by the same noisy
sensor. Consequently, the robot can only perform 5
actions: {North, South, East, West, Sample}, and has an
observation space with size 2k for the problem with k
rocks. What is different from the RockSample domain is
that, in the MOMDP model for this task, the y variable
represents k Boolean values, each of which indicates

whether a rock has a scientific value.

e) AUV Navigation: The AUV Navigation problem first
appeared in (Ong et al. 2009). This problem models a 3-D
oceanic environment with 4 levels and a 7 × 20 grid map
at each level. An autonomous underwater vehicle (AUV)
can achieve reward by navigating from some uncertain
starting position to some goal positions and avoiding rock
formations. The AUV can perform 6 actions: {Forward,
Stay, Left, Right, Up, Down}. All of them are stochastic
due to control uncertainty or ocean currents. The AUV
is equipped with an accurate pressure senor, an accurate
compass, and a global positioning system (GPS), whose
signals can only be received when the AUV is located at the
surface level. In the MOMDP representation, the x variable
models the AUV’s depth and orientation, and the y variable
models the AUV’s horizonal location.

These benchmark problems were selected to illustrate
specific characteristics. First, the Tag problem has a
dynamic environment that changes over time even if the
robot does not take any action. Second, the RockSample
domain has a larger action space but smaller observation
space, while the other domains have smaller action spaces
but larger observation spaces. Third, the Hallway problem
does not include the mixed observation structure. Fourth,
all test problems except Hallway have large state spaces
ranging from about 103 to 105 dimensions. Thus, we
hope including problems with different features helps test
FHHOP’s overall performance thoroughly.

4.2 Performance Comparison

We applied FHHOP and existing state-of-the-art online and
offline algorithms to these benchmark problems. Table 1
compares them in terms of the following characteristic
metrics (Ross et al. 2008a): expected discounted
reward (Reward), upper bound of online time per policy-
construction step (τ ) (seconds), offline time (seconds).
Looking at the comparison between our implementation
of AEMS2 and FHHOP, we can find that FHHOP obtains
higher values in terms of reward on all test problems
with online time less or equal to AEMS2’s. Furthermore,
at least on the Tag, RockSample and AUVNavigation
domains, FHHOP has achieved more than an order of
magnitude improvement compared to AEMS2. These
empirical results suggest that FHHOP tends to have a better
scalability especially in large-scale POMDP domains.

Previously published results for SARSOP, except those on
the Hallway and FieldVisionRockSample domains from
our experimental platform, are provided in the table for
comparison. Through the comparison can be found that
the FHHOP algorithm is very competitive, sometimes
even better, in terms of expected discounted reward, and
meanwhile have advantages such as a small initial offline
planning time and a small re-planning time between action
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Table 1: Multi-algorithm performance comparison on several benchmark problems. See text for explanations.

Method Reward Online
Time τ

Offline
Time Method Reward Online

Time τ
Offline

Time
Hallway Tag
(|S| = 61, |X | = 1, |Y| = 61, |A| = 5, |Z| = 21) (|S| = 870, |X | = 30, |Y| = 29, |A| = 5, |Z| = 30)
AEMS2 0.50±0.01 0.20 0.02 AEMS2 -6.51±0.14 1.00 0.28
FHHOP 0.52±0.01 0.20 0.02 FHHOP -6.04±0.14 0.10 0.12
SARSOP 0.52±0.01 0.00 1.05 SARSOP(Ong) -6.03±0.12 0.00 16.50
RockSample 7 8 RockSample 11 11
(|S| = 12545, |X | = 50, |Y| = 256, |A| = 13, |Z| = 2) (|S| = 247809, |X | = 122, |Y| = 2048, |A| = 16, |Z| = 2)
AEMS2 20.66±0.29 1.00 3.34 AEMS2 21.11±0.28 10.00 56.81
FHHOP 21.45±0.30 0.10 0.51 FHHOP 21.49±0.32 1.00 7.97
POMCP(Silver) 20.71±0.21 1.00 n.v. POMCP(Silver) 20.01±0.23 1.00 n.v.
SARSOP(Ong) 21.39±0.01 0.00 810.00 SARSOP(Ong) 21.56±0.11 0.00 1369.00
FieldVisionRockSample 5 5 FieldVisionRockSample 5 7
(|S| = 801, |X | = 26, |Y| = 32, |A| = 5, |Z| = 32) (|S| = 3201, |X | = 26, |Y| = 128, |A| = 5, |Z| = 128)
AEMS2 21.02±0.32 1.00 0.10 AEMS2 22.15±0.32 1.00 0.71
FHHOP 22.56±0.33 0.20 0.02 FHHOP 24.46±0.34 0.20 0.12
SARSOP 23.20±0.33 0.00 508.40 SARSOP 29.48±0.34 0.00 1029.38
RockSample 10 10 AUV Navigation
(|S| = 102401, |X | = 101, |Y| = 1024, |A| = 15, |Z| = 2) (|S| = 13536, |X | = 96, |Y| = 141, |A| = 6, |Z| = 144)
AEMS2 20.78±0.27 10.00 11.24 AEMS2 1034.89±8.36 100.00 83.21
FHHOP 21.35±0.34 1.00 2.82 FHHOP 1059.22±8.49 10.00 16.02
SARSOP(Ong) 21.47±0.11 0.00 1589.00 SARSOP(Ong) 1019.80±9.70 0.00 409.00
n.v.=not available (Ong)= (Ong et al. 2009) (Silver)= (Silver and Veness 2010)

executions. Note that there also exists other state-of-the-art
offline algorithms (Smith and Simmons 2004; Pineau et al.
2006; Shani et al. 2007; Bonet and Geffner 2009). Here,
we only use SARSOP as a representative offline algorithm
to compare with our online algorithms.

In addition, published results on the partially observable
Monte-Carlo planning (POMCP) algorithm (Silver and
Veness 2010) for some RockSample problems are also
presented. POMCP is a promising online Monte-Carlo
algorithm, especially in large-scale POMDP problems.
From these data, we can see FHHOP exceeds POMCP
in terms of both overall running time and qualities of
generated policies on these RockSample problems.

5 Conclusion and Future Work

This paper presents FHHOP, a novel factored hybrid
heuristic online planning algorithm for large POMDPs.
To the best of our knowledge, FHHOP is the most
efficient online heuristic search algorithm, on the whole,
yet proposed amongst existing fully implemented domain-
independent online POMDP solvers. A major contribution
of this algorithm is a new hybrid heuristic search strategy
that takes full advantage of both lower and upper bounds
on the optimal value function. Its foundation stone is
a clever way of constructing a heuristic function using
the lower bound. A minor contribution of this algorithm
is to integrate MOMDP, a recently developed factored
state representation, with a cutting-edge online algorithm
and reveal its efficacy empirically. Experimental results

reported here provide a comprehensive picture of FHHOP
and state-of-the-art online and offline approaches on five
popular benchmark domains.

There are some interesting directions for future work. First,
we noticed some efficient structure learning algorithms had
been proposed in factored state MDPs (Li et al. 2008;
Diuk et al. 2009). An interesting research direction is
to extend these existing algorithms to automatically learn
the mixed observation structure in POMDPs. Second, we
believe it should be possible to use other cutting-edge data
structures, such as algebraic decision diagrams (Poupart
2005) or topology (Brunskill and Russell 2010), in FHHOP
to succinctly represent more complex structures. Third,
reparameterization (Ong et al. 2009) may give POMDPs
without the mixed observation structure a chance to benefit
from the MOMDP representation. Fourth, we could
leverage the graph structure instead of the AND/OR tree
in FHHOP to avoid redundant computations on duplicate
belief states. Finally, we would also like to investigate
further hybrid heuristic strategies for better performance.
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Abstract

It is often the case that, within an online
recommender system, multiple users share a
common account. Can such shared accounts
be identified solely on the basis of the user-
provided ratings? Once a shared account is
identified, can the different users sharing it
be identified as well? Whenever such user
identification is feasible, it opens the way
to possible improvements in personalized re-
commendations, but also raises privacy con-
cerns. We develop a model for composite ac-
counts based on unions of linear subspaces,
and use subspace clustering for carrying out
the identification task. We show that a signi-
ficant fraction of such accounts is identifiable
in a reliable manner, and illustrate potential
uses for personalized recommendation.

1 Introduction

Online commerce services such as Netflix provide per-
sonalized recommendations by collecting user ratings
about a universe of items, to which we refer here as
‘movies’. Typically, multiple people within a single
household (family members, roommates, etc.) may
share the same account for both viewing and rating
movies. Service providers are avoid deploying multiple
accounts as log-in screens are perceived as a nuisance
and a barrier to using the service. This is especially
true on a keyboard-less devices, such as televisions or
gaming platforms. Account sharing persists even when
providers offer the option of registering secondary ac-
counts, as the latter may have access to a subset of
the services enjoyed by the primary account. Finally,
sharing might be regarded as a partial (if unconscious)
privacy protection mechanism, hindering the release of
the household’s composition and demographics.

The use of a single account by multiple individuals

poses a challenge in providing accurate personalized
recommendations. Informally, the recommendations
provided to a “composite” account, comprising the ra-
tings of two dissimilar users, may not match the in-
terests of either of these users. More concretely, as
discussed in Section 3, collaborative filtering methods
such as matrix factorization assume that ratings fol-
low a linear model of user and movie profiles of small
dimension. Though such methods may perform well
for most cases, they can fail on composite accounts, as
we show in Section 6. This is because “mixing” ratings
from different users may yield a rating set that can no
longer be explained by a linear model.

Can composite accounts within a recommender system
be identified? Can the individuals sharing such an ac-
count be identified? Can accurate profiles of different
users’ behaviors be learnt? We address these ques-
tions in the most challenging setting, namely when no
information is available apart from the ratings users
provide. Our contributions are as follows:

(a) We develop a model of composite accounts as
unions of linear subspaces. This allows us to apply
a number of linear subspace clustering algorithms
(Ma et al., 2008) to the present problem.

(b) Based on this model, we develop a statistical test
that can be used as indicator of ‘compositeness’,
and a model selection procedure to determine the
number of users sharing the same account. We
systematically apply and evaluate these methods
on real datasets.

(c) In particular, we show that a significant fraction
of composite accounts can be reliably identified.
In a dataset made of both single-user and com-
posite accounts, a subset S of accounts can be
selected that comprises roughly 70% of the com-
posite accounts, while only 40% of the accounts
in S are single-user accounts.

(d) The users sharing an account can be identified
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with good accuracy. For the accounts in the above
set, more than 60% of the movies were identified
correctly (a result that we estimate to be signifi-
cant with p < 0.05).

(e) We apply these mechanisms on 54K Netflix users
that rated more than 500 movies, and identify
4 072 composite users with high confidence.

(f) Finally, we demonstrate how the above methods
can be applied to improve recommendations.

We consider this ability to identify multiple users be-
hind an account quite surprising, in view that no in-
formation is used apart from users’ ratings. In parti-
cular, all publicly available datasets are susceptible to
this identification. Beyond personalized recommenda-
tions, this ability is useful/worrisome for a number of
reasons. On one hand, it can aid in determining the
household’s demographics. Such information can be
subsequently monetized, e.g., through targeted adver-
tising. On the other hand, user identification can be
considered as a privacy breach, and calls for a careful
privacy assessment of recommender systems.

The remainder of this paper is organized as follows.
Section 2 briefly reviews related work. Section 3 de-
velops our statistical model. Sections 4 and 5 apply
and evaluate our new methods to recommender sys-
tem datasets. Finally, Section 6 uses these methods to
improve personalized recommendations.

2 Related Work

The problem of user identification from ratings has re-
ceived attention only recently. The 2nd Challenge on
Context-Aware Movie Recommendation (Said et al.,
2011) addressed a “supervised” variant. Movie ratings
generated by users in the same household as well as the
ids of the users was provided as a training set. The test
set included movie ratings attributed to households,
and contestants were asked to predict which household
members rated these movies. In contrast, we study an
unsupervised version of the problem, where the map-
ping of movies to users is not a priori known.

To the best of our knowledge, we are the first to
study user identification as a subspace clustering
problem. Beyond EM and GPCA, several subspace
clustering algorithms have been recently pro-
posed (Elhamifar and Vidal, 2009; Liu et al., 2010;
Soltanolkotabi and Candes, 2011; Eriksson et al.,
2011). Preliminary simulations using these methods
did not yield significant improvements.

3 Statistical Modeling

Consider a dataset of ratings on M movies provided by
N accounts, each corresponding to a different house-
hold. Ratings are available for a subset of all N × M
possible pairs: we denote by MH ⊆ [M ], where mH ≡
|MH |, the set of movies rated by account/household
H , and by rHj ∈ R the rating of movie j ∈ MH .

Each movie j ∈ [M ] is associated with a feature vector
vj ∈ Rd, where d ≪ N, M . We use matrix factoriza-
tion to extract the latent features for each movie, as
described in Section 3.3. If explicit information (e.g.,
genres or tags) is available, this can be easily incorpo-
rated in our model by extending the vectors vj .

Each household H may comprise one or more users
that actually rated the movies in MH . Abusing nota-
tion, we denote by H the set of users in this household,
and by nH = |H | the household size. For each i ∈ H ,
we denote by A∗

i ⊆ MH the set of movies rated by i,
and by I∗(j) ∈ H the user that rated j ∈ MH .

Note that neither the household size nH nor the map-
ping I∗ : MH → H are a priori known. We would like
to perform the following inference tasks.

(a) Model Selection: determine the household size
nH . A closely related problem is the one of de-
termining whether the account is composite (i.e.,
|H | > 1) or not.

(b) User Identification: identify movies that have
been viewed by the same user—i.e., recover I∗,
up to a permutation, and use this knowledge to
profile the individual users.

We also explore the impact of user identification on
targeted recommendations. The ‘dual’ impact on user
privacy will be the object of a forthcoming publication.

3.1 Linear Model

We focus now on a single household, and omit the in-
dex H hereafter. We thus denote by n the household
size, M and m the set of movies rated by this house-
hold and its size, respectively, and by rj the rating
given to movie j ∈ M.

Our main modeling assumption is that the rating rj

generated by a user i ∈ H for a movie j ∈ M is de-
termined by a linear model over the feature vector vj .
That is, for each i ∈ H there exists a vector u∗

i ∈ Rd

and a real number z∗
i ∈ R (the bias), such that

rj = 〈u∗
i ,vj〉 + z∗

i + ǫj, for all j ∈ A∗
i , i ∈ H, (1)

where ǫj ∈ R are i.i.d. Gaussian random variables with
mean zero and variance σ2. Such linear models are
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v1

v2

Figure 1: For all movies j ∈ Ai rated by user i ∈ H , the
points xj = (vj , 1, rj) ∈ Rd+2 lie slightly off a hyperplane

whose normal is (ui, zi, −1) ∈ Rd+2.

used extensively by rating prediction methods that
rely on matrix factorization (Srebro and Jaakkola,
2003; Srebro et al., 2005; Koren et al., 2009), and are
known to perform very well in practice.

Assuming that the household size is known, the model
parameters of (1) are (a) the user profiles Θ∗ =
{θ∗

i }i∈H ∈ Rn×d+1, where θ∗
i = (u∗

i , z
∗
i ) ∈ Rd+1,

i ∈ H, as well as (b) the mapping I∗ : M → H . Given
two estimators Θ, I of Θ∗, I∗, the log-likelihood of the
observed sequence of pairs {(vj , rj)}j∈M, is given by

L(Θ, I) = − 1

2σ2

∑

j∈M

(
rj − zI(j) − 〈uI(j),vj〉

)2
. (2)

Estimating the maximum likelihood model parameters
thus amounts to minimizing the mean square error:

min
Θ,I

MSE(Θ, I)=
1

m

∑

j∈M

(
rj −zI(j)−〈uI(j),vj〉

)2
, (3)

where Θ ∈ Rn×d+1, I ∈ I, the set of all mappings
from M to H . Note that (3) is not convex. Neverthe-
less, as discussed in Section 4.1, fixing I results in a
quadratic program, while fixing Θ results in a combi-
natorial problem solvable in O(nm) time.

3.2 Subspace Arrangements

We obtain an insightful geometric interpretation of
the minimization (3) by studying the points xj =
(vj , 1, rj) ∈ Rd+2, i.e., the d + 2-dimensional vectors
resulting from appending (1, rj) to the movie profiles.
Eq. (1) implies that although the points xj live in an
ambient space of dimension d + 2, they actually lie on
a lower-dimensional manifold: the union of n hyper-
planes, i.e., d+1-dimensional linear subspaces of Rd+2.

To see this, let n∗
i = (ui, zi, −1) ∈ Rd+2 be the vector

obtained by appending the bias z∗
i and -1 to u∗

i . Then,
|〈n∗

i , xj〉| = |〈u∗
i ,vj〉 + z∗

i − rj | = |ǫj |, for every j ∈
Ai. Hence, provided that the variance σ2 is small, the

points xj lie very close to the hyperplane with normal
n∗

i that crosses the origin (see Figure 1).

A union of such affine subspaces is called a subspace
arrangement. Given that the data xj , j ∈ M, “al-
most” lie on such a manifold, minimizing the MSE
has the following appealing geometric interpretation.
First, mapping a movie j to a user amounts to identi-
fying the hyperplane to which xj is closest to. Second,
once movies are thus mapped to users, profiling a user
amounts to computing the normal to its corresponding
hyperplane. Finally, identifying the number of users
in a household amounts to determining the number of
hyperplanes in the arrangement.

These tasks are known collectively as the subspace esti-
mation or subspace clustering problem, which has nu-
merous applications in computer vision and image pro-
cessing (Vidal, 2010). In Section 4.1, we exploit this
connection to apply algorithms for subspace clustering
on user identification (namely, EM and GPCA).

3.3 Datasets

We test our algorithms on two datasets:

CAMRa2011 dataset. The CAMRa2011 dataset
was released at the Context-Aware Movie Recommen-
dation (CAMRa) challenge at the 5th ACM Interna-
tional Conference on Recommender Systems (RecSys)
2011. This dataset consists of 4 536 891 5-star ra-
tings provided by N = 171 670 users on M = 23 974
movies, as well as additional information about house-
hold membership for a subset of 602 users. The 290
households comprise 272, 14 and 4 households of size 2,
3 and 4 users, respectively. We use the entire dataset
to compute the movie profiles vj through matrix fac-
torization, using d = 10 (found to be optimal through
cross validation). In the sequel, we restrict our atten-
tion to the 544 users belonging to households of size
2. To simulate a composite account, we merge the ra-
tings provided by users belonging to the same house-
hold. The original mapping of ratings to household
members serves as the ground truth.

Netflix Dataset. The second dataset contains 5-star
ratings given by N = 480 189 users for M = 17 770
movies. We again obtain the movie profiles vj through
matrix factorization on the entire dataset, with d = 30.
We then restrict our attention to the subset of 54 404
users who rated at least 500 movies. We also generate
300 ‘synthetic’ households of size 2 by pairing the ra-
tings of 600 randomly selected users; we select these
among the accounts that our model-selection methods,
described in Section 5.3, classify as non-composite.

Matrix factorization is likely to be unreliable for ex-
tracting account feature vectors, as the latter may be
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composite. On the other hand, it appears to perform
well for movies. We use the OptSpace algorithm of
Keshavan et al. (2010) in both datasets for matrix fac-
torization, which will not be further discussed.

4 User Identification

In this section, we address the user identification prob-
lem assuming that the household size n is a priori
known. This amounts to obtaining estimators of I∗

and θ∗
i = (u∗

i , z
∗
i ) for each user i ∈ H . We first

describe four algorithms for solving this problem and
then evaluate them on our two datasets. We present
methods for determining the size n in Section 5.

In the absense of any additional information, we can-
not distinguish between two mappings I : M → H
that partition M identically. As such, we have no hope
of identifying the correct “label” i ∈ H of a user; we
thus assume in the sequel, w.l.o.g., that H = [1, . . . , n].

4.1 Algorithms

Clustering. Our first approach consists of two steps.
First, we obtain a mapping I : M → [n] = H by
clustering the rating events (vj , rj) ∈ Rd+1, j ∈ M
into n clusters. Second, given I, we estimate θi =
(ui, zi), i ∈ [n], by solving the quadratic program:

min
Θ

MSE(Θ, I), (4)

where MSE is given by (3). This is separable in each
θi, so the latter can be obtained by solving

min
(ui,zi)

∑

j∈Ai

(rj − 〈ui,vj〉 − zi)
2. (5)

where Ai = {j ∈ M : I(j) = i}, which amounts to
linear regression w.r.t. the model (1).

We perform the clustering in the first step using either
(a) K-means or (b) spectral clustering. Each yields
a distinct mapping; we denote the resulting two user
identification algorithms by K-Means and Spectral,
respectively. Intuitively, these methods treat the ra-
ting as “yet another” feature, and tend to attribute
movies with very similar profiles v to the same user,
even if they receive quite distinct ratings.

Expectation Maximization. The EM algorithm
(Dempster et al., 1977) identifies the parameters of
mixtures of distributions. It naturally applies to
subspace clustering—technically, this is “hard” or
“Viterbi” EM. Proceeding over multiple iterations, al-
ternately minimizing the MSE in terms of the movie-
user mapping I and the user profiles Θ. Initially, a
mapping I0 ∈ I is selected uniformly at random; at

step k ≥ 1, the profiles and the mapping are computed
as follows.

Θk = argmin
Θ∈Rn×(d+1)

MSE(Θ, Ik−1) (6a)

Ik = argmin
I∈I

MSE(Θk, I) (6b)

The minimization in (6a) can be solved as in (4)
through linear regression. Eq. (6b) amounts to identi-
fying the profile that best predicts each rating, i.e.,

Ik(j) = argmini∈H(rj−zk
i −〈uk

i ,vj〉)2, j ∈ M. (7)

which can be computed in O(nm) time.

Generalized PCA. The Generalized Principal
Components Analysis (GPCA) algorithm, originally
proposed by Vidal et al. (2005), is an algebraic-
geometric algorithm for solving the general subspace
clustering problem, as defined in section 3.2.

To give some insight on how GPCA works, we consider
first an idealized case where the noise ǫj in the linear
model (1) is zero. Then, the points xj = (vj , 1, rj),
j ∈ A∗

i , lie exactly on a hyperplane with normal n∗
i =

(u∗
i , z

∗
i , −1). Thus, every xj , j ∈ M, is a root of the

following homogeneous polynomial of degree n:

Pc(x) =
∏

i∈H

〈n∗
i ,x〉 =

∏

i∈H

d+2∑

k=1

n∗
ikxjk

=
∑

k1+...+kd+2=n,∀l kℓ≥0

ck1,...,kd+2
xk1

1 . . . x
kd+2

d+2

(8)

We denote by c ∈ RK(n,d), where K(n, d) =
(
n+d+1

n

)
,

the vector of the monomial coefficients ck1,...,kd+2
.

Note that Pc is uniquely determined by c. Moreover,
provided that m = |M| ≥ K(n, d) = O(min(nd, dn)),
c can be computed by solving the system of linear
equations Pc(xj) = 0, j ∈ M.

Knowledge of c can be used to exactly recover I∗, up
to a permutation. This is because, by (8), for any
j ∈ A∗

i , the gradient ∇Pc(xj) is proportional to the
normal n∗

i . Hence, the partition in of points {A∗
i }

can be recovered by grouping together points with co-
linear gradients (Vidal et al., 2005).

Unfortunately, this result does not readily generalize
in the presence of noise (see, e.g., Ma et al. (2008)).
In this case, one approach is to estimate p by solving
the (non-convex) optimization problem

Minimize:
∑

j∈[m]

||xj − x̂j ||22

subject to: Pc(x̂j) = 0

(9)

We use the heuristic of Ma et al. (2008) for solving (9)
through a first order approximation of Pc and cluster
gradients using the “voting” method also by Ma et al.
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Figure 2: Similarity and RMSE performance of K-Means, Spectral, EM, and GPCA, for households of size 2 in the
CAMRa2011 and Netflix datasets.
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Figure 3: PDF of the difference in distance of xj from the two hyperplanes, computed by EM for three different households
of size 2, ordered in decreasing similarity.

4.2 Evaluation

We evaluate the four algorithms, namely K-Means,
Spectral, EM, and GPCA over CAMRa2011 and
Netflix. In the CAMRa2011, we focus on the 272
composite accounts obtained by merging the ratings
of users belonging to households of size 2. In Netflix,
we focus on the 300 composite accounts obtained by
pairing 600 users. For each composite account H , the
original mapping I∗ : M → {1, 2} serves as ground
truth.

Similarity and RMSE. We measure the perfor-
mance of each algorithm two ways. First, we compare
the mapping I : M → {1, 2} obtained to the ground
truth through the following similarity metric:

s(I, I∗) = max
π∈Π({1,2})

1

m

∑

j∈M
1 {π(I(j)) = I∗(j)}

where Π({1, 2}) is the set of permutations of {1, 2}.
In other words, the similarity between I and I∗ is the
fraction of movies in M which I and I∗ agree, up to

a permutation. Notice that, by definition s(I, I∗) ≥
0.5. Second, we compute how well the obtained profiles
Θ = {θi}i∈H fit the observed data by evaluating the
root mean square error: RMSE(Θ, I) =

√
MSE(Θ, I),

where MSE is given by (3).

Figures 2a and 2b show the cumulative distribution
function (CDF) of the similarity metric s across all
CAMRa2011 and Netflix composite accounts, respec-
tively. Spectral performs the best in terms of si-
milarity with EM (in CAMRa2011) and K-Means
(in Netflix) being close seconds. The fact that clus-
tering methods perform so well, in spite of treating ra-
tings as “yet another” feature, suggests that users in
these composite accounts indeed tend to watch diffe-
rent types of movies. Nevertheless, though K-Means
and Spectral are comparable to EM in terms of s,
they exhibit roughly double the RMSE of EM, as seen
in Figure 2c. This is because, by grouping together
similar movies with dissimilar ratings, these methods
partition M in sets in which the linear regression (5)
performs poorly.
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Statistical Significance. In order to critically as-
sess our results, we investigated the statistical signi-
ficance of user identification performance under EM.
We generated a null model by converting each of the
544 (600) users in the CAMRa2011 (Netflix) dataset
into a composite account, by splitting the movies they
rated into two random sets, thereby creating two fic-
titious users. Our random selection was such that the
size ratio between the two sets in this partition fol-
lowed the same distribution as the corresponding ra-
tios in the real composite accounts. Our construction
thus corresponds to a random “ground truth” that
exhibits similar statistical properties as the original
dataset. We subsequently ran EM over these 544 (600)
fictitious composite accounts, and computed the simi-
larity w.r.t. the random ground truth.

The resulting similarity metric CDF is indicated on
Figures 2a and 2b as “Random EM”. In CAMRa2011
(resp. Netflix), this curve indicates that any simila-
rity s > 0.59 in CAMRa2011 (resp. s > 0.52) yields
a p-value (probability of the similarity being larger
or equal to s under the null hypothesis) below 0.05.
This corresponds to 41% and 88% of the composite ac-
counts, respectively in each dataset. For these house-
holds, we can be confident that the high similarity per-
formance is not due to random fluctuations.

Precision at the Tail. The similarity metric cap-
tures the performance of user identification in the ag-
gregate across all movies in M. Nevertheless, even
when the similarity metric is extremely low, we can
still attribute some movies to distinct users with very
high confidence. As we will see in Section 5.3, this is
important, because identifying even a few movies that
a user has watched can be quite informative.

Let (ui, zi), i ∈ {1, 2}, be the profiles computed by EM
for a given household H . Figure 3 shows histograms
of the difference

∆j = |rj − 〈u1, vj〉 − z2| − |rj − 〈u2, vj〉 − z2|, (10)

for j ∈ M, for three different composite accounts in
CAMRa2011. Note that EM classifies j as a movie
rated by user 1 when ∆j < 0, and as a movie rated
by user 2 otherwise. The three figures show the his-
tograms of ∆j for three households with high (0.90),
intermediate (0.68), and low (0.50) similarity, respec-
tively. The blue and green colors of each bar indicate
the number of movies truly rated by user 1 and user 2,
respectively. The total height of each bar corresponds
to the total number of movies with that value of ∆j .

The household in Figure 3a exhibits a clear separa-
tion between the two users; indeed, ∆j is negative for
most movies rated by user 1 and positive otherwise.
In contrast, in Figures 3b and 3c the distribution of
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Figure 4: EM Similarity vs. gap in RMSE.

∆j is concentrated at zero. Intuitively, a large num-
ber of movies are difficult to classify between users 1
and 2. Nevertheless, the tails of this distribution are
overwhelmingly biased towards one of the two users.
In other words, when labeling movies that lie on the
tails of these distributions, our confidence is very high.
We determine formally the tails of these curves by fit-
ting a Gaussian on these histograms, after discarding
points whose distance from the mean exceeds 1.5 stan-
dard deviations. Indeed, mapping the tails above these
curves to distinct users identifies them accurately.

Similarity Correlation to Diversity. For each
composite account, we computed the RMSE assuming
that all ratings were generated by a single user : i.e.,
we obtained a single profile θ1 solving the regression
(5), assuming that I(j) = 1 for all j ∈ I, and used
this to obtain an RMSE, denoted by RMSE1. We also
computed the RMSE assuming that the mapping of
ratings to users is known: i.e., we obtained two pro-
files θ∗

1 and θ∗
2 by solving the regression (5), assuming

that I = I∗, and used these profiles to obtain a new
RMSE, denoted by RMSE∗.

Figure 4 shows the similarity metric s(I, I∗) for each
composite account, computed using EM, versus the
gap RMSE1 − RMSE∗ for a particular household. We
observe a clear correlation between the two values for
both datasets. Intuitively, the EM method fails to
identify users precisely on households where users have
similar profiles, and for which distinguishing the users
has little impact on the RMSE. The method performs
well when users are quite distinct, and a single profile
does not fit the observed data well.

5 Model Selection

The user identification methods presented in the pre-
vious section assume a priori knowledge of the num-
ber of users sharing a composite account. However,
this information may not be readily available; in fact,
determining if an account is composite or not is an in-
teresting problem in itself. In this section, we propose
and evaluate algorithms for this task.
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Figure 5: (a)-(b): ROC curves, where TPR (TNR) is the number households correctly labeled as size two (one)
over the number of households labeled as size two (one). (c): Normalized MSE gaps for sizes 1 and 2

5.1 Model Selection

The problem of estimating the number of unknown
parameters in a model is known as model selection—
see, e.g., Hansen and Yu (2001). Denoting by Θn ∈
Rn×(d+1), In ∈ I the estimators of the parameters
Θ∗, I∗ of the linear model (1) for size n, the gen-
eral method for model selection amounts to determin-
ing n that minimizes − 1

mL(Θn, In) + C(Θn,In)
m where

L(Θn, I) is the log-likelihood of the data, given by
(2), and C is a metric capturing the model complexity,
usually as a function of the number of parameters n.
Several different approaches for defining C exist; we
report our results only for the Bayesian Information
Criterion (BIC), by Schwarz (1978), as we observed
that it performs best over our datasets.

The BIC for a household H of size |H | = n is given by

BICn :=
1

2σ2
MSE(Θn, In) +

2n(d + 1) log m

m
. (11)

where σ2 is the variance of the Gaussian noise in (1).
Note that different methods for obtaining the estima-
tors Θn, In lead to different values for BICn.

We tested BIC on our two datasets as follows. For the
CAMRa2011 (Netflix) dataset, we created a combined
dataset comprising the 272 (300) composite accounts
of n = 2 as well as as the 544 (600) individuals of size
n = 1 that are included in these households, yield-
ing a total of 816 (900) accounts. For each of these
accounts, we first computed the MSE under the as-
sumption that n = 1; this amounted to solving the
regression 5 for a single profile θ1 = [u1, z1] under
I(j) = 1, for all j ∈ M, obtaining an MSE we de-
note by MSE1. Subsequently, we used each of the four
identification methods (EM, GPCA, K-Means, and
Spectral) to obtain a mapping I : M → H , and
vectors θi = (ui, zi), i ∈ {1, 2}: each of these yielded
an MSE for n = 2, denoted by MSE2.

Using these values, we constructed the following clas-
sifier: we labeled an account as composite when

(MSE1 − MSE2) − τ log m/m > 0 (12)

By varying τ , we can make the classifier more or less
conservative towards declaring accounts as composite.
For τ = 2σ2(d + 2), this classifier coincides with BIC.

5.2 ROC Curves

The ROC curves obtained under different estimator
functions for the model parameters can be found in Fi-
gure 5a for CAMRa2011. There is a clear ordering of
the performance of different estimators as follows: EM
(AUC=0.7711), GPCA (0.7455), K-Means (0.6111)
and Spectral (0.4458). In particular, EM and
GPCA yield very good classifiers. The performance
on Netflix (Figure 5b) is even more striking, where
EM (AUC=0.9796) significantly outperforms GPCA
(0.7287), while K-Means (0.3879) and Spectral
(0.2934) perform very poorly.

In Figure 5c, we plot the distribution of the norma-
lized gap (MSE1 − MSE2) × m/ log m under EM for
accounts of size 1 and 2, respectively. We see that in
both datasets the distributions are well approximated
by gamma distributions. Most importantly, accounts
of size 2 exhibit a heavier tail. This is why labeling the
outliers in the normalized gap distribution as house-
holds of size 2 as in (12) performs well.

5.3 Finding Composite Accounts on Netflix

Model Selection in Netflix. Armed with the
above classification method, we turn our attention to
the 54 390 users of the Netflix dataset that rated more
than 500 movies. A natural question to ask is how
many users in this dataset are in fact composite.

950



100 200 300 400
0

2000

4000

(MSE
1
−MSE

2
)× m / log(m)

# 
of

 u
se

rs

 

 

Empirical
Gamma Fit in µ± 1.5 σ
x= 91.53

(a) Gap 1–2 in Netflix

0 100 200
0

500

1000

(MSE
2
−MSE

3
)× m / log(m)

# 
of

 u
se

rs

 

 

Empirical
Gamma Fit in µ± 1.5 σ
x = 50

(b) Gap 2–3 in Netflix

Figure 6: PDF of RMSE gap in 54K Netflix users that
rated more than 500 movies.

We first applied BIC with EM as a user identifica-
tion method on these users. That is, we applied EM
under the assumption the household size is n =1,2,
and 3, and labeled a household with the value n that
minimized BICn. We estimated the noise variance σ2

through the mean square error of the matrix factoriza-
tion applied on the entire dataset. The resulting clas-
sification labeled 36 832, 14 789, and 2 769 accounts as
of size 1, 2, and ≥ 3, respectively.

We also applied an alternative method (akin to the
empirical Bayes approach of Efron (2009)). First, we
plotted the histogram of the normalized gap in the
MSE from a model of 1 to 2 users (Figure 6a). We
then identified the outliers of this curve, and labeled
them as accounts of size 2 and above. To identify the
outliers, we fitted a gamma distribution to the portion
of the histogram that lies within 1.5 standard devia-
tions from the mean. Superimposing the two distri-
butions, we found the normalized gap value (91.53) at
which the tail of the original distribution (which has a
heavier tail) had twice the value of the fitted gamma
distribution; all accounts with a higher normalized gap
were labeled as outliers. To identify accounts with size
3 and above, we repeated the above process only on
the outliers, using now the normalized gap between
models of 2 and 3 users (Figure 6b).

The resulting classification is compared to the classifi-
cation under BIC in the following table:

BIC\Outl. 1 2 ≥ 3 Tot.

1 36832 0 0 36832
2 12712 2071 6 14789

≥ 3 774 1805 190 2769
Tot. 50318 3876 196 54390

Note that the above method of outliers is more conser-
vative when labeling accounts as composite, labeling
only 4 072 users as composite. Nevertheless, we know
that this method performs well over the datasets on
which we have ground truth (c.f. Figure 5c).

Visual Inspection. Though we cannot assess the
accuracy of this classification (we lack ground truth),

User 1 User 2

TLOTR: The Fellowship of the

Ring†(5), TLOTR: The Return

of the King†(5), TLOTR: The

Two Towers† (5), The Whole Nine

Yards(4), Immortal†(1), The Deep

End(2), Toys†(4), The Addams
Family(5)

H.R. Pufnstuf(5), Sex and the

City: Season 5♥(1), Me My-
self & Irene(1), All the Real

Girls♥△(5), Titanic♥(5), George

Washington△(5), The Siege(1), In

the Bedroom△(5)

User 1 User 2

Monsters Inc.♦(5), Finding

Nemo♦(5), Whale Rider(5), Con

Air(4), Lilo and Stitch♦(4), Ice

Age♦(5), Ring of Fire(4), Star
Trek: Nemesis(3),

In America♠(2), Super Size Me(2),

A Very Long Engagement♠(1),
Bend It Like Beckham(2), 21

Grams♠(1), Airplane II: The

Sequel(4), Spun♠(1), Fahrenheit
9/11(1)

Table 1: Movies rated by accounts labeled as composite in
the Netflix dataset. We split each account using EM and
show movies j with most positive and most negative ∆j .
Symbols indicate labels from the Netflix website: † = “Sci-
Fi & Fantasy”, ♥ = “Romantic”, △ = “Understated”, ♦
= “Children & Family Movies”, ♠ = “Drama”

a visual inspection of the accounts that were labeled as
composite yield some interesting observations. Recall
that, in each composite account, there are a few movies
that we can assign to different users with very high
confidence: these are precisely the movies that lie close
to one of the two hyperplanes computed by EM and
far from the other (c.f. Figure 3).

Using this intuition, we ran EM on several accounts de-
clared as composite (size 2) by both BIC and the out-
lier method, and computed ∆j , given by (10) for each
movie j rated by these accounts. Table 1 shows the ti-
tles of the 8 most positive and 8 most negative movies
for 2 such accounts. Looking up these titles on the
Netflix website indicates clearly that these accounts
exhibit a bimodal behavior. In the first account, 5/8
movies rated by User 1 are labelled as “Sci Fi & Fan-
tasy”, while 5/8 movies rated by User 2 are labelled
either “Romantic” or “Understated”. Similarly, in the
second household, 4/8 movies rated by User 1 are la-
belled “Children & Family Movies”, while 4/8 movies
rated by User 2 are labelled as “Dramas”, suggesting
movies viewed by a child and an adult, respectively.

In many accounts we inspected, sequels (e.g., “Lord of
the Rings”, “Star Wars”, etc.) or seasons of the same
TV show (e.g. “Sex and the City”, “Friends”, etc.)
were grouped together (i.e., attributed to the same
user). The first account in Table 1 illustrates this.

We stress that we did not use any labeling or title in-
formation in our classification, as neither was available
for both datasets. Nevertheless, as noted Section 3,
such information can be incorporated in our model by
extending vj to include any additional features.

6 Targeted Recommendations

In this section, we illustrate how knowledge of house-
hold composition can be used to improve recommen-
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dations. In a typical setup, a user accesses the account
and the recommender system suggests a small set of
movies from a catalog, recommending movies that are
likely to be rated highly. However, even if the rec-
ommender knows the household composition and the
user profiles, it still does not know who might be acces-
sing the account at a given moment. In the absence
of side information, we can circumvent this problem
as follows. Assume the recommender has a budget
of K movies to be displayed; it can then recommend
the union of the K/n movies that are most likely to
be rated highly by each of the n users. This exploits
household composition, without requiring knowledge
of who is presently accessing the account.

To investigate the benefit of user identification, we
performed a 5-fold cross validation in each of the
272 households in CAMRa2011, whereby user profiles
where trained in 4/5ths of M (the training set), and
used to predict ratings in the remaining 1/5th (the test
set). As, in the real-life setting, we can circumvent
identifying which user is accessing an account when
recommending movies, we focus on predicting the ra-
tings of users accurately. Ideally, we would like to
assess our rating prediction over the test set for both
users; unfortunately, we have the true rating of only
one user for each movie. As a result, we assume that
the mapping of movies to users is priori known on the
test set (but not on the training set): to generate a
prediction for a movie in the test set, we generate a
single rating using the profile of the user that truly
generated it.

We tested the following 4 methods. The first, termed
Single, ignores the household composition; a unique
profile θS = (ui, zi) is computed over the training set
for both users through ridge regression over (5) using
I(j) = 1 for all j in the training set. The regulariza-
tion parameter is chosen through cross validation. The
second method, termed Oracle, assumes that the map-
ping of movies to users is known in the trainset; profiles
θ∗

i = (u∗
i , z

∗
i ), i ∈ {1, 2} are obtained on the trainset

using again ridge regression over (5) using I = I∗.

The third method, termed EM, uses the EM method
outlined in Section 4 to obtain user profiles θi =
(ui, zi). The EM algorithm is modified by adding reg-
ularization factor to the MSE, and using ridge rather
than linear regression in each step. Finally, the last
method, termed CNV for “convex”, uses as a profile
a linear combination of the common profile computed
by Single and the specialized profile computed by EM.
I.e. the profile of user i is given by αθS + (1 − α)θi,
with α computed through cross validation.

We evaluate the performance of these methods in
terms of two metrics. The first is the RMSE of the
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Figure 7: RMSE and OVERLAP performance compared
to an oracle for the 272 composite users of CAMRa2011,
when using (a) a single profile, (b) EM, and (c) a convex
combination of the two.

predicted ratings on the test set. The second, which
we call overlap, is computed by generating a list of
6 movies and calculating the number of common ele-
ments with the 3 top rated movies by each user in the
test set. For Single, the list is generated by picking
the 6 movies in the test set with the highest predicted
rating. For the remaining methods, we generate the
list by picking the 3 movies in the test set with the
highest predicted rating for each user, and combining
these two lists.

Figure 7 shows the CDFs of the perfromance of the
three mechanisms w.r.t. the distance of each metric
from the corresponding metric under Oracle. We first
observe that Oracle outperforms all other methods for
the majority of the households, having an RMSE 0.60
and overlap 1.87, on average. This indicates that fit-
ting a single profile to a composite account leads to
poor predictions, which improve when the household
composition is known. EM clearly outperforms Single
w.r.t. the overlap metric, having a 14% higher overlap
on average; however, it does worse w.r.t. RMSE also
by roughly 14%. This is because, as observed in Fi-
gure 3, the bulk of movies are rated similarly by users,
which dominates behavior in the RMSE; EM performs
better on metrics that depend on the performance of
outliers, such as overlap. In both metrics, CNV yields
an improvement on both EM and Single, showing that
the relative benefits of both methods can be combined.

7 Conclusion

We proposed methods for user identification solely on
the ratings provided by users based on subspace clus-
tering. Evaluating such methods in the presence of
additional information is a potential future direction
of this work. We also believe modeling rating data as
a subspace arrangement can provide insight on a vari-
ety of applications, including privacy in recommender
systems. In particular, altering or augmenting one’s
rating profile to appear as a composite user, with the
purpose of obscuring, e.g., one’s gender, is an interest-
ing research topic.
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