
Closed-Form Learning of Markov Networks from Dependency Networks

Daniel Lowd
Dept. of Computer and Information Science

University of Oregon
Eugene, OR 97403

lowd@cs.uoregon.edu

Abstract

Markov networks (MNs) are a powerful way to
compactly represent a joint probability distribu-
tion, but most MN structure learning methods
are very slow, due to the high cost of evaluat-
ing candidates structures. Dependency networks
(DNs) represent a probability distribution as a set
of conditional probability distributions. DNs are
very fast to learn, but the conditional distribu-
tions may be inconsistent with each other and
few inference algorithms support DNs. In this
paper, we present a closed-form method for con-
verting a DN into an MN, allowing us to enjoy
both the efficiency of DN learning and the con-
venience of the MN representation. When the
DN is consistent, this conversion is exact. For
inconsistent DNs, we present averaging methods
that significantly improve the approximation. In
experiments on 12 standard datasets, our meth-
ods are orders of magnitude faster than and often
more accurate than combining conditional distri-
butions using weight learning.

1 INTRODUCTION

Joint probability distributions are useful for representing
and reasoning about uncertainty in many domains, from
robotics to medicine to molecular biology. One of the most
powerful and popular ways to represent a joint probability
distribution compactly is with a Markov network (MN), an
undirected probabilistic graphical model. Inference in an
MN can compute marginal or conditional probabilities, or
find the most probable configuration of a subset of variables
given evidence. Although exact inference is usually in-
tractable, numerous approximate inference algorithms exist
to exploit the structure present in the MN representation.

One of the largest disadvantages of Markov networks is the
difficulty of learning them from data. In the fully observed

case, weight learning is a convex optimization problem, but
cannot be done in closed form except in very special cir-
cumstances, e.g. [18]. Structure learning is even harder,
since it typically involves a search over a large number of
candidate structures, and weights must be learned for each
candidate before it can be scored [4, 14, 3]. An increas-
ingly popular alternative is to use local methods to select
the structure, by finding the dependencies for each vari-
able separately and combining them using weight learn-
ing [15, 12].

Dependency networks (DNs) [8] represent the joint dis-
tribution itself as a set of conditional probability distribu-
tions, one for each variable. In terms of representational
power, DNs are comparable to MNs, since every MN can
be represented as a consistent DN and vice versa. The ad-
vantage of DNs is that they are much easier to learn than
MNs, since each conditional probability distribution can
be learned separately. However, the local distributions may
not be consistent with any joint distribution, making the
model difficult to interpret. Furthermore, very few infer-
ence algorithms support DNs. As a result, DNs remain
much less popular than MNs.

In this paper, we present a new method for converting de-
pendency networks into Markov networks, allowing us to
enjoy both the efficiency of DN learning and the conve-
nience of the MN representation. Surprisingly, this transla-
tion can be done in closed-form without any kind of search
or optimization. If the DN is consistent, then this conver-
sion is exact. For the general case of an inconsistent DN,
we present averaging methods that significantly improve
the approximation. As long as the maximum feature length
is bounded by a constant, our method runs in linear time
and space with respect to the size of the original DN.

Our method is similar in spirit to previous work on learn-
ing MNs by combining local, conditional distributions with
weight learning [12, 15]. However, instead of ignoring
the parameters of those local distributions, we use them to
directly compute the parameters of the joint distribution.
Hulten et al. [9] proposed a method for converting DNs to
Bayesian networks. However, this conversion process re-

quired searching through possible structures and led to less
accurate models than learning a BN directly from data.

In experiments on 12 standard datasets, we find that our
DN2MN conversion method is orders of magnitude faster
than weight learning and often more accurate. For DNs
with decision tree conditional distributions, the converted
MN was often more accurate than the original DN. With
logistic regression conditional distributions, the converted
MNs were significantly more accurate than performing
weight learning.

Our method has potential applications outside of MN struc-
ture learning as well. For domains where data is limited or
unavailable, an expert could specify the conditional distri-
butions of a DN, which could then be translated into the
joint distribution of an MN. This could be much easier and
less error-prone than attempting to specify the entire joint
distribution directly.

Our paper is organized as follows. We begin with back-
ground on Markov networks and dependency networks in
Sections 2 and 3. In Section 4, we describe how to con-
vert consistent dependency networks into Markov networks
that represent the exact same probability distribution. In
Section 5, we discuss inconsistent conditional probability
distributions and methods for improving the approximation
quality through averaging. We evaluate our methods empir-
ically in Section 6 and conclude in Section 7.

2 MARKOV NETWORKS

A Markov network (MN) represents a probability distribu-
tion over a set of random variables X = {X1, X2, . . . , Xn}
as a normalized product of factors:

P (X) =
1

Z

∏
i

φi(Di) (1)

Z is the partition function, a normalization constant to
make the distribution sum to one; φi is the ith factor, some-
times referred to as a potential function; and Di ⊂ X is the
set of variables in the domain of φi.

A probability distribution where P (x) > 0 for all x ∈ X is
said to be positive. An MN that represents a positive distri-
bution can also be written as a log-linear model. In a log-
linear model, the probability distribution is expressed as
an exponentiated weighted sum of feature functions fi(Di)
rather than as a product of factors:

P (X) =
1

Z
exp

(∑
i

wifi(Di)

)
(2)

The correspondence between (1) and (2) is easily shown by
letting fi = log φi and wi = 1.

For discrete domains, a common choice is to use conjunc-
tions of variable tests as the features. Each test is of the

form (Xi = vi), where Xi is a variable in X and vi is a
value of that variable. We sometimes abbreviate tests of
Boolean variables, so that (Xi = T) is written as Xi and
(Xi = F) is written as ¬Xi. A conjunctive feature equals
1 if its arguments satisfy the conjunction and 0 otherwise.
Any factor represented as a table can be converted into a
set of conjunctive features with one feature for each entry
in the table. When the factors have repeated values or other
types of structure, a feature-based representation is often
more compact than a tabular one.

The Markov blanket of a variable Xi, denoted MB(Xi),
is the set of variables that render Xi independent from all
other variables in the domain. In an MN, this set consists
of all variables that appear in a factor or feature with Xi.
These independencies, and others, are entailed by the fac-
torization in (1).

2.1 INFERENCE

Given an MN, we often wish to answer queries such as the
probability of one or more variables given evidence. In
general, computing exact marginal and conditional proba-
bilities is #P-complete [16], so approximate inference algo-
rithms are commonly used instead. One of the most popu-
lar is Gibbs sampling [5].

Gibbs sampling is a Markov chain Monte Carlo method
that generates a set of random samples and uses them to
answer queries. The sampler is initialized to a random
state consistent with the evidence. Samples are generated
by resampling each non-evidence variable in turn, accord-
ing to its conditional probability given the current states
of the other variables. In early samples, the sampler may
be in an unlikely and non-representative state, so these
“burn-in” samples are typically excluded from considera-
tion. The probability of a query is estimated as the fraction
of samples consistent with the query. For positive distribu-
tions, Gibbs sampling will eventually converge to the cor-
rect probabilities, but this can take a very long time and
convergence can be difficult to detect.

2.2 WEIGHT LEARNING

In maximum likelihood parameter estimation, the goal is to
select a set of parameters that maximizes the log-likelihood
of the model on the training data. Here we assume that
the MN is expressed as a log-linear model with a fixed
set of features and that all variables are observed in the
training data. Since the log-likelihood of an MN is a con-
cave function of the weights, parameter learning can be
framed as a convex optimization problem and solved with
standard gradient-based approaches. Since log-likelihood
and its gradient are usually intractable to compute exactly
and slow to approximate, a commonly-used alternative is
pseudo-likelihood. Pseudo-log-likelihood (PLL) [2] is the
sum of the conditional log-likelihood of each variable given

the other variables:

logP •w(X=x) =

n∑
i=1

logPw(Xi=xi|X−i=x−i)

where X−i = X − Xi, the set of all variables except for
Xi. Unlike log-likelihood, PLL and its gradient can both
be evaluated efficiently. Like log-likelihood, PLL is a con-
cave function, so any local optimum is also a global op-
timum. The main disadvantage of PLL is that it tends to
handle long-range dependencies poorly. Optimizing PLL
optimizes the model’s ability to predict individual vari-
ables given large amounts of evidence, and this may lead
to worse performance when less evidence is available. To
control overfitting, a zero-mean Gaussian prior is typically
placed on each weight.

2.3 STRUCTURE LEARNING

The goal of MN structure learning is to find a set of fac-
tors and parameters or features and weights with a high
score on the training data. As with weight learning, pseudo-
likelihood is a common choice due to the intractability of
the partition function. Of the many MN structure learning
variations that have been proposed, we touch on just a few
algorithms and their main themes.

One common approach to structure learning is to perform
a greedy search through the space of possible structures.
Della Pietra et al. [4] conduct this search in a top-down
manner, starting with atomic features (individual variable
tests) and extending and combining these simple features
until convergence. Davis and Domingos [3] propose a
bottom-up search instead, creating many initial features
based on the training data and repeatedly merging features
as learning progresses. Search-based algorithms tend to be
slow, since scoring candidate structures can be expensive
and there are many candidate structures to consider.

Another approach is to use local models to find the Markov
blanket of each variable separately and then combine the
features of these local models into a global structure.
Ravikumar et al. [15] do this by learning a logistic regres-
sion model with L1 regularization for each variable. The
use of L1 regularization encourages sparsity, so that most
of the interaction weights are zero. All non-zero interac-
tions are turned into conjunctive features. In other words,
if the logistic regression model for predictingXi has a non-
zero weight for Xj then the feature Xi∧Xj is added to the
model. Lowd and Davis [12] adopt a similar approach, but
use probabilistic decision trees as the local model. Each de-
cision tree is converted into a set of conjunctive features by
considering each path from the tree root to a leaf as a con-
junction of variable tests. In both works, the authors select
feature weights by performing weight learning. In addition
to being much faster than the search-based methods, the
local approaches often lead to more accurate models.

3 DEPENDENCY NETWORKS

A dependency network (DN) [8] consists of a set of con-
ditional probability distributions (CPDs) Pi(Xi|MB(Xi)),
each defining the probability of a single variable given its
Markov blanket. A DN is said to be consistent if there ex-
ists a probability distribution P that is consistent with the
DN’s conditional distributions. Inconsistent DNs are some-
times called general dependency networks.

Since Gibbs sampling only uses the conditional probability
of each variable given its Markov blanket, it is easily ap-
plied to DNs. The probability distribution represented by
a DN is defined as the stationary distribution of the Gibbs
sampler, given a fixed variable order. If the DN is consis-
tent, then its conditional distributions must be consistent
with some MN, and Gibbs sampling converges to the same
distribution as the MN. If the DN is inconsistent, then the
stationary distribution may depend on the order in which
the variables are resampled. Furthermore, the joint distri-
bution determined by the Gibbs sampler may be inconsis-
tent with the conditional probabilities in the CPDs.

Few other inference algorithms have been defined for DNs.
Heckerman et al. [8] describe a method for using Gibbs
sampling and CPD values together to estimate rare proba-
bilities with lower variance; Toutanova et al. [17] do max-
imum a posteriori (MAP) inference in a chain-structured
DN with an adaptation of the Viterbi algorithm; and Lowd
and Shamaei [13] propose mean field inference for DNs.
We know of no other methods.

A DN can be constructed from any MN by constructing a
conditional probability distribution for each variable given
its Markov blanket. A DN can also be learned from data
by learning a probabilistic classifier for each variable. This
makes DN learning trivial to parallelize with a separate pro-
cess for each variable. However, when learned from data,
the resulting CPDs may be inconsistent with each other.

Any standard method for learning a probabilistic classifier
can be used. Heckerman et al. [8] learn a probabilistic de-
cision tree for each variable. In a probabilistic decision
tree, the interior nodes of the tree are variable tests (such
as (X4 = T)), the branches are labeled with test outcomes
(such as true and false), and the leaves specify the marginal
distribution of the target variable given the tests on the path
from the root to leaf. Probabilistic decision trees can be
learned greedily to maximize the conditional log-likelihood
of the target variable.

Hulten et al. [9] investigated the problem of converting a
DN to a Bayesian network (BN). However, rather than try-
ing to match the distribution as closely as possible, they
tried to find the highest-scoring acyclic subset of the DN
structure. After proving the problem to be NP-hard, they
proposed a greedy algorithm for removing the least essen-
tial edges. The resulting BN was consistently less accurate

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT
DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x′, that only differ in the
state of one variable, Xj . In other words, xi = x′i for all
i 6= j, so x−j = x′−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x′)
=
P (xj ,x−j)

P (x′j ,x−j)
=
P (xj |x−j)P (x−j)
P (x′j |x−j)P (x−j)

=
P (xj |x−j)
P (x′j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x′ differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x′o[i],x
(i−1)
−o[i])

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x′o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x′ and the
latter n− i are set to their values in x. Note that x(n) = x′,
since all n variables have been changed to their values in
x′.

We can use these intermediate instances to express the ratio

P (x)/P (x′) as a product:

P (x)

P (x′)
=
P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · · × P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · · × P (x(n−1))

P (x(n))

=

n∏
i=1

P (x(i−1))

P (x(i))
=

n∏
i=1

P (xo[i]|x
(i)
−o[i])

P (x′o[i]|x
(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x

′
o[i]|x

(i)
−o[i]) and

Z = 1/P (x′):

1

Z

∏
i

φi(x) = P (x′)
P (x)

P (x′)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x′.

Note that, unlike x′, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T) = 4/5

P (X1 = T |X2 = F) = 2/5

P (X2 = T |X1 = T) = 2/3

P (X2 = T |X1 = F) = 1/4

Let x′ = [T, T] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x′1|x
(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x′2|x
(2)
−2)

=
P (x2|X1 = T)

P (X2 = T |X1 = T)

Note that φ2 is not a function of x1. This is because x(2)1 =
x′1, so the value ofX1 in the evidence is defined by the base

instance, x′. In general, the ith converted factor φi is not a
function of the first i − 1 variables, since they are fixed to
values in x′.

By simplifying the factors, we obtain the following:

X1 X2 φ1(X1, X2)
T T 1
T F 1
F T 1/4
F F 3/2

X2 φ2(X2)
T 1
F 1/2

Multiplying the factors together and renormalizing yields:

X1 X2 P (X1, X2)
T T 0.4
T F 0.2
F T 0.1
F F 0.3

which matches both conditional distributions. Therefore,
an MN with the factors φ1 and φ2 represents the exact
same distribution as a DN with the conditional distributions
P (X1|X2) and P (X2|X1). Since the original DN is con-
sistent, any choice of x′ or o will lead to the same result.

4.2 LOG-LINEAR MODELS WITH
CONJUNCTIVE FEATURES

In the previous example, we showed how to convert a DN
to an MN using tables as factors. However, this can be very
inefficient when the conditional distributions have struc-
ture, such as decision trees or logistic regression models.
Rather than treating each type of CPD separately, we dis-
cuss how to convert any distribution that can be represented
as a log-linear model with conjunctive features.

Suppose the CPD for Xi is a log-linear model:

P (Xi|X−i) =
1

Z(X−i)
exp

∑
j

wjfj(Dj)

Note that the normalization Z is now a function of the
evidence variables, X−i. To represent P (Xi|x(i)

−o[i]), we

can condition each fj on x
(i)
−o[i] separately:

P (Xi|x(i)
−o[i]) =

1

Z(x
(i)
−o[i])

exp

∑
j

wjfj(Xi,x
(i)
−o[i])

x
(i)
−o[i] uses values from x′ for the first i variables in o and

x for the rest. The values from x′ are constant but those
in x are free variables, so that the resulting distribution is a
function of x. When simplifying fj(x

(i)
−o[i]), if the constant

values in x
(i)
−o[i] violate one of the variable tests in fj , then

fj is always zero and it can be removed entirely. Other-
wise, any conditions satisfied by constant values in x

(i)
−o[i]

are always satisfied and can be removed.

Table 1: The Basic DN2MN Algorithm
function DN2MN({Pi(Xi|X−i)},x′, o−1)
M ← ∅
for i = 1 to n do

Convert Pi to a set of weighted features, Fi.
for each weighted feature (w, f) ∈ Fi do
fn ← SIMPLIFYFEATURE(i, f,x′, o−1, true)
fd ← SIMPLIFYFEATURE(i, f,x′, o−1, false)
M =M ∪ (w, fn) ∪ (−w, fd)

end for
end for
return M

For example, suppose P (X2|X1, X4) uses the following
three conjunctive features:

f1(X1, X2, X4) = X1 ∧ ¬X2 ∧X4

f2(X1, X2) = X1 ∧X2

f3(X2, X4) = X2 ∧ ¬X4

If x′ = [T, T, T, T] and o = [1, 2, 3, 4], then x(2) =

[X1, X2, T, T]. After conditioning f1, f2, and f3 on x
(2)
−o[2],

they simplify to:

f1(X1, X2) = X1 ∧ ¬X2

f2(X1, X2) = X1 ∧X2

f3 is removed entirely, since it is inconsistent with x
(2)
−o[2].

To compute φ2, we must additionally condition the func-
tion in the denominator on X2 = x′2 = T . If the weights
of f1 and f2 are w1 and w2, respectively, then:

φ2(X1, X2)

=
P (X2|X1, X4 = T)

P (X2 = T |X1, X4 = T)

=
exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2))/Z(x

(2)
−o[2])

exp(w2(X1 ∧X2))/Z(x
(2)
−o[2])

= exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2)− w2X1)

Note that the final factor φi is always a log-linear model
where each feature is a subset of one of the features in
the original conditional distribution. Therefore, converting
each conditional distribution in this manner yields an MN
represented as a log-linear model.

We summarize our complete method for consistent DNs
with the algorithms in Tables 1 and 2. DN2MN takes a
set of conditional probability distributions, {Pi(Xi|X−i)},
a base instance x′, and an inverse variable ordering o−1.
The inverse variable ordering is a mapping from variables
to their corresponding indices in the desired ordering o, so
that o−1[o[i]] = i. DN2MN first converts the conditional

Table 2: Feature Simplifying Subroutine
function SIMPLIFYFEATURE(i, f,x′, o−1, numerator)
f ′ ← ∅
for each variable test (Xj = vj) ∈ f do

if o−1[i] < o−1[j] OR (i = j AND numerator) then
f ′ ← f ′ ∪ (Xj = vj)

else if vj 6= x′j then
return ∅

end if
end for
return f ′

distributions into sets of weighted features. Then it condi-
tions each feature on some of the values in x′, depending
on the variable order, to produce the simplified distribu-
tions for the numerator and denominator of (4). This is
handled by SIMPLIFYFEATURE, which accepts a parame-
ter to indicate if the simplified feature is for the numerator
or denominator. Features in the denominator are assigned
negative weights, since 1/ exp(wf) = exp(−wf).

5 HANDLING INCONSISTENCIES

When the basic DN2MN algorithm is applied to an incon-
sistent DN, the result may depend on x′ and o. For exam-
ple, consider the following conditional distributions:

P1(X1 = T |X2 = T) = 4/5

P1(X1 = T |X2 = F) = 1/5

P2(X2 = T |X1 = T) = 1/5

P2(X2 = T |X1 = F) = 4/5

P1 encourages X1 and X2 to be equal, while P2 encour-
ages them to have opposite values. By symmetry, it is easy
to see that a Gibbs sampler with these transition probabili-
ties must converge to a uniform distribution. However, the
conditional distributions are not consistent with a uniform
distribution, so the DN is inconsistent. We see that the
choice of x′ here does affect the converted MN:

When x′ = [T, T] When x′ = [F, F]
and o = [1, 2]: and o = [1, 2]:

X1 X2 P (X1, X2)
T T 4/85
T F 16/85
F T 1/85
F F 64/85

X1 X2 P (X1, X2)
T T 64/85
T F 1/85
F T 16/85
F F 4/85

Unsurprisingly, changing the ordering o also changes the
resulting probability distribution for this example. How-
ever, no single choice of x′ and o leads to the true, uniform
distribution. To obtain a uniform distribution, we must av-
erage over several conversions.

5.1 AVERAGING OVER ALL BASE INSTANCES

A reasonable way to average is to convert the DN to an
MN k times and take the geometric mean of the resulting

distributions. With a log-linear model, this can be done by
simply combining all features from all models and dividing
the weights by k.

However, instead of merely summing over a small number
of base instances x′, we can sum over all base instances
in linear time and space by exploiting the structure of con-
junctive features. Given a feature fj and an intermediate
instance x

(i)
−o[i], suppose that k binary-valued variables in

fj have constant values in x
(i)
−o[i]. Out of all possible x′,

only the fraction 2−k will be consistent with the instance.
Therefore, rather than enumerating all possible x′, we can
simply multiply the weight of fj by 2−k, to reflect the fact
that it would be included in only that fraction of the con-
verted MNs.

For inconsistent DNs, a uniform distribution over all x′

may not be a good approach, since the DN may be more in-
consistent in less probable regions of the state space, lead-
ing to worse behavior. We have found that a product of
marginals distribution over x′ works well. We use train-
ing data to estimate the marginal distribution of each vari-
able, and then use those marginals to compute the modified
weight of each conditioned feature. The uniform approach
remains a special case. We also experimented with aver-
aging over all training examples, but found that using the
marginals worked slightly better.

5.2 AVERAGING OVER ORDERINGS

Since the conversion depends on the ordering, we would
like to average over all possible orderings as well. Since
every feature in the final model is a subset of one of the
original features, a feature with k variable tests has at most
2k subsets to consider. When converting the conditional
distribution for variableXi, all variables that come after i in
the ordering are constant, so variable tests involving those
variables will be removed. Consider a specific conjunctive
subfeature that contains only l of the original k variable
tests. There are k! total orderings of the variables in the k
conditions. There are (l − 1)! ways to order the remaining
conditions (excluding the target), and (k− l) ways to order
the conditions that were removed.1 Therefore, the fraction
of orderings consistent with a particular subfeature is: (l−
1)!(k − l)!/k!.

In a model with long conjuncts, the exponential number of
subfeatures leads to prohibitively large model sizes. Al-
ternately, we can sum over a linear number of orderings.
Given a base ordering, o, we sum over all n orderings of
the form:

[o[i], o[i+ 1], . . . , o[n], o[1] . . . , o[i− 1]]

1We assume each variable appears in at most one condition, so
they can be ordered independently. This assumption can easily be
relaxed.

for all i. When averaging over a linear number of orderings,
a conjunctive feature with k variable tests will be converted
to k subfeatures, each determined by which of the variables
comes first in the ordering.

For example, suppose the conditional distribution for X7

contains the feature X4 ∧X6 ∧X7 ∧X13 and we are sum-
ming over all rotations of [1, 2, . . . , n]:

• If X7 is first in the order, then the conditioned feature
is X4 ∧X6 ∧X7 ∧X13.
• If X5 or X6 comes first, then X6 is fixed to its value

in x′, leaving X4 ∧X7 ∧X13.
• IfX1 toX4 orX14 toXn comes first, thenX4 andX6

come before X7 in the ordering, leaving X7 ∧X13.
• If X8 to X12 comes first, then all variables come be-

fore X7, so the conditioned feature is just X7.

Note that these orderings should not be weighted equally.
The weights for the four subfeatures should be multiplied
by 1/n, 2/n, (4 + (n− 13))/n, and 5/n, respectively.

For symmetry, we can average over all rotations of several
different orderings. In our experiments, we average over all
rotations of the orderings [1, 2, . . . , n] and [n, n−1, . . . , 1].
For features of length 2, this is equivalent to summing
over all orderings, since all subfeatures are included and
the symmetry of the opposite orderings ensures balanced
weights.

6 EXPERIMENTS

6.1 DATASETS

We used 12 standard MN structure learning datasets col-
lected and prepared by Davis and Domingos [3], omitting
EachMovie since it is no longer publicly available. All vari-
ables are binary-valued. The datasets vary widely in size
and number of variables. See Table 3 for a summary, and
Davis and Domingos [3] for more details on their origin.
Datasets are in increasing order by number of variables.

Table 3: Dataset characteristics
Dataset # Train # Tune # Test # Vars
NLTCS 16,181 2,157 3,236 16
MSNBC 291,326 38,843 58,265 17
KDDCup 2000 180,092 19,907 34,955 64
Plants 17,412 2,321 3,482 69
Audio 15,000 2,000 3,000 100
Jester [6] 9,000 1,000 4,116 100
Netflix 15,000 2,000 3,000 100
MSWeb 29,441 3,270 5,000 294
Book 8,700 1,159 1,739 500
WebKB 2,803 558 838 839
Reuters-52 6,532 1,028 1,540 889
20 Newsgroups 11,293 3,764 3,764 910

6.2 METHODS

On each dataset, we learned DNs with decision tree CPDs
and logistic regression CPDs. For decision tree CPDs, each
probabilistic decision tree was greedily learned to maxi-
mize the conditional likelihood of the target variable given
the others. To avoid overfitting, we used the structure prior
of Heckerman et al. [8], P (S) ∝ κf , where f is the number
of free parameters in the model and κ > 0 is a tunable pa-
rameter. Parameters were estimated using add-one smooth-
ing. We learned logistic regression CPDs with L1 regu-
larization using the Orthant-Wise Limited-memory Quasi-
Newton (OWL-QN) method [1]. Both κ and λ (the L1 reg-
ularization parameter) were tuned using held-out validation
data. For κ, we started from a value of 10−4 and increased
it by a factor of 10 until the score on the validation set de-
creased. For λ, we used the values 0.1, 0.2, 0.5, 1, 2, 5, . . . ,
1000 and selected the model with the highest score on the
validation set. To score a DN on a validation set, we com-
puted the product of the conditional probabilities of each
variable according to their respective CPDs.

We converted the DNs to MNs with 6 different choices of
base instances and orderings:

1. One ordering; one base instance
2. Two opposite orderings; one base instance
3. One ordering; expectation over all instances
4. Two opposite orderings; expectation over all instances
5. All rotations of one ordering; expectation over all in-

stances
6. All rotations of two opposite orderings; expectation

over all instances

The expectation over all instances was done using the
marginal distribution of the variables, as estimated using
the training data. To be as fair as possible, we include the
time to read in the entire training data in our timing results,
as well as the time to write the model to disk.

We also converted the DNs to MNs using weight learning,
similar to the methods of [15, 12]. We first converted all
DN CPDs to conjunctive features and removed duplicate
features. Then we learned weights for all features to maxi-
mize the PLL of the training data, using a Gaussian prior on
the weights to reduce overfitting. The standard deviation of
the Gaussians was tuned to maximize PLL on the valida-
tion set. With decision tree CPDs, we used standard devia-
tions of 0.05, 0.1, 0.2, 0.5, and 1.0, and the best-performing
models always had standard deviations between 0.1 and
0.5. For logistic regression CPDs, a slightly wider range of
standard deviations was required, ranging from 0.1 to 10.
Optimization was done using the limited memory BFGS
algorithm, a quasi-Newton method for convex optimiza-
tion [11]. Weight learning was terminated after 100 iter-
ations if it had not yet converged.

We did not compare to BLM [3] or the algorithm of Della
Pietra et al. [4], since those algorithms have been shown to
be less accurate and many orders of magnitude slower than
Ravikumar et al. [15] on these datasets [12, 7].

In addition to PLL, we computed conditional marginal
log-likelihood (CMLL), a common evaluation metric for
Markov networks [3, 10, 12]. CMLL is the sum of the con-
ditional log-likelihood of each variable, given a subset of
the others as evidence. In our experiments, we followed
the approach of Davis and Domingos [3], who partition the
variables into four sets, Q1 through Q4. The marginal dis-
tribution of each variable is computed using the variables
from the other three sets as evidence:

CMLL(X) =
∑
j

∑
Xi∈Qj

logP (Xi|X−Qj)

Marginals were computed using Gibbs sampling. We used
a Rao-Blackwellized Gibbs sampler that adds counts to all
states of a variable based on its conditional distribution be-
fore selecting the next value for that variable. We found
that 100 burn-in and 1000 sampling iterations were suffi-
cient for Gibbs sampling, and additional iterations did not
affect the results very much.

All of our learning and inference methods are available in
the latest version of the open-source Libra toolkit.2

6.3 RESULTS

First, we compare the different approaches to converting
inconsistent DNs and compare the accuracy of the result-
ing MNs to the original DNs. Figure 1 shows the result
of converting DNs with both decision tree CPDs (left) and
logistic regression CPDs (right). We measure the relative
accuracy by comparing the PLL of each MN to the orig-
inal DN on the test data. In order to better show differ-
ences among datasets with different numbers of variables,
we show the normalized PLL (NPLL), which divides the
PLL by the number of variables in the domain. All graphs
are rescaled so that the height of the tallest bar in each clus-
ter is one, with its actual height listed above the graph. With
consistent DNs, all methods would be equivalent and all
differences would be zero. Since the DNs are inconsistent,
converting to an MN may result in an altered distribution
that is less accurate on test data.

Empirically, we see that using many orders and summing
over all base instances leads to more accurate models. For
the decision tree DNs, some of the bars are negative, indi-
cating MNs that are more accurate than their source DNs.
This can happen because the conditional distributions in
the MN combine several conditional distributions from the
original DN, leading to more complex dependencies than a
single decision tree. With 2n orderings, the converted MN

2http://libra.cs.uoregon.edu/

was more accurate on 10 out of 12 datasets. For logistic
regression DNs, the converted MNs are very, very close in
accuracy, but never better. With 2n orderings, the differ-
ence in NPLL is less than 0.005 for all datasets, and is less
than 0.001 for 8 out of 12.

Table 4 shows the relative accuracy of converting DNs to
MNs by learning weights (LW) or by direct conversion
with 2n orderings and a marginal distribution over base
instances (DN2MN). The result of the better performing
algorithm is marked in bold. Differences on individual
datasets are not always statistically significant, but the over-
all ranking trend shows the relative peroformance of the
two methods. LW and DN2MN do similarly well on tree
CPDs: neither PLL nor CMLL was significantly different
according to a Wilcoxon signed ranks test. With logis-
tic regression CPDs, DN2MN achieves higher PLL on 10
datasets and CMLL on 9. Both differences are significant
at p < 0.05 under a two-tailed Wilcoxon signed ranks test.

Table 5 shows the time for converting DNs using our
closed-form solution and weight learning. DN2MN is 7
to 250 times faster than weight learning with decision tree
CPDs, and 160 to 1200 times faster than weight learning
with logistic regression CPDs. These results include tun-
ing time, which is necessary to obtain the best results for
weight learning. If all tuning time is excluded, weight
learning is 12 times slower with tree CPDs and 49 times
slower with logistic regression CPDs, on average.

7 CONCLUSION

DN2MN learns an MN with very similar performance to
the original DN, and does so very quickly. With decision
tree CPDs, the MN is often more accurate than the orig-
inal DN. With logistic regression CPDs, the MN is sig-
nificantly more accurate than performing weight learning
as done by Ravikumar et al. [15]. This makes DN2MN
competitive with or better than state-of-the-art methods for
learning MN structure. Furthermore, DN2MN can exploit
many types of conditional distributions, including boosted
trees and rule sets, and can easily take advantage of any
algorithmic improvements in learning conditional distribu-
tions. Another important application of DN2MN is when
the model is specified by experts, since conditional distri-
butions could be much easier to specify than a joint distri-
bution.

Acknowledgements

We thank Chloé Kiddon, Jesse Davis, and the anonymous re-
viewers for helpful comments. This research was partly funded
by ARO grant W911NF-08-1-0242, NSF grant IIS-1118050, and
NSF grant OCI-0960354. The views and conclusions contained
in this document are those of the author and should not be in-
terpreted as necessarily representing the official policies, either
expressed or implied, of ARO, NSF, or the U.S. Government.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.0025 0.0007 0.0003 0.0057 0.0007 0.0032 0.0027 0.0002 0.0014 0.0076 0.0120 0.0299

1

5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L,
 re

sc
al

ed

Dataset

 !0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.003 0.001 0.000 0.006 0.001 0.003 0.003 0.000 0.001 0.008 0.012 0.030

1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

Figure 1: Difference in normalized PLL between the original DNs and converted MNs with different orderings and base
instances, divided by largest difference. Results from decision tree DNs are on the left; logistic regression DNs are on the
right. Smaller values indicate better MN performance. Largest difference values are listed above each dataset’s results,
rounded to nearest 1/1000th.

Table 4: Test set PLL and CMLL of converted DNs with tree and logistic regression CPDs.

Tree CPDs LR CPDs
PLL CMLL PLL CMLL

Dataset LW DN2MN LW DN2MN LW DN2MN LW DN2MN
NLTCS -5.02 -4.93 -5.25 -5.20 -4.96 -4.95 -5.23 -5.23
MSNBC -4.32 -4.31 -5.75 -5.80 -6.06 -6.06 -6.28 -6.28
KDDCup 2000 -2.05 -2.05 -2.08 -2.07 -2.06 -2.07 -2.11 -2.12
Plants -8.75 -9.17 -10.00 -10.67 -9.39 -9.50 -10.76 -10.91
Audio -38.01 -37.77 -38.25 -38.35 -36.17 -36.11 -36.93 -36.88
Jester -51.42 -50.77 -51.49 -51.42 -49.01 -48.81 -49.83 -49.76
Netflix -54.32 -53.60 -54.62 -54.50 -51.15 -51.10 -52.37 -52.31
MSWeb -8.20 -8.33 -8.72 -8.77 -8.70 -8.64 -8.96 -8.93
Book -34.60 -35.14 -34.49 -35.44 -33.86 -33.41 -34.75 -34.09
WebKB -149.37 -148.42 -149.99 -151.88 -153.13 -139.39 -158.51 -143.05
Reuters-52 -82.57 -82.67 -82.53 -85.16 -81.44 -77.62 -81.82 -79.60
20 Newsgroups -159.14 -152.84 -156.08 -154.06 -151.53 -147.76 -151.93 -148.82

Table 5: Total running time for learning MNs from DNs. DN2MN method uses 2n orderings and marginals.

Tree CPDs LR CPDs
Dataset LW DN2MN Speedup LW DN2MN Speedup
NLTCS 4.9s 0.3s 17.3 2.3s 0.01s 162.4
MSNBC 73.3s 9.4s 7.8 7.6s 0.04s 189.6
KDDCup 2000 121.3s 3.8s 31.5 32.0s 0.12s 251.7
Plants 67.9s 1.6s 42.7 71.4s 0.17s 427.6
Audio 147.4s 1.8s 80.3 139.3s 0.40s 344.0
Jester 56.6s 1.2s 46.6 311.7s 0.32s 974.1
Netflix 109.8s 2.0s 54.7 534.3s 0.43s 1245.6
MSWeb 452.8s 16.0s 28.3 308.6s 0.65s 472.0
Book 361.6s 1.4s 252.6 224.8s 1.10s 203.5
WebKB 177.5s 1.8s 128.6 386.3s 1.71s 225.9
Reuters-52 798.2s 3.3s 242.7 951.0s 2.66s 357.7
20 Newsgroups 1952.9s 7.6s 257.9 3830.5s 7.61s 503.0
Geom. mean 149.3s 2.5s 59.9 145.4s 0.38s 363.9

References

[1] G. Andrew and J. Gao. Scalable training of l1-regularized
log-linear models. In Proceedings of the 24th International
Conference on Machine Learning, pages 33–40. ACM,
2007.

[2] J. Besag. Statistical analysis of non-lattice data. The Statis-
tician, 24:179–195, 1975.

[3] J. Davis and P. Domingos. Bottom-up learning of Markov
network structure. In Proceedings of the Twenty-Seventh In-
ternational Conference on Machine Learning, Haifa, Israel,
2010. ACM Press.

[4] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing
features of random fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19:380–392, 1997.

[5] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors.
Markov Chain Monte Carlo in Practice. Chapman and
Hall, London, UK, 1996.

[6] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigen-
taste: A constant time collaborative filtering algorithm. In-
formation Retrieval, 4(2):133–151, 2001.

[7] J. Van Haaren and J. Davis. Markov network structure learn-
ing: A randomized feature generation approach. In Proceed-
ings of the Twenty-Sixth National Conference on Artificial
Intelligence. AAAI Press, 2012.

[8] D. Heckerman, D. M. Chickering, C. Meek, R. Rounth-
waite, and C. Kadie. Dependency networks for inference,
collaborative filtering, and data visualization. Journal of
Machine Learning Research, 1:49–75, 2000.

[9] G. Hulten, D. M. Chickering, and D. Heckerman. Learning
Bayesian networks from dependency networks: A prelimi-
nary study. In Proceedings of the Ninth International Work-
shop on Artificial Intelligence and Statistics, Key West, FL,
2003.

[10] S.-I. Lee, V. Ganapathi, and D. Koller. Efficient struc-
ture learning of Markov networks using L1-regularization.
In Advances in Neural Information Processing Systems 19,
pages 817–824. MIT Press, 2007.

[11] D. C. Liu and J. Nocedal. On the limited memory BFGS
method for large scale optimization. Mathematical Pro-
gramming, 45(3):503–528, 1989.

[12] D. Lowd and J. Davis. Learning Markov network structure
with decision trees. In Proceedings of the 10th IEEE In-
ternational Conference on Data Mining (ICDM), Sydney,
Australia, 2010. IEEE Computer Society Press.

[13] D. Lowd and A. Shamaei. Mean field inference in depen-
dency networks: An empirical study. In Proceedings of the
Twenty-Fifth National Conference on Artificial Intelligence,
San Francisco, CA, 2011. AAAI Press.

[14] A. McCallum. Efficiently inducing features of conditional
random fields. In Proceedings of the Nineteenth Conference
on Uncertainty in Artificial Intelligence, Acapulco, Mexico,
2003. Morgan Kaufmann.

[15] P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-
dimensional ising model selection using L1-regularized lo-
gistic regression. Annals of Statistics, 2009.

[16] D. Roth. On the hardness of approximate reasoning. Artifi-
cial Intelligence, 82:273–302, 1996.

[17] K. Toutanova, D. Klein, C.D. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic depen-
dency network. In Proceedings of the 2003 Human Lan-
guage Technology Conference and North American Chap-
ter of the Association for Computational Linguistics, pages
173–180. Association for Computational Linguistics, 2003.

[18] E. Yang and P. Ravikumar. On the use of variational infer-
ence for learning discrete graphical models. In Proceedings
of the Twenty-Eighth International Conference on Machine
Learning, Bellevue, WA, 2011. ACM Press.

