
Value Function Approximation in Noisy Environments Using Locally Smoothed
Regularized Approximate Linear Programs

Gavin Taylor
Department of Computer Science

United States Naval Academy
Annapolis, MD 21402

Ronald Parr
Department of Computer Science

Duke University
Durham, NC 27708

Abstract

Recently, Petrik et al. demonstrated that L1-
Regularized Approximate Linear Programming
(RALP) could produce value functions and poli-
cies which compared favorably to established
linear value function approximation techniques
like LSPI. RALP’s success primarily stems from
the ability to solve the feature selection and
value function approximation steps simultane-
ously. RALP’s performance guarantees become
looser if sampled next states are used. For
very noisy domains, RALP requires an accurate
model rather than samples, which can be unre-
alistic in some practical scenarios. In this pa-
per, we demonstrate this weakness, and then in-
troduce Locally Smoothed L1-Regularized Ap-
proximate Linear Programming (LS-RALP). We
demonstrate that LS-RALP mitigates inaccu-
racies stemming from noise even without an
accurate model. We show that, given some
smoothness assumptions, as the number of sam-
ples increases, error from noise approaches
zero, and provide experimental examples of
LS-RALP’s success on common reinforcement
learning benchmark problems.

1 Introduction

Markov Decision Processes (MDPs) are applicable to a
large number of real-world Artificial Intelligence prob-
lems. Unfortunately, solving large MDPs is computation-
ally challenging, and it is generally accepted that such
MDPs can only be solved approximately. This approxima-
tion is often done by relying on linear value function ap-
proximation, in which the value function is chosen from a
low-dimensional vector space of features. Generally speak-
ing, agent interactions with the environment are sampled,
the vector space is defined through feature selection, a
value function is selected from this space by weighting fea-

tures, and finally a policy is extracted from the value func-
tion. Each of these steps contains difficult problems and is
an area of active research. The long-term hope for the com-
munity is to handle each of these topics on increasingly
difficult domains with decreasing requirements for expert
guidance (providing a model, features, etc.) in application.
This will open the door to wider application of reinforce-
ment learning techniques.

Previously, Petrik et al. [12] introduced L1-Regularized
Approximate Linear Programming (RALP) to combine and
automate the feature selection and feature weighting steps
of this process. Because RALP addresses these steps in tan-
dem, it is able to take advantage of extremely rich feature
spaces without overfitting. However, RALP’s hard con-
straints leave it especially vulnerable to errors when noisy,
sampled next states are used. This is because each sam-
pled next state generates a lower bound on the value of the
originating state. Without a model, the LP will not use the
expectation of these next state values but will instead use
the max of the union of the discounted values of sampled
next states. Thus, a single low probability transition can de-
termine the value assigned to a state when samples are used
in lieu of a model. This inability to handle noisy samples
is a key limitation of LP based approaches.

In this paper, we present Locally Smoothed L1-Regularized
Approximate Linear Programming (LS-RALP), in which a
smoothing function is applied to the constraints of RALP.
We show this smoothing function reduces the effects of
noise, without the requirement of a model. The result is
a technique which accepts samples and a large candidate
feature set, and then automatically chooses features and ap-
proximates the value function, requiring neither a model,
nor human-guided feature engineering.

Standard ALP approaches produce value functions and re-
quire a model at policy execution time to determine the op-
timal action with respect the value function returned by the
LP. We extend LS-RALP to produce Q-functions, rather
than value functions, thereby removing the dependence on
a model from both value function learning and policy exe-
cution.

After introducing notation, this paper first examines RALP
in Section 3 to demonstrate the effect of noise on solution
quality. Section 4 then introduces LS-RALP, and explains
the approach. In Section 5, we prove that as samples are
added, the error from noise in LS-RALP’s value function
approximation approaches zero. Finally, in Section 6, we
empirically demonstrate LS-RALP’s success in high-noise
environments, even with a small number of samples. Fi-
nally, in Section 7, we make our concluding remarks.

2 Framework and Notation

In this section, we formally define Markov decision pro-
cesses and linear value function approximation. A Markov
decision process (MDP) is a tuple (S ,A, p, R, γ), where S
is a measurable subset of Euclidean space, andA is a finite
set of actions. p is a transition kernel, where p(s′|s, a) rep-
resents the conditional density for next states. The function
R : S 7→ < is a measurable reward function, and γ is a
discount factor.

We are concerned with finding a value function V that maps
each state s ∈ S to the expected total γ-discounted reward
for the process. Value functions can be useful in creating
or analyzing a measurable policy function π : S × A →
[0, 1] such that for all s ∈ S , ∑a∈A π(s, a) = 1. The tran-
sition and reward functions for a given policy are denoted
by Pπ and Rπ . We denote the Bellman operator for a given
policy as T̄π , and the max Bellman operator simply as T̄.
That is, for some state s ∈ S :

T̄πV(s) = R(s) + γ
∫
S

P(s′|s, π(s))V(s′)ds′

T̄V(s) = max
π∈Π

T̄πV(s).

We additionally denote the Bellman operator for a policy
which always selects action a as

T̄aV(s) = R(s) +
∫
S

P(s′|s, a)V(s′)ds′.

If S is finite, the above Bellman operators can be expressed
for all states using matrix notation, in which V and R are
vectors of values and rewards for each state, respectively,
and P is a matrix containing probabilities of transitioning
between each pair of states:

T̄πV = Rπ + γPπV

T̄V = max
π∈Π

T̄πV

T̄aV = R + γPaV

The optimal value function V∗ satisfies T̄V∗ = V∗.

Because T̄ computes an exact expectation over next states,
we refer to T̄ as the Bellman operator with expectation.

This requires sampling with expectation, defined as Σ̄ ⊆
{(s, a, E [R(s)]), p(·|s, a)|s ∈ S , a ∈ A}. This kind of
sampling assumes that the complete density over next states
is provided with every sample, a rather unrealistic assump-
tion. It is therefore usually convenient to use one-step sim-
ple samples Σ ⊆ {(s, a, r, s′)|s, s′ ∈ S , a ∈ A}, where s′

is a single draw from p(s′|s, a). An individual (s, a, r, s′)
sample from sets Σ̄ and Σ will be denoted σ̄ and σ, re-
spectively. An individual element of a sample σ will be
denoted with superscripts; that is, the s component of a
σ = (s, a, r, s′) sample will be denoted σs. Simple samples
have an associated sampled Bellman operator Tσ, where
TσV(σs) = σr + γV(σs′).

We will also define the optimal Q-function Q∗(s, a) as the
value of taking action a at state s, and following the optimal
policy thereafter. More precisely, Q∗(s, a) = R(s, a) +
γ
∫
S P(s′|s, a)V∗(s′)ds′.

We focus on linear value function approximation for dis-
counted infinite-horizon problems, in which the value func-
tion is represented as a linear combination of nonlinear ba-
sis functions (vectors) which are assumed to be measurable
on S. For each state s, we define a vector Φ(s) of features.
The rows of the basis matrix Φ correspond to Φ(s), and
the approximation space is generated by the columns of the
matrix. That is, the basis matrix Φ, and the value function
V are represented as:

Φ =

(
− Φ(s1) −

...

)
V = Φw.

This form of linear representation allows for the calculation
of an approximate value function in a lower-dimensional
space, which provides significant computational benefits
over using a larger or complete basis; if the number of fea-
tures is small, this framework can also guard against over-
fitting any noise in the samples though small features sets
alone cannot protect ALP methods from making errors due
to noise.

3 L1-Regularized Approximate Linear
Programming

This section includes our discussion of L1-Regularized Ap-
proximate Linear Programming. Subsection 3.1 will re-
view the salient points of the method, while Subsection 3.2
will discuss the weaknesses of the method and our motiva-
tion for improvement.

3.1 RALP Background

RALP was introduced by Petrik et al. [12] to improve the
robustness and approximation quality of Approximate Lin-
ear Programming (ALP) [13, 1]. For a given set of samples
with expectation Σ̄, feature set Φ, and regularization pa-

rameter ψ, RALP calculates a weighting vector w by solv-
ing the following linear program:

min
w

ρTΦw
s.t. T̄σa Φ(σs)w ≤ Φ(σs)w ∀σ ∈ Σ

‖w‖1,e ≤ ψ,
(1)

where ρ is a distribution over initial states, and ‖w‖1,e =
∑i |e(i)w(i)|. It is generally assumed that ρ is a constant
vector and e = 1−1, which is a vector of all ones but for
the position corresponding to the constant feature, where
e(i) = 0.

Adding L1 regularization to the constraints of the ALP
achieved several desirable effects. Regularization ensured
bounded weights in general and smoothed the value func-
tion. This prevented missing constraints due to unsam-
pled states from leading to unbounded or unreasonably low
value functions. By using L1 regularization in particular,
the well-known sparsity effect could be used to achieve au-
tomated feature selection from an extremely rich Φ. Fi-
nally, the sparsity in the solution could lead to fast solution
times for the LP even when the number of features is large
because the number of active constraints in the LP would
still be small.

As a demonstration of the sparsity effect, RALP was run on
the upright pendulum domain (explained in detail in Sec-
tion 6) using a set of features for each action consisting of
three Gaussian kernels centered around each sampled state,
one polynomial kernel based around each sampled state,
and a series of monomials calculated on the sampled states.
On one randomly-selected run of 50 sample trajectories (a
trajectory consists of states reached as a result of randomly
selected actions until the pendulum falls over), to represent
the Q-values of the first action RALP selected zero of the
narrowest Gaussian kernels, nine of the intermediate-width
Gaussian kernels, five of the widest Gaussian kernels, five
of the polynomial kernels, and zero of the monomials. For
the second action, the Q value was represented with zero
narrow, seven intermediate, and four wide Gaussian ker-
nels, six polynomial kernels, and one monomial. For the
final action, these numbers were one, four, four, seven,
and zero. Selecting this same mixture of features by hand
would be extremely unlikely.

Petrik et al. [12] demonstrated a guarantee that the error on
the RALP approximation will be small, as will be further
discussed in the next subsection. Additionally, in exper-
iments, policies based on RALP approximations outper-
formed policies generated by Least-Squares Policy Itera-
tion [9], even with very small amounts of data.

RALP is not the only approach to leverage L1 regular-
ization in value function approximation; others include
LARS-TD [7], and LC-MPI [6], which both attempt to cal-
culate the fixed point of the L1-penalized LSTD problem.
Unlike RALP, this solution is not guaranteed to exist when

samples are drawn off-policy. These methods have the ad-
vantage of handling noise more gracefully than LP based
approaches, but require on-policy sampling for reliable per-
formance. On-policy sampling is often a challenging re-
quirement for real-life applications.

3.2 RALP Weaknesses

The RALP constraints in LP 1 are clearly difficult to ac-
quire – samples with expectation require a model that pro-
vides a distribution over next states, or access to a simula-
tor that can be easily reset to the same states many times to
compute an empirical next state distribution for each con-
straint.

Petrik et al. [12] previously presented approximation
bounds for three constructions of RALP, depending upon
the sampling regime. In the Full ALP, it is assumed ev-
ery possible state-action pair is sampled with expectation.
The Sampled ALP contains constraints for only a subset
of state-action pairs sampled with expectation. The third
form, the Estimated ALP, also has constraints defined on
sampled state-action pairs, but of the form

Φ(σs)w ≥ TσΦ(σs)w ∀σ ∈ Σ.

Note that the Estimated ALP uses one-step simple samples
and the sampled Bellman operator.

These three forms are presented in order of decreasing ac-
curacy, but increasing applicability. The Full ALP requires
a manageably small and discrete state space, as well as a
completely accurate model of the reward and transition dy-
namics of the system. The Sampled ALP still requires the
model, but allows for constraint sampling; this introduces
constraint violation error (denoted εp), as the approxima-
tion may violate unsampled constraints. Finally, the Esti-
mated ALP requires neither the model nor experience at
every state; because replacing an accurate model with a
sample is likely to be imprecise in a noisy domain, this
introduces model error (denoted εs). However, this is the
most realistic sampling scenario for learning problems that
involve physical systems.

For reference, and to understand the effect of model error,
we reproduce the RALP error bounds for the Sampled and
Estimated ALP here. We denote the solution of the Sam-
pled ALP V̄, and the solution of the Estimated ALP V. εc
is error from states that do not appear in the objective func-
tion because they were not samples. Since ρ is often chosen
fairly arbitrarily, we can assume the unsampled states have
0 weight and that εc = 0.

‖V̄ −V∗‖1,ρ ≤ε + 2εc(ψ) + 2
εp(ψ)

1− γ
(2)

‖V −V∗‖1,ρ ≤ε + 2εc(ψ) +
3εs(ψ) + 2εp(ψ)

1− γ
(3)

To understand the source of model error εs, consider a case
where a state-action pair is sampled twice. Further sup-
pose that in one of these samples, the agent transitions to
a high-value state; in the other, it transitions to a lower-
valued state. The resulting value function is constrained by
the high-valued sample, while the constraint related to the
low-valued experience remains loose; that sample might as
well have not occurred. The approximate value at that state
will be inaccurately high. This scenario is depicted in Fig-
ure 1.

s
(a)

V ∗

(b)

Figure 1: Subfigure 1(a) illustrates two samples beginning
at state s; one transitions to the low-valued circle state,
while the other transitions to the high-valued star state.
Subfigure 1(b) illustrates the resulting constraints and value
function approximation. V∗ is the actual value of this state,
but the red line representing the approximate function is
constrained by the max of the two constraints. Under re-
alistic sampling constraints, it is more likely this scenario
would occur with two samples drawn from very nearly the
same state, rather than both originating from the same sam-
ple s.

The inability of LP approaches to value function approxi-
mation to handle noisy samples is well known. One pro-
posed solution is Smoothed Approximate Linear Program-
ming (SALP), in which the LP is given a budget with which
to violate constraints [2]. Note, however, that there is noth-
ing connecting the constraint violation budget to the prob-
lem dynamics unless additional information is provided.
In Figure 1, for example, SALP could fortuitously choose
the right amount of constraint violation to mix between the
next state values for state s in the proportions dictated by
the model. However it is also possible for SALP to yield
exactly the same value for this state as ordinary ALP, hav-
ing spent its constraint violation budget on some other state
which might not even be noisy.

4 Locally Smoothed L1-Regularized
Approximate Linear Programming

To address the weaknesses introduced in Subsection 3.2,
we introduce Locally Smoothed L1-Regularized Approx-

imate Linear Programming (LS-RALP). The concept be-
hind LS-RALP is simple; by averaging between nearby,
similar samples, we can smooth out the effects of noise
and produce a more accurate approximation. We define
“nearby” to mean two things: one, the states should be
close to each other in the state space, and two, the actions
taken should be identical. The goal is to achieve the per-
formance of the Sampled ALP with the more realistic sam-
pling assumptions of the Estimated ALP.

We now introduce the smoothing function kb(σ, σi). A
smoothing function spreads the contribution of each sam-
pled data point σi over the local neighborhood of data point
σ; the size of the neighborhood is defined by the bandwidth
parameter b. If σa

i 6= σa, the function returns zero. We
also stipulate that ∑σi∈Σ kb(σ, σi) = 1 for all σ, and that
kb(σ, σi) ≥ 0 for all σ, σi. Smoothing functions of this
sort are commonly used to perform nonparametric regres-
sion; as sampled data are added, the bandwidth parameter
is tuned to shrink the neighborhood, to allow for a balance
between the variance from having too few samples in the
neighborhood and the bias from including increasingly ir-
relevant samples which are farther away.

Observation 4.1 Consider the regression problem of esti-
mating the function f of the response variable y = f (x) +
N(x), given n observations (xi, yi)(i = 1, · · · , n), where
N(x) is a noise function. Assume the samples xi are drawn
from a uniform distribution over a compact set G, that f (x)
is continuously differentiable, and that N(x) satisfies cer-
tain regularity conditions. There exists a smoothing func-
tion kb(x, xi) and associated bandwidth function b(n) such
that ∀x ∈ G, as n → ∞, ∑i kb(n)(x, xi)yi → f (x) , al-
most surely.

Smoothing functions that suffice to provide the consistency
guarantees in the above observation include kernel estima-
tors [3] and k-nearest-neighbor averagers [4]. Similar re-
sults exist for cases without uniform sampling [5, 3].

The regularity conditions on the noise function depend
upon the type of estimator and allow for a variety of noise
models [3, 4]. In some of these cases, other assumptions in
Observation 4.1 can be weakened or discounted altogether.

Literature on nonparametric regression also contains exten-
sive theory on optimal shrinkage rates for the bandwidth
parameter; in practice, however, for a given number of sam-
ples, this is commonly done by cross-validation.

We now modify our LP to include our smoothing function:

min
w

ρTΦw
s.t. ∑σi∈Σ kb(σ, σi)Tσa Φ(σs

i)w ≤ Φ(σs
i)w ∀σ ∈ Σ

‖w‖1,e ≤ ψ.
(4)

In this formulation, we are using our smoothing function
to estimate the constraint with expectation T̄Φ(σs)w by

smoothing across our easily obtained TσΦ(σs)w.

Note that unsmoothed RALP is a special case of LS-RALP,
where the bandwidth of the smoothing function is shrunk
until the function is a delta function. Therefore, LS-RALP,
with correct bandwidth choice, can always do at least as
well as RALP.

We note that smoothing functions have been applied to re-
inforcement learning before, in particular by Ormoneit and
Sen [11], whose work was later extended to policy iteration
by Ma and Powell [10]. In this formulation, a kernel esti-
mator was used to approximate the value function; this dif-
fers significantly from our approach of using a smoother to
calculate weights more accurately for a parametric approx-
imation. Additionally, because their approximation simply
averages across states and does not use features, it will tend
to have a poor approximation for novel states unless the
space is very densely sampled. More recently, and indepen-
dently from our work, Kroemer and Peters [8] proposed an
approach to policy evaluation that first used kernel density
estimation to approximate the dynamics and then solved
for the value function of resulting approximate system us-
ing dynamic programming.

5 Convergence Proof

The goal of this section is to demonstrate that the applica-
tion of a smoothing function to the constraints of the Esti-
mated ALP will mitigate the effects of noise. In particular,
we show that as the number of samples approaches infinity,
the LS-RALP solution using one-step samples approaches
the RALP solution using samples with expectation.

We begin by providing an explicit definition of εs that is
consistent with the usage in Petrik et al. [12]. For a set of
samples Σ,

εs = max
σ∈Σ
|T̄Φ(σs)w− TσΦ(σs)w| . (5)

We now introduce and prove our theorem. We denote the
number of samples |Σ| as n.

Theorem 5.1 If the reward function, transition function,
and features are continuously differentiable, samples are
drawn uniformly from a compact state space, and the noise
models of the reward and transition functions satisfy the
conditions of Observation 4.1 that would make kernel re-
gression converge, then there exists a bandwidth function
b(n) such that as n → ∞, the LS-RALP solution using
one-step samples approaches the Sampled RALP solution
for all states in the state space.

We begin by restating the definition of εs:

εs = max
σ∈Σ
|T̄Φ(σs)w− TσΦ(σs)w| .

We then expand upon the portion within the max operator
for some arbitrary σ:

T̄Φ(σs)w− TσΦ(σs)w

=

[
R(σs) + γ

∫
S

P(ds′|σs, σa)Φ(s′)w
]
−
[
σr + γΦ(σs′)w

]
We now introduce the smoothing function so as to match

the constraints of LS-RALP; that is, we replace TσΦ(σs)w
with ∑σi∈Σ kb(σ, σi)TσΦ(σs

i)w.

εs remains the maximum difference between the ideal con-
straint T̄Φ(σs)w and our existing constraints, which are
now ∑σi∈Σ kb(σ, σi)TσΦ(σs

i)w.

T̄Φ(σs)w− ∑
σi∈Σ

kb(σ, σi)TσΦ(σs
i)w

=

[
R(σs) + γ

∫
S

P(ds′|σs, σa)Φ(s′)w
]

− ∑
σi∈Σ

kb(σ, σi)
[
σr

i + γΦ(σs′
i)w

]
=R(σs)− ∑

σi∈Σ
kb(σ, σi)σ

r
i

+ γ
∫
S

P(ds′|σs, σa)Φ(s′)w− γ ∑
σi∈Σ

kb(σ, σi)Φ(σs′
i)w

The smoothing function is performing regression on all ob-
served data, rather than just the single, possibly-noisy sam-
ple. The first two terms of the above equation are the dif-
ference between the expected reward and the predicted re-
ward, while the second two are the difference between the
expected next value and the predicted next value. The more
accurate our regression on these two terms, the smaller εs
will be.

It follows from Observation 4.1 that as n increases, if
R(s), P(s′|s, a), and Φ(s) are all continuously differen-
tiable with respect to the state space, and if samples are
drawn uniformly from a compact set, and the noise model
of the reward and transition functions is one of several al-
lowed noise models, there exists a bandwidth shrinkage
function b(n) such that ∑σi∈Σ kb(σ, σi)TσΦ(σs

i)w will ap-
proach T̄Φ(σs)w almost surely, and εs will approach 0 al-
most surely.

When εs = 0, the smoothed constraints from one-step sam-
ples of LS-RALP are equivalent to the constraints with ex-
pectation of the Sampled RALP.

The assumptions on R(s), P(s′|s, a), and Φ(s) required for
our proof may not always be realistic, and are stronger than
the bounded change assumptions made by RALP. However,
we will demonstrate in the next section that meeting these
assumptions is not necessary for the method to be effective.

This theorem shows that sample noise, the weak point of all
ALP algorithms, can be addressed by smoothing in a prin-
cipled manner. Even though these results address primarily

the limiting case of n → ∞, our experiments demonstrate
that in practice we can obtain vastly improved value func-
tions even with very few samples.

6 Experiments

In this section, we apply LS-RALP to noisy versions of
common reinforcement learning benchmark problems to
demonstrate the advantage of smoothing. We will use two
domains, the inverted pendulum [15] and the mountain-
car [14]. While we have proved that LS-RALP will im-
prove upon the value function approximation of RALP
as the number of samples grows large, our experiments
demonstrate that there is significant improvement even with
a relatively small number of samples.

In the mountain-car domain, we approximate the value
function, and then apply the resulting greedy policy. We
generate the policy via the use of a model; at each state, we
evaluate each candidate action, and calculate the approxi-
mate value at the resulting state. The action which resulted
in the highest value is then chosen in the trajectory.

In the pendulum problem, we extend the method to the ap-
proximation of Q-functions, and again apply the resulting
greedy policy. When using Q-functions, the model is un-
necessary; the action with the highest Q-value is chosen.

6.1 Mountain Car

In the mountain car problem, an underpowered car must
climb a hill by gaining momentum. The state space is
two-dimensional (position and velocity), the action space
is three-dimensional (push, pull, or coast), and the discount
factor is 0.99. Traditionally, a reward of −1 is given for
any state that is not in the goal region, and a reward of 0
is given for any state that is. For this problem we applied
Gaussian noise with standard deviation .5 to the reward to
demonstrate the ability of LS-RALP to handle noisy re-
wards. This is a very large amount of noise that greatly
increases the difficulty of the problem.

Features are the distributed radial basis functions suggested
by Kolter and Ng [7]; however, because LSPI with LARS-
TD requires a distinct set of basis functions for each ac-
tion, while RALP methods do not, our dictionary is one-
third of the size. For sake of a baseline comparison, we
note that in the deterministic version of this problem, we
repeated experiments by Kolter and Ng [7] and Johns et
al. [6] on LARS-TD and LC-MPI, respectively and RALP
outperformed both.

Sample trajectories started at a random state, and were al-
lowed to run with a random policy for 20 steps, or until the
goal state was reached. After the value function was calcu-
lated, it was tested by placing the car in a random state; the
policy then had 500 steps for the car to reach the goal state.

Unlike the paper which introduced RALP [12], only one
action at each state was sampled.

Figure 2 shows the success rate over 50 trials for both
RALP and LS-RALP. The regularization parameter for the
RALP methods was 1.4, and the smoothing function for
LS-RALP was a multivariate Gaussian kernel with a stan-
dard deviation spanning roughly 1/85 of the state space
in both dimensions. These parameters were chosen using
cross validation.

Number of sample trajectories
Pe

rc
e
n

ta
g

e
 o

f
su

cc
e
ss

fu
l
tr

ia
ls

Figure 2: Percentage of successful trials vs. number of
sample trajectories for the mountain-car domain with value
functions approximated by RALP (blue, dotted) and LS-
RALP (green, solid).

6.2 Inverted Pendulum

The focus of this paper is value function approximation,
but our theory extends trivially to Q-function approxima-
tion. We demonstrate this by using RALP and LS-RALP
to approximate Q-functions; this completely removes the
need for a model in policy generation.

In the inverted pendulum problem the agent tries to bal-
ance a stick vertically on a platform by applying force to
the platform. The state space is the angle and angular ve-
locity of the stick, and the action space contains three ac-
tions: a push on the table of 50N, a pull on the table of
50N, and no action. The discount factor is 0.9. The goal is
to keep the pendulum upright for 3000 steps. The noise in
the pendulum problem is applied as Gaussian noise of stan-
dard deviation 10 on the force applied to the table. This is
significantly greater than the noise traditionally applied in
this problem, resulting in much worse performance even by
the best controller we could produce.

We compare RALP and LS-RALP, using the same set of
features; Gaussian kernels of three different widths, a poly-
nomial kernel of degree 3, s[1], s[2], s[1] ∗ s[2], s[1]2, s[2]2,
and a constant feature, where s[1] is the angle, and s[2] is
the angular velocity. For a number of samples n, this was
therefore a total of 4n + 6 features for each action. We also

compare against LSPI, using the radial basis functions used
by Lagoudakis and Parr [9], and LARS-TD wrapped with
policy iteration, using the same features used by RALP and
LS-RALP.

Sampling was done by running 50 trajectories under a ran-
dom policy, until the pendulum fell over (around six steps).
For the LP methods, the regularization parameter was set to
4000, and for LS-RALP, the smoothing function was a mul-
tivariate Gaussian kernel. These parameters were chosen
by cross validation. 50 trials were run for each method, and
the number of steps until failure averaged; if a trial reached
3000 steps, it was terminated at that point. As with the
mountain car experiments, only one action for each sam-
pled state was included. Results are presented in Figure
3.

Notice that while LSPI was competitive with the Q-
functions approximated with RALP, the addition of the
smoother resulted in superior performance even with very
little data.

Number of sample trajectories

A
v
e
ra

g
e
 S

te
p
s

U
n
ti

l
Fa

ilu
re

Figure 3: Average number of steps until failure vs. num-
ber of sample trajectories for the pendulum domain with
Q-functions approximated with LARS-TD with policy it-
eration (violet, hashed), LSPI (red, hashed), RALP (blue
[dark gray], dotted), and LS-RALP (green, solid).

7 Conclusion

In this paper, we have demonstrated the difficulties RALP
can have in using noisy, sampled next states, and we have
shown that the introduction of a smoothing function can
mitigate these effects. Furthermore, we proved that as the
amount of data is increased, error from inaccurate samples
approaches zero. However, our experiments show drastic
improvement with only a small number of samples.

In fairness, we also point out some limitations of our ap-
proach: LS-RALP makes stronger smoothness assump-
tions about the model and features than does RALP (con-
tinuous differentiability vs. the Lipschitz continuity nec-
essary for the RALP bounds). LS-RALP also requires an

additional parameter that must be tuned - the kernel band-
width. We note, however, that the RALP work provides
some guidance on choosing the regularization parameter
and that there is a rich body of work in non-parametric re-
gression that may give practical guidance on the selection
of the bandwidth parameter.

The nonparametric regression literature notes that the band-
width of a smoother can be adjusted not just for the to-
tal number of data points, but also for the density of data
available in the particular neighborhood of interest [5]. The
addition of this type of adaptiveness would greatly increase
accuracy in areas of unusual density.

There are further opportunities to make better use of
smoothing. First, we note that while smoothing the entire
constraint has proven to be extremely useful, it is inevitable
that applying two separate smoothing parameters to the re-
ward and transition components would be even more help-
ful. For example, in the mountain-car experiments of Sub-
section 6.1, only the reward was noisy; applying smoothing
to the reward, and not to the transition dynamics, would im-
prove the approximation. The introduction of an automated
technique of setting bandwidth parameters on two separate
smoothing functions would likely result in more accurate
approximations with less data.

Additionally, while the experiments done for this paper
were extremely quick, this was due to the small number
of samples needed. For larger, more complex domains, the
LP can get large and may take a long time to solve; while
LP solvers are generally thought of as efficient, identifica-
tion of constraints doomed to be loose or features which
will not be selected could cause a drastic improvement in
the speed of this method.

Acknowledgments

This work was supported in part by NSF IIS-0713435 and
NSF IIS-1147641, as well as the Naval Academy Research
Council. Opinions, findings, conclusions or recommenda-
tions herein are those of the authors and not necessarily
those of the sponsors.

References

[1] Daniela Pucci de Farias and Benjamin Van Roy. The
Linear Programming Approach to Approximate Dy-
namic Programming. Operations Research, 2003.

[2] Vijay V. Desai, Vivek F. Farias, and Ciamac C.
Moallemi. A smoothed approximate linear program.
In Advances in Neural Information Processing Sys-
tems, volume 22, 2009.

[3] Luc P. Devroye. The Uniform Convergence of the
Nadaraya-Watson Regression Function Estimate. The
Canadian Journal of Statistics, 6(2):179–191, 1978.

[4] Luc P. Devroye. The uniform convergence of near-
est neighbor regression function estimators and their
application in optimization. IEEE Transactions on In-
formation Theory, 24(2):142 – 151, Mar 1978.

[5] Christine Jennen-Steinmetz and Theo Gasser. A uni-
fying approach to nonparametric regression estima-
tion. Journal of the American Statistical Association,
83(404):1084–1089, 1988.

[6] Jeffrey Johns, Christopher Painter-Wakefield, and
Ronald Parr. Linear complementarity for regular-
ized policy evaluation and improvement. In Advances
in Neural Information Processing Systems 23, pages
1009–1017, 2010.

[7] J. Zico Kolter and Andrew Ng. Regularization and
Feature Selection in Least-Squares Temporal Differ-
ence Learning. In Proceedings of the 26th Interna-
tional Conference on Machine Learning, pages 521–
528, Montreal, Canada, June 2009. Omnipress.

[8] O.B. Kroemer and J. Peters. A non-parametric ap-
proach to dynamic programming. In Advances in
Neural Information Processing Systems, volume 23,
2011.

[9] Michail G. Lagoudakis and Ronald Parr. Least-
Squares Policy Iteration. The Journal of Machine
Learning Research, 2003.

[10] Jun Ma and Warren B. Powell. Convergence Anal-
ysis of Kernel-based On-Policy Approximate Policy
Iteration Algorithms for Markov Decision Processes
with Continuous, Multidimensional States and Ac-
tions. Submitted to IEEE Transactions on Automatic
Control, 2010.

[11] D. Ormoneit and Ś. Sen. Kernel-based reinforcement
learning. Machine Learning, 49(2):161–178, 2002.

[12] Marek Petrik, Gavin Taylor, Ronald Parr, and Shlomo
Zilberstein. Feature selection using regularization
in approximate linear programs for markov decision
processes. In Proceedings of the 27th International
Conference on Machine Learning, 2010.

[13] Paul J. Schweitzer and Abraham Seidmann. General-
ized Polynomial Approximations in Markovian Deci-
sion Processes. Journal of mathematical analysis and
applications, 110(6):568–582, 1985.

[14] Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: an Introduction. MIT Press, 1998.

[15] Hua O. Wang, Kazuo Tanaka, and Michael F. Griffin.
An Approach to Fuzzy Control of Nonlinear Systems:
Stability and Design Issues. IEEE Transactions on
Fuzzy Systems, 4(1):14–23, 1996.

