
Deterministic MDPs with Adversarial Rewards and Bandit Feedback

Raman Arora
TTIC

6045 S. Kenwood Ave.
Chicago, IL 60637, USA

Ofer Dekel
Microsoft Research
1 Microsoft Way

Redmond, WA 98052, USA

Ambuj Tewari
Department of Statistics
University of Michigan

Ann Arbor, MI 48109, USA

Abstract

We consider a Markov decision process with
deterministic state transition dynamics, ad-
versarially generated rewards that change ar-
bitrarily from round to round, and a ban-
dit feedback model in which the decision
maker only observes the rewards it receives.
In this setting, we present a novel and
efficient online decision making algorithm
named MarcoPolo. Under mild assumptions
on the structure of the transition dynamics,
we prove that MarcoPolo enjoys a regret of
O(T 3/4

√
log T) against the best deterministic

policy in hindsight. Specifically, our analysis
does not rely on the stringent unichain as-
sumption, which dominates much of the pre-
vious work on this topic.

1 INTRODUCTION

Sequential decision making problems come in a variety
of different flavors. In some cases it is natural to model
the environment as a stochastic process, while in other
cases we require the more robust assumption that the
environment behaves adversarially. In both cases, we
can either assume that the environment is stationary
or that it evolves over time. For some problems it suf-
fices to assume that the decision-making agent is state-
less, while for other problems we may need to assume
that the agent has a state that depends on its past ac-
tions. We must also specify what level of feedback the
agent observes after making each decision. Finally, if
we assume that the agent indeed has a state, we must
decide whether the state transition dynamics are de-
terministic or stochastic, and whether they are known
or unknown to the agent.

In this paper, we consider sequential decision mak-
ing in an adversarial and nonstationary environment
where the agent has a state. That is, on each round

of the sequential decision-making problem, the agent
is in one of finitely many states S and performs an ac-
tion from a finite action set A. The rewards received
by the agent depend both on its action and its state,
and the mapping from state-action pairs to rewards
is controlled by an adversary and changes arbitrarily
over time. We assume that the only feedback that the
agent observes is the value of the rewards that it re-
ceives, and specifically, that it does not get to see the
rewards that it could have received if it had acted dif-
ferently or if it were in a different state. This limited
type of feedback is commonly known as bandit feed-
back. In fact, this feedback model is so natural that
a typical researcher in reinforcement learning may not
even add the qualifier “bandit” to it. However, we pre-
fer to explicitly mention it to distinguish our setting
from early work (Even-Dar et al., 2009) on adversarial
MDPs that assumed more extensive feedback.

We also assume that the state transition dynamics are
deterministic and fully known to the agent. However,
we note that, in the case of deterministic dynamics, it
is easy to relax the assumption that the dynamics are
known. Following ideas of Ortner (2010), the agent can
spend poly(|S|, |A|) time figuring out the dynamics.
Therefore, we assume that the agent knows its current
state and knows which state it will transition to as
a result of each action. This type of state transition
model is often called a deterministic Markov decision
process (DMDP).

Our adversarial reward setting makes sense when the
agent faces other agents with conflicting interests.
This happens, for instance, when robots interact with
other robots, when bidding agents compete against
each other in auctions, when trading agents compete
to make money, or when the agent is a character in
a video game. In these strategic and adversarial set-
tings, the environment is likely to change in unpre-
dictable and arbitrary ways. In all of the aforemen-
tioned decision problems, bandit feedback seems to
be the most realistic feedback model. Although we

make pessimistic assumptions about the world, we em-
phasize that our assumptions are strictly more general
than the alternative: if the agent is lucky enough to
find itself in a stochastic or stationary environment, or
if richer feedback is available, our setting still applies.

The harsh assumptions about the rewards and the lim-
ited feedback are contrasted by the optimistic assump-
tion that the state transition dynamics form a DMDP.
In some cases, deterministic state transitions are a re-
alistic assumption while in other cases this assumption
may be overly simplistic. A stochastic system is often
well approximated by a deterministic system (Bert-
sekas, 2005, Chapter 2). For instance, consider the
motivating example in Even-Dar et al. (2009), where
the goal is to drive along the shortest path from point
a to point b. Although driving a car involves stochastic
uncertainties, it is usually reasonable to assume that
we have deterministic control over which streets our
car takes along the path to our destination. Addition-
ally, many of the uncertainties of driving a car can be
modeled as part of the adversarial rewards. Another
situation that leads to modeling using DMDPs is when
the adversary is a finite state machine whose transi-
tions depend on (equivalence classes of) the history of
the agent’s actions (Maillard and Munos, 2011).

Modeling the state transitions as a DMDP enables us
to handle the adversarial bandit-feedback setting in a
principled and rigorous fashion. Obtaining a similar
result in the general weakly communicating MDP set-
ting (where state transitions are stochastic) remains an
elusive open problem. We hope that the techniques de-
veloped in this paper will prove useful toward solving
that problem.

Another important design choice is how to evaluate the
agent’s actions. For simplicity, we assume that every
action is available at each state, and we note that this
assumption can be easily relaxed. Since the rewards
are controlled by an adversary, they only become se-
mantically meaningful when we compare the agent’s
cumulative reward with a suitable benchmark. We let
Π be the set of all deterministic policies, where each
π ∈ Π is a mapping from S to A, and we choose our
benchmark to be the maximal reward obtained by any
policy in Π. In other words, we compare the agent’s
rewards to those of the best deterministic policy in
hindsight. Letting r1, r2, . . . denote the adversarial se-
quence of reward functions (chosen in advance by the
adversary before the agent begins its moves), letting
(sπt , a

π
t)∞t=1 denote the trajectory of state-action pairs

generated by policy π, and letting (st, at)∞t=1 denote
the trajectory of state-action pairs generated by the
agent, we define the agent’s undiscounted regret after

T rounds as

max
π∈Π

T∑
t=1

rt(sπt , a
π
t)− E

[
T∑
t=1

rt(st, at)

]
.

The agent’s rewards appear in expectation because we
allow randomized decisions. We say that the agent
is learning if its regret can be upper-bounded by a
sub-linear function of T , uniformly for all sequences of
reward functions.

As mentioned above, we allow the adversary to mod-
ify the rewards for any state-action pair without any
restrictions. Therefore, the same sequence of state-
action pairs may have high rewards at one time and
low rewards at another time. It could very well be that
a given action sequence (starting from a given state s)
may produce different rewards depending on whether
we start performing the sequence on an odd or even
time step. Therefore, it is insufficient to merely dis-
cover high-reward paths through the state space; we
must also consider timing issues.

The main contribution of this paper is MarcoPolo,
an efficient algorithm that enjoys a regret bound of
O(T 3/4

√
log T) against the best deterministic policy

in hindsight (Theorem 2). The name MarcoPolo is
an approximate acronym for MDP with Adversarial
Rewards, weakly COmmunicating structure, Partial
feedback, by reduction to Online Linear Optimization.
Anecdotally, Marco Polo was a famous Venetian mer-
chant traveler who explored the world in search of high
rewards, just as our algorithm explores the DMDP
state space in search of rewards. Moreover, Marco
Polo is the name of a well-known children’s game that
is played in a swimming pool, where one swimmer has
to capture the other swimmers using only bandit feed-
back.

The basic idea behind MarcoPolo is quite simple. We
observe that a deterministic policy repeats the same
cycle of actions again and again. We then realize that
if an oracle were to tell us the cycle length of the best
deterministic policy and some additional information
about its trajectory, then we could do as well as the
best action cycle via a reduction to the bandit linear
optimization (BLO) setting. Such an oracle is unavail-
able to us, but we can do almost as well as the oracle
using a multi-armed bandit (MAB) algorithm. The
MAB algorithm explores different cycle lengths and
trajectories by invoking the BLO algorithm multiple
times. To the best of our knowledge, this two-tier
hierarchy involving a MAB algorithm that invokes a
BLO algorithm is a novel conceptual contribution to
the design space of regret minimization algorithms.

1.1 RELATED WORK

Our setting has much in common with a line of re-
search initiated by Even-Dar et al. (2009) and further
developed by Yu et al. (2009) and Neu et al. (2010),
which deals with MDPs with adversarial rewards.
Even-Dar et al. (2009) assumes a full-information feed-
back model while Yu et al. (2009) and Neu et al. (2010)
only require bandit feedback. While these papers as-
sume that the state transition dynamics are stochastic,
they also assume that these dynamics have a unichain
structure. This means that every policy must lead to a
Markov chain with a single recurrent class (plus some
possibly empty set of transient states). This is a very
restrictive assumption, as we discuss in Sec. 2.1. In
our setting, we assume that the state transition dy-
namics are deterministic and weakly communicating,
i.e. it is possible to move from any state to any other
state under some policy. Although deterministic tran-
sition dynamics are less general than stochastic ones,
our analysis requires a much weaker assumption on the
connectivity between states.

The work in Yu and Mannor (2009) also deals with
MDPs with adversarial rewards, bandit feedback, and
stochastic state transition dynamics. Moreover, it al-
lows the stochastic transition dynamics to change over
time in an adversarial way. The analysis in Yu and
Mannor (2009) relies on the strong assumption that
the MDP has a finite mixing time. Again, our analysis
has the advantage that it relies on a weaker assump-
tion on state connectivity.

Ties between the reinforcement learning literature and
the area of individual sequence prediction and com-
pression in information theory are further developed
in Farias et al. (2010).

There is a well developed regret minimization and
PAC-MDP literature that deals with a similar prob-
lem, except that the rewards are stochastic and not
adversarial. We cannot do justice to that extensive
literature but merely refer the reader to the survey by
Szepesvari (2010) and the references therein. Our work
bears some similarities to the work of Ortner (2010),
which considers sequential decision making in DMDPs
with bandit feedback. However, the rewards in that
paper are stochastic and not adversarial, hence, the
motivation and techniques used are rather different.

The importance of developing machine learning al-
gorithms that work in reactive environments (where
agent’s actions impact the future evolution of re-
wards) has caught the attention of many researchers.
de Farias and Megiddo (2006) propose algorithms
that combine expert advice in a reactive environment.
Ryabko and Hutter (2008) consider the problem of
learnability in a very general reactive setting and show

that environments that allow a rapid recovery from
mistakes are asymptotically learnable. Arora et al.
(2012) introduce the notion of policy regret as a more
meaningful alternative to regret for measuring an on-
line algorithm’s performance against adaptive adver-
saries. Arora et al. (2012) also presents a general re-
duction that converts any bandit algorithm with a sub-
linear regret into an algorithm with a sublinear policy
regret.

2 PRELIMINARIES

Let S be a set of n states and let A be a finite set of ac-
tions. An adversarial-reward deterministic Markov de-
cision process (DMDP) is a tuple (S,A, f, r1:T) where
S is a finite set of states, A is a finite set of actions,
f : S × A → S is a deterministic state transition
function, which maps a state-action pair to the next
state, and r1:T is a sequence (rt)Tt=1 of reward functions
rt : S ×A → [0, 1].

We slightly overload our notation and allow the second
argument of the state transition function to be a se-
quence of actions, rather than a single action. Namely,
f
(
s, (a1, . . . , ak)

)
is the state we reach if we start from

s and perform the action sequence a1, . . . , ak. More
formally, the extended definition of f is given by the
recursion

f
(
s, (a1, . . . , ak)

)
= f

(
f
(
s, (a1, . . . , ak−1)

)
, ak

)
.

We also find it useful to denote the set of state-action
pairs that lead to a given state s by I(s). That is,

I(s) = {(s′, a′) : f(s′, a′) = s} .

A deterministic policy is a mapping π : S → A. To-
gether with an initial state s1, each policy defines a
sequence of actions and states. Since S is finite, a
state will eventually repeat, and from then onwards
the policy will keep repeating the same cycle of ac-
tions. We categorize a policy π by the length of this
cycle and we let Πk denote the set of deterministic
policies that induce cycles of length k. We prove a
regret bound that compares the algorithm’s cumula-
tive reward with the reward of the best deterministic
policy in Π≤L =

⋃
k≤L Πk, where L is a user-defined

constant. Since the cycle length is bounded by n, set-
ting L = n gives a regret bound that compares the
algorithm to all deterministic policies. The benefit of
proving a regret bound for L < n is to demonstrate
how the bound degrades gracefully with the complex-
ity of the competitor class.

Our analysis deals with weakly communicating
DMDPs (see Section 2.1 for definitions of weakly com-
municating MDP and the associated closed set of

states) and requires the following additional assump-
tion.
Assumption 1. For any pair of states s 6= s′ in
the closed set, there exists an action sequence a =
(a1, . . . , ad) (of length exactly d) such that f(s, a) = s′.

Note that the assumption only talks about existence
of an action sequence. We note that finding the ac-
tion sequence can be done efficiently, e.g. using dy-
namic programming. This assumption is a very mild
one and it may well be possible to dispense with it
entirely. A simple sufficient condition that implies
this assumption is the existence of at least one self-
loop in the DMDP. Another sufficient condition is that
the transition graph is symmetric (i.e. if f(s, a) = s′

then there exists an opposite action a′ ∈ A such that
f(s′, a′) = s) and there exists an odd length cycle in
the graph.

2.1 THE UNICHAIN CONDITION IS TOO
STRINGENT

The difference between a DMDP and a general MDP is
that, in the latter, the transition dynamics are stochas-
tic, i.e. f maps an (s, a) pair to a distribution over
states. Two well known subclasses of MDPs are re-
current (or ergodic) and communicating MDPs. In
a recurrent MDP, every policy π induces a Markov
chain with a single recurrent class. The more general
notion of a communicating MDP only requires that it
be possible to move (with non-zero probability) from
any state to any other state using some policy. Note
the difference in quantifiers — “every” versus “some”
— in the definitions of recurrent and communicating
MDPs. Thus, the recurrent condition is much more
stringent than the communicating condition.

Both notions can be generalized a little bit to allow for
some transient states. Thus, we arrive at the classes
of unichain and weakly communicating MDPs. In
unichain MDPs, every policy induces a Markov chain
with a single recurrent class plus a possibly empty set
of transient states. In weakly communicating MDPs,
there is a closed set of states such that each state is
accessible, under some policy, from any other state in
the closed set (with non-zero probability under some
policy) plus a possibly empty set of states that are
transient under every policy. In the same way as re-
current is a much stronger condition compared to com-
municating, the unichain condition is much stronger
compared to weakly communicating.

We have the (strict) inclusions:

recurrent ⊂ unichain ⊂ weakly communicating ,

recurrent ⊂ communicating ⊂ weakly communicating .

The graph associated with a DMDP is a directed graph
with S as the set of vertices and the set of edges given
by

{(s, s′) : ∃a ∈ A s.t. f(s, a) = s′} .

For DMDPs, the unichain condition can be equiv-
alently stated in terms of its graph. A DMDP is
unichain iff any two cycles in its graph have a com-
mon vertex (Feinberg and Yang, 2008). A DMDP is
weakly communicating if, after removing a possibly
empty set of states that are transient under all poli-
cies, we get a graph that is strongly connected. Thus,
any learning algorithm will, after at most n steps, end
up in the strongly connected component. Therefore,
in our regret analysis, we will assume that the DMDP
is communicating.

The “no vertex-disjoint cycles” characterization of the
unichain condition for DMDPs shows again why the
unichain condition is so stringent. Two self-loops
on two distinct states will violate it. It is also not
preserved under very simple operations of building
larger MDPs from smaller ones. For instance, suppose
we start from two unichain DMDPs on disjoint state
spaces S1, S2 and join them by introducing two ac-
tions a1, a2 such that f(s1, a1) = s2 and f(s2, a2) = s1

for some s1 ∈ S1, s2 ∈ S2, then the resulting DMDP
will not, in general, be unichain (but will be weakly
communicating).

3 SOLUTION FOR FIXED LENGTH
AND STATE

As a warm-up, we consider a toy version of our prob-
lem, where the competitor class is restricted to a
smaller subset of Π≤L. Assume that we are told to
focus on a specific cycle length k and a specific initial
state s̄. Let Πk,s̄ denote the subset of policies in Πk

that start in state s̄ at time 1 and return to s̄ at time
k + 1. Assume that we are only required to compete
with policies in Πk,s̄.

Next, we characterize the action sequences induced by
policies in Πk,s̄. Define the set

Ck,s̄ = {c ∈ Ak : f(s̄, c) = s̄} .

Ck,s̄ is the set of k-length action sequences such that
starting from state s̄ and performing an action se-
quence in Ck,s̄ brings us back to state s̄. We say that
Ck,s̄ is the set of length k action cycles with respect to
a starting state s̄. Note that this set contains all of
the simple cycles of length k, but may also contain cy-
cles that pass through s̄. In this section, we present a
randomized online algorithm that competes with any
action sequence that consists of recurrences of some
cycle in Ck,s̄. Note that this set of competitors may

also contain action sequences that are not induced by
any policy in Πk,s̄, for example, due to the fact that
Ck,s̄ is not restricted to simple cycles.

First, we present a general outline of our algorithm.
There is an initial “lock-in” part in the algorithm to
take care of the fact that the algorithm will eventually
be called as a subroutine when the global time clock
reads t1 units and the agent is in some arbitrary state
s1 ∈ S. Thus, there is a “phase lock-in” problem:
the competitors in Ck,s̄ start from s̄ at global time 1
and return to it at times k + 1, 2k + 1, The agent
needs to move from s1 and get “locked into” one of
the cycles so that it is not out of phase. Here is where
Assumption 1 comes in handy. The algorithm picks an
arbitrary cycle (c1, . . . , ck) ∈ Ck,s̄. At time t1 + d, this
competitor will be at state ck′ where k′ = (t1 + d− 1)
mod k + 1. The algorithm performs a sequence of d
actions that bring it to ck′ at time t1 + d. Then we
waste k′′ = (k − k′ + 1) mod k more time steps to
come back to s̄ and the agent is now “in phase” with
Ck,s̄.

The algorithm then splits the remaining rounds into
epochs of length k, where epoch j starts on round
d+ k′′ + (j − 1)k + 1 and ends on round d+ k′′ + jk.
At the beginning of epoch j, the algorithm defines a
distribution θj over the set Ck,s and samples an action
sequence from this distribution. The algorithm then
spends the next k rounds executing the actions in the
sequence that it has chosen. The algorithm sticks to
the chosen sequence for the duration of the epoch, dis-
regarding the rewards it observes along the way. Only
at the end of the epoch does the algorithm look back
on its rewards and defines a new distribution θj+1 for
the next epoch. In fact, our algorithm will only use
the sum of the k rewards, rather than the k individual
reward values.

It remains to specify how the algorithm sets the dis-
tribution θj . It does so via a reduction of our problem
to a bandit linear optimization (BLO) problem1. We
briefly describe the BLO problem setting and the in-
terested reader is referred to (Flaxman et al., 2005;
Abernethy et al., 2008) for details. A BLO problem is
a repeated game between a randomized algorithm and
an adversary, which takes place over a predefined poly-
hedral set X ⊂ Rn. Before the game begins, the ad-
versary secretly picks a sequence of vectors ρ1, ρ2, . . .,
each in Rn. On round i of the game, the algorithm be-
gins by choosing a distribution over X and sampling
a point xi from that distribution. Next, the adversary

1A similar approach is used in (Flaxman et al., 2005;
Abernethy et al., 2008) to solve the bandit shortest path
problem. For more information on the bandit shortest path
problem, see (McMahan and Blum, 2004; Awerbuch and
Kleinberg, 2004; György et al., 2007)

Algorithm 1: Fixed length k and state s̄
input: initial state s1, global time t1, length k, state
s̄, iterations T
initialize: BLO with n = nk|A| and X as defined in
Eqs. (2 – 5)
Pick an arbitrary cycle (c1 = s̄, . . . , ck) ∈ Ck,s̄
Set k′ ← (t1 + d− 1) mod k + 1
(a1, . . . , ad)← get action sequence from s1 to ck′

for t = 1, . . . , d
perform action at: st+1 ← f(st, at)
observe (bandit) reward rt(st, at)
accumulate R← R+ rt(st, at)

Set k′′ ← (k − k′ + 1) mod k
Spend k′′ time steps visiting the states ck′+1, . . . , ck
Accumulate the k′′ rewards in R
for j = 1, 2, . . .

xj ← get vector from BLO
θj ← decompose

(
xj
)

sample action cycle (c1 = s̄, . . . , ck) ∼ θj
for i = 1, . . . , k

t← d+ k′′ + (j − 1)k + i
if t > T then

return (R, st)
perform action at = ci: st+1 ← f(st, ci)
observe (bandit) reward rt(st, ci)
accumulate Rj ← Rj + rt(st, ci)

provide Rj as feedback to BLO
R← R+Rj

computes ρi ·xi and reveals the result to the algorithm,
while still hiding the vector ρi. The value ρi · xi is the
algorithm’s reward on round i, and cumulative reward
over a sequence of m rounds equals

∑m
i=1 ρi · xi. The

goal is to accumulate a large reward over time. In this
setting, the BLO algorithm presented in Abernethy
et al. (2008) guarantees that the algorithm’s expected
regret after m iterations is bounded as

max
x∈X

m∑
i=1

ρi · x− E

[
m∑
i=1

ρi · xi

]
≤ 4Un3/2

√
m log(m) ,

(1)
where U is an upper bound on ρi · xi for all i.

A useful extension to the BLO setting is the double
randomization technique, which involves adding an
additional layer of randomization to the algorithm’s
strategy. The algorithm chooses the point xi normally,
but then replaces xi with an unbiased estimator of xi.
In other words, the algorithm can choose any distri-
bution θi over X such that EX∼θi

[X] = xi. The al-
gorithm then samples a point Xi according to θi and
plays Xi instead of xi. Due to linearity, the expected
reward E[ρi · Xi|xi] still equals ρi · xi, and the regret
bound stated above remains valid. We use this exten-

sion in our reduction below. For more details, please
see Abernethy et al. (2008, Section 7).

We are now ready to define the reduction from our
problem to the BLO problem. The BLO problem takes
place in the space Rn, where n = n|A|k. In this space,
each coordinate corresponds to a triplet (s, a, i), where
s is a state in S, a is an action in A, and i is a phase in-
dex in [k]. For any vector v ∈ Rn, we use the notation
v(s,a,i) to refer to the element of v that corresponds to
the triplet (s, a, i).

We begin by embedding the sequence of reward func-
tions that occur during epoch j in Rn. The relevant
reward functions are rd+k′′+jk−k+i, . . . , rd+k′′+jk. We
represent their values by a vector ρj ∈ Rn defined as

∀ s ∈ S, a ∈ A, i ∈ [k] ρj,(s,a,i) = rd+k′′+jk−k+i(s, a) .

Next, we represent each cycle c ∈ Cs,k by a binary
vector x(c) ∈ Rn defined as

x(c)s,a,i =

{
1 if a = ci and s = f

(
s̄, (a1, . . . , ai−1)

)
0 otherwise

,

for all s ∈ S, a ∈ A, and i ∈ [k]. Note that x(c) has ex-
actly k non-zero entries that indicate the state-action
pairs encountered along the cycle c. Moreover, note
that the cumulative reward collected while performing
the action sequence c on epoch j simply equals the dot
product ρj · x(c).

Let x
(
Ck,s̄

)
= {x(c)}c∈Ck,s̄

denote the set of vectors
induced by all of the action cycles in Ck,s̄. Select-
ing a sequence of cycles c1, c2, . . . from the set Ck,s̄
so as to maximize the reward defined by the adversar-
ial sequence r1, r2, . . . is equivalent to the problem of
selecting a sequence of points x1, x2, . . . from the set
x
(
Ck,s̄

)
⊂ Rn so as to maximize the linear rewards de-

fined by the adversarial sequence ρ1, ρ2, However,
the latter is not quite a BLO problem yet, since the
set of actions x

(
Ck,s̄

)
is not a polyhedral set.

To resolve this problem, we define the set of actions
for the BLO algorithm to be X = conv

(
x
(
Ck,s̄

))
, the

convex hull of the set x
(
Ck,s̄

)
. Since x

(
Ck,s̄

)
is a finite

set, its convex hull is polyhedral. Now, we can use a
BLO algorithm to generate a sequence of points in X .
The set X can be defined more concisely using network
flow constraints (Bazaraa et al., 2010). In our case, X
can be written as

x ≥ 0 ,
∑
a∈A x(s̄,a,1) = 1 , (2)

∀s 6∈ S \ {s̄}, a ∈ A, x(s,a,1) = 0 , (3)

∀(s′, a′) 6∈ I(s̄) x(s′,a′,k) = 0 , (4)

∀s ∈ S, 2 ≤ i ≤ k,

∑
(s′,a′)∈I(s) x(s′,a′,i−1) −

∑
a∈A x(s,a,i) = 0 . (5)

Equation (2) ensures convexity: all paths have non-
negative weight and the total weight of all paths equals
one. The remaining constraints ensure that every vec-
tor in the set is indeed a combination of valid cycles
that start and end at s̄. Specifically, Eqs. (3) and (4)
require all paths to begin and end at s̄, whereas (5) is
the classic flow conservation constraint, which requires
that the total weight of paths that enter each state be
equal to the total weight that exits that state, at each
phase i. This concise representation enables us to run
the BLO algorithm efficiently.

However, now the BLO algorithm picks points in X
that do not directly correspond to individual cycles in
Ck,s̄. Instead, these points are convex combinations of
points that correspond to individual cycles. This prob-
lem is easily resolved using the double randomization
technique described above. Namely, we can find an
unbiased estimator of the point chosen by the BLO al-
gorithm that always chooses a vector in the discrete set
x
(
Ck,s̄

)
. We apply the classic theorem of Carathéodory

(1911), which states that any point in the polyhedral
set X ⊂ Rn can be represented as a convex combi-
nation of at most n + 1 extreme points (vertices) of
that set. The extreme points of X are points in the
set x

(
Ck,s̄

)
and correspond to individual cycles. More-

over, the decomposition of a point in X as a convex
combination of n+1 points in x

(
Ck,s̄

)
can be efficiently

computed using a greedy augmenting-path-style algo-
rithm (Bazaraa et al., 2010, Thm. 2.1). In summary,
we use the BLO algorithm to choose a point in X , we
represent this point as a convex combination of points
in x

(
Ck,s̄

)
, we interpret this convex combination as a

distribution over the respective action cycles in Ck,s̄,
and we sample a concrete cycle from this distribution.

The pseudo-code of our algorithm is given in Algo-
rithm 1. As mentioned above, the pseudo-code refer-
ences three external procedures: the procedure that
finds a path of length d from s1 to s̄, the BLO al-
gorithm, and the decomposition procedure that repre-
sents any point in X as a distribution over n+1 points
in x

(
Ck,s̄

)
.

Next, we state a regret bound for our algorithm.

Theorem 1. Let r1, r2, . . . be an arbitrary sequence
of reward functions, perhaps adversarially generated.
Assume that we run Algorithm 1 for T rounds with
this sequence, with parameters k ≤ L and s̄ ∈ S, and
let (st, at)Tt=1 be the resulting sequence of state-action
pairs (see Alg. 1). On the other hand, let π? be any
deterministic policy in Πk,s̄ and let (s?t , a

?
t)
T
t=1 be the

sequence of state-action pairs defined by this policy.

Then the regret is upper bounded by∑T
t=1 rt(s

?
t , a

?
t)− E

[∑T
t=1 rt(st, at)

]
≤ 4L2(n|A|)3/2

√
T log(T) + (2L+ d) .

Proof. Since the rewards on each round are bounded
in [0, 1], the regret on the first d rounds is bounded by
d. Then k′′ = (k − k′ + 1) mod k < k more rounds
are wasted before coming back to s̄. The regret on the
remaining T − d − k′′ rounds is bounded by applying
the bound for BLO in Eq. (1). Specifically, in our
case, we use Hölder’s inequality to bound

ρi · xi ≤ ‖ρi‖∞‖xi‖1 ≤ k ,

and therefore we can set U in Eq. (1) to k. The di-
mensionality is n|A|k. Finally, the number of BLO it-
erations equals the number of epochs of our algorithm,
which is m = b(T − d− k′′)/kc ≤ T/k. Plugging these
values into Eq. (1) gives the bound

4k(nk|A|)3/2
√
T/k log(T/k) ,

which is upper bounded by

4L2(n|A|)3/2
√
T log(T) .

Finally, if T − d − k′′ does not divide by k, we have
a suffix of at most k actions that incur an additional
regret of at most L.

4 SOLUTION TO THE GENERAL
PROBLEM

The result obtained in the previous section can be in-
terpreted as follows. Let π? be the optimal fixed policy
in Π≤L, let k? be the length of its cycle. Assume, for
simplicity, that π? enters its cycle straightaway and let
s? be its state at time t = 1. If an oracle were to reveal
k? and s? to us, Algorithm 1 would solve the problem
with a regret of O(L2(n|A|)3/2

√
T log(T)). Although

we do not have access to such an oracle, we can exploit
the fact that there are only Ln possible values of (k, s)
that we need to explore.

In this section, we present the MarcoPolo algorithm,
which solves the general problem defined in Sec. 1.
It does so by splitting the online rounds into episodes
of length τ (τ is specified later on) and running an
instance of Alg. 1 on each episode. At the beginning
of episode j, the algorithm chooses values (kj , sj) and
runs Alg. 1 with these parameters for τ rounds. Note
that Alg. 1 starts from scratch on each episode, and
does not retain information from previous episodes.
Also note that Alg. 1 starts from the state that we
happen to be in due to the previous episodes. However,

Algorithm 2: MarcoPolo
input: episode length τ
initialize: ŝ1 = s1, t = 1
for j = 1, 2, . . .

(kj , sj)← get length/state from MAB
(Rj , ŝj+1)← Alg. 1 with input (ŝj , t, kj , sj , τ)
provide Rj as feedback to MAB
R← R+Rj
t← t+ τ

the initial “lock-in” part in Alg. 1 makes sure we get
locked in phase with policies in Πkj ,sj

.

It remains to specify how our algorithm chooses
(kj , sj) on each episode. Again, we resort to a re-
duction, this time to the multi-armed bandit prob-
lem (MAB). The MAB setting is very similar to the
BLO setting described above, except that the algo-
rithm’s action set is the set of standard unit vec-
tors X = {e1, . . . , en}, rather than a polyhedral set.
Namely, the adversary chooses a sequence of reward
vectors ρ1, ρ2, . . . before the game begins. On itera-
tion i, the algorithm chooses a standard unit vector
xi, which has a single non-zero coordinate, and its re-
ward ρi ·xi is simply the value of ρi at that coordinate.
The algorithm never sees the full reward vector ρj .

The EXP3 algorithm (Auer et al., 2002) solves the
MAB problem, and comes with the following regret
bound: For any number of iterations m, the expected
regret after m iterations is bounded by

max
x∈X

m∑
i=1

ρi ·x−E

[
m∑
i=1

ρi · xi

]
≤ U

√
7mn log(n) , (6)

where U is an upper bound on ρi · xi for all i.

To simplify the presentation and analysis of the reduc-
tion to the MAB problem, we slightly modify the al-
gorithm described above. Instead of choosing a single
setting (kj , sj) on episode j and running Alg. 1 only
on that setting, imagine that we run nL copies of Alg.
1 in parallel, one for each choice of (s, k), and then
disregard all but the one that corresponds to the cho-
sen setting (kj , sj). Clearly, this modified algorithm is
equivalent to our original algorithm, albeit its inferior
computational complexity. The advantage of think-
ing of our algorithm in this way is that it makes the
reduction to the MAB setting very straightforward.

The MAB problem takes place in the space Rn, with
n = nL. In this space, each coordinate corresponds
to a pair (k, s), where k is a cycle length between 1
and L, and s is a state in S. For any vector v ∈ Rn,
we use the notation v(k,s) to refer to the element of v
that corresponds to the pair (k, s). Let ρj,(k,s) be the

total reward collected by the copy of Alg. 1 that runs
with parameters (k, s) on episode j. Note that ρj,(k,s)
takes a random value, since Alg. 1 is a randomized
algorithm, but this does not invalidate the reduction.
The MAB algorithm chooses a pair (kj , sj) on each
episode, and this is the pair we use in our algorithm.

Next, we prove a regret bound for our algorithm.

Theorem 2. Let r1, r2, . . . be an arbitrary sequence
of reward functions, perhaps adversarially generated.
Assume that we run MarcoPolo with this sequence for
T rounds and with an episode length of τ =

√
T , and

let (st, at)Tt=1 be the resulting sequence of state-action
pairs. On the other hand, let π? be any deterministic
policy in Π≤L and let (s?t , a

?
t)
T
t=1 be the sequence of

state-action pairs defined by π?. Then the regret is
upper bounded by∑T

t=1 rt(s
?
t , a

?
t)− E

[∑T
t=1 rt(st, at)

]
≤ CT 3/4

√
log(T) + o(T 3/4) .

where C = 4L2(n|A|)3/2 +
√

7nL log(nL).

Proof. Let T̄ be the last round on the last full episode
performed by the algorithm. The regret suffered on
rounds (T̄ + 1), . . . , T is trivially bounded by T − T̄ ≤
τ , and we focus on bounding the regret on rounds
1, . . . , T̄ .

Recall that we assumed, for the purpose of our analy-
sis, that we run nL parallel instances of Alg. 1 on each
episode. Also recall that Alg. 1 starts from scratch
when a new episode begins. Let k? be the length of
the action cycle induced by the policy π? and let s̃?

be the first state that gets repeated under π? after an
initial non-repeating sequence of states of length t?.
Let s? be the state that is t? time units behind s̃? on
the cycle induced by π?. The rewards accumulated by
π? and those by the cycle corresponding to the pair
(k?, s?) differ by at most t? ≤ n. Thus, we compute
regret relative to (k?, s?).

Let (s′t, a
′
t)
T̄
t=1 be the sequence of state-action pairs

generated by the copy of Alg. 1 that runs with pa-
rameters (k?, s?). On epoch j we apply Thm. 1 and
get

E

 jτ∑
t=jτ−τ+1

rt(s?t , a
?
t)− rt(s′t, a′t)

≤ 4L2(n|A|)3/2

√
τ log(τ) + (2L+ d) .

We sum both sides above for j = 1, . . . , T̄ /τ and get

E

 T̄∑
t=1

rt(s?t , a
?
t)− rt(s′t, a′t)

≤ 4L2(n|A|)3/2T 3/4
√

log(T)/2 + o(T 3/4) . (7)

Next, we use the regret bound for the EXP3 algorithm,
given in Eq. (6), to upper-bound

E

 T̄∑
t=1

rt(s′t, a
′
t)− rt(st, at)

= E

T̄ /τ∑
j=1

ρj,(k?,s?) − ρj,(kj ,sj)

 .

We face a minor technical difficulty due to the fact
that the EXP3 bound holds for deterministic rewards,
whereas the rewards ρ1, ρ2, . . . in our problem are ran-
dom. However, it is rather straightforward to see that
if a bound holds for any individual sequence of reward
functions, then it also holds for the expected reward
sequence (the skeptical reader is referred to Appendix
A in the supplementary material for a rigorous proof).

Since ρj,(k,s) represents the cumulative reward from τ
rounds, and the reward on each round is bounded in
[0, 1], then ‖ρj‖∞ ≤ τ ≤

√
T . Therefore, we can set

U =
√
T in Eq. (6). Additionally, we have that the

number of arms is nL. Finally, the number of MAB
iterations is m ≤ T/τ =

√
T . Plugging these values

into the bound, we get that

E

 T̄∑
t=1

rt(s′t, a
′
t)− rt(st, at)

 ≤ T 3/4
√

7nL log(nL) .

Summing the above inequality with Eq. (7) proves the
theorem.

5 DISCUSSION

We focused on the sequential decision making setting
where the environment changes with time adversari-
ally, state transitions are deterministic, and the algo-
rithm receives bandit feedback. In this setting, we pre-
sented the MarcoPolo algorithm, with an undiscounted
regret bound of O(T 3/4

√
log(T)) against the best de-

terministic policy in hindsight. In contrast to previ-
ous work, we did not rely on the stringent unichain
assumption.

Many interesting open questions remain unanswered:
Can we derive a similar result with stochastic tran-
sition dynamics; with adversarially changing transi-
tion dynamics; when the state is only partially ob-
servable? Even in our specific setting, can we prove
a lower bound of O(T 3/4) on regret, or alternatively,
can we obtain a better upper bound with a different
algorithm?

We also have more general questions regarding the true
power of the adversarial DMDP model compared to
the classic (fully stochastic) MDP model. The adver-
sarial DMDP model makes a more general assumption
on the rewards and a less general assumption on the
state transition dynamics. Are the two things some-
how interchangeable? In other words, can we identify
situations where we can use the power and flexibility
of the adversarial reward assumption to capture un-
certainty in the state transition dynamics?

These questions are left for future research.

Acknowledgements

A major portion of this work was done when RA and
AT were visiting OD at MSR Redmond.

References

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in
the dark: An efficient algorithm for bandit linear op-
timization. In Proceedings of the 21st Annual Con-
ference on Learning Theory, pages 263–274, 2008.

R. Arora, O. Dekel, and A. Tewari. Online bandit
learning against an adaptive adversary: from regret
to policy regret. In Proceedings of the 29th Interna-
tional Conference on Machine Learning, 2012.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire.
The nonstochastic multiarmed bandit problem.
SIAM Journal on Computing, 32(1):48–77, 2002.

B. Awerbuch and R. D. Kleinberg. Adaptive routing
with end-to-end feedback: Distributed learning and
geometric approaches. In Proceedings of the 36th
Annual ACM Symposium on the Theory of Com-
puting, pages 45–53, 2004.

M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Lin-
ear Programming and Network Flows, Third Edi-
tion. John Wiley and Sons, 2010.

D. P. Bertsekas. Dynamic Programming and Optimal
Control, volume 1. Athena Scientific, Third edition,
2005.

C. Carathéodory. Über den variabilitätsbereich der
fourierschen konstanten von positiven harmonischen
funktionen. Rendiconti del Circolo Matematico di
Palermo, 32:193–217, 1911.

D. P. de Farias and N. Megiddo. Combining expert ad-
vice in reactive environments. Journal of the ACM,
53(5):762–799, 2006.

E. Even-Dar, S. M. Kakade, and Y. Mansour. Online
Markov decision processes. Mathematics of Opera-
tions Research, 34(3):726–736, 2009.

V. F. Farias, C. C. Moallemi, B. Van Roy, and
T. Weissman. Universal reinforcement learning.
IEEE Transactions on Information Theory, 56(5):
2441–2454, 2010.

E. A. Feinberg and F. Yang. On polynomial cases of
the unichain classification problem for Markov deci-
sion processes. Operations Research Letters, 36(5):
527–530, 2008.

A. D. Flaxman, A. Tauman Kalai, and H. B. McMa-
han. Online convex optimization in the bandit set-
ting: gradient descent without a gradient. In Pro-
ceedings of the 16th annual ACM-SIAM symposium
on discrete algorithms, pages 385–394, 2005.

A. György, T. Linder, G. Lugosi, and G. Ottucsák.
The on-line shortest path problem under partial
monitoring. Journal of Machine Learning Research,
8:2369–2403, 2007.

O. Maillard and R. Munos. Adaptive bandits: Towards
the best history-dependent strategy. In Proceedings
of the Fourteenth International Conference on Arti-
ficial Intelligence and Statistics, volume 15 of JMLR
W&CP, pages 570–578, 2011.

H. B. McMahan and A. Blum. Online geometric op-
timization in the bandit setting against an adaptive
adversary. In Proceedings of the 17th Annual Con-
ference on Learning Theory, pages 109–123, 2004.

G. Neu, A. György, C. Szepesvári, and A. Antos. On-
line Markov decision processes under bandit feed-
back. In Advances in Neural Information Processing
Systems 23, pages 1804–1812. MIT Press, 2010.

R. Ortner. Online regret bounds for Markov decision
processes with deterministic transitions. Theoretical
Computer Science, 411(29-30):2684–2695, 2010.

D. Ryabko and M. Hutter. On the possibility of learn-
ing in reactive environments with arbitrary depen-
dence. Theoretical Computer Science, 405(3):274–
284, 2008.

C. Szepesvari. Algorithms for reinforcement learning.
Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 4(1), 2010.

J. Y. Yu and S. Mannor. Arbitrarily modulated
markov decision processes. In Proceedings of the
IEEE Conference on Decision and Control, 2009.

J. Y. Yu, S. Mannor, and N. Shimkin. Markov decision
processes with arbitrary reward processes. Mathe-
matics of Operations Research, 34(3):737–757, 2009.

A BANDIT OPTIMIZATION WITH RANDOM REWARDS

The general online bandit optimization problem (with rewards, against an oblivious adversary) is a repeated
game between an algorithm and an adversary. Before the game begins, the adversary picks an infinite sequence
of reward functions r1, r2, . . . from a function set F . On round t of the game, the algorithm chooses an action xt
from an action set X , the adversary computes the reward rt(xt), and reveals this value to the algorithm. The
algorithm never gets to see the full function rt.

We define a specific online bandit setting (e.g., the multi-armed bandit setting, bandit linear optimization, etc.)
by specifying X and F . We typically assume that the algorithm’s actions are randomized and the adversary’s
reward functions are deterministic.

Lemma 3. Let A be an online bandit algorithm with a regret bound of R(T) against any deterministic sequence
of reward functions r1, r2, Namely, for any T it holds that

max
x∈X

T∑
t=1

rt(x)− E

[
T∑
t=1

rt(xt)

]
≤ R(T) ,

where the expectation above is over the algorithm’s internal randomization. Then, if each of the reward functions
is a random function that is independent of the algorithm’s randomness, it holds that

max
x∈X

E

[
T∑
t=1

rt(x)−
T∑
t=1

rt(xt)

]
≤ R(T) .

Proof. Let F be the σ-field defined by the random bits used by the random functions r1, r2, In other words,
F is the smallest σ-field under which all of the random functions are measurable. Loosely speaking, F captures
all of the “randomness” in the reward function and none of the “randomness” used by A. When we condition on
F , we basically fix a concrete instantiation of the random functions, and for all purposes we make the random
functions deterministic. Therefore, it holds that

E

[
max
x∈X

T∑
t=1

rt(x)−
T∑
t=1

rt(xt)
∣∣∣F] ≤ R(T) .

The left-hand side above is a random variable and the inequality above states that this random variable is surely
upper bounded by R(T). We therefore have that

max
x∈X

E

[
T∑
t=1

rt(x)−
T∑
t=1

rt(xt)

]

≤ E

[
max
x∈X

T∑
t=1

rt(x)−
T∑
t=1

rt(xt)

]

= E

[
E
[

max
x∈X

T∑
t=1

rt(x)−
T∑
t=1

rt(xt)
∣∣∣F]]

≤ R(T) .

