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Abstract

This paper considers stochastic bandits with
side observations, a model that accounts for
both the exploration/exploitation dilemma
and relationships between arms. In this set-
ting, after pulling an arm i, the decision
maker also observes the rewards for some
other actions related to i. We will see that
this model is suited to content recommen-
dation in social networks, where users’ reac-
tions may be endorsed or not by their friends.
We provide efficient algorithms based on up-
per confidence bounds (UCBs) to leverage
this additional information and derive new
bounds improving on standard regret guar-
antees. We also evaluate these policies in
the context of movie recommendation in so-
cial networks: experiments on real datasets
show substantial learning rate speedups rang-
ing from 2.2× to 14× on dense networks.

1 INTRODUCTION

In the classical stochastic multi-armed bandit problem
[4, 6], a decision maker repeatedly chooses among a fi-
nite set of K actions. At each time step t, the action i
chosen yields a random rewardXi,t drawn from a prob-
ability distribution proper to action i and unknown to
the decision maker. Her goal is to maximize her cu-
mulative expected reward over the sequence of chosen
actions. This problem has received well-deserved at-
tention from the online learning community for the
simple model it provides of a tradeoff between explo-
ration (trying out all actions) and exploitation (select-
ing the best action so far). It has several applications,
including content recommendation, Internet advertis-
ing and clinical trials.

The decision maker’s performance after n steps is typ-
ically measured in terms of the regret R(n), defined

as the difference between the reward of her strategy
and that of an optimal strategy (one that would al-
ways choose actions with maximum expected reward).
One of the most prominent algorithms in the stochastic
bandit literature, UCB1 from Auer et al. [6], achieves
a logarithmic (expected) regret

E [R(n)] ≤ AUCB1 lnn+BUCB1, (1)

where AUCB1 and BUCB1 are two constants specific to
the policy. This upper bound implies fast convergence
to an optimal policy: the mean loss per decision after n
rounds is only E [R(n)/n] = O(lnn/n) in expectation
(which scaling is known to be optimal).

This paper considers the stochastic bandit problem
with side observations (a setting that has been con-
sidered in [16] but for adversarial bandits, see Section
2), a generalization of the standard multi-armed ban-
dit where playing an action i at step t not only results
in the reward Xi,t, but also yields information on some
related actions {Xj,t}. We also present a direct appli-
cation of this scenario is advertising in social networks:
a content provider may target users with promotions
(e.g., “20% off if you buy this movie and post it on
your wall”), get a reward if the user reacts positively,
but also observe her connections’ feelings toward the
content (e.g., friends reacting by “Liking” it or not).

Our contributions are as follows. First, we con-
sider a generalization UCB-N of UCB1 taking side
observations into account. We show that its re-
gret can be upper bounded as in (1) with a smaller
AUCB-N < AUCB1. Then, we provide a better al-
gorithm UCB-MaxN achieving an improved constant
term BUCB-MaxN < BUCB-N. We show that both im-
provements are significant for bandits with a large
number of arms and a dense reward structure, as is
for example the case of advertising in social networks.
We finally evaluate our policies on real social net-
work datasets and observe substantial learning rate
speedups (from 2.2× to 14×, see Section 5).



2 RELATED WORK

Multi-armed bandit problems became popular with
the seminal paper of Robbins [19] in 1952. Thirty
years later, Lai and Robbins [13] provided one of the
key results in this literature when they showed that,
asymptotically, the expected regret for the stochastic
problem has to grow at least logarithmically in the
number of steps, i.e.,

E [R(n)] = Ω(lnn).

They also introduced an algorithm that follows the
“optimism in the face of uncertainty” principle and
decides which arm to play based on upper confi-
dence bounds (UCBs). Their solution asymptotically
matches the logarithmic lower bound.

More recently, Auer et al. [6] considered the case of
bandits with bounded rewards and introduced the well-
known UCB1 policy, a concise strategy achieving the
optimal logarithmic bound uniformly over time in-
stead of asymptotically. Further work improved the
constants AUCB1 and BUCB1 in their upper bound (1)
using additional statistical assumptions [3].

One of the major limitations of standard bandit al-
gorithms appears in situations where the number of
arms K is large or potentially infinite; note for in-
stance that the upper bound (1) scales linearly with
K. One approach to overcome this difficulty is to add
structure to the rewards distributions by embedding
arms in a metric space and assuming that close arms
share a similar reward process. This is for example the
case in dependent bandits [18], where arms with close
expected rewards are clustered.

X -armed bandits [7] allow for an infinite number of
arms x living in a measurable space X . They assume
that the mean reward function µ : x 7→ E [Xx] satis-
fies some Lipschitz assumptions and extend the bias
term in UCBs accordingly. Bubeck et al. [7] provide
a tree-based optimization algorithm that achieves, un-
der proper assumptions, a regret independent of the
dimension of the space.

Linear bandits [8, 20] are another example of struc-
tured bandit problems with infinitely many arms.
In this setting, arms x live in a finite-dimensional
vector space and mean rewards are modeled as lin-
ear functions of a system-wide parameter Z ∈ Rr,
i.e., E [Xx] = Z · x. Near-optimal policies typically
extend the notion of confidence intervals to confidence
ellipsoids, estimated through empirical covariance ma-
trices, and use the radius of these confidence regions
as the bias term in their UCBs.

This last framework allows for contextual bandits and
has been used as such in advertisement and content

recommendation settings: [14] applied it to personal-
ized news article recommendation, while [9] extended
it to generalized linear models1 and applied it to Inter-
net advertisement. The approach in both these works
is to reduce a large number of arms to a small set of
numerical features, and then apply a linear bandit pol-
icy in the reduced space. Constructing good features
is thus a crucial and challenging part of this process.
In this paper, we do not make any assumption on the
structure of the reward space. We handle the large
number of arms in multi-armed bandits leveraging a
phenomenon known as side observations which occurs
in a variety of problems. This phenomenon has already
been studied by Mannor et al. [16] in the case of adver-
sarial bandits, i.e., where the reward sequence {Xi,t}
is arbitrary and no statistical assumptions are made.
They proposed two algorithms: ExpBan, a mix of ex-
perts and bandits algorithms based on a clique decom-
position of the side observations graph, and ELP, an
extension of the well-known EXP3 algorithm [5] taking
the side observation structure into account. While the
clique decomposition in ExpBan inspired our present
work, our setting is that of stochastic bandits: statis-
tical assumptions on the reward process allow us to
derive O(lnn) regret bounds, while the best achiev-

able bounds in the adversarial problem are Õ(
√
n). It

is indeed much harder to learn in an adversarial envi-
ronment, and the methodology to address this family
of problems is quite different from the techniques we
use in our work.

Note that our side observations differ from contextual
side information, another generalization of the stan-
dard bandit problems where some additional informa-
tion is given to the decision maker before pulling an
arm. Asymptotically optimal policies have been pro-
vided for this setting [22] in the case of two-armed
bandits.

3 SIDE OBSERVATIONS

Formally, a K-armed bandit problem is defined by K
distributions P1, . . . ,PK , one for each “arm” of the
bandit, with respective means µ1, . . . , µK . When the
decision maker pulls arm i at time t, she receives a
reward Xi,t ∼ Pi. All rewards {Xi,t, i ∈ J1,KK, t ≥ 1}
are assumed to be independent. We will also assume
that all {Pi} have support in [0, 1]. The mean es-
timate for E [Xi,·] after m observations is Xi,m :=
1
m

∑m
s=1Xi,s. The (cumulative) regret after n steps

is defined by

R(n) :=

n∑
t=1

Xi∗,t −
n∑
t=1

XIt,t,

1in which E [Xx] = f(Z · x) for some regular function f



K # of arms
Xi,t reward of arm i at time t
µi mean reward of arm i
∆i expected loss for playing arm i
i∗ index of an optimal arm
µ∗ mean reward of arm i∗

It index of the arm played at time t
Ti(n) # pulls to arm i after n steps
N(i) neighborhood of arm i (includes i)
Oi(n) # observations for arm i after n steps
O∗(n) same for arm i∗

Table 1: Notations Summary

where i∗ = arg max{µi} and It is the index of the arm
played at time t. The gambler’s goal is to minimize the
expected regret of the policy, which one can rewrite as

E [R(n)] =

K∑
i=1

∆iE [Ti(n)]

where Ti(n) :=
∑n
t=1 1 {It = i} denotes the number of

times arm i has been pulled up to time n, and ∆i :=
µ∗ − µi is the expected loss incurred by playing arm i
instead of an optimal arm.

In the standard multi-armed bandit problem, the
only information available at time t is the sequence
(XIs,s)s≤t. We now present our setting with side ob-
servations. The side observation (SO) graph G =
(V,E) is an undirected graph over the set of arms
V = J1,KK, where an edge i ↔ j means that pulling
arm i (resp. j) at time t yields a side observation of
Xj,t (resp. Xi,t). Let N(i) denote the observation set
of arm i consisting of i and its neighbors in G. Con-
trary to previous work on UCB algorithms [13, 6], in
our setting the number of observations made so far for
arm i at time n is not Ti(n) but

Oi(n) :=

n∑
t=1

1 {It ∈ N(i)} ,

which accounts for the fact that observations come
from pulling either the arm or one of its neighbors.
Note that Oi(n) ≥ Ti(n).

A clique in G is a subset of vertices C ⊂ V such that
all arms in C are neighbors with each other. A clique
covering C of G is a set of cliques such that

⋃
C∈C C =

V . Table 1 summarizes our notations.

3.1 LOWER BOUND

Before we analyze our policies, let us note that the
problem we study is at least as difficult as the standard
multi-armed bandit problem in the sense that, even

with additional observations, the expected regret for
any strategy has to grow at least logarithmically in the
number of rounds. The only exception to this would be
a graph where every node is neighbor with an optimal
arm, a particular and easier setting that we do not
study here. This observation is stated by the following
Theorem:

Theorem 1. Let B∗ := arg max{µi | i ∈ V } and sup-
pose

⋃
i∈B∗ N(i) 6= V . Then, for any uniformly good

allocation rule,2 E [R(n)] = Ω(lnn).

Proof. For a set of arms S, we denote N(S) :=
∪j∈SN(j). Let i∗ ∈ B∗ and v := arg max{µj | j ∈
V \N(B∗)}, i.e., the best arm which can not be ob-
served by pulling an optimal arm.

First assume that N(v) ∩ N(B∗) = ∅. The proof fol-
lows by comparing the initial bandit problem with side
observations denoted A with the two-armed bandit B
without side observations where the reward distribu-
tions are P∗ for the optimal arm 1 and Pv for the
non-optimal arm 2. To any strategy for A, we asso-
ciate the following strategy for B: if arm i is played in
A at time t, play in B: arm 1 if i ∈ N(B∗) and get
reward Xi∗,t; arm 2 if i ∈ N(v) and get reward Xv,t;
no arm otherwise.

Let n′ denote the number of arms pulled in B after n
steps in A. It is clear that n′ ≤ n and a valid strategy
for A gives a valid strategy for B. The expected regret
incurred by arm 1 in B is 0, and each time arm 2 is
pulled in B, a sub-optimal arm is pulled in A with
larger expected loss. As a consequence, E [RA(n)] ≥
E [RB(n′)], where RA (resp. RB) denotes the regret in
A (resp. B). By the classical result of Lai and Robbins
[13], E [RB(n′)] = Ω(lnn′). Hence, if n′ = Ω(n) the
claim follows. If n′ = o(n), then sub-optimal arms are
played in A at least n− n′ times so that E [RA(n)] =
Ω(n− n′) = Ω(n) and the claim follows as well.

Now assume that N(v)∩N(B∗) 6= ∅. A valid strategy
for A does not give a valid strategy for B any more,
since pulling an arm in N(v)∩N(B∗) gives information
on both an optimal arm and v, i.e., both arms in B.
We need to modify slightly the two-armed bandit as
follows. First, we define u := arg max{µi | i ∈ N(v) ∩
N(B∗)} and w := v if µv ≥ µu and u otherwise. The
reward distribution for arm 2 in B is now Pw. To any
strategy for A, we associate a strategy for B as follows:
when arm i is played in A at time t, play in B:

• i ∈ N(B∗)\N(v)⇒ pull arm 1, get reward Xi∗,t;

• i ∈ N(v)\N(B∗)⇒ pull arm 2, get reward Xw,t;

2i.e., not depending on the labels of the arms, see [13]



• i ∈ N(v) ∩ N(B∗) ⇒ pull arms 1 and 2 in two
consecutive steps, getting rewards Xi∗,t and Xw,t;

• otherwise, do not pull any arm.

Let n′ denote the number of arms pulled in B after n
steps in A. We now see that any valid strategy for A
gives a valid strategy for B. As in previous setting,
the expected regret incurred by arm 1 in B is 0, and
each time arm 2 is pulled in B, a sub-optimal arm is
pulled in A with larger expected loss. As a conse-
quence, E [RA(n)] ≥ E [RB(n′)], and we can conclude
as above.

3.2 UPPER CONFIDENCE BOUNDS

The UCB1 policy constructs an Upper Confidence
Bound for each arm i at time t by adding a bias term√

2 ln t/Ti(t− 1) to its sample mean. Hence, the UCB
for arm i at time t is

UCBi(t) := Xi,Ti(t−1) +

√
2 ln t

Ti(t− 1)
.

Auer et al. [6] have proven that the policy which picks
arg maxi UCBi(t) at every step t achieves the following
upper bound after n steps:

E [R(n)] ≤ 8

(
K∑
i=1

1

∆i

)
lnn+

(
1 +

π2

3

) K∑
i=1

∆i. (2)

In the setting with side observations, we will show in
Section 3.3 that a generalization of this policy yields
the (improved) upper bound

E [R(n)] ≤ 8

(
inf
C

∑
C∈C

maxi∈C ∆i

mini∈C ∆2
i

)
lnn+O(K),

where the O(K) term is the same as in (2), and the
infimum is over all possible clique coverings of the SO
graph. We will detail in Section 3.3 how this bound
improves on the original

∑
i 1/∆i.

We will then introduce in Section 4 an algorithm im-
proving on the constant O(K) term (remember that
the number of arms K is assumed � 1). By proac-
tively using the underlying structure of the SO graph,
we will reduce it to the following finite-time upper
bound: (

1 +
π2

3

)∑
C∈C

∆C + on→∞(1),

where ∆C is the best individual regret in clique C ∈
C. Note that, while both constant terms were linear
in K in Equation (2), our improved factors are both
O(|C|) where |C| is the number of cliques used to cover
the SO graph. We will show that this improvement is
significant for dense reward structures, as is the case
with advertising in social networks (see Section 5).

3.3 UCB-N POLICY

In the multi-armed bandit problem with side observa-
tions, when the decision maker pulls an arm i after t
rounds of the game, he/she gets the reward Xi,t and
observes {Xj,t | j ∈ N(i)}. We consider in this sec-
tion the policy UCB-N where one always plays the arm
with maximum UCB, and updates all mean estimates
{Xj,t | j ∈ N(i)} in the observation set of the pulled
arm i.

Algorithm 1 UCB-N

X,O← 0,0
for t ≥ 1 do

i← arg maxi

{
Xi +

√
2 ln t
Oi

}
pull arm i
for k ∈ N(i) do
Ok ← Ok + 1
Xk ← Xk,t/Ok + (1− 1/Ok)Xk

end for
end for

We take the convention
√

1/0 = +∞ so that all arms
get observed at least once. This strategy takes all the
side information into account to improve the learning
rate. The following Theorem quantifies this improve-
ment as a reduction in the logarithmic factor from
Equation (2).

Theorem 2. The expected regret of policy UCB-N af-
ter n steps is upper bounded by

E [R(n)] ≤ inf
C

{
8

(∑
C∈C

maxi∈C ∆i

∆2
C

)
lnn

}

+

(
1 +

π2

3

) K∑
i=1

∆i,

where ∆C = mini∈C ∆i.

Proof. Consider a clique covering C of G = (V,E),
i.e., a set of subgraphs such that each C ∈ C is a
clique and V = ∪C∈CC. One can define the intra-
clique regret RC(n) for any C ∈ C by

RC(n) :=
∑
t<n

∑
i∈C

∆i1 {It = i} .

Since the set of cliques covers the whole graph, we
have R(n) ≤

∑
C∈C RC(n). From now on, we will

focus on upper bounding the intra-clique regret for a
given clique C ∈ C.

Let TC(t) :=
∑
i∈C Ti(t) denote the number of times

(any arm in) clique C has been played up to time t.



Then, for any positive integer `C ,

RC(n) ≤ `C max
i∈C

∆i+
∑
i∈C
t≤n

∆i1 {It = i;TC(t− 1) ≥ `C}

Considering that the event {It = i} implies

{Xi,Oi(t−1) + ct−1,Oi(t−1) ≥ X
∗
O∗(t−1) + ct−1,O∗(t−1)},

we can upper bound this last summation by:∑
i∈C
t<n

∆i1

{
Xi,Oi(t) + ct,Oi(t) ≥ X

∗
O∗(t) + ct,O∗(t)

TC(t) ≥ `C

}

≤
∑
i∈C
t<n

∆i1

{
max

`C≤si≤t
Xi,si + ct,si ≥ min

0≤s≤t
X
∗
s + ct,s

}

≤
∑
i∈C
t<n

t∑
s=0

t∑
si=`C

∆i1
{
Xi,si + ct,si ≥ X

∗
s + ct,s

}

Now, choosing

`C ≥ max
i∈C

8 lnn

∆2
i

=
8 lnn

mini∈C ∆2
i

=
8 lnn

∆2
C

will ensure that P
(
Xi,si + ct,si ≥ X

∗
s + ct,s

)
≤ 2t−4

for any i ∈ C as a consequence of the Chernoff-
Hoeffding bound, and following the same argument as
in [6]. Hence, the overall clique regret is bounded by:

RC(n) ≤ `C max
i∈C

∆i +
∑
i∈C

∞∑
t=1

2∆it
−2

≤ 8
maxi∈C ∆i

∆2
C

lnn+

(
1 +

π2

3

)∑
i∈C

∆i.

Summing over all cliques in C and taking the infimum
over all possible coverings C yields the aforementioned
upper bound.

Remark. When C is the trivial covering {{i}, i ∈ V },
this upper bound reduces exactly to Equation (2).
Therefore, taking side observations into account sys-
tematically improves on the baseline UCB1 policy.

4 UCB-MaxN POLICY

The second term in the upper bound from Theorem
2 is still linear in the number of arms and may be
large when K � 1. In this section, we introduce a
new policy that makes further use of the underlying
reward observations to improve performances.

Consider the two extreme scenarii that can make an
arm i played at time t: it has the highest UCB, so

• either its average estimate Xi,t is very high, which
means it is empirically the best arm to play,

• or its bias term
√

2 ln t/Oi(t− 1) is very high,
which means one wants more information on it.

In the second case, one wants to observe a sample Xi,t

to reduce the uncertainty on arm i. But in the side
observation setting, we don’t have to pull this arm di-
rectly to get an observation: we may as well pull any
of its neighbors, especially one with higher empirical
rewards, and reduce the bias term all the same. Mean-
while, in the first case, arm i will already be the best
empirical arm in its observation set.

This reasoning motivates the following policy, called
UCB-MaxN, where we first pick the arm we want to
observe according to UCBs, and then pick in its obser-
vation set the arm we want to pull, this time according
to its empirical mean only.

Algorithm 2 UCB-MaxN

X,n← 0,0
for t ≥ 1 do

i← arg maxi

{
Xi +

√
2 ln t
Oi

}
j ← arg maxj∈N(i)Xj

pull arm j
for k ∈ N(j) do
Ok ← Ok + 1
Xk ← Xk,t/Ok + (1− 1/Ok)Xk

end for
end for

Asymptotically, UCB-MaxN reduces the second factor
in the regret upper bound (2) from O(K) to O(|C|),
where C is an optimal clique covering of the side ob-
servation graph G.

Theorem 3. The expected regret of strategy UCB-
MaxN after n steps is upper bounded by

E [R(n)] ≤ inf
C

{
8

(∑
C∈C

maxi∈C ∆i

∆2
C

)
lnn

+

(
1 +

π2

3

)∑
C∈C

∆C

}
+ on→∞(1)

We will make use of the following lemma to prove this
theorem:

Lemma 1. Let X1, . . . , Xn and Y1, . . . , Ym denote two
sets of i.i.d. random variables of respective means µ
and ν such that µ < ν. Let ∆ := µ− ν. Then,

P
(
Xn > Y m

)
≤ 2e−min(n,m)∆2/2.



Proof. Note that either Xn <
1
2 (µ + ν) < Y m or one

of the two events Xn >
1
2 (µ+ν) or Y m < 1

2 (µ+ν) oc-

curs. As a consequence, the probability P
(
Xn > Y m

)
is lower than

P
(
Xn >

µ+ ν

2

)
+ P

(
Y m <

µ+ ν

2

)
≤ P

(
Xn − µ > −

∆

2

)
+ P

(
Y m − ν <

∆

2

)
≤ e−n∆2/2 + e−m∆2/2

≤ 2e−min(n,m)∆2/2.

Proof of Theorem 3. Let kC := arg mini∈C ∆i denote
the best arm in clique C, and define δi := ∆i−∆C for
each arm i ∈ C. As in the beginning of our proof for
Theorem 2, we can upper bound:

RC(n) ≤ `C max
i∈C

∆i+
∑
i∈C
t<n

∆i1 {It = i;TC(t− 1) ≥ `C}

(3)
where this last summation is upper bounded by∑

i∈C
t<n

(∆C + δi)1 {It = i;TC(t− 1) ≥ `C}

≤
∑
t<n

∆C1 {It = kC ;TC(t− 1) ≥ `C}+∑
i∈C
t<n

∆i1 {It = i;TC(t− 1) ≥ `C}

The first summation can be bounded using the
Chernoff-Hoeffding inequality as before:∑

t<n

1 {It = kC ;TC(t− 1) ≥ `C}

≤
∑
t<n

∑
s≤t

`C≤sk≤t

1
{
XkC ,sk + ct,sk > X

∗
s + ct,s

}

≤ 2
∑
t<n

t−2 ≤ 1 +
π2

3

with an appropriate choice of `C ≥ 8 lnn
∆2

C
. As

to the second summation, the fact that Algorithm
2 picks i instead of kC at step t implies that
Xi,Oi(t) > XkC ,OkC

(t), so

R′C(n) :=
∑
i∈C
t<n

∆i1 {It = i;TC(t− 1) ≥ `C}

≤
∑
i∈C
t<n

∆i1

{
Xi,Oi(t−1) > XkC ,OkC

(t−1)

TC(t− 1) ≥ `C

}

Consider the times `C ≤ τ1 ≤ · · · ≤ τTC(n) when the
clique C was played (after the first `C steps). Then,
one can rewrite R′C(n) as follows:

R′C(n) ≤
TC(n)∑
u=`C

∑
i∈C

∆i1
{
Xi,Oi(τu) > XkC ,OkC

(τu)

}

E [R′C(n)] ≤
TC(n)∑
u=`C

∑
i∈C

∆iP
(
Xi,Oi(τu) > XkC ,OkC

(τu)

)
After the clique C has been played u times, all arms
in C being neighbors in the side observation graph,
we know that each estimate Xi, i ∈ C has at least u
samples, i.e., Oi(τu) ≥ u. Therefore, using Lemma 1
with “n = Oi(τu)” and “m = OkC (τu)” in the previous
expression yields

E [R′C(n)] ≤
∑
i∈C

TC(n)∑
u=`C

2∆ie
−uδ2i /2

≤ 2
∑
i∈C
δi>0

∆i
1− e−nδ2i /2

1− e−δ2i /2
e−`Cδ

2
i /2,

where δi = µi −minj∈C µj . Combining all these sepa-
rate upper bounds in Equation (3) leads us to

E [RC(n)] ≤ 8
maxi∈C ∆i

∆2
C

lnn+

(
1 +

π2

3

)
∆C

+ 2
∑
i∈C
δi>0

∆i
1− e−nδ2i /2

1− e−δ2i /2
·
(

1

n

)4δ2i /∆
2
C

where this last term is on→∞(1).

Remark. UCB-MaxN is asymptotically better than
UCB-N: again, its upper bound expression boils down
to Equation (2) when applied to the trivial covering
C = {{i}, i ∈ V }.

Note that our bound is achieved uniformly over time
and not only asymptotically; we only used the o(1)
notation in Theorem 3 to highlight that the last term
vanishes when n → ∞. This term may actually be
large for small values of n and pathological regret dis-
tributions, e.g., if some δi are such that δi � ∆C .
However, with distributions drawn from real datasets
we observed a fast decrease: in the Flixster experiment
for instance (see Section 5.3), this term was below the
(1+π2/3)∆C constant for more than 80% of the cliques
after T ∼ 20K steps.

5 EXPERIMENTS

We have seen so far that our policies improve regret
bounds compared to standard UCB strategies. Let us



evaluate how these algorithms perform on real social
network datasets. In this section, we perform three
experiments. First, we evaluate the UCB-N and UCB-
MaxN policies on a movie recommendation problem
using a dataset from Flixster [2]. The policies are
compared to three baseline solutions: two UCB vari-
ants with no side observations, and an ε-greedy with
side observations. Second, we investigate the impact
of extending side observations to friends-of-friends, a
setting inspired from average user preferences on so-
cial networks that densifies the reward structure and
speeds up learning. Finally, we apply the UCB-N and
UCB-MaxN algorithms in a bigger social network setup
with a dataset from Facebook [1].

5.1 DATASETS

We perform empirical evaluation of our algorithms on
datasets from two social networks: Flixster and Face-
book. Flixster is a social networking service in which
users can rate movies. This social network was crawled
by Jamali et al. [10], yielding a dataset with 1M users,
14M friendship relations, and 8.2M movie ratings that
range from 0.5 to 5 stars. We clustered the graph using
Graclus [17] and obtained a strongly connected sub-
graph. Furthermore, we eliminated users that rated
less than 30 movies and movies rated by less than 30
users. This preprocessing step helps us to learn more
stable movie-rating profiles (Section 5.2). The result-
ing dataset involves 5K users, 5K movies, and 1.7M
ratings. The subgraph from Facebook we used was
collected by Viswanath et al. [21] from the New Or-
leans region. It contains 60K users and 1.5M friend-
ship relationships. Again, we clustered the graph using
Graclus and obtained a strongly connected subgraph
of 14K users and 500K edges.

5.2 EXPERIMENTAL SETUP

We evaluate our policies in the context of movie rec-
ommendation in social networks. The problem is set
up as a repetitive game. At each turn, a new movie
is sampled from a homogeneous movie database and
the policy offers it at a promotional price to one user
in the social network.3 If the user rates the movie
higher than 3.5 stars, we assume that he/she accepts
the promotion and our reward is 1, otherwise the re-
ward is 0. The promotion is then posted on the user’s
wall and we assume that all friends of that user ex-
press their opinion, i.e., whether they would accept
a similar offer (e.g., on Facebook by “Liking” or not
the promotional message). The goal is to learn a pol-
icy that gives promotions to people who are likely to

3In accordance with the bandit framework, we further
assume that the same movie is never sampled twice.

accept them.

We use standard matrix factorization techniques [12]
to predict users ratings from the Flixster dataset.
Since the Facebook dataset does not contain movie
ratings, we generated rating profiles by matching users
between the Flixster and Facebook social networks.
This matching is based on structural features only,
such as vertex degree, the aim of this experiment be-
ing to evaluate the performances of our policies in a
bigger network with similar rating distributions across
vertices.

The upper bounds we derived in the analysis of UCB-
N and UCB-MaxN (Theorems 2 and 3) involve the
number of cliques used to cover the side observation
graph; meanwhile, bigger cliques imply more observa-
tions per step, and thus a faster convergence of esti-
mators. These observations suggest that the minimum
number of cliques required to cover the graph impacts
the performances of our allocation schemes, which is
why we took this factor into account in our evaluation.

Unfortunately, finding a cover with the minimum num-
ber of cliques is an NP-hard problem. We addressed it
suboptimally as follows. First, for each vertex i in the
graph, we computed a maximal clique Ci involving i.
Second, a covering using {Ci} is found using a greedy
algorithm for the set cover problem [11].

For each experiment, we evaluate our policies on 3
subgraphs of the social network obtained by termi-
nating the greedy algorithm after 3%, 15%, and 100%
of the graph have been covered. This choice is mo-
tivated by the following observation: the degree dis-
tribution in social networks is heavy-tailed, and the
number of cliques needed to cover the whole graph
tends to be on the same scale of order as the number
of vertices; meanwhile, the most active regions of the
network (which are of practical interest in our content
recommendation scenario) are densest and thus easier
to cover with cliques. Since the greedy algorithm fol-
lows a biggest-cliques-first heuristic, looking at these
3% and 15% covers allows us to focus on these densest
regions.

The quality of all policies is evaluated by the per-step
regret r(n) := 1

nE [R(n)]. We also computed for each
plot the improvement of each policy against UCB1 af-
ter the last round T (a k× improvement means that
r(T ) ≈ rUCB1(T )/k). This number can be viewed as
a speedup in the convergence to the optimal arm. Fi-
nally, all plots include a vertical line indicating the
number of cliques in the cover, which is also the num-
ber of steps needed by any policy to pull every arm
at least once. Before that line, all policies perform
approximately the same.
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Figure 1: Per-step regret of four bandit policies on the Flixster graph.
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Figure 2: Per-step regret of four bandit policies on the Flixster graph with friend-of-friend side observations.

5.3 FLIXSTER

In this first experiment, we evaluate UCB-N and UCB-
MaxN in the Flixster social network. These policies are
compared to three baselines: UCB1 with no side obser-
vation, UCB1-on-cliques and ε-greedy. Our ε-greedy
is the same as εn-greedy in [6] with c = 5, d = 1
and K = |C|, which turned out to be the best empir-
ical parametrization within our experiments. UCB1-
on-cliques is similar to UCB-N, except that it updates
the estimators {Xk | k ∈ N(i)} with the reward Xi,t of
the pulled arm i. This is a simple approach to make
use of the network structure without access to side ob-
servations. As illustrated in Figure 1, we observe the
following trends.

The regret of UCB-N and UCB-MaxN is significantly
smaller than the regret of UCB1 and UCB1-on-cliques,
which suggests these strategies successfully benefit
from side observations to improve their learning rate.
ε-greedy shows improvement as well, but its perfor-
mances decrease rapidly as the size of the cover grows
(i.e., adding smaller cliques) compared to our strate-
gies. Overall, the performance of all policies deterio-
rates with more coverage, which is consistent with the
O(K) and O(|C|) upper bounds on their regrets.

UCB-MaxN does not perform significantly better than
UCB-N when the size of the cover |C| is small. This can
be explained based on the amount of overlap between
the cliques in the cover. In practice, we observed that
UCB-MaxN performs better when individual arms be-
long to many cliques on average. For our 3%, 15%, and
100% graph cover simulations, the average number of
cliques covering an arm were 1.18, 1.09, 1.76; mean-
while, the regrets of UCB-MaxN were 9%, 3%, and 33%
smaller than the regrets of UCB-N, respectively.

5.3.1 FRIENDS OF FRIENDS

In the second experiment we use a denser graph where
side observations come from friends and friends of
friends. This setting is motivated by the observation
that a majority of social network users do not restrict
content sharing to their friends. For instance, more
than 50% of Facebook users share all their content
items with friends of friends [15].

Figure 2 shows that the gap between the baselines and
our policies is even wider in this new setting. This
phenomenon can be explained by larger cliques; for
instance, only 8 cliques are needed to cover 15% of the
graph in this instance, which is 20 times less than in
Section 5.3.
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Figure 3: Per-step regret of four bandit policies on the Facebook graph.
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Figure 4: Per-step regret of four bandit policies on the Facebook graph with friend-of-friend side observations.

5.4 FACEBOOK

In the next experiment, we evaluate UCB-N and UCB-
MaxN on a subset of the Facebook social network. This
graph has three times as many vertices and twice as
many edges as the Flixster graph. We experiment with
both friends and friends-of-friends side observations.

As shown in Figures 3 and 4, compared to Figures 1
and 2, we observe much smaller regrets in this setting,
essentially because the Facebook graph is denser. For
instance, only 5 friend-of-friend cliques are needed to
cover 15% of the graph. For this cover, the regret
of UCB-MaxN is 10 times smaller than the regret of
UCB1-on-cliques and UCB-N, respectively.

6 CONCLUSION AND FUTURE
WORK

In this paper, we considered the stochastic multi-
armed bandit problem with side observations. This
problem generalizes the standard, independent multi-
armed bandit, and has a broad set of applications in-
cluding Internet advertisement and content recommen-
dation systems. Our contribution consists in two new
strategies, UCB-N and UCB-MaxN, that leverage this

additional information into substantial learning rate
speed-ups.

We showed that our policies reduce regret bounds from
O(K) to O(|C|), which is a significant improvement for
dense reward-dependency structures. We also evalu-
ated their performances on real datasets in the con-
text of movie recommendation in social networks. Our
experiments suggest that these strategies significantly
improve the learning rate when the side observation
graph is a dense social network.

So far we have focused on cliques as a convenient way
to analyze our policies, but none of our two strategies
explicitly relies on cliques (they only use the notion of
neighborhood). Characterizing the most appropriate
subgraph structure for this problem is still an open
question that could lead to better regret bounds and
inspire more efficient policies.
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