
Active Imitation Learning via Reduction to I.I.D. Active Learning

Kshitij Judah
School of E.E.C.S.

Oregon State University
Corvallis, OR 97331-5501, USA

judahk@eecs.oregonstate.edu

Alan P. Fern
School of E.E.C.S.

Oregon State University
Corvallis, OR 97331-5501, USA

afern@eecs.oregonstate.edu

Thomas G. Dietterich
School of E.E.C.S.

Oregon State University
Corvallis, OR 97331-5501, USA

tgd@cs.orst.edu

Abstract

In standard passive imitation learning, the
goal is to learn a target policy by passively
observing full execution trajectories of it.
Unfortunately, generating such trajectories
can require substantial expert effort and be
impractical in some cases. In this paper, we
consider active imitation learning with the
goal of reducing this effort by querying the
expert about the desired action at individual
states, which are selected based on answers
to past queries and the learner’s interactions
with an environment simulator. We intro-
duce a new approach based on reducing ac-
tive imitation learning to i.i.d. active learn-
ing, which can leverage progress in the i.i.d.
setting. Our first contribution, is to analyze
reductions for both non-stationary and sta-
tionary policies, showing that the label com-
plexity (number of queries) of active imita-
tion learning can be substantially less than
passive learning. Our second contribution, is
to introduce a practical algorithm inspired by
the reductions, which is shown to be highly
effective in four test domains compared to a
number of alternatives.

1 Introduction

Traditionally, passive imitation learning involves
learning a policy that performs nearly as well as an
expert’s policy based on a set of trajectories of that
policy. However, generating such trajectories is often
tedious or even impractical for an expert (e.g. real-
time low-level control of multiple game agents). In or-
der to address this issue, we consider active imitation
learning where full trajectories are not required, but
rather the learner asks queries about specific states,
which the expert labels with the correct actions. The
goal is to learn a policy that is nearly as good as the
expert’s policy using as few queries as possible.

The active learning problem for i.i.d. supervised learn-
ing has received considerable attention both in theory
and practice (Settles, 2009), which motivates attempt-
ing to leverage that work for active imitation learning.
However, the direct application of i.i.d. approaches
to active imitation learning can be problematic. This
is because i.i.d. active learning algorithms assume ac-
cess to either a target distribution over unlabeled input
data (in our case states) or a large sample drawn from
it. The goal then is to select the most informative
query to ask, usually based on some combination of
label (in our case actions) uncertainty and unlabeled
data density. Unfortunately, in active imitation learn-
ing, the learner does not have direct access to the tar-
get state distribution, which is the state distribution
induced by the unknown expert policy.

In principle, one could approach active imitation learn-
ing by assuming a uniform or an arbitrary distribution
over the state space and then apply an existing i.i.d.
active learner. However, such an approach can per-
form very poorly. This is because if the assumed dis-
tribution is considerably different from that of the ex-
pert, then the learner is prone to ask queries in states
rarely or even never visited by the expert. For ex-
ample, consider a bicycle balancing problem. Clearly,
asking queries in states where the bicycle has entered
an unavoidable fall is not very useful because no ac-
tion can prevent a crash. However, i.i.d. active learn-
ing technique will tend to query in such uninformative
states, leading to poor performance, as shown in our
experiments. Furthermore, in the case of a human
expert, a large number of such queries poses serious
usability issues, since labeling such states is clearly a
wasted effort from the expert’s perspective.

In this paper, we consider the problem of reducing ac-
tive imitation learning to i.i.d. active learning both
in theory and practice. Our first contribution is to
analyze the PAC label complexity (number of expert
queries) of a reduction for learning non-stationary poli-
cies, which requires only minor modification to exist-

ing results for passive learning. Our second contribu-
tion is to introduce a reduction for learning stationary
policies resulting in a new algorithm Reduction-based
Active Imitation Learning (RAIL) and an analysis of
the label complexity. The resulting complexities for
active imitation learning are expressed in terms of the
label complexity for the i.i.d. case and show that there
can be significant query savings compared to existing
results for passive imitation learning. Our third contri-
bution is to describe a new practical algorithm, RAIL-
DW, inspired by the RAIL algorithm, which makes a
series of calls to an i.i.d. active learning algorithm. We
evaluate RAIL-DW in four test domains and show that
it is highly effective when used with an i.i.d. algorithm
that takes the unlabeled data density into account.

2 Related Work

Active learning has been studied extensively in the
i.i.d. supervised learning setting (Settles, 2009) but
to a much lesser degree for sequential decision mak-
ing, which is the focus of active imitation learning.
Several studies have considered active learning for re-
inforcement learning (RL) (Clouse, 1996; Mihalkova
and Mooney, 2006; Gil et al., 2009; Doshi et al., 2008),
where learning is based on both autonomous explo-
ration and queries to an expert. Rather, in our imita-
tion learning framework, we do not assume a reward
signal and learn only from expert queries. Other prior
work (Shon et al., 2007) studies active imitation learn-
ing in a multiagent setting where the expert is itself
a reward seeking agent and hence is not necessarily a
helpful expert. Here we consider only helpful experts.

One approach to imitation learning is inverse RL
(IRL) (Ng and Russell, 2000), where a reward function
is learned based on a set of target policy trajectories.
The learned reward function and transition dynamics
are then given to a planner to obtain a policy. There
has been limited work on active IRL. This includes a
Bayesian approach (Lopes et al., 2009), where a poste-
rior over reward functions is used to select a “most in-
formative” query. Another Bayesian approach (Cohn
et al., 2010) models uncertainty about the entire MDP
model and uses Expected Myopic Gain (EMG) to se-
lect a query about transition dynamics and rewards.
While promising, the scalability of these approaches is
hindered by the assumptions made by IRL and have
only been demonstrated on small problems. In par-
ticular, they require that the exact domain dynamics
are provided or can be learned and that an efficient
planner is available.

To facilitate scalability, rather than follow an IRL
framework we consider a direct imitation framework
where we attempt to directly learn a policy instead of
the reward function and/or transition dynamics. Un-

like inverse RL, this framework does not require an
exact dynamic model nor an efficient planner. Rather,
our approach requires only a simulator of the envi-
ronment dynamics that is able to generate trajectories
given a policy. Such a simulator is often available, even
when a compact description of the transition dynamics
and/or a planner are not.

Recent active learning work in the direct imitation
framework includes confidence based autonomy (Cher-
nova and Veloso, 2009), and the related dogged learn-
ing framework (Grollman and Jenkins, 2007), where a
policy is learned as it is executed. When the learner
is uncertain about what to do at a state, the policy
is paused and the expert is queried about what ac-
tion to take, resulting in a policy update. One diffi-
culty in applying this approach is setting the uncer-
tainty threshold for querying the expert. While an
automated threshold selection approach is suggested
(Chernova and Veloso, 2009), our experiments show
that it is not always effective. Like our work, this ap-
proach requires a dynamics simulator.

Recently, Ross and Bagnell (2010); Ross et al. (2011)
proposed algorithms for imitation learning that are
able to actively query the expert at particular states
during policy execution. They show that under cer-
tain assumptions these algorithms have better theo-
retical performance guarantees than pure passive imi-
tation learning. Unfortunately, these algorithms query
the expert quite aggressively making them impractical
for human experts or computationally expensive with
automated experts. In contrast, our work focuses on
active querying for the purpose of minimizing the ex-
pert’s labeling effort. Like our work, they also require
a dynamics simulator to help select queries.

3 Problem Setup and Background

We consider imitation learning in the framework of
Markov decision processes (MDPs). An MDP is a tu-
ple 〈S,A, T,R, I〉, where S is the set of states, A is the
finite set of actions, T (s, a, s′) is the transition func-
tion denoting the probability of transitioning to state
s′ upon taking action a in state s, R(s) ∈ [0, 1] is the
reward function giving the immediate reward in state
s, and I is the initial state distribution. A station-
ary policy π : S 7→ A is a deterministic mapping from
states to actions such that π(s) indicates the action to
take in state s when executing π. A non-stationary
policy is a tuple π = (π1, . . . , πT) of T stationary poli-
cies such that π(s, t) = πt(s) indicates the action to
take in state s and at time t when executing π, where
T is the time horizon. The expert’s policy, which we
assume is deterministic, is denoted as π∗.

The T -horizon value of a policy V (π) is the expected
total reward of trajectories that start in s1 ∼ I at

time t = 1 and then execute π for T steps. We use dtπ
to denote the state distribution induced at time step
t by starting in s1 ∼ I and then executing π. Note
that d1π = I for all policies. We use dπ = 1

T

∑T
t=1 d

t
π

to denote the state distribution induced by policy π
over T time steps. To sample an (s, a) pair from dtπ,
we start in s1 ∼ I, execute π to generate a trajectory
T = (s1, a1, . . . , sT , aT , sT+1) and set (s, a) = (st, at).
Similarly, to sample from dπ, we first sample a random
time step t ∈ {1, . . . , T}, and then sample an (s, a) pair
from dtπ. Note that in order to sample from dπ∗ (or
dtπ∗), we need to execute π∗. Throughout the paper,
we assume that the only way π∗ can be executed is by
querying the expert for an action in the current state
and executing the given action, which puts significant
burden on the expert.

The regret of a policy π with respect to an expert pol-
icy π∗ is equal to V (π∗)−V (π). In imitation learning,
the goal is to learn a policy π from a hypothesis class
H (e.g. linear action classifiers), that has a small re-
gret. In the passive setting of imitation learning, the
learner is provided with a training set of full execu-
tion trajectories of π∗ and the state-action pairs (or
a sample of them) are passed to an i.i.d. supervised
learning algorithm. To help avoid the cost of gener-
ating full trajectories, active imitation learning allows
the learner to pose action queries. In an action query,
a state s is presented to the expert and the expert
returns the desired action π∗(s).

In addition to having access to the expert for answer-
ing queries, we assume that the learner has access to
a simulator of the MDP. The input to the simulator
is a policy π and a horizon T . The simulator out-
put is a state trajectory that results from executing π
for T steps starting in the initial state. The learner
is allowed to interact with this simulator as part of
its query selection process. The simulator is not as-
sumed to provide a reward signal, which means that
the learner cannot find π by pure reinforcement learn-
ing.

Since our analysis in the next two sections is based
on reducing to i.i.d. active learning and comparing to
i.i.d. passive learning, we briefly review the Probably
Approximately Correct (PAC) (Valiant, 1984) learn-
ing formulation for the i.i.d. setting. Here we consider
the realizable PAC setting, which will be the focus of
our initial analysis. Section 4.3, extends to the non-
realizable, or agnostic setting. In passive i.i.d. super-
vised learning, N i.i.d. data samples are drawn from
an unknown distribution DX over an input space X
and are labeled according to an unknown target clas-
sifier f : X 7→ Y, where Y denotes the label space. In
the realizable PAC setting it is assumed that f is an
element of a known class of classifiers H and given a

set of N examples a learner then outputs a hypothesis
h ∈ H. Let ef (h,DX) = Ex∼DX [h(x) 6= f(x)] de-
note the generalization error of the returned classifier
h. Standard PAC learning theory provides a bound on
the number of labeled examples that are sufficient to
guarantee that for any distribution DX , with proba-
bility at least 1−δ, the returned classifier h will satisfy
ef (h,DX) ≤ ε. We will denote this bound by Np(ε, δ),
which corresponds to the label/query complexity of
i.i.d. passive supervised learning for a class H. We
will also denote a passive learner that achieves this
label complexity as Lp(ε, δ).

In i.i.d. active learning, the learner is given access to
two resources rather than just a set of training data:
1) A “cheap” resource (Sample) that can draw an un-
labeled sample from DX and provide it to the learner
when requested, 2) An “expensive” resource (Label)
that can label a given unlabeled sample according to
target concept f when requested. Given access to
these two resources, an active learning algorithm is
required to learn a hypothesis h ∈ H while posing as
few queries to Label as possible. It can, however, pose
a much larger number of queries to Sample (though
still polynomial) as it is cheap. We use Na(ε, δ) to
denote the label complexity (i.e. number of calls to
Label) that is sufficient for an active learner to return
an h that for any DX with probability at least 1 − δ
satisfies ef (h,DX) ≤ ε. Similarly, we will denote an
active learner that achieves this label complexity as
La(ε, δ,D), where the final argument D indicates that
the Sample function used by La samples from distribu-
tion D. It has been shown that often Na can be expo-
nentially smaller than Np for hypothesis classes with
bounded complexity (e.g. VC-dimension). In partic-
ular, in the realizable case, ignoring δ, Np = O(1

ε)
whereas Na = O(log(1

ε)) giving exponential improve-
ment in label complexity over passive learning.

4 Reductions for Active Imitation
Learning

We now consider reductions from active imitation
learning to active i.i.d. learning for the cases of de-
terministic non-stationary and stationary policies.

4.1 Non-Stationary Policies

Syed and Schapire (2010) analyze the traditional re-
duction from passive imitation learning to passive i.i.d.
learning for non-stationary policies. The algorithm
uses queries to sample N expert trajectories, noting
that the state-action pairs at time t can be viewed
as i.i.d. draws from distribution dtπ∗ . The algo-
rithm, then returns the non-stationary policy π̂ =
(π̂1, . . . , π̂T), where π̂t is the policy returned by run-
ning the learner Lp on examples from time t. Let
εt = eπ∗t (π̂t, d

t
π∗) be the generalization error at time

t. Lemma 31 in (Syed and Schapire, 2010) shows that
if for each time step εt ≤ ε, then V (π̂) ≥ V (π∗)− εT 2.
Hence, if we are interested in learning a π̂ whose over-
all regret is no more than ε, then we need to provide at
least Np(

ε
T 2 ,

δ
T) examples to Lp to ensure that εt ≤ ε

T 2

holds at all time steps with probability at least 1− δ.
Therefore, the passive label complexity of this algo-
rithm is T ·Np(ε

T 2 ,
δ
T).

Our goal now is to provide a reduction from active imi-
tation learning to i.i.d. active learning that can achieve
an improved label complexity. This is not as simple as
replacing the calls to Lp in the above approach with
calls to an active learner La. This is because the ac-
tive learner at time step t would require the ability to
sample from the unlabeled distribution dtπ∗ , which re-
quires executing the expert policy for t steps, which in
turn requires t label queries to the expert that would
count against the label complexity.

It turns out that for a slightly more sophisticated re-
duction to i.i.d. passive learning introduced by Ross
and Bagnell (2010), it is possible to simply replace
Lp with La and maintain the potential benefit of ac-
tive learning. Ross and Bagnell (2010) introduced the
forward training algorithm for non-stationary policies,
which trains a non-stationary policy in a series of T
iterations. In particular, iteration t trains policy π̂t
by calling a passive learner Lp on a labeled data set
drawn from the state distribution induced at time t
by the non-stationary policy π̂t−1 = (π̂1, . . . , π̂t−1),
where π̂1 is learned on states drawn from the initial
distribution I. The motivation for this approach is to
train the policy at time step t based on the same state-
distribution that it will encounter when being run after
learning. By doing this, Ross and Bagnell (2010) show
that the algorithm has a worst case regret of T 2ε and
under certain assumptions can achieve a regret as low
as O(Tε).

Importantly, the state-distribution used to train π̂t
given by dtπ̂t−1 is easy for the learner to sample from
without making queries to the expert. In particular,
to generate a sample the learner can simply simulate
π̂t−1, which is available from previous iterations, from
a random initial state and return the state at time t.
Thus, we can simply replace the call to Lp at itera-
tion t with a call to La with unlabeled state distribu-
tion dtπ̂t−1 as input. More formally, the active forward
training algorithm is given by the following iteration:
π̂t = La(ε, δT , D

t), where D1 = I and Dt = dtπ̂t−1 .

Theorem 3.1 in (Ross and Bagnell, 2010) gives the

1The main result of (Syed and Schapire, 2010) holds
for stochastic expert policies and requires a more compli-
cated analysis that results in a looser bound. Lemma 3
is strong enough for deterministic expert policies, which is
the assumption made in our work.

worst case bound on the regret of the forward train-
ing algorithm which assumes the generalization error
at each iteration is bounded by ε. Since we also main-
tain that assumption when replacing Lp with La (the
active variant) we immediately inherit that bound.

Proposition 1. Given a PAC i.i.d. active learning
algorithm La, if active forward training is run by giv-
ing La parameters ε and δ

T at each step, then with
probability at least 1−δ it will return a non-stationary
policy π̂T such that V (π̂T) ≥ V (π∗)− εT 2.

Note that La is run with δ
T as the reliability param-

eter to ensure that all T iterations succeed with the
desired probability. Proposition 1 shows that the over-
all label complexity of active forward training in or-
der to achieve a regret less than ε with probability at
least 1 − δ is T ·Na(ε

T 2 ,
δ
T). Comparing to the corre-

sponding label complexity of passive imitation learning
T ·Np(ε

T 2 ,
δ
T) we see that an improved label complex-

ity of active learning in the i.i.d. case translates to
improved label complexity of active imitation learn-
ing. In particular, in the realizable learning case, we
know that Na can be exponentially smaller than Np in
terms of its dependence on 1

ε .

4.2 Stationary Policies

A drawback of active forward training is that it is im-
practical for large T and the resulting policy cannot be
run indefinitely. We now consider the case of learning
stationary policies, first reviewing the existing results
for passive imitation learning.

In the traditional approach, a stationary policy π̂ is
trained on the expert state distribution dπ∗ using a
passive learning algorithm Lp returning a stationary
policy π̂. Theorem 2.1 in (Ross and Bagnell, 2010)
states that if the generalization error of π̂ with respect
to the i.i.d. distribution dπ∗ is bounded by ε then
V (π̂) ≥ V (π∗) − εT 2. Since generating i.i.d. samples
from dπ∗ can require up to T queries (see Section 3)
the passive label complexity of this approach for guar-
anteeing a regret less than ε with probability at least
1− δ is T ·Np(ε

T 2 , δ).

The above approach cannot be converted into an ac-
tive imitation learner by simply replacing the call to
Lp with La, since again we cannot sample from the un-
labeled distribution dπ∗ without querying the expert.
To address this issue, we introduce a new algorithm
called RAIL (Reduction-based Active Imitation Learn-
ing) which makes a sequence of T calls to an i.i.d.
active learner, noting that it is likely to find a use-
ful stationary policy well before all T calls are issued.
RAIL is an idealized algorithm intended for analysis,
which achieves the theoretical goals but has a number
of inefficiencies from a practical perspective. Later in
Section 5 we describe the practical instantiation that

is used in our experiments.

RAIL is similar in spirit to active forward training,
though its analysis is quite different and more involved.
Like forward-training RAIL iterates for T iterations,
but on each iteration, RAIL learns a new stationary
policy π̂t that can be applied across all time steps. It-
eration t + 1 of RAIL learns a new policy π̂t+1 that
achieves a low error rate at predicting the expert’s
actions with respect to the state distribution of the
previous policy dπ̂t . More formally, given an i.i.d. ac-
tive learner La, the RAIL algorithm is defined by the
following iteration:

• (Initialize) π̂0 is an arbitrary policy, possibly
based on prior knowledge or existing data,

• (Iterate t = 1 · · · , T) π̂t = La(ε, δT , dπ̂t−1).

Thus, similar to active forward training, RAIL makes
a sequence of T calls to an active learner. Unlike for-
ward training, however, the unlabeled data distribu-
tions used at each iteration contains states from all
time points within the horizon, rather than being re-
stricted to a states arising at a particular time point.
Because of this difference, the active learner is able to
ask queries across a range of time point and we might
expect policies learned in earlier iterations to achieve
non-trivial performance throughout the entire horizon.
In contrast, at iteration t the policy produced by for-
ward training is only well defined up to time t.

The complication faced by RAIL, however, compared
to forward training, is that the distribution used to
train π̂t+1 differs from the state distribution of the
expert policy dπ∗ . This is particularly true in early
iterations of RAIL since π̂0 is initialized arbitrarily.
We now show that as the iterations proceed, we can
bound the similarity between the state distributions of
the learned policy and the expert, which allows us to
bound the regret of the learned policy. We first state
the main result which we prove below.

Theorem 1. Given a PAC i.i.d. active learning al-
gorithm La, if RAIL is run with parameters ε and δ

T
passed to La at each iteration, then with probability at
least 1 − δ it will return a stationary policy π̂T such
that V (π̂T) ≥ V (π∗)− εT 3.

From this we see that the impact of moving from non-
stationary to stationary policies in the worst case is a
factor of T in the regret bound. Similarly the bound is
a factor of T worse than the comparable result above
for passive imitation learning, which suffered a worst-
case regret of εT 2. From this we see that the total label
complexity for RAIL required to guarantee a regret of
ε with probability 1 − δ is T · Na(ε

T 3 ,
δ
T) compared

to the above label complexity of passive learning T ·

Np(
ε
T 2 , δ). Thus, for a given policy class, if the label

complexity of i.i.d. active learning is substantially less
than the label complexity of passive learning, then our
reduction can leverage those savings. For example, in
the realizable learning case, ignore the dependence on
δ (which is only logarithmic), we get an active label

complexity of T · O(log T 3

ε) versus the corresponding

passive complexity of T ·O(T
2

ε).

For the proof we introduce the quantity P tπ(M), which
is the probability that a policy π is consistent with a
length t trajectory generated by the expert policy π∗

in MDP M . It will also be useful to index the state
distribution of π by the MDP M , denoted by dπ(M).
The main idea is to show that at iteration t, P tπ̂t(M)
is not too small, meaning that the policy at iteration
t mostly agrees with the expert for the first t actions.
We first state two lemmas, which are useful for the
final proof. First, we bound the regret of a policy in
terms of PTπ (M).

Lemma 1. For any policy π, if PTπ (M) ≥ 1− ε, then
V (π) ≥ V (π∗)− εT .

Proof. Let Γ∗ and Γ be all state-action sequences of
length T that are consistent with π∗ and π respectively.
If R(T) is the total reward for a sequence T then we
get the following:

V (π) =
∑
T ∈Γ

Pr(T | M,π)R(T)

≥
∑

T ∈Γ∩Γ∗
Pr(T | M,π)R(T)

=
∑
T ∈Γ∗

Pr(T | M,π∗)R(T)−
∑

T ∈Γ∗−Γ

Pr(T | M,π∗)R(T)

= V (π
∗
)−

∑
T ∈Γ∗−Γ

Pr(T | M,π∗)R(T)

≥ V (π
∗
)− T ·

∑
T ∈Γ∗−Γ

Pr(T | M,π∗)

≥ V (π
∗
)− εT

The last two inequalities follow since the reward for a
sequence must be no more than T and our assumption
about PTπ (M).

Next, we show how the value of P tπ(M) changes across
one iteration of learning.

Lemma 2. For any policies π and π̂ and 1 ≤ t < T ,
if eπ∗(π̂, dπ(M)) ≤ ε, then P t+1

π̂ (M) ≥ P tπ(M)− Tε.

Proof. We define Γ̂ to be all sequences of state-action
pairs of length t + 1 that are consistent with π̂. Also
define Γ to be all length t + 1 state-action sequences
that are consistent with π on the first t state-action
pairs (so need not be consistent on the final pair). We
also define M̂ to be an MDP that is identical to M ,
except that the transition distribution of any state-
action pair (s, a) is equal to the transition distribution

of action π(s) in state s. That is, all actions taken in
a state s behave like the action selected by π in s.

We start by arguing that if eπ∗(π̂, dπ(M)) ≤ ε then

P t+1
π̂ (M̂) ≥ 1 − Tε, which relates our error assump-

tion to the MDP M̂ . To see this note that for MDP
M̂ , all policies including π∗, have state distribution
given by dπ. Thus by the union bound 1−P t+1

π̂ (M̂) ≤∑t+1
i=1 εi, where εi is the error of π̂ at predicting π∗

on distribution diπ. This sum is bounded by Tε since

eπ∗(π̂, dπ(M)) = 1
T

∑T
i=1 εi. Using this fact we can

now derive the following:

P
t+1
π̂ (M) =

∑
T ∈Γ̂

Pr(T | M,π∗)

≥
∑
T ∈Γ∩Γ̂

Pr(T | M,π∗)

=
∑
T ∈Γ

Pr(T | M,π∗)−
∑

T ∈Γ−Γ̂

Pr(T | M,π∗)

= P
t
π(M)−

∑
T ∈Γ−Γ̂

Pr(T | M,π∗)

= P
t
π(M)−

∑
T ∈Γ−Γ̂

Pr(T | M̂, π
∗
)

≥ P
t
π(M)−

∑
T 6∈Γ̂

Pr(T | M̂, π
∗
)

≥ P
t
π(M)− Tε

The equality of the fourth line follows since Γ contains
all sequences whose first t actions are consistent with π
with all possible combinations of the remaining action
and state transition. Thus, summing over all such se-
quences yields the probability that π∗ agrees with the
first t steps. The equality of the fifth line follows be-
cause Pr(T | M,π∗) = Pr(T | M̂, π∗) for any T that
is in Γ and for which π∗ is consistent (has non-zero
probability under π∗). The final line follows from the
above observation that P t+1

π̂ (M̂) ≥ 1− Tε.

We can now complete the proof of the main theorem.

Proof of Theorem 1. Using failure parameter δ
T en-

sures that with at least probability 1 − δ that for all
1 ≤ t < T we will have eπ∗(π̂

t+1, dπ̂t(M)) ≤ ε. As a
base case, we have P 1

π̂1 ≥ 1 − Tε, since the the error
rate of π̂1 relative to the initial state distribution at
time step t = 1 is at most Tε. Combining these facts
with Lemma 2 we get that PTπ̂T ≥ 1− εT 2. Combining
this with Lemma 1 completes the proof.

4.3 Agnostic Case

Above we considered the realizable setting, where the
expert’s policy was assumed to be in a known hypoth-
esis class H. In the agnostic case, we do not make
such an assumption. The learner still outputs a hy-
pothesis from a class H, but the unknown policy is
not necessarily in H. The agnostic i.i.d. PAC learning
setting is defined similarly to the realizable setting, ex-
cept that rather than achieving a specified error bound
of ε with high probability, a learner must guarantee an

error bound of infπ∈H ef (π,DX) + ε with high prob-
ability (where f is the target), where DX is the un-
known data distribution. That is, the learner is able
to achieve close to the best possible accuracy given
class H. In the agnostic case, it has been shown that
exponential improvement in label complexity with re-
spect to 1

ε is achievable when infπ∈H ef (π,DX) is rela-
tively small compared to ε (Dasgupta, 2011). Further,
there are many empirical results for practical active
learning algorithms that demonstrate improved label
complexity compared to passive learning.

It is straightforward to extend our above results for
non-stationary and stationary policies to the agnostic
case by using agnostic PAC learners for Lp and La.
Space precludes full details and here we outline the
extension for RAIL. Note that the RAIL algorithm
will call La using a sequence of unlabeled data dis-
tributions, where each distribution is of the form dπ
for some π ∈ H and each of which may yield a differ-
ent minimum error given H. For this purpose, we de-
fine ε∗ = supπ∈H inf π̂∈H eπ∗(π̂, dπ) to be the minimum
generalization error achievable in the worst case con-
sidering all possible state distributions dπ that RAIL
might possibly encounter. With minimal changes to
the proof of Theorem 1, we can get an identical result,
except that the regret is (ε∗+ε)T 3 rather than just εT 3.
A similar change in regret holds for passive imitation
learning. This shows that in the agnostic setting we
can get significant improvements in label complexity
via active imitation learning when there are significant
savings in the i.i.d. case.

5 Practical Instantiation of RAIL

Despite the theoretical guarantees, a potential draw-
back of RAIL is that the unlabeled state distributions
used at early iterations may be quite different from
dπ∗ . In particular, at iteration t, the distributions at
times t′ > t have no guarantees with respect to dt

′

π∗ .
Thus, early iterations may focus substantial query ef-
fort on parts of the state-space that are not relevant to
π∗. Another issue is that the idealized version does not
share data across iterations, which is potentially waste-
ful. We now describe our practical instantiation of
RAIL, called RAIL-DW (for density weighted), which
addresses these issues in several ways.

First, we use an incremental version of RAIL that
asks only one query per iteration and accumulates
data across iterations. This allows rapid updating of
state distributions and prevents RAIL from wasting its
query budget on earlier inaccurate distributions but
rather focus on later more accurate distributions.

Second, recall that at iteration t+1, RAIL learns using
an unlabeled data distribution dπ̂t , where π̂t is the pol-
icy learned at iteration t. In order to help improve the

accuracy of this unlabeled distribution (with respect to
dπ∗), instead of using a point estimate for π̂t, we treat
π̂t as a Bayesian classifier for purposes of defining dπ̂t .
In particular, at iteration t let Dt be the set of state-
action pairs collected from previous iterations. We use
this to define a posterior P (π̂|D) over policies in our
policy class H. This, in turn, defines a posterior unla-
beled state distribution dDt = Eπ̂∼P (π̂|D)[dπ̂(s)] which
is used in place of dπ̂t in RAIL. Note that we can sam-
ple from this distribution by first sampling a policy π̂
and then sampling a state from dπ̂, all of which can be
done without interaction with the expert. We observe
that in practice dDt is a significantly more useful es-
timate of dπ∗ than the point estimate, since its more
highly weighted states tend to carry significant weight
according to dπ∗ .

To summarize, iteration t of RAIL-DW carries out the
following steps, adding one state-action pair to the
data set: (D1 is the initial, possibly empty, data set)

1. Run active learner La using unlabeled data dis-
tribution dDt to select a single query state s.

2. Query the expert about s to obtain action π∗(s)
and let Dt+1 = Dt ∪ {(s, π∗(s))}.

The iteration repeats until the query budget is ex-
ceeded. It remains to specify the specific i.i.d. active
learning algorithm that we use and how we sample
from dDt .

Since it is important that the i.i.d. active learner be
sensitive to the unlabeled data distribution, we employ
a density-weighted learning algorithm (hence the name
RAIL-DW). In particular, we use density-weighted
query-by-committee (McCallum and Nigam, 1998) in
our implementation. Given a sample of unlabeled data
points, this approach uses bagging (Breiman, 1996) to
generate a committee for query selection and also uses
a density estimator to estimate the density of the unla-
beled data points. The selected query is the state that
maximizes the product of state density and committee
disagreement. We use the entropy of the vote distribu-
tion (Dagan and Engelson, 1995) as a typical measure
of committee disagreement. We use a committee of
size 5 in our experiments and estimate density of un-
labeled points via simple distance based binning.

Finally, for sampling we assume a class of linear para-
metric policies and assume a uniform prior over the
parameters. We approximate sampling from dDt via
bagging: where we generate K bootstrap samples of
Dt and a policy is learned from each using a supervised
learner. This produces a set of K policies and each is
executed to generate K trajectories. The states on
those trajectories are given to the active learner as the
unlabeled data set. We set K = 5 in our experiments.

6 Experiments

We empirically evaluate RAIL-DW on four domains:
1) Cart-pole, 2) Bicycle, 3) Wargus and 4) The struc-
tured prediction domain NETtalk. We compare RAIL-
DW against the following baselines: 1) Passive, which
simulates the traditional approach by starting at the
initial state and querying the expert about what to do
at each visited state, 2) unif-QBC, which views all the
states as i.i.d. according to the uniform distribution
and applies the standard query-by-committee (QBC)
(Seung et al., 1992) active learning approach. Intu-
itively, this approach will select the state with high-
est action uncertainty according to the current data
set and ignore the state distribution, 3) unif-RAND,
which selects states to query uniformly at random, and
4) Confidence based autonomy (CBA) (Chernova and
Veloso, 2009), which, starting at the initial state, exe-
cutes the current policy until the learner’s confidence
falls below an automatically determined threshold at
which point it queries the expert for an action. CBA
may decide to stop asking queries once the confidence
exceeds the threshold in all states. We use the exact
automated threshold adjustment strategy proposed in
(Chernova and Veloso, 2009). For all of these meth-
ods, we employed the SimpleLogistic classifier in Weka
(Hall et al., 2009) to learn policies.

Cart-Pole. Cart-pole is an RL benchmark where a
cart must balance an attached vertical pole by ap-
plying left or right forces to the cart. An episode
ends when either the pole falls or the cart goes out
of bounds. There are two actions, left and right, and
four state variables describing the position and veloc-
ity of the cart and the angle and angular velocity of the
pole. We made slight modifications to the usual set-
ting where we allow the pole to fall down and become
horizontal and the cart to go out of bounds (we used
default [-2.4, 2.4] as the bounds for the cart). We let
each episode run for a fixed length of 5000 time steps.
This opens up the possibility of generating several “un-
desirable” states where either the pole has fallen or the
cart is out of bounds that are rarely or never gener-
ated by the expert’s state distribution. The expert
policy was a hand-coded policy that can balance the
pole indefinitely. For each learner, we ran experiments
from 30 random initial states close to the equilibrium
start state, generating learning curves for each one and
averaging the results. We report total reward with a
reward function (unknown to the learner) that is +1
for each time step where the pole is balanced and the
cart is in bounds and -1 otherwise.

Figure 1(a) shows the results for cart-pole. We observe
that RAIL learns quickly and achieves optimal perfor-
mance with only 30-35 queries. Passive, on the other
hand, takes 100 queries to get close to the optimal per-

0 20 40 60 80 100
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

6000

Number of Queries

T
o

ta
l

R
e

w
a

rd

Passive

RAIL−DW

CBA

unif−QBC

unif−RAND

(a)

0 10 20 30 40 50 60 70 80 90 100
−200

0

200

400

600

800

1000

1200

Number of Queries

T
o

ta
l

R
e
w

a
r
d

Passive

RAIL−DW

CBA

unif−QBC

unif−RAND

(b)

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

40

60

80

100

120

Number of Queries

A
v
e
ra

g
e
 H

e
a
lt

h
 D

if
fe

re
n

c
e

Passive

RAIL−DW

CBA

(c)

0 50 100 150 200 250 300
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of Queries

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 p

e
r

C
h

a
ra

c
te

r

Passive

RAIL−DW

CBA

unif−QBC

unif−RAND

CBA

Passive

RAIL−DW

(d)
Figure 1: Active imitation learning results: (a) Cart-pole (b) Bicycle balancing (c) Wargus (d) NETtalk.

0 20 40 60 80 100
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

6000

Number of Queries

T
o

ta
l
R

e
w

a
rd

RAIL−DW

RAIL−QBC

RAIL−RAND

(a)

0 10 20 30 40 50 60 70 80 90 100
−200

0

200

400

600

800

1000

1200

Number of Queries

T
o
ta

l
R

e
w

a
r
d

RAIL−DW

RAIL−QBC

RAIL−RAND

(b)
Figure 2: Performance of RAIL with different base
active learners on (a) Cart-pole (b) Bicycle balancing.

formance. The reason for this difference is clear when
one visualizes the states queried by RAIL versus Pas-
sive (not shown for space reasons). The queries posed
by RAIL tend to be close to the decision boundary of
the expert policy, while passive asks many uninforma-
tive queries that are not close to the boundary. How-
ever, a naive reduction to active learning can be dan-
gerous, as demonstrated by the poor performance of
unif-QBC. Further, RAIL performs much better than
random query selection as demonstrated by the per-
formance of unif-RAND. By ignoring the real data
distribution altogether and incorrectly assuming it to
be uniform, these naive methods end up asking many
queries that are not relevant to learning the expert
policy (e.g. states where the pole is in an unrecover-
able fall or the cart is out of bounds). CBA, like RAIL,
learns quickly but settles at a suboptimal performance.
This is because it becomes confident and stops ask-
ing queries prematurely. This shows that CBA’s auto-
matic threshold adjustment mechanism did not work
well in this domain. We did try several adjustments to
the threshold adjustment strategy, but were unable to
find one that was robust across our four domains and
thus we report results for the original strategy.

We also conducted experiments to study the effects of
using i.i.d. active learners that ignore the data dis-
tribution in RAIL. Figure 2(a) shows the performance
of RAIL with three different base active learners, the
density-weighted QBC, the standard QBC (without
density weighting), and random selection of unlabeled
data points. We see that RAIL-DW performs better
than both RAIL-QBC and RAIL-RAND. This shows

that it is critical for the i.i.d. active learner to ex-
ploit the state density information that is estimated
by RAIL at each iteration.

Bicycle Balancing. Bicycle balancing is a variant
of the Bicycle RL benchmark (Randløv and Alstrøm,
1998). The goal is to balance a bicycle moving at a
constant speed for 1000 time steps. If the bicycle falls,
it remains fallen for the rest of the episode. The state
space is described using nine variables measuring var-
ious angles, angular velocities, and positions of the bi-
cycle. There are five possible actions each specifying
a particular handle-bar torque and rider displacement.
The learner’s policy is represented as a linear logistic
regression classifier over features of state-action pairs.
A feature vector is defined as follows: Given a state s,
a set of 20 basis functions is computed. This set is re-
peated for each of the 5 actions giving a feature vector
of length 100. The expert policy was hand coded and
can balance the bicycle for up to 26K time steps.

We used a similar evaluation procedure as for Cart-
pole giving +1 reward for each time step where the
bicycle is kept balanced and -1 otherwise. Figure 1(b)
compares each approach. The results are similar to
those of Cart-pole with RAIL-DW being the top per-
former. Unif-RAND and Unif-QBC show notably poor
performance in this domain. This is because bicycle
balancing is a harder learning problem than cart-pole
with many more uninformative states (an unrecover-
able fall or fallen state). Similarly, 2(b) shows very
poor performance for versions of RAIL that use distri-
bution unaware active learners.

Wargus. We consider controlling a group of 5 friendly
close-range military units against a group of 5 enemy
units in the real-time strategy game Wargus, similar
to the setup in (Judah et al., 2010). The objective is to
win the battle while minimizing the loss in total health
of friendly units. The set of actions available to each
friendly unit is to attack any one of the remaining units
present in the battle (including other friendly units,
which is always a bad choice). In our setup, we allow
the learner to control one of the units throughout the
battle whereas the other friendly units are controlled
by a fixed “reasonably good” policy. This situation

would arise when training the group via coordinate
ascent on the performance of individual units. The
expert policy corresponds to the same policy used by
the other units. Note that poor behavior from even a
single unit generally results in a huge loss. Providing
full demonstrations in real time in such tactical bat-
tles is very difficult for human players and quite time
consuming if demonstrations are done in slow motion,
which motivates state-based active learning.

We designed 21 battle maps differing in the initial
unit positions, using 5 for training and 16 for testing.
We average results across five learning trials. Passive
learns along the expert’s trajectory in each map on all
5 maps considered sequentially according to a random
ordering. For RAIL, in each iteration a training map is
selected randomly and a query is posed in the chosen
map. For CBA, a map is selected randomly and CBA
is allowed to play an episode in it, pausing and query-
ing as and when needed. If the episode ends, another
map is chosen randomly and CBA continues to learn
in it. After each query, the learned policy is tested on
the 16 test maps. We use the difference in the total
health of friendly and enemy units at the end of the
battle as the performance metric (which is positive for
a win). We did not run experiments for unif-QBC and
unif-RAND because it is difficult to define the space
of feasible states over which to sample uniformly.

The results are shown in figure 1(c). We see that al-
though Passive learns quickly for the first 10 queries,
it fails to improve further. This shows that the states
located in this initial prefix of the expert’s trajectory
are very useful, but thereafter Passive gets stuck on
the uninformative part of the trajectory till its query
budget is over. On the other hand, RAIL and CBA
continue to improve beyond Passive, with RAIL being
slightly better, which indicates that they are able to
locate and query more informative states.

NETTalk. We evaluate RAIL on a structured pre-
diction task of stress prediction in the NETtalk data
set (Dietterich et al., 2008). Given a word, the goal
is to assign one of the five stress labels to each letter
of the word in the left to right order. It is straightfor-
ward to view structured prediction as imitation learn-
ing (see for example Ross and Bagnell, 2010) where
at each time step (letter location), the learner has to
execute the correct action (i.e. predict correct stress
label) given the current state. The state consists of
features describing the input (the current letter and
its immediate neighbors) and previous L predictions
made by the learner (the prediction context). In our
experiments, we use L = 1, 2 and show results only for
L = 2 noting that L = 1 was qualitatively similar.

We use character accuracy as a measure of perfor-

mance. Passive learns along the expert’s trajectory
on each training sequence considered in the order it
appears in the training set. Therefore, Passive always
learns on the correct context, i.e. previous L charac-
ters correctly labeled. RAIL and Unif-QBC can select
the best query across the entire training set. CBA, like
Passive, considers training sequences in the order they
appear in the training set and learns on each sequence
by querying at each sequence position. In order to
minimize the impact of the ordering of training exam-
ples on Passive and CBA, we ran five learning trials for
each learner, each with a randomized ordering. We re-
port final performance as the learning curves averaged
across all five trials.

Figure 1(d) presents the NETtalk results. The re-
sults are qualitatively similar to Cart-Pole, except that
Unif-QBC and Unif-RAND do quite well in this do-
main but not as well as RAIL-DW. Again we see that
CBA performs poorly because in all five trials it pre-
maturely stops asking queries, showing its sensitivity
to its threshold adjustment mechanism.

Overall Observations. Overall, we can draw a num-
ber of conclusions from the experiments. First, RAIL-
DW proved to be the most robust and effective ac-
tive imitation learning approach in all of our domains.
Second, the choice of the i.i.d. active learner used for
RAIL is important. In particular, performance can
be poor when the active learning algorithm does not
take density information into account. Using density
weighted query-by-committee was effective in all of our
domains. Third, we found that CBA is quite sensitive
to the threshold adjustment mechanism and we were
unable to find an alternative mechanism that works
across our domains. Fourth, we showed that a more
naive application of i.i.d. active learning in the imita-
tion setting is not effective.

7 Summary

We considered reductions from active imitation learn-
ing based on i.i.d. active learning, which allow for
advances in the i.i.d. setting to translate to imitation
learning. First, we analyzed the label complexity of re-
ductions for both non-stationary and stationary poli-
cies, showing that the complexity of active imitation
learning can be significantly less than passive learning.
Second, we introduced RAIL-DW, a practical variant
of the reduction for stationary policies, and showed
empirically in four domains that it is highly effective
compared to a number of alternatives.

Acknowledgements

The authors acknowledge support of the ONR ATL
program N00014-11-1-0105.

References

L. Breiman. Bagging predictors. Machine learning,
1996.

S. Chernova and M. Veloso. Interactive policy learning
through confidence-based autonomy. JAIR, 2009.

J.A. Clouse. An introspection approach to query-
ing a trainer. Technical report, University of Mas-
sachusetts, 1996.

R. Cohn, M. Maxim, E. Durfee, and S. Singh. Se-
lecting operator queries using expected myopic gain.
In 2010 IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technol-
ogy, 2010.

I. Dagan and S.P. Engelson. Committee-based sam-
pling for training probabilistic classifiers. In ICML,
1995.

Sanjoy Dasgupta. Two faces of active learning. Theor.
Comput. Sci., 2011.

T. Dietterich, G. Hao, and A. Ashenfelter. Gradient
tree boosting for training conditional random fields.
JMLR, 2008.

F. Doshi, J. Pineau, and N. Roy. Reinforcement learn-
ing with limited reinforcement: Using Bayes risk for
active learning in POMDPs. In ICML, 2008.

A. Gil, H. Stern, and Y. Edan. A Cognitive Robot
Collaborative Reinforcement Learning Algorithm.
World Academy of Science, Engineering and Tech-
nology, 2009.

D.H. Grollman and O.C. Jenkins. Dogged learning for
robots. In ICRA, 2007.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I.H. Witten. The WEKA data mining
software: an update. ACM SIGKDD Explorations
Newsletter, 2009.

Kshitij Judah, Saikat Roy, Alan Fern, and Thomas
Dietterich. Reinforcement learning via practice and
critique advice. In AAAI, 2010.

Manuel Lopes, Francisco S. Melo, and Luis Montesano.
Active learning for reward estimation in inverse re-
inforcement learning. In Principles of Data Mining
and Knowledge Discovery, 2009.

Andrew McCallum and Kamal Nigam. Employing em
and pool-based active learning for text classification.
In Proceedings of the Fifteenth International Confer-
ence on Machine Learning, 1998.

L. Mihalkova and R. Mooney. Using active relocation
to aid reinforcement learning. In FLAIRS, 2006.

A.Y. Ng and S. Russell. Algorithms for inverse re-
inforcement learning. In Proceedings of the Seven-
teenth International Conference on Machine Learn-
ing, 2000.

J. Randløv and P. Alstrøm. Learning to drive a bicycle
using reinforcement learning and shaping. In Pro-
ceedings of the Fifteenth International Conference
on Machine Learning, 1998.

S. Ross and J.A. Bagnell. Efficient reductions for imi-
tation learning. In AISTATS, 2010.

Stephane Ross, Geoffrey Gordon, and J. An-
drew (Drew) Bagnell. A reduction of imitation
learning and structured prediction to no-regret on-
line learning. In AISTATS, 2011.

Burr Settles. Active learning literature survey. Techni-
cal report, University of Wisconsin–Madison, 2009.

H.S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In COLT, 1992.

A.P. Shon, D. Verma, and R.P.N. Rao. Active imita-
tion learning. In AAAI, 2007.

Umar Syed and Robert Schapire. A reduction from
apprenticeship learning to classification. In NIPS,
2010.

L. G. Valiant. A theory of the learnable. Commun.
ACM, 1984.

