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Abstract

In practical machine learning systems, graph
based data representation has been widely
used in various learning paradigms, rang-
ing from unsupervised clustering to super-
vised classification. Besides those applica-
tions with natural graph or network structure
data, such as social network analysis and re-
lational learning, many other applications of-
ten involve a critical step in converting data
vectors to an adjacency graph. In particular,
a sparse subgraph extracted from the original
graph is often required due to both theoretic
and practical needs. Previous study clearly
shows that the performance of different learn-
ing algorithms, e.g., clustering and classifi-
cation, benefits from such sparse subgraphs
with balanced node connectivity. However,
the existing graph construction methods are
either computationally expensive or with un-
satisfactory performance. In this paper, we
utilize a scalable method called auction algo-
rithm and its parallel extension to recover a
sparse yet nearly balanced subgraph with sig-
nificantly reduced computational cost. Em-
pirical study and comparison with the state-
of-art approaches clearly demonstrate the su-
periority of the proposed method in both ef-
ficiency and accuracy.

1 INTRODUCTION

Graph based data representation treats data points as
graph nodes and builds pairwise edges between these
nodes which are often weighted by the similarity or
correlations between the corresponding data samples.
In the past decade, graph based data representation
has become very popular and widely used in many ma-
chine learning algorithms due to both practical needs

and theoretical advantage. First, under many practi-
cal situations, the data come in a natural way of graph
representation, where the links or connections between
items can be treated as directed or undirected edges.
Typical examples include social networks, the Inter-
net, and citations networks [13, 21]. Second, for the
conventional vector space based data representation, a
data graph can be easily generated using pre-defined
similarity or correlation measurement.

Given the popularity of data graph representation,
many graph based machine learning algorithms have
been developed, including graph based clustering and
semi-supervised learning algorithms. For instance,
representative graph based clustering approaches in-
clude those formulated as a graph cut problem [16, 20].
In addition, graph has also been integrated into semi-
supervised learning paradigm, resulting in a wide
range of approaches, such as graph Laplacian regular-
ization framework [2, 23, 25] and random walk based
methods [1, 22]. Other popular methods include graph
based ranking algorithms [17, 24]. In many real ap-
plications and systems, graph based approaches have
shown empirical success, especially for those with ag-
nostic setting and given no prior knowledge of the data
distributions.

As indicated in [12, 15], constructing a suitable data
graph is the vital step for ensuring the learning perfor-
mance. The sparse structure of the constructed graph
is desired for learning algorithms to remain efficiency
to memory usage and robustness to noisy samples.
Given an adjacency graph, a typical way to recover
a sparse graph without losing the global structure of
the data is to build a neighborhood graph. The ob-
jective is to connect each data point with its near-
est neighbors and prune all other connections. How-
ever, since the nearest neighborhood method prune the
edges through a greedy process, it can only produce
an asymmetric graph with some adhoc symmetriza-
tion processes. As a result, the constructed neighbor-
hood graph is often irregular and imbalanced, where



the learning performance could be significantly de-
graded [12]. Therefore, this drawback of nearest neigh-
bor method motivated one to consider matching tech-
nique, such as b-matching, to build a balanced graph
structure [11, 12]. Instead of achieving symmetriza-
tion by post-processing, b-matching sets the symme-
try as additional constraints and directly extracts a
symmetric solution. But this modification imposes
much high computation and memory cost and the one
of the known fast approximated solution using belief
propagation has the space complexity of O(n) and the
time complexity O(n2.5) [10], where n is the number
of graph nodes (refer to Table 1).

Considering the trade off between computational effi-
ciency and performance, in this paper, we propose a
fast and scalable solution for constructing nearly bal-
anced graphs using the auction algorithm proposed
in [3]. In order to remain performance superiority
and reduce computation cost, our method tends to
extract an approximately balanced graph though pre-
serving the regularity as much as possible. We show
that this method has the space complexity O(n) and
time complexity O(|E| ·max |aij |/ϵ), where max |aij |/ϵ
is a constant determined by the data and the learn-
ing parameter ϵ. It is much less expensive than the
existing regular graph construction methods, e.g. b-
matching technique. In addition, the auction algo-
rithm based graph construction is naturally paralleliz-
able and therein the computational efficiency can be
further improved using multiple processes. We pro-
vide extensive experiments and comparison study with
the state-of-the-arts on both synthetic and real bench-
mark datasets. The experimental results clearly show
that the graphs created by parallel auction algorithm
(PAA) provide superior performance than neighbor-
hood graphs for different machine learning algorithms.
Although PAA graphs have slightly lower quality than
b-matching graphs, we observe that PAA method re-
duces the computational cost by hundreds of times
than b-matching method. Therefore, the PAA method
is very suitable for handling large scale applications
with massive data graphs.

The remainder of this paper is organized as follows. In
Section 2, we give a brief introduction of related work
on graph construction process. A new graph construc-
tion and sparsification method using a parallel auction
algorithm is presented in Section 3. The experiments
are reported in Section 4 followed by conclusions and
discussions in Section 5.

2 RELATED WORKS

Although graph based machine learning methods have
been extensively studied and explored, there have

been limited efforts for building effective data graphs
in the community. Although some recent methods
use sampling techniques to approximate large scale
graphs [14], it still remains as a challenging issue to
efficiently construct large scale graphs with good qual-
ities, such as sparsity and regularity. In this section,
we will provide a brief introduction about related work
for graph construction and then motivate our proposed
method.

Given a data set X, graph construction aims in con-
verting the data to a weighted graph G = {X,E,W}
where graph nodes are the samples and W ∈ Rn×n is
a weight matrix of edges E. As summarized in [12],
two important steps for graph constructions are spar-
sifying the adjacency matrix A = {aij} ∈ Rn×n and
assigning weights to edges. In many practical settings,
the adjacency matrix is computed using a similarity
function for all pairs of nodes, i.e. aij = sim(xi,xj).
For other applications, such as social network analysis
and relational learning, the adjacency or connection
matrix A might be given in a natural way without the
above process of computing pair-wise similarity. In
the second step, graph sparsification tries to recover a
sparse binary matrix B = {bij} ∈ Bn×n to preserve the
global structure of data using local information. The
final edge matrix can be easily derived as W = B •A,
where the symbol • indicates element-wise multipli-
cation. Such an extract sparse subgraph often leads
better learning performance and requires less storage
and computation cost [11, 12].

The most popular method for constructing a sparse
graph is the nearest neighbor (NN) approach, includ-
ing different variants such as k-nearest neighbor and
ϵ-nearest neighbor methods. Since ϵ-nearest neigh-
bor often generate fragile subgraphs and does not
provide satisfactory performance, kNN graph remains
more popular in many applications [15]. Briefly speak-
ing, kNN graph construction performs a greedy search
process to select the edges with the most significant
weights for each node, and remove all the other in-
significant ones. The objective of kNN approach in-
deed solves the following maximization problem

max
bij

∑
i

∑
j

bijaij

s.t.
∑

j

bij = k,

bii = 0, bij ∈ {0, 1},∀i, j = 1, · · · , n .

(1)

Since the greedy search for k nearest neighbors does
not guarantee to produce symmetric B, it usually
needs some postprocessing to achieve symmetrization
by max(B,B⊤) or min(B,B⊤). However, this adhoc
symmetrization often leads to imbalanced connectivity
for nodes, which could seriously degrade the learning



Table 1: Comparison of the time and space complexity for different graph construction approaches. Assume
the input adjacency graph has n nodes and |E| edges. The compared methods are: Loopy Belief Propagation
(LBP) [9], Sufficient Selection Belief Propagation (SSBP) [10], and the auction algorithm.

Method Time Space

LBP Method O(n|E|) O(n + |E|)
SSBP Method O(n2.5) O(n)

Nearest Neighbor Method O(n2) O(1)

Auction Method O(|E| · max |aij |/ϵ) O(n)

performance, as observed in [12].

As a valuable alternative for extracting sparse graph
structure, weighted b-matching technique [18] has been
applied to build graph with balanced node connectiv-
ity. Similarly to the objective of kNN approach, b-
matching recovers a sparse graph with the maximized
edge weights. Furthermore, b-matching enforces the
symmetry of connectivity through directly imposing a
set of constraints bij = bji. Essentially, b-matching
is a generalized version of the well-known linear as-
signment problem, which can be solved by Hungar-
ian method with a cubic complexity O(n3) (n = |X|)
in time. Various methods have been proposed to
solve b-matching problem with less memory and time
cost, including the reduction based method [8] and be-
lief propagation based approaches [9, 10], for which
the computational complexity is summarized in Ta-
ble 1. Although b-matching method yields clear ad-
vantage for different machine learning algorithms, in-
cluding spectral clustering and semi-supervised clas-
sification [11, 12], it is a much more expensive pro-
cedure than the intuitive kNN method. Due to both
time and memory constraints, the existing b-matching
based graph construction is infeasible for large scale
datasets.

3 AUCTION ALGORITHM FOR
GRAPH CONSTRUCTION

In this section, we describe the procedure to utilize
an auction algorithm to identify bn significant edges
from the given bipartite graph corresponding to the
adjacency matrix A. In particular, each node is con-
nected with at most b edges. If given an arbitrary
graph, it is straightforward to convert it to a bipartite
graph though creating a shadow node for each graph
node and only connect the original graph nodes to the
shadow nodes. In order to utilize distributed comput-
ing systems to process massive data graphs, we also
describe the parallelization technique for the proposed
graph construction method.

3.1 Auction Algorithm for Linear
Assignment

Here, we first describe the solution for a single-edge
matching problem using an auction algorithm, and
then provide general extensions. For a standard max-
imum 1-matching problem (also known as a linear as-
signment problem) over a bipartite graph with a non-
negative weight matrix A, the objective can be written
as:

max
B

tr(A⊤B) (2)

s.t. B1⃗T = 1⃗, BT 1⃗ = 1⃗, B ∈ Bn×n,

where 1⃗ = (1, 1, · · · , 1)T . This linear program can be
interpreted as selecting a permutation matrix B, so
that after permutation of A, the sum of entries on the
diagonal is maximized. The edges corresponding to
the permutation matrix B is as known as a matching
in A. Thus, the solution of this program can be used
to sparsify A with constraints of regularity. To gen-
eralize the standard linear assignment problem to the
objective of extracting a balanced graph where each
node connects to b edges, we can simply replace 1⃗ with
b⃗ = b · 1⃗. However, this solution for such a b-matching
problem can be approximated by solving the above
linear assignment problem for b/2 times and removing
the selected edges after each iteration.

As discussed earlier, we seek fast and scalable solutions
for graph sparsification due to the demand of process-
ing large scale graphs in many domains. Conventional
approach for solving Eq. 2 is based on increasing aug-
menting paths, which leads to low concurrency and
limited scalability [3, 19]. Thus, we propose to use
the auction algorithm introduced by Bertsekas in [3].
Since the constrained problem in Eq. 2 can be con-
verted into a dual form, the auction algorithm deals
with the above linear programming by solving its dual
problem. In particular, we are solving the following
dual problem of the original primal linear program:

min
p,π

1⃗T p + 1⃗T π (3)

s.t. 1⃗pT + π1⃗T ≥ A,



where p = (p1, p2, · · · , pn)T and π = (π1, π2, · · · , πn)T

are known as the dual vectors. The constraints
1⃗pT + π1⃗T ≥ A indicate the element wise relation-
ship between the matrices 1⃗pT + π1⃗T and A, i.e.
(⃗1pT + π1⃗T )ij ≥ aij , i, j = 1, · · · , n. The auction algo-
rithm computes the dual variables through an iterative
auction process. Intuitively, we view each row i as a
buyer and each column j as an object; aij is the benefit
of object j to buyer i; pj is the price of object j (ini-
tialized to 0 at the beginning); πi is the profit for buyer
i, defined as (aij − pj), in case object j is assigned to
i. The auction algorithm proceeds as follows: Each
buyer i bids for an adjacent object j that offers the
highest profit, i.e., maxj∈adj(i)(aij − pj), where adj(i)
denotes the set of adjacent nodes of i. The bid is the
difference between the highest profit and the second
highest profit. An object j is assigned to the buyer
offering the highest bid, say buyer i. Thus, row i and
column j are matched and price pj is increased by the
bid. Price increment makes an object expensive for
competitors, so that they can choose other objects.
The above steps are repeated for all unmatched rows
until every row is matched or the matching does not
change.

The naive auction algorithm described above has a
defect caused by price war [3]. When the highest
and second highest profits are equal for some buyers,
the bid becomes 0 and the object price remains un-
changed. Therefore, buyers can indefinitely compete
for the same object without increasing its price. The
object will be alternately assigned to them and the
auction will not progress. To overcome this issue, a
small positive scalar ϵ is added to the price of an ob-
ject once it is assigned to a buyer. A smaller ϵ leads to
better accuracy; a greater ϵ results in an accelerated
auction process.

3.2 Auction for Graph Sparsification

The auction algorithm described in Section 3.1 selects
a single edge for each node while maximizing the total
weight of the selected edges. For selecting b edges,
there are two straightforward approaches to generalize
the auction. The first approach is to perform auction
multiple times. Every time the algorithm selects an
edge for each node, if exists, without having two edges
connect to the same node. The other approach is to
select up to b edges in each iteration process, following
the same criteria for edge selection. The details are
discussed in below.

Note that the above algorithm does not ensure that if
a node i connects to a shadow node j′, node j will also
connect to node i′. This can cause adverse impact on
graph regularity. We propose a heuristic strategy to
reduce such negative impact. When such inconsistence

Algorithm 1 Fast Graph Construction Using Parallel
Auction Algorithm

Graph partitioning: partition graph G into L
disjoint subgraphs {Gl}L

l=1 with weight matrices
{Al}L

l=1, where Al = {al
ij}

Initialization: Dual vectors p = 0⃗, initial π = 0⃗,
the set of selected edges M = ∅
while price keeps changing do

[1]. For each subgraph corresponding to the
weight matrix Al = {al

ij}, compute for nodes in
Xl that have not identified b edges:

jl
1 = arg max(al

ij − pl
j), ∀j ∈ adj(i)

......

jl
b+1 = arg max(al

ij − pl
j), ∀j ∈ adj(i), j ̸= j1, · · · jb

[2]. Remove earlier selected edges that conflict

M = M\{(i′, jl
t) ∈ M,∀1 ≤ t ≤ b, i′ ∈ Xl}

[3]. Add current selected edges

M = M∪ {(i, jl
t) ∈ M,∀1 ≤ t ≤ b

[4]. Update price

pl
jl
t
= al

ijl
t
− al

ijl
t+1

+ pl
jl
t+1

+ ϵ,∀t = 1, · · · , b

[5]. Synchronize price globally pl
j = maxP

t=1 pt
j

end while

occurs, saying node j selects node ĩ′ instead of node i′,
we compare the percentile of edge (j, ĩ′) with respect
to all incident edges of j and the percentile of (i, j′)
with respect to all incident edges of i. By percentile,
we mean the index of the selected edge among all in-
cident edges sorted in descending order. We accept
the edge with smaller percentile while reject the other
one. The intuition that we select edges according to
the percentile instead of edge weight is that all inci-
dent edges for the boundary nodes in a graph can be
weighed much higher than even the lightest incident
edge of an internal node.

3.3 Parallelization

In this subsection, we discuss a parallelization strat-
egy of the auction algorithm for graph sparsifica-
tion. Given the weight matrix A of a bipartite graph,
we first partition A into L disjoint sub-matrices,
where each sub-matrix Al = {al

ij} is of size nl × n,∑L
l=1 nl = n. Therefore, sub-matrix Al is the

weight matrix of a bipartite subgraph Gl, which con-
tains disjoint node sets Xl and Yl. Although A



Table 2: Average running time (seconds) on the synthetic bipartite and unipartite graphs using different methods
for constructing sparse graphs. The graphs have nodes from 100 to 2000 and the value of b is set as 10 uniformly.
The compared methods include Loopy Belief Propagation (LBP) [9], kNN, and the proposed parallel auction
algorithm (PAA).

n Bipartite Unipartite

|E| LBP kNN PAA |E| LBP kNN PAA

100 5 × 103 0.2 8 × 10−4 4 × 10−3 9.9 × 103 0.3 4 × 10−3 1.1 × 10−2

200 2 × 104 2.8 3 × 10−3 1.5 × 10−2 3.98 × 104 0.7 0.01 0.04

500 1.25 × 105 18.7 0.02 0.11 2.495 × 105 6.2 0.07 0.28

1000 5 × 105 37.9 0.11 0.53 9.99 × 105 23.2 0.39 1.26

2000 2 × 106 609.7 0.47 2.42 3.998 × 106 111.4 1.31 5.39

can also be partitioned by columns or into checker-
board structures [4], the above horizontal partitioning
along row direction is more natural since large scale
sparse graphs/matrices are often stored in the com-
press sparse rows format. After partitioning, we can
rewrite the linear assignment problem in Eq. 2 as:

max
L∑

l=1

∑
i∈Xl

∑
j∈Yl

aijbij (4)

s.t.
∑
j∈Yl

bij = 1, ∀i ∈ Xl, l = 1, · · · , L

L∑
l=1

∑
i∈Xl

bij = 1, ∀j ∈ Yl, bij ≥ 0, ∀i, j.

Eq. 4 implies a straightforward parallelization of auc-
tion algorithm for graph sparsification. In Algorithm
chart 1, we summarize the major steps of parallel auc-
tion for graph sparsification. Here we set the initial
values for p⃗ and π⃗ are both 0⃗. The maximum number
of edges allowed for a node is denoted by b and the
set for selected edges is M, which is initialized as an
empty set ∅.

The above algorithm allows concurrent auction on a
maximum of L processors, each of which handles one
single bipartite subgraph. The only communication
between processors occurs when synchronizing price
vectors in step 5 of the above parallel algorithm. Note
that the solution of the other dual variable π⃗ is up-
dated implicitly, which is given by πl

i = al
ij −pl

j , where
(i, j) is selected. The parallel auction typically acceler-
ates computation due to the concurrent auction activ-
ities in each sub-matrix. However, it does not change
the complexity. That is, in the worst case (the input
graph is a chain), it is equivalent to a serial auction
process.

3.4 Complexity Analysis

The time complexity for auction algorithm depends on
the number of auction iterations and the workload for

each iteration. In an auction process, a price of node
increases at least for ϵ [3], i.e., the minimum bid in-
crement. Since the profit for bidder i that matched
with object j is given by (aij − pj), the profit be-
comes negative after |aij |/ϵ iterations, i.e., i will seek
other objects for possibly higher profit. In each itera-
tion, we visit at most |E| edges (the number typically
decreases dramatically after a few iterations), so the
overall complexity is O(|E|max |aij |/ϵ). During the
auction process, the only information we must keep is
the price of objects. There are n objects, so the space
complexity is O(n). Note that the space for storing
the data or graph itself is not counted for evaluating
space complexity. In Table 1, we summarize the time
and space complexity of the proposed parallel auction
algorithm based graph construction process and com-
pare with other methods. From this analysis, it is
easy to see the proposed parallel auction algorithm
(PAA) based method is extremely efficient for large
scale sparse graph data, which is indeed very common
in real applications, such as social network and geom-
etry analysis [7].

4 EXPERIMENTS

In this section, we provide empirical study of the pro-
posed parallel auction algorithm (PAA) based graph
construction method and compare with the-state-of-
art approaches. In particular, we are interested in
comparing with the belief propagation (BP) based
methods [9, 10] since these method tends to generate
high quality graphs with balanced node connectivity,
similar as our proposed method. Note that there are
two variants of the BP approach, loopy belief propaga-
tion (LBP) and a speed-up version, sufficient selection
belief propagation (SSBP). However, in the empirical
study, we notice that these two methods share very
similar computational performance. Hence, we only
report the results of LBP for comparison. In addition,
we also implement the nearest neighbor search based
graph construction using the standard sorting pro-
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Figure 1: Illustration of the constructed graphs and clustering results over the toy datasets using different
methods: a) original data; b) k-nearest neighbor graph (k = 8); c) b-matching graph (b = 8); d) PAA graph.
Different color indicate the extract clusters using: e) kNN graph; f) b-matching graph; g) PAA graph.

cess as another baseline. Extensive experimenters over
both synthetic and real benchmark datasets are per-
formed to evaluate the computational efficiency and
performance for different learning algorithms, as dis-
cussed below.

4.1 Speed Comparison

We first evaluate the running time of different graph
construction methods. Similar to the settings in [9],
here we randomly generate bipartite and unipartite
graphs with 100 ≤ n ≤ 2000 nodes, where the weights
of graph edges are independently sampled from a uni-
form distribution U(0, 1). For bipartite graph, each
of the two disjoint node sets has n/2 nodes. For con-
structing a sparse graph, the degree of each nodes of
the extracted sparse graph is uniformly set for all the
experiments. For instance, in kNN approach, the value
of k is set as 10, and accordingly b = 10 for b-matching
methods. For fair comparison, all the experiments are
conducted on the same platform with identical hard-
ware and software environment.

For the LBP method, we use the default parameters in
the software package 1, except setting the maximum
iteration as 5000. Table 2 shows the comparison of the
running time for the synthetic data. It is obvious that
kNN provides the most efficient graph construction
method due to its fast greedy search process. How-
ever, comparing LBP and PAA, both of which tend

1http://www.cs.umd.edu/b̃ert/code/bmatching/

to generate balanced graphs, PAA improves the speed
of graph construction in the magnitude of 102. In ad-
dition, we found that the propose method has more
stable running performance for different random data,
while both LBP method relies more on the properties
of the synthetic graph data.

4.2 Performance Comparison

Graph representation has been widely used for differ-
ent machine learning algorithms, including clustering
and classification. In this subsection, we present the
performance comparison study of clustering and clas-
sification through using different graph construction
approaches. For clustering analysis, spectral cluster-
ing has been developed and shown effective in prac-
tice [16]. In a standard spectral clustering process,
there are three key steps. The first step is to con-
struct a data graph that connects sample points. Then
one has to perform eigen-decomposition over the graph
Laplacian. Finally, K-means algorithm is applied to
derive the final clusters. In this study, we use the toy
data [12] to construct different graphs, namely kNN
graph, b-matching graph, and the graph built by the
parallel auction algorithm (PAA-graph). Figure 4(a)-
1(d) show the original data and different graphs. Then
we feed these graph into standard spectral clustering
algorithm to compare the results.

Figure 2 shows the error rate for the clustering re-
sults. The number of connected edges for graph nodes
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Figure 2: The performance comparison of spectral
clustering using different graphs. The horizontal axis
indicates the number of connected edges for graph
nodes and the vertical axis shows the error rate of clus-
tering results.

varies from 6 to 24. For all the tests, we use the same
Gaussian kernel based weighting scheme with the ker-
nel bandwidth informally set as 0.1. Clearly, kNN
graph provides the worst performance and b-matching
graph has the best performance. The proposed parallel
auction based graph construction method has slightly
worse performance than b-matching. However, it sig-
nificantly increases the by the magnitude of 102 in
practice. Figure 1(e)-1(g) shows the examples of con-
structed sparse graphs using different approaches. Due
to the greedy search process, kNN method generates
highly irregular graph and breaks the data structure
by creating more cross-manifold edges. In contrast, b-
matching and the proposed PAA method create more
balanced graphs and have much less edges across the
two clusters. When the node degree increases, it is
easy to generate more cross-cluster edges. Hence, all
the clustering performance of all three graph construc-
tion methods accordingly decreases.

In addition, we also compare the performance of graph
based semi-supervised learning for classification tasks,
i.e. classifying USPS handwritten digits [5] and face
recognition [6]. In particular, we apply the method
developed by Zhou et.al in [23] as the testbed for dif-
ferent graph construction methods. In the tests, we
fix the number of node degree as 7 and use the same
weighting scheme, similar to the settings used in the
above clustering experiments. The number of initially
given labels is varied from 4 to 20 for digits data and 3
to 18 for the face data. For each setting, we randomly
run 50 independent trials and compute the average er-
ror rates of the classification results. Figure 3(a) and
3(b) show the performance curves with error bars for
digits classification and face recognition, respectively.
Again, b-matching approach builds the most balanced
graph and therein achieves the best performance. The

4 8 12 16 20 24
0.02

0.04

0.08

0.12

The Number of Labels

E
rr

o
r 

R
a
te

kNN graph

b−Matching graph

PAA graph

(a)

3 6 9 12 15 18
0

0.08

0.16

0.24

The Number of Labels

E
r
r
o

r
 R

a
te

kNN graph

b−Matching graph

PA graph

(b)

Figure 3: The performance comparison of graph based
semi-supervised learning method using different graph
construction methods: a) digits classification; b) face
recognition. The horizontal axis indicates the number
of initially given labels and the vertical axis shows the
error rate of classification results.

proposed PAA method has slightly worse performance
but almost as fast as kNN method, which tends to
create the highly imbalanced graphs.

4.3 Evaluation of Parallel Efficiency

Since all the above experiments involve the graphs
with relatively small scales, there is no extra bene-
fit to parallelize the algorithm. However, when han-
dling large scale data, it is very important to perform
parallel process for fast graph construction. Note that
the time complexity of the PAA based graph construc-
tion is linear with respect to the number of edges.
This property makes the approach very suitable to
the applications with large scale sparse data graphs.
In order to validate the parallelization efficiency of
the proposed method for such applications, here we
used two real benchmark datasets about circuit simu-
lation problems from the sparse matrix collection [7].
The first graph data “ASIC 680ks” contains 682, 712
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Figure 4: The visualization of the two large graph
data: a) ASIC 680ks, and b) ASIC 680k.

nodes and 2, 329, 176 edges (after reverse process) 2,
and the second data “ASIC 680k” has 682, 862 nodes
and 3, 871, 773 edges (after reverse process) 3. Figure 4
presents the visualization of these two large graphs4.
From this figure, it is easy to see that both graphs are
heavily irregular and the boundary nodes are with ex-
tremely sparse connectivity. Here we apply the pro-
posed PAA method to recover sparse and balanced
graphs from the original graph data.

Our experiments are performed using a computer clus-
ter on which each compute node contains two 2.33 GHz
Intel Xeon E5410 quadcore processors. The eight cores
share 32 GB DDR2 RAM running at 800 MHz. The
OS is Ubuntu 9.10 with GCC 4.10 installed. All codes
were compiled with -O3 level option. We spawn par-
allel processes using MPICH2 to evaluate the parallel
performance of the proposed PAA based graph con-
struction method. In addition, we utilize MPICH2 so
that our proposed technique can scale up to multiple
compute nodes when the scale of the input graph is
large enough. The graphs are partitioned evenly and
launched to each process with equal number of nodes
along with all the neighbor information.

For both graph data, graph construction is performed
for two scenarios: b = 2 and b = 4. For those nodes
with less than b edges in the original graph, all the
connected edges will be preserved. We vary the num-
ber of used processes from 1 to 8, where each process
is hosted by a separate core. The computational cost
includes the time for generating parallel process, parti-
tioning the graph, assigning tasks to each process, and
performing the auction process (The time for loading
data is not considered). Table 3 provides the run-
ning time in seconds for each tested case. From this
table, it is easy to see that the proposed PAA-based

2http://www.cise.ufl.edu/research/sparse/matrices/
Sandia/ASIC 680ks.html

3http://www.cise.ufl.edu/research/sparse/matrices/
Sandia/ASIC 680k.html

4The visualization examples are available from the web-
site: http://www.cise.ufl.edu/research/sparse/matrices/

Table 3: Evaluation of the parallel efficiency of the
proposed PAA-based graph construction method. The
numbers give the computational cost in seconds using
different number of processes.

Data ASIC 680ks ASIC 680k

# of processes b = 2 b = 4 b = 2 b = 4

1 3.09 18.92 1.76 11.62

2 2.74 18.73 1.49 10.83

4 2.70 11.60 1.33 7.29

8 2.47 8.92 1.26 5.03

graph construction method achieves lower execution
time when multiple processes were used. However, the
speedup is sublinear instead of linear because the ex-
tra time used for parallelization and communication.
In general, when performing the graph construction
in 8 parallel processes, the time cost will be reduced
from one quarter to more than half. Especially for
more complex problems (e.g., b = 4), the speed up is
usually more significant.

5 CONCLUSION

Data graph has been widely used for different machine
learning and data mining algorithms. It is critical to
build high quality graphs with affordable cost. Com-
monly, one aims in extracting sparse yet regular graph
from data for both theoretic and practical advantages.
Popular methods for constructing sparse graphs in-
clude nearest neighbor method and b-matching algo-
rithm. The former is very efficient since it essentially
perform greedy search to pick up the significant graph
edges. However, it often generates highly imbalanced
graphs with unsatisfactory performance. The later can
provide fairly balanced regular graphs but suffers from
extremely high computational cost.

In order to remain computational efficiency, while
achieving certain properties of the extracted graph,
such as sparsity and regularity, in this paper, we pro-
posed a novel graph construction method through ex-
ploring the auction algorithm. In particular, the pro-
posed method is almost as fast as kNN method, while
maintain stratificatory regularity property. Experi-
mental results show that the parallel auction algorithm
based graph construction provides comparable per-
formance to the b-matching algorithm, but improves
the speed in the magnitude of 102. Finally, we also
provide the empirical study of the parallelization ef-
ficiency over large data sets with up to 680K nodes.
One of our future direction is to extend the proposed
graph construction to semi-supervised and supervised
scenarios, where partial label information are given to
help improve accuracy of the auction process.
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