A Model-Based Approach to Rounding in Spectral Clustering

Leonard K. M. Poon

April H. Liu

Tengfei Liu Nevin L. Zhang

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Hong Kong, China
{1kmpoon, aprillh, liutf, lzhang}@cse.ust.hk

Abstract

In spectral clustering, one defines a similarity
matrix for a collection of data points, trans-
forms the matrix to get the Laplacian ma-
trix, finds the eigenvectors of the Laplacian
matrix, and obtains a partition of the data
using the leading eigenvectors. The last step
is sometimes referred to as rounding, where
one needs to decide how many leading eigen-
vectors to use, to determine the number of
clusters, and to partition the data points. In
this paper, we propose a novel method for
rounding. The method differs from previ-
ous methods in three ways. First, we relax
the assumption that the number of clusters
equals the number of eigenvectors used. Sec-
ond, when deciding the number of leading
eigenvectors to use, we not only rely on infor-
mation contained in the leading eigenvectors
themselves, but also use subsequent eigenvec-
tors. Third, our method is model-based and
solves all the three subproblems of rounding
using a class of graphical models called la-
tent tree models. We evaluate our method on
both synthetic and real-world data. The re-
sults show that our method works correctly
in the ideal case where between-clusters sim-
ilarity is 0, and degrades gracefully as one
moves away from the ideal case.

1 Introduction

Clustering is a data analysis task where one assigns
similar data points to the same cluster and dissimi-
lar data points to different clusters. There are many
different clustering algorithms, amongst which spec-
tral clustering [14] is one approach that has gained
prominence in recent years. The idea is to convert
clustering into a graph cut problem. More specifically,

one first builds a similarity graph over the data points
using data similarity as edge weights and then parti-
tions the graph by cutting some of the edges. Each
connected component in the resulting graph is a clus-
ter. The cut is done so as to simultaneously minimize
the cost of cut and balance the sizes of the resulting
clusters [I2]. The graph cut problem is NP-hard and
is hence relaxed. The solution is given by the leading
eigenvectors of the so-called Laplacian matrix, which is
a simple transformation of the original data similarity
matrix. In a post-processing step called rounding [2],
a partition of the data points is obtained from those
real-valued eigenvectors.

In this paper we focus on rounding. In general, round-
ing is considered an open problem. There are three
subproblems: (1) decide which leading eigenvectors to
use; (2) determine the number of clusters; and (3) de-
termine the members in each cluster. Previous round-
ing methods fall into two groups depending on whether
they assume the number of clusters is given. When the
number of clusters is known to be k, rounding is usu-
ally done based on the k leading eigenvectors. The
data points are projected onto the subspace spanned
by those eigenvectors and then the K-means algorithm
is run on that space to get k clusters [14]. Bach and
Jordan [2] approximate the subspace using a space
spanned by k piecewise constant vectors and then run
K-means on the latter space. Zhang and Jordan [I9]
observe a link between rounding and the orthogonal
Procrustes problem and iteratively use an analytical
solution for the latter problem to build a method for
rounding. Rebagliati and Verri [I0] ask the user to
provide a number K that is larger than k& and obtain
k clusters based on the K leading eigenvectors using a
randomized algorithm.

When the number of clusters is not given, one needs
to estimate it. A common method is to manually ex-
amine the difference between every two consecutive
eigenvalues starting from the first two. If a big gap
appears for the first time between the k-th and (k+1)-

th eigenvalues, then one uses k as an estimate of the
number of clusters. Zelnik-Manor and Perona [I7] pro-
pose an automatic method. For a particular integer k,
it tries to rotate the k leading eigenvectors so as to
align them with the canonical coordinate system for
the eigenspace spanned by those vectors. A cost func-
tion is defined in terms of how well the alignment can
be achieved. The k with the lowest cost is chosen as an
estimate for the number of clusters. Xiang and Gong
[16] and Zhao et al. [20] relax the assumption that clus-
tering should be based on a continuous block of eigen-
vectors at the beginning of the eigenvector spectrum.
They use heuristics to choose eigenvectors which do
not necessarily form a continuous block, and use Gaus-
sian mixture models to determine the clusters. Socher
et al. [I3] assume the number of leading eigenvectors to
use is given. Based on those leading eigenvectors, they
determine the number of clusters and the membership
of each cluster using a non-parametric Bayesian clus-
tering method.

In this paper, we propose a model-based approach to
rounding. The novelty lies in three aspects. First,
we relax the assumption that the number of clusters
equals the number of eigenvectors used for rounding.
While the assumption is reasonable in the ideal case
where between-cluster similarity is 0, it is not appro-
priate in non-ideal cases. Our method allows the num-
ber of clusters to differ from the number of eigenvec-
tors. Second, we choose a continuous block of lead-
ing eigenvectors for rounding just as [I7]. The dif-
ference is that, when deciding the appropriateness of
the k leading eigenvectors, Zelnik-Manor and Perona
[I'7] use only information contained in those eigenvec-
tors, whereas we also use information in subsequent
eigenvectors. So our method uses more information
and hence the choice is expected to be more robust.
Third, we solve all the three subproblems of rounding
within one class of models, namely latent tree mod-
els [I8]. In contrast, most previous methods either
assume that the first two subproblems are solved and
focus only on the third subproblem, or do not solve all
the subproblems within one class of models [17, [20].

The remaining paper is organized as follows. In Sec-
tion [2| we review the basics of spectral clustering and
point out two key properties of the eigenvectors of the
Laplacian matrix in the ideal case. In Section [3] we
describe a straightforward method for rounding that
takes advantage of the two properties. This method is
fragile and breaks down as soon as we move away from
the ideal case. In Sections[]and[5]we propose a model-
based method that exploits the same two properties.
In Section [6] we evaluate the method on both synthetic
and real-world data sets and also on real-world image
segmentation tasks. The paper concludes in Section

2 Background

To cluster a set of n data points X = {x1,...,2,}, one
starts by defining a non-negative similarity measure s;;
for each pair z; and z; of data points. In this paper we
consider two measures. The k-NN similarity measure
sets s;; to 1 if x; is one of the k nearest neighbors of x;,
or vice verse, and 0 otherwise. The Gaussian similarity
measure sets s;; = exp(_”xiai_fjw)7 where o controls
the width of neighborhood of each data point. The
n x n matrix S = [s;;] is called the similarity matriz.
The similarity graph is an undirected graph over the
data points where the edge is added between x; and
x;, with weight s;5, if and only if s;; > 0.

In spectral clustering, one transforms the similarity
matrix to get the Laplacian matriz. There are sev-
eral Laplacian matrices to choose from [14]. We use
the normalized Laplacian matriz L., = I — D715,
where [is the identity matrix, and D = (d;;) is the
diagonal degree matrixz given by d;; = 2?21 sij. Next
one computes the eigenvectors of L,,, and sorts them
in ascending order of their corresponding eigenvalues.
Denote those eigenvectors as eq, ..., e,. To obtain k
clusters, one forms an n X k matrix U using the k lead-
ing eigenvectors eq, ..., ex as columns. Each row y; of
U is a point in R* and corresponds to an original data
point z;. One partitions the points {yi,...,y,} into
k clusters using the K-means algorithm and obtains &
clusters of the original data points accordingly.

Suppose the data consist of k; true clusters C4, ...,
Ck,. In the ideal case, the similarity graph has k; con-
nected components, where each of them corresponds to
a true cluster. Assume that the data points are ordered
based on their cluster memberships. Then the Lapla-
cian matrix L., has a block diagonal form, with each
block corresponding to one true cluster [14]. Moreover,
L., has exactly k; eigenvalues that equal 0, and the
eigenspace of eigenvalue 0 is spanned by the indica-
tor vectors ICU cee ICM' Create an n X k; matrix U,
using those indicator vectors as columns. It is known
that, when k = ki, U = U.R for some orthogonal ma-
trix R € R*** [§]. For simplicity, assume the non-zero
eigenvalues of L,,, are distinct. Call those eigenvec-
tors for eigenvalue 0 the primary eigenvectors and the
others the secondary eigenvectors. The facts reviewed
in this paragraph imply the following:

Proposition 1. In the ideal case, eigenvectors of Ly,
have the following properties:

1. The primary eigenvectors are piecewise constant,
with each value identifying one true cluster or the
union of several true clusters.

2. The support (non-zero elements) of each sec-
ondary eigenvector is contained by one of the true
clusters.

e] ~
e I TS AN
c1e o .) x L] }“) s x ® }‘) -
S, e F S e’ F
(a) Data (b) Eigenvector ey (c) Eigenvector eg

Figure 1: Example eigenvectors: There are five true
clusters C', ..., Cs in the data set shown in @ The
10-NN similarity measure is used to produce the ideal
case. Two eigenvectors are shown in @ and Each
eigenvector is depicted in two diagrams. In the first
diagram, the values of the eigenvector are indicated
by different colors, with grey meaning 0. In the second
diagram, the x-axis indexes the data points and the y-
axis shows the values of the eigenvector.

The two properties are illustrated in Fig The pri-
mary eigenvector e; has two different values, 0.1 and
0. The value 0.1 identifies the cluster Cy, whereas 0
corresponds to the union of the other clusters. The
eigenvector eg is a secondary eigenvector. Its support
is contained by the true cluster Cy.

3 A Naive Method for Rounding

In the original graph cut formulation of spectral clus-
tering [12], an eigenvector has two different values. It
partitions the data points into two clusters. In the re-
laxed problem, an eigenvector can have many different
values (see Fig[[c)). The first step of our method is
to obtain, from each eigenvector e;, two clusters using
a confidence parameter § that is between 0 and 1. Let
eij be the value of e; at the j-th data point. One of
the clusters consists of the data points x; that satisfy
e;; > 0 and e;; > dmax;e;;, while the other cluster
consists of the data points x; that satisfy e;; < 0 and
eij < 6minje;;. The indicator vectors of those two
clusters are denoted as ef and e; respectively. We
refer to the process of obtaining e and e; from e; as
binarization. Applying binarization to the eigenvec-
tors e; and eg of Fig [I] results in the binary vectors
shown in Fig 2l Note that e] is a degenerated binary
vector in the sense that it is all 0. We still refer to
it as a binary vector for convenience. The following
proposition follows readily from Proposition

Proposition 2. Let e be a vector obtained from an
eigenvector e of the Laplacian matrix L., via bina-
rization. In the ideal case:

1. If e is a primary eigenvector, then the support of
eb is either a true cluster or the union of several
true clusters.

2. If e is a secondary eigenvector, then the support

of €b is contained by one of the true clusters.

=,

Figure 2: Binary vectors obtained from eigenvectors
e; and eg through binarization with § = 0.1. Data
points have values 1 (red) or 0 (green).

Each binary vector gives a partition of the data points,
with one cluster comprising points with value 1 and
another comprising points with value 0. Consider two
partitions where one divides the data into two clusters
C7 and C5 and the other into P, and P,. Owverlaying
the two partitions results in a new partition consisting
of clusters C1N Py, C1NPy, CoN Py, and CoNPy. Note
that there are not necessarily exactly 4 clusters in the
new partition as some of the 4 intersections might be
empty. It is evident how to overlay multiple partitions.

Consider the case when the number ¢ of leading eigen-
vectors to use is given. Here is a straightforward
method for rounding:

NA1veE-RoUNDING1(q)

1. Compute the ¢ leading eigenvectors of L,.,.

2. Binarize the ¢ eigenvectors.

3. Obtain a partition of the data using each binary
vector from the previous step.

4. Overlay all the partitions to get the final partition.

Note that the number of clusters obtained by NAIVE-
ROUNDING]1 is determined by ¢, but it is not necessar-
ily the same as gq. The following proposition is an easy
corollary of Proposition [2]

Proposition 3. In the ideal case and when q is
smaller than or equal to the number of true clusters,
the clusters obtained by NAIVE-ROUNDING1 are either
true clusters or unions of true clusters.

Now consider how to determine the number ¢ of lead-
ing eigenvectors to use. We do so by making use of
Proposition 2] The idea is to gradually increase ¢ in
NAIVE-ROUNDING1 and test the partition P, obtained
for each ¢ to see whether it satisfies the condition of
Proposition [2] (2).

Suppose K is a sufficiently large integer. Denote a sub-
routine that tests the partition P, by cTest(P,, ¢, K).
To perform this test, we use the binary vectors ob-
tained from the eigenvectors from the range [¢+ 1, K].
If the support of every such binary vector is contained
by some cluster in F,, we say that P, satisfies the
containment condition and cTest returns true. Oth-

erwise, P, violates the condition and cTest returns
false.

Let k; be the number of true clusters. When ¢ =
ki, cTest(Py, ¢, K) passes because of Proposition
When ¢ = k; + 1, P, is likely to be finer than the
true partition. Consequently, cTest(FP,,q,K) may
fail. The probability of this happening increases with
the number of binary vectors used in the test. To make
the probability high, we pick K such that K/2 is safely
larger than k; and let ¢ run from 2 to |K/2]. When
q < k¢, cTest(P,, q, K) usually passes.

The above discussions suggest that if cTest(P,, ¢, K),
for the first time, passes for some ¢ = k and fails for
g = k + 1, we can use k as an estimate of k;. Con-
sequently, we can use the k leading eigenvectors for
clustering and return Py as the final clustering result.
This leads to the following algorithm:

NAIVE-ROUNDING2(K)

1. For ¢ =2 to | K/2],
(a) P < NAIVE-ROUNDING1(g).
(b) P’ < NAIVE-ROUNDING1(q + 1).
(c) If cTest(P,q,K) = true and cTest(P’,q +
1,K) = false, return P.
2. Return P.

Suppose an integer K is given such that K/2 is safely
larger than the number of true clusters. The algorithm
NAIVE-ROUNDING2 automatically decides how many
leading eigenvectors to use and automatically deter-
mines the number of clusters. Consider running it on
the data set shown in Figwith K = 40. It loops ¢
through 2 to 4 without terminating because both the
two tests at Step 1(c¢) return true. When ¢ = 5, P is
the true partition and P’ is shown in Fig[J(a)] At Step
1(c), the first test for P passes. However, the second
test for P’ fails, because the support of the binary vec-
tor ef is not contained by any cluster in P’ (Fig .
So, NAIVE-ROUNDING2 terminates at Step 1(c) and
returns P (the true partition) as the final result.

4 Latent Class Models for Rounding

NAIVE-ROUNDING?2 is fragile. It can break down as
soon as we move away from the ideal case. In this and
the next section, we describe a model-based method
that also exploits Proposition [2| and is more robust.

In the model-based method, the binary vectors are re-
garded as features and the problem is to cluster the
data points based on those features. So what we face
is a problem of clustering discrete data. As in the pre-
vious section, there is a question of how many leading
eigenvectors to use. In this section, we assume the
number ¢ of leading eigenvectors to use is given. In

——] [—
ff;w:::%& £ f""‘\w : At & "
F Y, ° ¥ : . ' N F_

% ‘l“*k..w‘{

ﬁ:_ﬁ- a7 .
(a) 7 clusters (b) e (c) efy

Figure 3: [Illustration of NAIVE-ROUNDING2: @
shows the 7 clusters given by the first 6 pairs of bi-
nary vectors. @ and show eigenvector ejg and
one of the binary vectors obtained from e;g. The sup-

port of ef (the red region) is not contained by any of
the clusters in @

the next section, we will discuss how to determine q.

The problem we address in this section is how to clus-
ter the data points based on the first ¢ pairs of bi-
nary vectors ef, ey, .., e;‘, e, . We solve the prob-
lem using latent class models (LCMs) [3]. LCMs are
commonly used to cluster discrete data, just as Gaus-
sian mixture models are used to cluster continuous
data. Technically they are the same as the Naive Bayes
model except that the class variable is not observed.

The LCM for our problem is shown in Fig So
far we have been using the notations e and e to de-
note vectors of n elements or functions over the data
points. In this and the next sections, we overload the
notations to denote random variables that take differ-
ent values at different data points. The latent variable
Y represents the partition to find and each state of
Y represents a cluster. So the number of states of Y,
often called the cardinality of Y, is the number of clus-
ters. To learn an LCM from data means to determine:
(1) the cardinality of Y, i.e., the number of clusters;
and (2) the probability distributions P(Y), P(ef|Y),
and P(e;|Y), i.e., the characterization of the clusters.

After an LCM is learned, one can compute the poste-
rior distribution of Y for each data point. This gives
a soft partition of the data. To get a hard partition,
one can assign each data point to the state of Y that
has the maximum posterior probability. This is called
hard assignment.

There are two cases with the LCM learning problem,
depending on whether the number of clusters is known.
When that number is known, we only need to deter-
mine the probability distributions P(Y'), P(ef]Y’), and
P(e;|Y). This is done using the EM algorithm [5].

Proposition 4. It is possible to set the probability pa-
rameter values of the LCM in Fig n such a way
that it gives the same partition as NAIVE-ROUDINGI.
Moreover, those parameter values mazximize the likeli-
hood of the model.

Figure 4: @ Latent class model and @ latent tree

model for rounding: The binary vectors ef, €1,)
+ —

e

> € are regarded as random variables. The discrete

latent variable Y represents the partition to find.

The proof is omitted due to space limit. It is well
known that the EM algorithm aims at finding the max-
imum likelihood estimate (MLE) of the parameters. So
the LCM method for rounding actually tries to find the
same partition as NAIVE-ROUNDING1.

Now consider the case when the number of clusters is
not known. We determine it using the BIC score [T1].
Given a model m, the score is defined as BIC(m) =
log P(D|m,0) — $logn, where D is the data, § is the
MLE of the parameters, and d is the number of free pa-
rameters in the model. We start by setting the number
k of clusters to 2 and increase it gradually. We stop the
process as soon as the BIC score of the model starts to
decrease, and use the k with the maximum BIC score
as the estimate of the number of clusters. Note that
the number of clusters determined using the BIC score
might not be the same as the number of clusters found
by NAIVE-ROUNDINGI1.

5 Latent Tree Models for Rounding

In this section we present a method for determining the
number ¢ of leading eigenvectors to use. Consider an
integer ¢ between 2 and K /2. We first build an LCM
using the first ¢ pairs of binary vectors and obtain a
hard partition of the data using the LCM. Suppose
k clusters C4, ..., C} are obtained. Each cluster C.,
corresponds to a state r of the latent variable Y.

We extend the LCM model to obtain the model shown
in Fig We do this in three steps. First, we intro-
duce k new latent variables Y7, ..., Yi into the model
and connect them to Y. Each Y. is a binary variable
and its conditional distribution is set as follows:

1 ifr' =r,
(1)

P YI“ = 1 Y = / =
(|) {O otherwise.

So the state Y, = 1 means the cluster C, and Y, = 0
means the union of all the other clusters.

Next, we add binary vectors from the range [¢+1, K] to

the model by connecting them to the new latent vari-
ables. For convenience we call those vectors secondary
binary vectors. This is not to be confused with the sec-
ondary eigenvectors mentioned in Proposition [T} For
each secondary binary vector €2, let D, be its support.
When determining to which Y;. to connect e, we con-
sider how well the cluster C, covers D,. We connect
eg to the Y, such that C, covers D, the best, in the
sense that the quantity |Ds N C,.| is maximized, where
|.| stands for the number of data points in a set. We
break ties arbitrarily.

Finally, we set the conditional distribution P(e%|Y;) as
follows:

D;NC,|

Pt =1y, =1) = D0 G| 2

(b =1]¥, =1) o (2)
D, —C,|

Pt =1y, —=0) = PGl

(es |T 0) n—|C,«| (3)

What we get after the extension is a tree structured
probabilistic graphical model, in which the variables
at the leaf nodes are observed and the variables at
the internal nodes are latent. Such models are known
as latent tree models (LTMs) [4, [15], sometimes also
called hierarchical latent class models [I8]. The LCM
part of the model is called its primary part, while the
newly added part is called the secondary part. The
parameter values for the primary part is determined
during LCM learning, while those for the secondary
part are set manually by Equations .

To determine the number ¢ of leading eigenvectors to
use, we examine all integers in the range [2, K/2]. For
each such integer ¢, we build an LTM as described
above and compute its BIC score. We pick the ¢ with
the maximum BIC score as the answer. After ¢ is
determined, we use the primary part of the LTM to
partition the data. In other words, the secondary part
is used only to determine q. We call this method LTM-
Rounding.

Here are the intuitions behind the LTM method. If the
support Dy of e? is contained in cluster C,., it fits the
situation to connect €% to Y,.. The model construction
no longer fits the data well if Dy is not contained in
any of the clusters. The worst case is when two dif-
ferent clusters C, and C, cover Dy equally well and
better than other clusters. In this case, €2 can be ei-
ther connected to Y, or to Y,.. Different choices here
lead to different models. As such, neither choice is
‘ideal’. Even when there is only one cluster C; that
covers Dy the best, connecting e’ to Y, is still intu-
itively not ‘perfect’ as long as C,. does not cover Dy
completely.

So when the support of every secondary binary vector
is contained by one of the clusters Ci, ..., Cg, the

LTM we build would fit the data well. However, when
the supports of some secondary binary vectors are not
completely covered by any of the clusters, the LTM
would not fit the data well. In the ideal case, the fit
would be good if ¢ is the number k; of eigenvectors for
eigenvalue 0 according to Proposition[2l The fit would
not be as good otherwise. This is why the likelihood
of the LTM contains information that can be used to
choose q.

We now summarize the LTM method for rounding:
LTM-ROUNDING (K ,0)

1. Compute the K leading eigenvectors of L;.,,.
2. Binarize the eigenvectors with confidence param-
eter § as in Section Bl
S* +— —o0.
4. For ¢ =2 to | K/2],
(a) myem < the LCM learnt using the first ¢
pairs of binary vectors as shown in Section [4]
(b) P + hard partition obtained using mycp, .
(¢) mytm the LTM extended from my.,, as ex-
plained in Section
(d) S « the BIC score of myp,.
(e) If S > S*, then P* + P and S* « S.
5. Return P*.

©w

An implementation of LTM-ROUNDING can be ob-
tained from http://www.cse.ust.hk/"1lzhang/ltm/
index.htm.

The choice of K should be such that K/2 is safely
larger than the number of true clusters. We do not
allow ¢ to be larger than K/2, so that there is suffi-
cient information in the secondary part of the LTM to
determine the appropriateness of using the ¢ leading
eigenvectors for rounding. The parameter § should be
picked from the range (0, 1). We recommend to set § at
0.1. The sensitivity of LTM-ROUNDING with respect
to those parameters will be investigated in Section [6.3

6 Empirical Evaluations

Our empirical investigations are designed to: (1) show
that LTM-ROUNDING works perfectly in the ideal case
and its performance degrades gracefully as we move
away from the ideal case, and (2) compare LTM-
ROUNDING with alternative methods. Synthetic data
are used for the first purpose, while both synthetic and
real-world data are used for the second purpose.

LTM-ROUNDING has two parameters 6 and K. We
set § = 0.1 and K = 40 in all our experiments except
in sensitivity analysis (Section . For each set of
synthetic data, 10 repetitions were run.

(a) 6 clusters (b) 5 clusters (c) 2 clusters

Figure 5: Synthetic data set for the ideal case. Each
color and shape of the data points identifies a cluster.
Clusters were recovered by LTM-ROUNDING correctly.

6.1 Performance in the Ideal Case

Three data sets were used for the ideal case (Fig .
They vary in the number and the shape of clusters.
Intuitively the first data set is the easiest, while the
third one is the hardest. To produce the ideal case,
we used the 10-NN similarity measure for the first two
data sets. For the third one, the same measure gave a
similarity graph with one single connected component.
So we used the 3-NN similarity measure instead.

LTM-ROUNDING produced the same results on all 10
runs. The results are shown in Fig [f] using colors and
shapes of data points. Each color identifies a cluster.
LTM-ROUNDING correctly determined the numbers of
clusters and recovered the true clusters perfectly.

6.2 Graceful Degrading of Performance

To demonstrate that the performance of LTM-
ROUNDING degrades gracefully as we move away from
the ideal case, we generated 8 new data sets by adding
different levels of noise to the second data set in Fig[f]
The Gaussian similarity measure was adopted with
o = 0.2. So the similarity graphs for all the data sets
are complete.

We evaluated the quality of an obtained partition by
comparing it with the true partition using Rand index
(RI) [9] and variation of information (VI) [7]. Note
that higher RI values indicate better performance,
while the opposite is true for VI. The performance
statistics of LTM-ROUNDING are shown in Table [II
We see that RI is 1 for the first three data sets. This
means that the true clusters have been perfectly re-
covered. The index starts to drop from the 4th data
set onwards in general. It falls gracefully with the in-
crease in the level of noise in data. Similar trend can
also be observed on VI.

The partitions produced by LTM-ROUNDING at the
best run (in terms of BIC score) are shown in Fig
using colors and shapes of the data points. We see that
on the first four data sets, LTM-ROUNDING correctly
determined the number of clusters and the members
of each cluster. On the next three data sets, it also

http://www.cse.ust.hk/~lzhang/ltm/index.htm
http://www.cse.ust.hk/~lzhang/ltm/index.htm

Table 1: Performances of various methods on the 8 synthetic data sets in terms of Rand index (RI) and variation
of information (VI). Higher values of RI or lower values of VI indicate better performance. K-MEANS and GMM
require extra information for rounding and should not be compared with the other two methods directly.

Data 1 2 3 4 5 6 7 8
RI LTM 1.0+.00 | 1.0+.00 | 1.0+.00 | .994+.01 | .97+.02 | .98+.01 | .94+.01 .88+.01
ROT .924.00 .924+.00 | 1.04+.00 | .984.00 .524.00 .524.00 .884.00 .90+.00
K-MEANS 1.0+.00 1.0£.00 1.0+£.00 1.04.00 .85+.00 .724+.00 .71+£.00 .75+.00
GMM 1.04.00 1.0%.00 1.04.00 1.04.00 .944+.00 .884.00 .914.00 .884.00
VI LTM .00+.00 | .00+.00 | .00£.00 | .06+.09 | .294+.19 | .28+.14 | .79+.12 1.64+.10
ROT .40+£.00 .40+£.00 .00+.00 .20+£.00 1.60+.00 | 1.604.00 | 1.85+.00 | 1.424+.00
K-MEANS | .00+£.00 .00+.00 .00+.00 .004+.00 | 1.04+.00 | 1.41+£.00 | 1.52+.00 1.97£.00
GMM .00+£.00 .00+£.00 .00+£.00 .00+£.00 .85+.00 .91+.00 1.25+.00 1.744+.00
i R iI_I/H,,,HT,,,,\/,.;K‘ i S jgwm&% P M«;Mg,%% :xxfgmw;f&
. . . R ¥ LARES *, #
H s s .) L L R
2 2 \z l\\k v S 2|5 g i 5
b 3 3) %"%..,,fwm"” o B ém@%’"@o e

@ 5) ®
(a) K = 40 with varying § (x-axis)

B, B

/

00 02 04 06 08 10
—~——

00 02 04 06 08 10
—

00 02 04 06 08 10

(2) (5) (8)
(b) § = 0.1 with varying K (x-axis)

Figure 6: Sensitivity analysis on parameters § and K
in LTM-ROUNDING. The y-axis denotes Rand index.
We recommend 6 = 0.1 and K = 40 in general.

correctly recovered the true clusters except that the
top and the bottom crescent clusters might have been
broken into two or three parts. Given the gaps between
the different parts, the results are probably the best
one can hope for. The result on the last data set is
less ideal but still reasonable.

Putting together, the above discussions indicate that
the performance of LTM-ROUNDING degrades grace-
fully as we move away from the ideal case.

6.3 Sensitivity Analysis

We now study the sensitivity of the parameters § and
K in LTM-ROUNDING. Experiments were conducted
on the 2nd, 5th, and 8th data sets in Fig[7] Those data
sets contain different levels of noise and hence are at
different distances from the ideal case.

To determine the sensitivity of LTM-ROUNDING with
respect to §, we fix K = 40 and let § vary between
0.01 and 0.95. The RI statistics are shown in Fig
We see that on data set (2) the performance of LTM-
ROUNDING is insensitive to § except when § = 0.01.

(1) 5 clusters, (3) 5 clusters, (4) 5 clusters,

RI=1.00 RI=1.00 RI=1.00
s r}"«f;‘ v R "
s M N s
- A it T pg
R

4
i .

S
(5) 7 clusters, (6) 6 clusters, (7) 8 clusters, (8) 12 clusters,
RI=0.97 RI=0.98 RI=0.94 RI=0.88
(a) Partitions produced by LTM-RoUNDING

R T R S ol
N || e | e || B

(1) 4 clusters,
RI=0.92

(2) 4 clusters,
RI=0.92

(3) 5 clusters,

(4) 6 clusters,
RI=0.98

RI=1.00

E

a3

. 3t

L
B

+

s An
(7) 20 clusters, (8) 11 clusters,
RI=0.88 RI=0.90

(6) 2 clusters,
RI=0.52
(b) Partitions produced by ROT-RoUNDING

(5) 2 clusters,
RI=0.52

Figure 7: The 8 synthetic data sets.

On data set (5), the performance of LTM-ROUNDING
is more or less robust when 0.1 < § < 0.3. Its
performance gets particularly worse when § > 0.8.
Similar behavior can be observed on data set (8).
Those results suggest that the performance of LTM-
ROUNDING is robust with respect to § in situations
close to the ideal case and it becomes sensitive in situ-
ations that are far away from the ideal case. In general,
we recommend 0 = 0.1.

To determine the sensitivity of LTM-ROUNDING with
respect to K, we fix 6 = 0.1 and let K vary between
5 and 100. The RI statistics are shown in Fig
It is clear that the performance of LTM-ROUNDING is

robust with respect to K as long as it is not too small.

6.4 Running Time

LTM-ROUNDING deals with tree-structured models.
It is deterministic everywhere except at Step 4(a),
where the EM algorithm is called to estimate the pa-
rameters of LCM. EM is an iterative algorithm and
is computationally expensive in general. However, it
is efficient on LCMs. So the running time of LTM-
ROUNDING is relatively short. To process one of the
data sets in Fig [7} it took around 10 minutes on a
laptop computer.

6.5 Alternative Methods for Rounding

To compare with LTM-ROUNDING, we included the
method by Zelnik-Manor and Perona [I7] in our ex-
periments. The latter method determines the appro-
priateness of using the ¢ leading eigenvectors by check-
ing how well they can be aligned with the canon-
ical coordinates through rotation. So we name it
ROT-ROUNDING. Both LTM-ROUNDING and ROT-
ROUNDING can determine the number g of eigenvectors
and the number k of clusters automatically. Therefore,
they are directly comparable. The method by Xiang
and Gong [16] is also related to our work. However,
its implementation is not available to us and hence it
is excluded from comparison.

K-MEANS and GMM can also be used for rounding.
However, both methods cannot determine ¢, and K-
MEANS cannot even determine k. We therefore gave
the number k; of true clusters for K-MEANS and used
q = k¢ for both methods. Since the two methods re-
quired additional information, they are included in our
experiments only for reference. They should not be
compared with LTM-ROUNDING directly.

ROT-ROUNDING and GMM require the maximum al-
lowable number of clusters. We set that number to 20.

6.6 Comparison on Synthetic Data

Table [1| shows the performance statistics of the three
other methods on the 8 synthetic data sets. LTM-
ROUNDING performed better than ROT-ROUNDING
on all but two data sets. The differences were sub-
stantial on 5 of those data sets.

The partitions produced by ROT-ROUNDING at one
run are shown in Fig E@Hﬂ We see that on the first
two data sets, ROT-ROUNDING underestimated the
number of clusters and merged the two smaller cres-
cent clusters. This is serious under-performance given
the easiness of those data sets. On the 3rd data set,

!Same results were obtained for all 10 repetitions.

Table 2: Comparison on MNIST digits data.

Method | #clusters RI VI
LTM 9.3+.82 91+£.00 | 2.17+.07
ROT 19.0£.00 | .924.00 | 2.404.00
K-MEANS (10) .90£.00 | 1.83+£.00
GMM 16.04.00 .914.00 2.144+.00
sp-CRP 9.3+.96 .89+.00 | 2.72+.08
it recovered the true clusters correctly. On the 4th

data set, it broke the top crescent cluster into two.
On the 5th data set, it recovered the bottom clus-
ter correctly but merged all the other clusters incor-
rectly. This leads to a much lower RI. The story on
the 6th data set is similar. On the 7th data set, it
produced many more clusters than the number of true
clusters. Therefore, its RI is also lower. On the last
data set, the clustering obtained by ROT-ROUNDING
is not visually better than the one produced by LTM-
ROUNDING, even though RI suggests otherwise. Given
all the evidence presented, we conclude that the perfor-
mance of LTM-ROUNDING is significantly better than
that of ROT-ROUNDING.

Like LTM-ROUNDING, both K-MEANS and GMM re-
covered clusterings correctly on the first three data sets
(Table . They performed slightly better than LTM-
ROUNDING on the 4th data set. However, their perfor-
mances were considerably worse on the next three data
sets. They were also worse on the last one in terms
of VI. It happened even though K-MEANS and GMM
were given additional information for rounding. This
shows the superior performance of LTM-ROUNDING.

6.7 MNIST Digits Data

In the next two experiments, we used real-world data
to compare the rounding methods. The MNIST digits
data were used in this subsection. The data consist of
1000 samples of handwritten digits from 0 to 9. They
were preprocessed by the deep belief network as de-
scribed in [6] using their accompanying codeﬂ Table
shows the results averaged over 10 runs.

We see that the number of clusters estimated by LTM-
ROUNDING is close to the ground truth (10), but that
by ROT-ROUNDING is considerably larger than 10. In
terms of quality of clusterings, the results are incon-
clusive. RI suggests that ROT-ROUNDING performed
slightly better, but VI suggests that LTM-ROUNDING
performed significantly better.

Compared with LTM-ROUNDING, K-MEANS obtained

2We thank Richard Socher for sharing the preprocessed

data with us. The original data can be found at http:
//yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

a better clustering (in terms of VI), whereas GMM
obtained one with similar quality. However, K-MEANS
was given the number of true clusters and GMM the
number of eigenvectors. GMM also overestimated the
number of clusters even with the extra information.

A non-parametric Bayesian clustering method, called
sD-CRP, has recently been proposed for rounding [I3].
Although we obtained the same data from their au-
thors, we could not get a working implementation
for their method. Therefore, we simply copied their
reported performance to Table Note that SD-
CPR can determine the number clusters automati-
cally. However, it requires the number of eigenvectors
as input, and the number was set to 10 in this experi-
ment. Hence, SD-CPR requires more information than
LTM-ROUNDING. Table [2] shows that it estimated a
similar number of clusters as LTM-ROUNDING. How-
ever, its clustering was significantly worse in terms of
RI or VI. This shows that LTM-ROUNDING performed
better than SD-CPR even with less given information.

6.8 Image Segmentation

The last part of our empirical evaluation was con-
ducted on real-world image segmentation tasks. Five
images from the Berkeley Segmentation Data Set
(BSDS500) were used. They are shown in the first
column of Fig |8l The similarity matrices were built
using the method proposed by Arbeléez et al. [I].

The segmentation results obtained by ROT-
RounbDING and LTM-ROUNDING are shown in
the second and third columns of Fig [§| respectively.
On the first two images, ROT-ROUNDING did not
identify any meaningful segments. In contrast, LT M-
ROUNDING identified the polar bear and detected
the boundaries of the river on the first image. It
identified the bottle, the glass and a lobster on the
second image.

An obvious undesirable aspect of the results is that
some uniform regions are broken up. Examples include
the river bank and the river itself in the first image,
and the background and the table in the second image.
This is a known problem of spectral clustering when
applied to image segmentation and can be dealt with
using image analysis techniques [I]. We do not deal
with the problem in this paper.

On the third image the performance of LTM-
ROUNDING was better because the lizard was identi-
fied and the segmentation lines follow leaf edges more
closely. On the fourth image LTM-ROUNDING did a
better job at detecting the edges around the lady’s
hands and skirt and on the left end of the silk scarf.
However, ROT-ROUNDING did a better job at the last
image because it produced a cleaner segmentation.

Original

Figure 8: Image segmentation results.

Overall, the performance of LTM-ROUNDING was bet-
ter than that of ROT-ROUNDING. The objective of
this section has been to compare LTM-ROUNDING and
ROT-ROUNDING on the same collection of eigenvec-
tors. The conclusion is meaningful even if the final
segmentation results are not as good as the best that
can be achieved by image analysis techniques.

7 Conclusion

Rounding is an important step of spectral clustering
that has not received sufficient attention. Not many
papers have been published on the topic, especially on
the issues of determining the number of leading eigen-
vectors to use. In this paper, we have proposed a novel
method for the task. The method is based on latent
tree models. It can automatically select an appropriate
number of eigenvectors to use, determine the number
of clusters, and finally assign data points to clusters.
We have shown that the method works correctly in the
ideal case and its performance degrades gracefully as
we move away from the ideal case.

Acknowledgements

Research on this paper was supported by China
National Basic Research 973 Program project No.
2011CB505101 and Guangzhou HKUST Fok Ying
Tung Research Institute.

References

1]

2]

3]

4]

5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

Pablo Arbeléez, Michael Maire, Charless Fowlkes,
and Jitendra Malik. Contour detection and hier-
archical image segmentation. IEEFE Transaction

on Pattern Analysis and Machine Intelligence, 33
(5):898-916, 2011.

Francis R. Bach and Michael I. Jordan. Learn-
ing spectral clustering, with application to speech
separation. Journal of Machine Learning Re-
search, 7:1963-2001, 2006.

David J. Bartholomew and Martin Knott. Latent
Variable Models and Factor Analysis. Arnold, 2nd
edition, 1999.

Tao Chen, Nevin L. Zhang, Tengfei Liu, Kin Man
Poon, and Yi Wang. Model-based multidimen-
sional clustering of categorical data. Artificial In-
telligence, 176:2246-2269, 2012.

A. P. Dempster, N. M. Laird, and D. B. Ru-
bin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 39(1):
1-38, 1977.

G. E. Hinton and R. R. Salakhutdinov. Reducing
the dimensionality of data with neural networks.
Science, 313(5786):504-507, 2006.

Marina Meila. Comparing clusterings—an infor-
mation based distance. Journal of Multivariate
Analysis, 98:873-895, 2007.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss.
On spectral clusterings: Analysis and an algo-
rithm. In Advances in Neural Information Pro-
cessing Systems 14, 2002.

William M. Rand. Objective criteria for the eval-
uation of clustering methods. Journal of the
American Statistical Association, 66(336):846—
850, 1971.

Nicola Rebagliati and Alessandro Verri. Spectral
clustering with more than k eigenvectors. Neuro-
computing, 74:1391-1401, 2011.

Gideon Schwarz. Estimating the dimension of a
model. The Annals of Statistics, 6(2):461-464,
1978.

Jianbo Shi and Jitendra Malik. Normalized cuts
and image segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 731-737, 1997.

Richard Socher, Andrew Maas, and Christo-
pher D. Manning. Spectral Chinese restaurant
processes: Nonparametric clustering based on
similarities. In 14th International Conference on
Artificial Intelligence and Statistics, 2011.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Ulrike von Luxburg. A tutorial on spectral clus-
tering. Statistics and Computing, 17:395-416,
2007.

Yi Wang, Nevin L. Zhang, and Tao Chen. La-
tent tree models and approximate inference in
Bayesian networks. Journal of Artificial Intelli-
gence Research, 32:879-900, 2008.

Tao Xiang and Shaogang Gong. Spectral cluster-
ing with eigenvector selection. Pattern Recogni-
tion, 41(3):1012-1029, 2008.

Lihi Zelnik-Manor and Pietro Perona. Self-tuning
spectral clustering. In Advances in Neural Infor-
mation Processing Systems, 2005.

Nevin L. Zhang. Hierarchical latent class models
for cluster analysis. Journal of Machine Learning
Research, 5:697-723, 2004.

Zhihua Zhang and Michael I. Jordan. Multiway
spectral clustering: A margin-based perspective.
Statistical Science, 23(3):383-403, 2008.

Feng Zhao, Licheng Jiao, Hangiang Liu, Xinbo
Gao, and Maoguo Gong. Spectral clustering with
eigenvector selection based on entropy ranking.
Neurocomputing, 73:1704-1717, 2010.

	Introduction
	Background
	A Naive Method for Rounding
	Latent Class Models for Rounding
	Latent Tree Models for Rounding
	Empirical Evaluations
	Performance in the Ideal Case
	Graceful Degrading of Performance
	Sensitivity Analysis
	Running Time
	Alternative Methods for Rounding
	Comparison on Synthetic Data
	MNIST Digits Data
	Image Segmentation

	Conclusion

