
Exploiting Structure in Cooperative Bayesian Games

Frans A. Oliehoek

Dept. of Knowledge Engineering
Maastricht University

Maastricht, The Netherlands

Shimon Whiteson

Informatics Institute
University of Amsterdam

Amsterdam, The Netherlands

Matthijs T.J. Spaan

Faculty EEMCS
Delft University of Technology

Delft, The Netherlands

Abstract

Cooperative Bayesian games (BGs) can
model decision-making problems for teams
of agents under imperfect information, but
require space and computation time that is
exponential in the number of agents. While
agent independence has been used to miti-
gate these problems in perfect information
settings, we propose a novel approach for
BGs based on the observation that BGs addi-
tionally possess a different types of structure,
which we call type independence. We propose
a factor graph representation that captures
both forms of independence and present a
theoretical analysis showing that non-serial
dynamic programming cannot effectively ex-
ploit type independence, while Max-Sum

can. Experimental results demonstrate that
our approach can tackle cooperative Bayesian
games of unprecedented size.

1 Introduction

Cooperative multiagent systems are an essential tool,
not only for tackling inherently distributed problems,
but also for decomposing problems too complex to be
tackled by a single agent (Huhns, 1987; Sycara, 1998;
Panait and Luke, 2005; Vlassis, 2007; Buşoniu et al.,
2008). However, to make such systems effective, the
constituent agents must be able to coordinate their
action selection in order to achieve a common goal.

This problem is particularly vexing in the presence of
imperfect information (Harsanyi, 1967–1968). Even a
single-agent system may have incomplete knowledge of
the state of its environment (Kaelbling et al., 1998),
e.g., due to noisy sensors. However, the presence of
multiple agents often greatly exacerbates this problem,
as each agent typically has access to only a fraction of
the whole system’s sensors. In principle, agents could

Figure 1: Illustration of multiagent decision making with
imperfect information. Both agents know house 2 is on fire.
However, each agent receives only a noisy observation of
the single neighboring house it can observe in the distance.

synchronize their beliefs and coordinate their actions
by communicating. However, communication is often
unreliable and limited by bandwidth constraints, leav-
ing each agent uncertain how others will act.

Consider the example depicted in Fig. 1. Both fire-
fighting agents know there is fire at house H2 but each
receives only a noisy observation about one of the other
houses. Consequently, effective decision making is dif-
ficult. If agent 1 (left) observes flames in house H1,
it may be tempted to fight fire there rather than at
house H2. However, the efficacy of doing so depends
on whether agent 2 (right) will fight fire in house H2,
which in turn depends on whether agent 2 observes
flames in house H3, a fact unknown to agent 1.

Such problems can be modeled as cooperative
Bayesian games (BGs), which extend traditional
strategic games to model imperfect information. BGs
can model a great variety of problems and are of
great importance for solving sequential decision prob-
lems (Emery-Montemerlo et al., 2004; Oliehoek et al.,
2008a; Kumar and Zilberstein, 2010; Spaan et al.,
2011). In a BG, a type for each agent, specifying the
private information it holds, is drawn from a distribu-
tion. Then, the agents simultaneously select actions
conditioned on their individual type, and subsequently
receive a team payoff based on the realized types and
actions.

Unfortunately, solving cooperative BGs is NP-hard
(Tsitsiklis and Athans, 1985). Just representing them

requires space exponential in the number of agents and
solving them exactly requires time exponential in the
number of agents and types. However, as in cooper-
ative strategic games (Guestrin et al., 2002; Kok and
Vlassis, 2006), many problems exhibit agent indepen-
dence, i.e., the global payoff function can be decom-
posed as the sum of local payoff functions, each of
which depends on the actions of only a few agents. The
resulting cooperative graphical Bayesian games (CG-
BGs) can be represented more compactly and solved
more effectively using inference methods for graphi-
cal models such as non-serial dynamic programming
(NDP) (Bertele and Brioschi, 1972) and the popular
Max-Sum algorithm (Pearl, 1988; Kok and Vlassis,
2005, 2006; Farinelli et al., 2008; Rogers et al., 2011).

This paper is motivated by the observation that BGs
also exhibit another form of structure that we call type
independence, in which the global payoff function can
be decomposed as the sum of contributions, each of
which depends on only one joint type. Such structure
has been exploited when cooperative BGs are solved
using heuristic search methods (Kumar and Zilber-
stein, 2010; Oliehoek et al., 2010), though the role of
type independence has not been made explicit. How-
ever, in the worst case, heuristic search methods are
no better than brute-force search and thus can perform
much worse than inference-based methods, even when
exploiting structure with and/or search trees (Mari-
nescu and Dechter, 2009).1 In addition, such methods
do not exploit agent independence.

To address these shortcomings, this paper investigates
the exploitation of type independence using inference
methods. Specifically, we propose a novel factor graph
representation that neatly captures both agent and
type independence and thus enables the exploitation of
both forms of structure. Our analysis of the computa-
tional complexity of bothNDP andMax-Sum applied
to this factor graph reveals that the former cannot ef-
fectively exploit type independence; we prove that its
computational complexity remains exponential in the
number of types (although it still outperforms one of
the search methods empirically). On the other hand,
we prove that each iteration of Max-Sum is tractable
for problems with small local neighborhoods. Bound-
ing the number of iterations thus yields a polynomial-
time approximate method for such cooperative BGs.

In addition, we present extensive experimental results
that demonstrate that Max-Sum finds near-optimal
solutions and that the simultaneous exploitation of
both agent and type independence leads to dramati-

1
NDP, for example, is never slower than brute-force

search, i.e., conditioning in graphical models (Koller and
Friedman, 2009). When the induced width is small, NDP

can be much faster (Dechter, 1999).

cally better scalability than several state-of-the-art al-
ternatives in the number of agents, actions, and types.
This improved scalability enables the solution of coop-
erative BGs of unprecedented size.

2 Background

We begin with some background on BGs and CGBGs.

Bayesian Games A Bayesian game, also called a
strategic game of imperfect information, is an aug-
mented strategic game in which the players hold pri-
vate information (Harsanyi, 1967–1968; Osborne and
Rubinstein, 1994). The private information of agent i
defines its type θi ∈ Θi. The agents’ payoffs depend
not only on their actions, but also on their types.

Definition 1. A Bayesian game (BG) is a tuple
〈D,A,Θ,Pr(Θ), 〈u1, ...un〉〉, where D is the set of n

agents, A = A1 × · · · × An is the set of joint actions
a = 〈a1, . . . , an〉, Θ = Θ1 × · · · ×Θn is the set of joint
types θ = 〈θ1, . . . , θn〉, Pr(Θ) is the distribution over
joint types, and ui : Θ×A → R is the payoff function
of agent i.

Since agents in a BG can condition their actions on
their types, they select policies (as opposed to actions
as in strategic games). A joint policy β = 〈β1, ..., βn〉,
consists of individual policies βi for each agent i. De-
terministic (pure) individual policies map each type θi
to an action. Since we focus on cooperative Bayesian
games, in which all agents share a single team payoff
function u = ui for all i, only deterministic policies
need be considered.

In a BG, the traditional Nash equilibrium is replaced
by a Bayesian Nash equilibrium (BNE). A profile of
policies β = 〈β1, ..., βn〉 is a BNE when no agent i has
an incentive to switch its policy βi, given the policies
of the other agents β 6=i. In cooperative BGs, the defi-
nition of a solution is simpler. Let the value of a joint
policy be its expected payoff:

V (β) =
∑

θ∈Θ

Pr(θ)u(θ,β(θ)), (1)

where β(θ) = 〈β1(θ1), ..., βn(θn)〉 is the joint action
specified by β for joint type θ. A solution of a coop-
erative BG is β∗ = argmaxβ V (β), which is a Pareto-
optimal Bayesian Nash equilibrium.

Cooperative Graphical Bayesian Games. A key
difficulty in BGs is that the size of their payoff matrices
is exponential in the number of agents. However, many
BGs contain agent independence, i.e., not all agents
directly influence each other, which allows for compact
representations and efficient solutions.

Agent independence can be formalized in graphical
(strategic) games (Kearns et al., 2001; Kearns, 2007)
and graphical Bayesian games (Soni et al., 2007), in
which each agent has an individual payoff function
that depends on only a subset of agents. Unfortu-
nately, such models are not useful in cooperative games
since all agents share a single payoff function in which
all agents participate (otherwise they would be irrel-
evant). Instead, we employ cooperative graphical BGs
(CGBGs) (Oliehoek et al., 2008b), which use coordi-
nation (hyper-)graphs (Guestrin et al., 2002; Kok and
Vlassis, 2006) to express conditional independence be-
tween agents. In CGBGs, the single team payoff func-
tion decomposes as the sum of several local payoff func-
tions.

Definition 2. A cooperative graphical Bayesian game
(CGBG) is a tuple 〈D,A,Θ,Pr(Θ),U〉 whereD, A,Θ,
and Pr(Θ) are as before and U = {u1, . . . , uρ} is the
set of local payoff functions, each of which involves only
a subset of agents. Each ue has scope A(ue) specifying
the subset of agents on which it depends.

When scopes are restricted, CGBGs can be repre-
sented much more compactly than regular cooperative
BGs. In fact, if the largest scope has size k, then the
representation size is exponential in k, but only lin-
ear in n. However, the joint type distribution must
also be compact. A typical assumption is that the
type probabilities factor as the product of individual
type probabilities (Soni et al., 2007; Jiang and Leyton-
Brown, 2010). More generally, it is common to repre-
sent Pr(Θ) compactly (e.g., as in (Koller and Milch,
2003; Jiang and Leyton-Brown, 2010)) by means of
Bayesian networks (Pearl, 1988; Bishop, 2006) or other
graphical models.2

Agents in a CGBG aim to maximize the expected sum
of local payoffs:

β∗ = argmax
β

∑

e∈E

∑

θe∈Θe

Pr(θe)u
e(θe,βe(θe)) (2)

where θe = 〈θi〉i∈A(ue) is the local joint type, βe =
〈βi〉i∈A(ue) is the local joint policy, and βe(θe) is the
local joint action under β given θe.

3 The local value
for the e-th payoff component is:

V e(βe) =
∑

θe∈Θe

Pr(θe)u
e(θe,βe(θe)). (3)

2While not all joint type distributions admit a compact
representation, this is nonetheless a minimal assumption:
there is no hope of solving other BGs efficiently, as they
cannot even be represented efficiently. Fortunately, the
class of real-world problems that admit a compact repre-
sentation is likely to be quite large.

3We abuse notation such that e is an index into the set
of local payoff functions and an element of the set of scopes.

1 2 3 4 5

V
1

V
2

V
3

V
4

Figure 2: An AI factor graph with five agents. Circu-
lar nodes are agents and square nodes are local payoff
functions, with edges indicating in which local payoff
function each agent participates.

Each local value component can be interpreted as a
factor in a factor graph (Kschischang et al., 2001;
Loeliger, 2004), which generalizes a coordination graph
to allow local payoff functions that depend on more
than two agents. The resulting bipartite graph has
one set of nodes for all the local value functions (the
factors) and another set for all the agents (the vari-
ables, whose values correspond to policies), as shown
in Fig. 2. A local value function V e is connected to an
agent i if and only if i ∈ A(ue). We refer to this as an
agent independence (AI) factor graph.

A naive solution approach is to simply enumerate
all joint policies. However, the required time is
O(|A∗|

|Θ∗|n), where |A∗| and |Θ∗| are the size of the
largest individual action and type set. Thus, it scales
exponentially with the number of agents and types.
Fortunately, the agent independence expressed in the
factor graph of Fig. 2 can be exploited. For instance,
Oliehoek et al. (2008b) apply NDP to this graph. An-
other option is to use Max-Sum message passing.

3 Representing Type Independence

Applying NDP or Max-Sum to an AI factor graph
can reduce the exponential complexity with respect to
the number of agents. However, it cannot reduce the
exponential complexity with respect to the number of
types because this complexity manifests itself in the
number of values that the variables can take on.

The key observation motivating this work is that CG-
BGs also possess a second form of independence, which
we call type independence, that enables solution ap-
proaches to avoid the exponential dependence on the
number of types. Unlike agent independence, which
only some BGs possess, type independence is an in-
herent property of all BGs because it is a direct con-
sequence of the fact that the value of a joint policy is
an expectation over joint types.

Type independence is expressed in terms of a contri-
bution for each joint type:

Cθ(a) ≡ Pr(θ)u(θ,a). (4)

The value of a joint policy β can now be interpreted

as a sum of contributions, one for each joint type:

V (β) =
∑

θ∈Θ

Cθ(β(θ)). (5)

Type independence results from the additive structure
of a joint policy’s value shown in (5). The key insight is
that each contribution term depends only on the joint
action selected when the corresponding joint type θ

occurs. Since that action is selected according to the
joint policy β, the contribution depends only on β(θ),
the part of the joint policy that specifies the joint ac-
tion for θ.

Viewed from another perspective, type independence
occurs because, in any game, only one individual type
is realized for each agent, and that type affects only
some contributions. In other words, the individual
action βi(θi) selected for type θi of agent i affects
only those contributions whose joint types involve θi.
For instance, in the firefighting problem illustrated in
Fig. 1, one possible joint type is θ = 〈N,N〉 (neither
agent observes flames). Clearly, the action β1(F) that
agent 1 selects when it has type F (it observes flames),
has no effect on the contribution of this joint type.

An optimal joint policy can also be described in terms
of contributions, by simply maximizing the value as
defined in (5):

β∗ = argmax
β

V (β) = argmax
β

∑

θ∈Θ

Cθ(β(θ)). (6)

Thus, the solution to a BG maximizes the sum of con-
tributions, each of which has restricted scope. This
is an important observation, since maximization of an
additively factored function with components of re-
stricted scope is exactly the operation that algorithms
such as NDP and Max-Sum make more efficient.

To apply these methods, we represent type indepen-
dence in a factor graph, by creating factors for all
the contributions (corresponding to joint types) and
variables for all the individual types of all the agents.
Fig. 3 shows such a factor graph for the firefighting
problem. Unlike the representation that results from
reducing a BG to a strategic game played by agent-
type combinations (Osborne and Rubinstein, 1994),
this factor graph does not ‘flatten’ the utility func-
tion. On the contrary, it explicitly represents the con-
tributions of each joint type, thereby capturing type
independence.

However, while the factor graph in Fig. 3 represents
type independence, it does not represent agent inde-
pendence because the global payoff represented by the
sum of contributions is not decomposed into local pay-
off functions. Conversely, the factor graph shown in
Fig. 2 represents agent independence but not type in-

N1 F1 N2 F2

C〈N1,N2〉C〈N1,F2〉C〈F1,N2〉 C〈F1,F2〉

Figure 3: A factor graph for the firefighting problem
that captures type independence, e.g., the action that
agent 1 selects when it has type N affects only the
contribution factors C〈N1,N2〉 and C〈N1,F2〉 in which it
has that type.

dependence because the value of each local payoff func-
tion is not decomposed into contributions. To solve
CGBGs efficiently, we need a factor graph formulation
that captures both agent and type independence.

To this end, we define a local contribution as follows:

Ce
θe

(ae) ≡ Pr(θe)u
e(θe,ae). (7)

Using this notation, the solution of the CGBG is

β∗ = argmax
β

∑

e∈E

∑

θe∈Θe

Ce
θe

(βe(θe)). (8)

Thus, the solution corresponds to the maximum of an
additively decomposed function containing a contribu-
tion for each local joint type θe. This can be expressed
in a factor graph in which an individual type θi of an
agent i is connected to a contribution Ce

θe

if and only
if i participates in ue and θe specifies θi for agent i,
as illustrated in Fig. 4. We refer to this graph as the
agent and type independence (ATI) factor graph. Con-
tributions are separated, not only by the joint type to
which they apply, but also by the local payoff function
to which they contribute. Consequently, both agent
and type independence are neatly expressed.

4 Solving ATI Factor Graphs

ATI factor graphs can be solved using existing meth-
ods such as NDP and Max-Sum. In this section, we
analyze the computational complexity of doing so.

4.1 Non-Serial Dynamic Programming

NDP can compute the maximum configuration of a
factor graph. In the forward pass, variables are elimi-
nated one by one according to some prespecified order.
Eliminating the kth variable v involves collecting all
the factors in which it participates and replacing them
with a new factor fk that represents the sum of the
removed factors, given that v selects a best response.
Once all variables are eliminated, the backward pass
iterates through the variables in reverse order of elim-
ination. Each variable selects a best response to the

β1 β2 β3

u1 u2

θ11 θ21 θ12 θ22 θ13 θ23

C1
〈1,1〉C

1
〈1,2〉C

1
〈2,1〉C

1
〈2,2〉 C2

〈1,1〉C
2
〈1,2〉C

2
〈2,1〉C

2
〈2,2〉

Figure 4: ATI factor graph for a CGBG with three
agents, two types per agent, and two local payoff func-
tions. Agents 1 and 2 participate in payoff function u1

(corresponding to the first four contributions), while
agents 2 and 3 participate in u2 (corresponding to the
last four contributions). The factor graph expresses
both agent independence (e.g., agent 1 does not par-
ticipate in u2) and type independence (e.g, the action
agent 1 selects when it receives observation θ11 affects
only the first 2 contributions).

variables already visited, eventually yielding an opti-
mal joint policy.

The maximum number of agents participating in a fac-
tor encountered during NDP is known as the induced
width w of the ordering. The induced width depends
on the order in which the variables are eliminated and
determining the optimal order is NP-complete (Arn-
borg et al., 1987). The following result is well-known
(see for instance (Dechter, 1999)):

Theorem 1. NDP requires exponential time and
space in the induced width w.

Though NDP is still exponential, for sparse problems
the induced width is much smaller than the total num-
ber of variables V , i.e., w ≪ V , leading to an ex-
ponential speedup over naively enumerating the joint
variables. However, NDP scales poorly in practice on
densely connected graphs (Kok and Vlassis, 2006). In
addition, because of the particular shape that type in-
dependence induces on the ATI factor graph, we can
establish the following:

Theorem 2. The induced width of an ATI factor
graph is lower bounded by the number of individual
types and the size of the largest payoff function:

w ≥ (k − 1) · |Θ∗|,

where k is the largest local scope k = maxe∈E |A(u
e)|,

and Θ∗ denotes the smallest individual type set.

Proof. Assume ue is a payoff function of maximal
size k. At some point, NDP will eliminate the first
variable connected to one of its contributions, i.e., a
type of an agent i ∈ A(ue). Since such a variable is

connected to contributions for each profile θe\i of types
of the other agents participating in ue, the newly intro-
duced factor will connect all the types of these (k− 1)
other agents. The minimum number of types of an
agent is |Θ∗| and thus the lower bound holds.

Theorems 1 and 2 lead directly to the following obser-
vation:

Corollary 1. The computational complexity of NDP

applied to an ATI factor graph is exponential in the
number of individual types.

Therefore, even given the ATI factor graph formula-
tion, it seems unlikely that NDP can effectively ex-
ploit type independence. In particular, we hypothesize
that NDP will not perform significantly better when
applied to the ATI factor graph instead of the AI fac-
tor graph. In fact, it is easy to construct an example
where it performs worse.

4.2 Max-Sum

To more effectively exploit type independence, we can
solve the ATI factor graph using the Max-Sum mes-
sage passing algorithm. Max-Sum is an appealing
choice for several reasons. First, it performs well
in practice on structured problems (Murphy et al.,
1999; Kschischang et al., 2001; Kok and Vlassis, 2006;
Farinelli et al., 2008; Kuyer et al., 2008). Second, un-
like NDP, it is an anytime algorithm that can provide
results after each iteration, not only at the end (Kok
and Vlassis, 2006). Third, as we show below, its com-
putational complexity is exponential only in the size of
the largest local payoff function’s scope, which is fixed
for many classes of CGBGs.

Max-Sum iteratively sends messages between the fac-
tors and variables. These messages encode how much
payoff the sender expects to be able to contribute to
the total payoff. In particular, a message sent from
a type i to a contribution j encodes, for each possi-
ble action, the payoff it expects to contribute. This is
computed as the sum of the incoming messages from
other contributions. Similarly, a message sent from
a contribution to a type i encodes the payoff it can
contribute conditioned on each available action to the
agent with type i.4

Max-Sum iteratively passes these messages over the
edges of the factor graph. Within each iteration, the
messages are sent either in parallel or sequentially with
a fixed or random ordering. When run on an acyclic
factor graph (i.e., a tree), it is guaranteed to converge
to an optimal fixed point (Pearl, 1988; Wainwright

4For a detailed description of how the messages are com-
puted, see Oliehoek (2010) or Rogers et al. (2011).

et al., 2004). In cyclic factor graphs, there are no
guarantees that Max-Sum will converge.5 However,
experimental results have demonstrated that it works
well in practice even when cycles are present (Kschis-
chang et al., 2001; Kok and Vlassis, 2006; Kuyer et al.,
2008). This requires normalizing the messages to pre-
vent them from growing ever larger, e.g., by taking a
weighted sum of the new and old messages (damping).

Here we show that the computational complexity of
one iteration of Max-Sum on a CGBG is exponential
only in the size of the largest local payoff function’s
scope. In general, it is not possible to bound the num-
ber of iterations, since Max-Sum is not guaranteed
to converge. However, Max-Sum converges quickly
in practice and, since it is an anytime algorithm, the
number of iterations can be fixed in advance.

Theorem 3. One iteration of Max-Sum run on the
factor graph constructed for a CGBG has cost

O
(

|A∗|
k · k2 · ρρ∗|Θ∗|

2k−1
)

, (9)

where ρ∗ is the maximum number of edges in which an
agent participates.

Proof. It follows directly from the cost of a message
and the number of messages sent by factors and vari-
ables that the complexity of one iteration of Max-Sum

is
O
(

mk · k2 · l · F
)

, (10)

where F is the number of factors, k is the maximum de-
gree of a factor, l is the maximum degree of a variable,
and m is the maximum number of values a variable
can take.

Now, we interpret (10) for the CGBG setting. In this
case, m = |A∗|, F = O(ρ · |Θ∗|

k) is the number of
contributions, and l = O(ρ∗ · |Θ∗|

k−1), since each edge
e ∈ E in which a (type of an) agent participates induces
O(|Θ∗|

k−1) contributions to which it is connected.

The implication of this theorem it that a Max-Sum

iteration is tractable for small k, the size of the largest
local scope. For problems with bounded k, this there-
fore directly yields a polynomial-time approximate al-
gorithm by bounding the number of iterations. Given
these results, we expect that, in general, Max-Sum

will prove more effective than NDP at exploiting
type independence. In particular, we hypothesize that
Max-Sum will outperform NDP when applied to an
ATI factor graph and will outperform Max-Sum when
applied to an AI factor graph.

5However, some variants of the message passing ap-
proach have slight modifications that yield convergence
guarantees (Globerson and Jaakkola, 2008). Since we
found that regular Max-Sum performs well in our experi-
mental setting, we do not consider such variants here.

5 Experiments

To evaluate the efficacy of using ATI factor graphs,
we compare NDP-ATI, NDP applied to an ATI fac-
tor graph and Max-Sum-ATI, Max-Sum applied to
an ATI factor graph with 10 restarts, to several state-
of-the-art alternatives. In particular, we compare to:
BaGaBaB, Bayesian Game Branch and Bound, a
heuristic search method for optimally solving CBGs
(Oliehoek et al., 2010); AltMax, Alternating max-
imization, starting with a random joint policy, each
agent iteratively computes a best-response policy for
each of its types, thus hill-climbing to a local opti-
mum; CE, Cross Entropy optimization (de Boer et al.,
2005) a randomized optimization method that main-
tains a distribution over joint policies; MAID-CM,
the state-of-the-art continuation method for solving
multiagent influence diagrams (Blum et al., 2006).6

Apart from MAID-CM, methods were implemented
using the MADP Toolbox (Spaan and Oliehoek, 2008);
the NDP andMax-Sum implementations also use lib-
DAI (Mooij, 2008).

5.1 Random CGBG Experiments

We first present experiments in randomly generated
games following a procedure similar to that used by
Kok and Vlassis (2006). We start with a set of n agents
with no local payoff functions defined. As long as a
path does not exist between every pair of agents, we
add a local payoff function involving k agents. Pay-
offs ue(θe,ae) are drawn from a normal distribution
N (0, 1), and the local joint type probabilities Pr(θe)
are drawn from a uniform distribution and then nor-
malized.

These random BGs enable testing on a range of prob-
lem parameters. In particular, we investigate the ef-
fect of scaling the number of agents n, the number of
types for each agent |Θi|, and the number of actions
for each agent |Ai|. We assume that the scopes of
the local payoff functions, the individual action sets,
and the individual type sets all have the same size for
each agent. For each set of parameters, we generate
1, 000 random CGBGs. Each method is run on these
instances, limited by 1GB of memory and 5s compu-
tation time.7 Payoffs are normalized with respect to
those of Max-Sum-ATI (whose payoff is always 1).

First, we compare NDP-ATI and Max-Sum-ATI with
other methods that do not exploit a factor graph rep-

6Since we use the implementation of Blum et al., which
does not output the quality of the found solution, we report
only computation times.

7A data point is not presented if the method exceeded
the predefined resource limits on one or more test runs.
MAID-CM was run on 30 games and given 30s.

2 3 4 5 6
0.95

0.96

0.97

0.98

0.99

1

1.01
Varying # agents −− Payoffs

R
e

la
ti
v
e

 P
a

y
o

ff
s

agents

BaGaBaB

AltMax

CE

Max−Sum−ATI

NDP−ATI

(a) Scaling n: Payoff.

2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Varying # actions −− Payoffs

R
e
la

ti
v
e
 P

a
y
o
ff
s

actions

BaGaBaB

AltMax

CE

Max−Sum−ATI

NDP−ATI

(b) Scaling |Ai|: Payoff.

2 3 4 5 6 7
0.95

0.96

0.97

0.98

0.99

1

1.01
Varying # types −− Payoffs

R
e

la
ti
v
e

 P
a

y
o

ff
s

types

BaGaBaB

AltMax

CE

Max−Sum−ATI

NDP−ATI

(c) Scaling |Θi|: Payoff.

2 3 4 5 6

10
−3

10
−2

10
−1

10
0

10
1

Varying # agents −− Computation Times

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

agents

Legend: see (f)

(d) Scaling n: Computation times.

2 3 4 5 6 7 8 9 10

10
−2

10
−1

10
0

10
1

Varying # actions −− Computation Times
C

o
m

p
u

ta
ti
o

n
 t

im
e

 (
s
)

actions

Legend: see (f)

(e) Scaling |Ai|: Computation times.

2 3 4 5 6 7
10

−3

10
−2

10
−1

10
0

10
1

Varying # types −− Computation Times

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

types

BaGaBaB
AltMax

CE

Max−Sum−ATI

NDP−ATI
MAID−CM

(f) Scaling |Θi|: Computation times.

Figure 5: Comparison of Max-Sum-ATI and NDP-ATI with other methods, scaling the number of agents ((a)
and (d)), the number of actions ((b) and (e))), and the number of types ((c) and (f)). In all plots k = 2, and
the parameters that are not being varied are set as follows: n = 5, |Ai| = 3, |Θi| = 3.

resentation explicitly, the results of which are shown in
Fig. 5. These graphs show the payoff and computation
time when increasing the number of agents (Fig. 5a
and 5d), the number of actions (Fig. 5b and 5e), and
the number of types (Fig. 5c and 5f). These results
support a number of observations. 1) As predicted,
NDP scales well with respect to the number of agents,
but not types. It also scales poorly with the number of
actions, which indicates that the encountered induced
width is quite high in practice. 2) Though NDP can-
not successfully exploit type independence, it is still
consistently faster than BaGaBaB’s heuristic search.
3) The approximate Max-Sum method always finds
the optimum when we can compute it. 4) Max-Sum

finds substantially better solutions than the other ap-
proximate methods AltMax and CE, while running
faster than them for all but the smallest problems. 5)
MAID-CM, the state-of-the-art for MAIDs, is signif-
icantly slower than the other methods.

To make explicit the advantage of exploiting type
independence, Fig. 6 compares the performance
of Max-Sum-ATI to that of Max-Sum-AI, i.e.,
Max-Sum applied to an AI factor graph, for games
with k = 2, |Θi| = 4, |ai| = 4, larger numbers of agents,

and 30s allowed per CGBG. Max-Sum-AI scales only
to 50 agents, while Max-Sum-ATI scales to 725 (lim-
ited only by the allocated memory). While it is not
possible to compute optimal solutions for these prob-
lems, values found by both methods are close and in-
crease in proportion with the number of payoff com-
ponents, indicating no degradation in performance.

While these results are for k = 2, experiments con-
ducted for k = 3 were qualitatively similar, though
lack of space prevents a detailed presentation. Note
that there is no hope of efficiently solving problems
with large k, since such problems cannot even be rep-
resented compactly. However, this not a serious prac-
tical limitation; on the contrary, even low values of
k allow for complicated interactions since each agent
may participate in many local payoff functions.

5.2 Generalized Firefighting Experiments

In this section, we aim to demonstrate that the ad-
vantages of Max-Sum-ATI extend to a more realistic
problem, called Generalized Firefighting, which
is like the two-agent firefighting problem of Fig. 1 but
with NH houses and n agents physically spread over a

100 200 300 400 500 600 700
10

−2

10
−1

10
0

10
1

10
2

Varying # agents −− Computation Times

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

agents

Max−Sum−AI

Max−Sum−ATI

Figure 6: Comparison of the scaling behavior for many
agents for Max-Sum-AI and Max-Sum-ATI.

2-dimensional area. Each agent observes the NO near-
est houses and may choose to fight fire at any of the
NA nearest houses.

Fig. 7 shows the results of our experiments in this do-
main, which corroborate our findings on random CG-
BGs by showing that Max-Sum has the most desir-
able scaling behavior in a variety of different parame-
ters.8 We omit payoff plots because all methods com-
puted solutions with the same payoff on all problem
instances; Max-Sum achieves the optimum in cases
where we can compute it. Further investigation of so-
lution quality (omitted due to lack of space) showed
that solution quality decreases (there are only penal-
ties in this problem) proportionally with the number
of payoff components, again indicating that scalability
does not come at the expense of solution quality.

6 Related Work

There is a large body of research that is related to the
work presented in this paper. Max-Sum has been used
in decision making for teams of cooperative agents
(Kok and Vlassis, 2006; Farinelli et al., 2008; Kuyer
et al., 2008; Rogers et al., 2011). However, all of this
work deals with cooperative games of perfect informa-
tion, whereas we deal with imperfect information.

The CGBG model was introduced by Oliehoek et al.
(2008b), who also used NDP to optimally solve CG-
BGs. However, NDP was applied only to the AI factor
graph. Here we applied and analyzed application of
NDP and Max-Sum to a newly proposed ATI factor
graph.

Two methods that are closely related to our ap-
proach are the heuristic search methods introduced

8We omit NDP-ATI, since Max-Sum-ATI outper-
formed it in random games, and MAID-CM, since it could
not find solutions for any of these problems in 30s.

by Oliehoek et al. (2010) and Kumar and Zilber-
stein (2010). The former propose BaGaBaB for co-
operative BGs, which we evaluated in our compara-
tive experiments. It exploits additivity of the value
function and can thus be interpreted as exploiting
type independence. However, its performance depends
heavily on the tightness of the heuristic used within
BaGaBaB (and, when problem sizes increase, the
heuristic bounds tend to become looser, leading to
disproportionate increases in runtime). Kumar and
Zilberstein (2010) take a similar approach by perform-
ing search with a state-of-the-art heuristic (EDAC) for
weighted constraint satisfaction problems to perform
a point-based backup (as part of a solution method for
sequential decision problems formalized as decentral-
ized partially observable Markov decision processes,
Dec-POMDPs). However, the EDAC heuristic pro-
vides leverage only in the two-agent case (de Givry
et al., 2005). Furthermore, unlike our approach, nei-
ther of these methods exploits agent independence.

A closely related framework is the multiagent influence
diagram (MAID), which extends decision diagrams to
multiagent settings (Koller and Milch, 2003). A MAID
represents a decision problem with a Bayesian network
containing a set of chance nodes and, for each agent, a
set of decision and utility nodes. As in a CGBG, the in-
dividual payoff function for each agent is defined as the
sum of local payoffs. MAIDs are more general because
they can represent sequential and non-identical pay-
off settings. Therefore, MAID solution methods are in
principle applicable to CGBGs. However, these meth-
ods aim merely to find a sample Nash equilibrium,
which is only guaranteed to be a local optimum. In
contrast, our factor-graph formulation enables meth-
ods that find the global optimum. The MAID-CM
method (Blum et al., 2006), which we also compared
against, exploits the structure of the network in an in-
ner loop to more efficiently compute the gradient of
the payoff function. However, Blum et al. do not de-
compose the payoff into contributions and thus do not
represent type independence. Moreover, since this in-
ference is performed exactly using a clique-tree based
approach, it cannot exploit type independence effec-
tively, as the graphical argument made against NDP
extends directly to this setting.

The framework of Bayesian action-graph games
(BAGGs) can also model any BG (Jiang and Leyton-
Brown, 2010). The BAGG solution method is similar
to MAID-CM in that it exploits structure in an in-
ner loop while searching for a sample equilibrium and
thus suffers from the same limitations. This frame-
work additionally allows the exploitation of anonymity
and context-specific independence, but offers no ad-
vantages when these are not present.

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

10
2

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Number of agents

BaGaBaB

AltMax

CE

Max−Sum−ATI

(a) Varying n. Each agent observes 2
houses (4 types per agent).

2 3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

10
1

10
2

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Number of actions (houses) per agent

BaGaBaB

AltMax

CE

Max−Sum−ATI

(b) Varying |Ai| when each agent ob-
serves 2 houses (4 types per agent).

1 2 3 4 5
10

−3

10
−2

10
−1

10
0

10
1

10
2

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Number of houses observed

BaGaBaB

AltMax

CE

Max−Sum−ATI

(c) Varying number of houses that are
observed per agent (n = 4, |Ai| = 5).

Figure 7: Computation time results for the Generalized Fire Fighting problem.

7 Conclusions & Future Work

This paper considered the interaction of a team
of agents under uncertainty modeled as cooperative
graphical Bayesian games (CGBGs). We showed that
CGBGs possess two different types of structure, agent
and type independence, which can be neatly captured
in a novel ATI factor graph formulation.

We considered two standard solution methods: non-
serial dynamic programming (NDP) and Max-Sum

message passing. The former has a computational
complexity that is exponential in the induced tree
width of the factor graph, which we proved to be lower
bounded by the number of individual types. One it-
eration of the latter is tractable when there is enough
independence between agents: we showed that it is ex-
ponential only in k, the maximum number of agents
that participate in the same local payoff function.

By bounding the number of iterations, the combina-
tion of the ATI factor graph and Max-Sum yields, for
any fixed k, a polynomial-time algorithm. While there
are no quality guarantees, the complexity results sug-
gest that any algorithm that scales polynomially with
respect to the number of types (and thus, via our the-
orem, tree-width) cannot provide a solution within an
arbitrary error bound (Kwisthout, 2011). It may be,
however, be possible to obtain (non-adjustable) quality
bounds for Max-Sum solutions via a technique that
eliminates edges from the factor graph (Rogers et al.,
2011).

An empirical evaluation showed that solution quality is
high: in all our experiments Max-Sum found the opti-
mal solution (when it could be computed). Moreover,
the evaluation also revealed that exploiting both agent
and type agent independence leads to significantly bet-
ter performance than current state-of-the-art methods,
providing scalability to much larger problems than was

previously possible. In particular, we showed that this
approach allows for the solution of coordination prob-
lems with imperfect information for up to 750 agents,
limited only by a 1GB memory constraint. As such,
we anticipate that the representation and exploitation
of both agent and type independence will be a critical
component in future solution methods for cooperative
Bayesian games.

For future work, a possible extension of our approach
could replace Max-Sum with message passing algo-
rithms for belief propagation that are guaranteed to
converge (Globerson and Jaakkola, 2008). In certain
cases, such approaches can be shown to compute an
optimal solution (Jebara, 2009). A different direction
of study would be to use our approach to help solve
Dec-POMDPs, by replacing the BG solving compo-
nents used by Oliehoek et al. (2008b) and Kumar and
Zilberstein (2010) with NDP or Max-Sum applied to
the ATI factor graph. This can lead to huge scale-
up in the number of agents approximate solutions can
handle (Oliehoek, 2010). Similarly, it may be possi-
ble to improve methods like MAID-CM by performing
the inference with Max-Sum in order to exploit type
independence. Another avenue is to extend our algo-
rithms to the non-cooperative case by rephrasing the
task of finding a sample Nash equilibrium as one of
minimizing regret, as suggested by Vickrey and Koller
(2002).

Acknowledgements

We would like to thank Nikos Vlassis for extensive discus-

sions, and Kevin Leyton-Brown, Mathijs de Weerdt, Chris-

tian Shelton, David Silver and Leslie Kaelbling for their

valuable input. Research supported by AFOSR MURI

project #FA9550-09-1-0538 and by NWO CATCH project

#640.005.003. M.S. is funded by the FP7 Marie Curie Ac-

tions Individual Fellowship #275217 (FP7-PEOPLE-2010-

IEF).

References

S. Arnborg, D. Corneil, and A. Proskurowski. Complex-
ity of finding embeddings in a k-tree. SIAM Journal of
Algebraic and Discrete Methods, 8(2):277–284, 1987.

U. Bertele and F. Brioschi. Nonserial Dynamic Program-
ming. Academic Press, Inc., 1972.

C. M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag New York, Inc., 2006.

B. Blum, C. R. Shelton, and D. Koller. A continuation
method for Nash equilibria in structured games. Journal
of Artificial Intelligence Research, 25:457–502, 2006.

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubin-
stein. A tutorial on the cross-entropy method. Annals
of Operations Research, 134(1):19–67, 2005.

L. Buşoniu, R. Babuška, and B. De Schutter. A comprehen-
sive survey of multi-agent reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 38(2):156–172, Mar. 2008.

S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa. Exis-
tential arc consistency: Getting closer to full arc consis-
tency in weighted CSPs. In Proc. of the International
Joint Conference on Artificial Intelligence, pages 84–89,
2005.

R. Dechter. Bucket elimination: a unifying framework for
reasoning. Artificial Intelligence, 113:41–85, Sept. 1999.

R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially observ-
able stochastic games with common payoffs. In Proc.
of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, pages 136–143, 2004.

A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. De-
centralised coordination of low-power embedded devices
using the max-sum algorithm. In Proc. of the Inter-
national Joint Conference on Autonomous Agents and
Multi Agent Systems, pages 639–646, 2008.

A. Globerson and T. Jaakkola. Fixing max-product:
Convergent message passing algorithms for map lp-
relaxations. In Advances in Neural Information Process-
ing Systems 20, 2008.

C. Guestrin, D. Koller, and R. Parr. Multiagent planning
with factored MDPs. In Advances in Neural Information
Processing Systems 14, pages 1523–1530, 2002.

J. C. Harsanyi. Games with incomplete information played
by ‘Bayesian’ players, parts I, II and II. Management
Science, 14:159–182, 320–334, 486–502, 1967–1968.

M. N. Huhns, editor. Distributed Artificial Intelligence.
Pitman Publishing Ltd., 1987.

T. Jebara. MAP estimation, message passing, and perfect
graphs. In Proc. of Uncertainty in Artificial Intelligence,
2009.

A. X. Jiang and K. Leyton-Brown. Bayesian action-graph
games. In Advances in Neural Information Processing
Systems 23, pages 991–999, 2010.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101(1-2):99–134, 1998.

M. J. Kearns. Graphical games. In N. Nisan, T. Rough-
garden, E. Tardos, and V. Vazirani, editors, Algorithmic
Game Theory. Cambridge University Press, Sept. 2007.

M. J. Kearns, M. L. Littman, and S. P. Singh. Graphi-
cal models for game theory. In Proc. of Uncertainty in
Artificial Intelligence, pages 253–260, 2001.

J. R. Kok and N. Vlassis. Using the max-plus algorithm
for multiagent decision making in coordination graphs.
In RoboCup-2005: Robot Soccer World Cup IX, Osaka,
Japan, July 2005.

J. R. Kok and N. Vlassis. Collaborative multiagent rein-
forcement learning by payoff propagation. Journal of
Machine Learning Research, 7:1789–1828, 2006.

D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. Games and Economic
Behavior, 45(1):181–221, Oct. 2003.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transac-
tions on Information Theory, 47(2):498–519, 2001.

A. Kumar and S. Zilberstein. Point-based backup for de-
centralized POMDPs: Complexity and new algorithms.
In Proc. of the International Joint Conference on Au-
tonomous Agents and Multi Agent Systems, pages 1315–
1322, 2010.

L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis. Multia-
gent reinforcement learning for urban traffic control us-
ing coordination graphs. In Proc. of the European Con-
ference on Machine Learning, pages 656–671, 2008.

J. Kwisthout. Most probable explanations in Bayesian net-
works: Complexity and tractability. International Jour-
nal of Approximate Reasoning, 52(9), 2011.

H.-A. Loeliger. An introduction to factor graphs. IEEE
Signal Processing Magazine, 21(1):28–41, 2004.

R. Marinescu and R. Dechter. And/or branch-and-bound
search for combinatorial optimization in graphical mod-
els. Artificial Intelligence, 173(16-17):1457–1491, 2009.

J. M. Mooij. libDAI: library for discrete approximate in-
ference, 2008. URL http://www.jorismooij.nl/.

K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy be-
lief propagation for approximate inference: An empirical
study. In Proc. of Uncertainty in Artificial Intelligence,
pages 467–475, 1999.

F. A. Oliehoek. Value-based Planning for Teams of Agents
in Stochastic Partially Observable Environments. PhD
thesis, Informatics Institute, University of Amsterdam,
Feb. 2010.

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Opti-
mal and approximate Q-value functions for decentralized
POMDPs. Journal of Artificial Intelligence Research,
32:289–353, 2008a.

F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlas-
sis. Exploiting locality of interaction in factored Dec-
POMDPs. In Proc. of the International Joint Confer-
ence on Autonomous Agents and Multi Agent Systems,
pages 517–524, May 2008b.

F. A. Oliehoek, M. T. J. Spaan, J. S. Dibangoye, and
C. Amato. Heuristic search for identical payoff Bayesian
games. In Proc. of the International Joint Conference
on Autonomous Agents and Multi Agent Systems, pages
1115–1122, May 2010.

M. J. Osborne and A. Rubinstein. A Course in Game
Theory. The MIT Press, July 1994.

L. Panait and S. Luke. Cooperative multi-agent learning:
The state of the art. Autonomous Agents and Multi-
Agent Systems, 11(3):387–434, 2005.

J. Pearl. Probabilistic Reasoning In Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
1988.

A. Rogers, A. Farinelli, R. Stranders, and N. Jennings.
Bounded approximate decentralised coordination via the
max-sum algorithm. Artificial Intelligence, 175(2):730–
759, 2011.

V. Soni, S. Singh, and M. Wellman. Constraint satisfaction
algorithms for graphical games. In Proc. of the Inter-
national Joint Conference on Autonomous Agents and
Multi Agent Systems, pages 423–430. ACM Press, 2007.

M. T. J. Spaan and F. A. Oliehoek. The MultiAgent De-
cision Process toolbox: software for decision-theoretic
planning in multiagent systems. In Proc. of the AAMAS
Workshop on Multi-Agent Sequential Decision Making
in Uncertain Domains (MSDM), pages 107–121, 2008.

M. T. J. Spaan, F. A. Oliehoek, and C. Amato. Scaling
up optimal heuristic search in Dec-POMDPs via incre-
mental expansion. In Proc. of the International Joint
Conference on Artificial Intelligence, pages 2027–2032,
2011.

K. P. Sycara. Multiagent systems. AI Magazine, 19(2):
79–92, 1998.

J. Tsitsiklis and M. Athans. On the complexity of de-
centralized decision making and detection problems.
IEEE Transactions on Automatic Control, 30(5):440–
446, 1985.

D. Vickrey and D. Koller. Multi-agent algorithms for solv-
ing graphical games. In Proc. of the National Conference
on Artificial Intelligence, pages 345–351, 2002.

N. Vlassis. A Concise Introduction to Multiagent Systems
and Distributed Artificial Intelligence. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2007.

M. Wainwright, T. Jaakkola, and A. Willsky. Tree con-
sistency and bounds on the performance of the max-
product algorithm and its generalizations. Statistics and
Computing, 14(2):143–166, 2004.

