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Abstract

As a new method for detecting change-points
in high-resolution time series, we apply Max-
imum Mean Discrepancy to the distributions
of ordinal patterns in different parts of a
time series. The main advantage of this ap-
proach is its computational simplicity and ro-
bustness with respect to (non-linear) mono-
tonic transformations, which makes it partic-
ularly well-suited for the analysis of long bio-
physical time series where the exact calibra-
tion of measurement devices is unknown or
varies with time. We establish consistency of
the method and evaluate its performance in
simulation studies. Furthermore, we demon-
strate the application to the analysis of elec-
troencephalography (EEG) and electrocar-
diography (ECG) recordings.

1 INTRODUCTION

Detecting changes in the temporal evolution of a sys-
tem (biological, physical, mechanical, etc.) is of ma-
jor importance, e.g. in medical diagnostics, industrial
quality control, or the analysis of financial markets.
In statistics, the problem of inferring the time point
of a change from a sequence of observations is known
as change-point detection. There is a vast literature
on parametric and non-parametric methods for testing
the presence of change-points and for estimating their
locations. For an overview, we refer to the monographs
of Chen and Gupta (2000) and Brodsky and Dark-
hovsky (1993, 2000). Recently, Harchaoui et al. (2009)
have introduced an estimator for change-points based
on kernels.

In this paper, we propose to detect change-points by
comparing the distributions of ordinal patterns in dif-
ferent parts of a time series. In order to capture differ-
ences among the distributions automatically, we apply

the Maximum Mean Discrepancy (MMD) criterion re-
cently introduced by Gretton et al. (2007a, 2007b).
The proposed method is computationally fast and ro-
bust with respect to (non-linear) monotonic transfor-
mations of the observations, which makes it particu-
larly attractive for the exploration of high-resolution
biophysical time series where the exact calibration of
measurement devices is unknown or varies with time.
In real-life applications, such changes in the calibration
occur, e.g., for electroencephalography (EEG) record-
ings where small displacements of electrodes result in
changes of the conductivity.

Detecting changes in the dynamics of a time series by
looking at ordinal pattern distributions has first been
proposed by Bandt and Pompe (2002). More specifi-
cally, they consider permutation entropy, which is the
Shannon entropy of ordinal pattern distributions, as
a measure for detecting changes in the complexity of
time series. Permutation entropy has been applied to
the analysis of epileptic activity in EEG data (Li et
al., 2007; Bruzzo et al., 2008) and to measuring anaes-
thetic drug effects (Li et al., 2008; Olofsen et al., 2008).
In methodological studies, Keller et al. (2007a, 2007b)
define further statistics of ordinal pattern distributions
besides permutation entropy and investigate proper-
ties of the distributions themselves. Bandt and Shiha
(2007) derive formulas for ordinal pattern probabilities
in stochastic processes; Sinn and Keller (2011) study
statistical properties of estimators of these probabili-
ties.

This paper is organized as follows: In Section 2, we
formalize the change-point problem and review the
definition of ordinal pattern distributions. Section 3
shows how MMD can be used to automatically de-
tect change-points and discusses related work. In Sec-
tion 4, we evaluate the performance of our methods in
simulation studies and demonstrate the application to
real-life time series. Section 5 concludes the paper.



2 OUTLINE OF THE METHOD

In this paper, we consider the problem of inferring
the time point of a change in the distribution of an
observed time series. The basic idea is to look at the
order structure in different parts of the time series;
if we find a time point with a clear difference between
the order structure before and afterwards, we conclude
that it is a change-point.

Formally, we describe the problem as follows: Let
N denote the set of natural numbers and Z the set
of integers. Consider a real-valued stochastic pro-
cess X = (Xt)t∈Z on some probability space (Ω,A,P),
where Ω denotes the sample space, A the set of mea-
surable events and P the probability measure. Let
Y = (Yt)t∈Z be the process of increments given by
Yt := Xt−Xt−1 for t ∈ Z. Throughout this paper, we
always assume the following holds:

(A1) The process Y is non-degenerate, i.e., all finite-
dimensional distributions of Y are absolutely con-
tinuous with respect to the Lebesgue measure.

(A2) The processes (Y0, Y−1, . . .) and (Y1, Y2, . . .) are
strictly stationary and ergodic.

Note that as a consequence of (A1), the values of X
are pairwise distinct P-almost surely, that is,

P(Xt1 6= Xt2) = 1 (1)

for all t1, t2 ∈ Z with t1 6= t2.

Now let m,n ∈ N. Suppose that we observe a time
series of length m+n with a change in the underlying
distribution after the first m time points, and m,n are
unknown (only the length m+ n is observable). Then
finding the location of the change-point is equivalent
to estimating the pair (m,n). We model this situation
by assuming the observed time series is a realization
of X at times t = −m,−m+ 1, . . . , n− 2, n− 1. If the
distributions of (Y0, Y−1, . . .) and (Y1, Y2, . . .) are dif-
ferent, then t = 0 is a change-point in X and we obtain
m observations before and n observations afterwards.

A generalization of the situation with only one change
in the distribution is the multiple change-point prob-
lem where the time series potentially has more than
one change-point. A common approach to solve this
problem is to iteratively apply a method for detect-
ing single change-points, i.e., after the detection of the
first change-point, the method is applied to the time
segments before and afterwards to search for further
change-points. In Section 4.1, we will consider this
approach in more detail.

2.1 ORDINAL PATTERN
DISTRIBUTIONS

We use the concept of ordinal pattern distributions to
describe the order structure of a time series. An ordi-
nal pattern represents the order relations among suc-
cessive values of a time series; if the values are pairwise
different, it is natural to identify ordinal patterns with
permutations. Counting the number of occurrences of
the permutations in a time series (or parts of it) yields
the empirical distribution of ordinal patterns.

Here we give a formal definition of ordinal patterns.
Let d ∈ N be fixed. By Π we denote the set of per-
mutations {0, 1, . . . , d}, which we represent by (d+ 1)-
tuples containing each of the numbers 0, 1, . . . , d ex-
actly one time. Let the permutations be denoted by
π1,π2, . . . ,π(d+1)! so that Π = {π1,π2, . . . ,π(d+1)!}.
Now consider the partition of Rd+1 obtained by iden-
tifying vectors whose components are correspondingly
ordered: For π = (r0, r1, . . . , rd) ∈ Π, let B(π) be the
subset of Rd+1 containing every vector (x0, x1, . . . , xd)
satisfying

(i) xr0 ≥ xr1 ≥ . . . ≥ xrd ,

(ii) if xri = xri+1
, then ri > ri+1.

Obviously, the union of all subsets B(π1), B(π2), . . . ,
B(π(d+1)!) is equal to Rd+1, and by condition (ii) the
pair of subsets B(πi), B(πj) is disjoint if i 6= j. By
saying that the ordinal pattern of order d at time t ∈ Z
is given by π = (r0, r1, . . . , rd), we designate the event

(Xt, Xt−1, Xt−2, . . . , Xt−d) ∈ B(π).

According to (1), this event is equivalent to

Xt−r0 > Xt−r1 > . . . > Xt−rd

P-almost surely. Note that a more general definition
of ordinal patterns includes an additional parameter
τ ∈ N (called the delay) which allows us to consider
the events (Xt, Xt−τ , . . . , Xt−dτ ) ∈ B(π) (see Keller
et al. (2007a)).

Figure 1 shows all the possible outcomes for ordinal
patterns of order d = 3. For example, if ω ∈ Ω is such
that Xt(ω) > Xt−1(ω) > Xt−2(ω) > Xt−3(ω) (thus,
the time series roughly looks like the upper left plot in
Figure 1), then the ordinal pattern at time t is given by
(0,1,2,3). If Xt(ω) > Xt−1(ω) > Xt−3(ω) > Xt−2(ω),
then the ordinal pattern is given by (0, 1, 3, 2), and so
on. The dark gray patterns (0, 1, 2, 3) and (3, 2, 1, 0) in
Figure 1 occur if the underlying time series is mono-
tonically increasing and decreasing, respectively. The
light gray patterns occur if the past two increments



H0,1,2,3L H0,1,3,2L H0,3,1,2L H3,0,1,2L H0,2,1,3L H0,2,3,1L
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H1,3,2,0L H3,1,2,0L H2,1,0,3L H2,1,3,0L H2,3,1,0L H3,2,1,0L

Figure 1: Possible outcomes for ordinal patterns of order d = 3.

have the same sign, and the white patterns occur after
changes between “upwards” and “downwards”.

Next, we consider the distribution of ordinal patterns
in the process X. For t ∈ Z and k = 1, 2, . . . , (d + 1)!
define

pk(t) := P( (Xt, Xt−1, . . . , Xt−d) ∈ B(πk) ),

that is, pk(t) denotes the probability that the ordinal
pattern at time t is given by πk. By the distribution
of ordinal patterns at time t we mean the stochastic
vector

p(t) := (p1(t), p2(t), . . . , p(d+1)!(t)) .

Note that the ordinal pattern at time t actually
only depends on the increments Yt, Yt−1, . . . , Yt−d+1

(see Sinn and Keller (2011)). Hence, a sufficient
condition for the ordinal pattern distributions p(t1)
and p(t2) to be identical is that the random vectors
(Yt1 , Yt1−1, . . . , Yt1−d+1) and (Yt2 , Yt2−1, . . . , Yt2−d+1)
have the same distribution. According to assumption
(A2), we obtain that

. . . = p(−1) = p(0) and p(d) = p(d+ 1) = . . . ,

i.e., the ordinal pattern distribution at times t ≤ 0
and t ≥ d, respectively, are identical. In general, the
distributions p(t) with t = 1, 2, . . . , d − 1 are equal
neither to p(0) nor to p(d) because they depend on
increments both before and after t = 0.

In the following, we write p− and p+ to denote the
generic distributions p(0) and p(d), respectively. Ob-
viously, a necessary condition for p− 6= p+ is that

X has a change-point at t = 0. The key idea of our
method for change-point detection is to measure the
difference between the empirical ordinal pattern dis-
tributions in different parts of a time series.

2.2 EMPIRICAL ORDINAL PATTERN
DISTRIBUTIONS

In the following, let 1{·} denote the function which
evaluates to 1 if the statement in the brackets is true,
and to 0 otherwise. For w ∈ N and t ∈ Z, define

p̂k(w, t)

:=
1

w

wt+w∑
s=wt+1

1
{

(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)
}
,

that is, p̂k(w, t) is the relative frequency of time points
in the time window {wt+1, wt+2, . . . , wt+w} at which
the ordinal pattern is πk. The parameter w determines
the size of the time window; as we will see in Theorem
1 below, the larger w, the closer we can expect p̂k(w, t)
be to pk(t).

Now, taking into account all the estimates p̂k(w, t) for
k = 1, 2, . . . , (d + 1)! gives us the empirical ordinal
pattern distribution

p̂(w, t) :=
(
p̂1(w, t), p̂2(w, t), . . . , p̂(d+1)!(w, t)

)
.

As the following theorem shows, p̂(w, t) converges to
p− if t < 0, and to p+ if t ≥ 0 (P-almost surely). This
result also holds if the “calibration” of X changes at a
number of points that grows sublinearly in time.



Theorem 1 Suppose that conditions (A1)and (A2)
hold. Then

lim
w→∞

p̂(w, t) =

{
p− if t < 0,
p+ if t ≥ 0,

P-almost surely. This result also holds if we observe
the “distorted” process (h(Xt, t))t∈Z instead of (Xt)t∈Z
with

h(x, t) :=
∑
j∈Z

1{t ∈ (tj−1, tj ] }hj(x),

where the mappings hj : R→ R are strictly increasing
for all j ∈ Z, and (tj)j∈Z is an increasing sequence in
Z which satisfies

lim
w→∞

]
{
j ∈ Z : tj ∈ [−w,w]

}
w

= 0.

Proof. First, we consider the case t < 0. Since
(Y0, Y−1, . . .) is ergodic and

E
[
1{(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)}

]
= pk(0)

for all s ≤ w(t+ 1) with w ∈ N, the Ergodic Theorem
shows that p̂k(w, t) converges to pk(0) P-almost surely
(Cornfeld et al., 1982). If t > 0, then wt + 1 ≥ d for
sufficiently large w, and hence

E
[
1{(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)}

]
= pk(d)

for all s ≥ wt+1. Since (Y1, Y2, . . .) is ergodic, the Er-
godic Theorem shows that p̂k(w, t) converges to pk(d)
P-almost surely. In the case t = 0, we have

p̂k(w, t)

=
1

w

d−1∑
s=1

1{(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)}

+
1

w

w∑
s=d

1 {(Xs, Xs−1, . . . , Xs−d) ∈ B(πk)}.

Since the first term on the right hand side tends to 0
and the second one converges to pk(d) P-almost surely,
the result follows.

Now suppose that we observe (h(Xt, t))t∈Z instead
of X. Note that if t, j ∈ Z satisfy t − d ≥ tj−1 and
t ≤ tj , then (h(Xt), h(Xt−1), . . . , h(Xt−d)) lies in
B(πk) if and only if (Xt, Xt−1, . . . , Xt−d) lies in
B(πk). Therefore, for any t ∈ Z, the number of time
points s ∈ {wt+ 1, wt+ 2, . . . , wt+ w} at which the
indicator functions of these two events are unequal is
bounded by (d + 1)-times the number of j ∈ Z for
which tj ∈ [wt + 1, wt + w]. Since the latter number
divided by w tends to 0 as w → ∞, we obtain the
result. �

2.3 DETECTING CHANGE-POINTS

Based on the definition of ordinal pattern distribu-
tions and the consistency result of Theorem 1, we now
present our method for change-point detection. Sup-
pose that X has a change-point at time t = 0 which re-
sults in a difference between the ordinal pattern distri-
butions p− and p+. Furthermore, suppose that we ob-
serve X at times t = −wm+1,−wm+2, . . . , wn−1, wn
where w ∈ N is “large” and m,n ∈ N are unknown
(only the sum m+ n is observed). In this setting, the
problem of estimating the location of the change-point
is equivalent to estimating the unknown values m and
n. Our proposed method proceeds as follows:

1. We partition the observations of X into (m + n)
non-overlapping blocks of size w each.

2. For each block, we compute the empirical ordinal
pattern distribution, which gives us the (m+ n)-
dimensional vector

z(w) := (2)

(p̂(w,−m), p̂(w,−m+ 1), . . . , p̂(w, n− 1)).

According to Theorem 1, we have

lim
w→∞

z(w) = ( p−, . . . , p−︸ ︷︷ ︸
m times

, p+, . . . , p+︸ ︷︷ ︸
n times

) (3)

P-almost surely. Thus, if the m + n ordinal pattern
distributions can be divided into two clearly distinct
groups, the sizes of these groups can be taken as es-
timates for m and n. In the following section, we ap-
ply Maximum Mean Discrepancy to determine these
groups.

Before discussing related work, let us make some re-
marks:

Remark 1. Our method is robust with respect
to changes in the “calibration” of the process
X. In particular, if h− and h+ are both strictly
increasing functions, then the ordinal pattern dis-
tributions p− and p+ in the transformed process
(. . . , h−(X−1), h−(X0), h+(X1), h+(X2), . . .) are
identical. As mentioned in the introduction, this
robustness is often desirable for the analysis of
biophysical time series the exact calibration of which
is unknown or varies with time.

Remark 2. If d is large enough, then our method does
detect changes of the complexity of X measured by the
permutation entropy (Bandt and Pompe, 2002; Keller
and Sinn, 2009). Furthermore, it is capable to detect
changes in the autocorrelation structure of Gaussian
processes (Bandt and Shiha, 2007).



Remark 3. There is some trade-off between the
choice of the order of the ordinal patterns d and the
time window size w. In general, a larger order d per-
mits to detect changes of the higher-order autocorre-
lations of Y or, equivalently, in the lower frequency
domain. On the other hand, the time window size w
needs to be much larger than (d+1)! in order to obtain
reliable estimates of all the ordinal pattern probabili-
ties, however, the larger w, the less accurate the local-
ization of the change-points. For our experiments in
Section 4, we have chosen d = 3 and w = 500, that is,
we consider 24 different ordinal patterns and are capa-
ble to localize change-points with a precision of ±250
time points which, for the EEG and ECG recordings,
corresponds to approximately ±1 second. See also Sec-
tion 3.3 for a further discussion on this issue.

3 MAXIMUM MEAN
DISCREPANCY

In order to group the components of the vector z(w)
defined in (2), we use a recently proposed criterion
called Maximum Mean Discrepancy (MMD). Let Z be
an arbitrary set and z = (z1, z2, . . . , zm+n) ∈ Zm+n

with m,n ∈ N. MMD is a new criterion for testing
whether z1, z2, . . . , zm and zm+1, zm+2, . . . , zm+n come
from different distributions (Gretton et al., 2007a,
2007b). The basic approach is to measure the simi-
larity of points z, z′ ∈ Z using a kernel k(z, z′). In
our case, Z is the set of (d+ 1)!-dimensional stochas-
tic vectors, and for k(z, z′) we choose the Radial Basis
Function (RBF) kernel

k(z, z′) = exp

(
−‖z − z

′‖2

2σ2

)
where ‖·‖ denotes the Euclidean norm and σ2 > 0 is a
smoothing parameter. For m′, n′ ∈ N with m′ + n′ =
m+ n, the Maximum Mean Discrepancy is given by

MMD(z,m′, n′) :=(
K1(z,m′, n′)

m′m′
− 2 K2(z,m′, n′)

m′n′
+

K3(z,m′, n′)

n′n′

) 1
2

where

K1(z,m′, n′) :=

m′∑
i=1

m′∑
j=1

k(zi, zj) ,

K2(z,m′, n′) :=

m′∑
i=1

n′∑
j=1

k(zi, zm′+j) ,

K3(z,m′, n′) :=

n′∑
i=1

n′∑
j=1

k(zm′+i, zm′+j) .

The terms 1
m′m′ K1(z,m′, n′) and 1

n′n′ K3(z,m′, n′) can
be regarded as the average similarity of points within
the groups z1, z2, . . . , zm′ and zm′+1, zm′+2, . . . ,
zm′+n′ , respectively, while 1

m′n′ K2(z,m′, n′) measures
the average similarity between the two groups. The
maximal MMD value is obtained for that partition of
z which yields maximum similarity within the groups
and maximum dissimilarity between them. The next
theorem shows how the MMD criterion can be used to
locate change-points in X.

Theorem 2 Suppose that conditions (A1) and (A2)
hold and let z(w) be as defined in (2). Then for all
m′, n′ ∈ N with m′ + n′ = m+ n, we have

lim
w→∞

MMD(z(w),m′, n′)

= min
{ n
n′
,
m

m′

}√
2
(
1− k(p−,p+)

)
P-almost surely. In particular, if p− 6= p+, then

lim
w→∞

(
arg max

(m′,n′)∈N2,

m′+n′=m+n

MMD(z(w),m′, n′)
)

= (m,n)

P-almost surely.

Proof. Suppose that m′ ≤ m. By equation (3) and
the fact that k(z, z) = 1 for all z ∈ X , the limits of
K1(z(w),m′, n′), K2(z(w),m′, n′) and K3(z(w),m′, n′)
are given by m′m′, m′(m −m′) + m′nk(p−,p+) and
n′(n′−2n)+2n(n′−n) k(p−,p+), respectively. Putting
all terms together, we obtain

lim
w→∞

MMD(z(w),m′, n′) =
n

n′

√
2
(
1− k(p−,p+)

)
.

In the case m′ > m, which is equivalent to n′ ≤ n, the
result follows by symmetry. Now the second statement
is obvious. �

3.1 BIAS CORRECTION

Theorem 2 shows that if the ordinal pattern dis-
tributions p− and p+ are different, then the argu-
ment (m′, n′) which maximizes MMD(z(w),m′, n′) is
a strongly consistent estimator of (m,n). For finite w,
however, practical experiments suggest that this esti-
mator is biased towards (1,m+n−1) and (m+n−1, 1),
particularly when the difference between p− and p+ is
small (see Section 4.1). Here we give a heuristic expla-
nation: suppose that the similarity between any two
components of z = (z1, z2, . . . , zm+n), as measured by
the RBF kernel, is approximately equal to some con-
stant δ > 0. For the random vector z(w), this is likely
to be the case if the difference between p− and p+ is
so small that all estimates are scattered in the same
region. A simple calculation shows that

MMD(z,m′, n′) ≈
(
1 − δ

) m+ n

m′n′
(4)
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Figure 2: Top: Realization of an AR(1) process with
a change-point at t = 0. Middle: Ordinal pattern dis-
tributions in time windows of size w = 500. Bottom:
Resulting values for MMD (gray) and CMMD (black).

for m′, n′ ∈ N with m′ + n′ = m + n, and hence the
argument maximizing MMD(z,m′, n′) is likely to be
(m′, n′) = (1,m+ n− 1) or (m′, n′) = (m+ n− 1, 1).
Next we propose a correction for the bias: define the
Corrected Maximum Mean Discrepancy

CMMD(z,m′, n′) := MMD(z,m′, n′)

− m+ n− 1

m′n′
max

(m̃,ñ)∈N2,
m̃+ñ=m+n

MMD(z, m̃, ñ).

The correction term on the right hand side can be re-
garded as an estimate of the bias of the MMD statis-
tic (compare to (4)). Experimental results show the
superiority of using CMMD instead of MMD (see Sec-
tion 4.1). Note that the estimator of (m,n) based
on CMMD is no longer consistent; in order to pre-
serve consistency, the correction term would have to
be scaled by a factor that tends to 0 as w →∞.

3.2 EFFICIENT COMPUTATION

Let us discuss the computational complexity of our
method. The computation of the ordinal pattern dis-
tributions is linear in the length of the input sequence
and can be realized by very efficient algorithms (Keller
et al., 2007b). Computing the estimate of (m,n) by di-
rectly evaluating MMD(z(w),m′, n′) for all m′, n′ ∈ N
with m′+n′ = m+n requires O((m+n)3) arithmetic
operations (Gretton et al., 2007a). For a more efficient
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Figure 3: Distribution of the change-point estimators
based on MMD (left) and CMMD (right).

computation, note that

K1(z,m′ + 1, n′ − 1) = K1(z,m′, n′)

+ 2

m′∑
i=1

k(zi, zm′+1) + k(zm′+1, zm′+1),

K2(z,m′ + 1, n′ − 1) = K2(z,m′, n′)

−
m′∑
i=1

k(zi, zm′+1) +

n′−1∑
i=1

k(zm′+1, zm′+1+i),

K3(z,m′ + 1, n′ − 1) = K3(z,m′, n′)

− 2

n′∑
i=1

k(zm′+1, zm′+i) + k(zm′+1, zm′+1).

Using these formulas, MMD(z(w),m′, n′) can be eval-
uated iteratively for all (m′, n′) = (1,m + n −
1), . . . , (m + n − 1, 1). Thus, computing the argu-
ment which maximizes MMD(z(w),m′, n′) requires
O((m+ n)2) arithmetic operations.

3.3 RELATED WORK

There is an extensive literature on change-point detec-
tion, including both parameteric and non-parametric
approaches (Chen and Gupta, 2000; Brodsky and
Darkhovsky, 1993, 2000). Recently, a kernel-based
method been proposed by Harchaoui et al. (2009). The
main difference to our approach is that all these meth-
ods aim to find the exact location of change-points
and give some guarantees on the significance level.
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Figure 4: Detection of multiple change-points. The black coloring corresponds to the maximum frequencies
34.0% (left), 15.1% (middle) and 2.2% (right), the white coloring corresponds to 0%.

This precision comes at the price of a high compu-
tational burden; for example, Harchaoui’s method has
a running time which is cubic in the input size. Our
method is designed to find the approximate location
of change-points, where the precision is controlled by
the time window size w. Because of its computational
efficiency, our method is particularly attractive for the
fast exploration of high-resolution time series such as
EEG recordings, which often consist of hundreds of
thousands of data points. Note that our approach can
be combined with existing methods in order to first
obtain the approximate locations of a set of candidate
change-points before determining their exact locations
and testing for significance.

4 EXPERIMENTS

4.1 SIMULATED DATA

Change of the autoregressive coefficient. Let
us first illustrate our method for simulated data. The
top plot of Figure 2 shows a realization of a first order
autoregressive (AR(1)) process with standard normal
innovations where, at time t = 0, the autoregressive co-
efficient changes from 0.1 to 0.3. There are two changes
of the process “calibration”: at time t = −2000, the
variance increases from 1 to 2, and at time t = 2000,
the variance decreases to 1

2 and values greater than 2
and smaller than −2, respectively, are scaled by the
factor 2. According to Remark 1 at the end of Section
2, we are not interested in detecting these changes of
the calibration, but only in the change-point at t = 0.

The middle plot of Figure 2 shows the distribution
of ordinal patterns in time windows of size w = 500.
The order is d = 3, so there are 24 different patterns
(compare to Figure 1). Their relative frequencies are
represented by the space between horizontal lines: the
space between the bottom line and the first line from

below represents the relative frequency of the ordinal
pattern (0,1,2,3) (the first pattern in Figure 1), the
space between the first and the second line from be-
low represents the relative frequency of (0,1,3,2) (the
second pattern in Figure 1), and so on. In the frame-
work of Section 2, we have m = n = 10, i.e., there are
10 time windows before and after the change-point.
As can be seen, the distributions before and after the
change-point are slightly different. The bottom plot of
Figure 2 shows the resulting MMD and CMMD values
for (m′, n′) = (1, 19), (2, 18), . . . , (19, 1). In all our
experiments, we used σ2 = 1 in the RBF kernel, how-
ever, we found that the results were not very sensitive
with respect to the choice of σ2. The maximal MMD
value is obtained for (m′, n′) = (19, 1), while maxi-
mizing the argument of CMMD yields the true value
(10, 10).

Comparing MMD and CMMD. In Figure 3, we
compare the distribution of the change-point estima-
tors based on MMD and CMMD. Again, the underly-
ing model is an AR(1) process of length 10, 000 and
the time window size is w = 500. In this experiment,
we chose (m,n) = (5, 15), and the autoregressive co-
efficient changes from 0.1 to 0.2 (top), from 0.1 to 0.3
(middle) and from 0.1 to 0.4 (bottom). The distribu-
tions of the estimators are obtained by 1, 000 Monte
Carlo replications. As can be seen, the estimator based
on CMMD performs better in all three cases; the one
based on MMD is biased towards (1,19) and (19,1),
particularly if the change of the autoregressive coeffi-
cient is small.

Multiple change-point detection. Figure 4
shows the results obtained for the detection of
multiple change-points. The underlying model is
an AR(1) process of length 10, 000 with a change
of the autoregressive coefficient at 2, 500 and 7, 500
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Figure 5: Top: 250 seconds long part of an EEG
recording. Middle: Ordinal pattern distributions.
Bottom: Resulting MMD values.

time points, namely, from 0.1 to 0.4 and 0.4 to 0.1
(left), from 0.1 to 0.3 and 0.3 to 0.1 (middle), and
from 0.1 to 0.2 and 0.2 to 0.1 (right). To localize
these change-points, we applied our method twice:
first to the entire sequence, then to the longer one of
the resulting two time segments. Figure 4 displays
the distribution of the estimates obtained by 1, 000
Monte Carlo replications. The coloring of the cell
(x, y) represents the frequency of replications with
the first change-point detected at 500x time points
and the second one at 500y time points. As can be
seen, the localization in the first two experiments is
fairly precise. In the third experiment, the estimates
are more scattered, however, this is true even in the
single change-point setting (compare to Figure 3).

4.2 REAL-LIFE TIME SERIES

Epileptic activity in EEG time series. The top
plot of Figure 5 shows a 250 seconds long part of
an EEG recording which was digitized with a sam-
pling rate of 256 Hertz, so the time series consists of
250 · 256 = 64, 000 data points. The increase in am-
plitude after 160 seconds is related to the onset of an
epileptic seizure. The middle plot shows the distribu-
tion of ordinal patterns in non-overlapping time win-
dows of 2 seconds, that is, w = 512. Same as in Figure
2, the order of the patterns is d = 3. The bottom plot
displays the resulting MMD values. The maximum is
obtained at the onset of the seizure, thus indicating
the presence of a change-point after 160 seconds.
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Figure 6: Top: 10 seconds of an ECG before and after
an increase of the heart rate. Middle: Ordinal pattern
distributions. Bottom: Resulting MMD values.

Heart rate changes in ECG data. Figure 6 shows
the application of our method to the detection of heart
rate changes in electrocardiography (ECG) recordings.
The middle plot displays the distribution of ordinal
patterns in 100 non-overlapping time windows of 2
seconds, again corresponding to the time window size
w = 512. After 100 seconds, there is a slight change in
the heart rate from approximately 90 to 105 beats per
minute (compare to the plots in the top row). As the
bottom plot shows, this change-point is easily detected
even by the non-corrected MMD values.

5 CONCLUSIONS

We have presented a new method for detecting change-
point in time series based on measuring the maxi-
mum mean discrepancy of ordinal pattern distribu-
tions. The main advantages of our approach are its
computational efficiency and robustness towards (non-
linear) signal distortions. These properties make it
particularly attractive for the fast exploration of bio-
physical time series the exact calibration of which is
unknown or varies with time. We believe that our
approach can be efficiently combined with existing
change-point detection methods to first approximately
localize of a set of candidates before determining the
exact location and testing for significance. We have es-
tablished asymptotical properties of our method and
evaluated its performance both for simulated and real-
life data, including the application to multiple change-
point problems.
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I.P. Cornfeld, S.V. Fomin and Y.G. Sinai (1982). Er-
godic Theory. Springer-Verlag, Berlin.

A. Gretton, K.M. Borgwardt, M. Rasch, B. Schölkopf
and A.J. Smola (2007a). A Kernel Method for the
Two-Sample-Problem. Advances in Neural Informa-
tion Processing Systems 19: Proceedings of the 2006
Conference, 513-520.

A. Gretton, K.M. Borgwardt, M. Rasch, B. Schölkopf
and A.J. Smola, A (2007b). A Kernel Approach to
Comparing Distributions. Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence,
1637-1641.

Z. Harchaoui, F. Bach and E. Moulines (2009). Kernel
change-point analysis. Advances in Neural Informa-
tion Processing Systems 21, 609-616.

K. Keller, H. Lauffer and M. Sinn (2007a). Ordinal
analysis of EEG time series. Chaos and Complexity
Letters 2, 247-258.

K. Keller and M. Sinn (2009). A standardized ap-
proach to the Kolmogorov-Sinai entropy. Nonlinearity
22, 2417-2422.

K. Keller, M. Sinn and J. Emonds (2007b). Time series
from the ordinal viewpoint. Stochastics and Dynamics
2, 247-272.

X. Li, G. Ouyang and D.A. Richards (2007). Pre-
dictability analysis of absence seizures with permuta-
tion entropy. Epilepsy Research 77, 70-74.

X. Li, S.M.E. Cui and L.J. Voss (2008). Using permu-
tation entropy to measure the electroencephalographic

effect of Sevoflurane. Anesthesiology 109, 3, 448-456.

E. Olofsen, J.W. Sleigh and A. Dahan (2008). Permu-
tation entropy of the electroencephalogram: a measure
of anaesthetic drug effect. British Journal of Anaes-
thesia 110, 6, 810-821.

M. Sinn and K. Keller (2011). Estimation of ordi-
nal pattern probabilities in Gaussian processes with
stationary increments. Computational Statistics and
Data Analysis 55, 4, 1781-1790.


