
New Advances and Theoretical Insights into EDML

Khaled S. Refaat and Arthur Choi and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
{krefaat,aychoi,darwiche}@cs.ucla.edu

Abstract

EDML is a recently proposed algorithm for
learning MAP parameters in Bayesian net-
works. In this paper, we present a number
of new advances and insights on the EDML
algorithm. First, we provide the multival-
ued extension of EDML, originally proposed
for Bayesian networks over binary variables.
Next, we identify a simplified characteriza-
tion of EDML that further implies a sim-
ple fixed-point algorithm for the convex op-
timization problem that underlies it. This
characterization further reveals a connection
between EDML and EM: a fixed point of
EDML is a fixed point of EM, and vice versa.
We thus identify also a new characteriza-
tion of EM fixed points, but in the seman-
tics of EDML. Finally, we propose a hybrid
EDML/EM algorithm that takes advantage
of the improved empirical convergence behav-
ior of EDML, while maintaining the mono-
tonic improvement property of EM.

1 INTRODUCTION

EDML is a recently proposed algorithm for learning
MAP parameters of a Bayesian network from incom-
plete data (Choi, Refaat, & Darwiche, 2011). EDML
is procedurally very similar to Expectation Maximiza-
tion (EM), yet EDML was shown to have certain ad-
vantages, both theoretically and practically. Theoret-
ically, EDML can in certain specialized cases prov-
ably converge in one iteration, whereas EM may re-
quire many iterations to solve the same learning prob-
lem. Empirically, a preliminary experimental evalua-
tion suggested that EDML could find better parameter
estimates than EM, in fewer iterations.

In this paper, we present a number of new results
and insights on the EDML algorithm. First, we pro-

vide a simple extension of EDML to Bayesian net-
works over multivalued variables, whereas EDML was
initially proposed for Bayesian networks over binary
variables. We also show that the convex optimization
problem that underlies the binary version of EDML,
remains convex for the multivalued case.

Next, we identify a new and simplified characteriza-
tion of EDML, which facilitates a number of theoreti-
cal observations about EDML. For example, this new
characterization implies a simple, fixed-point iterative
algorithm for solving the convex optimization prob-
lems underlying EDML. Moreover, we show that this
fixed-point algorithm monotonically improves the so-
lutions of these convex optimization problems, which
correspond to an approximate factorization of the pos-
terior over network parameters.

Armed with this new characterization of EDML, we go
on to identify a surprising connection between EDML
and EM (considering their theoretical and practical
differences). In particular, we show that a fixed point
of EDML is a fixed point of EM, and vice versa. This
observation has a number of implications. First, it pro-
vides a new perspective on EM fixed points, based on
the semantics of EDML, which was originally inspired
by an approximate inference algorithm for Bayesian
networks that subsumed the influential loopy belief
propagation algorithm as a degenerate case (Pearl,
1988; Choi & Darwiche, 2006). Second, it suggests
a hybrid EDML/EM algorithm that seeks to take ad-
vantage of the desirable properties from each: the im-
proved convergence behavior of EDML, and the mono-
tonic improvement property of EM.

2 TECHNICAL PRELIMINARIES

We use upper case letters (X) to denote variables and
lower case letters (x) to denote their values. Variable
sets are denoted by bold-face upper case letters (X)
and their instantiations by bold-face lower case letters
(x). Generally, we will use X to denote a variable

in a Bayesian network and U to denote its parents. A
network parameter will therefore have the general form
θx|u, representing the probability Pr(X=x|U=u).

Each variable X in a Bayesian network can be thought
of as inducing a number of conditional random vari-
ables, denoted by X|u, where the values of variable
X|u are drawn based on the conditional distribution
Pr(X|u). Parameter estimation in Bayesian networks
can be thought of as a process of estimating the dis-
tributions of these conditional random variables.

We will use θ to denote the set of all network parame-
ters. Given a network structure G, our goal is to learn
its parameters from an incomplete dataset, such as:

example E B A C
1 e1 b1 a1 ?
2 ? b2 a2 ?
3 e1 b2 a2 c1

We use D to denote a dataset, and di to denote an
example. The dataset above has three examples, with
example d2 being B = b2, and A = a2.

2.1 LEARNING PARAMETERS

A commonly used measure for the quality of parameter
estimates θ is their likelihood, defined as:

L(θ|D) =
∏N
i=1 Prθ(di),

where Prθ is the distribution induced by network
structure G and parameters θ. In the case of com-
plete data (each example fixes the value of each vari-
able), the maximum likelihood (ML) parameters are
unique and easily obtainable. Learning ML param-
eters is harder when the data is incomplete and the
EM algorithm (Dempster, Laird, & Rubin, 1977; Lau-
ritzen, 1995) is typically employed. EM starts with
some initial parameters θ0, called a seed, and succes-
sively improves on them via iteration. EM uses the
update equation:

θk+1
x|u =

∑N
i=1 Prθk(xu|di)∑N
i=1 Prθk(u|di)

,

which requires inference on a Bayesian network param-
eterized by θk, in order to compute Prθk(xu|di) and
Prθk(u|di). It is known that one run of the jointree
algorithm on each example is sufficient to implement
an iteration of EM, which is guaranteed to never de-
crease the likelihood of its estimates across iterations.
EM also converges to every local maxima, given that it
starts with an appropriate seed. It is common to run
EM with multiple seeds, keeping the best local max-
ima it finds. See (Darwiche, 2009; Koller & Friedman,
2009) for recent treatments on parameter learning in
Bayesian networks via EM and related methods.

EM can also be used to find Maximum a Posteriori
(MAP) parameters given Dirichlet priors on network
parameters. The Dirichlet prior for the parameters of
a random variable X|u is specified by a set of expo-
nents, ψx|u, leading to a density ∝

∏
x[θx|u]ψx|u−1. It

is common to assume that exponents are > 1, which
guarantees a unimodal density. For MAP parameters,
EM uses the update (see, e.g., Darwiche (2009)):

θk+1
x|u =

ψx|u − 1 +
∑N
i=1 Prθk(xu|di)

ψX|u − |X|+
∑N
i=1 Prθk(u|di)

, (1)

where ψX|u =
∑
x ψx|u. When ψx|u = 1, the equa-

tion reduces to the one for computing ML parameters.
Moreover, using ψx|u = 2 leads to ML parameters with
Laplace smoothing. This is a common technique to
deal with the problem of insufficient counts (i.e., in-
stantiations that never appear in the dataset, leading
to zero probabilities and division by zero). We will use
Laplace smoothing in our experiments.

2.2 SOFT EVIDENCE

EDML makes heavy use of soft evidence (i.e., evidence
that changes the distribution of a variable without nec-
essarily fixing its value). In this section, we give an
introduction to the semantics of soft evidence.

We follow the treatment of (Chan & Darwiche, 2005)
for soft evidence, which models soft evidence as hard
evidence on a virtual event η. In particular, soft evi-
dence on some variableX with k values is quantified by
a vector λx1

, . . . , λxk
with λxi

∈ [0,∞). The semantics
is that λx1

: · · · : λxk
= Pr(η|x1) : · · · : Pr(η|xk). The

soft evidence on variable X is then emulated by assert-
ing the hard evidence η. That is, the new distribution
on variable X after having asserted the soft evidence
is modeled by Pr(X|η). Note that Pr(X|η) depends
only on the ratios λx1

: · · · : λxk
, not on their absolute

values. Hard evidence of the form X = xj can be mod-
eled using λxi

= 0 for all i 6= j, and λxj
= 1. Moreover,

neutral evidence can be modeled using λxi = 1 for all
i. The reader is referred to (Chan & Darwiche, 2005)
for more details.

3 BINARY EDML

EDML is a recent method for learning Bayesian net-
work parameters from incomplete data (Choi et al.,
2011). It is based on Bayesian learning in which one
formulates estimation in terms of computing posterior
distributions on network parameters. That is, given
a Bayesian network, one constructs a corresponding
meta network in which parameters are explicated as
variables, and on which the given dataset D can be
asserted as evidence; see Figure 1. One then estimates

θH	

θS|h	 θE|h	

H1	 H2	 H3	

S1	 S2	 S3	 E1	 E2	 E3	

θS|h	 θE|h	

Figure 1: A meta network induced from a base network
S←−H−→E. The CPTs here are based on standard
semantics; see, e.g., (Darwiche, 2009, Ch. 18).

H2	

S2	 E2	

H:	 H2	

H1	 H3	

S1	 E1	 E3	 S3	

θH	

θS|h	 θE|h	

Sh	 S
2	 Sh	 S

3	 Sh	 S
1	 Sh:	 S2	 Eh:	 E2	 Sh:	 S2	 Eh:	 E2	

θE|h	 θS|h	

Figure 2: An edge-deleted network obtained from the
meta network in Figure 1. Highlighted are the island
for example d2 and the island for parameter set θS|h.

parameters by considering the posterior distribution
obtained from conditioning the meta network on the
given dataset D. Suppose for example that the meta
network induces distribution P and let θ denote an
instantiation of variables that represent parameters in
the meta network. One can then obtain MAP param-
eter estimates by computing argmaxθ P(θ|D) using in-
ference on the meta network; see (Darwiche, 2009) for
an example treatment of Bayesian learning.

It is known that meta networks tend to be too com-
plex for exact inference algorithms, especially when
the dataset is large enough. The basic insight behind
EDML was to adapt a specific approximate inference
scheme to meta networks with the goal of computing
MAP parameter estimates. In particular, the original
derivation of EDML adapted the approximate infer-
ence algorithm proposed by (Choi & Darwiche, 2006),
in which edges are deleted from a Bayesian network

Algorithm 1 Binary EDML

input:
G: A Bayesian network structure
D: An incomplete dataset d1, . . . ,dN
θ: An initial parameterization of structure G
αX|u, βX|u: Beta prior for each random variable X|u
1: while not converged do
2: Pr← distribution induced by θ and G
3: Compute Bayes factors:

κix|u←
Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1

Pr(x̄u|di)/Pr(x̄|u)− Pr(u|di) + 1

for each family instantiation xu and example di
4: Update parameters:

θx|u← argmax
p

[p]αX|u−1[1−p]βX|u−1
N∏
i=1

[κix|u ·p−p+1]

5: return parameterization θ

to make it sparse enough for exact inference, followed
by a compensation scheme that attempts to improve
the quality of the approximations obtained from the
edge-deleted network. The adaptation of this infer-
ence method to meta networks is shown in Figure 2.
The two specific techniques employed here were to aug-
ment each edge θX|u−→Xi by an auxiliary variable
Xi

u, leading to θX|u−→Xi
u−→Xi, where Xi

u−→Xi is
an equivalence edge. This is followed by deleting the
equivalence edge. This technique yielded a discon-
nected meta network with two classes of subnetworks,
called parameter islands and network islands.

Deleting edges, as proposed by (Choi & Darwiche,
2006), leads to introducing two auxiliary nodes in the
Bayesian network for each deleted edge. Moreover, ap-
proximate inference by edge deletion follows the dele-
tion process by a compensation scheme that searches
for appropriate CPTs of these auxiliary nodes. As it
turns out, the search for these CPTs, which is done
iteratively, was amenable to a very intuitive interpre-
tation as shown in (Choi et al., 2011).

In particular, one set of CPTs corresponded to soft
evidence on network parameters, where each network
island contributes one piece of soft evidence for each
network parameter. The second set of CPTs corre-
sponded to updated parameter estimates, where each
parameter island contributes an estimate of its un-
derlying parameter set. This interpretation was the
basis for the form of EDML shown in Algorithm 1.
This particular version of EDML, introduced in (Choi
et al., 2011), assumes that all network variables are
binary. Binary EDML, as we shall call it, iterates just

like EM does, producing new estimates after each it-
eration. However, EDML iterations can be viewed as
having two phases. In the first phase, each example in
the data set is used to compute a piece of soft evidence
on each parameter set (Line 3 of Algorithm 1). In the
second phase, the pieces of soft evidence pertaining to
each parameter set are used to compute a new esti-
mate of that set (by solving the convex optimization
problem on Line 4 of Algorithm 1). The process re-
peats until some convergence criteria is met. Aside
from this optimization task, EM and EDML have the
same computational complexity.

4 MULTIVALUED EDML

One contribution of this paper is the extension of bi-
nary EDML so that it handles multivalued variables
as well. In principle, the extension turns out to be
straightforward and is depicted in Algorithm 3. How-
ever, two issues require further discussion. The first
concerns the specification of soft evidence for multi-
valued variables. The second is confirming that the
optimization problem corresponding to a parameter
island (on Line 4 of Algorithm 3) remains strictly con-
cave, therefore, admitting unique solutions. We will
consider both issues next.

4.1 EXAMPLES AS SOFT EVIDENCE

The first key concept of EDML is to interpret a data
example di in the dataset as soft evidence on a con-
ditional random variable X|u. As mentioned earlier,
soft evidence on a variable is modeled using a vector of
parameters, one for each value of the variable. We will
therefore use λx|u to denote the parameter pertaining
to value x of variable X|u.

EDML uses Equation 2 in Algorithm 3 to compute soft
evidence. In particular, example di is viewed as soft
evidence on conditional random variable X|u that is
quantified as follows:

λix|u←Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1

We will not derive this equation here as it resembles
the one for binary EDML. We will, however, discuss
some of its key properties in this and further sections.

Consider the case when the example di is inconsis-
tent with the parent instantiation u. In this case, the
example should be irrelevant to variable X|u. Equa-
tion 2 does the right thing here as it reduces to 1 for
all values of x, which amounts to neutral evidence.

Another special case is when example di is complete;
that is, it has no missing values. In this case, one
can verify that if di is consistent with u (relevant),

x

X1 X2 XN …

Figure 3: Learning from independent, hard observa-
tions X1, . . . , XN . The distribution of variable X is
specified by parameter set θX .

θX

X1 X2 XN …	
η1 η2 ηN …	

Figure 4: Learning from independent, soft observa-
tions η1, . . . , ηN . The distribution of variable X is
specified by parameter set θX .

then λix|u = 0 for all values x except the value x?

consistent with di. This is equivalent to hard evidence
in favor of x?. On the other hand, if di is inconsistent
with u (irrelevant), then λix|u = 1 for all values x,
providing neutral evidence. In a nutshell, a complete
example provides either hard evidence, if it is relevant;
or neutral evidence, if it is irrelevant.

4.2 LEARNING FROM SOFT EVIDENCE

Consider the standard learning problem depicted in
Figure 3. Here, we have a variable X that takes k
values x1, . . . , xk and has a distribution specified by
a parameter set θX : θx1

, . . . , θxk
. That is, each pa-

rameter θxi represents the corresponding probability
Pr(X = xi). Suppose further that we have a Dirichlet
prior ρ(θX) on the parameter set with exponents ψxi

greater than one. A standard learning problem here
is to compute the MAP estimates of parameter set θX
given N independent observations on the variable X.
MAP estimates are known to be unique in this case and
have a corresponding closed form. In particular, it is
known that the posterior ρ(θX |X1, . . . , XN) is a uni-
modal Dirichlet and, hence, has a unique maximum;
see for example (Darwiche, 2009).

EDML is based on a variant of this learning problem
in which we are given N soft observations on variable
X instead of hard observations. This variant is shown
in Figure 4, where each observation Xi has a child ηi

that is used to emulate soft evidence on Xi. That is, to
represent soft evidence λix1

, . . . , λixk
, we simply choose

the CPT for ηi so that Pr(ηi|x1) : · · · : Pr(ηi|xk) =

Algorithm 2 EM

input:
G: A Bayesian network structure
D: An incomplete dataset d1, . . . ,dN
θ: An initial parameterization of structure G
ψ: A Dirichlet prior for each parameter set θX|u
1: while not converged do
2: Pr← distribution induced by θ and G
3: Compute probabilities:

Pr(xu|di) and Pr(u|di)

for each family instantiation xu and example di
4: Update parameters:

θx|u←
ψx|u − 1 +

∑N
i=1 Pr(xu|di)

ψX|u − |X|+
∑N
i=1 Pr(u|di)

5: return parameterization θ

Algorithm 3 Multivalued EDML

input:
G: A Bayesian network structure
D: An incomplete dataset d1, . . . ,dN
θ: An initial parameterization of structure G
ψ: A Dirichlet prior for each parameter set θX|u
1: while not converged do
2: Pr← distribution induced by θ and G
3: Compute soft evidence parameters:

λix|u←Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1 (2)

for each family instantiation xu and example di
4: Update parameters:

θX|u← argmax
θ̂X|u

∏
x

[θ̂x|u]ψx|u−1
N∏
i=1

∑
x

λix|uθ̂x|u (3)

5: return parameterization θ

λix1
: · · · : λixk

.

Note here that the posterior density ρ(θX |η1 . . . ηN) is
no longer Dirichlet, but takes the more complex form
given by Equation 3 of Algorithm 3. Yet, we have the
following result.

Theorem 1 Given N soft observations ηi on a vari-
able X, and a Dirichlet prior on its parameters θX ,
with Dirichlet exponents ψx > 1, the posterior density
ρ(θX |η1 . . . ηN) is strictly log concave.

Therefore, the posterior density, ρ(θX |η1 . . . ηN), has a
unique maximum. We next provide a simple iterative
method for obtaining the maximum in this case.

5 SIMPLE EDML

Multivalued EDML, as given in Algorithm 3, works
as follows. We start with some initial parameter esti-
mates, just like EM. We then iterate, while perform-
ing two steps in each iteration. In the first step, each
example di in the dataset is used to compute soft evi-
dence on each variable X|u, as in Equation 2 of Algo-
rithm 3. Using this soft evidence, a learning problem
is set up for the parameter set θX|u as given in Fig-
ure 4, which is a learning sub-problem in the context
of Equation 3 of Algorithm 3. The solution to this
learning sub-problem provides the next estimate for
parameter set θX|u. The process repeats. In principle,
any appropriate optimization algorithm could be used
to solve each of these learning sub-problems.

We will next derive a simpler description of EDML
that has two key components. First, we will provide a
convergent update equation that iteratively solves the

optimization problem in Equation 3 of Algorithm 3.
Second, we will use this update equation to provide a
characterization of EDML’s fixed points.

First, consider the likelihood:

Pr(η1, . . . , ηN | θX) =

N∏
i=1

Pr(ηi | θX)

=

N∏
i=1

∑
x

Pr(ηi | x)Pr(x | θX) =

N∏
i=1

∑
x

λixθx

Next, we have the posterior:

ρ(θX | η1, . . . , ηN) ∝ ρ(θX)Pr(η1, . . . , ηN | θX)

= ρ(θX)
N∏
i=1

∑
x

λixθx

Assuming a Dirichlet prior over parameter set θX , with
Dirichlet exponents ψx, the log of the posterior is:

log ρ(θX | η1 . . . ηN)

=
∑
x

(ψx − 1) log θx +

N∑
i=1

log
∑
x

λixθx + γ

where γ is a constant that is independent of θX , which
we can ignore. By Theorem 1 we know that the log of
the posterior is strictly concave when ψx > 1.

To get the unique maximum of the log posterior, we
solve the optimization problem:

minimize − log ρ(θX | η1, . . . , ηN)

subject to
∑
x

θx = 1

In order to characterize the unique maximum of the
log posterior, we start by taking the Lagrangian:

L(θX , ν) = − log ρ(θX | η1, . . . , ηN) + ν · (
∑
x

θx − 1)

where ν is a Lagrange multiplier. We get the follow-
ing condition for the optimal parameter estimates, by
setting the gradient of L(θX , ν) with respect to θX to
zero:

θx =
ψx − 1 +

∑N
i=1

λi
xθx∑

x∗ λ
i
x∗θx∗

ψX − |X|+N

where ψX =
∑
x ψx, and where we used the constraint∑

x θx = 1 to identify that ν = ψX − |X|+N.

The above equation leads to a much stronger result.

Theorem 2 The following update equation monoton-
ically increases the posterior ρ(θX|u | η1, . . . , ηN):

θtx|u =

ψx|u − 1 +
∑N
i=1

λi
x|uθ

t−1
x|u∑

x? λi
x?|uθ

t−1
x?|u

ψX|u − |X|+N
(4)

This theorem suggests a convergent iterative algorithm
for solving the convex optimization problem of Equa-
tion 3 in Algorithm 3. First, we start with some ini-
tial parameter estimates θ0x|u at iteration t = 0. For
iteration t > 0, we use the above update to compute
parameters θtx|u given the parameters θt−1x|u from the

previous iteration. If at some point, the parameters
of one iteration do not change in the next (in prac-
tice, up to some limit), we say that the iterations have
converged to a fixed point. The above theorem, to-
gether with Theorem 1, shows that these updates are
convergent to the unique maximum of the posterior.

Given Equation 4, one can think of two types of iter-
ations in EDML: local and global. A global iteration
corresponds to executing Lines 2–4 of Algorithm 3 and
is similar to an EM iteration. Within each global iter-
ation, we have local iterations which correspond to the
evaluations of Equation 4. Note that each parameter
set θX|u has its own local iterations, which are meant
to find the optimal values of this parameter set. More-
over, the number of local iterations for each parameter
set θX|u may be different, depending on the soft evi-
dence pertaining to that set (i.e., λix|u) and depending
on how Equation 4 is seeded for that particular pa-
rameter set (i.e., θ0x|u).

This leads to a number of observations on the differ-
ence between EM updates (Equation 1) and EDML
updates (Equation 4). From a time complexity view-
point, an EM update implies exactly one local iter-
ation for each parameter set since Equation 1 needs
to be evaluated only once for each parameter set. As

mentioned earlier, however, an EDML update requires
a varying number of local iterations. We have indeed
observed that some parameter sets may require sev-
eral hundred local iterations, depending on the seed of
Equation 4 and the convergence criteria used. Another
important observation is that EDML has a secondary
set of seeds, as compared to EM, which are needed
to start off Equation 4 at the beginning of each global
iteration of EDML. In our experiments, we seed Equa-
tion 4 using the parameter estimates obtained from the
previous global iteration of EDML. We note, however,
that the choice of these secondary seeds is a subject
that can significantly benefit from further research.

6 EDML FIXED POINTS

One of the more well known facts about EM is that
its fixed points are precisely the stationary points of
the log-likelihood function (or more generally, the pos-
terior density when Dirichlet priors are used). This
property has a number of implications, one of which is
that EM is capable of converging to every local max-
ima of the log-likelihood, assuming that the algorithm
is seeded appropriately.

In this section, we show that the fixed points of EDML
are precisely the fixed points of EM. We start by for-
mally defining what a fixed point is.

Both EM and EDML can be viewed as functions f(θ)
that take a network parameterization θ and returns an-
other network parameterization f(θ). Each algorithm
is seeded with initial parameters θ0. After the first it-
eration, each algorithm produces the next parameters
θ1 = f(θ0). More generally, at iteration i, each algo-
rithm produces the parameters θi+1 = f(θi). When
θi+1 = θi, we say that parameters θi are a fixed point
for an algorithm. We also say that the algorithm has
converged to θi. We now have the following results.

Theorem 3 A parameterization θ is a fixed point for
EDML if and only if it is a fixed point for EM.

The proof of this theorem rests on two observations.
First, using the update equation of EM given on Line 4
of Algorithm 2, one immediately gets that the EM
fixed points are characterized by the following equation

Pr(x|u) =
ψx|u − 1 +

∑N
i=1 Pr(xu|di)

ψX|u − |X|+
∑N
i=1 Pr(u|di)

(5)

That is, we can test whether a network parameteriza-
tion θ is a fixed point for EM by simply checking the
probability distribution Pr it induces to see if satisfies
the above equation (this is actually a set of equations,
one for each family instantiation xu in the network).

Consider now EDML updates as given by Equation 4
and suppose that we have reached a fixed point, where
θtx|u = θt−1x|u = Pr(x|u) for all xu. If we now replace

each λix|u by its corresponding value in Equation 2 of
Algorithm 3, we obtain, after some simplification:

Pr(x|u) =
ψx|u − 1 +

∑N
i=1

λi
x|uPr(x|u)∑

x? λi
x?|uPr(x?|u)

ψX|u − |X|+N

=
ψx|u − 1 +

∑N
i=1 Pr(xu|di) + Pr(¬u|di)Pr(x|u)

ψX|u − |X|+N

(6)

Thus, a parameterization θ is a fixed point for EDML
iff it satisfies Equation 6. After noting that N =∑N
i=1 Pr(u|di) + Pr(¬u|di), we rearrange Equation 6

to obtain Equation 5, which is the characteristic equa-
tion for EM fixed points. Thus, a parameterization θ
satisfies Equation 6 iff it is a fixed point for EM.

7 HYBRID EDML/EM

By Theorem 3, EDML and EM share the same fixed
points. This result is fairly surprising, considering the
theoretical and practical differences between the two
algorithms. For example, certain specialized situations
were identified where EDML converges to optimal pa-
rameter estimates in a single global iteration (regard-
less of how it is seeded), whereas EM may require many
iterations to converge to the same estimates (Choi
et al., 2011). On the other hand, EDML is not guaran-
teed to monotonically improve its estimates after each
global iteration as EM does (improvement here is in
terms of increasing the likelihood of estimates, or the
MAP when Dirichlet priors are used).

By carefully examining EDML updates (Equation 4),
one can see that the quantities it needs to perform a
single local iteration are the same quantities needed to
perform an EM update (Equation 1). Hence, without
any additional computational effort, one can obtain
EM updates as a side effect of computing EDML up-
dates (the converse is not true since Equation 4 may
require many local iterations). As both algorithms
share the same fixed points, it thus makes sense to con-
sider a hybrid algorithm that takes advantage of the
improved theoretical and practical benefits of EDML
(with respect to faster convergence) and the monotonic
improvement property of EM.

We thus propose a very simple hybrid algorithm. At
each global iteration of EDML, we also compute EM
updates simultaneously. We then evaluate each up-
date and choose the one that increases the posterior
the most. As EM is guaranteed to improve the poste-
rior, this hybrid algorithm is also trivially guaranteed

to monotonically improve the posterior, therefore, in-
heriting the most celebrated feature of EM.

While additionally computing an EM update is not
much overhead if one is computing an EDML update,
evaluating both updates with respect to the posterior
incurs a non-trivial cost. As we shall see in the follow-
ing section, however, the improved convergence behav-
ior of EDML enables this hybrid algorithm to realize
improvements over EM, both in terms of faster conver-
gence (i.e., number of global iterations) and in terms of
time (i.e., when taking both global and local iterations
under consideration).

8 EXPERIMENTAL RESULTS

In our first set of experiments, we show that simple
EDML, as compared to EM, can often find better es-
timates in fewer global iterations. In our second set
of experiments, we show that a hybrid EDML/EM al-
gorithm can find better estimates in less time, as well
as fewer global iterations. We use the following net-
works: alarm, andes, asia, diagnose, pigs, spect, water,
and win95pts. Network spect is a naive Bayes network
induced from a dataset in the UCI ML repository, with
1 class variable and 22 attributes. Network diagnose
is from the UAI 2008 evaluation. The other networks
are commonly used benchmarks.1

Using these networks, we simulated data sets of a cer-
tain size (210), then made the data incomplete by ran-
domly selecting a certain percentage of the nodes to be
hidden (10%, 25%, 35%, 50%, and 70%). For each of
these cases, and for each network, we further generated
3 data sets at random. A combination of a network, a
percentage of hidden nodes, and a generated data set
constitutes a learning problem. Both EM and EDML
are seeded with the same set of randomly generated
parameters. Local EDML iterations are seeded with
the estimates of the previous global iteration.

8.1 EXPERIMENTS I

First, we study the behavior of EDML compared to
EM, with respect to global iterations (more on the
computation time, in the next section). For every
learning problem, we run both EM and EDML2 for
1000 global iterations and identify the best MAP es-
timates achieved by either of them, for the purpose of
evaluation. In each global iteration, EM and EDML

1Available at http://www.cs.huji.ac.il/site/labs/
compbio/Repository/ and http://genie.sis.pitt.edu/
networks.html

2Soft evidence and parameter updates are damped in
EDML, which is typical for algorithms like loopy belief
propagation, which EDML is, in part, inspired by (Choi &
Darwiche, 2006).

0 200 400 600 800 1000
iterations

0

50

100

150

200

250

300

350

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

0 200 400 600 800 1000
iterations

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

0 200 400 600 800 1000
iterations

0

50

100

150

200

250

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

0 200 400 600 800 1000
iterations

0

50

100

150

200

250

300

350

400

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

0 200 400 600 800 1000
iterations

0

100

200

300

400

500

600

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

0 200 400 600 800 1000
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

0 200 400 600 800 1000
iterations

0

20

40

60

80

100

120

140

160

180

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

0 100 200 300 400 500
iterations

0

20

40

60

80

100

120

140

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

Figure 5: MAP Error of parameter estimates over iterations. Going right on the x-axis, we have increasing
iterations. Going up on the y-axis, we have increasing error. EDML is depicted with a solid red line, and EM
with a dashed black line. The curves are from left to right, in pairs, for the networks: andes, asia, diagnose, and
alarm. Each pair of curves represents a selection of two different datasets of size 210.

each try to improve their current estimates by improv-
ing the posterior (again, EM is provably guaranteed to
increase the posterior, while EDML is not). The dif-
ference between the (log) posterior of the current es-
timates, and the best (log) posterior found, by either
algorithm, is considered to be the error. The error is
measured at every global iteration of EM and EDML
until it decreases below 10−4. Table 1 summarizes the
results by showing the percentage of global iterations
in which each algorithm had less error than the other.
In the global iterations where an algorithm had less
error, the factor by which it decreases the error of the
other algorithm, on average, is computed, and is con-
sidered the relative improvement: r and r′, for EM
and EDML, respectively. Table 1 shows the results for
three different breakdowns: (1) by different networks,
(2) by different hiding percentages, and (3) on average.

We see here that EDML can obtain better estimates
than EM in much fewer global iterations. Interest-
ingly, this is the case even though EDML is not guar-
anteed to improve estimates after each global itera-
tion, as EM does. Another interesting observation is
that decreasing the percentage of hidden nodes widens
the gap between EDML and EM, in favor of EDML.
This is not surprising though since the approximate
inference scheme on which EDML is based becomes
more accurate with more observations. In particu-
lar, the local optimization problems that EDML solves
exactly and independently, become more independent
with more observations (i.e., as the dataset becomes
more complete). Figure 5 highlights a selection of er-
ror curves given by EM and EDML for different learn-
ing problems. One can see that in most cases shown,
the EDML error goes to zero much faster than EM.

Table 1: Speedup results (iterations)

category % EDML % EM r r′

alarm 89.25% 10.75% 76.21% 76.44%
andes 75.89% 24.11% 88.95% 79.29%
asia 99.01% 0.99% 92.05% 76.91%

diagnose 78.99% 21.01% 77.99% 80.18%
pigs 83.34% 16.66% 83.51% 60.57%
spect 86.65% 13.35% 82.70% 79.96%
water 82.77% 17.23% 91.55% 83.78%

win95pts 78.73% 21.27% 91.75% 79.89%
hiding 10% 93.82% 6.18% 84.59% 87.13%
hiding 25% 90.95% 9.05% 83.83% 75.70%
hiding 35% 82.24% 17.76% 86.26% 75.09%
hiding 50% 77.61% 22.39% 87.8% 80.21%
hiding 70% 75.65% 24.35% 84.48% 74.21%
average 83.05% 16.95% 85.41% 76.96%

8.2 EXPERIMENTS II

Our first set of experiments showed that EDML can
obtain better estimates in significantly fewer global it-
erations than EM. A global EDML iteration, however,
is more costly than a global EM iteration as EDML
performs local iterations which are needed to solve the
convex optimization problem associated with each pa-
rameter set. Thus, EDML can potentially take more
time to converge than EM in some cases, therefore re-
ducing the overall benefit over EM, in terms of time
(more on this later).3 EDML can still perform favor-
ably time-wise compared to EM, but we show here

3This could be alleviated, for example, by better seed-
ing of the local EDML iterations (to speed up convergence
of the local iterations), or by performing the local EDML
iterations in parallel, across parameter sets.

0 10000 20000 30000 40000 50000 60000
time

12000

11800

11600

11400

11200

11000

10800

Lo
g
 M

A
P

hideNodes: Log Map

EM
Hybrid EDML
EDML

0 50000 100000 150000 200000 250000
time

10000

9800

9600

9400

9200

9000

8800

Lo
g
 M

A
P

hideNodes: Log Map

EM
Hybrid EDML
EDML

0 400000 800000 1200000
time

26800

26700

26600

26500

26400

26300

26200

26100

Lo
g
 M

A
P

hideNodes: Log Map

EM
Hybrid EDML
EDML

Figure 6: MAP of parameter estimates over time. Going right on the x-axis, we have increasing time (ms).
Going up on the y-axis, we have increasing MAP. Hybrid EDML is depicted with a solid red line, EM with a
dashed black line, and EDML with a blue dotted dashed line. The curves are from left to right for the following
problems: alarm with hiding 25%, win95pts with hiding 35%, and water with hiding 50%.

Table 2: Speedup results (time)

network % Hybrid % EM s s′

alarm 46.67% 53.33% 75.80% 56.22%
andes 53.33% 46.67% 42.27% 47.08%
asia 66.67% 33.33% 70.37% 41.00%

diagnose 26.67% 73.33% 52.71% 43.14%
pigs 73.33% 26.67% 52.35% 31.32%
spect 100% 0% 98.03% —
water 35.71% 64.29% 46.15% 43.55%

win95pts 80.00% 20.00% 66.37% 54.95%
average 60.50% 39.50% 67.45% 45.55%

that a hybrid EDML/EM can go even further.

We first run EM until convergence (or until it ex-
ceeds 1000 iterations). Second, we run our hybrid
EDML/EM until it achieves the same quality of pa-
rameter estimates as EM (or until it exceeds 1000 iter-
ations). To summarize the results, Table 2 shows the
percentage of learning problems in which each algo-
rithm was faster than the other. In the cases where the
hybrid EDML/EM algorithm was faster, the average
percentage by which it decreases the execution time of
EM is reported as the speedup (s). The speedup for
the cases in which EM was faster is given by s′.

The results suggest that hybrid EDML/EM can be
used to get better estimates in less time. Specifically,
on average, the hybrid method decreases the execu-
tion time by a factor of 3.07 in about 60.50% of the
cases, and, in the rest of the cases, EM was faster by a
factor of roughly 1.84. This is particularly interesting
in light of the non-trivial overhead associated with hy-
brid EDML/EM, as it has to evaluate both EDML and
EM estimates in order to select the better estimate. In
comparison, EDML alone was on average faster than
EM by a factor of 2.59 times in about 54.17% of the
cases, whereas EM was faster than EDML alone by a
factor of 2.38 in the remaining 45.83% of the cases.

Figure 6 shows a sample of the time curves showing
two cases where EDML/EM reached better MAP esti-

mates, faster than EM, and one case where EDML/EM
finished slightly after EM. EDML alone is also plotted
in Figure 6 where it is usually slower than EDML/EM
except in some cases; see the center plot in Figure 6.

9 RELATED WORK

EM has played a critical role in learning probabilis-
tic graphical models and Bayesian networks (Demp-
ster et al., 1977; Lauritzen, 1995; Heckerman, 1998).
However, learning (and Bayesian learning in particu-
lar) remains challenging in a variety of situations, par-
ticularly when there are hidden (latent) variables; see,
e.g., (Elidan, Ninio, Friedman, & Shuurmans, 2002;
Elidan & Friedman, 2005). More recently, there have
been characterizations of EM that also have interesting
connections to loopy belief propagation, and related al-
gorithms (Liu & Ihler, 2011; Jiang, Rai, & III, 2011),
although their focus is more on approximate (partial)
MAP inference in probabilistic graphical models via
message-passing, and less on learning.

Slow convergence of EM has also been recognized, par-
ticularly in the presence of hidden variables. In such
cases, EM can be coupled with algorithms such as gra-
dient ascent, or other more traditional algorithms for
optimization; see, e.g. (Aitkin & Aitkin, 1996). A
variety of other techniques for accelerating EM have
been proposed in the literature; see, e.g., (Thiesson,
Meek, & Heckerman, 2001).

Acknowledgements

This work has been partially supported by ONR grant
#N00014-12-1-0423, NSF grant #IIS-1118122, and
NSF grant #IIS-0916161. This work is also based
upon research performed in collaborative facilities ren-
ovated with funds from NSF grant #0963183, an
award funded under the American Recovery and Rein-
vestment Act of 2009 (ARRA).

References

Aitkin, M., & Aitkin, I. (1996). A hybrid EM/Gauss-
Newton algorithm for maximum likelihood in mixture
distributions. Statistics and Computing, 6, 127–130.

Chan, H., & Darwiche, A. (2005). On the revision of
probabilistic beliefs using uncertain evidence. Artifi-
cial Intelligence, 163, 67–90.

Choi, A., & Darwiche, A. (2006). An edge deletion se-
mantics for belief propagation and its practical impact
on approximation quality. In AAAI, pp. 1107–1114.

Choi, A., Refaat, K. S., & Darwiche, A. (2011). EDML:
A method for learning parameters in Bayesian net-
works. In Proceedings of the 27th Conference on Un-
certainty in Artificial Intelligence.

Darwiche, A. (2009). Modeling and Reasoning with
Bayesian Networks. Cambridge University Press.

Dempster, A., Laird, N., & Rubin, D. (1977). Maxi-
mum likelihood from incomplete data via the EM al-
gorithm. Journal of the Royal Statistical Society B,
39, 1–38.

Elidan, G., & Friedman, N. (2005). Learning hid-
den variable networks: The information bottleneck ap-
proach. JMLR, 6, 81–127.

Elidan, G., Ninio, M., Friedman, N., & Shuurmans, D.
(2002). Data perturbation for escaping local maxima
in learning. In AAAI/IAAI, pp. 132–139.

Heckerman, D. (1998). A tutorial on learning with
Bayesian networks. In Jordan, M. I. (Ed.), Learning
in Graphical Models, pp. 301–354. MIT Press.

Jiang, J., Rai, P., & III, H. D. (2011). Message-passing
for approximate MAP inference with latent variables.
In NIPS, pp. 1197–1205.

Koller, D., & Friedman, N. (2009). Probabilistic
Graphical Models: Principles and Techniques. MIT
Press.

Lauritzen, S. (1995). The EM algorithm for graphical
association models with missing data. Computational
Statistics and Data Analysis, 19, 191–201.

Liu, Q., & Ihler, A. T. (2011). Variational algorithms
for marginal MAP. In UAI, pp. 453–462.

Pearl, J. (1988). Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, Inc., San Mateo, California.

Thiesson, B., Meek, C., & Heckerman, D. (2001). Ac-
celerating EM for large databases. Machine Learning,
45 (3), 279–299.

