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Foreword

As in previous years, the goal of the Bayesian Modelling Applications workshop
is to provide a focused, informal forum for fruitful exchanges among theorists,
practitioners and tool developers. Discussions may cover research questions
and insights, methodologies, techniques, and experiences with applications of
Bayesian models to any particular problem domain. This year we address the
special theme

How biased are our numbers ?

We have composed an interesting program of selected contributions that focus
on issues relating to (probability) biases in applications of Bayesian networks.
For example, in constructing a Bayesian model, the probabilistic information
required for establishing its numerical parameters can be obtained from data,
human experts, a mix of these, or from yet other sources, all of which are known
to be biased. How can the biases in the sources of probabilistic information be
identified? How can the degree of bias, and its effect on the resulting model
and its behaviour, be established? Is it possible to correct for these biases? Do
the dedicated elicitation techniques that are being designed for the purpose of
eliciting probabilities from human experts forestall, for example, biases and over-
commitments of the resulting model? Are these techniques efficient, easy to use,
and scale up to building large models? In verifying the probability assessments
and behaviour of the model under construction, biases in the numbers and in
the interpretation of these numbers can be expected. What type of bias can be
expected, and how can it be identified? What kind of probabilistic information,
possibly computed from the model under construction, do you feed back to, for
example, a human expert? How do you communicate such information? Is it
interpreted as intended?

This year, the workshop includes a session partially dedicated to an inference
evaluation, held prior to the workshops/conferences. We are looking forward to
yet another fruitful edition of the Applications workshop, hoping it will provide
for identifying useful insights, techniques and future challenges for all research
communities concerned with reasoning under uncertainty.

Silja Renooij
Hermi J.M. Tabachneck-Schijf
Suzanne M. Mahoney



Schedule for the 6th Bayesian Modelling Applications Workshop

09:00 – 09:30 Welcome and Introduction by Silja Renooij

09:30 – 10:30 Session I: Probability elicitation and bias

Moderator: Marek Druzdzel

Observations from field trials with several elicitation techniques

in an ecological domain

C.R. Thomas, A.E. Nicholson, and B.T. Hart

Relieving the elicitation burden of Bayesian Belief Networks

B.W. Wisse, S.P. van Gosliga, N.P. van Elst, and A.I. Barros

10:30 – 11:00 Coffee Break

11:00 – 12:30 Session II: Model elicitation and bias

Moderator: John-Mark Agosta

A Bayesian approach to learning in fault isolation

H. Wettig, A. Pernest̊al, T. Silander, and M. Nyberg

Hypothesis Management Framework: a flexible design pattern

for belief networks in decision support systems

S.P. van Gosliga and I. van de Voorde

An experimental procedure for evaluating user-centered methods

for rapid Bayesian network construction

M. Farry, J. Pfautz, Z. Cox, A. Bisantz, R. Stone, and E. Roth

12:30 – 14:30 Lunch Break



14:30 – 16:00 Session III: Biased inference

Moderator: Silja Renooij

The impact of overconfidence bias on practical accuracy

of Bayesian network models: an empirical study

M.J. Druzdzel and A. Onísko

Results of the probabilistic inference evaluation1

R. Dechter and A. Darwiche

16:00 – 16:30 Coffee Break

16:30 – 18:00 Session IV: Making bias explicit

Moderator: Finn Jensen

Methods for representing bias in Bayesian networks

E. Carlson, S. Guarino, and J. Pfautz

Discussion and Closing

1See next page



Evaluating Probabilistic Reasoning

Systems

Adnan Darwiche and Rina Dechter

The probabilistic reasoning evaluation took place during the month preceding
the UAI conference. Its results will be presented at the applications workshop,
and a full report on the methodology, benchmarks and results will be posted at
the evaluation webpage following the UAI conference.

Motivation

Over the past two decades a variety of exact and approximate algorithms were
developed across several communities (e.g. UAI, NIPS, SAT/CSPs) for an-
swering optimization and likelihood queries over probabilistic graphical models.
Since all these tasks are NP-hard, theoretical guarantees are rare and empirical
evaluation becomes a central evaluation tool. Yet, the empirical comparison be-
tween algorithms requires agreement on representations, benchmarks and eval-
uation criteria which is challenging, especially in the context of approximation
algorithms.

Some communities have already addressed similar challenges through yearly
empirical evaluations and competitions (e.g. SAT, CSP and planning) which
proved effective, leading to algorithmic advances and to software development
and dissemination. We believe that such an effort could benefit probabilistic
inference algorithms as well. Probabilistic reasoning presents additional chal-
lenges, however, as it tends to be harder, requires heterogenous knowledge rep-
resentation frameworks, and must deal with the issue of evaluating approximate
inference algorithms.

Goals

Our goal is to use the evaluation as a process that will help establish some
standards for evaluating probabilistic reasoning systems based on both exact
and approximate algorithms. Another long term goal is to reinforce a tradition
of building and sharing probabilistic reasoning systems that allow easy access to
state-of-the-art inference algorithms by members of the broader scientific and
engineering communities. We hope to achieve a number of objectives:



• Increase the utilization of probabilistic inference algorithms in real-world
applications by reducing the investment needed for building applications
based on probabilistic reasoning.

• Allow newer members of the inference community to quickly capitalize
on the expertise of more senior members of the community by providing
broader access to existing code.

• Foster an environment where reported empirical results are accompanied
by the very systems used to obtain them.

The actual UAI’08 probabilistic reasoning evaluation took place during the
month preceding the conference and its results are presented and discussed
during the applications workshop. The evaluation includes both Bayesian and
Markov networks and consider three inference tasks: probability of evidence
(partition function), most probable explanations (also called MPE or energy
minimization), and node marginals. The evaluation will consider both exact
and approximate algorithms, especially anytime algorithms that improve their
approximations with time. Details of the evaluation can be found at:

http://graphmod.ics.uci.edu/uai08/Evaluation

A full report on the methodology, benchmarks and the results will be posted at
the evaluation webpage following the conference.

Organizing Committee

• Fahiem Bacchus: http://www.cs.toronto.edu/∼fbacchus/

• Jeff Bilmes: http://ssli.ee.washington.edu/people/bilmes/

• (co-chair) Adnan Darwiche: http://www.cs.ucla.edu/∼darwiche/

• (co-chair) Rina Dechter: http://www.ics.uci.edu/∼dechter/

• Hector Geffner: http://www.tecn.upf.es/∼hgeffner/

• Alexander Ihler: http://www.ics.uci.edu/∼ihler/

• Joris Mooij: http://www.jorismooij.nl/

• Kevin Murphy: http://www.cs.ubc.ca/∼murphyk/
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Abstract

In this paper we present a new method
(EBBN) that aims at reducing the need to
elicit formidable amounts of probabilities for
Bayesian belief networks, by reducing the
number of probabilities that need to be speci-
fied in the quantification phase. This method
enables the derivation of a variable’s condi-
tional probability table (CPT) in the gen-
eral case that the states of the variable are
ordered and the states of each of its parent
nodes can be ordered with respect to the in-
fluence they exercise. EBBN requires only
a limited amount of probability assessments
from experts to determine a variable’s full
CPT and uses piecewise linear interpolation.
The number of probabilities to be assessed in
this method is linear in the number of condi-
tioning variables. EBBN’s performance was
compared with the results achieved by ap-
plying both the normal copula vine approach
from Hanea & Kurowicka (2007), and by us-
ing a simple uniform distribution.

1 Introduction

In this paper we consider the case of deriving a dis-
crete conditional probability distribution for a node of
a Bayesian belief network based on expert judgement.
There are many issues to consider when deriving a con-
ditional probability distribution via expert judgement
elicitation. The expert assessors will for example use
simplifying heuristics when assessing probabilities to
avoid too complex mental reasoning. These heuristics
might lead to biased assessments. In addition experts
might also be subject to various types of motivational
biases. There is the problem of how to select the
appropriate experts for the elicitation task and how
to properly prepare them for formulating the assess-

ments (e.g. motivating and training them). There is
the choice of which method to use to elicit the prob-
abilities: e.g. a probability-scale, probability-wheel,
gamble-like or adverb-probability matching method?
Renooij (2001) gives a good overview of these issues.
Though acknowledging their importance, in this paper
we do not consider these issues, but focus on reduc-
ing the assessment burden of large discrete conditional
probability distributions.

The number of probabilities that need to be specified
for a node can grow large very easily. For a node with
three states that has a parent node with also three
states, 6 probabilities need to be specified to deter-
mine its conditional probability table (CPT). An ad-
ditional second and third parent node with three states
would consequently require a table of 18 and 54 prob-
abilities, and so on. Apart from the huge amounts of
time it would take to assess all the probabilities for
large CPTs, it can also be questioned to what extent
assessors can be expected to coherently provide the
probabilities at the level of detail required (see e.g.
(Miller 1956) on the limitations of human short term
memory capacity). The elicitation task thus is consid-
ered a major obstacle in the use of BBNs (Druzdzel &
Van der Gaag 1995, Jensen 1995).

There are two ways in which the elicitation task for dis-
crete BBNs can be relieved. The first is to make it eas-
ier for the assessors to provide the probabilistic assess-
ments required. Van der Gaag, Renooij, Witteman,
Aleman & Taal (1999) aim to achieve this by tran-
scribing the conditional probabilities and using a scale
containing both numerical and verbal anchors. But the
effort needed to assess a full CPT using this method,
though reduced, is still exponential in the number of
conditioning variables. The second option for relieving
the elicitation burden is to reduce the number of prob-
abilistic assessments to be made. This can of course be
achieved by reducing the number of conditions (par-
ent nodes) or the number of states of the variables, but
such reductions will often be undesirable (e.g. leading



to loss of detail needed to inform a decision).

The Noisy-OR model, originally introduced by Kim
& Pearl (1983), but more extensively discussed in re-
lation to BBNs by e.g. Heckerman & Breese (1996),
reduces the number of probabilities to be specified by
making additional assumptions about the underlying
causal structure of the variables. For the noisy-OR
model, the number of probabilities needed to deter-
mine the full CPT is linear in the number of condi-
tioning variables, rather than exponential. Although
this can mean a huge reduction in elicitation effort,
the assumptions necessary are strong and all the vari-
ables in the noisy-OR model need to be binary, which
strongly limits the applicability of the method.

The Noisy-MAX model (Dı́ez 1993) can be seen as the
extension of the Noisy-OR to multi-valued variables.
In this model the CPT is derived from ’marginal con-
ditional’ distributions specified for each parent: for
each parent the probabilities conditional on this par-
ent node are specified and subsequently the full CPT
is derived from these conditional probabilities using
the max function. The influences of each of the parent
nodes are treated in this model as independent. So the
joint influence that the parent nodes exercise is fully
determined by their marginal influence and a fixed
function. Zagorecki & Druzdzel (2006) have fitted the
Noisy-MAX model to suitable nodes from three belief
networks for which the CPTs where already specified.
The authors found the model to be able to provide a
good fit to the CPT in about 50% of the cases they
considered.

In this paper we develop and evaluate a methodology,
EBBN, for deriving a node’s CPT in the general case
that the states of the node are ordered and the states
of each of its parent nodes can be ordered with re-
spect to the influence these parent nodes have on this
node of interest. In this method only a (small) part
of the CPT- describing the joint influence of the par-
ents in contrast with the marginal influence elicited in
the Noisy-MAX model - is elicited. The conditional
probabilities that are not directly elicited are derived
using an interpolation method based on the ranks of
parent node states. The number of probabilities to be
assessed is linear in the number of parent nodes. Since
the method approximates the probabilities that are
not directly assessed, it will contain inaccuracies. Like
Van der Gaag et al. (1999) we therefore propose to re-
gard and use this method as a first step in an iterative
procedure of stepwise refinement of probability assess-
ments, like described in (Coupé, Peek, Ottenkamp &
Habbema 1999).

While testing this method three relevant alternatives
were presented. Bonafede & Giudici (2007) have de-

veloped a method for deriving a discrete conditional
probability distribution based on the marginal distri-
butions, correlation coefficients and standardised joint
moments. Yet, this method also requires all the vari-
ables to be binary, and closed-form solutions have only
been derived for up to three conditioning variables
(parent nodes). Secondly Hanea & Kurowicka (2007)
provide a method for determining a CPT based on
the copula vine approach (Bedford & Cooke 2002)
that uses similar prior information: marginal distri-
butions and adjusted (conditional) rank correlations.
This method also provides a means for deriving the
CPT in the general case that the variables are ordinal
and the influences are monotone, although it is not
clear to us if and how the prior assessments needed
can be elicited accurately from experts. In Section 4
we compare the results of the method developed in
this paper with the copula vine approach of Hanea &
Kurowicka, for which the required prior assessments
are derived from a fully specified CPT.

Very closely related to our method is the method pre-
sented by Tang & McCabe (2007). These authors also
propose the use of piecewise linear interpolation to ap-
proximate not-elicited conditional probabilities. Fur-
thermore they introduce the concepts of dominant and
important factors, whilst we use positive and nega-
tive dominance and parent weights. Yet, where Tang
& McCabe, like Bonafede & Giudici, restrict their
method to work with binary variables only, the method
we introduce in this paper works with discrete vari-
ables in general, under the above described conditions
of ordinality of the variables. It should be noted that
the development of our method has taken place inde-
pendently of that of Tang & McCabe.

In the next section we will introduce our alternative
elicitation method for BBNs, EBBN, which is aimed
at reducing the elicitation burden. In Section 3 we dis-
cuss when we can regard an approximation of a CPT
to be ‘good’, providing the means to assess the perfor-
mance of the proposed method and compare it with
the copula vine approach (Section 4). In the final sec-
tion we present our conclusions and suggestions for
future work.

2 The EBBN Method

We regard the problem of expert assessment of the
probability distribution of a discrete variable Xc (a
node in a BBN), conditional on a set of two or more
discrete variables, which we will denote with pa(Xc)
(the set of parent nodes). We require (1) the values of
Xc to be ordered, and (2) that the values of each of
the elements of pa(Xc) can be ordered such that each
of these variables have either a positive or a negative



influence on Xc. By stating that Xk ∈ pa(Xc) has a
positive influence on Xc, denoted by S+(Xk, Xc), we
mean that observing a higher value for Xk does not
decrease the likelihood of higher values of Xc, regard-
less of the values of the other variables pa(Xc) \ Xk.
We take assignment a = {xj , . . . , xu} to be an instan-
tiation of the set of pa(Xc) = {Xj, . . . , Xu}. Formally
we define Xk ∈ pa(Xc) having a positive influence on
Xc, S+(Xk, Xc), as (Wellman 1990): for all values xc

of Xc, for all pairs of distinct values xk,n > xk,o of
Xk, and for all possible assignments a¬k for the set of
pa(Xc) \ Xk,

P (Xc > xc | xk,n, a¬k) ≥ P (Xc > xc | xk,o, a¬k).

The definition of a negative influence, S−(Xk, Xc), is
completely analogous and would involve only reversing
the above inequality.

We define a conditioning variable Xk ∈ pa(Xc) to be
positive dominant, if the following two (sets of) as-
signments of pa(Xc) lead to the same probabilities:
(I) all assignments of pa(Xc) in which Xk is in its
most favourable state for high values of Xc and (II)
the assignment in which each Xl ∈ pa(Xc) is in its
most favourable state for higher values of Xc (i.e. all
Xp ∈ pa(Xc) with S+(Xp, Xc) are at their highest
value, and all Xn ∈ pa(Xc) with S−(Xn, Xc) are at
their lowest value).

So if a positive dominant parent is in its most
favourable state for high values of Xc, then, regardless
of the states of the other parents, Xc will have
the same probabilities as when conditional on the
assignment in which all parent nodes are in their most
favourable state. Negative dominant variables are
defined analogously.

In the remainder of this section we will first discuss the
assessments needed from the expert for the derivation
of the CPT of Xc. We will then show how to obtain
the CPT from these assessments and end the section
with an illustrative example of the method, taken from
the Hailfinder network (Abramson, Brown, Edwards,
Murphy & Winkler 1996).

2.1 Required assessments

It is assumed that the assessor has confirmed that the
values of variable Xc are ordered and that the assessor
can order the values of each of the variables Xk ∈
pa(Xc) such that (s)he judges either S+(Xk, Xc) or
S−(Xk, Xc) to hold. Then the following assessments
are required to determine the CPT for variable Xc with
conditioning variables pa(Xc)

1:

1As mentioned in Section 1 we will not discuss here how
these assessments can be best elicited from the assessor

1. (ordering). For each of the conditioning variables
Xk ∈ pa(Xc): order the values of Xk such that
Xk has either a positive or a negative influence
on Xc. Fix and record this ordering of the values
and the nature of the influence.

2. (typical probabilities). For each of the values xc

of Xc:

(a) determine the assignment pa(Xc) = axc
such

that the probability P (Xc = xc | axc
) is as

large as possible.

(b) assess the probabilities P (Xc | axc
).

Due to dominance of one of the conditioning vari-
ables axc,min

(axc,max
) need not be unique, where

xc,min (xc,max) is the lowest (highest) value of Xc.
Therefore axc,min

(axc,max
) is by default set to be

the assignment in which all the conditioning vari-
ables are in their most favourable state for low
(high) values of Xc, referred to as aneg (apos).

3. (weights). For each of the conditioning variables
Xk ∈ pa(Xc), assess P (Xc = xc,max | aneg,k+)
and P (Xc = xc,min | aneg,k+), where xc,max and
xc,min are resp. the maximum and minimum
value of Xc, and aneg,k+ is the assignment of
pa(Xc) in which Xk is in its most favourable state
for high values of Xc, and all Xl ∈ pa(Xc) \ Xk

are in their least favourable state for higher values
of Xc.

4. (dominance). For each of the conditioning vari-
ables Xk ∈ pa(Xc), determine whether Xk has
either no, a positive or a negative dominance over
Xc.

2.2 Deriving the CPT

The derivation of the CPT of Xc is done in a two-step
procedure, using the assessments from Section 2.1. In
the first step we will express the probabilities P (Xc) as
a function of an influence factor i. In the second step
individual and joint influence factors are determined
for all assignments of pa(Xc), which are then used to
derive the probabilities P (Xc) from the functions of
step 1.

The influence factor i is an expression of the positive-
ness (or negativeness) of the joint influence of the par-
ent variables pa(Xc) on Xc. It is a function of values
of the parent variables, with 0 ≤ i(a) ≤ 1. We set
i(aneg) = 0, where pa(Xc) = aneg is the assignment in
which all the conditioning variables are in their most
favourable state for low values of Xc (see item 2, Sec-
tion 2.1). And, at the other extreme, i(apos) is set to
1. For all other assignments i ∈ (0, 1). If assignment
a2 has a strictly more positive influence on Xc than a1



- i.e. P (Xc > xc | a2) > P (Xc > xc | a1) for all xc

- then the influence factor corresponding to a2 should
be bigger than the influence factor corresponding to
a1.

We make use of two separate influence factors: the in-

dividual influence factor ik for each conditioning vari-
able Xk ∈ pa(Xc) and the joint influence factor ijoint.
As will become more clear later on, ik will contain in-
formation about the influences exercised by each of the
parent variables individually, ijoint about the ‘general
tendency’ of all of the parent influences together.

We determine the individual influence factor ik for
Xk ∈ pa(Xc) as follows:

ik(xk) :=











rank(xk) − 1
rank(xk,max) − 1

if S+(Xk, Xc)

rank(xk,max) − rank(xk)
rank(xk,max) − 1

if S−(Xk, Xc)

(1)
where the rank of the smallest value is set to be 1 and
xk,max is the highest value of Xk. So if Xk ∈ {low,
medium, high} has a positive influence on Xc, we find
that ik(low) = 0, ik(medium) = 0.5 and ik(high) = 1.

The joint influence factor ijoint for assignment
pa(Xc) = a is derived as:

ijoint(a) :=

∑

{k:Xk∈pa(Xc)}

ik(xk) · (rank(xk) − 1)

∑

{k:Xk∈pa(Xc)}

(rank(xk,max) − 1)
(2)

Verify that indeed ijoint(aneg) = 0 and ijoint(apos) =
1. Also note that the individual influence factor of
Xk, ik, is equal to the joint influence factor ijoint if
pa(Xc) = {Xk}, i.e. if the set of parents of Xc merely
consists of Xk.

Step 1. Estimating P (Xc) as a function of joint

influence factor ijoint

In this step P (Xc = xc) is estimated as a function of
joint influence factor ijoint, for each value xc of Xc.
For this we use the orderings determined at item 1
in Section 2.1, and the assignments axc

and proba-
bilities P (Xc = xc | axc

) assessed at 2. We con-
struct the piecewise linear functions fxc

: [0, 1] → [0, 1]
through the points (ijoint(axc

), P (Xc = xc | axc
)). It

can be easily verified that using these linear interpo-
lations ensures that

∑

xc
fxc

(i) = 1, i.e. the sum of
the probabilities of occurrence of the different values
of Xc equals unity for all i ∈ [0, 1]. Coherency requires
that if xc,n > xc,m, also ijoint(axc,n

) > ijoint(axc,m
).

In Figure 1 an example is given for how this estima-
tion of P (Xc) as a function of ijoint might look like.
In this example Xc ∈ {low, medium, high}, and the

points (ijoint(axc
), P (Xc = xc | axc

)) are assessed as
in Table 1.
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Figure 1: Piecewise linear functions through the points
(ijoint(axc

), P (Xc | axc
)) from Table 1.

Table 1: Example assessments of (ijoint(axc
), P (Xc |

axc
)) for Xc ∈ {low, medium, high}

xc ijoint(axc) P (Xc | axc)

low 0 P (Xc = low | alow) = 0.79
P (Xc = medium | alow) = 0.20
P (Xc = high | alow) = 0.01

medium 0.22 P (Xc = low | amedium) = 0.35
P (Xc = medium | amedium) = 0.60
P (Xc = high | amedium) = 0.05

high 1 P (Xc = low | ahigh) = 0.01
P (Xc = medium | ahigh) = 0.14
P (Xc = high | ahigh) = 0.85

Note that pa(Xc) = alow corresponds to the as-
signment pa(Xc) = aneg and ahigh to apos. Hence
ijoint(alow) = 0 and ijoint(ahigh) = 1.

Step 2. Deriving the conditional probabilities

In Step 1 we obtained P (Xc) for all possible values of
ijoint via linear interpolation, and equation (2) pro-
vides us with an expression for ijoint for all assign-
ments pa(Xc) = a. We can now determine P (Xc | a)
via P (Xc | ijoint(a)) from the functions fxc

of Step
1. Yet this mapping from assignments a for the con-
ditioning variables pa(Xc) to an expression ijoint is
not unique. Suppose pa(Xc) = {Xj, Xk, Xl}, Xj and
Xl both exercise the same type of influence (positive
or negative), and Xj , Xk, Xl ∈ {low, medium, high},
then ijoint({medium, medium, medium}) =
ijoint({low, medium, high}) = 0.5. As pointed out
earlier, ijoint is an expression for the ‘general tendency’
of the influence of the conditioning variables. It does
not take into account the (dis)agreement of the influ-
ences of each of the conditioning variables individually.

To account for both the ‘general tendency’ and the
individual influences of the conditioning variables, we



calculate for each conditioning variable Xk ∈ pa(Xc)
the average of the probabilities Pk(Xc | a) over the in-
terval (min(ik(xk), ijoint(a)), max(ik(xk), ijoint(a))).

An example of this average, denoted with Pk(Xc | a),
is illustrated in Figure 2.
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Figure 2: Example of the average probabilities Pk(Xc),
when ik(xk) < ijoint(a)

We derive the desired probabilities P (Xc | a) as the
average over the distributions Pk(Xc | a). Or actually
the weighted average

P (Xc | a) =
∑

k:Xk |pa(Xc)

wk · Pk(Xc | a), (3)

since one parent could have a stronger influence on Xc

than another. For the same relative change in states,
i.e. changes in states resulting in the same absolute
change in each of the individual influence factors, the
probabilities for Xc might change more for one par-
ent variable than for another. Therefore we calculate
the weight wk for each parent Xk ∈ pa(Xc), in the
following way:

wk =
1

2

δ+
k

∑

l:Xl∈pa(Xc)

δ+
l

+
1

2

δ−k
∑

l:Xl∈pa(Xc)

δ−l

(4)

with,

δ+
k = P (Xc = xc,max | aneg,k+) − P (Xc = xc,max | aneg)

δ−k = P (Xc = xc,min | aneg) − P (Xc = xc,min | aneg,k+).

For the derivation of the weights we have taken the sit-
uation in which each parent is in its least favourable
state for high values of Xc, aneg, as the base. We
use the probabilities P (Xc = xc,max | aneg,k+) and
P (Xc = xc,min | aneg,k+) assessed at item 3 in Section
2.1. Each δ+

k and δ−k now expresses the changes in the
probabilities of resp. the highest and lowest state of
Xc, if the one parent Xk is set to its most favourable
state for high values of Xc whilst leaving the other
parents in their least favourable states (aneg,k+). We
obtain the weights from these δ’s via the normalisa-
tions (4).

To a large extent the choice of the base assignment
aneg and the probabilities P (Xc = xc,max | aneg,k+)
and P (Xc = xc,min | aneg,k+) to derive the weights is
arbitrary. Even though, we feel the choice for these
assignments is one of the most natural choices that
can be made. And, more importantly, we feel these
assignments are relatively easy for assessors to con-
sider and assess. It is of course possible to use more
assessments to determine the weights more accurately.
However, we feel that the possible added value does
not weigh against the burden of the extra elicitation
effort needed.

We derive the desired probabilities P (Xc | pa(Xc) =
a) by rewriting (3) using (1), (2) and (4), as

P (Xc | pa(Xc) = a) =
∑

k:Xk |pa(Xc)

wk ·

∫ imax,k

imin,k

f(i) · di

imax,k − imin,k

(5)
where imin,k = min(ik(xk), ijoint(a)),
imax,k = max(ik(xk), ijoint(a)) and f(i) =
(

fxc,min
(i), . . . , fxc,max(i)

)

.

Finally, we deal with negative and positive dominance
of one of the parent variables in the following straight-
forward way: for all the assignments ad in which
a negative (positive) dominant parent is in its least
(most) favourable state for high values of Xc, we set
P (Xc | ad) to be equal to P (Xc | aneg) (P (Xc | apos)).
We will now demonstrate the method by means of an
illustrative example.

2.3 Illustrative example from the Hailfinder

network

The example given in this section is based on the Comp-

PlFcst variable from the Hailfinder network (Abramson
et al. 1996). The variable and its parent nodes,
AreaMeso ALS, CldShadeOth, CldShadeConv and Bound-

aries, are depicted in Figure 3. For each of the variables
also the states (discrete values) are given, ordered and
with the highest state on top.

For the variable CompPlFcst we have the fully subjec-
tively specified CPT, consisting of 4·33 ·3 = 324 proba-
bilities. In this example we derive the required assess-
ments for EBBN, as specified in Section 2.1, from this
CPT, but treat them as if they were directly elicited:

1. (ordering). The ordering of the states of the vari-
ables is given in Figure 3, where the highest states
are on top. For the conditioning variables we find
the following influences:
S−(AreaMeso ALS,CompPlFcst); S+(CldShadeOth,CompPlFcst);
S−(CldShadeConv,CompPlFcst); S+(Boundaries,CompPlFcst).
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Figure 3: The variable CompPlFcst and its parent nodes
from the Hailfinder network.

2. (typical probabilities). We find the assignments:
aDecCapIncIns ={StrongUp, Clear, None,
Strong}, aLittleChange ={StrongUp, PC, Some,
Strong} and aIncCapDecIns ={Down, Cloudy,
Marked, None}.
The corresponding conditional probabilities are
given in Table 1 and depicted as a function of
influence factor i in Figure 1, where alow =
aDecCapIncIns, amedium = aLittleChange and
ahigh = aIncCapDecIns.

3. (weights). As assessments of the remaining
probabilities needed to derive the parent weights
we find:

P (Xc = xc,min P (Xc = xc,max

aneg,k+ | aneg,k+) | aneg,k+)

aneg,AreaMeso ALS+ 0.20 0.45

aneg,CldShadeOth+ 0.40 0.30

aneg,CldShadeConv+ 0.52 0.13

aneg,Boundaries+ 0.65 0.05

4. (dominance). No (positive or negative) dominant
parents.

Now we have all the information (containing only 17
probability assessments!) we need to derive all the 324
probabilities of the CPT of CompPlFcst.

By means of an example we calculate the probabili-
ties P (CompPlFcst | pa(CompPlFcst) = aexpl), where
aexpl ={AreaMeso ALS=Down, CldShadeOth=PC, Cld-

ShadeConv=None, Boundaries=Strong}. For these par-
ent node states we find the individual influence fac-
tors: iAreaMeso ALS (Down) = 1, iCldShadeOth (PC) = 1

2 ,

iCldShadeConv (None) = 0 and iBoundaries (Weak) = 0,

and a joint influence factor ijoint(aexpl) = 4
9. So we

see in this case that the individual influence factors of
the parents give a diverse picture, two are very nega-
tive (0), one is between negative and positive (1

2 ) and
one is very positive (1). This is reflected by the joint
influence factor, which has a very average value (0.44),
expressing no general tendency of the parent influences

towards either positive or negative influence.

Based on the assessments and (4), we find the
weights: wAreaMeso ALS = 0.459, wCldShadeOth = 0.303,
wCldShadeConv = 0.165 and wBoundaries = 0.073. We
can now use (5) to derive the desired probabilities
and find P (CompPlFcst | pa(CompPlFcst) = aexpl) =
{0.17, 0.32, 0.51}. We can derive the full CPT of Xc

(consisting of 324 probabilities) in the same way, re-
quiring in this case only 17 probabilities to be assessed.
When we look up the probabilities in de original CPT,
we find P (CompPlFcst | pa(CompPlFcst) = aexpl) =
{0.20, 0.32, 0.48}. The probabilities estimated with the
methodology are in this case ‘not far off’. Yet, before
we can assess how well our method approximates the
directly assessed probabilities, we first need to discuss
how we can measure the quality of the approximation.

3 Approximation of a CPT for a

BBN, when is it ‘good’?

Assuming you have knowledge of the ‘true’ probabili-
ties of a certain CPT, how can you assess the quality
of an approximation to that CPT? A measure to assess
the similarity between two (discrete conditional) prob-
ability distributions, with possibly different support, is
the Jensen-Shannon divergence (Lin 1991). Based on
the Kullback-Leibler divergence, this measure does not
take into account the context of the CPT, the belief
network. Both Henrion (1989) and Chan & Darwiche
(2002) show that inference in a belief network is most
sensitive to assessment errors in probabilities that are
close to zero or one.

Druzdzel & Van der Gaag (2000) state that, since inac-
curacies will influence the output of the belief network,
a natural question to ask is how accurate the approxi-
mation should be to arrive at satisfacory behaviour of
the network. In other words: if the network is con-
structed to perform specific queries, does the use of
approximations still lead to acceptable outcomes on
these queries?

Chan & Darwiche (2002) identify three main ap-
proaches in the literature to measure the impact of
a change in probability in a CPT: measuring the abso-
lute change in the probability of a query, the relative
change in the probability of a query or the relative
change in the odds of the query, finding the first to be
the most prevalent in the literature.

Zagorecki & Druzdzel (2006) give two measures to
express the (dis-)similarity of two CPTs for the
same conditional distribution: the Euclidian distance
and the Kullback-Leibler divergence between the two
CPTs. Time and space unfortunately have prohibited
us to implement these measures in the current investi-



gation. We have used the following measures to assess
the performance of the EBBN in the next section:

m1. Average absolute error in probability.

m2. Average Jensen-Shannon divergence: a measure
of the similarity between the ‘true’ CPT and the
approximation to it.

m3. Maximum Jensen-Shannon divergence.

m4. Number of unmatched certainties and impossi-
bilities: the number of times the ‘true’ and the
approximating CPT disagree on probabilities of 0
and 1. As noted above, queries can be very sensi-
tive to extreme probabilities.

m5. % agreement in likelihood ranking: the percent-
age of scenarios in which the likelihood ranking of
the values of the variable is the same for both the
‘true’ CPT as the approximating CPT. As scenar-
ios all logically possible combinations of values of
the neigbouring (i.e. predecessor and descendent)
nodes are taken.

m6. % agreement on most likely state: the percentage
of scenarios in which the most likely state for the
variable is the same for both the ‘true’ CPT as
the approximating CPT. As scenarios all logically
possible combinations of values of the neigbouring
(i.e. predecessor and descendent) nodes are taken.

4 Performance of EBBN

We have investigated the performance of the method-
ology by applying it to a well-known belief network
from the literature that contained suitable large sub-
jectively assessed CPTs, and comparing its perfor-
mance with the copula vine approach from Hanea &
Kurowicka (2007). We found the Hailfinder network
(Abramson et al. 1996) to contain such CPTs.

4.1 Methodology

We have searched for belief networks that contained
nodes that satisfy the following requirements:

• the CPT of the node was subjectively assessed,

• the CPT of the node has to be reasonably chal-
lenging in size for elicitation from an expert. For
this we decided the node needed to have two or
more parents, and

• the states of the node are ordered.

We found these networks are difficult to come by. This
is not surprising of course, since these networks would
require a huge elicitation effort. Practitioners would
usually try to avoid having to specify these large CPTs
because the elicitation process would be too time con-
suming, the very problem we are aiming to deal with
in this article. In the BBN repository of the University
of Pittsburgh2 we found the Hailfinder network, which
does contain 7 nodes that satisfy our requirements.

For the Hailfinder network we created three alterna-
tive versions. In each of these alternative versions we
replaced the CPTs of the 7 nodes satisfying the above
requirements (and kept the remaining CPTs as they
were). In the first alternative implementation these
CPTs were replaced with the approximations resulting
from the method introduced in this paper. We treat
the CPTs from the literature as the ‘true’ CPTs. We
assume that the probabilities needed for our method-
ology would have been assessed as they are in these
CPTs and treat the difference between approximations
of the method and the corresponding CPTs as inaccu-
racies of the approximation. So we have not tried to
find parameters for EBBN that minimise the distance
of the resulting CPT to the original, but have derived
the parameters needed from the original CPT.

The second alternative implementation has the se-
lected 7 CPTs derived according to the copula vine
approach (Hanea, Kurowicka & Cooke 2006). In this
approach a normal copula vine is constructed based on
the marginal distributions of each variable and its con-
ditioning variables (or actually continuous versions of
these discrete marginals) and (conditional) rank corre-
lation coefficients of the variable with each of its con-
ditioning variables. This normal copula vine speci-
fies a joint distribution of the variable and its condi-
tioning variables. Hanea & Kurowicka (2007) describe
how the (conditional) rank correlation coefficients can
be derived from a CPT. If one was to use the copula
vine approach in practice, the marginal distribution of
the variable under consideration and the (conditional)
rank correlations with each of the conditioning vari-
ables would have to be subjectively assessed, which is
not a trivial task. Since we are using the copula vine
approach as a benchmark here, as a different means of
approximating the ‘true’ CPT, we simply derived this
marginal and the correlations from the ‘true’ CPT.
The used marginal and correlations thus represent the
best values that could have been obtained in an elicita-
tion process. After construction we took a large sam-
ple (we used a sample size of 80,000) from the normal

2The belief network models can be found
at the network repository of the Decision Sys-
tems Laboratory of the Univesity of Pittsburgh
(http://genie.sis.pitt.edu/networks.html)



copula vine and estimated the desired copula vine ver-
sion of the CPT from the frequencies in this sample.
We checked that the marginal of the variable under
consideration and the marginals of its parents were
still as specified for the copula.

Finally we constructed a third alternative implemen-
tation of the Hailfinder network in which all altered
CPTs consist of uniform distributions for all assign-
ments of conditioning variables, to serve as a second
benchmark. We have assessed the performance of our
interpolation method and both benchmarks using the
measures specified in Section 3. We found the variable
InsInMt to be a positive dominant parent of CldShade-

Conv, and treated it as such in all three alternative
implementations.

4.2 Results

The results of the comparison of the ‘true’ versions
of the selected 7 CPTs of the Hailfinder network with
each of the three alternative derivations of these CPTs
are given in Table 2 3. The table displays how the
EBBN, copula vine and the uniform versions of the
CPTs score on 9 performance measures. The first four
measures are the measures m1.-m4. from Section 3
for the direct comparison between the ‘true’ and the
approximating versions of the CPTs. The measures in
the last five columns, m1.-m3., m5. and m6. from Sec-
tion 3, consider posterior probabilities for each of the
7 selected nodes under all possible scenarios for neigh-
bouring nodes, i.e. all logically possible combinations
of states of neighbouring nodes (both parent and child
nodes).

For the first seven measures in the table we have that
the smaller the measure, the better the performance
of the approximating CPT on that measure. For the
last two columns to opposite holds: the higher the
percentage, the better the performance. If a number
is underlined in Table 2, this means that the corre-
sponding approximating method (EBBN, copula vine
or uniform) has the best performance for that mea-
surement on that variable.

If we look at the underlined values in Table 2, it seems
that EBBN and the copula vine versions are of compa-
rable performance on all performance measures apart
from ‘unmatched 0/1’, on which EBBN performs best
on all CPTs. It is comforting to see that both EBBN
and the copula vine approach clearly perform better
than when the CPT is populated with merely uni-
form distributions. Further investigation reveals that
the EBBN method scores relatively well on the so
called ‘collector’ variables CombMoisture, CombVerMo

3The EBBN and copula vine versions of the Hailfinder
network (.xdsl format) can be obtained from the authors.

and CombClouds. These are nodes in the Hailfinder
network that “summarize information from different
sources about moisture, vertical motion and clouds, re-
spectively” (Abramson et al. 1996, p.69). The EBBN
method seems a relatively good means to combine sim-
ilar information from different sources, at least for the
Hailfinder network.

5 Conclusions and discussion

In this paper we have developed a method for deriv-
ing large conditional probability tables based on ex-
pert judgement, that can hugely reduce the number
of assessments needed from the experts. The quan-
titative assessments needed from the experts are rel-
atively easy to understand: the experts still need to
assess only probabilities. We believe that the experts
will also be capable of providing the qualitative judge-
ments described in Section 2.1 at items 1, 2(a) and
4.

In order to evaluate the performance of EBBN we ap-
plied it to a well-known belief network from the lit-
erature, the Hailfinder network. EBBN’s performance
was compared with the results achieved by applying
both the normal copula vine approach from Hanea
& Kurowicka (2007), and by using a simple uniform
distribution. The results show that EBBN’s perfor-
mance is comparable to the the performance of the
normal copula vine approach, and distinctly better
than that of the uniform distributions. We believe that
the EBBN method can be a valuable tool for subjec-
tively specifying large CPTs.

In the development of the method, the application to a
real-life example (the Hailfinder network) has proven
very valuable. We would like to test the method on
more examples. But, as noted before, because of cost
and effort required to elicit large CPTs, these exam-
ples are difficult to find. Any help with finding more
examples would be greatly appreciated.

It should be noted that the EBBN method does not
always lead to a large reduction in the number of prob-
abilities that need to be assessed. In fact, the method
could even require more probabilities to be assessed
than there are in the CPT. Roughly this occurs when
the number of states of the variable for which the CPT
is to be derived is greater than the number of condi-
tions (i.e. the number of different assignments of the
conditioning variables).

Finally we would like to remark that the interpolation
used, in its current form, does not take into account
synergetic effects that may exist between conditioning
variables.
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Table 2: Performance of the three approximation methods on the measures specified in Section 3

regarding CPT regarding posteriors in scenarios
unmatched same likelh same most

Variable av abs diff av Je-Sh max Je-Sh 1/0 av abs diff av Je-Sh max Je-Sh ranking likely state
EBBN

CombVerMo 0.074 0.028 0.099 0 (256) 0.034 0.002 0.025 93.6% 96.8%

CombMoisture 0.029 0.010 0.045 3 (64) 0.205 0.031 0.663 72.0% 82.4%

AreaMoDryAir 0.056 0.035 0.148 9 (64) 0.221 0.030 0.178 61.0% 82.0%

CombClouds 0.061 0.021 0.127 0 (27) 0.251 0.025 0.164 78.1% 82.8%

CldShadeOth 0.131 0.058 0.188 18 (144) 0.361 0.047 0.254 60.8% 70.9%

CldShadeConv 0.071 0.034 0.219 1 (36) 0.223 0.029 0.235 62.5% 73.8%

CompPlFcst 0.065 0.013 0.064 0 (324) 0.044 0.003 0.085 91.0% 92.4%

Copula vine
CombVerMo 0.090 0.053 0.314 76 (256) 0.039 0.002 0.037 92.0% 95.2%
CombMoisture 0.075 0.040 0.153 7 (64) 0.274 0.037 0.607 60.0% 73.6%
AreaMoDryAir 0.053 0.023 0.072 16 (64) 0.195 0.019 0.094 61.0% 84.0%
CombClouds 0.105 0.043 0.133 1 (27) 0.315 0.036 0.240 76.6% 78.1%
CldShadeOth 0.103 0.040 0.127 23 (144) 0.279 0.032 0.265 78.1% 83.3%
CldShadeConv 0.056 0.015 0.067 2 (36) 0.157 0.012 0.079 71.2% 78.8%
CompPlFcst 0.143 0.069 0.408 0 (324) 0.085 0.012 0.428 86.9% 88.3%

Uniform
CombVerMo 0.219 0.234 0.549 76 (256) 0.120 0.021 0.229 82.4% 82.4%
CombMoisture 0.130 0.117 0.415 7 (64) 0.797 0.205 0.549 23.2% 23.2%
AreaMoDryAir 0.238 0.273 0.520 16 (64) 0.819 0.218 0.524 25.0% 25.0%
CombClouds 0.289 0.199 0.408 1 (27) 0.810 0.188 0.445 28.1% 29.7%
CldShadeOth 0.293 0.225 0.459 23 (144) 0.747 0.175 0.550 26.2% 41.5%
CldShadeConv 0.149 0.092 0.250 2 (36) 0.404 0.072 0.274 31.2% 50.0%
CompPlFcst 0.142 0.063 0.253 0 (324) 0.089 0.011 0.315 83.4% 85.4%

underlined: best score for the three methods.
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Abstract

Fault isolation is the art of localizing faults in
a process, given observations from it. To do
this, a model describing the relation between
faults and observations is needed. In this pa-
per we focus on learning such models both
from training data and from prior knowledge.
There are several challenges in learning fault
isolators. The number of data, as well as the
available computing resources, are often lim-
ited and there may be previously unobserved
fault patterns. To meet these challenges we
take on a Bayesian approach. We compare
five different methods for learning in fault iso-
lation, and evaluate their performance on a
real fault isolation problem; the diagnosis of
an automotive engine.

1 INTRODUCTION

We consider the problem of fault isolation, i.e. the
problem of localizing faults that are present in a pro-
cess given observations from this process. To do this, a
model of the relations between observations and faults
is needed. In the current work we investigate and com-
pare different methods for learning from training data
and prior knowledge.

We are motivated by the problem of fault isolation in
an automotive engine, and the learning methods are
evaluated using experimental training data and evalu-
ation data from real driving situations. In engine fault
isolation there may be several hundreds of faults and
observations. There will be fault patterns, i.e. co-
occuring faults, from which there are no training data.
Furthermore, training data is typically experimental
and obtained by implementing faults, running the pro-
cess, and collecting observations. On the other hand,
there is often engineering knowledge available about

the process. The engineering knowledge can for exam-
ple be used to determine the structure of dependencies
between faults and observations. This kind of knowl-
edge is often the only basis in previous algorithms for
fault isolation [6, 12, 19].

Due to the fact that there are previously unobserved
fault patterns in training data, frequentist and purely
data-based methods are bound to fail. To meet these
challenges we use a Bayesian approach to learning in
fault isolation. We consider five different methods of
learning a model from training data, which are all pre-
viously present in the literature in different forms. We
taylor these methods to incorporate the available back-
ground information. The methods we consider are Di-
rect Inference (DI), Logistic Regression (LogR), Lin-
ear Regression (LinR), Naive Bayes (NB) and general
Bayesian Networks (BN).

The main contributions of the current work are the in-
vestigation of Bayesian learning methods and regres-
sion models for fault isolation by comparing the five
methods mentioned above, the application and evalu-
ation of the methods on real-world data, and the com-
bination of data-driven learning and prior knowledge
within these methods. In order to do this investiga-
tion, we first discuss the characteristics of the fault
isolation problem in terms of probability theory, and
performance measures that are meaningful for fault
isolation. Consecutively we show how the five meth-
ods can be adopted to the isolation problem. We apply
them to the task of fault isolation in an automotive
diesel engine. Finally, we compare the five methods,
and discuss their advantages and drawbacks.

Bayesian methods for fault isolation are previously
studied in literature. In these previous works it is
generally assumed that the model is given [26, 15],
or can be derived from a physical model without us-
ing training data [17, 25]. In the current work on the
other hand, we focus on learning the models. Previous
works on Learning models for fault isolation typically
rely on pattern recognition methods described e.g. in



[1, 3]. Examples of such methods are presented for
example in [14]. Pattern recognition methods are ap-
plicable if there is sufficient training data available.
Unfortunately, this is rarely the case in fault isolation.
In [20] the problem of learning with missing fault pat-
terns is discussed. In [20] training data is combined
with fundamental methods for fault isolation described
in [2, 22]. This approach is referred to as Direct Infer-
ence in the current work, and compared to the other
four methods for learning.

The paper is structured as follows. We introduce no-
tation, and formulate the diagnosis problem in Sec-
tion 2. Therein we also define relevant performance
measures. In Section 3 we briefly describe the five
methods used, and in particular how they are applied
to the diagnosis problem, before we perform the evalu-
ating experiments and compare the results obtained in
Section 4. Finally, in Section 5 we conclude the paper
by summarizing our results and discussing future work
directions.

2 PROBLEM FORMULATION

Before going into the details of each of the learning
methods we introduce some notation, and discuss the
characteristics of the fault isolation problem. Then we
carefully state the problem at hand and define perfor-
mance measures.

2.1 BAYESIAN FAULT ISOLATION

The fault isolation problem can be formulated as a
prediction problem, where the task is to determine
the fault(s) present in a system, given a set of ob-
servations from the system. Let the faults be repre-
sented by the binary variables Y = (Y1, . . . , YK), and
let the observations from the system be represented
by the variables X = (X1, . . . , XL), where each Xl is
discrete or continuous. Generally, we use upper case
letters to denote variables, and lower case letters to
denote their values. Boldface letters denote vectors.
We write p(X = x) (or simply p(x)) to denote either
probabilities or probability distributions both in the
continuous and in the discrete case. The meaning will
be clear from the context.

We are given a set of training data D, consisting of
samples (yn,xn), n = 1, . . . , ND, pairs of fault and
observation variables. The training data is collected
by implementing faults and then collecting observa-
tions, meaning that training data is experimental. To
evaluate the system we use a set E consisting of NE

samples. The evaluation data is collected by running
the system, meaning that it is observational. Further-
more, we assume that the fault isolation algorithm is

Y2 Y3

X2X1

Y1 Y4

X3 X4 X5

Y5

X8X7X6

Figure 1: A Bayesian network describing a typical
fault isolation problem.

triggered by a fault detector telling us there must be
at least one fault present in the process.

The structure of dependencies between the faults and
observations has three basic properties, illustrated in
the example Bayesian network of Figure 1.

The first property is that faults assumed to be a priori
independent, i.e. that

p(y) =
K
∏

k=1

p(yk|y1, . . . , yk−1) ≈
M
∏

k=1

p(yk), (1)

meaning that faults cannot cause other faults to occur.
Although not necessary for the methods in the current
work, this is a standard assumption in many fault iso-
lation algorithms [6], and it simplifies the reasoning in
the following sections.

Second, faults may causally affect one or several of
the observation variables introducing dependencies be-
tween faults and variables. A dependency between
fault variable Yk and observation variable Xl means
that the fault may be visible in the observation.

The third property is that an observation variable Xl

may be dependent on other observation variables. De-
pendencies between observation variables may arise
due to several reasons. For example they can be caused
by unobserved factors, such as humidity, driver behav-
ior, and operation point of the process. These unob-
served factors could be modeled using hidden nodes,
but since they are numerous and unknown they are
here simply modeled with dependencies between ob-
servation variables. This is more carefully discussed in
[21].

We take a Bayesian view point on fault isolation. The
objective is to find the probability for each fault to
be present given the current observation, the training
data, and the prior knowledge I, i.e. to compute the
probabilities p(yk|x,D, I), k = 1, . . . , K. The proba-
bility for each fault can be found by marginalizing over
y−k = (y1, . . . , yk−1, yk+1, . . . , yK),

p(yk|x,D, I) =
∑

y−k

p(y−k, yk|x,D, I). (2)

Note that (y−k, yk) = y, and (2) means that we seek
the conditional distribution p(y|x,D, I). To simplify



the notation we will omit the background information
I in the equations.

Computing the conditional distribution p(y|x,D) is
generally difficult. To approximate it we need a model
M and a method for determining the parameters of
the model.

2.2 PERFORMANCE MEASURES

To evaluate the different models to be used in Bayesian
fault isolation, we use two performance measures: log-
score and percentage of correct classification.

The log-loss is a commonly used measure [1], and given
by

µ(E ,M) =
1

NE

NE
∑

j=1

log p(yj |xj ,M), (3)

The scoring function µ measures two important prop-
erties of the fault isolation system; both the ability to
assign large probability mass to faults that are present,
and also the ability to assign small probability mass
to faults that are not present. Furthermore, the log-
score is a proper score. A proper score has the char-
acteristic that it is maximized when the learned prob-
ability distribution corresponds to the empirically ob-
served probabilities. In the fault isolation problem the
conditional probabilities for faults is often combined
with decision theoretic methods for troubleshooting
[8], where optimal decision making requires conditional
probabilities close to the generating distribution.

The second measure we use is not proper. It is closely
related to the 0/1-loss used e.g. in pattern classifica-
tion [1]. However, in case of multiple faults present it
suffices to assign highest probability to any of them.
We define

ν(E ,M) = #{j : yj
max(xj ,M) = 1}/NE , (4)

where yj
max(xj ,M) is the fault assigned highest prob-

ability by M given xj . The ν-score reflects the per-
formance of the fault isolation system combined with
the simple troubleshooting strategy “check the most
probable fault first”.

3 MODELLING APPROACHES

In this section we briefly present the inference meth-
ods used to tackle the fault isolation problem. We
carefully state all assumptions made, and describe the
adjustments of each method to apply it to the diag-
nosis problem. However, we begin by describing two
assumptions that need to be made for all methods ex-
cept DI.

3.1 MODELLING ASSUMPTIONS

All the methods considered in this paper – with the
exception of DI – build separate models for each fault
and thus assume independence among these. A priori
this corresponds to approximation (1). However, when
we build separate models for each fault, we also make
a stronger assumption, namely that the faults remain
independent given the observations,

p(y|x) =

K
∏

k=1

p(yk|x, y1, . . . , yk−1) ≈

K
∏

k=1

p(yk|x) (5)

This approximation is (after applying Bayes’ rule and
canceling terms) equivalent to

K
∏

k=1

p(x|yk) ≈

K
∏

k=1

p(x|y1, . . . , yk), (6)

meaning that the observation x is dependent on each
fault yk, but this dependency is assumed to be inde-
pendent of all other faults yk′ , k′ 6= k. In other words,
we assume no “explaining away” [10]. Looking at Fig-
ure 1 we observe, that this indeed is a strong assump-
tion, since there are unshielded colliders (V-structures,
bastards, common children of non-connected nodes) of
the faults present.

Assumption (5) is primarily made for technical rea-
sons, in order to be able to build separate models for
each fault. But often it is also the case (as in the
application of Section 4) that there is training data
only from single faults. This means we do not have
any training data telling us about the joint effect of
multiple faults.

Remember that it is known that there is at least one
fault present when the fault isolator is employed, see
Section 2.1. Therefore, instead of computing p(y|x),
we search

p(y|x,
∑

k

yk > 0) = p(y|x)(1 − p(y ≡ 0|x)). (7)

Unfortunately

p(y|x,
∑

k

yk > 0) 6=
∏

k

p(yk|x,
∑

k

yk > 0), (8)

a fact which recouples the single-fault models intro-
duced in (5). This fact is ignored during the learning
phase and the single-fault models are trained individ-
ually. We then apply (7) in the evaluation phase.

3.2 DIRECT INFERENCE

Several previous fault isolation algorithms rely on prior
knowledge about which observations may be affected



Table 1: An example of an FSM
Y1 Y2 Y3

X1 1 1 0
X2 1 0 1

by each fault [2, 22, 12]. Such information is typi-
cally expressed in a so called Fault Signature Matrix
(FSM). An example of an FSM is given in Table 1.
In the FSM, a zero in position (k, l) means that fault
Yk can never affect observation Xl. The direct infer-
ence method aims at combining the information given
by the FSM with the training data available. Assume
that observations are binary and that the background
information I containing the FSM is given. Then, un-
der certain assumptions it can be shown [20] that

p(y|x,D) =

{

0 x ∈ γ
nxy+αxy

Ny+Ay

p(y|I)
π0

otherwise,
(9)

where π0 is a normalization constant, nxy is the count
of training data with fault y and observations x, αxy

is a parameter describing the prior belief in the ob-
servation x when the fault is y (a Dirichlet prior),
Ny =

∑

x′ nx′y, and Ay =
∑

x′ αx′y. The sets γ
are determined by the background information as de-
scribed in [20].

The direct inference method is developed for sparse
sets of training data, particularly when there is only
training data from a subset of the fault patterns to
isolate.

3.3 BAYESIAN NETWORKS

When using Bayesian networks for prediction, we
search the joint distribution p(y,x|θ), where θ are pa-
rameters describing the conditional probability distri-
butions in the network. From the joint distribution,
the conditional distribution for y can be computed.
We consider two types of Bayesian networks: Naive
Bayes and general Bayesian Networks.

3.3.1 Naive Bayes

The Naive Bayes classifier assumes that the observa-
tions are independent given the fault. Naive Bayes is
is one of the standard methods for Bayesian prediction
and often performs surprisingly well [3, 23]. However,
due to the erroneous independence assumptions it is
poorly calibrated when there are strong dependencies
between the observations. To alleviate this problem,
we apply variable selection according to an internal

leave-one-out scoring function:

S(V ) =
1

ND

ND
∑

n=1

log P (yn
k |x

n, V,D \ {(yn,xn)}, α),

(10)

where V ⊂ X is the variable set under consideration
and α is the Dirichlet hyper-parameter for the NB-
model.

3.3.2 General Bayesian Network

Since it is known that the faults causally precede the
observations, and since the observations are known to
be dependent given the faults, a natural step forward
from the Naive Bayes structure is a Bayesian network.
In the network we constrain the fault to be a root
node, but otherwise leave the structure unconstrained.
One such network was learned for each fault using a
BDe score (with an equivalent sample size parameter
of 1.0). For small systems (< 30 variables) learning can
be performed using the exact algorithm in [27], while
for larger systems approximate methods, e.g. [9], can
be used.

3.4 REGRESSION

Fault isolation is a discriminative task, where we are
to predict the fault vector y given the observations x,
i.e. estimate the conditional likelihood

p(y|x, θ) =
p(y,x|θ)

∑

y
p(y,x|θ)

. (11)

It is well known [18, 11] that in such case it can be
of great benefit to employ a discriminative learning
method, that only learns the probabilities asked, in-
stead of wasting training data to learn the joint data
likelihood as in the Bayesian network methods of Sec-
tion 3.3. Regression models form a family of such
methods.

3.4.1 Linear Regression

The most straight-forward regression method is linear
regression, where each fault variable is assumed to be a
linear combination of the observations plus a gaussian
noise term,

yk = wT
k x + wk0 + ǫk, ǫ ∼ N(0, σ).

Here wk, wk0, and σ are parameters to be determined.
This gives the probability distribution

p(yk|x) =
1

Z
exp(−

(wT
k x + wk0 − yk)2

2σ2
), (12)



where Z is a normalization constant. To determine the
parameters we use the standard methods described for
example in [1].

w∗ = argmin
w

−

ND
∑

n=1

log p(yn
k |x

n,w)

= argmin
w

−

ND
∑

n=1

(wT
k xn + wk0 − yn

k )2.

When the parameters w∗ are known, the parameter σ
can also be computed. The normalization constant in
(12) is given by Z = exp(−((w∗)T

k x+w∗
k0−1)2/2σ2)+

exp(−((w∗)T
k x + w∗

k0 − 0)2/2σ2).

3.4.2 Logistic Regression

Learning parameters to maximize (11) for a Bayes Net
B is known to be equivalent to logistic regression under
the condition that no child of the class can be a “bas-
tard”, a common child of two variables that are not
interconnected directly. More formal definition and
proofs can be found in [24]. In our case, this implies
approximation (5).

To start with, for each fault we learn a logistic regres-
sion model corresponding to a discriminative Naive
Bayes classifier 1.

We name the parameters of the logistic regression
model α and β such that the conditional likelihood
is defined as

p(yk = 1|x, α, β) :=
exp s(x, α, β)

exp s(x, α, β) + exp−s(x, α, β)
(13)

where

s(x, α, β) := α +

L
∑

l=1

xlβl. (14)

We also include a smoothing term c(α, β) in our ob-
jective function which takes the place of a prior in
the corresponding NB classifier. To unify its role for
different observations, we first normalize our data by
shifting and scaling such that for l = 1, . . . , L

∑

n

xn
l = 0 and max

n
|xn

l | = 1 (15)

Starting out from the uniform prior, we pretend to
have seen one vector of each class at node Yk and two
vectors of each class with extreme values ±1 at each
node Xl, with all other values zero (∼unobserved).

1possible other choices include tree-augmented Naive
Bayes (TAN) [24, 5]

This amounts to a smoothing term

c′(α, β) − 2 log(exp(α) + exp(−α))

− 4
L

∑

l=1

log(exp(βl) + exp(−βl)). (16)

However, we found this smoothing term problematic,
since it is flat near zero. Therefore, we never get any
parameters exactly zero. But in logistic regression
many small parameters can make a difference, while
they may be weakly supported. We choose to replace
log(exp(x) + exp(−x)) by |x|. This is a good approxi-
mation away from zero, but forces unsupported param-
eters to zero, implicitly performing attribute selection.

For fault Yk we search parameters as to maximize

log p(yk|x, α, β) + c(α, β)

=

ND
∑

n=1

log p(yn
k |x

n, α, β) − 2|α| − 4

L
∑

l=1

|βl|. (17)

We do this by simple line search, one parameter at a
time2.

Finally, we try a variant of this algorithm which
weights the training vectors. We have prior knowl-
edge about the probabilities p(yk) with which to ex-
pect some fault yk in the real-world setting or, in this
case, the evaluation set. These probabilities differ from
the relative frequencies observed in the training set.
The idea is to weight the training vectors in the objec-
tive as to focus the optimization on areas of the data
space more likely to be seen later on. The correspond-
ing objective for fault Yk becomes

ND
∑

n=1

log wkp(yn
i |x

n, α, β) + c(α, β) (18)

where the weight wk is the prior p(yk) divided by the
observed relative frequency #{n : yn

k = yk}/ND.

4 EXPERIMENTS

To evaluate the different methods learning fault isola-
tion models, we apply them to the diagnosis of the gas
flow in a 6-cylinder diesel engine in a Scania truck. In
automotive engines, sensor faults are one of the most
common faults, and here we consider five faults that
may appear in different sensors. The faults are listed
together with their prior probabilities in Table 2.

2There are much faster optimization techniques, some
of which are compared in [16], but for our purposes this
did nicely



Table 2: The faults considered

Fault description p(yk)

y1 exhaust gas pressure 0.4
y2 intake pressure 0.13
y3 intake air pressure 0.057
y4 EGR vault position 0.13
y5 mass flow 0.057

4.1 EXPERIMENTAL SETUP

For the gas flow of the diesel engine there is physical
model from which a set of 29 diagnostic tests are au-
tomatically generated using structural analysis [4, 13].
Each of the observations is constructed to be sensitive
to a subset of the faults.

For training and evaluation data we use measurements
from real operation of the truck, with faults imple-
mented. The training data consists of 100 samples
each from the five single faults. Evaluation data con-
sists of data from the five single faults, but also of data
from two multiple faults y1&y2, and y1&y4. Evalua-
tion data is observational, and consists of 1000 sam-
ples, distributed roughly according to the prior prob-
abilities in Table 2.

The data we consider is originally continuous, but all
except the regression algorithms take in discrete data.
The data is discretized in two different ways: binary,
with thresholds set such that all fault free data is
known to be contained in the same bin; and discretized
using k-means clustering [7] with k = 4. DI is applied
to the discrete data. NB and BN are run both on dis-
crete and binary data. The regression methods LinR
and LogR are applied to the continuous data.

As described in Section 3 the NB and DI algorithms
perform best if not all observations are used. For both
DI and NB we perform variable selection such that an
internal log-score is maximized. For DI, the best result
is obtained by using only six of the observations. In
NB between seven and 18 observations are used for
each fault.

4.2 RESULTS

In Table 3 the log-score (µ) and percentage of cor-
rect classification (ν) are presented for the different
methods. In addition we report the number of param-
eters used by each predictor. This is relevant, since
for on-board fault isolation the computing and stor-
age capacity is often limited. For comparison we also
report the default which is obtained by simply using
the prior probabilities given in Table 2.

Table 3: Comparison of the methods

method log-score ν-score #pars

DI -1.088 0.781 106
NB-bin. -1.340 0.748 293
NB-disc. -1.044 0.843 335
BN-bin. -1.297 0.782 287
BN-disc. -1.398 0.840 1136

LinR -1.839 0.834 150
LogR -1.071 0.829 46

LogR+weights -0.953 0.829 44

default -1.738 0.592 5

Table 4: Comparision of DI and LogR on single faults

fault µ DI µ LogR+w

y1 -0.346 -0.385
y2 -0.324 -0.287
y3 -0.087 -0.008
y4 -0.334 -0.294
y5 -0.177 -0.133

We observe, that among the four best methods in Ta-
ble 3 three are discriminative and learn the conditional
distribution instead of the joint distribution. Further-
more, LogR with training sample weighting performs
best on this data in log-score sense, while using a
small number of parameters. Surprisingly the weight-
ing trick has made quite a difference and LogR without
weights it is outperformed by NB-disc. NB performs
better when it is fed with discretized observations in-
stead of binary, while for BN the effect is reversed.
Clearly the discretized data contain more information,
but it seems that in more complex Bayes Nets the con-
ditional probability tables easily grow too large. In DI
good results are obtained by exploiting prior knowl-
edge in terms of that some faults never cause an ob-
servation to pass certain thresholds.

Measured by the ν-score the relative differences be-
tween the methods become smaller. We observe
that this score favors the regression models and the
Bayesian methods using binary data. The reason for
the good performance of the methods using binary
data is the particular way of thresholding the data
such that all fault free samples are contained in the
same bin.

Table 4 compares the log-scores of the predictions
given for the single faults by DI and LogR+weights.
Note that because of inequality (8) the columns do
not sum to the corresponding entries in Table 3. Not
surprisingly, both methods (as all others) have most



trouble with faults y1, y2 and y4, the ones appearing
simultaneously in evaluation data, but not in training
data. This gives evidence for explaining away being
important in this problem. Figure 2, in which the
probabilities for each fault using LogR + weights are
plotted, shows this in more detail. In the Figure we
have ordered the evaluation data such that the right-
most samples have multiple faults, visualizing that the
double faults are most difficult to predict.
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Figure 2: The predicted probability for the different
faults given by LogR+w. Evaluation data is ordered
after their fault patterns. The true fault is marked
with a solid line.

5 CONCLUSIONS

We have considered the problem of fault isolation in
an automotive diesel engine. We have discussed the
special characteristics of this problem. There is ex-
perimental training data available which is distributed
differently from what we expect to see in the real-world
setting. In particular, evaluation data consists partly

of previously unseen fault patterns. In addition there
is prior knowledge available about which faults may
affect each observation, and also the knowledge that
at least one fault is present.

We have studied different Bayesian and regression ap-
proaches to combine this by nature heterogeneous in-
formation into probability distributions for the faults
conditioned on given observations. We have compared
the performance of the methods using real-world data,
and have found that the discriminative logistic regres-
sion method to perform best. Among the best methods
we have also found the naive Bayes classifier and the
direct inference method.

One of the clearest implications of this work is that
all methods have difficulties with handling unobserved
fault patterns. Unfortunately, unobserved patterns are
common in fault isolation, so this problem should be
tackled in future work. All the methods used, except
direct inference, ignore explaining away. However, this
explaining away effect can possibly be helpful when di-
agnosing unseen patterns. Furthermore, it is crucial to
include background information in the learning phase
whenever it is available.

In our work to come we will investigate models capa-
ble of both explaining away and taking prior knowl-
edge into account, while providing an efficient infer-
ence procedure, as on-board computers offer very lim-
ited resources. We expect further improvement of per-
formance is possible.
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Abstract

This article discusses a design pattern for
building belief networks for application do-
mains in which causal models are hard to
construct. In this approach we pursue a
modular belief network structure that is
easily extended by the users themselves,
while remaining reliable for decision sup-
port. The Hypothesis Management Frame-
work proposed here is a pragmatic attempt to
enable analysts and domain experts to con-
struct and maintain a belief network that can
be used to support decision making, with-
out requiring advanced knowledge engineer-
ing skills.

1 INTRODUCTION

Since their introduction by Kim and Pearl [10] belief
networks have become a popular framework for deci-
sion support and automated reasoning. Also at TNO,
the Netherlands Organisation for Applied Scientific
Research, Bayesian reasoning is used in an increasing
number of projects and application domains. One of
these application domains is decision support for crim-
inal investigations. The typical application in this field
is to perform a quick scan on available evidence to se-
lect the most likely hypothesis, and to prioritize un-
available evidence to aid further investigations. The
need for sound probabilistic reasoning is quite large
in this area, and belief networks are becoming an ac-
cepted tool for modeling reasoning.

Well-known examples of belief networks such as the
Alarm [2] and Hailfinder [1] networks are quite com-
plex and their development requires the co-operation
between both Bayesian specialists and domain ex-
perts. Also, currently available software packages

(e.g. HUGIN, Netica and GeNie)1 for modeling and
analysing belief networks require expertise and skill in
belief networks. Whereas in the field of criminal in-
vestigations, the typical user of such decision support
software is usually not a Bayesian specialist but either
an analyst or an expert on the area being analyzed,
a so-called domain expert. To get belief networks ac-
cepted as a standard tool in criminal investigations,
we should improve the usability to such a degree that
a domain expert is able to produce useful models with-
out the assistance of a Bayesian specialist. Obviously,
analysts should find it beneficial for performing their
analyses as well.

Besides offering criminal investigators a method to use
belief networks, also some effort should be focused on
preventing bias arising in analyses. Where much at-
tention goes into getting unbiased and accurate prior
probabilities, in this paper we are more concerned with
any bias within the topology; the choice of variables
included in the model. When an analyst looks for sup-
port for a certain hypothesis, it is easy to get into a
so-called tunnel view in which contradicting evidence
and alternate hypotheses are neglected. When a plau-
sible alternative perspective is missing in the model,
a potential bias is present yet invisible. It seems im-
possible to always exclude such a bias, but applying
certain strategies in the design of a belief network may
lead to more balanced and less biased models. Among
others, the following strategies might be considered.
Firstly, different domain experts can add an alterna-
tive point of view to the same model. Secondly, each
domain expert can work independently on a different
hypothesis or counter-hypothesis. And finally, domain
experts can design reusable templates that are not tai-
lored for a specific case, but for generic classes of cases.
Whatever combination of strategies may work best to
avoid a bias, the case for a flexible and modular way

1The software packages HUGIN Expert, Netica and
GeNie are respectively found at: http://www.hugin.
com, http://www.norsys.com/netica.html and http://
genie.sis.pitt.edu/



to design belief networks to aid better decision making
should be apparent.

Various systematic techniques are available to guide
the modeling of a belief network in a systematic man-
ner. Many of these generate a belief network by trans-
lation of another type of model, e.g. ontologies [19],
rule-based systems [11], causal maps [16], or by merg-
ing quantitative and qualitative statements in a canon-
ical form [5]. However, all these techniques rely on a
sound understanding of the application domain to es-
tablish the qualitative aspect of a belief network: the
topology of the graph. When a domain is modeled
that is dynamic in nature and of which causality is
not fully known, the technique used to construct a
belief network must above all be modular and easily
extendible as new insights constantly change the per-
spective of what variables matter to the hypotheses of
interest.

This led to the development of the hypothesis manage-
ment framework (HMF) at TNO. This design pattern
enables a domain expert to independently create and
maintain a belief network, and an analyst to evalu-
ate evidence in a criminal investigation. The HMF
is a modular belief network structure that is easily
expandable by the users themselves, while remaining
reliable for decision support. The HMF adds a layer
of abstraction to the belief network, so the belief net-
work can be kept hidden from the user. Multiple users
can independently modify or extend the model based
on his or her domain knowledge. The HMF ensures
that all parts of the model remain a coherent whole,
suitable for consistent reasoning.

2 THE PURPOSE OF HMF

While devising the HMF design pattern we had one
particular goal in mind: to enable the design of modu-
lar and extendible Bayesian models for users that are
no Bayesian specialist. Once a first version of a model
has been developed, it should be easily extended and
maintained later-on. It is likely that the set of vari-
ables as well as the subjective priors for conditional
probability tables require regular revisions as the field
of investigation changes over time. Therefore it should
be possible to reconsider the set of variables, without
having to elicit all of the priors on each change of the
model. The need for multiple revisions of a develop-
ing model was addressed by the AI group at the Uni-
versity of Kentucky in [14]. A design pattern should
preferably be such that it enables the use of templates,
generalized submodels within the belief network, that
can be maintained independently by a group of domain
experts. Such templates should be applicable within
multiple belief networks.

To maximize its applicability in real world applications
the following two requirements should be met:

1 Reliability (or consistency) The belief network
should capture the knowledge of domain experts.
Given the same set of evidence, the domain ex-
perts should agree on the same most likely hy-
potheses and the results of the model should in-
tuitively make sense.

2 Usability The number of priors to be elicited
should be kept to a practical minimum. We pre-
fer to have a limited set of well founded priors,
rather than a larger set of priors of which the do-
main expert is less confident. Conditional prob-
ability tables with a small set of priors are eas-
ier to maintain and validate, especially when the
number of conditioning parent variables is lim-
ited. Furthermore, it should be unambiguous to
domain experts (as well as the analysts) what the
variables and their priors stand for.

These requirements are indeed very common, and gen-
erally accepted as basic requirements in the context of
system development. We think, however, that they are
hard to comply with without the use of a generalized
framework.

3 AN OVERVIEW OF HMF

The HMF places each variable of interest within a pre-
defined structure, as visualized in Figure 4(c). Fur-
thermore it prescribes which variables may be instanti-
ated with evidence, and for some variables the content
of conditional probability tables. All variables must
be categorized by the user in hypotheses, indicators or
information sources. Each type has its own place and
role within the topology of the belief network:

1 Hypotheses are statements of which we would like
to get a posterior probability distribution. In gen-
eral, hypotheses are unobserved. The user can
specify unconditional priors for each hypothesis,
or use a uniform nondiscriminative distribution
instead. As an option, one can add alternative
hypotheses to represent known facts that explain
observed indicators in an other way than existing
hypotheses.

2 Indicators are statements related to hypotheses.
Knowledge of an indicator helps to reveal the
states of related hypotheses. Indicators describe
events that are dependent on the occurrence of
one or more hypotheses. Causal relations between
hypotheses and indicators are not always obvious,
or present at all. Indicators are assumed to be



‘caused’ by hypotheses, not the other way around.
For each relation between an indicator and a hy-
pothesis, a domain expert should specify condi-
tional probabilities for that specific relation.

3 Information Sources are used to express the re-
liability of sources related to an indicator, when
the user does not want to enter ’hard evidence’.
For instance, an information source may be a re-
port, a sensor or a person. An indicator can be
associated to multiple information sources.

Although common, it is not necessary for an arc in a
belief network to imply causality. The HMF makes use
of this freedom by taking a more abstract perspective
on the relations between variables of interest. The
structure is based on the relatively simple notion of
hypotheses and indicators. Indicators may all support
or contradict any of the hypotheses, but the indicators
themselves are assumed independent of one another.
Hypotheses are independent (root nodes) and typically
have many children. Quite similar, so-called ’naive
Bayes’ structures [6], have been effective in other areas
where causality is unknown or too dynamic in nature
(e.g. e-mail spam filtering [15]).

If more structure is desired, this modeling style may
be applied in a recursive fashion in which a hypothe-
sis may have sub-hypotheses, who are modeled in an
similar way. This is not demonstrated in this article.

It is good practice to use a causal model whenever
possible [17], and it should be stressed that HMF does
not aim to substitute such models. The HMF design
pattern is specifically designed for domains in which
causal dependencies are debated or not fully known.
As pointed out by Biedermann and Taroni [3], in foren-
sic science the availability of hard numerical data is
not a necessary requirement for quantifying belief net-
works and Bayesian inference could therefore be used
nonetheless. By using HMF, a Bayesian model can
be constructed even when the qualitative aspects of a
belief network are hard to obtain.

Figure 1: Indicators are substituted by multiple inter-
mediate variables and one combining variable.

There are various options to elicit priors for such large
CPTs. One could apply linear interpolation over a
subset of elicited priors [20], but this requires more
elicited priors and is less flexible than the solution
found for HMF. Rather than connecting indicators di-
rectly to hypotheses, the HMF uses intermediate vari-
ables. In this article all variables are booleans. This
is not a strict requirement, but a general recommen-
dation when it simplifies the elicitation of prior prob-
abilities. Elicited priors will be stored in the interme-
diate variable between the indicator and the hypoth-
esis. This reduces the number of prior probabilities
to elicit, and conditions to consider for each prior. In
fact, the HMF splits up each indicator in multiple vari-
ables (Figure 1): one or more intermediate variables
(ih1, ih2) and a variable that combines them (i′). For
three hypotheses i would require 16 priors, instead of
12 priors for the three intermediate variables together.

When evidence is available for an indicator, we in-
stantiate all associated intermediate variables. Alter-
natively, one can use information sources. An infor-
mation source for an indicator (s in Figure 1) may
exist as multiple variables with identical priors in the
HMF belief network (sh1, sh2). The priors of an in-
formation source variable represent the reliability of
the source in regard the associated indicator. Infor-
mation source variables are children of intermediate
variables, and have only one parent and no children.
Either all information sources of an indicator are in-
stantiated for evidence, or all associated information
source variables. Instantiating intermediate variables
of an indicator d-separates information sources from
hypotheses, rendering all information sources for that
indicator obsolete.

When there is no evidence for an indicator, the com-
bining indicator variable (i′) will resemble the poste-
rior probability of the original indicator (i) by taking
the average probability of all intermediate variables.
This information is useful to predict the likelihood of
unobserved indicators or for selecting the most influ-
ential unobserved indicator. Equation 1 is used to con-
struct the conditional probability table of the combin-
ing indicator variable. Note, that the HMF does not
use a logical function (e.g. OR/MAX, AND/MIN or
XOR). Logical functions that assume independence of
causal influence, in a discrete or noisy variant, have
been long in use [8] as a solution for variables with
many parents. An extensive overview of such methods
are described by Diez and Drudzel in [4]. Although
many alternatives may be considered, our preference
goes to an averaging method to avoid scalability prob-
lems. The scalability problem will be further discussed
in Section 5, while the results of using the averaging
method in Equation 1 are discussed in Section 6.



P (X|parents(X)) = 1.0−maxV alueOf(parents(X))
valueOf(parents(X))

(1)

This article focuses on how HMF can aid the construc-
tion of belief networks. It does not elaborate on how
a software tool might facilitate this process. Nonethe-
less, we would like to discuss briefly how we envision
such a tool and how the HMF might be presented to
the user. We differentiate two types of roles for users:
domain experts and analysts. A user may have both
roles in practice. By using the HMF, the GUI can ef-
fectively hide the underlying belief network from the
user. Both types of users need a different user inter-
face.

Figure 2: The GUI for an analyst.

Figure 3: The GUI for a domain expert.

An analyst processes information sources and selects
evidence for indicators to support or contradict hy-
potheses. For analysts the GUI (Figure 2) shows indi-
cators in a foldable tree-like structure. The indicators
are organized in categories and sub-categories. For
each indicator the analyst can choose a state (e.g. true
or false) based on observed evidence. If the analyst is
uncertain about an observation, the analyst is given
the ability the express the reliability of each informa-
tion source for that specific indicator. This requires
a prior probability for both positive observations and
false positives, given that the indicator is a boolean.

Domain experts evaluate the conditional probabilities
of an indicator given an hypothesis, and choose prior
probabilities for hypotheses. The GUI should enable a
domain expert to construct and maintain a list of in-
dicators and hypotheses. A domain expert is respon-
sible for relating indicators to hypotheses in a sensible

manner, and assign conditional probabilities to each
relation. Figure 3 shows how this may be presented to
the domain expert. There is a column for each hypoth-
esis. Assuming only booleans are used, the respective
column requires only two elicited priors: one prior for
the likelihood of observing the indicator given the hy-
pothesis is true, and another for when the hypothesis
is false. Qualitative descriptions or frequencies can be
more effective than probabilities [7]. Such notations
can be used instead of probabilities, as long these de-
scriptions are consistently translated into conditional
probability tables.

4 HMF WALKTHROUGH BY AN
EXAMPLE

To explain how the HMF may be used and why we
have chosen this specific topology, we will now dis-
cuss three different models based on a civil case con-
cerning a car accident. The first is a logical causal
model by Prakken and Renooij [18]. The second
is a Bayesian belief network by Huygen [9], directly
based on Prakken’s logical model. Third and finally, a
Bayesian belief network that follows the HMF is con-
structed for the same case. 2

The legal case concerns a nightly car accident involving
a driver and a passenger, after a party which both per-
sons attended. The police that arrived at the scene af-
ter the accident observed that the car crashed just be-
yond an S-curve and the handbrake was in a pulled po-
sition. The police did observe tire marks (skid marks
and jaw marks), but did not observe any obstacles.
The driver claims that the passenger was drunk and
pulled the handbrake. The passenger claims that the
driver speeded through the S-curve. The judge had
to decide whether it is plausible that the passenger
caused the accident, rather than the driver.

The logical model about this case by Prakken and
Renooij is aimed at reconstructing the reasoning be-
hind the court decision on this case. Figure 4(a) shows
the causal structure for the case. Nodes within the
structure visualize causal concepts (propositions), and
arcs represent causal rules between them. Each arc is
annotated to show whether the proposition at the head
supports (+) or contradicts (-) the proposition at the
tail of the arc. By using abductive-logical reasoning
on the structure given evidence for some concepts, one
can determine whether other concepts are plausible.
Although such a model, a causal map, like the one in
Figure 4a may resemble a belief network, it lacks the
quantitative information required for Bayesian infer-
ence. Nadkarni and Shenoy [16] discussed how a causal

2the belief networks discussed in this article are avail-
able for download at: http://www.science.uva.nl/~spg



(a) A logical causal model by Prakken and Renooij. (b) The belief network by Huygen.

(c) A variant that uses the HMF design pattern.

Figure 4: Three different models of the same case. The colour red is used to highlight the proposed extensions.

map, can be used as a foundation for constructing be-
lief networks when supplemented with casual values
that express the strength of a causal connection.

There is evidence for the following facts: ¬obstacles,
tire marks present, observed nature of tire marks after
S-curve, handbrake in pulled position, driver’s testi-
mony and drunk passenger. The hypotheses speeding
in S-curve and loss of control over vehicle explain two
facts but contradicts three others. Whereas the hy-
pothesis passenger pulled handbrake of moving vehi-
cle explains three rules and contradicts nothing. This
makes the drivers point of view more convincing.

Huygen used the causal model of Prakken to construct
a belief network for the same case (Figure 4b). The
topology was slightly changed: the node for obstacles
has been removed and the propositions for speeding
and slowing down in S-curve have been replaced by
a single boolean that represents both. Furthermore,
each node is accompanied with a conditional probabil-
ity table or prior probability distribution (not visible

in Figure 4(b)). This effectively replaces the annota-
tions along arcs in the causal map. Huygen decided
not to use evidence for variables on tire marks, be-
cause in the sentence of the court it was not explicitly
stated that the nature of the tire marks were proof for
not speeding, but gave insufficient support for the sug-
gestion that the driver had speeded. Huygens suggests
to change the priors, when one would like to use this
evidence.

Given evidence for: pulled position, driver’s testimony,
passenger drunk and crash, it is highly likely that the
passenger pulled the handbrake (≈ 100%). Since the
evidence against the passenger explains away the car
crash, it is unlikely that the crash was caused by lost
control of the vehicle after speeding through the S-
curve (0.1%). The bayesian belief network comes to
the same conclusion as the causal map of Prakken and
Renooij.

When we model the same case using the HMF, we get
a radically different topology (Figure 4(c)) that does



not resemble the causal map of Prakken and the belief
network of Huygen. Both claims are modeled as hy-
potheses in the HMF model: accident caused by speed-
ing and passenger pulled handbrake of moving vehicle.
These hypotheses correspond to similarly named pred-
icates in Figure 4a and probability variables in Figure
4b. Uniform probability distributions were used as pri-
ors for these hypotheses. We use indicators to support
our beliefs in the hypotheses, these are: driver’s tes-
timony directly after incident, handbrake in pulled po-
sition after incident, passenger had drunk alcohol, ob-
served yawmarks of sliding vehicle and observed skid-
marks beyond the curve.

By choosing different priors, the evidence for tire
marks is now usable. Some intermediate variables that
relate facts with the two hypotheses are no longer in
use. These are locking of wheels and loss of control
over vehicle. The information source of passenger had
drunk alcohol is undisclosed. Suppose the source was
a guest at the party, than the reliability of this testi-
mony is represented by an information source variable
(Figure 4(c)).

Given the available evidence, we get a high likelihood
for the passenger pulling the handbrake of the mov-
ing vehicle (≈ 100%). The propability for speeding is
much lower (≈ 27%), and therefore far less convincing.

All three approaches can adequately model the case
and derive equally sensible conclusions. Abductive-
logical reasoning over a causal map explains the logi-
cal correctness and contradictions of propositions. The
advantage of a Bayesian approach is that by quanti-
fying influence, it is able to give insight in what hy-
pothesis is most credible as well as the relevance of
evidence. The models of Prakken, Renooij and Huy-
gen are based on a causal map. Although HMF follows
a different approach to the construction of belief net-
works, and therefore uses a rather different topology,
it does derive the same conclusions.

5 ISSUES REGARDING
EXTENDIBILITY

Extendibility as well as modularity are important re-
quirements. The models by Prakken and Huygen are
’static’ models in the sense that they were designed to
model one single case with a fixed set of evidence and
hypotheses. This is feasible when consensus has been
developed on all aspects of the case. However, sup-
porting decision making at an earlier stage requires a
high level of flexibility. The HMF was developed to
facilitate decision making when the set of evidence (or
indicators) and hypotheses is still evolving and a con-
stant topic of discussion. Models designed with the

HMF are flexible, meaning that a model is decompos-
able into independent modules. So that each module
can be maintained or extended by a different domain
expert. This section will discuss issues that concern
the extendibility of models developed with the HMF.
These issues will be illustrated by extending the exist-
ing models from the previous section.

We have pursued extendibility by modular indepen-
dence of the elicited priors. When an indicator is
added to the model, the only priors to elicit are those
for the intermediate nodes of that specific indicator.
Priors that were elicited before do not have to be
reconsidered. The same holds for adding hypothe-
ses. We will illustrate this by considering an addi-
tional hypothesis for the car accident case. Suppose
the driver pulled the handbrake of the moving vehi-
cle. If the driver was under influence of alcohol, that
would have also influenced the driving behavior and
therefore the likelihood of speeding as well as the pos-
sibility of pulling the handbrake of the moving vehicle.
In all three models we would have to add and update
existing prior knowledge.

To add the alternative hypothesis to the logical model
of Prakken and Renooij a proposition is needed for the
new hypothesis, and another to represent the possibil-
ity that the driver was under the influence of alcohol.
These additional causal relations are highlighted in red
in Figure 4(a). Together, these additions extend the
existing set of 12 rules with 6 more.

Figure 5: How extending the model affects the number
of priors to elicit.



Table 1: Extending the models.

priors Prakken Huygen elicited HMF

in original model 12 44 36
after extension 18 64 58
unchanged 12 30 36
updated and added 6 34 22
relative workload 50% 77% 61%

When we add similar variables and relations to the
belief network of Huygen, we need to specify new con-
ditional probability tables for locking of wheels, hand-
brake in pulled position and driver’s testimony. Fur-
thermore, we would have to replace the prior proba-
bility distributions of speeding through S-curve with a
new conditional probability table. These changes com-
prise the elicitation of 34 new priors that substitute 14
previously elicited priors.

To add to the HMF model the hypothesis driver pulled
the handbrake of the moving vehicle, requires a new col-
umn in the model in Figure 4. The possibility of the
driver being under the influence of alcohol is modeled
as an indicator, which adds a new row to the model.
Table I shows how many elicited priors are required
for extending the models. The extensions of the HMF
model comprise only 22 elicited priors, all 36 existing
priors remain unchanged. This makes HMF consid-
erably cheaper to extend than the belief network of
Huygen. The original causal model of Prakken is even
simpler to extend. That model, however, lacks quan-
titative support for probabilistic inference.

As the car accident case shows, the HMF is tolerant to
extensions. Figure 5 shows the general effect of adding
hypotheses and indicators to a model by outlining the
maximum number of elicited priors. While the to-
tal number of parameters grows exponentially when
more hypotheses are added, the amount of elicited
priors grows in a linear fashion. The figure assumes
the worst case in which each indicator is associated to
all hypotheses. Although the model assumes boolean
variables and two priors for each intermediate variable
would suffice, it is assumed that all priors for inter-
mediate variables are elicited as well as a prior prob-
ability distribution for each hypothesis. Note that we
have excluded all other parameters that require elici-
tation such as variable names and state definitions. As
a reference Figure 5 includes the number of priors of
Hailfinder (3741), Alarm (752), the original belief net-
work of Huygen (44) and the HMF model from Section
4 (36). The extensions proposed in this Section were
excluded from the HMF model.

As mentioned in Section 3 indicators are modeled
by intermediate variables and one combining variable.
The more hypotheses are associated to an indicator,
the more probabilities of intermediate variables will

have to be combined. On each extension the combin-
ing variable gets an extra parent, and as a consequence
its conditional probability table (CPT) doubles in size.
In the HMF an averaging function has been chosen as
the preferred option for these CPTs. By default, the
CPT of a combining variable effectively takes the aver-
age posterior distribution of all intermediate variables
(Equation 1).

Arguably, one might find a logical OR-function [8]
more intuitive. However, we have chosen not to use an
OR or AND function for these CPTs since a method-
ical bias may arise in the model if it is extended. A
practical drawback of using OR-tables in this situation
arises when more than (approximately) five alternative
hypotheses are connected to an indicator. By adding
more parents to a deterministic OR-table the proba-
bility for the child variable quickly converges to unity,
or alternatively a pre-defined upper bound. This is
shown in Figure 6(a). It is likely that this will lead
to unintentional overestimation of the occurrence of
unobserved indicators. This can be illustrated by ex-
tending the belief network of Huygen, where the vari-
able locking of wheels is modeled as an OR-table with
an upper bound of 0.80. Suppose the case would be
extended to include one or two additional drunk back-
seat passengers who may have pulled the handbrake
of the moving vehicle. The extra backseat passengers
are modeled in the same way as the passenger in front,
using the original priors P (locking|pulled) = 80% and
P (locking|¬pulled) = 0% (where pulled is true when
any of the persons in the vehicle pulled the handbrake).
Given that the driver is sober and all passengers are
drunk, the probability of locking the wheels increases
rapidly (one drunk passenger: 2.4%, two drunk pas-
sengers: 4.7%, three drunk passengers: 7.0%). Even
when we have not instantiated any other variables
(e.g. crash or driver’s testimony). After these exten-
sions, one might like to reconsider the original priors of
P (pull|drunk) to prevent overestimating the probabil-
ity of locked wheels. This potential problem is avoided
when the method in Equation 1 is used.

Another potential problem that is associated with OR-
tables is the asymmetric influence of an indicator: pos-
itive observations have less impact than a negative
observation. This is shown in Figure 6(b)). Where
observed indicators will only have marginal impact
on hypotheses when observed true, the impact on in-
termediate variables of an indicator observed as false
is deterministic and therefore usually stronger. It is
likely that the user will be unaware of these effects.
This makes the model relatively vulnerable to errors
in the priors. Therefore, we advice to use Equation 1
as the default method. Other methods for construct-
ing CPTs of combining variables may hinder extending



(a) The likelihood of an indicator. (b) The impact of evidence for an indicator.

Figure 6: Extending the model affects the probabilities.

the model.

6 ISSUES REGARDING
RELIABILITY

To evaluate the outcomes of HMF belief networks we
have translated the Asia belief network, as introduced
by Lauritzen and Spiegelhalter in [12], into the HMF
format.

We will use abbreviations that correspond to the first
character of each variable. The original model is shown
in Figure 7 (left), the HMF version of Asia is shown on
the right. In the HMF model of Asia we distinguish hy-
potheses: {b, l, t}, indicators: {s, v, x, d} and interme-
diate nodes: {sb, sl, vt, xb, xl, xt, db, dl, dt}. The vari-
able TbOrCa is missing from the HMF model, which
in the original belief network combines the probabili-
ties of tuberculosis and lung cancer with a logical OR
function has become obsolete.

In the HMF model of Asia, the prior information for
the indicators is specified separately for each associ-
ated hypothesis. This assumes that the influence of
e.g. lung cancer on dyspnea is unaffected by bron-
chitis. The following probabilities will have to be
elicited from a domain expert, when using HMF on
Asia. Unconditional priors for each hypothesis: P (b),
P (l), P (t) and conditional priors for all intermedi-
ate nodes: P (sb|b), P (sl|l), P (vt|t), P (xb|b), P (xl|l),
P (xt|t), P (db|b), P (dl|l), P (dt|t).

The Asia model uses only boolean variables and there-

fore only one probability for each hypothesis has to be
elicited and two for each association of an indicator
with a hypothesis. For Asia this gives a total of 21
probabilities. In this case the priors for the hypothe-
ses and intermediate nodes were derived from the joint
probability table of the original Asia belief network.

We computed the posteriors of the hypotheses for all
possible scenario’s of evidence for the indicators. In
each of these scenarios each indicator was either ob-
served or not. Note that we instantiate the interme-
diate nodes for evidence, rather than the combining
variables. As mentioned in Section 3 an indicator is
represented by both intermediate variables and a com-
bining variable. The conditional probability table of
the combining variable is implemented by Equation
1, whereas the elicited priors are stored in the inter-
mediate variables. Instantiating only the combining
variable would undervalue those elicited priors.

The results are shown in Table II. For each indica-
tor and hypothesis, the table shows the average and
maximum absolute difference in posteriors, as well as
the Jensen-Shannon divergence [13]. The bottom row
shows the percentage of scenario’s in which the out-
comes (i.e. the most likely state) for the variables
were equal. Especially this last criterion is important
for decision making, as the ’real’ priors and posteriors
will always be open to debate when a causal model
is hard to obtain. The table shows that while poste-
rior distributions may vary between both versions, on
average the difference is relatively small (< 4 percent-
age points). For almost all scenario’s the outcomes



Figure 7: Left: the original Asia belief network. Right: HMF version of Asia. Both with evidence for Smoking.

Table 2: Divergence between HMF verion of Asia and
the original.

vertice d v x b t c s
max dif 0,162 0,004 0,071 0,308 0,193 0,209 0,095
av. dif 0,023 0,000 0,009 0,036 0,020 0,017 0,014
max J-S 0,021 0,000 0,006 0,074 0,029 0,035 0,008
av. J-S 0,002 0,000 0,001 0,006 0,002 0,002 0,001
match(%) 91,4 100,0 100,0 97,5 98,8 98,8 97,5

are identical. The few exceptions are caused by the
synergistic effect between an abnormal X-Ray and the
presence of dyspnea. This synergistic affect is absent
in the HMF version, and in those situations we get
the relatively large differences in the posterior distri-
butions of bronchitis and long cancer.

7 CONCLUSIONS

The current HMF design pattern is extendible and
modular. In our opinion the HMF succeeds in its pur-
pose. We have confidence that HMF comes as a relief
to those application domains that so far have been
relatively underequipped with practical decision sup-
port tools, due to the lack of ’hard and solid’ domain
knowledge that can be used as a basis for probabilistic
models.

The arrangement of the HMF supports a working
method which deals with tunnel-view in a well con-
sidered manner. The HMF will not explicitly reduce
or prevent bias occurring within the topology of a
model. However, it offers the possibility to use certain
strategies during the design of a model which lead to
more balanced and thus less biased models. Using such
strategies will enlarge the awareness about tunnel-view
(and bias) and as such may partly prevent it.

Although the requirements of reliability and usabil-
ity are not validated by domain experts and analysts,
several issues concerning these requirements have been

discussed in this paper. The Asia example shows that
posteriors via a HMF model can be quite similar to
those derived via a belief network based on causality.
The issues that we have encountered so far in applying
belief networks for criminal investigations have been
addressed in this paper. However, it is a continuous
effort to further improve the HMF.

8 FUTURE RESEARCH

One of the complementary wishes of the authors in-
volves a bias measurement combined with automated
commentary that highlights useful missing evidence.
By calculating how discriminative the indicators and
the evidence is to each hypothesis and counterhypoth-
esis, we can evaluate whether tunnel vision may be
present. It can also be used to investigate the added
value of collecting evidence for unobserved indicators.
One way of getting this information is by simulating
evidence and evaluate the posteriors of all hypotheses.
Since the maximum potential impact of an indicator
may only occur at a certain combination of evidence
for other indicators, the simulation should consider all
possible combinations of evidence for all unobserved
indicators. This may be a costly operation. Alter-
natively one may derive the maximum impact directly
from the conditional probability tables of the variables,
and use message passing to investigate the maximum
potential impact of each indicator.

The naive structure of a HMF belief network may in
some occasions not capture the targeted effects. In
those cases we would like to extend the HMF model
with constraining variables that model the synergistic
effect between indicators (or in between hypotheses).
We have not been able to test such mechanisms in real-
istic cases so far. Therefore these need further investi-
gation to test the feasibility of adding constraints, and
whether the implications of such mechanisms violate
the extendibility and modularity.



The HMF has been applied on several study cases
based on real data by the authors. In the foreseeable
future it is expected that domain experts will work
with this framework. Their experience will be very
useful for validating the usability and reliability of this
method, and for finding ways to further improve it.
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Abstract 

Bayesian networks (BNs) are excellent tools for 
reasoning about uncertainty and capturing 
detailed domain knowledge. However, the 
complexity of BN structures can pose a 
challenge to domain experts without a 
background in artificial intelligence or 
probability when they construct or analyze BN 
models. Several canonical models have been 
developed to reduce the complexity of BN 
structures, but there is little research on the 
accessibility and usability of these canonical 
models, their associated user interfaces, and the 
contents of the models, including their 
probabilistic relationships. In this paper, we 
present an experimental procedure to evaluate 
our novel Causal Influence Model structure by 
measuring users’ ability to construct new models 
from scratch, and their ability to comprehend 
previously constructed models. [Results of our 
experiment will be presented at the workshop.] 

1. INTRODUCTION AND MOTIVATION 

A Bayesian network (BN) (Jensen, 2001; Pearl, 1988) is a 
probabilistic model used to reason under uncertainty. 
Successful efforts in applying Bayesian modeling to a 
variety of domains (e.g., computer vision (Rimey & 
Brown, 1994), social networks (Koelle et al., 2006), 
human cognition (Guarino et al., 2006; Glymour, 2001), 
and disease detection (Pang et al., 2004)) have inspired 
knowledge engineers to use BNs to capture domain 
knowledge from experts. However, expressing an expert’s 
domain knowledge in a BN is cumbersome due to the 
complex, tedious, and mathematical nature of conditional 
probability table (CPT) construction. Adding states and 
parents to a node quickly results in an exponential 
explosion in the number of CPT entries required (Pfautz 
et al., 2007). Canonical models such as Noisy-OR 
(Henrion, 1989; Pearl, 1988), Noisy-MAX (Diez & 
Galan, 2003; Diez, 1993; Henrion, 1989), Qualitative 
Probabilistic Networks (Wellman, 1990) and Influence 

Networks (IN) (Jensen, 1996; Rosen & Smith, 1996a; 
Rosen & Smith, 1996b) have been developed to mitigate 
this problem. In response to some issues raised by those 
models, and to simplify the Bayesian modeling process 
through novel user interface techniques, we developed a 
new canonical model, the Causal Influence Model (CIM) 
(Cox & Pfautz, 2007; Pfautz et al., 2007). The CIM 
paradigm was inspired by anecdotal evidence gained by 
developing systems for domain experts interacting with 
BNs and by an analysis of other canonical models to 
determine the constraints that limit their generalizability 
and applicability. 

There have been few user-centered evaluation efforts to 
assess how (and if) canonical models help domain experts 
elicit their knowledge and understanding of models 
presented to them, or how graphical interfaces and their 
features and properties impact the way people create, 
interpret, reason with, or base actions on Bayesian 
networks. The purpose of our study is to provide baseline 
information on how people construct and describe CIMs 
presented and created within a graphical user interface. 

1.1 BACKGROUND 

A canonical model (Diez & Druzdzel, 2001) is a 
modeling pattern that allows probabilistic relationships 
between nodes to be specified by a reduced set of 
parameters (i.e., without completing every cell in a CPT). 
By assuming that the reduced parameters can still 
accurately represent the domain being modeled, users can 
quickly build a complex BN that would otherwise take a 
large amount of time. Most canonical models achieve 
their reduced parameters by assuming the independent 
effects of parents. This assumption allows a linear number 
of parameters to quantify an entire CPT; in the best-case 
scenario, only a single parameter per parent is needed. 
Canonical models can also serve as a “front-end” tool for 
the initial model-building effort, since the CPTs can 
always be refined by hand or with data at a later time. 
Some of the simplified patterns followed by canonical 
models have been motivated by the process followed 
when eliciting key factors and probabilistic relationships 



 

from domain experts (O'Hagan et al., 2006; Hastie & 
Dawes, 2001).  

A review of canonical models sheds light on the 
advantages and drawbacks of each model. The Influence 
Network (IN) model can only be used with Boolean 
nodes. It assumes that the child node has a baseline 
probability of occurring independently of any parent 
effects and that each parent independently influences the 
child to be more or less likely to be true. Since a single 
baseline probability for the child and a single change in 
probability for each parent are simple parameters for users 
to specify, the IN represents a powerful mechanism for 
capturing domain knowledge. However, since only 
Boolean nodes are allowed in the IN model, model 
flexibility is significantly reduced. BNs commonly 
contain nodes that represent concepts other than the 
occurrence or non-occurrence of events, and INs cannot 
be used to simplify these BNs without considerably re-
architecting the model.  

The Noisy-OR model is also used only with Boolean 
nodes and assumes that a true state in any parent can 
cause the child to be true independently of the other 
parents, with some uncertainty. Similar to INs, the main 
drawback of the Noisy-OR is its limitation to only 
Boolean nodes. The Noisy-MAX model generalizes the 
Noisy-OR and allows ordinal nodes at the expense of 
increasing the complexity of parameters. Although Noisy-
MAX does work with ordinal nodes, it cannot be used 
with more general discrete nodes that do not have ordered 
states. These nodes, referred to as categorical nodes, have 
an arbitrary number of unordered states and usually 
represent the category or type of something. Qualitative 
Probabilistic Networks (QPNs) allow for the construction 
of purely qualitative relationships between nodes in a 
network, to abstract from the highly quantitative and 
numerical nature of typical Bayesian models. QPNs 
consider the “signs” inherent in probabilistic relationships 
between nodes, and consider the additive synergies 
between nodes to capture more complicated probabilistic 
relationships between them (i.e., if A and B both have a 
positive influence on node C, their influences may be 
synergistic in nature: if A and B are both true, their 
cumulative influence upon C may be greater than just the 
sum of their individual influences.) QPNs allow for more 
qualitative model elicitation and may therefore be 
appropriate for interactions with non-technical experts, 
but they are limited in their ability to provide hard, 
numerical estimates of the likelihood of events. 

The Causal Influence Model (CIM) is a canonical model 
that retains the desirable properties of the IN while 
providing solutions to its problems. The CIM assumes 
that each node is discrete and has an arbitrary number of 
states with arbitrary meaning. Each node has a baseline 
probability distribution, independent of any parent effects. 
Each parent independently influences these baseline 
probabilities to be more or less likely. The CIM also 
introduces simplifications that govern the generation of 

conditional probability relationships, enabling Boolean, 
ordinal, and categorical nodes to be included. A full 
description of the mathematical formulas that govern 
CIMs, including formulas to translate CIM link strengths 
into conditional probability tables, is provided in (Cox et 
al., 2007). 

Studies have been conducted to analyze and mitigate 
complexities that arise in the construction of Bayesian 
models as a result of knowledge elicitation (Onisko, 
Druzdzel, & Wasyluk, 2001), but no studies to date have 
assessed the accessibility and usability of various 
canonical models and associated user interfaces when 
provided directly to domain experts. The following study 
investigates how users interpret and create CIMs within a 
particular user interface. 

2. METHOD 

2.1 PARTICIPANTS 

Up to twenty participants are recruited from the university 
community to perform the study. After providing 
informed consent, participants are given the Ishihara Test 
for color blindness. Participants who pass this screening 
continue with the study. 

2.2 EXPERIMENTAL SYSTEM 

We have developed an CIM-enabled version of our 
BNet.Builder product to allow us to experiment with 
graphical interfaces for Bayesian network modeling 
(Pfautz et al., 2007). Using a simple point-and-click 
interface, users can create, label, connect, and move nodes 
in the model. Users can also create and modify causal 
links to represent positive or negative influences between 
nodes and the strength of those relationships. Users can 
also post or remove evidence to any node and view the 
effects of posted evidence on the belief states of other 
nodes. Link strengths are converted using CPTs based on 
algorithms provided in (Cox et al., 2007; Pfautz et al., 
2007). The positivity or negativity of a causal link and the 
link strength are represented visually by the color and 
thickness of the link, respectively.  

To simplify model construction for this particular 

experiment, the CIM interface has been constrained so 

that all nodes are Boolean; initial beliefs are set to 0.5 for 

all nodes and cannot be changed directly by the user (but 

can change based on evidence or link strengths); and only 

“hard” evidence can be posted (e.g., evidence that the 

node was either fully true, or fully false). This represents 

a set of simplifications we have found useful in other 

work, particularly among users less familiar with 

Bayesian modeling techniques. Our main goal in this 

study is to determine whether participants can reason 

about previously constructed CIMs and construct models 

to match a given situation. Since these are specific, novel, 

and fundamental questions with little previous research 

behind them, we have started with a simple case. The 



 

inclusion of additional node types, in particular, is useful 

for future work in comparing CIMs to other canonical 

models such as INs, Noisy-OR, and Noisy-MAX. 

2.3 EXPERIMENTAL TASKS  

Participants will be asked to provide descriptions of and 
answer questions about a series of CIMs shown in the 
BNet.Builder interface. In the first task, participants will 
be shown a model and asked questions about the structure 
and nature of relationships in the model (specifically, 
questions asking them to describe elements of the model, 
and questions related to abductive and deductive 
reasoning using the model). For instance, given the 
following example model (Figure 1), participants would 
be asked:  

• Description: This picture shows a model of part of a 
car. Describe what causes headlights to be dim, or not 
dim.  

• Abductive Reasoning: If the headlights are dim, what 
does that mean about the other parts of the car? 

• Deductive Reasoning: The alternator is working. 
What does that suggest about the headlights? The 
battery is old. What does that suggest about the 
headlights? What if the battery is new and the 
alternator is failing? 

 

Figure 1. Example model used in the experiment. The 
green link represents positive influence, while the red link 
represents negative influence within our CIM-enabled 
interface. 

In the second task, participants can manipulate the causal 
links and post evidence to see how changing the strength 
and directionality of the links between the nodes, and 
evidence about the state of the nodes, affects beliefs about 
whether the nodes are true or false. They will respond to 
similar sets of questions as provided in the first task. 
Finally, in the third task, participants will be asked to 
construct models from scratch using the interface based 
on several different vignettes, such as the following: 

The headlight system on a car is dependent on two 
components: a battery, which stores energy to power 
the lights, and an alternator, which converts 
mechanical energy from the car’s engine into stored 

energy in the battery. When the car is running, the 
alternator “recharges” the battery. This process only 
works if the alternator is working, and the battery is 
new.  

Four models/vignettes have been constructed for each 
task (a total of 12). Each model has the following 
relationships: 1 child/1 parent, 2 children/1 parent, 1 
child/2 parents, 2 children/2 parents. In all cases, all 
children are linked to all parents. Also, in all but the 1 
child/1 parent case, one parent-child link is negative. This 
simplification provides the basis for the initial study. We 
expect to expand upon this simple representation with 
later empirical work. 

2.4 INDEPENDENT VARIABLE 

Two stimuli sets are created based on the 12 models. 
Either the nodes in the models (or phrases in the vignette) 
are phrased positively, or they include at least one node 
that uses negative phrasing (e.g., “battery is not new”). 
This difference allows us to investigate how semantic 
properties of the model or situation affect task 
performance. This condition has been inspired by our 
experience in domain expert interaction with CIM 
modeling interfaces, where we observed the articulation 
of variable names as a source of common confusion. The 
use of negatives in the variable name (e.g., “not raining”) 
or logical antonyms (e.g., “happy” and “sad”) tends to 
lead to later confusion in expressing causal relationships 
(e.g., “if it is not not-raining, then it is unlikely that 
Rakesh will not bring his umbrella”). By including this 
specific independent variable, we will be able to assess 
which specific patterns of reasoning are most difficult for 
users. Participants are randomly assigned to one of the 
two stimuli sets (up to 10 participants per condition). This 
sample size is consistent with those used in usability type 
tests, and will allow us to analyze verbal protocols of 
participants to look for patterns across conditions. 

2.5 DEPENDENT MEASURES AND ANALYSIS  

Throughout all three tasks, participants are asked to “talk 
aloud” while performing the task to describe how they are 
thinking about or creating the models. Screen capture 
software is used to record participants’ interaction with 
and construction of models. Participants are also fitted 
with a view point eye tracker (lightweight glasses that 
have an attached camera that tracks the corneal 
movements of the participant’s eye to assess gaze relative 
to the computer screen they are working on). The eye 
tracking system is used to record aspects of gaze position 
and dwell time at a screen location. Time to complete the 
tasks is also being recorded. 

Data from the audio, eye track, and screen capture 
processes is combined to create a “process trace” of each 
participant’s behavior describing and creating CIMs 
(Woods, 1993). Verbalizations and actions are coded and 
analyzed (Bainbridge & Sanderson, 1995; Sanderson & 
Fisher, 1994; Woods, 1993) to identify the correctness 



 

and completeness of the descriptions and answers 
provided by participants in the first task, the processes 
with which participants constructed the models in the 
second task, and the form and content of the models 
produced in the third task.  

3. ANTICIPATED RESULTS AND 

DISCUSSION 

The purpose of this study is to provide baseline 
information regarding how people construct and describe 
CIM models presented and created within the 
BNet.Builder interface. There is continued interest in 
simplifying the manner in which domain expertise is 
elicited, and the creation and presentation of Bayesian 
network models through direct manipulation and 
visualization. However, information on how these tools 
are used by practitioners, how they affect the models that 
people produce, and how they affect the way that people 
interpret models or predict outcomes is missing. We 
anticipate that users will have more difficulty explaining 
and constructing models with more parent-child 
connections. We also anticipate users having more 
difficulty explaining and constructing models when there 
are more nodes with negative causal links because of the 
increase in complexity of the models.  

In this study, we intend to measure reasoning patterns 
involving negative quantities that give users the most 
trouble. We anticipate that users will have the most 
difficulty interpreting and creating models when nodes 
are presented with “negatively phrased” labels (e.g., 
assessing the influence of a node labeled “battery is not 
new” on a node labeled “headlights are dim”). If this is 
the case, it suggests a need for developers of CIMs (and 
BNs in general) to encourage users to employ certain 
modeling patterns, possibly by constraining the 
description of nodes. These constraints, in turn, can be 
accomplished through prior training or interface wizards, 
or through intelligent, automatic processing of user 
entries, and provision of suggested alternatives (e.g., pop-
up suggestions). These interventions could be tested in 
further studies. 

The primary contribution of this paper will be process- 
and product-oriented descriptions of how this graphical 
tool is used to interpret and create CIMs. Future research 
could compare how models created within the CIM 
framework compare to those using more traditional BN 
structures, from the point of view of the user. This study 
used simple Bayesian models, with constrained 
parameters and interaction capabilities, and used only 
Boolean nodes. Future studies, guided by these initial 
findings, can be conducted using more complex models, a 
greater variety of node types (e.g., categorical, ordinal), 
and allow subjects greater flexibility in manipulating 
CPTs and posting evidence. Other issues for investigation 
include measuring and mitigating user tendencies to 
confuse “evidence” and “belief” (both as terms, and in the 
values these terms represent), measuring tendencies to 

disregard parental independence when constructing CIMs, 
and further observation of user reaction to non-intuitive 
but correct behavior (e.g., becoming confused when 
particular variables appear overly sensitive or insensitive 
to posted evidence.) 

The CIM interface provides a user-friendly way to 
express causal influences between nodes, vastly 
decreasing the number of parameters needed to construct 
causal models and providing the capability for a much 
broader base of users to perform Bayesian modeling. 
Within the experimental interface, participants express 
relative degrees of influence over a range of 11 steps 
(from positive to negative 5, with a neutral intermediate 
value). Additional studies are necessary to clarify the 
appropriate level of granularity of influence assignment 
(e.g., 3 steps? 11 steps? 51 steps?) as well whether other 
methods of assigning strengths across sets of links (e.g., 
normalized strengths, rank ordered strengths) have merit. 
Finally, detailed studies with real-world models, 
situations, and domain experts are required.  
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Abstract

In this paper, we examine the influence
of overconfidence in parameter specification
on the performance of a Bayesian network
model in the context of Hepar II, a sizeable
Bayesian network model for diagnosis of liver
disorders. We enter noise in the parameters
in such a way that the resulting distributions
become biased toward extreme probabilities.
We believe that this offers a systematic way
of modeling expert overconfidence in proba-
bility estimates. It appears that the diagnos-
tic accuracy of Hepar II is less sensitive to
overconfidence in probabilities than it is to
underconfidence and to random noise, espe-
cially when noise is very large.

1 INTRODUCTION

Decision-analytic methods provide an orderly and co-
herent framework for modeling and solving decision
problems in decision support systems [5]. A popu-
lar modeling tool for complex uncertain domains is a
Bayesian network [13], an acyclic directed graph quan-
tified by numerical parameters and modeling the struc-
ture of a domain and the joint probability distribution
over its variables. There exist algorithms for reason-
ing in Bayesian networks that typically compute the
posterior probability distribution over some variables
of interest given a set of observations. As these algo-
rithms are mathematically correct, the ultimate qual-
ity of reasoning depends directly on the quality of the
underlying models and their parameters. These pa-
rameters are rarely precise, as they are often based
on subjective estimates. Even when they are based
on data, they may not be directly applicable to the
decision model at hand and be fully trustworthy.

Search for those parameters whose values are critical
for the overall quality of decisions is known as sensi-

tivity analysis. Sensitivity analysis studies how much
a model output changes as various model parameters
vary through the range of their plausible values. It
allows to get insight into the nature of the problem
and its formalization, helps in refining the model so
that it is simple and elegant (containing only those
factors that matter), and checks the need for precision
in refining the numbers [8]. It is theoretically pos-
sible that small variations in a numerical parameter
cause large variations in the posterior probability of
interest. Van der Gaag and Renooij [17] found that
practical networks may indeed contain such parame-
ters. Because practical networks are often constructed
with only rough estimates of probabilities, a question
of practical importance is whether overall imprecision
in network parameters is important. If not, the effort
that goes into polishing network parameters might not
be justified, unless it focuses on their small subset that
is shown to be critical.

There is a popular belief, supported by some anecdo-
tal evidence, that Bayesian network models are overall
quite tolerant to imprecision in their numerical pa-
rameters. Pradhan et al. [14] tested this on a large
medical diagnostic model, the CPCS network [7, 16].
Their key experiment focused on systematic introduc-
tion of noise in the original parameters (assumed to be
the gold standard) and measuring the influence of the
magnitude of this noise on the average posterior prob-
ability of the true diagnosis. They observed that this
average was fairly insensitive to even very large noise.
This experiment, while ingenious and thought provok-
ing, had two weaknesses. The first of these, pointed
out by Coupé and van der Gaag [3], is that the ex-
periment focused on the average posterior rather than
individual posterior in each diagnostic case and how
it varies with noise, which is of most interest. The
second weakness is that the posterior of the correct
diagnosis is by itself not a sufficient measure of model
robustness. The weaknesses of this experiment were
also discussed in [6] and [9]. In our earlier work [9],
we replicated the experiment of Pradhan et al. using



Hepar II, a sizeable Bayesian network model for diag-
nosis of liver disorders. We systematically introduced
noise in Hepar II’s probabilities and tested the di-
agnostic accuracy of the resulting model. Similarly
to Pradhan et al., we assumed that the original set
of parameters and the model’s performance are ideal.
Noise in the original parameters led to deterioration
in performance. The main result of our analysis was
that noise in numerical parameters started taking its
toll almost from the very beginning and not, as sug-
gested by Pradhan et al., only when it was very large.
The region of tolerance to noise, while noticeable, was
rather small. That study suggested that Bayesian net-
works may be more sensitive to the quality of their nu-
merical parameters than popularly believed. Another
study that we conducted more recently [4] focused on
the influence of progressive rounding of probabilities
on model accuracy. Here also, rounding had an ef-
fect on the performance of Hepar II, although the
main source of performance loss were zero probabili-
ties. When zeros introduced by rounding are replaced
by very small non-zero values, imprecision resulting
from rounding has minimal impact on Hepar II’s per-
formance.

Empirical studies conducted so far that focused on the
impact of noise in probabilities on Bayesian network
results disagree in their conclusions. Also, the noise
introduced in parameters was usually assumed to be
random, which may not be a reasonable assumption.
Human experts, for example, often tend to be over-
confident [8]. This paper describes a follow-up study
that probes the issue of sensitivity of model accuracy
to noise in probabilities further. We examine whether
a bias in the noise that is introduced into the network
makes a difference. We enter noise in the parameters
in such a way that the resulting distributions become
biased toward extreme probabilities. We believe that
this offers a systematic way of modeling expert over-
confidence in probability estimates. Our results show
again that the diagnostic accuracy of Hepar II is sen-
sitive to imprecision in probabilities. It appears, how-
ever, that the diagnostic accuracy of Hepar II is less
sensitive to overconfidence in probabilities than it is to
random noise. We also test the sensitivity of Hepar II
to underconfidence in parameters and show that un-
derconfidence in paramaters leads to more error than
random noise.

The remainder of this paper is structured as follows.
Section 2 introduces the Hepar II model. Section 3
describes how we introduced noise into our probabili-
ties. Section 4 describes the results of our experiments.
Finally, Section 5 discusses our results in light of pre-
vious work.

2 THE Hepar II MODEL

Our experiments are based on Hepar II [10, 11], a
Bayesian network model consisting of over 70 vari-
ables modeling the problem of diagnosis of liver dis-
orders. The model covers 11 different liver diseases
and 61 medical findings, such as patient self-reported
data, signs, symptoms, and laboratory tests results.
The structure of the model, (i.e., the nodes of the
graph along with arcs among them) was built based
on medical literature and conversations with domain
experts and it consists of 121 arcs. Hepar II is a
real model and it consists of nodes that are a mix-
ture of propositional, graded, and general variables.
There are on the average 1.73 parents per node and
2.24 states per variable. The numerical parameters of
the model (there are 2,139 of these in the most recent
version), i.e., the prior and conditional probability dis-
tributions, were learned from a database of 699 real pa-
tient cases. Readers interested in the Hepar II model
can download it from Decision Systems Laboratory’s
model repository at http://genie.sis.pitt.edu/.

As our experiments study the influence of precision of
Hepar II’s numerical parameters on its accuracy, we
owe the reader an explanation of the metric that we
used to test the latter. We focused on diagnostic accu-
racy, which we defined in our earlier publications as the
percentage of correct diagnoses on real patient cases.
When testing the diagnostic accuracy of Hepar II, we
were interested in both (1) whether the most probable
diagnosis indicated by the model is indeed the correct
diagnosis, and (2) whether the set of w most probable
diagnoses contains the correct diagnosis for small val-
ues of w (we chose a “window” of w=1, 2, 3, and 4).
The latter focus is of interest in diagnostic settings,
where a decision support system only suggest possi-
ble diagnoses to a physician. The physician, who is
the ultimate decision maker, may want to see several
alternative diagnoses before focusing on one.

With diagnostic accuracy defined as above, the most
recent version of the Hepar II model reached the di-
agnostic accuracy of 57%, 69%, 75%, and 79% for win-
dow sizes of 1, 2, 3, and 4 respectively [12].

3 INTRODUCTION OF NOISE
INTO Hepar II PARAMETERS

When introducing noise into parameters, we used es-
sentially the same approach as Pradhan et al. [14],
which is transforming each original probability into
log-odds function, adding noise parametrized by a pa-
rameter σ (as we will show, even though σ is propor-
tional to the amount of noise, in our case it cannot be
directly interpreted as standard deviation), and trans-



Figure 1: Transformed (biased, overconfident) vs. original probabilities for various levels of σ.

forming it back to probability, i.e.,

p′ = Lo−1[Lo(p) + Noise(0, σ)] , (1)

where
Lo(p) = log10[p/(1− p)] . (2)

3.1 Overconfidence bias

Now, we designed the Noise() function as follows.
Given a discrete probability distribution Pr, we iden-
tify the smallest probability pS . We transform this
smallest probability pS into p′S by making it even
smaller, according to the following formula:

p′S = Lo−1[Lo(pS)− |Normal(0, σ)|] .

We make the largest probability in the probability dis-
tribution Pr, pL larger by precisely the amount by
which we decreased pS , i.e.,

p′L = pL + pS − p′S .

We are by this guaranteed that the transformed pa-
rameters of the probability distribution Pr′ add up to
1.0.

Figure 1 shows the effect of introducing the noise. As
we can see, the transformation is such that small prob-

abilities are likely to become smaller and large prob-
abilities are likely to become larger. Please note that
distributions have become more biased towards the ex-
treme probabilities. It is straightforward to prove that
the entropy of Pr′ is smaller than the entropy of Pr.
The transformed probability distributions reflect over-
confidence bias, common among human experts.

An alternative way of introducing biased noise, sug-
gested by one of the reviewers, is by means of build-
ing a logistic regression/IRT model (e.g., [1, 2, 15])for
each conditional probability table and, subsequently,
manipulating the slope parameter.

3.2 Underconfidence bias

Now, we designed the Noise() function as follows.
Given a discrete probability distribution Pr, we iden-
tify the highest probability pS . We transform this
largest probability pL into p′L by making it smaller,
according to the following formula:

p′L = Lo−1[Lo(pL)− |Normal(0, σ)|] .

We make the smallest probability in the probability
distribution Pr, pS larger by precisely the amount by
which we decreased pL, i.e.,

p′S = pS + pL − p′L .



Figure 2: Transformed (biased, underconfident) vs. original probabilities for various levels of σ.

We are by this guaranteed that the transformed pa-
rameters of the probability distribution Pr′ add up to
1.0.

Figure 2 shows the effect of introducing this noise. The
transformed probability distributions reflect undercon-
fidence bias.

3.3 Random noise

For illustration purpose, Figure 3 shows the transfor-
mation applied in our previous study [9]. For σ > 1
the amount of noise becomes so large that any value
of probability can be transformed in any other value.
This suggests strongly that σ > 1 is not really a region
that is of interest in practice. The main reason why we
look at such high σ values is that this was the range
used in Pradhan et al. paper.

4 EXPERIMENTAL RESULTS

We have performed an experiment investigating the
influence of biased noise in Hepar II’s probabilities
on its diagnostic performance. For the purpose of our
experiment, we assumed that the model parameters
were perfectly accurate and, effectively, the diagnos-
tic performance achieved was the best possible. Of
course, in reality the parameters of the model may not
be accurate and the performance of the model can be

improved upon. In the experiment, we studied how
this baseline performance degrades under the condi-
tion of noise, as described in Section 3.

We tested 30 versions of the network (each for a dif-
ferent standard deviation of the noise σ ∈< 0.0, 3.0 >
with 0.1 increments) on all records of the Hepar data
set and computed Hepar II’s diagnostic accuracy. We
plotted this accuracy in Figures 4 and 5 as a function
of σ for different values of window size w.

Figure 4: The diagnostic accuracy of Hepar II for
various window sizes as a function of the amount of
biased overconfident noise (expressed by σ)
.

It is clear that Hepar II’s diagnostic performance de-
teriorates with noise. In order to facilitate compari-
son between biased and unbiased noise and, by this,



Figure 3: Transformed (unbiased) vs. original probabilities for various levels of σ.

Figure 5: The diagnostic accuracy of Hepar II for
various window sizes as a function of the amount of
biased underconfident noise (expressed by σ)
.

judgment of the influence of overconfidence bias on
the results, we reproduce the experimental result of
[9] in Figure 6. The results are qualitatively similar,
although it can be seen that performance under over-
confidence bias degrades more slowly with the amount
of noise than performance under random noise. Perfor-
mance under underconfidence bias degrades the fastest
of the three. Figure 7 shows the accuracy of Hepar II
(w = 1) for biased and unbiased noise on the same
plot, where this effect is easier to see.

It is interesting to note that for small values of σ, such
as σ < 0.2, there is only a minimal effect of noise on
performance. This observation may offer some justi-
fication to the belief that Bayesian networks are not

Figure 6: The diagnostic accuracy of Hepar II for var-
ious window sizes as a function of amount of unbiased
noise (expressed by σ) [9].

too sensitive to imprecision of their probability param-
eters.

5 SUMMARY

This paper has studied the influence of bias in param-
eters on model performance in the context of a prac-
tical medical diagnostic model, Hepar II. We believe
that the study was realistic in the sense of focusing on
a real, context-dependent performance measure. Our
study has shown that the performance of Hepar II
is sensitive to noise in numerical parameters, i.e., the
diagnostic accuracy of the model decreases after intro-
ducing noise into numerical parameters of the model.



Figure 7: The diagnostic accuracy of Hepar II as a
function of the amount of noise (random, underconfi-
dent, and overconfident), window w = 1

While our result is merely a single data point that
sheds light on the hypothesis in question, it looks like
overconfidence bias has a smaller negative effect on
model performance than random noise. Underconfi-
dence bias leads to most serious deterioration of per-
formance. While it is only a wild speculation that
begs for further investigation, one might see our re-
sults as an explanation of the fact that humans tend
to be overconfident rather than underconfident in their
probability estimates.
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[10] Agnieszka Onísko, Marek J. Druzdzel, and Hanna
Wasyluk. Extension of the Hepar II model to



multiple-disorder diagnosis. In S.T. Wierzchoń
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Abstract 

Bias is intrinsic to observation and reasoning in 
both humans and automated systems. Bayesian 
Belief Networks (BBNs) are well suited for 
representing these biases and for applying bias 
models to improve reasoning practices, but there 
are a number of different ways that bias can be 
represented and integrated into reasoning 
processes using BBNs. In this paper, we describe 
a number of methods to model biases using 
BBNs and discuss the strengths and weaknesses 
of each method. 

1. INTRODUCTION 
Bias is intrinsic to observation and reasoning. Though the 
concept carries connotations of human judgment, bias 
also applies to automated systems, introduced by the 
limitations of their capabilities. Reasoning about 
information that includes bias (i.e., processed information, 
whether from human of machine) requires reasoning 
about the information, itself, and about the biases that 
influenced it. Humans do this naturally. In rich human-to-
human interactions, each person derives an understanding 
of the biases involved from shared context and estimates 
of the other’s attitudes and beliefs. In other circumstances, 
such as shallow person-to-person interactions (e.g., 
reading a restaurant review from an unknown person) or 
interactions involving automated processes (e.g., getting 
directions from a GPS; incorporating human reports into 
an automated decision aide; integrating contributions 
from multiple sensor systems in a data fusion system), 
biases and their influences need to be made explicit. As 
Hastie & Dawes (2001) argue, incorporating an explicit 
model of biases and their influences into reasoning 
processes can lead to more robust and accurate reasoning 
in both humans and automated systems. 
Bayesian Belief Networks (BBNs) are well suited for 
modeling biases in automated processing systems and 
decision aides. Many factors contribute to bias, 
interacting in a complex manner with each other and with 
the overall bias. BBNs represent the type of probabilistic 

influences and causal relationships required to capture 
this interaction (Pearl & Russell, 2000; Pearl, 2001). 
Furthermore, the graphical nature of BBNs further 
supports the expression of these relationships by 
providing an intuitive method to capture contributing 
factors and influences. In addition to providing an 
applicable modeling approach for capturing biases, BBNs 
are already applied in many fields where consideration of 
biases has the potential to make significant contributions 
to performance and realism, such as military intelligence 
(Koelle et al., 2006; Pfautz et al., 2005a; Pfautz et al., 
2005b), medical diagnostics (Kononenko, 1993; 
Parmigiani, 2002; Nikovski, 2000), and human behavior 
modeling (Guarino et al., 2006; Hudlicka & Pfautz, 2002; 
Neal Reilly et al., 2007; Pfautz & Lovell, 2008). 
To advance the incorporation of bias models in these 
fields and others, in this paper we discuss the role of 
biases in the decision making process (which includes, for 
our purposes here, observation, reasoning, and decision 
selection), several ways bias can be modeled using BBNs, 
and the benefits and drawbacks of each of these methods. 

2. BACKGROUND 
The study of biases to date largely focuses on cognitive 
biases. Several attempts have been made to categorize 
different types of bias and to identify how they affect the 
decision-making process. One method for classification is 
to look at the source of the bias, for instance, dividing 
uncertainty into forms that come from computational 
models as opposed to human interpretation (Schunn, 
Kirschenbaum, & Trafton, 2003). Another method is to 
examine the use of bias and uncertainty in the decision-
making process, resulting in categories, which has 
resulted in categories such as executional uncertainty, 
goal uncertainty, and environmental uncertainty (Yovits 
& Abilock, 1974). Another set of classifications 
developed by Lipshitz and Strauss (1996) divides forms 
of uncertainty into inadequate understanding, lack of 
information, and conflicted alternatives. Similar 
taxonomies were developed by Schunn et al. (2003) and 
Klein (1998).  These taxonomies can prove to be useful in 
attempts to develop descriptive models of human 
reasoning.  For example, Lipshitz & Straus (1996) discuss 



five strategies for reasoning under uncertainty: 1) reduce 
uncertainty by collecting more information; 2) use 
assumptions to fill in gaps of knowledge; 3) weigh pros 
and cons; 4) forestall; and 5) suppress uncertain 
information. While these classifications of uncertainty 
and an understanding of biases they introduce to decision-
making have been useful in the development of models of 
human behavior, they may not generalize to other types of 
biases. 

3. ROLE OF BIAS 
For the purpose of incorporating consideration of bias into 
reasoning process, we are concerned with bias in two 
separate roles. First, because bias impacts the creation of 
the products of observations and reasoning processes, it 
must be accounted for in the interpretation of those 
products. Limitations, methods, and, in the case of 
humans, preferences and cognitive biases introduce a 
systematic modification into an observed product. This 
modification must be identified and defined to properly 
reason based on these products. Elaborating on the earlier 
example, consider a negative review of a French 
restaurant written by someone who dislikes French food. 
Whether he is cognizant of this influence or not, the 
product of his observation—the review—incorporates his 
pre-existing preference. To reason based on this review, 
anyone reading it needs to recognize and correct for the 
preferences of the reviewer. Automated systems may not 
have personal preferences, but their technical limitations 
can introduce similar biases. Consider a sensor that 
detects the presence of humans based on heat signatures. 
Because readings are based on the contrast between the 
person and the ambient temperature, this sensor has a 
higher occurrence of false negatives when the temperature 
is above body temperature. So, a reading showing no 
people present on a 100°F day may be disingenuous 
because it is the product of both the reading and the 
hidden bias introduced by its technical limitations. As 
with the previous example of human bias, the consumer 
of this automated report—human or automated system—
must reason about both the contributing bias and the 
information, itself, to accurately use the product.  
Second, bias impacts the reasoning process applied to 
make decisions based on information products. The 
consumer introduces its own systematic modification of 
the information based both on its own biases and on the 
perceived biases incorporated in the product. For 
example, the analysis system using reports from the heat 
sensor may incorporate the fact that it does not function if 
the temperature is over 100°F , and disregard the sensor’s 
information products on a particularly hot days. Similarly, 
the analysis may favor one sensor type over another for 
gathering specific information, regardless of specific 
conditions (e.g., an analysis system may trust a radar over 
an eye witness due to a bias against non-technical 
sources). In this role, bias is not considered solely in the 
context of information production (though this may be 

considered); these biases consider how the information is 
being used and the reasoning processes involved. 
These two roles are cyclic, as the results of a reasoning 
process can be viewed as its own information product. If 
there are known biases in that product, an estimate of 
those biases may become an element in a new consumer’s 
reasoning processes, alongside other reasoning biases of 
the consumer. When the information product being 
interpreted pertains to an observable truth (e.g., a sensor 
detecting some object), understanding the influence of 
bias allows the consumer to determine the accuracy of the 
product and to integrate that accuracy information into its 
own reasoning processes. When the product pertains to a 
subjective belief or assessment (e.g., an opinion about a 
restaurant), understanding the contributing biases allows 
the consumer to determine how to integrate those biases 
with its own biases. 
These two roles comprise use cases for bias models, each 
with their own concerns motivating different design 
decisions. In the interpretation role, a model of bias can 
serve as a mechanism to correct for biases. Here, the 
details of the sources of those biases may not necessarily 
be important. Rather, it is important to correct for errors 
caused by biases. In the reasoning role, a model can be 
used to self-regulate against the introduction of additional 
biases, as well as to increase the accuracy of the 
consumer’s estimation of biases contributing to a product, 
which allows information to be incorporated into the 
consumers own reasoning at the highest fidelity possible. 
Here, the details of the sources of those biases may be 
extremely important, as different meta-information and 
information may have a direct influence in the reasoning 
process. 

4. THE STRUCTURE OF BIAS 
As a concept, bias is closely related to meta-information. 
Meta-information is information about information. That 
is, information that serves to qualify and give context to 
other information. For example, if a sensor reading is 
information, the fact “the reading is two weeks old” is 
meta-information—information about the report. For a 
more extensive discussion of meta-information, see 
(Guarino et al., 2006). Whereas meta-information is a 
statement of fact (“the report is old”), bias is the effect 
meta-information has on observations and reasoning 
processes (“because the report is old, its contents are 
probably inaccurate”). Thus, information types can be 
divided into three levels:  
1) the information, itself (e.g., the contents of the report) 
2) meta-information (e.g., information about the report) 
3) biases (e.g., the impact information about the 

report—the meta-information—has on the 
information in the report) 

Biases are derived from meta-information by combining 
that meta-information with elements of the information. 



For example, a two week old sensor reading showing the 
location of people in an open setting would not convey 
their current location with high confidence, while a two 
week old sensor reading showing the location of buildings 
would represent their current position with a high degree 
of certainty. So, in this example, the bias (“the 
information in the reading is wildly inaccurate”) is 
derived from a factor of the information (“people move 
frequently”) combined with meta-information (“the report 
is ten days old”). This same logic holds for subjective 
assessments. In the restaurant review example,  
• Meta-information: The reviewer hates French food 
• Information: The restaurant is French 
• Bias: The reviewer was predisposed to hate the 

restaurant, regardless of its quality 
These definitions of information types and the derivation 
of bias are the basis for the structure of our bias models. 

5. BIAS MODELS 
In this section, we present a number of ways to model 
bias, and we discuss the advantages and disadvantages of 
each model in light of the roles of bias (see section 3) and 
additional concerns about model use and creation. Bias 
models vary along two dimensions: the level of detail 
expressed about the bias and the level of integration with 
the reasoning model to which it is meant to contribute. 

5.1 IMPLICIT BIAS MODEL 

The implicit bias model does not contain a representation 
of the bias in its structure. Instead bias is expressed in the 
relationship between nodes of the existing elements of the 
model. Insomuch as it exists anywhere, the bias exists in 
each node’s Conditional Probability Tables (CPTs). The 
effect this bias exerts on the product of the model—the 
observation, decision, behavior, etc.—is a change in the 
beliefs of the nodes. The bias, itself, is not explicitly 
represented separate from the state information of the 
model. For example, see Figure 5-1, an implicit bias 
model of our previous heat sensor example. 

 

Figure 5-1: Implicit bias model structure of the heat 
sensor example. Bias is represented only in the CPTs. 

The sole factor represented as contributing to whether 
people are present is the number of people detected by the 
sensor. The bias in this model is expressed as uncertainty 
in the outcome. For positive readings, the likelihood of 

people being present is high. Because there are conditions 
that can increase the likelihood of false negatives, though, 
a negative reading leads to a lower certainty of people not 
being present (see Figure 5-2). 

  
(a)       (b) 

Figure 5-2: (a) left, shows the high belief that people are 
present based on a positive reading of the heat-based 

sensor; (b), right, shows a less certain belief that people 
are not present based on a negative reading of the same 
sensor. The bias is reflected in the increased uncertainty 

due to the possibilities of false negatives. 

The implicit bias model reflects the simplest case. Though 
it does reflect the reality of the situation, this model is 
insufficient in most other ways. Because elements that 
contribute to the bias (i.e., meta-information) are not 
explicitly represented, the bias is reflected in a permanent 
change in confidence rather than reflecting specific 
conditions (e.g., because the ambient temperature is not 
explicitly represented, the confidence cannot change 
based on the specific value of that variable). Instead, this 
model merely represents that bias is possible in the 
reasoning process. This model may be sufficient for 
representing bias while interpreting data because the 
value of the relevant meta-information may not be 
available to the consumer. However, because it does not 
explicitly describe the contributing factors and applies the 
bias as a consistent change in certainty rather than on a 
case-by-case basis, it is ineffective at providing a nuanced 
bias model for reasoning. 

5.2 INTEGRATED BIAS MODEL 

In an integrated model, the factors that contribute to bias 
(i.e., meta-information) are explicitly represented as 
nodes in the network and are fully integrated into the 
model of the observation, reasoning process, behavior, 
etc. The bias—the effect of this meta-information—is still 
contained in the CPTs. Like the implicit model, there is a 
bias in the computational process, but that bias is not 
explicitly represented as a node in the BBN. Figure 5-3 
expands Figure 5-1 into an integrated model by adding 
Ambient Temperature as an input node. 



 

Figure 5-3: An integrated bias model of the heat sensor 
example. Meta-informational factors are represented. Bias 

is represented in the CPTs. 

This inclusion of factors that moderate biases allows the 
bias model to account for the exact value of relevant 
meta-information, allowing the bias to change 
dynamically (see Figure 5-4). Furthermore, because each 
factor is expressed independently, their combined effect 
on the reasoning process can be nuanced. 

 
(a) 

 
(b) 

Figure 5-4: Integrated bias model of the heat sensor 
example. In (a), a high ambient temperature increases 

uncertainty. In (b), a low ambient temperature decreases 
uncertainty. The bias reacts in real-time to conditions, 

increasing accuracy of the model. 

In an integrated bias model, factors contributing to bias 
are explicitly expressed, so these models are more 
accurate, and, therefore, better than implicit models in an 
interpretation role. However, as in the implicit model, the 
effect of these factors is still captured fully in the CPTs. 
For this reason, expansion of the model is difficult, as 
additions could require significant modifications to those 
CPTs. Therefore, in a reasoning role it is difficult to adapt 

parts of an integrated bias model for reuse in a larger 
reasoning model.  

5.3 CONSOLIDATED UNKNOWN BIAS MODEL 

In a consolidated unknown bias model, bias is expressed 
as a single node in the network, with connections to each 
of the nodes in the network. This single node is a “black 
box” meant to represent the amount of bias in the model 
with no concern for the cause of the bias (note: this node 
could be a placeholder for bias calculated using the 
standalone bias model discussed in sections 5.5 and 5.6). 
For an example of a consolidated unknown bias model, 
see Figure 5-5. 

 

Figure 5-5: A consolidated unknown bias model, where 
the strength of the bias present is represented by a single 

node, which connects to all elements of the reasoning 
model. 

This model does contain a mechanism to express bias in 
every part of the model, but it makes a large assumption 
about the distribution of that bias. The effect bias has on 
each element is expressed in the CPTs, which means that 
the specific effects of the bias strength is individual to 
each node, but the strength is shared. This model does 
represent the effect of bias on a gross level, so it can be 
used somewhat in an interpretation role, albeit with lower 
fidelity since all biases are expressed in a single 
dimension. The effect of the bias is hidden in the CPTs, 
and the factors that contribute to the bias are completely 
unstated, so in a reasoning role biases cannot be utilized 
by addition elements of a reasoning model. 

5.4 DISTRIBUTED UNKNOWN BIAS MODEL 

The distributed unknown bias model represents bias as a 
number of “black boxes”, each having an effect on one or 
more elements of the reasoning model. Again, as black 
boxes, the factors contributing to each bias are not 
explicit. Bias nodes provide an overall representation of 
the biases in the reasoning components to which they are 
attached. For an example, see Figure 5-6. 



 

Figure 5-6: A distributed unknown bias model, where bias 
is represented as a number of unknowns, each connected 

to elements of the reasoning model. 

Distributed unknown bias models are superior to 
consolidated unknown bias models because they express a 
more nuanced situation reflecting the susceptibility of 
various elements of the model to different biases. The bias 
nodes play a similar role to meta-information nodes in an 
integrated bias model, but, as black-box bias modules, 
they consolidate all factors contributing to a particular 
bias into a single node. In an interpretation role, these 
models are more useful than implicit bias models because 
at least some gauge of the strength of bias active in each 
element is present. However, unlike the integrated bias 
model, the meta-information factors that affect their 
strength are unknown. This reduces the already limited 
ability of bias factors in distributed unknown bias models 
to be integrated into an external reasoning model. Unlike 
the models representing meta-information factors 
explicitly, the ability to add factors is not a concern 
because they are aggregated together in a single node, so 
no CPTs need to be changed. However, without 
expressing the composition of the bias, the bias strengths 
and relationships are highly subjective. 

5.5 STANDALONE BIAS MODEL 

A standalone bias model expresses bias in an independent 
model separate from the reasoning model. This is distinct 
from the integrated model where factors are represented 
but are integrated with the reasoning model itself. The 
measure of bias resulting from this model can then be 
applied to the reasoning model, filling the black-box need 
of the consolidated or distributed bias model, or used 
alone. Bias is expressed explicitly as a single node. Each 
element in a reasoning model where bias is a factor would 
require an independent bias model. The mechanism by 
which each factor contributes to bias is hidden in the 
CPTs. For an example of a standalone bias model, in the 
heat-based human detector the meta-information factor 
“Ambient Temperature” could be expressed (alongside 
any other relevant factors) as explicit nodes. The effect 
that each factor has (i.e., that high temperature increases 
the uncertainty of negative readings) is still expressed 
only in the CPTs. This example is depicted in Figure 5-7. 

 

Figure 5-7: A standalone bias model of detection bias for 
a heat-based person detector. The product of this 

standalone model could then be applied in a reasoning 
model. 

Like the integrated model, because standalone bias 
models represent the contribution of each of a set of 
factors to a bias explicitly, these models can dynamically 
capture bias, providing greater accuracy. Expressing 
factors in a separate model allows them to easily be 
applied as a factor in a large or frequently changing 
model. For this reason, standalone bias models excel in 
circumstances where a bias model might be applied 
independently at multiple points in a reasoning process. 
For example, consider a data fusion application that 
receives sporadic inputs from a host of sensors. Rather 
than use a single monolithic model that integrates 
information from all sensors, standalone bias models 
could be used to dynamically assemble a model that 
represents only those sensors that are currently active. 
Because the majority of the sensors are silent at any given 
time, this improves the efficiency of bias application in 
such conditions. However, this autonomy has a tradeoff in 
that bias is consolidated into a single metric resulting in 
the influence of specific pieces of meta-information 
having limited nuance in their effect on the reasoning 
process. Furthermore, an element or even a network 
fragment might be repeated in multiple standalone models 
leading to wasteful repetitive computation. Nevertheless, 
due to the explicit representation of meta-informational 
factors and simple portability, this type of model applies 
well in both interpretation and reasoning roles. 

5.6 FULLY ENUMERATED STANDALONE BIAS 
MODEL 

Fully enumerated standalone bias models explicitly 
represent both the meta-information that causes the bias 
and the element that defines how that meta-information 
contributes to bias (as discussed in Section 4). Rather than 
a single model for each bias type as with the standalone 
bias model, fully enumerated standalone bias model have 
a single model for each element of the information that, 
when paired with meta-information, could introduce a 
bias. These models express all factors contributing to bias 
and the bias itself as elements in the network, rather than 
being contained in the CPTs. For an example of fully 
enumerated standalone bias models, see Figure 5-8. 



 
(a) 

 
(b) 

Figure 5-8: Fully enumerated standalone bias models for 
(a) bias related sensors whose performance is affected by 

temperature, and (b) bias related to sensors whose 
performance is affected by power supply. 

Similar to the way standalone bias model can be applied 
dynamically based on the biases present, fully enumerated 
standalone bias models can be applied based on the 
definition of the system creating the product. So, a system 
using these needs a model for each possible property of 
the data sources. It can then apply them based on the 
definition of each source. For example, in a fusion system 
designed to dynamically calculate bias for any 
configuration of sensors, a bias model could be 
automatically assembled for each sensor based on the 
operating characteristics of that sensor. The heat sensor, 
defined as requiring low temperature, would incorporate 
biases related to that requirement. Because these networks 
determine the bias introduced by each factor separately, 
their integration into a reasoning process can be more 
nuanced than representations that consolidate bias into a 
single measure. This, along with the transparency of 
contributing factors, makes them ideal in a reasoning role. 

6. CONCLUSIONS 
There are numerous ways to represent bias as a BBN, 
each of which has its own strengths and weaknesses. 
Models of bias provide a mechanism to correct for bias to 
increase accuracy and to integrate biased information into 
human and automated reasoning processes. The most 
advantageous form of model for a particular situation 
depends on its intended use. 
By systematically examining the composition of bias, we 
have identified factors in its composition. The various 
model types we discussed make use of this definition by 
incorporating various factors at a range of fidelities, 
making specific elements more or less accessible. 
Additionally, we have defined two separate roles bias can 
play in reasoning processes. These roles form the basis for 
use cases, which we have used to evaluate each of the 
types of models. Of the models discussed, the more 

nuanced the application of bias to elements that 
contributed to the production of information, the greater 
the benefit in accurately interpreting the product of 
reasoning processes without introducing additional biases. 
To reason based on those products, those models that 
include the greatest level of detail and autonomy for 
factors that contribute to bias can be more easily and 
accurately integrated into reasoning processes. 

7. DISCUSSION 
This set of bias representations encapsulates a significant 
range of capabilities and tradeoffs. Among the most 
prominent difference between these representations is the 
degree of specificity about the sources of bias. In certain 
applications, like accounting for bias from a technical 
sensor, these bias factors can be easily identified and 
described. In others, like accounting for bias in human 
reasoning, these sources are obscured and can only be 
hypothesized through intense effort, and are largely 
unverifiable. In light of these impediments, going forward 
we need to determine what guidelines could be 
established to govern the applicability of different styles. 
How can uncertainty about the causes of bias be 
mitigated? Is there a way to create representations that 
don’t incorporate unspecified sources of bias, but that are 
applicable in situations where those sources are vaguely 
defined? Or, are there ways to use black box bias 
measures without fully sacrificing the attribution that 
identifying specific sources provides? Is this attribution of 
bias to particular sources necessarily important (e.g., for 
accountability, trust)? What conditions of use make 
attribution important (e.g., frequent updates, logic 
exposed to the user)? The complexity of specificity 
results, too, in a gain in precision in the end bias measure. 
Can factors contributing to bias be calculated precisely 
enough to warrant this precision in the end product? 
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