
Refractor Importance Sampling

Haohai Yu and Robert A. van Engelen
Department of Computer Science

Florida State University
Tallahassee, FL 32306-4530 USA
{hyu,engelen}@cs.fsu.edu

Abstract

In this paper we introduce Refractor Impor-
tance Sampling (RIS), an improvement to re-
duce error variance in Bayesian network im-
portance sampling propagation under eviden-
tial reasoning. We prove the existence of a
collection of importance functions that are
close to the optimal importance function un-
der evidential reasoning. Based on this theo-
retic result we derive the RIS algorithm. RIS
approaches the optimal importance function
by applying localized arc changes to minimize
the divergence between the evidence-adjusted
importance function and the optimal impor-
tance function. The validity and performance
of RIS is empirically tested with a large set
of synthetic Bayesian networks and two real-
world networks.

1 Introduction

The Bayesian Network (BN) [Pearl, 1988] formalism
is one of the dominant representations for modeling
uncertainty in intelligent systems [Neapolitan, 1990,
Russell and Norvig, 1995]. A BN is a probabilistic
graphical model of a joint probability distribution over
a set of statistical variables. Bayesian inference on a
BN answers probabilistic queries about the variables
and their influence relationships. The posterior prob-
ability distribution is computed using belief updating
methods [Pearl, 1988, Guo and Hsu, 2002]. Exact in-
ference is NP-hard [Cooper, 1990]. Thus, exact meth-
ods only admit relatively small networks or simple
network configurations in the worst case. Approx-
imations are also NP-hard [Dagum and Luby, 1993].
However, approximate inference methods have any-
time [Garvey and Lesser, 1994] and/or anywhere
[Santos et al., 1995] properties that make these meth-
ods more attractive compared to exact methods.

Stochastic simulation algorithms, also called stochas-
tic sampling or Monte Carlo (MC) algorithms,
form one of the most prominent subclasses of
approximate inference algorithms of which Logic
Sampling [Henrion, 1988] was the first and sim-
plest sampling algorithm. Likelihood weighting
[Fung and Chang, 1989] was designed to overcome
the poor performance of logic sampling under eviden-
tial reasoning with unlikely evidence. Markov Chain
Monte Carlo (MCMC) forms another important group
of stochastic sampling algorithms. Examples in this
group are Gibbs sampling, Metropolis sampling and
hybrid-MC sampling [Geman and Geman, 1984,
Gilks et al., 1996, MacKay, 1998, Pearl, 1987,
Chavez and Cooper, 1990]. Stratified sam-
pling [Bouckaert, 1994], hypercube sampling
[Cheng and Druzdzel, 2000c], and quasi-MC methods
[Cheng and Druzdzel, 2000b] generate random sam-
ples from uniform distributions using various methods
to improve sampling results. The importance sam-
pling methods [Rubinstein, 1981] are widely used in
Bayesian inference. Self Importance Sampling (SIS)
[Shachter and Peot, 1990] and Adaptive Importance
Sampling (AIS-BN) [Cheng and Druzdzel, 2000a] are
among the most effective algorithms.

In this paper we prove that the importance functions of
an evidence-updated BN can only approach the opti-
mal importance function when the BN graph structure
is modified according to the observed evidence. This
implies the existence of a collection of importance func-
tions with minimum divergence to the optimal impor-
tance function under evidential reasoning. Based on
this result we derive our Refractor Importance Sam-
pling (RIS) class of algorithms. In contrast to AIS-BN
and SIS methods, RIS removes the lower bound that
prevents the updated importance function to approach
the optimal importance function. This is achieved by
a graphical structure “refractor”, consisting of a lo-
calized network structure change that minimizes the
divergence between the evidence-adjusted importance
function and the optimal importance function.



The remainder of this paper is organized as follows.
Section 2 proves the existence of a lower bound on the
divergence to the optimal importance function under
evidential reasoning with a BN. The lower bound is
used to derive the class of RIS algorithms introduced
in Section 3. Section 4 empirically verifies the proper-
ties of the RIS algorithms on a large set of synthetic
networks and two real-world networks, and compares
the results to other importance sampling algorithms.
Finally, Section 5 summarizes our conclusions and de-
scribes our future work.

2 Importance Function Divergence

In this section we first give BN definitions and briefly
review importance sampling. We then give a KL-
divergence lower bound for importance sampling er-
ror variance. We prove the existence of a collection of
importance functions that approach the optimal im-
portance function by adjusting both the quantitative
and qualitative components of a BN under dynamic
updating with evidence.

2.1 Definitions

The following definitions and notations are used.

Def. 1 A Bayesian network BN = (G,Pr) is a DAG
G = (V,A) with vertices V and arcs A, A ⊆ V×V.
Pr is the joint probability distribution over the discrete
random variables (vertices) V defined by Pr(V) =∏
V ∈V Pr(V | π(V )). The set of parents of a vertex

V is π(V ). The conditional probability tables (CPT)
of the BN assign values to Pr(V | π(V )) for all V ∈ V.

The graph G induces the d-separation criterion
[Pearl, 1988], denoted by 〈X,Y | Z〉, which implies
that X and Y are conditionally independent in Pr
given Z, with X,Y,Z ⊆ V.

Def. 2 Let BN = (G,Pr) be a Bayesian network.

• The combined parent set of X ⊆ V is defined by
π(X) =

⋃
X∈X π(X ) \X.

• Let An(·) denote the transitive closure of π(·),
i.e. the ancestor set of a vertex. The combined
ancestor set of X ⊆ V is defined by An(X) =⋃

X∈X An(X) \X.

• Let δ : V → IN denote a topological order of the
vertices such that Y ∈ An(X )→ δ(Y ) < δ(X ).
The ahead set of a vertex X ∈ V given δ is defined
by Ah(X) = {Y ∈ V | δ(Y ) < δ(X)}.

2.2 Importance Sampling

Importance sampling is an MC method to improve the
convergence speed and reduce the error variance with
probability density functions. Let g(X) be a func-
tion of m variables X = {X1, . . . , Xm} over domain
Ω ⊆ IRm, such that computing g(X) for any X is
feasible. Consider the problem of approximating I =∫

Ω
g(X)dX using a sampling technique. Importance

sampling approaches this problem by rewriting I =∫
Ω
g(X)
f(X)f(X)dX, where f(X) is a probability density

function over Ω, often referred to as the importance
function. In order to achieve minimum error variance
equal to σ2

f(X) = (
∫

Ω
|g(X)|dX)2 − I2, the importance

function should be f(X) = |g(X)|(
∫

Ω
|g(X)|dX)−1, see

[Rubinstein, 1981]. Note that when g(X) > 0 the op-
timal probability density function is f(X) = g(X)I−1

and σ2
f(X) = 0. It is obvious that in most of cases it is

impossible to obtain the optimal importance function.

The SIS [Shachter and Peot, 1990] and AIS-BN
[Cheng and Druzdzel, 2000a] sampling algorithms are
effective methods for approximate Bayesian inference.
These methods attempt to approach the optimal im-
portance function through learning by dynamically ad-
justing the importance function during sampling with
evidence. To this end, AIS-BN heuristically changes
the CPT values of a BN, a technique that has been
shown to significantly improve the convergence rate of
the approximation to the exact solution.

We use the following definitions for sake of exposition.

Def. 3 Let BN = (G,Pr) be a Bayesian network with
G = (V,A) and evidence e for variables E ⊆ V. A
posterior BN e of the BN is some (new) network de-
fined as BN e = (Ge,Pre) with graph Ge over variables
V\E, such that BN e exactly models the posterior joint
probability distribution Pre = Pr(· | e).

A typical example of a posterior BN e is a BN com-
bined with an updated posterior state as defined by
exact inference algorithms, e.g. using evidence absorp-
tion [van der Gaag, 1996]. Approximations of BN e

are used by importance sampling algorithms. These
approximations consist of the original BN with all ev-
idence vertices ignored from further consideration.

Def. 4 Let BN = (G,Pr) be a Bayesian network with
G = (V,A) and evidence e for variables E ⊆ V.
The evidence-simplified ESBN e of BN is defined by
ESBN e = (G′e,Pr′e), where G′e = (V′e, A′e), V′e =
V \E, and A′e = {(X,Y ) | (X,Y ) ∈ A

∧
X,Y /∈ E}.

The joint probability distribution Pr′e of an evidence-
simplified BN approximates Pre. For example, SIS
and AIS-BN adjust the CPTs of the original BN.



2.3 KL-Divergence Bounds

We give a lower bound on the KL-divergence
[Kullback, 1959] of the evidence-simplified Pr′e from
the exact Pre. The lower bound is valid for all varia-
tions of Pr′e, including those generated by importance
sampling algorithms that adjust the CPT.

Theorem 1 Let ESBN e = (G′e,Pr′e) be an evidence-
simplified BN given evidence e for E ⊆ V. If Pr′e(V |
πe(V )) = Pr(V | π(V ), e)) for all V ∈ V then the KL-
divergence between Pre and Pr′e is minimal and given
by ∑

X∈X

∑
Cfg(X,π(X))

Pr(x, π(x) | e) ln Pr(x | π(x)) +

∑
X∈X

∑
Cfg(X,π(X))

Pr(x, π(x) | e) ln
1

Pr′e(x | πe(x))
+

∑
Cfg(π(E))

Pr(π(e) | e) ln
∏
e∈e

Pr(e | π(e))− ln Pr(e) (1)

where X = V \E.

Proof. See Appendix A. 2

Theorem 1 bounds the error variance from below,
which is empirically verified for SIS and AIS-BN in
the results Section 4. The divergence Eq. (1) is zero
when specific conditions are met as stated below.

Corollary 1 Let ESBN e = (G′e,Pr′e) be an evidence-
simplified BN given evidence e for E ⊆ V. If π(E) ∩
(V \E) = ∅, then Pr′e = Pre.

Proof. See Appendix B. 2

Hence, the optimal importance function is obtained
when all evidence vertices are clustered as roots in G.

We will now show how Pr′e can approach the optimal
Pre without restrictions. For sake of explanation, the
following widely-held assumptions are reiterated:

Assumption 1 The topological order δ of a BN and
its posterior version δe of BN e are consistent. That is,
δe(Y ) < δe(X)→ δ(Y ) < δ(X) for all X,Y ∈ V \E.

Assumption 1 is reasonable for the following facts:

1. According to chain rule, a BN can be built up in
any topological order and all of them describe the
same joint probability distribution.

2. Although there has never been a widely accepted
definition of what causality is, it is widely ac-
cepted that the fact of observing evidence for ran-
dom variables should not change the causality re-
lationship between the variables.

Theorem 2 Let BN e(Ge,Pre) be the posterior of a
BN = (G,Pr) given evidence e for E ⊆ V. If X /∈
An(E) for all X ∈ V \ E, then Pre(X | Ahe(X)) =
Pr(X | π(X)). The evidence vertices in π(X) take con-
figurations fixed by e, that is Pr(X | π(X)) = Pr(X |
π(X) \E, e1, . . . , em) for all ei ∈ π(X) ∩E.

Proof. See [Cheng and Druzdzel, 2000a]. 2

Hence, to compute the posterior probability of a vertex
that is not an ancestor of an evidence vertex, there is
no need to change the parents of the vertex or its CPT.
For vertices that are ancestors of evidence vertices,
we use Bayes’ formula and d-separation to explore the
effects of evidence on those vertices. Without loss of
generality, only one evidence vertex is considered. The
result applies to an evidence vertex set by transitivity.

Lemma 1 Let BN e(Ge,Pre) be the posterior of a
BN = (G,Pr) given evidence e = {e} for E ∈
V. Let X ∈ An(E). Then, Pre(X | Ahe(X)) =
Pr(e|X,Ah(X))
Pr(e|Ah(X)) Pr(X | π(X)).

Proof. Because Ahe(X) = Ah(X) by As-
sumption 1, we have Pre(X | Ahe(X)) =
Pre(X,Ah(X))
Pre(Ah(X)) = Pr(X,Ah(X)|e)

Pr(Ah(X)|e) = Pr(X,Ah(X),e)
Pr(Ah(X),e) =

Pr(e|X,Ah(X)) Pr(X,Ah(X))
Pr(e|Ah(X)) Pr(Ah(X)) =Pr(e|X,Ah(X))

Pr(e|Ah(X)) Pr(X | π(X))
by using Theorem 2. 2

Theorem 2 and Lemma 1 show that if we have Pr(e |
X,Ah(X)) and Pr(e | Ah(X)) for all X ∈ An(E) we
can derive Pre(X | Ahe(X)) to compute Pre(V) =∏
V ∈An(E) Pr(V | π(V ))

∏
V 6∈An(E) Pre(V | Ahe(V ))

for the optimal importance function. However, there
are two problems to derive Pre. Firstly, Ah(X) is too
large to construct a posterior BNe for Pre in practice.
Secondly, instead of the exact Pre(X | Ahe(X)) we
have an estimate by importance sampling.

The parent sets of X ∈ An(E ) can be minimized by
exploiting d-separation. Let αe(X) ⊆ X ∪ Ah(X) de-
note the minimal vertex set that d-separates evidence
E and X ∪ Ah(X), thus 〈E,X ∪ Ah(X) | αe(X)〉.
We will refer to αe(X) as the “shield” of X given
E. Let βe(X) ⊆ Ah(X) denote the minimal ver-
tex set that d-separates evidence E and Ah(X), thus
〈E,Ah(X) | βe(X)〉. We explore the relationship be-
tween αe(X) and βe(X) below.

Lemma 2 Let BN e(Ge,Pre) be the posterior of a
BN = (G,Pr) given evidence e = {e} for E ∈ V.
Then, βe(X) ⊆ (αe(X)\X)∪π(X) for all X ∈ An(E).

Proof. See Appendix C. 2

Therefore, we can approach the optimal importance
function Pre(X | Ahe(X)) by estimation of Pre(X |
(αe(X) \X) ∪ π(X)) from importance samples.



Input: Evidence E ∈ V and X ∈ An(E)
Output: The set S = αe(X)
Data: array A, queue Q
A← topSortδ(Ah(X));
S ← {X};
for i← |A| to 1 do

Q← ∅;
push(Q, A[i]);
while Q 6= ∅ do

V ← pop(Q);
if V = E then S ← S ∪ {A[i]}; break;
if V 6∈ S ∧ V ∈ An(E) ∧X 6∈ An(V ) then

push(children(V ));
end

end
end

Algorithm 1: Computing the Shield αe(X)

3 Refractor Importance Sampling

The RIS algorithm modifies the BN structure accord-
ing to the shield αe(X) for vertices X ∈ An(E) by
expanding the parent set of X and adjusting its CPT
accordingly. Visually in the graph, RIS refracts arcs
from the evidence vertices, which inspired the choice
of name for the method. The algorithms and general
procedure of RIS are introduced in this section.

3.1 Computing the Shield

Alg. 1 computes αe(X) in O(|A|) worst-case time, as-
suming An(·) is determined in unit time (e.g. using a
lookup table). Function topSortδ topologically sorts
the set Ah(X) by topological order δ over V of the
BN. Note that the shield αe(X) can be computed in
advance for each X ∈ V given evidence nodes E.

3.2 Refractor Procedure

Alg. 2 modifies the graphical structure of BN. The time
complexity of this algorithm is O(|V||A|) if |E| � |V|,
otherwise it is O(|V|2|A|). The CPT of a vertex X is
updated by populating the expanded entries αe(X) \
{X} using sampling data (described in Section 3.4).

Fig. 1 shows an example refractored BN using Alg. 2.
E is the evidence node. Here, αe(C) = {A} and
αe(B) = {A}. Arcs A → B and A → C are added.
Note that arc A → B adjusts for the fact that the
influence relationship between A and B has changed
through evidence E. Arc E → D is no longer required
and can be removed as in [van der Gaag, 1996].

Input: BN = (G,Pr), evidence e for E ⊆ V
Output: refractored BN e

foreach E ∈ E do
foreach X ∈ An(E) do

expand πe(X) = (αe(X) \ {X}) ∪ π(X);
update the CPT of X;

end
end

Algorithm 2: Refractor Procedure

A B

C

E

D

A B

C

D

Figure 1: Refractor Example

3.3 General RIS Procedure

RIS utilizes both the qualitative and quantitative
properties of a BN to approach the optimal impor-
tance function. The general procedure of RIS is:

1. The structure of the BN is modified by Algo-
rithms 1 and 2. The CPTs of (a subset of) ances-
tor vertices of evidence vertices are expanded.

2. Update the CPT values through some specific
learning algorithm (see Section 3.4 for details).

3. Sample the BN with an importance sampling al-
gorithm using the new importance function.

3.4 Variations of RIS

Step 1 modifies the BN structure significantly, espe-
cially when the ancestor sets of evidence vertices are
large, e.g. when evidence vertices are leafs. This in-
creases the complexity of the BN. However, the effect
of evidence on other vertices is attenuated when the
path length between the evidence and the vertices is
increased [Henrion, 1989]. Therefore, instead of modi-
fying all ancestors An(E) of evidence E in Step 1, it is
generally sufficient to select a subset of ancestors such
as the combined parent set π(E).

Steps 1 and 2 are independent, because any impor-
tance function learning algorithm can be applied in
Step 2. Steps 2 and 3 can be combined by using the
same importance sampling algorithm for learning and
inference. In our experiments, we used SIS and AIS-
BN for both learning and inference (steps 2 and 3),
referred to as RISSIS and RISAIS, respectively. AIS-
BN will be referred to by AIS.
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Figure 2: Synthetic BN Results: Ratio of Lowest MSE for RISAIS Versus AIS, and RISSIS Versus SIS.

4 Results

This section presents the experimental results of RIS-
SIS and RISAIS compared to SIS and AIS for synthetic
networks and two real-world networks.

4.1 Measurement

The MSE (mean squared error) metric was used to
measure the error of the importance sampling results
compared to the exact solution:

MSE =

√√√√ 1∑
Xi∈X ni

∑
Xi∈X

ni∑
j=1

(Pr′e(xij)− Pre(xij))2 ,

where X = V \E. We also measured the KL-
divergence of the approximate and exact posterior
probability distributions:

KL-divergence =
∑

Cfg(X)

Pre(x) ln Pre(x)
Pr′e(x) .

Recall that Theorem 1 gives a lower bound for the KL-
divergence of the posterior probability distributions of
SIS and AIS, which is indicated in the results by the
PostKLD lower bound from Eq. (1).

The number of samples is taken as a measure of run-
ning time instead of CPU time in our experimental
implementation. Recall that the overhead of RIS is
fixed at startup when the evidence set can be prede-
termined. Furthermore, the RIS overhead is limited
to collecting the updated CPT values during sampling
(and learning in the case of RISAIS).

The reported sampling frequencies for AIS (and RI-
SAIS) are for calculating the posterior results. Because
AIS separates the importance function learning stage
from the sampling stage, the actual number of samples
taken for AIS (total sampling for importance function
and sampling the results) is twice that of SIS. Recom-
mended parameters [Cheng and Druzdzel, 2000a] are
used in AIS and RISAIS.

4.2 Test Cases

Because computing the MSE is expensive and
PostKLD is exponential in the number of vertices,
small-sized synthetic BNs with random variables with
two or three states and |V| = 20 vertices and |A| = 30
arcs were evaluated in our experiments. The CPT for
each variable is randomly generated with uniform dis-
tribution for the probability interval [0.1, 0.9] with bias
for the extreme probabilities in intervals (0, 0.1) and
(0.9, 1). For the experiments we generated 100 differ-
ent synthetic BNs with these characteristics.

We also verified RIS with two real-world BNs:
Alarm-37 [Beinlich et al., 1989] and HeparII-70
[Onisko, 2003]. The probability distributions of these
networks are more extreme compared to the synthetic
BNs. For each of the two BNs, 20 sets of evidence
variables are randomly chosen, each with 10 evidence
variables. For the Alarm-37 and HeparII-70 we choose
to limit the refractoring to the parents nodes of the
evidence set π(E) instead of An(E), see Section 3.4.

4.3 Results for Synthetic Test Cases

We compared the MSE of four algorithms, AIS, RI-
SAIS, SIS, and RISSIS. For this comparison a se-
lection of 21 BNs from the generated synthetic test
case suite was made. The other 79 test cases have
PostKLD ≤ 0.1, which means according to Theorem 1
that the RIS advantage is limited.

Fig. 2 shows the results for the 21 synthetic BNs, where
the sample frequency is varied from 1,000 to 19,000 in
increments of 1,000. The dark column in the figures
represent the ratio of lowest MSE cases for RISAIS
versus AIS and RISSIS versus SIS. A ratio of 50% or
higher indicates that the RIS algorithm has lower error
variance than the non-RIS algorithm. For RISAIS this
is the case for all but one of the 19 measurements taken
In total, the MSE is lowest for RISAIS in 61.4% on
average over all samples. For RISSIS this is the case
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Figure 3: Synthetic BN Results: KL-Divergence of RISAIS and AIS with PostKLD Lower Bound
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Figure 4: Synthetic BN Results: KL-Divergence of RISSIS and SIS with PostKLD Lower Bound

for all but four of the 19 measurements taken. In total,
the MSE is lowest for RISSIS in 58.4% on average over
all samples.

In fact, it is to be expected that the higher the
PostKLD lower bound the better the RIS algorithms
should perform. In order to determine the impact
with increasing PostKLD, we selected all 100 synthetic
BN test cases and measured the KL-divergence after
11,000 samples.

Fig. 3 shows the result for RISAIS, where the 100 BNs
are ranked according to the PostKLD. Recall that the
PostKLD is the lower bound on the KL-divergence of
AIS. From the figure it can be concluded that AIS
does not approach the exact solution for a significant
number of test cases, whereas RISAIS is not limited
by the bound due to the BN refractoring.

It should be noted that around points 1 and 26 in
Fig. 3 the KL-divergence of RISAIS is worse compared
to AIS. We believe the reason is that AIS heuristically
changes the original CPT which has a negative impact
on the RIS algorithm’s ability to adjust the CPT to
the optimal importance function.

Fig. 4 shows the result for RISSIS, where the 100 BNs
are ranked according to the PostKLD. Interestingly,

the RISSIS and SIS results are better on average than
RISAIS and AIS. Note that the PostKLD lower bound
is the same for AIS and SIS. However, in this study
SIS appears to approach the PostKLD closer than AIS.
Also here we can conclude that SIS does not approach
the exact solution for a significant number of test cases,
whereas RISSIS is not limited by the bound due to the
BN refractoring.

4.4 Results for Alarm-37 and HeparII-70

Fig. 5 shows the results for Alarm-37 and HeparII-
70, where the sample frequency is varied from 1,000
to 19,000 in increments of 1,000. The dark column
in the figures represent the ratio of lowest MSE cases
for RISAIS versus AIS and RISSIS versus SIS. A ra-
tio of 50% or higher indicates that the RIS algorithm
has lower error variance than the non-RIS algorithm.
For RISAIS this is the case for all but one of the 19
measurements taken. In total, the MSE is lowest for
RISAIS in 56.7% on average over all samples. For RIS-
SIS this is the case for all 19 measurements taken. In
total, the MSE is lowest for RISSIS in 60.3% on aver-
age over all samples.

The combined results show that the RIS algorithms
have reduced error variance for the synthetic networks
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Figure 5: Ratio of Lowest MSE for RISAIS Versus AIS, and RISSIS Versus SIS (Alarm-37 and HeparII-70).

and the two real-world networks. The PostKLD lower
bound limits the ability of AIS and SIS to approach
the optimal importance function. By contrast, the RIS
approach successfully eliminates this limitation of AIS
and SIS, thereby providing an improvement to reduce
error variance in BN importance sampling propagation
under evidential reasoning.

5 Conclusions

In order to approach the optimal importance function
for importance sampling propagation under evidential
reasoning with a Bayesian network, a modification of
the network’s structure is necessary to eliminate the
lower bound on the error variance. To this end, the
proposed RIS algorithms refractor the network and ad-
just the conditional probability tables to minimize the
divergence to the optimal importance function. The
validity and performance of the RIS approach was em-
pirically tested with a set of synthetic networks and
two real-world networks.

Additional improvements of RIS are possible to
achieve a better accuracy/cost ratio. The goal is to
find an effective subset of the full shield size of an an-
cestor vertex of an evidence vertex or select a limited
subset of the ancestors of evidence vertices that are
refractored. Also some of the additionally introduced
arcs could be removed with the arc removal algorithm
[van Engelen, 1997] when they present a weak influ-
ence. Such strategies would reduce the complexity of
the refractored network while still ensuring higher ac-
curacy over current importance sampling algorithms.
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Appendix

A Proof of Theorem 1

Proof. We use the KL-divergence (Cross Entropy)
[Kullback, 1959] to measure the difference between the
posterior BN e and ESBN e. The KL-divergence =
E1[ln Pr1(V)

Pr2(V) ] =
∑

Cfg(V) Pr1(v) ln Pr1(v)
Pr2(v) . Hence, the

KL-divergence between posterior BN e and ESBN e is∑
Cfg(X) Pre(x) ln Pre(x)

Pr′e(x) where X = V \E. This is
further simplified as follows∑

Cfg(X) Pre(x) ln Pre(x)
Pr′e(x) =∑

Cfg(X) Pr(x | e) ln Pr(x|e)
Pr′e(x) =∑

Cfg(X) Pr(x | e) ln

∏
xj∈x

Pr(xj |π(xj))
∏

ei∈e
Pr(ei|π(ei))

Pr(e)
∏

xj∈x
Pr′e(xj |πe(xj))

=
∑

Cfg(X) Pr(x | e) ln

∏
xj∈x

Pr(xj |π(xj))
∏

ei∈e
Pr(ei|π(ei))∏

xj∈x
Pr′e(xj |πe(xj))

+ln 1
Pr(e)

∑
Cfg(X) Pr(x | e) =∑

Cfg(X) Pr(x | e) ln

∏
xj∈x

Pr(xj |π(xj))
∏

ei∈e
Pr(ei|π(ei))∏

xj∈x
Pr′e(xj |πe(xj))

−ln Pr(e)=
∑

Cfg(X) Pr(x | e)
∑
xj∈x ln Pr(xj |π(xj))

Pr′e(xj |πe(xj))

+
∑

Cfg(X) Pr(x | e) ln
∏
ei∈e Pr(ei | π(ei)) −ln Pr(e)

=
∑
Xj∈X

∑
Cfg(Xj ,π(Xj)) ln Pr(xj |π(xj))

Pr′e(xj |πe(xj))∑
Cfg(X\{Xj ,π(Xj)}) Pr(x | e) +

∑
Cfg(π(E))

Pr(π(e) | e) ln
∏
ei∈e Pr(ei | π(ei)) −ln Pr(e)=∑

Xj∈X
∑

Cfg(Xj ,π(Xj)) Pr(xj , π(xj) | e) ln Pr(xj |π(xj))
Pr′e(xj |πe(xj))

+
∑

Cfg(π(E)) Pr(π(e) | e) ln
∏
ei∈e Pr(ei | π(ei))

−ln Pr(e) =
∑
Xj∈X

∑
Cfg(Xj ,π(Xj)) Pr(xj , π(xj) | e)

ln Pr(xj | π(xj)) +
∑
Xj∈X

∑
Cfg(Xj ,π(Xj))

Pr(xj , π(xj) | e) ln 1
Pr′e(xj |πe(xj))

+
∑

Cfg(π(E)) Pr(π(e) | e)ln
∏
ei∈e Pr(ei | π(ei))

−ln Pr(e) (Eq. 1)

The first, third, and fourth terms in Eq. 1 are
decided by the original probability distribution, so∑
Xj∈X

∑
Cfg(Xj ,π(Xj)) Pr(xj , π(xj) | e) ln Pr(xj | π(xj))

+
∑

Cfg(π(E)) Pr(π(e) | e) ln
∏
ei∈e Pr(ei | π(ei))

−ln Pr(e) is constant. To minimize the difference
between posterior BN e and ESBN e the only choice is
to minimize the following term:∑
Xj∈X

∑
Cfg(Xj ,π(Xj)) Pr(xj , π(xj) | e) ln 1

Pr′e(xj |πe(xj))

=
∑
Xj∈X

∑
Cfg(π(Xj))

∑
Cfg(Xj) Pr(xj , π(xj) | e)

ln 1
Pr′e(xj |πe(xj))

This is equal to minimizing the term for each
Xj ∈ X and each possible configuration of
π(xj).

∑
Cfg(Xj) Pr(xj , π(xj) | e) ln 1

Pr′e(xj |πe(xj))=
Pr(π(xj) | e)

∑
Cfg(Xj) Pr(xj | π(xj), e)ln 1

Pr′e(xj |π(xj)\e) .
We have

∑
Cfg(Xj) Pr′e(xj | πe(xj))

=
∑

Cfg(Xj) Pr′e(xj | π(xj) \ e) = 1. According to
Shannon’s information theory [Shannon, 1956], to
minimize

∑
Cfg(Xj) Pr(xj | π(xj), e) ln 1

Pr′e(xj |π(xj)\e)

we should set Pr′e(xj | π(xj) \ e) = Pr(xj | π(xj), e).
This proves the Theorem 1. 2

B Proof of Corollary 1

Proof. Let X = V \E, then∑
Cfg(V\E) Pre(v \ e) ln Pre(v\e)

Pr′e(v\e) =∑
Cfg(X) Pr(x | e) ln Pr(x|e)

Pr′e(x) =∑
Cfg(X) Pr(x | e) ln

∏
xj∈x

Pr(xj |π(xj))
∏

ei∈e
Pr(ei|π(ei))

Pr(e)
∏

xj∈x
Pr′e(xj |πe(xj))

.

Since π(E) ∩ (V \E) = ∅ ⇒ ∀Xj ∈
X,Pr(xj | π(xj), e) = Pr(xj | π(xj)), from
Theorem 1, set Pr′e(xj | πe(xj)) = Pr(xj |
π(xj)) to minimize the divergence, then∑

Cfg(X) Pr(x | e) ln

∏
xj∈x

Pr(xj |π(xj))
∏

ei∈e
Pr(ei|π(ei))

Pr(e)
∏

xj∈x
Pr′e(xj |πe(xj))

=

∑
Cfg(X) Pr(x | e) ln

∏
ei∈e

Pr(ei|π(ei))

Pr(e) . Also
from π(E) ∩ (V \E) = ∅, ∀Ei ∈ E,
π(Ei) ⊆ E ⇒

∏
ei∈e Pr(ei | π(ei)) = Pr(e), so∑

Cfg(X) Pr(x | e) ln
∏

ei∈e
Pr(ei|π(ei))

Pr(e) = 0. The
KL-divergence between Pre and Pr′e is zero, thus
Pre(v \ e) = Pr′e(v \ e) according to [Kullback, 1959].
2

C Proof of Lemma 2

Proof. ∀Xk ∈ Ah(Xj)\βe(Xj), consider the following
three cases.

Case 1: If a path Xk → E exists then we show that
this path is d-separated by αe(Xj). There are two
possibilities. First, Xk → E bypasses Xj , so it must
pass one of the parents of Xj . Then π(Xj) d-separates
the path. Second, Xk → E does not passXj . Then the
path must be d-separated by αe(Xj)\Xj , so (αe(Xj)\
Xj) ∪ π(Xj) d-separates the path.

Case 2: If paths N → Xk and N → E exist, so N ∈
Ah(Xj), and N d-separate the Xk and E, according to
Case 1, (αe(Xj)\Xj)∪π(Xj) d-separates path N → E.

Case 3: If paths Xk → B and E → B exist, according
to topological order {B, descendants ofB}∩((αe(Xj)\
Xj)∪π(Xj)) = ∅, so (αe(Xj)\Xj)∪π(Xj) d-separates
this path.

From cases 1 to 3 we see that 〈E,Ah(Xj) | ((αe(Xj) \
Xj) ∪ π(Xj))〉, so βe(Xj) ⊆ (αe(Xj) \Xj) ∪ π(Xj). 2


