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Abstract

We address the problem of identifying dy-
namic sequential plans in the framework of
causal Bayesian networks, and show that the
problem is reduced to identifying causal ef-
fects, for which there are complete identifica-
tion algorithms available in the literature.

1 Introduction

This paper deals with the problem of evaluating
the effects of sequential plans from a combination
of nonexperimental data and qualitative causal as-
sumptions. The causal assumptions will be rep-
resented in the form of an acyclic causal diagram
[Spirtes et al., 1993, Heckerman and Shachter, 1995,
Lauritzen, 2000, Pearl, 2000] in which arrows repre-
sent the potential existence of direct causal relation-
ships between the corresponding variables. The causal
diagram may contain unmeasured variables, and our
task is to decide whether we can estimate the effects
of a sequence of actions from the observed data.

We motivate the study by considering a medical treat-
ment problem discussed in [Pearl and Robins, 1995,
Dawid and Didelez, 2005]. There are a sequence of
medical treatments (X1, . . . , Xk) applied to a patient
over time. We have observations Zi before and be-
tween the treatments. Doctors may prescribe a treat-
ment based on previous treatments and observations.
There is a outcome variable Y (say survival) of spe-
cial interest and we want to estimate the effects of the
sequential treatments on Y . In general there may be
unobserved confounders that have influence on the ob-
served variables.

There are different possible strategies for choos-
ing the treatment action (Xi). The simplest ac-
tion involves fixing the value of Xi to a particu-
lar value x∗

i , called atomic intervention and denoted

by do(x∗
i ) in [Pearl, 2000], e.g. fixing the dosage

of a treatment irrespective of any observations on
the patient. A unconditional plan consists of a se-
quence of pre-defined atomic actions. The prob-
lem of identifying unconditional plans is to compute
the distribution of Y under atomic interventions on
a set X of action variables, denoted by Px(y) =
P (y|do(x)), a quantity known as the causal effects
of X on Y . Sufficient graphical criteria for the
identifiability of unconditional plans are derived in
[Pearl and Robins, 1995]. Recently the general prob-
lem of identifying causal effects Px(y) in a causal dia-
gram containing unobserved variables has been solved
and complete algorithms for identification are given
in [Tian and Pearl, 2003, Shpitser and Pearl, 2006b,
Huang and Valtorta, 2006].

In general we may want to use dynamic treatment
strategies in which the values of action variables (Xi)
are determined based on the previously observed vari-
ables and previously taken actions. Sufficient graph-
ical criteria for the identifiability of dynamic plans
are derived in [Dawid and Didelez, 2005]. However the
identifiability problem is far from being solved.

In this paper, we show that the problem of iden-
tifying dynamic sequential plans can be reduced to
the well-studied problem of identifying causal effects
and therefore essentially solved the sequential plan
identification problem. Although Pearl (2000, Sec-
tion 4.2) has suggested that dynamic conditional plans
may be identified by identifying conditional causal ef-
fects of the form Px(y|c), for which complete identi-
fication algorithms have been developed [Tian, 2004,
Shpitser and Pearl, 2006a], in this paper, we will show
that this gives a sufficient condition for identifying dy-
namic sequential plans but it is not necessary.

The rest of the paper is organized as fol-
lows. In Section 2, we review the work in
[Dawid and Didelez, 2005] and define useful notation.
In Section 3, we formulate the sequential plan problem
in the framework of causal Bayesian networks. We



show how to reduce the problem of identifying dy-
namic sequential plans into a problem of identifying
causal effects in Section 4, and discuss in Section 5 the
problem versus that of identifying unconditional plans
and conditional causal effects. Section 6 concludes the
paper.

2 Previous Work and Notation

Dawid and Didelez (2005) formulated the problem
of identifying dynamic sequential plans in the frame-
work of regime indicators and influence diagrams. An
influence diagram (ID) is a DAG over a set V =
{V1, . . . , Vn} of variables that also includes regime in-
dicators as special nodes of their own called decision
nodes [Dawid, 2002]. We assume that all variables are
discrete. The DAG is assumed to represent conditional
independence assertions that each variable is indepen-
dent of all its non-descendants given its direct parents
in the graph.1 These assertions imply that the joint
probability function P (v) = P (v1, . . . , vn) factorizes
according to the product [Pearl, 1988]

P (v) =
∏

i

P (vi|pai) (1)

where pai are (values of) the parents of variable Vi in
the graph.2

The question of causal inference is considered as a
problem of inference across different regimes, in which
we may intervene in certain variables in certain ways
and observe the behavior of other variables. Regime
indicators are used to represent different types of in-
terventions. Here we will roughly follow the notation
used in [Didelez et al., 2006]. The regime indicator for
an intervention in a variable Vi is denoted by σVi

and
can take values in a set of strategies. Under strategy
σVi

, the conditional probability P (vi|pai) is changed
to P (vi|pai;σVi

). We will consider the following types
of interventions.

• Idle regime σVi
= ∅: No intervention takes place,

therefore

P (vi|pai;σVi
= ∅) = P (vi|pai).

The idle regime is also called the observational
regime under which we will assume that ob-
servational data has been collected. Therefore
P (vi|pai) can be estimated from data if Vi and
Pai are observed.

1We use family relationships such as “parents,” “chil-
dren,” and “ancestors” to describe the obvious graphical
relationships.

2We use uppercase letters to represent variables or sets
of variables, and use corresponding lowercase letters to rep-
resent their values (instantiations).

• Atomic intervention σVi
= do(v∗

i ): The strat-
egy of setting Vi to a fixed value v∗

i , denoted by
do(Vi = v∗

i ) or simply do(v∗
i ) in Pearl (2000), such

that

P (vi|pai;σVi
= do(v∗

i )) = δ(vi, v
∗
i ),

where δ(vi, v
∗
i ) is one if vi = v∗

i and zero other-
wise.

• Conditional intervention σVi
= do(g(c)): In gen-

eral, Vi may be made to respond in a specified
way to some set C of previously observed vari-
ables, denoted by do(Vi = g(c)) in Pearl (2000),
such that

P (vi|pai;σVi
= do(g(c))) = δ(vi, g(c)),

where g(.) is a pre-specified deterministic function
and the variables in C can not be descendants of
Vi.

• Random intervention σVi
= dC : More generally,

we may let Vi take on a random value according
to some distribution possibly depending on some
set C of previously observed variables such that

P (vi|pai;σVi
= dC) = P ∗(vi|c),

where P ∗(vi|c) is a pre-specified probability dis-
tribution and the variables in C can not be de-
scendants of Vi.

In a sequential decision problem, we may intervene, at
least in principle, in a set of variables X = {Xi} ⊂ V ,
called control variables or action variables, and are
interested in the response of a variable Y , called re-
sponse variable or outcome variable. Let Z be the rest
of observed variables which are often called covariates.
The variables are assumed to be ordered in a sequence
(L1, X1, . . . , LK , XK , Y ) where Li ⊆ Z are the set of
observed covariates after Xi−1 and before Xi. We de-
note L̄i = (L1, . . . , Li) and X̄i = (X1, . . . , Xi).

Given an intervention strategy σX = {σXi
}, under a

condition called simple stability which says that the
observed covariates Li and the outcome Y are inde-
pendent of how action variables are generated once all
earlier observables (L̄i−1, X̄i−1 for Li; X,Z for Y ) are
given, Dawid and Didelez (2005) show that the post-
intervention distribution of Y is identified as

P (y;σX) =
∑

x,z

P (y|x, z)
∏

i

P (li|l̄i−1, x̄i−1)

∏

i

P (xi|x̄i−1, l̄i;σXi
), (2)

where P (xi|x̄i−1, l̄i;σXi
) are determined by the chosen

regime and the other quantities can be estimated from



observational data. Eq. (2) is known as the G-formula,
and has been obtained in [Robins, 1986, Robins, 1987]
in the framework of potential response models.

When there are unobserved confounders, the simple
stability may not hold. Dawid and Didelez (2005)
makes extended stability assumption which essentially
is (simple) stability with respect to the extended do-
main that includes unobserved U variables ignoring
the distinction between Z and U . The G-formula (2)
no longer holds unless we include unobserved U vari-
ables, but then the conditional probabilities involving
U variables can no longer be estimated from the data.
Sufficient graphical criteria for identifying P (y;σX)
are derived. The criteria were obtained by identifying
graphical conditions under which the simple stability
can be regained such that the G-formula can be used,
and by extending the work in [Pearl and Robins, 1995]
to dynamic plans.

3 Problem Formulation

In this paper, we will formulate the sequential plan
problem in the framework of causal Bayesian networks.
A causal Bayesian network (CBN) consists of a DAG
G over a set V = {V1, . . . , Vn} of variables, called a
causal diagram. The interpretation of such a graph has
two components, probabilistic and causal. The prob-
abilistic interpretation views G as representing con-
ditional independence assertions such that the joint
probability function P (v) = P (v1, . . . , vn) factorizes
according to Eq. (1). The causal interpretation views
the directed edges in G as representing causal influ-
ences between the corresponding variables. In this in-
terpretation, the factorization of (1) still holds, but the
factors are further assumed to represent autonomous
data-generation processes, that is, each conditional
probability P (vi|pai) represents a stochastic process
by which the values of Vi are chosen in response to the
values pai (previously chosen for Vi’s parents), and the
stochastic variation of this assignment is assumed in-
dependent of the variations in all other assignments.
Moreover, each assignment process remains invariant
to possible changes in the assignment processes that
govern other variables in the system. This modular-
ity assumption enables us to predict the effects of in-
terventions, whenever interventions are described as
specific modifications of some factors in the product
of (1). We typically assume that every variable Vi

can potentially be manipulated by external interven-
tion. So we might think of a CBN as an ID such that
each node is (implicitly) pointed to by a corresponding
regime/intervention indicator.

In a sequential decision problem, we may intervene
in a set of action variables X = {Xi} ⊂ V , and are

interested in the response of a set of outcome variables
Y . Assume that all the variables V are observed and
let the rest of covariate variables be Z = {Zi} = V \
(X ∪ Y ). Given an intervention strategy σX = {σXi

},
by modularity assumption, we can predict the effects
of σX as

P (v;σX)

=
∏

i

P (yi|payi
)
∏

i

P (zi|pazi
)
∏

i

P (xi|paxi
;σXi

),

(3)

where, by modularity assumption, those conditional
probabilities corresponding to unmanipulated vari-
ables remain unaltered. We note that Dawid and
Didelez’s (2005) simple stability assumption leads to
Eq. (3) in the framework of CBNs. We see that, given
a CBN, whenever all variables in V are observed, the
consequence of an intervention strategy on the out-
come variables Y is computed as

P (y;σX) =
∑

x,z

∏

i

P (yi|payi
)
∏

i

P (zi|pazi
)

∏

i

P (xi|paxi
;σXi

), (4)

where P (xi|paxi
;σXi

) are determined by the chosen
regime and the other quantities can be estimated from
observational data. We note that the G-formula (2)
can be reduced to Eq. (4) by using the conditional
independence relationships implied by the CBN that
each variable is independent of all its non-descendants
given its parents.

In general we may be concerned with confounding
effects due to unobserved influential variables. In
the presence of unobserved confounders, the distri-
bution over observed variables can no longer factor-
ize according to (1). Letting V = Y ∪ Z ∪ X and
U = {U1, . . . , Un′} stand for the sets of observed and
unobserved variables, respectively, the observed prob-
ability distribution, P (v), becomes a mixture of prod-
ucts:

P (v) =
∑

u

∏

{i|Vi∈V }

P (vi|pavi
)

∏

{i|Ui∈U}

P (ui|paui
).

(5)

We still make modularity assumption in the CBN with
unobserved variables, and the effects of an interven-
tion strategy σX on the outcome variables Y can be
expressed as

P (y;σX) =
∑

x,z,u

∏

i

P (yi|payi
)
∏

i

P (zi|pazi
)

∏

i

P (xi|paxi
;σXi

)
∏

i

P (ui|paui
).

(6)



We note that Dawid and Didelez’s (2005) extended
stability assumption leads to Eq. (6) in the frame-
work of CBNs. In (6), the quantities P (yi|payi

) and
P (zi|pazi

) (and P (ui|paui
)) may involve elements of

U and may not be estimable from data. Then the
question of identifiability arises, i.e., whether it is pos-
sible to express P (y;σX) as a function of the observed
distribution P (v).

Definition 1 [Plan Identifiability]
A sequential plan is said to be identifiable if P (y;σX)
is uniquely computable from the observed distribution
P (v).

4 Identification of Sequential Plans

First we make the following assumption about the type
of interventions we will consider.

Assumption 1 P (xi|paxi
;σXi

) does not depend on
the unobserved variable. That is, for conditional in-
tervention σXi

= do(g(c)) or random intervention
σXi

= dC , we require C ⊆ X ∪ Z.

This assumption corresponds to Condition 6.6 or 7.2
in [Dawid and Didelez, 2005].

Under Assumption 1, Eq. (6) becomes

P (y;σX) =
∑

x,z

∏

i

P (xi|paxi
;σXi

)
∑

u

∏

i

P (yi|payi
)

∏

i

P (zi|pazi
)
∏

i

P (ui|paui
) (7)

=
∑

x,z

∏

i

P (xi|paxi
;σXi

)Px(y, z) (8)

Obviously a sufficient condition for P (y;σX) being
identifiable is that the causal effect Px(y, z) is iden-
tifiable. In particular, a simple sufficient condition for
Px(y, z) being identifiable is if all the parents of action
(X) variables are observables, which is Condition 6.3
in [Dawid and Didelez, 2005].

Proposition 1 If all the parents of action (X) vari-
ables are observables, then P (y;σX) is identifiable
[Dawid and Didelez, 2005].

Proof: If all the parents of action (X) variables are
observables, then P (xi|paxi

) contains no unobserved
(U) variables, and Eq. (5) can be written as

P (v) =
∏

i

P (xi|paxi
)Px(y, z), (9)

from which we obtain that Px(y, z) is identified as

Px(y, z) =
p(x, y, z)∏
i P (xi|paxi

)
(10)

=
∏

{i|Vi∈Y ∪Z}

P (vi|v̄i), (11)

where we have used the chain rule assuming an order
of V variables that is consistent with the DAG and v̄i

denotes the V variables ordered ahead of Vi. Hence
the sequential plan is identified as

P (y;σX) =
∑

x,z

∏

i

P (xi|paxi
;σXi

)
∏

{i|Vi∈Y ∪Z}

P (vi|v̄i),

(12)

which is essentially the G-formula (2). �

In general Px(y, z) being identifiable is not a neces-
sary condition for P (y;σX) being identifiable. Eq. (7)
may be simplified in that a factor P (zi|pazi

) may be
summed out (using

∑
zi

P (zi|pazi
) = 1) if Zi does not

appear in any other factors (graphically, if Zi does not
have any children). We can derive stronger identifi-
cation criterion by summing out as many factors as
possible from Eq. (7). Before presenting our result, we
first introduce some notation.

Following [Tian and Pearl, 2003], for any observed set
S ⊆ V of variables, we define the quantity Q[S] to
denote the post-intervention distribution of S under
atomic interventions to all other variables:

Q[S](v) = Pv\s(s)

=
∑

u

∏

{i|Vi∈S}

P (vi|pavi
)

∏

{i|Ui∈U}

P (ui|paui
).

(13)

For convenience, we will often write Q[S](v) as Q[S].
Eq. (7) can be written as

P (y;σX) =
∑

x,z

∏

i

P (xi|paxi
;σXi

)Q[Y ∪ Z]. (14)

Let GσX
denote the manipulated graph under the in-

tervention strategy σX , which can be constructed from
the original causal graph G as follows:

• For an atomic intervention σXi
= do(xi), cut off

all the arrows entering Xi;

• For a conditional intervention σXi
= do(gi(ci))

or a random intervention σXi
= dCi

, cut off all
the arrows entering Xi and then add an arrow
entering Xi from each variable in Ci.



Based on Eq. (14), we obtain the following sufficient
criterion for identifying P (y;σX).

Theorem 1 Let ZD be the set of variables in Z that
are ancestors of Y in GσX

. P (y;σX) is identifiable if
the causal effects Q[Y ∪ ZD] = Px,z\zD

(y, zD) is iden-
tifiable.

Proof: Let XD be the set of variables in X that are
ancestors of Y in GσX

. Then all the non-ancestors of
Y can be summed out from Eq. (14) leading to

P (y;σX) =
∑

xD,zD

∏

{i|Xi∈XD}

P (xi|paxi
;σXi

)Q[Y ∪ ZD]

(15)

=
∑

xD,zD

∏

{i|Xi∈XD}

P (xi|paxi
;σXi

)Px,z\zD
(y, zD).

(16)

�

We conjecture that the condition in Theorem 1
is also necessary. It might appear that Eq. (15)
can be further simplified as follows. Let ZσXD

be the set of Z variables that appear in the term∏
{i|Xi∈XD} P (xi|paxi

;σXi
) (the set of conditioning

variables in the strategy σXD
). Then the term∏

{i|Xi∈XD} P (xi|paxi
;σXi

) is a function of XD and

ZσXD
. Eq. (15) becomes

P (y;σX)

=
∑

xD,zσXD

∏

{i|Xi∈XD}

P (xi|paxi
;σXi

)
∑

zD\zσXD

Q[Y ∪ ZD]

(17)

≡
∑

xD,zσXD

g(xD, zσXD
)

∑

zD\zσXD

Q[Y ∪ ZD] (18)

From Eq. (18), P (y;σX) is identifiable if∑
zD\zσXD

Q[Y ∪ ZD] is identifiable, and intu-

itively, the condition appears to be necessary too,
since the term g(xD, zσXD

) is specified externally and
no more factors can be summed out (as far as the
function g(.) is not independent of any variables in
zσXD

). A strict proof of this necessity is still under
study.

On the other hand, due to the fact that none of the
factors corresponding to the variables in ZD \ ZσXD

can be summed out from Q[Y ∪ZD], it has been shown
that

∑
zD\zσXD

Q[Y ∪ ZD] can be identified only via

identifying Q[Y ∪ZD] and it is a if and only if condition
(Lemma 11 in [Huang and Valtorta, 2006]). So from
the point of view of identifying P (y;σX) the reduction
from Eq. (15) to Eq. (17) is not necessary.

X1 X2

Y
U Z

Figure 1: An example causal graph

We therefore have reduced the problem of identifying
dynamic sequential plans P (y;σX) into that of identi-
fying causal effects Q[Y ∪ ZD] while the latter prob-
lem has been solved and complete algorithms are given
in [Tian and Pearl, 2003, Shpitser and Pearl, 2006b,
Huang and Valtorta, 2006].

We demonstrate the application of Theorem 1 and
the identification process with an example. Consider
the problem of identifying P (y;σX1

, σX2
) in Figure 1,

which was studied in [Dawid and Didelez, 2005] and
is troubling to the methods presented therein. The-
orem 1 calls for identifying Q[{Y,Z}] which can be
shown to be identifiable. We are given the observa-
tional distribution

P (v) = P (y|x1, x2, z)P (x2)Q[{Z,X1}], (19)

where

Q[{Z,X1}] =
∑

u

P (z|x2, u)P (x1|u)P (u). (20)

We want to compute

P (y;σX1
, σX2

)

=
∑

x1,x2,z

P (x1;σX1
)P (x2;σX2

)P (y|x1, x2, z)Q[{Z}],

(21)

which calls for computing Q[{Z}]. From Eq. (20), it
is clear that

Q[{Z}] =
∑

x1

Q[{Z,X1}]. (22)

From Eq. (19), we obtain

Q[{Z,X1}] = P (z, x1|x2) (23)

Therefore Q[{Z}] is identified and we finally obtain

P (y;σX1
, σX2

)

=
∑

x1,x2,z

P (x1;σX1
)P (x2;σX2

)P (y|x1, x2, z)P (z|x2).

(24)
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Figure 2: An example causal graph

5 Discussion

5.1 Unconditional plans are easier

In general identifying dynamic plans is more difficult
than identifying unconditional plans that involve only
atomic interventions. Let an intervention strategy σ′

X

consist of all atomic interventions. Then the manipu-
lated graph Gσ′

X
is a subgraph of GσX

. Let Z ′
D be the

set of variables in Z that are ancestors of Y in Gσ′

X
.

Then Z ′
D is a subset of ZD. We have

P (y;σ′
X) = Px(y) =

∑

z′

D

Q[Y ∪ Z ′
D]. (25)

Therefore identifying Px(y) calls for identifying Q[Y ∪
Z ′

D] while P (y;σX) calls for identifying Q[Y ∪ ZD].
Now we have

Q[Y ∪ Z ′
D] =

∑

zD\z′

D

Q[Y ∪ ZD] (26)

The factors of the variables in ZD\Z ′
D are summed out

from Q[Y ∪ZD] since the variables in ZD \Z ′
D can be

ancestors of Y only through Xi’s. In general, whenever
Q[Y ∪ZD] (and therefore P (y;σX)) is identifiable, then
Px(y) is identifiable. However, it is possible that Px(y)
is identifiable but Q[Y ∪ZD] (and therefore P (y;σX))
is not.

We demonstrate this point with an exam-
ple. Consider the problem of identifying
P (y;σX1

, σX2
) in Figure 2(a), which was studied in

[Pearl and Robins, 1995]. If P (x2|x1, z;σX2
) depends

on Z, say σX2
= do(g(x1, z)), then ZD = {Z}, and

by Theorem 1, to identify P (y;σX1
, σX2

) we need to
identify Q[{Y,Z}], which can be shown to be not iden-
tifiable (by theorems in [Huang and Valtorta, 2006]).
More specifically, given the observational distribution

P (v) = P (x2|x1, z)Q[{X1, Z, Y }], (27)

we want to identify

P (y;σX1
, σX2

)

=
∑

x1,x2,z

P (x1;σX1
)P (x2|x1, z;σX2

)Q[{Y,Z}] (28)

From Eq. (28), we see that if P (x2|x1, z;σX2
) depends

on Z, then the identifiability of P (y;σX1
, σX2

) depends
on the identifiability of Q[{Y,Z}]. We therefore con-
clude that P (y;σX1

, σX2
) is not identifiable.

On the other hand, if P (x2|x1, z;σX2
) is indepen-

dent of Z, say P (x2|x1, z;σX2
) = P ∗(x2|x1) (or

σX2
= do(x2)), then the set ZD of variables in Z

that are ancestors of Y in GσX
becomes empty (see

Figure 2(b)), and, by Theorem 1, the identifiabil-
ity of P (y;σX1

, σX2
) depends on the identifiability of

Q[{Y }]. In fact, in this case, Eq. (28) becomes

P (y;σX1
, σX2

= dX1
)

=
∑

x1,x2

P (x1;σX1
)P ∗(x2|x1)

∑

z

Q[{Y,Z}]

=
∑

x1,x2

P (x1;σX1
)P ∗(x2|x1)Q[{Y }] (29)

From Eq. (27) we obtain

Q[{X1, Z, Y }] = P (v)/P (x2|x1, z)

= P (y|x1, x2, z)P (x1, z). (30)

It can be shown (or confirmed) that

Q[{Y }] =

∑
z Q[{X1, Z, Y }]∑

y,z Q[{X1, Z, Y }]

=
∑

z

P (y|x1, x2, z)P (z|x1). (31)

We obtain

P (y;σX1
, σX2

= dX1
)

=
∑

x1,x2

P (x1;σX1
)P ∗(x2|x1)

∑

z

P (y|x1, x2, z)P (z|x1).

(32)

And in particular, the unconditional plan is identified
as

Px1,x2
(y) = Q[{Y }] =

∑

z

P (y|x1, x2, z)P (z|x1).

(33)

5.2 Identification via conditional causal

effects?

Pearl (2000) has suggested that dynamic sequential
plans involving conditional and random interventions



may be identified by identifying conditional causal ef-
fects of the form Px(y|z). For interventions on a single
variable X, we can show [Pearl, 2000, Section 4.2] that

P (y;σX = do(g(z))) =
∑

z

Px(y|z)|x=g(z)P (z),

and

P (y;σX = dZ) =
∑

x,z

Px(y|z)P ∗(x|z)P (z).

Therefore it appears that P (y;σX) is identifiable if and
only if Px(y|z) is identifiable.

This idea was generalized to dynamic sequential plans.
Consider a plan involving a sequence of conditional
interventions σXi

= do(gi(Ci)). Let ZσX
= Z ∩ (∪iCi)

be the set of conditioning variables in the strategy σX .
Pearl (2006) shows that

P (y;σX) =
∑

zσX

Pxz
(y|zσX

)Pxz
(zσX

), (34)

where xz are the values attained by X when the
conditioning set ZσX

takes the values zσX
. Pearl

then suggests that sequential conditional plans can
be identified by identifying conditional causal effects
Px(y|z) and Px(z). This motivated the study of the
identifiability of conditional causal effects and com-
plete algorithms have been developed in [Tian, 2004,
Shpitser and Pearl, 2006a].

Next we show that although the identification of
Pxz

(y|zσX
) and Pxz

(zσX
) is sufficient for identifying

P (y;σX), it is nonetheless not necessary. Rewrite
Eq. (34) in the following

P (y;σX) =
∑

x,zσX

δ(xi, gi(Ci))Px(y, zσX
) (35)

=
∑

x,zσX

δ(xi, gi(Ci))
∑

z\zσX

Q[Y,Z] (36)

Comparing the reduction from Eq. (14) into (17) with
the reduction from (14) to (36), we obtain that if XD =
X then (36) is equivalent to (17), otherwise Eq. (36)
may be further reduced in that more factors could be
summed out from Q[Y,Z]. We obtain the following
conclusion

• If all the variables in X are ancestors of Y in GσX
,

then the sequential plan P (y;σX) can be identi-
fied by identifying the causal effects Px(y, zσX

),
otherwise it is possible that P (y;σX) is identifi-
able even if Px(y, zσX

) is not.

We demonstrate this point with an example. Con-
sider the problem of identifying P (y;σX) where

X1 Z2 X2 X3 Y

Z1 U1 U2 Z3

(a) G

X1 Z2 X2 X3 Y

Z1 U1 U2 Z3

(b) GσX

Figure 3: An example causal graph

σX = {σX1
= do(g1(Z1)), σX2

= do(g2(Z2)), σX3
=

do(g3(Z3))} in Figure 3(a). The graph GσX
is shown

in Figure 3(b). We have ZD = {Z1, Z3}, and The-
orem 1 calls for identifying Q[{Y,Z1, Z3}] which can
be shown to be identifiable. On the other hand,
Px1x2x3

(y, z1, z2, z3) = Q[{Y,Z1, Z2, Z3}] is not iden-
tifiable. More specifically, given the observational dis-
tribution

P (v) =P (y|x1, x3, z3)P (x3|x2, z3)P (z1)Q[{X2, Z3}]

Q[{X1, Z2}], (37)

we want to identify

P (y;σX)

=
∑

xi,zi

∏

i

δ(xi, gi(zi))P (y|x1, x3, z3)P (z1)

Q[{Z3}]Q[{Z2}] (38)

=
∑

x1,x3,z1,z3

δ(x1, g1(z1))δ(x3, g3(z3))P (y|x1, x3, z3)

P (z1)Q[{Z3}], (39)

where Q[{Z3}] can be identified as

Q[{Z3}] =
∑

u2

P (z3|u2)P (u2) = P (z3). (40)

We obtain

P (y;σX) =
∑

z1,z3

P (y|g1(z1), g3(z3), z3)P (z1)P (z3).

(41)

On the other hand,

Px1x2x3
(y, z1, z2, z3)

= P (y|x1, x3, z3)P (z1)Q[{Z3}]Q[{Z2}]

= P (y|x1, x3, z3)P (z1)P (z3)Q[{Z2}] (42)



is not identifiable since Q[{Z2}] is not identifiable. In
fact the conditional causal effect

Px1x2x3
(y|z1, z2, z3) = P (y|x1, x3, z3) (43)

is identifiable but the causal effect

Px1x2x3
(z1, z2, z3) = P (z1)P (z3)Q[{Z2}] (44)

is not identifiable.

6 Conclusion

We present a method for identifying dynamic sequen-
tial plans. A closed-form expression for the proba-
bility of the outcome variables under a dynamic plan
can be obtained in terms of the observed distribution,
by using the algorithms for identifying causal effects
available in the literature.
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