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Abstract

We consider the problem of efficiently learning
optimal control policies and value functions over
large state spaces in an online setting in which
estimates must be available after each interaction
with the world. This paper develops an explicitly
model-based approach extending the Dyna archi-
tecture to linear function approximation. Dyna-
style planning proceeds by generating imaginary
experience from the world model and then ap-
plying model-free reinforcement learning algo-
rithms to the imagined state transitions. Our
main results are to prove that linear Dyna-style
planning converges to a unique solution indepen-
dent of the generating distribution, under natu-
ral conditions. In the policy evaluation setting,
we prove that the limit point is the least-squares
(LSTD) solution. An implication of our results
is that prioritized-sweeping can be soundly ex-
tended to the linear approximation case, backing
up to preceding features rather than to preceding
states. We introduce two versions of prioritized
sweeping with linear Dyna and briefly illustrate
their performance empirically on the Mountain
Car and Boyan Chain problems.

1 Online learning and planning

Efficient decision making when interacting with an incom-
pletely known world can be thought of as an online learning
and planning problem. Each interaction provides additional
information that can be used to learn a better model of the
world’s dynamics, and because this change could result in a
different action being best (given the model), the planning
process should be repeated to take this into account. How-
ever, planning is inherently a complex process; on large
problems it not possible to repeat it on every time step with-
out greatly slowing down the response time of the system.
Some form of incremental planning is required that, though

incomplete on each step, still efficiently computes optimal
actions in a timely manner.

The Dyna architecture (Sutton 1990) provides an effective
and flexible approach to incremental planning while main-
taining responsiveness. There are two ideas underlying the
Dyna architecture. One is that planning, acting, and learn-
ing are all continual, operating as fast as they can without
waiting for each other. In practice, on conventional com-
puters, each time step is shared between planning, acting,
and learning, with proportions that can be set arbitrarily ac-
cording to available resources and required response times.

The second idea underlying the Dyna architecture is that
learning and planning are similar in a radical sense. Plan-
ning in the Dyna architecture consists of using the model
to generate imaginary experience and then processing the
transitions of the imaginary experience by model-free re-
inforcement learning algorithms as if they had actually oc-
curred. This can be shown, under various conditions, to
produce exactly the same results as dynamic-programming
methods in the limit of infinite imaginary experience.

The original papers on the Dyna architecture and most sub-
sequent extensions (e.g., Singh 1992; Peng & Williams
1993; Moore & Atkeson 1993; Kuvayev & Sutton 1996)
assumed a Markov environment with a tabular representa-
tion of states. This table-lookup representation limits the
applicability of the methods to relatively small problems.
Reinforcement learning has been combined with function
approximation to make it applicable to vastly larger prob-
lems than could be addressed with a tabular approach.
The most popular form of function approximation is lin-
ear function approximation, in which states or state-action
pairs are first mapped to feature vectors, which are then
mapped in a linear way, with learned parameters, to value
or next-state estimates. Linear methods have been used
in many of the successful large-scale applications of re-
inforcement learning (e.g., Silver, Sutton & Müller 2007;
Schaeffer, Hlynka & Jussila 2001). Linear function ap-
proximation is also simple, easy to understand, and pos-
sesses some of the strongest convergence and performance
guarantees among function approximation methods. It is



natural then to consider extending Dyna for use with linear
function approximation, as we do in this paper.

There has been little previous work addressing planning
with linear function approximation in an online setting.
Paduraru (2007) treated this case, focusing mainly on sam-
pling stochastic models of a cascading linear form, but
also briefly discussing deterministic linear models. Degris,
Sigaud and Wuillemin (2006) developed a version of Dyna
based on approximations in the form of dynamic Bayes net-
works and decision trees. Their system, SPITI, included
online learning and planning based on an incremental ver-
sion of structured value iteration (Boutilier, Dearden &
Goldszmidt 2000). Singh (1992) developed a version of
Dyna for variable resolution but still tabular models. Others
have proposed linear least-squares methods for policy eval-
uation that are efficient in the amount of data used (Bradtke
& Barto 1996; Boyan 1999, 2002; Geramifard, Bowling &
Sutton 2006). These methods can be interpreted as form-
ing and then planning with a linear model of the world’s
dynamics, but so far their extensions to the control case
have not been well suited to online use (Lagoudakis &
Parr 2003; Peters, Vijayakumar & Schaal 2005; Bowling,
Geramifard, & Wingate 2008), whereas our linear Dyna
methods are naturally adapted to this case. We discuss
more specifically the relationship of our work to LSTD
methods in a later section. Finally, Atkeson (1993) and oth-
ers have explored linear, learned models with off-line plan-
ning methods suited to low-dimensional continuous sys-
tems.

2 Notation

We use the standard framework for reinforcement learn-
ing with linear function approximation (Sutton & Barto
1998), in which experience consists of the time indexed
stream s0, a0, r1, s1, a1, r2, s2, . . ., where st ∈ S is a state,
at ∈ A is an action, and rt ∈ R is a reward. The ac-
tions are selected by a learning agent, and the states and re-
wards are selected by a stationary environment. The agent
does not have access to the states directly but only through
a corresponding feature vector φt ∈ Rn = φ(st). The
agent selects actions according to a policy, π : Rn ×A →
[0, 1] such that

∑
a∈A π(φ, a) = 1, ∀φ. An important step

towards finding a good policy is to estimate the value func-
tion for a given policy (policy evaluation). The value func-
tion is approximated as a linear function with parameter
vector θ ∈ Rn:

θ>φ(s) ≈ V π(s) = Eπ

{ ∞∑
t=1

γt−1rt | s0 = s

}
,

where γ ∈ [0, 1). In this paper we consider policies that are
greedy or ε-greedy with respect to the approximate state-
value function.

Algorithm 1 : Linear Dyna for policy evaluation, with ran-
dom sampling and gradient-descent model learning

Obtain initial φ, θ, F, b
For each time step:

Take action a according to the policy. Receive r, φ′

θ ← θ + α[r + γθ>φ′ − θ>φ]φ
F ← F + α(φ′ − Fφ)φ>

b← b+ α(r − b>φ)φ
temp← φ′

Repeat p times (planning):
Generate a sample φ from some distribution µ
φ′ ← Fφ
r ← b>φ
θ ← θ + α[r + γθ>φ′ − θ>φ]φ

φ← temp

3 Theory for policy evaluation

The natural place to begin a study of Dyna-style planning
is with the policy evaluation problem of estimating a state-
value function from a linear model of the world. The model
consists of a forward transition matrix F ∈ Rn × Rn (in-
corporating both environment and policy) and an expected
reward vector b ∈ Rn, constructed such that Fφ and b>φ
can be used as estimates of the feature vector and reward
that follow φ. A Dyna algorithm for policy evaluation goes
through a sequence of planning steps, on each of which a
starting feature vector φ is generated according to a proba-
bility distribution µ, and then a next feature vector φ′ = Fφ
and next reward r = b>φ are generated from the model.
Given this imaginary experience, a conventional model-
free update is performed, for example, according to the lin-
ear TD(0) algorithm (Sutton 1988):

θ ← θ + α(r + γθ>φ′ − θ>φ)φ, (1)

or according to the residual gradient algorithm (Baird
1995):

θ ← θ + α(r + γθ>φ′ − θ>φ)(φ− γφ′), (2)

where α > 0 is a step-size parameter. A complete al-
gorithm using TD(0), including learning of the model, is
given in Algorithm 1.

3.1 Convergence and fixed point

There are two salient theoretical questions about the Dyna
planning iterations (1) and (2): Under what conditions on
µ and F do they converge? and What do they converge
to? Both of these questions turn out to have interesting an-
swers. First, note that the convergence of (1) is in question
in part because it is known that linear TD(0) may diverge
if the distribution of starting states during training does not
match the distribution created by the normal dynamics of



the system, that is, if TD(0) is used off-policy. This sug-
gests that the sampling distribution used here, µ, might
have to be strongly constrained in order for the iteration
to be stable. On the other hand, the data here is from the
model, and the model is not a general system: it is deter-
ministic1 and linear. This special case could be much better
behaved. In fact, convergence of linear Dyna-style policy
evaluation, with either the TD(0) or residual-gradient itera-
tions, is not affected by µ, but only by F , as long as µ exer-
cises all directions in the full n-dimensional vector space.
Moreover, not only is the fact of convergence unaffected by
µ, but so is the value converged to. In fact, we show below
that convergence is to a deterministic fixed point, a value
of θ such that the iterations (1) and (2) leave it unchanged
not just in expected value, but for every individual φ that
could be generated by µ. The only way this could be true is
if the TD error (the first expression in parentheses in each
iteration) were exactly zero, that is, if

0 = r + γθ>φ′ − θ>φ
= b>φ+ γθ>Fφ− θ>φ
= (b+ γF>θ − θ)>φ.

And the only way that this can be true for all φ is for the
expression in parenthesis above to be zero:

0 = b+ γF>θ − θ
= b+ (γF> − I)θ,

which immediately implies that

θ = (I − γF>)−1b, (3)

assuming that the inverse exists. Note that this expression
for the fixed point does not depend on µ, as promised.

If I − γF> is nonsingular, then there might be no fixed
point. This could happen for example if F were an ex-
pansion, or more generally if the limit (γF )∞ were not
zero. These cases correspond to world models that say the
feature vectors diverge to infinity over time. Failure to con-
verge in these cases should not be considered a problem for
the Dyna iterations as planning algorithms; these are cases
in which the planning problem is ill posed. If the feature
vectors diverge, then so too may the rewards, in which case
the true values given the model are infinite. No real finite
Markov decision process could behave in this way.

It remains to show the conditions on F under which the it-
erations converge to the fixed point if one exists. We prove
next that under the TD(0) iteration (1), convergence is guar-
anteed if the numerical radius of F is less than one,2 and

1The model is deterministic because it generates the expecta-
tion of the next feature vector; the system itself may be stochastic.

2The numerical radius of a real-valued square matrix A is de-
fined by r(A) = max‖x‖2=1 xT Ax.

then that under the residual-gradient iteration (2), conver-
gence is guaranteed for any F as long as the fixed point ex-
ists. That F ’s numerical radius be less than 1 is a stronger
condition than nonsingularity of I − γF>, but it is similar
in that both conditions pertain to the matrix trending toward
expansion when multiplied by itself.

Theorem 3.1 (Convergence of linear TD(0) Dyna for pol-
icy evaluation). Consider the TD(0) iteration with a non-
negative step-size sequence (αk):

θk+1 = θk + αk(b>φk + γθ>k Fφk − θ>k φk)φk, (4)

where θ0 ∈ Rn is arbitrary. Assume that (i) the step-size
sequence satisfies

∑∞
k=0 αk = ∞,

∑∞
k=0 α

2
k < ∞, (ii)

r(F ) ≤ 1, (iii) (φk) are uniformly bounded i.i.d. random
variables, and that (iv) C = E

[
φkφ

>
k

]
is non-singular.

Then the parameter vector θk converges with probability
one to (I − γF>)−1b.

Proof. The idea of the proof is to view the algorithm as a
stochastic gradient descent method. In particular, we apply
Proposition 4.1 of (Bertsekas & Tsitsiklis 1996).

Before verifying the conditions of this result, let us
rewrite (4) in terms of the matrix G = I − γF :

θk+1 = θk + αk(b>φk + θ>k (γF − I)φk)φk
= θk + αk(b>φk − θ>k Gφk)φk
= θk + αksk.

Here sk is defined by the last equation.

The cited proposition requires the definition of a poten-
tial function J(θ) and will allow us to conclude that
limk→∞∇J(θk) = 0 with probability one. Let us choose
J(θ) = 1/2 E

[
(b>φk + γθ>Fφk − θ>φk)2

]
. Note that

by our i.i.d. assumptions on the features, J(θ) is well-
defined. We need to check four conditions (because the
step-size conditions are automatically satisfied): (i) The
nonnegativity of the potential function; (ii) The Lipschitz
continuity of ∇J(θ); (iii) The pseudo-gradient property of
the expected update direction; and (iv) The boundedness of
the expected magnitude of the update, more precisely that
E
[
‖sk‖22|θk

]
≤ O(‖∇J(θk)‖22). Nonnegativity is satisfied

by definition and the boundedness condition (iv) is satisfied
thanks to the boundedness of the features.

Let us show now that the pseudo-gradient property (iii) is
satisfied. This condition requires the demonstration of a
positive constant c such that

c‖∇J(θk)‖22 ≤ −∇J(θk)>E [sk|θk] . (5)

Define sk = E [sk|θk] = Cb − CG>θk. A simple cal-
culation gives ∇J(θk) = −Gsk. Hence ‖∇J(θk)‖22 =
s>k G

>Gsk and −(∇J(θk))>sk = s>k Gsk. Therefore (5)
is equivalent to c s>k G

>Gsk ≤ s>k Gsk. In order to make
this true with a sufficiently small c, it suffices to show that



s>Gs > 0 holds for any non-zero vector s. An elementary
reasoning shows that this is equivalent to 1/2(G+G>) be-
ing positive definite, which in turn is equivalent to r(F ) ≤
1, showing that (iii) is satisfied.

Hence, we have verified all the assumptions of the
cited proposition and can therefore we conclude that
limk→∞∇J(θk) = 0 with probability one. Plugging in the
expression of∇J(θk), we get limt→∞(Cb−CG>θk) = 0.
Because C and G are invertible (this latter follows from
r(F ) ≤ 1), it follows that the limit of θk exists and
limk→∞ θk = (G>)−1b = (I − γF>)−1b.

Several extensions of this result are possible. First, the re-
quirement of i.i.d. sampling can be considerably relaxed.
With an essentially unchanged proof, it is possible to show
that the theorem remains true if the feature vectors are gen-
erated by a Markov process given that they satisfy appro-
priate ergodicity conditions. Moreover, building on a re-
sult by Delyon (1996), one can show that the result con-
tinues to hold even if the sequence of features is gener-
ated in an algorithmic manner, again provided that some
ergodicity conditions are met. The major assumption then
is that C = limK→∞ 1/K

∑K
k=1 φkφ

>
k exists and is non-

singular. Further, because there is no “noise” to reject, there
is no need to decay the step-sizes towards zero (the condi-
tion

∑∞
k=0 α

2
k < +∞ in the proofs is used to “filter out

noise”). In particular, we conjecture that sufficiently small
constant step-sizes would work as well (for a result of this
type see Proposition 3.4 by Bertsekas & Tsitsiklis 1996).

On the other hand the requirement on the numerical ra-
dius of F seems to be necessary for the convergence of the
TD(0) iteration. By studying the ODE associated with (4),
we see that it is stable if and only if CG is a positive stable
matrix (i.e., iff all its eigenvalues have positive real part).
From this it seems necessary to require that G is positive
stable. However, to ensure that CG is positive stable the
strictly stronger condition that G + G> is positive defi-
nite must be satisfied. This latter condition is equivalent
to r(F ) ≤ 1.

We turn now to consider the convergence of Dyna planning
using the residual-gradient Dyna iteration (2). This update
rule can be derived by taking the gradient of J(θ, φk) =
(b>φk + γθ>φk − θ>φk)2 w.r.t. θ. Thus, as an immediate
consequence of Proposition 4.1 of (Bertsekas & Tsitsiklis
1996) we get the following result:

Theorem 3.2 (Convergence of residual-gradient Dyna for
policy evaluation). Assume that θk is updated according to

θk+1 = θk + αk(b>φk + γθ>k Fφk − θ>k φk)(φk − γFφk),

where θ0 ∈ Rn is arbitrary. Assume that the non-negative
step-size sequence (αk) satisfies the summability condition
(i) of Theorem 3.1 and that (φk) are uniformly bounded
i.i.d. random variables. Then the parameter vector θk con-

verges with probability one to (I − γF>)−1b, assuming
that (I − γF>) is non-singular.

Proof. As all the conditions of Proposition 4.1 of (Bert-
sekas & Tsitsiklis 1996) are trivially satisfied with the
choice J(θ) = E [J(θ, φk)], we can conclude that θk con-
verges w.p.1 to the minimizer of J(θ). In the previous the-
orem we have seen that the minimizer of J(θ) is indeed
θ = (I − γF>)−1b, finishing the proof.

3.2 Convergence to the LSTD solution

So far we have discussed the convergence of planning given
a model, but we have said nothing about the relationship
of the model to data, or about the quality of the resultant
solution. Suppose the model were the best linear fit to a
finite dataset of observed feature-vector-to-feature-vector
transitions with accompanying rewards. In this case we can
show that the fixed point of the Dyna updates is the least
squares temporal-difference solution. This is the solution
for which the mean TD(0) update is zero and is also the so-
lution found by the LSTD(0) algorithm (Barto & Bradtke
1996).

Theorem 3.3. Given a training dataset of feature, reward,
next-state feature triples D = [φ1, r1, φ

′
1, . . . , φn, rn, φ

′
n],

let F, b be the least-squares model built on D. Assume that
C =

∑n
k=1 φkφ

>
k has full rank. Then the solution (3) is

the same as the LSTD solution on this training set.

Proof. It suffices to show that the respective solution sets
of the equations

0 =
n∑
k=1

φk(rk + γ(φ′k)
>θ − φ>k θ), (6)

0 = b+ (γF> − I)θ (7)

are the same. This is because the LSTD parameter vectors
are obtained by solving the first equation and the TD(0)
Dyna solutions are derived from the second equation.

Let D =
∑n
k=1 φk(φ

′
k)
>, and r =

∑n
k=1 φkrk. A stan-

dard calculation shows that

F> = C−1D and b = C−1 r.

Plugging in C, D into (6) and factoring out θ shows that
any solution of (6) also satisfies

0 = r + (γD − C) θ. (8)

If we multiply both sides of (8) by C−1 from the left we
get (7). Hence any solution of (6) is also a solution of (7).
Because all the steps of the above derivation are reversible,
we get that the reverse statement holds as well.



Algorithm 2 : Linear Dyna with PWMA prioritized
sweeping (policy evaluation)

Obtain initial φ, θ, F, b
For each time step:

Take action a according to the policy. Receive r, φ′

δ ← r + γθ>φ′ − θ>φ
θ ← θ + αδφ
F ← F + α(φ′ − Fφ)φ>

b← b+ α(r − b>φ)φ
For all i such that φ(i) 6= 0:

For all j such that F ij 6= 0:
Put j on the PQueue with priority |F ijδφ(i)|

Repeat p times while PQueue is not empty:
i← pop the PQueue
δ ← b(i) + γθ>Fei − θ(i)
θ(i)← θ(i) + αδ
For all j such that F ij 6= 0:

Put j on the queue with priority |F ijδ|
φ← φ′

4 Linear prioritized sweeping

We have shown that the convergence and fixed point of pol-
icy evaluation by linear Dyna are not affected by the way
the starting feature vectors are chosen. This opens the pos-
sibility of selecting them cleverly so as to speed the con-
vergence of the planning process. One natural idea—the
idea behind prioritized sweeping—is to work backwards
from states that have changed in value to the states that
lead into them. The lead-in states are given priority for be-
ing updated because an update there is likely to change the
state’s value (because they lead to a state that has changed
in value). If a lead-in state is updated and its value is
changed, then its lead-in states are in turn given priority
for updating, and so on. In the table-lookup context in
which this idea was developed (Moore & Atkeson 1993;
Peng 1993; see also Wingate & Seppi 2005), there could
be many states preceding each changed state, but only one
could be updated at a time. The states waiting to be up-
dated were kept in a queue, prioritized by the size of their
likely effect on the value function. As high-priority states
were popped off the queue and updated, it would some-
times give rise to highly efficient sweeps of updates across
the state space; this is what gave rise to the name “priori-
tized sweeping”.

With function approximation it is not possible to identify
and work backwards from individual states, but alterna-
tively one could work backwards feature by feature. If
there has just been a large change in θ(i), the component of
the parameter vector corresponding to the ith feature, then
one can look backwards through the model to find the fea-
tures j whose components θ(j) are likely to have changed
as a result. These are the features j for which the elements
F ij of F are large. One can then preferentially construct

Algorithm 3 : Linear Dyna with MG prioritized sweeping
(policy evaluation)

Obtain initial φ, θ, F, b
For each time step:

Take action a according to the policy. Receive r, φ′

δ ← r + γθ>φ′ − θ>φ
θ ← θ + αδφ
F ← F + α(φ′ − Fφ)φ>

b← b+ α(r − b>φ)φ
For all i such that φ(i) 6= 0:

Put i on the PQueue with priority |δφ(i)|
Repeat p times while PQueue is not empty:
i← pop the PQueue
For all j such that F ij 6= 0:
δ ← b(j) + γθ>Fej − θ(j)
θ(j)← θ(j) + αδ
Put j on the PQueue with priority |δ|

φ← φ′

starting feature vectors φ that have non-zero entries at these
j components. In our algorithms we choose the starting
vectors to be the unit basis vectors ej , all of whose compo-
nents are zero except the jth, which is 1. (Our theoretical
results assure us that this cannot affect the result of conver-
gence.) Using unit basis vectors is very efficient computa-
tionally, as the vector matrix multiplication Fφ is reduced
to pulling out a single column of F .

There are two tabular prioritized sweeping algorithms in
the literature. The first, due simultaneously to Peng and
Williams (1993) and to Moore and Atkeson (1993), which
we call PWMA prioritized sweeping, adds the predecessors
of every state encountered in real experience to the prior-
ity queue whether or not the value of the encountered state
was significantly changed. The second form of prioritized
sweeping, due to McMahan and Gordon (2005), and which
we call MG prioritized sweeping, puts each encountered
state on the queue, but not its predecessors. For McMa-
han and Gordon this resulted in a more efficient planner.
A complete specification of our feature-by-feature versions
of these two forms of prioritized sweeping are given above,
with TD(0) updates and gradient-descent model learning,
as Algorithms 2 and 3. These algorithms differ slightly
from previous prioritized sweeping algorithms in that they
update the value function from the real experiences and not
just from model-generated experience. With function ap-
proximation, real experience is always more informative
than model-generated experience, which will be distorted
by the function approximator. We found this to be a signif-
icant effect in our empirical experiments (Section 6).



Algorithm 4: Linear Dyna with MG prioritized sweeping
and TD(0) updates (control)

Obtain initial φ, θ, F, b
For each time step:

a← arg maxa
[
b>a φ+ γθ>Faφ

]
(or ε-greedy)

Take action a, receive r, φ′

δ ← r + γθ>φ′ − θ>φ
θ ← θ + αδφ
Fa ← Fa + α(φ′ − Faφ)φ>

ba ← ba + α(r − b>a φ)φ
For all i such that φ(i) 6= 0:

Put i on the PQueue with priority |δφ(i)|
Repeat p times while PQueue is not empty:
i← pop the PQueue
For all j s.t. there exists an a s.t. F ija 6= 0:
δ ← maxa

[
ba(j) + γθ>Faej

]
− θ(j)

θ(j)← θ(j) + αδ
Put j on the PQueue with priority |δ|

φ← φ′

5 Theory for Control

We now turn to the full case of control, in which separate
models Fa, ba are learned and are then available for each
action a. These are constructed such that Faφ and b>a φ can
be used as estimates of the feature vector and reward that
follow φ if action a is taken. A linear Dyna algorithm for
the control case goes through a sequence of planning steps
on each of which a starting feature vector φ and an action
a are chosen, and then a next feature vector φ′ = Faφ and
next reward r = baφ are generated from the model. Given
this imaginary experience, a conventional model-free up-
date is performed. The simplest case is to again apply
(1). A complete algorithm including prioritized sweeping
is given in Algorithm 4.

The theory for the control case is less clear than for pol-
icy evaluation. The main issue is the stability of the “mix-
ture” of the forward model matrices. The corollary below
is stated for an i.i.d. sequence of features, but by the re-
mark after Theorem 3.1 it can be readily extended to the
case where the policy to be evaluated is used to generate
the trajectories.

Corollary 5.1 (Convergence of linear TD(0) Dyna with
action models). Consider the Dyna recursion (4) with
the modification that in each step, instead of Fφk,
we use Fπ(φk)φk, where π is a policy mapping fea-
ture vectors to actions and {Fa} is a collection of
forward-model matrices. Similarly, b>φk is replaced by
b>π(φk)φk. As before, assume that φk is an unspecified
i.i.d. process. Let (F, b) be the least squares model of
π: F = arg minG E

[
‖Gφk − Fπ(φk)φk‖22

]
and b =

arg minu E
[
(u>φk − b>π(φk)φk)

2
]

If the numerical radius
of F is bounded by one, then the conclusions of Theo-
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Figure 1: The general Boyan Chain problem.

rem 3.1 hold: the parameter vector θk converges with prob-
ability one to (I − γF>)−1b.

Proof. The proof is immediate from the normal equation
for F , which states that E

[
Fφkφ

>
k

]
= E

[
Fπ(φk)φkφ

>
k

]
,

and once we observe that, in the proof of Theorem 3.1, F
appears only in expressions of the form E

[
Fφkφ

>
k

]
.

As in the case of policy evaluation, there is a corresponding
corollary for the residual gradient iteration, with an imme-
diate proof. These corollaries say that, for any policy with a
corresponding model that is stable, the Dyna recursion can
be used to compute its value function. Thus we can per-
form a form of policy iteration—continually computing an
approximation to the value function for the greedy policy.

6 Empirical results

In this section we illustrate the empirical behavior of the
four Dyna algorithms and make comparisons to model-free
methods using variations of two standard test problems:
Boyan Chain and Mountain Car. Our Boyan Chain en-
vironment is an extension of that by Boyan (1999, 2002)
from 13 to 98 states, and from 4 to 25 features (Gerami-
fard, Bowling & Sutton 2006). Figure 1 depicts this envi-
ronment in the general form. Each episode starts at state
N = 98 and terminates in state 0. For all states s > 2,
there is an equal probability of transitioning to states s− 1
or s−2 with a reward of−3. From states 2 and 1, there are
deterministic transitions to states 1 and 0 with respective
rewards of−2 and 0. Our Mountain Car environment is ex-
actly as described by Sutton (1996; Sutton & Barto 1998),
re-implemented in Matlab. An underpowered car must be
driven to the top of a hill by rocking back and forth in a
valley. The state variables are a pair (position,velocity) ini-
tialized to (−0.5, 0.0) at the beginning of each episode. The
reward is−1 per time step. There are three discrete actions
(accelerate, reverse, and coast). We used a value function
representation based on tile-coding feature vectors exactly
as in Sutton’s (1996) experiments, with 10 tilings over the
combined (position, velocity) pair, and with the tiles hashed
down to 10,000 features. In the policy evaluation exper-
iments with this domain, the policy was to accelerate in
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Figure 2: Performance of policy evaluation methods on the Boyan Chain and Mountain Car environments

the direction of the current velocity, and we added noise to
the domain that switched the selected action to a random
action with 10% probability. Complete code for our test
problems as standard RL-Glue environments is available
from the RL-Library hosted at the University of Alberta.

In all experiments, the step size parameter α took the form
αt = α0

N0+1
N0+t1.1 , in which t is the episode number and

the pair (N0, α0) was selected based on empirically find-
ing the best combination out of α0 ∈ {.01, .1, 1} and
N0 ∈ {100, 1000, 106} separately for each algorithm and
domain. All methods observed the same trajectories in pol-
icy evaluation. All graphs are averages of 30 runs; error
bars indicate standard errors in the means. Other parameter
settings were ε = 0.1, γ = 1, and λ = 0.

We performed policy evaluation experiments with four al-
gorithms: Dyna-Random, Dyna-PWMA, Dyna-MG (as in
Algorithms 1–3), and model-free TD(0). In the case of
the Dyna-Random algorithm, the starting feature vectors
in planning were chosen to be unit basis vectors with the 1
in a random location. Figure 2 shows the policy evaluation
performance of the four methods in the Boyan Chain and
Mountain Car environments. For the Boyan Chain domain,
the loss was the root-mean-squared error of the learned
value function compared to the exact analytical value, av-
eraged over all states. In the Mountain Car domain, the
states are visited very non-uniformly, and a more sophis-
ticated measure is needed. Note that all of the methods
drive θ toward an asymptotic value in which the expected
TD(0) update is zero; we can use the distance from this
as a loss measure. Specifically, we evaluated each learned
value function by freezing it and then running a fixed set
of 200,000 episodes with it while running the TD(0) algo-
rithm (but not allowing θ to actually change). The norm of
the sum of the (attempted) update vectors was then com-
puted and used as the loss. In practice, this measure can be
computed very efficiently as ||A∗θ−b∗|| (in the notation of

LSTD(0), see Bradtke & Barto 1996).

In the Boyan Chain environment, the Dyna algorithms gen-
erally learned more rapidly than model-free TD(0). Dyna-
MG was initially slower than the other algorithms, then
caught up and surpassed them. The relatively poor early
performance of Dyna-MG was actually due to its being
a better planning method. After few episodes the model
tends to be of very high variance, and so therefore is the
best value-function estimate given it. We tested this hy-
pothesis by running the Dyna methods starting with a fixed,
well-learned model; in this case Dyna-MG was the best of
all the methods from the beginning. All of these data are
for one step of planning for each real step of interaction
with the world (p = 1). In preliminary experiments with
larger values of p, up to p = 10, we found further improve-
ments in learning rate of the Dyna algorithms over TD(0),
and again Dyna-MG was best.

The results for Mountain Car are less clear. Dyna-MG
quickly does significantly better than TD(0), but the other
Dyna algorithms lag initially and never surpass TD(0).
Note that, for any value of p, Dyna-MG does many more θ
updates than the other two Dyna algorithms (because these
updates are in an inner loop, cf. Algorithms 2 and 3). Even
so, because of its other efficiencies Dyna-MG tended to run
faster overall in our implementation. Obviously, there is a
lot more interesting empirical work that could be done here.

We performed one Mountain Car experiment with Dyna-
MG as a control algorithm (Algorithm 4), comparing it
with model-free Sarsa (i.e., Algorithm 4 with p = 0). The
results are shown in Figure 3. As before, Dyna-MG showed
a distinct advantage over the model-free method in terms
of learning rate. There was no clear advantage for either
method in the second half of the experiment. We note
that, asymptotically, model-free methods are never worse
than model-based methods, and are often better because the
model does not converge exactly to the true system because
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Figure 3: Control performance on Mountain Car

of structural modeling assumptions. (The case we treat
here—linear models and value functions with one-step TD
methods—is a rare case in which asymptotic performance
of model-based and model-free methods should be identi-
cal.) The benefit of models, and of planning generally, is in
rapid adaptation to new problems and situations.

These empirical results are not extensive and in some cases
are preliminary, but they nevertheless illustrate some of the
potential of linear Dyna methods. The results on the Boyan
Chain domain show that Dyna-style planning can result in
a significant improvement in learning speed over model-
free methods. In addition, we can see trends that have been
observed in the tabular case re-occurring here with linear
function approximation. In particular, prioritized sweep-
ing can result in more efficient learning than simply updat-
ing features at random, and the MG version of prioritized
sweeping seems to be better than the PWMA version.

Finally, we would like to note that we have done exten-
sive experimental work (not reported here) attempting to
adapt least squares methods such as LSTD to online con-
trol domains, in particular to the Mountain Car problem. A
major difficulty with these methods is that they place equal
weight on all past data whereas, in a control setting, the pol-
icy changes and older data becomes less relevant and may
even be misleading. Although we have tried a variety of
forgetting strategies, it is not easy to obtain online control
performance with these methods that is superior to model-
free methods. One reason we consider the Dyna approach
to be promising is that no special changes are required for
this case; it seems to adapt much more naturally and effec-
tively to the online control setting.

7 Conclusion

In this paper we have taken important steps toward es-
tablishing the theoretical and algorithmic foundations of
Dyna-style planning with linear function approximation.
We have established that Dyna-style planning with familiar
reinforcement learning update rules converges under weak
conditions corresponding roughly, in some cases, to the ex-
istence of a finite solution to the planning problem, and
that convergence is to a unique least-squares solution in-
dependent of the distribution used to generate hypothet-
ical experience. These results make possible our second
main contribution: the introduction of algorithms that ex-
tend prioritized sweeping to linear function approximation,
with correctness guarantees. Our empirical results illustrate
the use of these algorithms and their potential for acceler-
ating reinforcement learning. Overall, our results support
the conclusion that Dyna-style planning may be a practical
and competitive approach to achieving rapid, online control
in stochastic sequential decision problems with large state
spaces.
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