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Abstract

Numerous temporal inference tasks such as
fault monitoring and anomaly detection ex-
hibit a persistence property: for example, if
something breaks, it stays broken until an
intervention. When modeled as a Dynamic
Bayesian Network, persistence adds depen-
dencies between adjacent time slices, often
making exact inference over time intractable
using standard inference algorithms. How-
ever, we show that persistence implies a reg-
ular structure that can be exploited for ef-
ficient inference. We present three succes-
sively more general classes of models: persis-
tent causal chains (PCCs), persistent causal
trees (PCTs) and persistent polytrees (PPTs),
and the corresponding exact inference algo-
rithms that exploit persistence. We show
that analytic asymptotic bounds for our algo-
rithms compare favorably to junction tree in-
ference; and we demonstrate empirically that
we can perform exact smoothing on the or-
der of 100 times faster than the approximate
Boyen-Koller method on randomly generated
instances of persistent tree models. We also
show how to handle non-persistent variables
and how persistence can be exploited effec-
tively for approximate filtering.

1 Introduction

Persistence is a common trait of many real-world sys-
tems. It is used to model permanent changes in state,
such as when components of a system that have bro-
ken until someone intervenes to fix them. Especially
interesting and useful are diagnostic models where mis-
alignments and other process drifts may cause a cas-
cade of other failures, all of which may also persist
until the root cause is fixed. Even when such changes
are not truly permanent, they are often reversed slowly

relative to the time scale of the model, and persistence
can be a good approximation in such systems. For in-
stance, vehicular accidents cause obstructions on the
road that last much longer than the required detec-
tion time and are thus persistent for the purpose of
detection [20]. Another example is outbreak detec-
tion [4], where an infected population stays infected
much longer than the desired detection time. There
are many other examples of persistence and approxi-
mate persistence.

Dynamic Bayesian Networks (DBNs) [5] are a general
formalism for modeling temporal systems under uncer-
tainty. Many standard time-series methods are spe-
cial cases of DBNs, including Hidden Markov Models
[18] and Kalman filters [7]. Discrete DBNs in partic-
ular are a very popular formalism, but usually suf-
fer from intractability [1] when dense inter-temporal
dependencies are present among hidden state vari-
ables, leading many to search for approximation al-
gorithms [1, 13, 15, 14]. Unfortunately, modeling per-
sistence with DBNs requires the introduction of many
inter-temporal arcs, often making exact inference in-
tractable with standard inference algorithms.

In this paper, we define Persistent Causal DBNs (PC-
DBNs), a particular class of DBN models capable of
modeling many real-world systems that involve long
chains of causal influence coupled with persistence of
causal effects. We show that a linear time algorithm
exists for inference (smoothing) in linear chain and
tree-based PC-DBNs. We then generalize our results
to polytree causal networks, where the algorithm re-
mains exact, and to general networks, where it inher-
its properties of loopy belief propagation [21]. Our
method relies on a transformation of the original pro-
totype network, allowing smoothing to be done effi-
ciently; however, this method does not readily deal
with the incremental filtering problem. Nonetheless,
we show empirically that, if evidence is observed at
every time slice, approximate filtering can be accom-
plished with fixed window smoothing, producing lower
error than approximate Boyen-Koller (BK) filtering [1]



using a fraction of the computation time.

The algorithm that we present exploits a particu-
lar type of determinism that is given by the persis-
tence relation. There has been other work that seeks
to directly or indirectly exploit general deterministic
structure in Bayesian networks using compilation ap-
proaches [2], a generalized version belief propagation
[10], and variable elimination with algebraic decision
diagrams [3, 19]. These more general methods have
not been tailored to the important special cases of
DBNs and persistency. To our knowledge, this is the
first work to investigate persistency in DBNs.

The paper is organized as follows: In Section 2 we
introduce the changepoint transformation. Section 3
introduces persistent causal chain DBNs and the cor-
responding inference algorithm, which retains all the
essential properties of later models. Then, Section 4
will discuss the steps leading to a fully general algo-
rithm. Experimental results are presented in Section
5, followed by conclusions.

2 Notation and changepoints

Consider a Bayesian network (BN) with N binary vari-
ables Xi; we will refer to this network as the prototype.
The corresponding Dynamic BN with M slices is cre-
ated by replicating the prototype M times and con-
necting some of the variables to their copies in the next
slice. In our notation, upper indices range over time
slices of the DBN; lower indices range over variables
in each time slice. Colon notation is used to denote
sets and sequences. Thus, for instance, X1:M

4 denotes
the entire temporal sequence of values of X4 from time
1 to time M . Variables without an upper index will
refer to their respective counterparts in the prototype.
We say that a variable Xk is persistent if

P (Xt
k = 1|Xt−1

k , U t) =
{
P (Xk|U) if Xt−1

k = 0
1 if Xt−1

k = 1
,

(1)
where U = Pa(Xk) refers to the parents of Xk in the
prototype. In other words, 1 is an absorbing state.
Sometimes [12] a variable is called persistent if it has
an arc to the next-slice copy of itself. Our definition of
persistence is strictly stronger, but no confusion should
arise in this paper.

There are 2M temporal sequences of values of a binary
variableXk. If the variable is persistent, the number of
configurations is reduced to M+1. Information about
X1:M

k can be summarized by looking at the time when
X changed from 0 to 1 (we sometimes refer to the 0
state as the off state and 1 as the on state). Thus,
inference in the persistent DBN with binary variables
is equivalent to inference in a network whose topol-
ogy closely resembles that of the prototype and whose

variables are M+1-ary discrete changepoint variables,
with correspondingly defined conditional probability
distributions (CPDs), as shown in Figure 1b. The
models in Figure 1a and 1b are identical; one can go
back and forth between them by recognizing that

(X̃ = j) ⇔ (Xj = 0) ∧ (Xj+1 = 1) and
(Xj = 0) ⇔ (X̃ > j).

If the prototype is a tree, belief propagation in the
transformed network yields an algorithm whose com-
plexity is O(M2N). The quadratic part of the com-
putation comes from summing over the M + 1 values
of the single parent for each of the M + 1 values of
the child. Similarly, if the prototype is a polytree,
complexity will be proportional to MUmax+1, where
Umax is the largest in-degree in the network. This
transformation by itself, when all hidden state vari-
ables are persistent, allows us to perform smoothing
much more efficiently than by operating on the orig-
inal DBN. There is, however, additional structure in
the CPDs that allows us to do better by a factor of M ,
and we can also adapt our algorithm to deal with the
case when some hidden variables are not persistent.

3 PCC-DBN inference

To simplify the exposition, let us now focus on a spe-
cific prototype, a persistent causal chain DBN (PCC-
DBN). This is a chain with Pa(Xi) = {Xi−1}, i =
1, ..., N and Pa(O) = XN (thus it has N+1 nodes).
Let us further assume that the leaves are non-
persistent and observed, while the causes (X nodes)
are all persistent and hidden. The network is shown
in Figure 1a and its transformed version in Figure 1b.

Consider the problem of computing P (O). This is in
general one of the most difficult inference problems, re-
quiring one to integrate out all hidden state variables,
and is implicit in most inference queries:

P(O1:M ) =
∑

X1:M
1:N

P(O1:M | X1:M
1:N ) · P(X1:M

1:N ) (2)

Let {jk : 0 ≤ jk ≤ M} index the sequence of X1:M
k

in which variable Xjk

k is the last (highest-time) vari-
able to be in the off state, unless jk = 0 in which case
it indexes the sequence in which all Xk are in the on
state. As an example, if M = 3, then jk = {0, 1, 2, 3}
indexes the statesX1:M

k = {111, 011, 001, 000}, respec-
tively, for all k. All configurations not indexed by ji
have zero probability due to the persistence assump-
tion. To simplify notation, we use jk to denote the
event that X1:M

k is the sequence indexed by jk. We
also say that Xk fired at jk. We can decompose Equa-
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Figure 1: (a) A PCC-DBN network with N + 1 nodes
per slice; (b) the transformed network. We sometimes
refer to X1

2 as the temporal parent of X2
2 and to X2

1

as its causal parent.

tion 2 according to the network structure as follows:

P (O1:M ) =
M∑

j1=0

P(j1)
M∑

j2=0

P(j2 | j1) . . .

. . .

M∑

jN=0

P(jN | jN−1) · P(O1:M | jN ) (3)

Denote by Pk the probability that variable Xk will fire
for the first time given that its causal parent has fired,
and by P̂k the probability that Xk will fire for the first
time given that its causal parent has not fired:

Pk ≡ P(Xj
k = 1 | Xj−1

k = 0, Xj
k−1 = 1)

P̂k ≡ P(Xj
k = 1 | Xj−1

k = 0, Xj
k−1 = 0).

Let Pk and P̂k denote the complements 1 − Pk and
1 − P̂k, respectively. We can define ΣL

k recursively
to denote the partial sum over jk from Equation 3,
conditioned on jk−1 = L:

ΣL
k ≡

∑

jk

P(jk | jk−1 = L) · Σjk

k+1 (4)

with boundary condition ΣL
N+1 ≡ P(O1:M | jN = L).

Using this notation, Equation 3 can be rewritten as:

P (O1:M ) =
M∑

j1=0

P(j1) · Σj1
2 (5)

Now we now need to show that one can calculate the
entire set Σ0:M

2:N in time O(MN). Each ΣL
k can be

written as follows:

ΣL
k = σ̄L

k + σL
k + σ̂L

k , (6)

where σ̄L
k contains all the terms in the sum such that

Xk first fires when Xk−1 has not fired:

σ̄L
k =

∑

jk<L

P̂ jk

k
P̂k · Σjk

k+1. (7)

σL
k contains all the terms in which Xk first fires when
Xk−1 has also fired:

σL
k =

∑

L≤jk<M

P̂L
k
P jk−L

k
Pk · Σjk

k+1, (8)

and σ̂L
k contains the final term in which Xk never fires:

σ̂L
k = P̂L

k
PM−L

k
· ΣM

k+1. (9)

In order to calculate Equation 5 in time O(MN), we
need to pre-compute σ̄L

k , σL
k and σ̂L

k for all values of L
in O(M) for each variable Xk.

3.1 Upward Recursion Relations

As a boundary condition for the recursion, assume we
have calculated Σk

N+1 for all 0 ≤ k ≤ M . We show
how to do this in time O(M) in Section 3.2. Also, this
algorithm requires the pre-calculation and caching of
P̂ i

k
for 0 ≤ k ≤ N and 0 ≤ i ≤ M , which can be done

recursively in O(MN) time and space.

Inspecting Equation 7 more closely, it should be easy
to see that one can calculate σ̄i

N for 0 ≤ i ≤ M in
O(M) time using the following recursion:

σ̄i+1
l = σ̄i

l + P̂ i
l
· P̂l · Σi

k+1, (10)

with boundary condition σ̄0
l = 0 for all l. One can also

calculate σi
k for 0 ≤ i ≤M with the recursion:

σi−1
k =

σi
k

P̂k

Pk + P̂ i−1

k
· Pk · Σi−1

k+1, (11)

with boundary condition σM
k = 0 for all l. Finally, one

can calculate σ̂i
N for 0 ≤ i ≤M with the recursion:

σ̂i−1
k =

σ̂i
k

P̂k

Pk (12)

with boundary condition σ̂M
k = P̂M

k
· ΣM

k+1 for all l.

Once σ̄i
N , σi

N and σ̂i
N are calculated, one can calculate

all Σi
N for 0 ≤ i ≤ M in O(M) time using Equa-

tions 10, 11, 12 and 6. After Σ0:M
N is calculated, we

can use Equation 4 to obtain Σ0:M
N−1 in time O(M),

and repeat N times to get all values of Σ0:M
1:N . Thus

the entire calculation takes O(MN) time.



3.2 Computing Σi
N+1

To finalize the proof, we have to show how to calcu-
late Σi

N+1 (the probability of the observations for a
given configuration i of X1:M

N ) for all 0 ≤ i ≤ M in
time O(M). Recall that Σi

N+1 ≡ P(O1:M | jN = i).
Since the parent of each Oj is given, for each i, this
calculation is simply the product of the observations:

P(O1:M | jN = i) =
M∏

k=1

P(Ok | Xk
N , jN = i) (13)

Using our existing notation, we define

φ`
N+1 = P(Ok | Xk

N = 1), (14)

φ̄`
N+1 = P(Ok | Xk

N = 0), (15)

Σi
N+1 can be calculated for all 0 ≤ i ≤ M in time

O(M) via the recursion relation:

Σ0
N+1 =

M∏

`=1

φ`
N+1 and Σ`+1

N+1 = Σ`
N+1 ·

φ̄`
N+1

φ`
N+1

.

(16)
Note that this formulation puts no distributional as-
sumption on P (O|XN ). The leaves can be distributed
as multinomials, Gaussians etc, as is often done with
Hidden Markov models [18] when they are put to their
many uses.

3.3 Downward Recurrences

The above discussion completes the description of the
“λ-pass” of PCC-DBN algorithm. Similar reasoning
can be applied to obtain the “π-pass” recurrences that
we now give without full derivation. Analogously to
Σ, the semantics of Ψj

k is p(Xk = j|O+
k ), where O+

k is
the subset of evidence reachable from Xk through its
parent1. Ψj

k is again a sum of three components:

Ψj
k = ψj

k + ψ̄j
k + ψ̂j

k (17)

ψ̄ accounts for the terms where the parent has not yet
changed:

ψ̄`−1
k = ψ̄`

k ·
1
P k

+ P̂ `−1

k
· P̂k ·Ψ`

k−1 (18)

with initialization ψ̄M
k = 0 for all k.

ψ accounts for the terms where the parent has already
changed:

ψ`+1
k = ψ`

k · Pk + P̂ `+1

k
· Pk ·Ψ`+1

k−1 (19)

1We only have evidence in the bottom layer in PCC-
DBNs, but this will come handy in the next section.

with boundary condition ψ0
k = PkΨ0

k−1 for all k. Also,
since Xk eventually changes in this scenario, ψM

k = 0.

ψ̂ accounts for the terms where the node never
changes:

ψ̂M
k =

∑

0≤i≤M

P̂ i
k
· PM−i

k
·Ψi

k−1. (20)

Because the upper index refers to the changepoint of
Xk, only ψ̂M

k is non-zero. We can just compute this in
O(M) without the need for recurrences.

Initialization of the Ψ-recurrences happens at the
root(s) of the network. For any root r, Ψ0

r = P̂k and re-
currently Ψi+1

r = Ψi
r · P̂r. Finally, ΨM

r = ΨM−1
r P̂r/P̂k.

3.4 PCC-DBN and belief propagation

We have just defined PCC-DBN, a version of belief
propagation that first collects the evidence by passing
the λ-messages towards the root of the chain and the
proceeds to distribute information towards the leaves
via the π-messages. After propagation is complete, we
can obtain any posterior as

p(X̃k|O) = Σk+1 ·Ψk. (21)

It is now useful to recall the types of potentials in-
volved in Pearl’s algorithm [8] and how they relate
to the quantities above. For each node X, there
are local potentials πX(x) ≡def p(X = x|e+X) and
λX(x) ≡def p(e−X |X = x), where e+X and e−X denote re-
spectively the evidence reachable through parents and
the evidence reachable from X “downwards”, X in-
cluded. There are two types of messages in Pearl’s al-
gorithm: πX→Yi sent by X to its children and λX→Ui

sent to its parents. A closer look at PCC-DBN reveals
that each Σk is identical to λXk→Xk−1 — the message
from Xk to its single parent Xk−1. The local potential
λXk

(jk) is identical to Σk+1, because there are no chil-
dren other than Xk+1 and evidence is only observed
at the bottom of the chain. Ψk corresponds directly
to πXk

(jk). This is why Equation 21 works.

3.5 Simple Generalizations and Causal Trees

While PCC-DBNs are useful for demonstrating the
general ideas of handling the probability distributions
arising from the changepoint transformation, they
form a rather restricted class of networks, and the in-
ference query that we performed was also restricted.
Here we state succinctly a set of simple alterations
which allow this algorithm to be relaxed in various
ways:

General evidence patterns We can have obser-
vations anywhere in the network, in any time slice.



Casting the inference as belief propagation gives the
answer to any probabilistic query as Equation 21 with
one caveat: An observation such as X3

3 = 1 does not
tell us with certainty the position of the changepoint,
but it just provides evidence that j3 < 3, thus we
cannot simply set the changepoint variable to state 3.
Rather, the potentials corresponding to such evidence
must be multiplied onto the messages as prescribed by
the belief propagation algorithm (see Equation 22).

Non-stationarity Stationarity of conditional prob-
ability distributions was used to simplify the formulae
in the previous exposition, but is not required. All
that is needed is to keep running products of respective
probabilities instead of the powers in the exponents of
Pk, P̂k. They need to be computed incrementally and
tabulated to avoid hidden linear terms in the compu-
tation.

Extension to trees The extension of PCC-DBN
to causal trees (PCT-DBNs) is now fairly straightfor-
ward. Because each node Xk can now have multiple
children Ch(Xk), we must replace Σk in all recurrences
with the true λ-potential for Xk:

λXk
= λXk→Xk

·
∏

i∈Ch(Xk)

Σi, (22)

where λXk→Xk
accounts for evidence observed in Xk’s

temporal chain. The vector λXk→Xk
is zero where the

evidence rules out a changepoint — before the time t
of the last observed Xt

k = 0 and after the time s of first
observed Xs

k = 1. Everywhere else, λXk→Xk
(jk) = 1.

Note that λX(x) potential can be obtained in O(M)
time per node.

In computation of ψ potentials, Ψk on the right-hand
side of the recurrences is replaced by the πPa(Xk)→Xk

,
which in turn include the influence of evidence under
Xk’s siblings:

πPa(Xk)→Xk
= πXk

·
∏

i∈Ch(Pa(Xk))\Xk

Σi. (23)

Again, this preserves the O(M) per-node complexity.
Thus, PCT-DBN is linear in both N and M .

4 Further Generalizations

In this section we describe three more important gen-
eralizations of PC-DBNs: polytrees, non-persistent
nodes, and finally an approximate algorithm for gen-
eral DAGs. These relaxations are more involved than
those of Section 3.5 and thus require more elaboration.

4.1 Polytrees

Belief propagation [16, 17] is a powerful framework for
exact inference in polytree networks. Polytrees, unlike

trees, allow multiple parents of a node, but remain
acyclic in the undirected sense. In polytree change-
point networks, structure in the conditional probabil-
ity table P (X = x|U) can be exploited to save a mul-
tiplicative factor of M + 1 just as we showed for tree
networks. The ψ-recurrences run over the first par-
ent variable, while the remaining parents are summed
over by brute force. Similarly, the σ-recurrences run
over the parent that the message is addressed to. For
instance, the definition of σ will be replaced by

σi
k ∝

∑

L≤jk<M

[
L∏

z=1

P̂
(z)

k

]
·
[

jk∏

z=L+1

P
(z)

k

]
P

(jk+1)
k · Σjk

k+1

(24)
and Equation 11 by

σi−1
k = σi

k ·
P

(i)

k

P̂
(i)

k

+

[
i−1∏
z=1

P̂
(z)

k

]
· P (i)

k · Σi−1
k+1

σM
k = 0, (25)

where, assuming we are sending to the first parent,

P
(z)
k = P (Xk = 1|U1 = 1, I{U2: ≤ z})
P̂

(z)
k = P (Xk = 1|U1 = 0, I{U2: ≤ z}) (26)

are now functions of the joint configuration of the re-
maining parents U2:. The proportionality constant in
Equation 24 equals the product of the remaining par-
ents’ π-messages. We call this PPT-DBN, the persis-
tent polytree algorithm.

The worst-case time complexity of PPT-DBN is dom-
inated by the cost associated with the largest family-
clique: O((M + 1)Umax). The 2TBN algorithm [12]
suffers a worst-case time complexity O(22NM), as all
nodes in two slices may be entangled [9] in the clique
to connect the two subsequent time-slices, even though
the prototype network is a polytree [12, section 3.6.2].
Therefore, we expect PPT-DBN will be comparatively
better for shorter temporal chains of larger networks.
However, PPT-DBN really shines on space complexity.
At most O(MN) memory is consumed, compared to
2TBN, where the potentials in the joint tree can grow
as large as O(22N ). Later we show experimentally how
dramatic the difference can be.

4.2 Non-persistent nodes

While it is convenient to assume that all non-leaf vari-
ables are persistent, it does limit the modeling power
at our disposal. We now show how an occasional non-
persistent variable in the network can also be handled
in polynomial time. We assume the non-persistent
variable is isolated, that is, all of its neighbors are
persistent. We make this assumption in order to avoid
having to invoke an embedded general DBN inference
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Figure 3: a) Induced cliques and separators b) En-
larged clique for generalized BP c) Σ-message flow in
a network with a non-persistent variable

algorithm such as 2TBN to handle connected non-
persistent variables. It can be done, but quickly be-
comes complex and inelegant. A simple way to han-
dle connected non-persistent nodes is to combine them
into a single joint node. Obviously, this solution causes
exponential growth in the state space of the joined
nodes, making it somewhat unappealing. A two-slice
approach made aware of the determinism, e.g. by use
of ADD compilation [3, 2], could very well work better
for networks with only a few persistent variables.

4.2.1 A simple example

To illustrate how an isolated non-persistent node
would be handled, assume first a simple structure
such as in Figure 2. Then we can efficiently compute
P (Ỹ = j) by moving the sums inward:

P (Ỹ = j) =
∑
X

P (X)P (Ỹ = j|X) =

∑
X1,...XM

[
M∏

k=1

P (Xk|Xk−1)
] [

M∏
k=1

φk
j

]
=

∑
X1
P (X1)φ1

j

∑

X2

P (X2|X1)φ2
j . . .

∑

XM

P (XM |XM−1)φM
j

︸ ︷︷ ︸
κM︸ ︷︷ ︸

κ2

This gives rise to the recurrence

κM
i (j) =

∑
v

P (XM = v|XM−1 = i) · φM
j (27)

κk
i (j) =

∑
v

P (Xk = v|Xk−1 = i) · φk
j · κk+1

v ,

with φk
j defined appropriately:

φk
j (Xk) =





P (Y 1 = 0|X1) if k = 1
P (Y k = 0|Y k−1 = 0, Xk) if 1 < k ≤ j
P (Y k = 1|Y k−1 = 0, Xk) if k = j + 1

1 if k > j + 1

Now, P (Ỹ = j) = κ0
1. Moreover, a short analysis will

reveal that

κk
i (j) = κk+1

i (j + 1) ∀1 ≤ k < j < M − 1.

Therefore, we do not need to compute κ for every j,
but compute κk

i (M) for all k as a special case and then
κk

i (M − 1) for all k to start the recursion. All other
values can be read off κk

i (M − 1) with the appropriate
indexing shift. Thus, we can obtain the entire distri-
bution P (Ỹ ) in O(M) time! Allowing non-persistent
variables to take on multiple values is also straightfor-
ward: we only need to allow the bottom index in κk

i

to range over the domain of Xk.

4.2.2 The general case

Pearl’s belief propagation has been generalized to the
clique tree propagation algorithm [21]. With belief
propagation (BP), the cliques correspond to edges of
the original polytree and the separators consist of sin-
gle nodes. In the process of message passing, the vari-
ables not in the separator are summed out of the clique
potentials.

The PCT-DBN algorithm used the “natural” cliques
induced by the transformed network. Assume we have
a situation such as in Figure 3. Because the variable
C is not persistent, the size of the induced separator
C is 2M . However, we can work conceptually with

a larger clique BCD. Message propagation then calls
for summing out all C1:M , which we can do without
actually instantiating the clique potential using a re-
currence derived much like that of Equation 27. In
the interest of space, we only show here the simple κ
recurrence. The full recurrence calls for summing over
all persistent variables in the clique and the resulting
complexity is O((M + 1)B), where B is the number of
persistent neighbors of the non-persistent variable.

5 Experimental evaluation

We implemented our algorithms in Matlab and com-
pare them to the exact and approximate algorithms as
implemented in the Bayesian Network Toolbox (BNT)
[11]. Namely, we will compare to the Boyen-Koller
(BK) algorithm [1] in its 1) exact and 2) fully factored
setting. Although BK reduces in its exact form to
the incremental junction-tree algorithm, we found it
was faster in practice than the 2TBN implementation.
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Figure 4: Performance scale up of PCT-DBN with N .
The temporal length was fixed at M = 20. Note log
scale y-axis.

Therefore the 2TBN algorithm is not included in the
evaluation.

Matlab run-time is not the ideal measure of algo-
rithm complexity as it is arguably more sensititve to
the quality of implementation compared to other lan-
guages. However, we should note that we did not make
any special effort to optimize our code for Matlab, and
the BNT library is a widely used and mature code
base, so we expect any advantages due to code quality
to fall to the competing approaches. Our Matlab code
and further evaluation results can be downloaded at
http://www.cs.pitt.edu/~tomas/papers/UAI08.

5.1 Speed of the tree algorithm

To compare inference speed, a network with the struc-
ture of a full binary tree with N nodes was generated.
Among theMN possible observations, 10% of the vari-
ables were set to a random value (subject to persis-
tence constraints so that P (E) 6= 0). We measured
the time to execute the query p(X̃1|E)—the posterior
probability over the root node—for each algorithm2.
This process was repeated 100 times for each M , N
combination and the respective times added up. The
results are graphed out in Figures 4 and 5.

PCT-DBN outperforms both the exact incremental
joint tree algorithm and the approximate BK algo-
rithm (assuming independence) by several orders of
magnitude as N , the size of a slice grows (Figure 4).
In fact, the exact algorithm soon runs out of mem-
ory (around N = 20) and only the approximate ver-
sion keeps up. Exact PCT-DBN inference also per-
forms consistently about 100 times faster than exact
junction-tree and approximate BK inference when we
look at scale-up with the number of slices, as shown in

2The actual query is in fact irrelevant as all algorithms
compute all posterior marginals simultaneously.
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Figure 5: Performance scale up of PCT-DBN with M .
The number of nodes was held at N = 19.
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Figure 6: Performance scale up of PPT-DBN with N .

Figure 5.

5.2 Speed of the polytree algorithm

The asymptotic time complexity of PPT-DBN, as M
increases, may be less favorable than that of the incre-
mental approaches. However, its lower memory com-
plexity is very favorable, as documented by the follow-
ing experiment. We generated a network where most
non-root nodes have exactly 2 parents and measured
the time for the three inference algorithms. Quadratic
scale-up with M is expected for PPT-DBN in such a
network.

Figure 6 shows the exact PPT-DBN algorithm to be
several times faster than, but scaling very similarly
to, the approximate fully factorized Boyen-Koller al-
gorithm with an M = 20 time slice inference window.
Peeking ahead into Figure 7 suggests the time perfor-
mance would be about identical at M = 70 time slices.
The junction-tree algorithm does not scale beyond 20
nodes due to memory usage.

Figure 7 shows clearly that asymptotically, PPT-DBN
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Figure 7: Performance scale up of PPT-DBN with M .
The number of nodes was held at N = 17.

scales with a steeper slope than both BK inference and
junction-tree inference. Indeed, for about N = 70,
BK eventually surpasses PPT-DBN in terms of speed.
However, it remains faster than junction-tree incre-
mental inference throughout the range. On a com-
puter with 1 GB RAM, the exact version begins to hit
memory limits around M = 200 and N = 17.

We conclude that if exact inference is desired for per-
sistent polytree causal networks, using the PPT-DBN
algorithm is a better choice for a wide range of in-
ference window lengths. Furthermore, if approximate
inference is acceptable, we show in Section 5.3 that for
large enough N , fixed window smoothing using PPT-
DBN can outperform BK inference in terms of RMS
error, while still performing many times faster. For the
special case of persistent causal trees, the new algo-
rithm dominates by orders of magnitude in all ranges
that we tested versus both junction tree and BK as-
suming intra-slice independence.

5.3 Fixed-window approximation

A minor disadvantage of the PPT-DBN algorithm is
that it cannot do online inference yet. Therefore, when
monitoring a process, M grows and so does the compu-
tation time. In practice, only a fixed number of most
recent observations are usually considered with older
observations falling out of the “window”. Thus we
evaluate if reasonable precision can be attained with
small window sizes, where PPT-DBN dominates.

Figure 8 shows, for several time slices t, the root mean
square error of computed posterior marginals

Errt
BK =

√√√√
N∑

i=1

[PBK(Xt
i |O1:t)− Pex(Xt

i |O1:t)]2

incurred by the fully factored Boyen-Koller method
and the same error for PPT-DBN which ignores all
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Figure 8: Accuracy of PC-DBN with growing inference
window M . Averages are over 100 different parame-
terizations of the network; error bars are omitted for
clarity but standard deviations are the same order of
magnitude as the means for all curves.

evidence older than W , for different values of W . We
use a binary tree prototype with all leaf variables non-
persistent and observed. All non-leaf variables are per-
sistent and hidden. The CPT probabilities are sam-
pled uniformly at random. The observed evidence O is
obtained by forward-sampling the DBN and restrict-
ing it to the observables. We find that the error of
our algorithm falls with growing W as expected. The
results become even more favorable for PC-DBN as
N, the number of nodes per slice, grows (see also fur-
ther results online). The error made by fixing the
inference window tends to be lower than that of the
Boyen-Koller approximation for reasonable values of
W and we can eliminate the unfavorable dependence
on M at a small price of accuracy. One clear draw-
back to a naive implementation of the fixed-window
approach is that if evidence is not observed at each
time slice, in the presence of persistence a piece of
crucial evidence might drop off the window preventing
the model from “remembering” that a persistent state
was already acheived. This glitch could in principle be
fixed by caching when persistent variables have turned
on.

6 Conclusions and future work

We presented an algorithm for PC-DBNs, a way to
exploit the special structure of the DBN probability
distribution when many variables are persistent. Un-
like forward-backward approaches to DBN inference
that work slice-to-slice, we collapse the entire tem-
poral progression and perform inference in the orig-
inal prototype network structure. For trees, the al-
gorithm is many times faster than state-of-the-art
general-purpose exact and approximate DBN inference
algorithms, while having a space complexity of only



O(MN). This continues to hold even in the poly-
tree generalization with inference window lengths into
the hundreds. While this method does not directly
yield an incremental filtering algorithm, we show that
a fixed-window smoothing version of PC-DBN infer-
ence can perform approximate filtering faster and with
comparable or less error than BK-filtering.

Although we have not presented a filtering algorithm
that can exploit persistence, we do believe that one
is possible. The number of possible joint configura-
tions of variables in two subsequent slices is 3N with
the persistence assumption as opposed to 4N in the
general network. This hints at the possibility of a
2TBN-like algorithm leveraging persistence and still
remaining linear in the number of time slices.

Another possible direction for this work is to allow
multi resolution temporal modeling by modeling sys-
tems on very short time scales, but utilizing a per-
sistence approximation for the slow processes. In such
cases, a model with a single time-scale could efficiently
and accurately deal with systems that have both fast
and slow processes.

Also interesting is the vision of approximate inference
algorithms not requiring persistence, but simply as-
suming that the hidden state changes at most once
in the period of interest. If the change in the hidden
state is relatively slow, this could be a fairly accu-
rate approximation. Such problems are often found
in bioinformatics areas such as phylogeny discovery,
where time of a mutation is of interest [6].
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