
Bounding Search Space Size via (Hyper)tree Decompositions

Lars Otten and Rina Dechter
Bren School of Information and Computer Sciences

University of California, Irvine, CA 92697-3435, U.S.A.
{lotten,dechter}@ics.uci.edu

Abstract

This paper develops a measure for bounding the
performance of AND/OR search algorithms for
solving a variety of queries over graphical mod-
els. We show how drawing a connection to the
recent notion of hypertree decompositions allows
to exploit determinism in the problem specifi-
cation and produce tighter bounds. We demon-
strate on a variety of practical problem instances
that we are often able to improve upon existing
bounds by several orders of magnitude.

1 INTRODUCTION

This paper develops a measure for bounding the perfor-
mance of search algorithms for solving a variety of queries
over graphical models. It has been known for a while that
the complexity of inference algorithms (e.g., join-tree clus-
tering, variable elimination) is exponentially bounded by
the tree width of the graphical model’s underlying graph.
The base of the exponent is often taken to be the maximum
domain size.

More accurate bounds were derived by looking at the
respective domain sizes and their product in each clus-
ter in of tree decomposition of the underlying graph
[Kjærulff, 1990]. These tighter bounds were used in select-
ing good variable orderings, for example. It was recently
shown that these bounds are also applicable to search algo-
rithms that explore the context-minimal AND/OR search
graph [Dechter and Mateescu, 2007].

The shortcoming of these bounds is that they are com-
pletely blind to context-sensitivity hidden in the functions
of the graphical model and especially determinism. When
a problem possesses high levels of determinism, its tree
width bound can be large while its search space can be
extremely pruned, due to propagation of inconsistencies
across functions.

Part of this shortcoming in worst-case complexity bounds

is addressed by the more recent concept of hypertree de-
compositions [Gottlob et al., 2000]. It was shown that the
maximum number of functions in the clusters of a hy-
pertree decomposition (the hypertree width) exponentially
bounds the problem complexity for constraint inference, a
result that was extended to general graphical model infer-
ence in [Kask et al., 2005]. The base of the exponent in
this case is the relation tightness, thus allowing the notion
of determinism to play a role. However, in practice this
bound often turns out to be far worse than the tree width
bound, unless the problem exhibits substantial determinism
[Dechter et al., 2008].

The contribution of this paper is in combining both ideas to
tighten the existing bounds, using the relationship between
AND/OR graph search and tree decompositions. Starting
with the tree width bound, we show that one can also incor-
porate the concept of hypertree decompositions by greedily
covering variables with tight functions. This yields better
bounds on the number of nodes in the search graph, which
translates directly to search complexity.

Tighter bounds are desirable for a number of reasons:

1. We can better predict parameters of the algorithm
ahead of time (primarily the variable ordering for
search), fitting the algorithm to the problem.

2. It enables us to dynamically update parameters during
search, e.g., for dynamic variable orderings.

3. In a distributed setup, search can often be imple-
mented as centralized conditioning followed by inde-
pendent solving of the conditioned subproblems on
different machines. Better bounds can help in balanc-
ing these two phases by varying the size of the central
conditioning set [Silberstein et al., 2006].

We provide extensive empirical results on 112 probabilis-
tic problem instances and 30 weighted constraint satisfac-
tion problems. We show that exploiting determinism has a
significant effect for a number of problem classes. We fur-
thermore compare our bound to the exact size of the search
space on a subset of feasible instances, and show that it can
be very tight in some cases.

An approach that is related but orthogonal to the work here
is described in [Zabiyaka and Darwiche, 2006], where the
standard complexity measure of tree width is refined by
taking into account functional dependencies – i.e., know-
ing one set of variables determines the values of another
set. [Fishelson et al., 2005] develops a bound specifically
for an interleaved variable elimination and conditioning al-
gorithm on linkage analysis problems.

Section 2 provides the background and definitions. Section
3 discusses hypertree decompositions and related complex-
ity bounds. In Section 4 we introduce our new bounding
scheme, for which Section 5 provides empirical evaluation.
Section 6 concludes.

2 PRELIMINARIES AND DEFINITIONS

In the following we will assume agraphical modelgiven as
a set of variablesX = {x1, . . . , xn}, their finite domains
D = {D1, . . . ,Dn}, a set of functionsF = {f1, . . . , fm},
each of which is defined over a subset ofX, and a com-
bination operator (typically sum, product or join) over all
functions. Together with an marginalization operator such
asminX andmaxX we obtain areasoning problem.

The special cases of reasoning tasks which we have in
mind are belief networks, (weighted) constraint networks
or mixed networks that combine both. The primary tasks
over belief networks are belief updating and finding the
most probable explanation. They are often specified using
conditional probability functions defined on each variable
and its parents in a given directed acyclic graph (see Fig-
ure 1(a)), and use multiplication and summation or max-
imization as the combination and marginalization opera-
tors [Kask et al., 2005]. For constraint networks we are
mainly concerned with problems of finding or enumer-
ating solutions; they are defined using relations as func-
tions, and relational join and projection as the combination
and marginalization operators, respectively. For weighted
constraint networks one typically has real-valued func-
tions and summation and minimization as combination and
marginalization operators, respectively.

2.1 EXPRESSING STRUCTURE

If one wants to analyze the complexity of a given prob-
lem instance, it has proven useful to look at the underlying
structure of interactions between variables:

DEFINITION 2.1 Thehypergraph of a graphical model is
a pair H = (V, S), where the vertices are the problem
variables (V = X) and whereS = {S1, ..., Sr} is a set of
subsets ofV , called hyperedges, which represent the scopes
of the functions in the problem (Si = scope(fi)). Thepri-
mal graph of a hypergraphH = (V, S) is an undirected
graphG = (V,E) such that there is an edge(u, v) ∈ E

(a) (b) (c)

Figure 1: Example belief network, its triangulated primal graph
along orderingd = A, B, C, D, E, F , and the corresponding
bucket tree decomposition.

for any two verticesu, v ∈ V that appear in the same hy-
peredge (namely, there existsSi, s.t.,u, v ∈ Si). Thedual
graph of a hypergraphH = (V, S) is an undirected graph
G = (S,E) that has a vertex for each hyperedge, and there
is an edge(Si, Sj) ∈ E when the corresponding hyper-
edges share a vertex (Si ∩ Sj 6= ∅).

DEFINITION 2.2 A hypergraph is ahypertree, also called
acyclic hypergraph, if and only if its dual graph has an
edge subgraph that is a tree, such that all the nodes in the
dual graph that contain a common variable form a con-
nected subgraph.

It is well-known that problems whose underlying
graph have tree structure can be solved efficiently
[Pearl, 1988]. If this is not the case, we aim to
transform the problem into an equivalent one that ex-
hibits tree structure [Lauritzen and Spiegelhalter, 1988,
Dechter and Pearl, 1989, Kask et al., 2005]. Intuitively, we
do this by grouping variables and the functions over them
into clusters that can be arranged as a tree:

DEFINITION 2.3 Let X,D,F be the variables, domains
and functions of a reasoning problemP. A tree decom-
position of P is a triple 〈T, χ, ψ〉, whereT = (V,E) is a
tree andχ andψ are labeling functions that associate with
each vertexv ∈ V two sets,χ(v) ⊆ X andψ(v) ⊆ F , that
satisfy the following conditions:

1. For eachfi ∈ F , there is at least one vertexv ∈ V

such thatfi ∈ ψ(v) .

2. If fi ∈ ψ(v), thenscope(fi) ⊆ χ(v) .

3. For each variableXi ∈X, the set{v∈V |Xi ∈χ(v)}
induces a connected subtree ofT . This is also called
the running intersection property.

The tree width of a tree decomposition〈T, χ, ψ〉 is w =
maxv|χ(v)| − 1 . The tree widthw∗ of P is the minimum
tree width over all its tree decompositions.

The problem of finding the tree decomposition of minimal
tree width is known to be NP-complete. To obtain tree de-
compositions in practice, one can apply a triangulation al-
gorithm to the problem’s primal graph along an ordering

and then construct thebucket treeby extracting and con-
necting the cliques for each variable, as described for in-
stance in [Pearl, 1988]. The ordering to use as the basis for
the triangulation algorithm is often computed heuristically.

Example 2.1 Assume the belief network in Figure 1(a)
over variablesX = {A,B,C,D,E, F} is given. We pick
the orderingd = A,B,C,D,E, F and triangulate the pri-
mal graph as shown in Figure 1(b). If we extract each
variable’s bucket– the variable and its earlier neighbors
– we obtain the tree decomposition shown in Figure 1(c),
thebucket tree decomposition.

2.2 SOLVING REASONING PROBLEMS

Two principal methods exist to solve reasoning prob-
lems, search (e.g., depth-first branch-and-bound, best-first
search) and inference (e.g., variable elimination, join-tree
clustering). Both can be shown to be time and space ex-
ponential in the problem instance’s tree width [Lauritzen
and Spiegelhalter, 1988, Dechter and Pearl, 1989, Kask et
al., 2005, Dechter and Mateescu, 2007], with a dominant
factor ofkw, wherek denotes the maximum domain of the
problem variables.

2.2.1 Search

Search-based algorithms traverse the problemsearch
space. Given a variable orderingd, the simplest way to per-
form search is to instantiate variables one at a time. This
will define a search tree, where each node represents a state
in the space of partial assignments. Leaf nodes signify ei-
ther full solutions or dead ends. Standard depth-first algo-
rithms typically have time complexity exponential in the
number of variables and require linear space. If memory
is available, one can apply caching to traversed nodes and
retrieve their values when “similar” nodes are encountered.

These elementary search spaces, however, don’t fully
capture the structure of the underlying graphical model.
Introducing AND nodes into the search space can ex-
ploit independence of subproblems by effectively con-
ditioning on values, thus avoiding redundant computa-
tion [Dechter and Mateescu, 2007]. Since the size of the
AND/OR search treemay be exponentially smaller than
the traditional OR search one, any algorithm exploring the
AND/OR space enjoys a better computational bound.

Example 2.2 Figure 2 depicts the AND/OR search tree for
the problem introduced in Example 2.1 if we assume binary
variable domains and the orderingd = A,B,C,D,E, F .
The AND nodes for variableB each have two OR children,
expressing that at this point the problem decomposes into
independent subproblems, rooted atC andE, respectively.

We can equally apply caching techniques to an algorithm
exploring the AND/OR search tree. As a result this algo-

Figure 2: The AND/OR search tree for the example problem, as-
suming binary variables.

Figure 3: The AND/OR search graph explored by AND/OR
search with caching.

rithm will effectively explore theAND/OR search graph.
With caching, identical subproblems are recognized based
on their context, which is a graphical model parameter that
denotes the part of the search tree above that is relevant to
the subproblem below.

Caching will avoid redundant computations, thus reducing
time complexity, at the cost of increased memory require-
ments. By varying the maximum size of contexts to cache
on, this tradeoff can be fine-tuned. Assuming full caching,
search has been shown to exhibit both time and space com-
plexity exponential in the problem’s tree width.

Example 2.3 If we extend AND/OR search with caching,
given the problem in Example 2.1 it will explore the
AND/OR search graph shown in Figure 3. Note how the
child nodes of variablesC andE are merged. This ex-
presses the fact that in the example the subproblems rooted
atD andF , as children ofC andE, respectively, are inde-
pendent of the value ofA further up.

2.3 EXPLOITING DETERMINISM

In practice, however, problem instances across many do-
mains will exhibit a significant degree of determinism (e.g.,
disallowed tuples in constraint problems, zero probability
entries in belief networks). Search algorithms detect the
resulting inconsistencies early in the search process and
prune the respective portion of the search space. This can
lead to significant savings in running time, but is not re-
flected in the standard worst-case bounds described above.

To exploit determinism in the context of variable elim-
ination, the concept of (generalized) hypertree decom-
positions has been introduced for constraint networks in

[Gottlob et al., 2000]. As a subclass of tree decomposi-
tions, it was shown that it provides a stronger indicator of
tractability than the tree width.

DEFINITION 2.4 Let T = 〈T, χ, ψ〉, whereT = (V,E)
be a tree decomposition of a reasoning problemP over a
graphical model with variablesX, their domainsD and
functionsF . T is a hypertree decomposition of P if the
following additional condition is satisfied:

4. For eachv ∈ V , χ(v) ⊆
⋃

fj∈ψ(v) scope(fj) .

The hypertree width of a hypertree decomposition is
hw = maxv |ψ(v)|. The hypertree widthhw∗ of P is the
minimum hypertree width over all its hypertree decomposi-
tions.

To analyze the complexity of algorithms operating on hy-
pertree decompositions, we introduce the notion oftight-
nessof a function or relation:

DEFINITION 2.5 The tightness t of a functionf is the
number of relevant tuples (e.g., allowed tuples in con-
straints, nonzero entries in conditional probability tables).

The motivation behind this is to store and process the func-
tion in a “compressed” form, with only thet relevant tuples.
Given a hypertree decomposition, one can then modify an
inference algorithm to make use of these compact repre-
sentations when computing the messages to be passed.

In [Gottlob et al., 2000] the complexity of processing a
hypertree decomposition for solving a constraint satisfac-
tion problem is shown to be exponential inhw∗, with
a dominant factor ofthw

∗

. This result was extended in
[Kask et al., 2005] to any graphical model that is absorb-
ing relative to 0. (A graphical model is absorbing relative
to a 0 element if its combination operator has the property
that x

⊗

0 = 0 ∀x; for example, multiplication has this
property while summation does not.)

3 HYPERTREE WIDTH BOUNDS FOR
INFERENCE

In this section we briefly explore whether the bounds based
on hypertree width can provide a practical improvement
over the established tree width bounds described above. To
that end we recently looked at a selection of over 140 prob-
lem instances from various domains [Dechter et al., 2008].

We used the code developed for [Dermaku et al., 2005],
which is available online. It generates a tree decomposition
along a minfill ordering and extends it to a (generalized)
hypertree decomposition by applying a greedy heuristic.

We used the lowest tree widthw and hypertree widthhw
out of 20 runs as a basis for our investigation: For every
problem instance, we compute the dominant factors of the

two worst-case complexity bounds, i.e.,kw andthw, where
k denotes the maximum domain size andt the maximum
function tightness in the problem instance. In order for
the hypertree decomposition to provide a better bound than
the tree decomposition,thw should be significantly smaller
thankw.

Intuitively, it is clear thatt ∈ O(kr), wherer is the max-
imum function arity of the problem. Hence we should ex-
pect that only when the function table contains many irrele-
vant values (e.g., zeros in probability tables), the hypertree
width bound can be superior.

And indeed, out of all the instances we evaluated, only for
five of them wasthw less thankw, whereas it was orders of
magnitude worse on almost all of the remaining problems.
Looking at the instances in more detail, it becomes evident
that in most of them the functions are not sufficiently tight
and often have highly intersecting scopes, which renders
the hypertree width bound ineffective.

4 SEARCH SPACE ESTIMATION

Even though the results in [Dechter et al., 2008] suggest
that complexity bounds based on hypertree width are of-
ten not competitive in practice, the idea of exploiting deter-
minism remains promising. Furthermore, while all con-
siderations in section 3 were targeted at inference algo-
rithms, we are in particular interested in estimating how
determinism in a problem will impact the size of the search
space discussed in Section 2.2.1, since search is a wide-
spread method in practice. To that end, we will aim to up-
per bound the size of the AND/OR context minimal search
graph, which is explored by AND/OR search augmented
with caching, as described in Section 2.

4.1 TREE DECOMPOSITION
CORRESPONDENCE

Assume that a variable orderingd = x1, . . . , xn is fixed
and that search instantiates variables first to last (while in-
ference would proceed last to first). We note that the way
the search space is decomposed by AND/OR search with
caching can be represented by the bucket tree decompo-
sition along the same ordering. For details we refer to
[Mateescu and Dechter, 2005], to illustrate we revisit our
previous example:

Example 4.1 Consider the bucket tree decomposition in
Figure 1(c) and the AND/OR search graph in Figure 3. It is
easy to see that the decomposition clusters can be related
to the “layers” of the search graph, i.e., the nodes associ-
ated with a variable and its values, as shown in Figure 4.
For instance, the cluster{B,C,D} represents the search
layer for variableD and the fact that the subproblem only
depends onB andC – and notA.

Figure 4: The AND/OR search graph with clusters corresponding
to the bucket tree decomposition in Figure 1(c).

Based on this observation, we can also partition the
search space into “clusters”, according to the correspond-
ing bucket tree decomposition. Our approach of upper
bounding the size of the entire search space will then be
to bound the portion of the search space in each cluster,
subsequently summing over the clusters (for simplicity we
consider only the AND nodes of the search space, since
OR nodes are actually not implemented as such in prac-
tice). We note that a cluster in a bucket tree decomposition
will always correspond to exactly one variable’s layer in the
AND/OR search graph (due to the way it is constructed).

4.2 BOUNDING CLUSTER SIZE

A straightforward upper bound is obtained by multi-
plying the domain sizes of all variables in the cluster
[Kjærulff, 1990]. If the set of clusters is given byC =
{C1, . . . , Cn}, Ck⊆X, summing over clusters gives

twb :=
n

∑

k=1

∏

xi∈Ck

|Di| .

Note that this is very closely related to the worst case com-
plexity, since the tree width is just the maximum number of
variables in any cluster of the decomposition. This, how-
ever, does not take determinism into account.

If the bucket tree decomposition we are working with is
also a hypertree decomposition (meaning all variables in a
cluster are covered by the functions in that cluster), we can
take the product

∏

i ti as an upper bound to the number of
nodes in that cluster, whereti is the tightness of thei-th
function in it. (This is closely related to the complexity
bound on hypertree decompositions as outlined above.)

Taking this one step further, if the bucket tree decomposi-
tion at hand does not satisfy the additional hypertree de-
composition condition, we can compute the product over
the tightness of each function in the cluster and multiply
this by the domain sizes of the uncovered variables, to ac-
count for the lack of information about these variables.

However, since the scopes of the different functions in a
cluster can overlap, this tightness based bound will typi-
cally be worse than the simple “product of domain sizes”
(as we already observed). Consequentially, we use the lat-
ter as a starting point and exploit tight functions to improve

Algorithm GreedyCovering
Input: ClusterCk containing variablesXk and functionsFk,
with xi ∈Xk having domain sizedi and fj ∈Fk having tight-
nesstj

Output: A subset ofFk (forming a partial covering ofXk)
Init: Uncov= Xk, Covering= ∅

(1) Findj∗ that minimizesrj = tj/
∏

xk∈Ij
dk, where

Ij = Uncov∩ scope(fj).
(2) If rj∗≥ 1 , terminate with current covering.
(3) Addfj∗ to Coveringand setUncov:= Uncov\scope(fj∗).
(4) If Uncov= ∅ , terminate with current covering.
(5) Goto (1).

Figure 5: Greedy covering algorithm for a single cluster.

upon it, therefore combining the concept of tree and hyper-
tree decompositions.

In essence this can be seen as a weighted variant of the
well-known SET COVER problem, where one aims to
cover a set or vertices by as few as possible subsets from a
set of given subsets of the variables. The problem is gener-
ally NP-complete, but simple greedy approximations exist
[Johnson, 1973], which give rise to our method:

Start with an empty covering (if we assume dummy unary
functions over uncovered variables, this is equivalent to
the boundtwb). Then, for each functionfj in the cluster,
compute thecoverage ratiorj as follows: Divide the func-
tion’s tightnesstj by the product over the domain sizes of
the variables that have not yet been covered and are in the
scope offj . Pick the function for which the coverage ratio
is the lowest and add it to the covering. Repeat this for as
long as we can still find a function with a coverage ratio
less than 1. The algorithm is given in Figure 5.

It will produce a set of functions as the covering, but might
leave some variables uncovered. As before, we can mul-
tiply the tightness of the functions in the covering and the
domain sizes of the uncovered variables to obtain an upper
bound on the number of nodes in the cluster.

It is worth noting that we are not limited to functions from
the decomposition cluster in question, but we can include
any function from the clusters higher up in the rooted tree
decomposition (since their scope will have been fully in-
stantiated at this point of the search).

Proposition 1 Executing algorithmGreedyCoveringfor
each cluster of the bucket tree decomposition and summing
up, we obtain an upper bound on the number of nodes in
the AND/OR search graph, which we denote:

hwb :=

n
∑

k=1

∏

fj∈Cov(Ck)

tj ·
∏

xi∈Ck\Cov(Ck)

|Di|

 ,

whereCov(Ck) is the set of functions returned by the al-
gorithmGreedyCoveringfor clusterCk.

THEOREM 4.2 Given a reasoning problem withn vari-
ables andm relations with maximal tightnesst. If the
bucket tree decomposition along a given variable ordering
d has tree widthw, the complexity of computing the bound
hwb is O(n · w ·m) time-wise andO(m) space-wise.

Proof. The time complexity of algorithmGreedyCovering
is linear both on the number of variables in the cluster as
well as in the number of functions considered, i.e., worst-
caseO(w ·m). Keeping track of the coverage ratio of each
function requiresO(m) space. Iterating and summing over
all n clusters results in the stated asymptotic bounds.2

Example 4.3 Assume we have a cluster containing 3 vari-
ablesX, Y , Z with domain sizesdX = 4, dY = 4, and
dZ = 3, as well as 2 functionsf1(X,Y) and f2(Y,Z)
with tightnesst1 = 9 and t2 = 11. Thetwb bound on the
number of nodes in this cluster isdX ·dY ·dZ = 48. In
the first iteration of the greedy covering algorithm forhwb
the gain ratios off1 and f2 will be computed as9

16 and
11
12 , respectively. Thereforef1 will be added to the cover-
ing, leaving onlyZ uncovered. The next gain ratio off2
will be computed as113 , which is greater than 1. There-
fore the algorithm terminates andf2 will not be part of
the covering. Thehwb bound for this cluster will then be
t1 · dZ = 9 · 3 = 27.

5 EXPERIMENTAL RESULTS

For empirical evaluation we return to the problem instances
that were described in [Dechter et al., 2008] (see also Sec-
tion 3). These comprise 112 belief networks from areas
such as coding networks, dynamic Bayesian networks, ge-
netic linkage instances and CPCS medical diagnosis net-
works. We also evaluated 30 weighted constraint network
instances. All problem instances are available online1.

For every instance, we report the number of variablesn,
the maximum variable domain sizek, the maximum func-
tion arity r, and the average tightness ratiotr (defined as
the average percentage of relevant tuples in a full function
table).

On each problem instance we run our bounding method
along 100 different minfill orderings (with random tie
breaking) and record the lowest bound, withw as the
tree width of the bucket tree decomposition. For ev-
ery instance we then compute the asymptotic worst-case
bound for the search space size, which isn · kw+1 (cf.
[Dechter and Mateescu, 2007], adapted for AND nodes).

Consulting the bucket tree decomposition for a more fine-
grained analysis (still without considering determinism)
gives the boundtwb. We then apply our covering heuristic
to exploit determinism and obtain the boundhwb. (Note

1http://graphmod.ics.uci.edu/

that these three bounds can produce very large integers,
therefore we report them as theirlog10 in Table 1.) Even for
the larger problem instances this bound computation takes
only a few hundred milliseconds on a 2.66 GHz CPU.

5.1 BOUND IMPROVEMENTS

If we compare the values forn · kw+1 andtwb, we can see
that the bound improves for every problem instance by at
least one order of magnitude, but often more than that (re-
call that the table showslog10 of the bounds). For most
pedigree genetic linkage instances, for example, the reduc-
tion is ten orders of magnitude or more. Similar results
hold for the dynamic Bayesian networks we tested on, with
many orders of magnitude improvement.

It seems that problems with a higher number of variables
benefit the most from the fine-grained analysis. This makes
sense if one considers the fact that the worst-case bound
will greatly overestimate the size of almost all clusters,
since in practice the tree decomposition contains only very
few clusters of full tree width.

If we try to exploit determinism by going from thetwb to
hwb bound, there is, just looking at the problem param-
eters, no obvious indicator for when the bound will im-
prove: On pedigree instances, for example, the decrease is
not very significant, although these problems exihibit some
determinism. On digital circuits, on the other hand, with an
average of 50% determinism, the bound improves another
3 to 4 orders of magnitude overtwb.

On almost all weighted CSP instances we were able to
lower the bound by exploiting determinism, often by or-
ders of magnitude. For example, on the satellite scheduling
problem 408b thetwb bound of83, 206, 198, 094 decreases
to ahwb value of248, 197. A significantly tighter bound
is also achieved on randomly generatedk-trees where the
probability tables were forced to exihibit determinism, with
for exampletwb = 29, 983, 742 decreasing tohwb =
1, 528 on problem BN107.

The crucial point here seems to be at which point during
the search functions with high determinism will have their
scope fully instantiated, i.e., at which point they become
available to our covering heuristic. This is not predictable
by only looking at the instance parameters but will require
a more detailled look at the guiding bucket tree decompo-
sition instead.

5.2 BOUND EVALUATION

Most problem instances are too big to compute the exact
size of the context minimal AND/OR search space, which
would be equivalent to solving the problem (for solution
counting or computingP (e)). But for some of the smaller
instances this is actually feasible, which gives us the option
of testing how tight our bound is.

log10 log10

instance n k r tr w nkw+1 twb hwb instance n k r tr w nkw+1 twb hwb

Grid networks Coding networks
90-10-1 100 2 3 0.58 9 5.01 4.06 3.92 BN 126 512 2 5 0.87 53 18.96 16.81 16.81
90-14-1 196 2 3 0.55 15 7.11 5.63 5.58 BN 127 512 2 5 0.88 57 20.17 17.86 17.86
90-16-1 256 2 3 0.56 17 7.83 6.25 6.15 BN 128 512 2 5 0.88 48 17.46 15.48 15.48
90-24-1 576 2 3 0.55 15 7.58 5.91 5.76 BN 129 512 2 5 0.88 52 18.66 16.66 16.66
90-24-1e20 576 2 3 0.55 31 12.39 10.12 10.12 BN 130 512 2 5 0.88 54 19.27 16.98 16.98
90-26-1e40 676 2 3 0.55 29 11.86 9.88 9.83 BN 131 512 2 5 0.87 48 17.46 15.42 15.42
90-30-1e60 900 2 3 0.55 37 14.39 11.96 11.95 BN 132 512 2 5 0.88 49 17.76 16.00 16.00
90-34-1e80 1156 2 3 0.56 39 15.10 12.66 12.53 BN 133 512 2 5 0.87 54 19.27 17.26 17.26
90-38-1e120 1444 2 3 0.55 43 16.40 13.97 13.69 BN 134 512 2 5 0.87 52 18.66 16.41 16.41

Dynamic Bayesian Networks CPCS medical diagnosis
BN 21 2843 91 4 0.49 6 17.17 8.50 7.82 cpcs54 54 2 10 1.00 12 5.65 4.68 4.68
BN 23 2425 91 4 0.47 4 13.18 7.37 6.59 cpcs179 179 4 9 1.00 7 7.07 5.04 5.04
BN 25 1819 91 4 0.53 4 13.06 7.17 6.77 cpcs360b 360 2 12 1.00 16 7.67 5.50 5.50
BN 27 3025 5 7 1.00 9 10.47 7.33 7.33 cpcs422b 422 2 18 0.99 22 9.55 7.51 7.51
BN 29 24 10 6 1.00 5 7.38 6.16 6.16 Genetic linkage

Grid networks pedigree1 334 4 5 0.79 15 12.06 6.88 6.85
BN 31 1156 2 3 0.56 35 13.90 11.53 11.47 pedigree18 1184 5 5 0.81 20 17.75 7.58 7.58
BN 33 1444 2 3 0.56 37 14.60 12.42 12.26 pedigree20 437 5 4 0.79 22 18.72 9.42 9.20
BN 35 1444 2 3 0.55 38 14.90 12.51 12.25 pedigree23 402 5 4 0.80 27 22.18 11.73 10.85
BN 37 1444 2 3 0.55 40 15.50 13.01 12.99 pedigree25 1289 5 5 0.83 24 20.58 9.18 9.18
BN 39 1444 2 3 0.56 38 14.90 12.63 12.57 pedigree30 1289 5 5 0.82 21 18.49 7.95 7.95
BN 41 1444 2 3 0.56 40 15.50 13.09 12.99 pedigree33 798 4 5 0.81 30 21.57 11.37 10.20

Digital circuits pedigree37 1032 5 4 0.82 21 18.39 10.84 10.74
BN 48 661 2 5 0.51 43 16.07 13.79 10.44 pedigree38 724 5 4 0.78 16 14.74 10.72 10.52
BN 50 661 2 5 0.51 43 16.07 13.79 10.69 pedigree39 1272 5 4 0.85 20 17.78 8.21 8.12
BN 52 661 2 5 0.51 41 15.46 13.39 9.86 pedigree42 448 5 4 0.79 23 19.43 10.66 10.14
BN 54 561 2 5 0.53 48 17.50 15.43 13.05 pedigree50 514 6 4 0.77 18 17.50 11.57 11.53
BN 56 561 2 5 0.53 51 18.40 16.19 14.04 pedigree7 1068 4 4 0.83 32 22.90 11.94 11.71
BN 58 561 2 5 0.53 50 18.10 15.72 13.09 pedigree9 1118 7 4 0.79 26 25.87 9.88 9.86
BN 60 540 2 5 0.53 55 19.59 17.35 14.43 pedigree13 1077 3 4 0.83 34 19.73 12.04 11.99
BN 62 667 2 5 0.51 42 15.77 13.93 10.73 pedigree19 793 5 5 0.78 23 19.67 10.00 9.99
BN 64 540 2 5 0.53 50 18.08 15.86 14.07 pedigree31 1183 5 5 0.81 30 24.74 11.77 11.77
BN 66 440 2 5 0.55 59 20.71 18.82 16.15 pedigree34 1160 5 4 0.83 32 26.13 12.16 12.16
BN 68 440 2 5 0.55 57 20.10 18.08 15.48 pedigree40 1030 7 5 0.80 29 28.37 12.38 12.38

CPCS medical diagnosis pedigree41 1062 5 5 0.80 32 26.09 12.26 12.05
BN 79 54 2 10 1.00 10 5.04 4.23 4.23 pedigree44 811 4 5 0.80 26 19.16 10.13 9.98
BN 81 360 2 12 0.93 16 7.67 5.75 5.74 pedigree51 1152 5 4 0.82 38 30.32 12.89 12.84
BN 83 360 2 12 0.97 18 8.28 6.31 6.31 Digital circuits
BN 85 360 2 12 0.99 19 8.58 6.61 6.61 c432.isc 432 2 10 0.54 20 8.96 6.96 5.43
BN 87 422 2 18 0.98 21 9.25 7.36 7.36 c499.isc 499 2 6 0.54 19 8.72 6.98 5.19
BN 89 422 2 18 0.97 17 8.04 6.33 6.33 s386.scan 172 2 5 0.54 16 7.35 5.71 4.61
BN 91 422 2 18 0.98 21 9.25 7.31 7.31 s953.scan 440 2 5 0.54 26 10.77 8.85 6.50
BN 93 422 2 18 0.97 20 8.95 6.99 6.99 Various networks

Randomly generated belief networks Barley 48 67 5 0.98 7 16.29 7.26 7.26
BN 95 53 3 4 1.00 15 9.36 7.01 7.01 Diabetes 413 21 3 0.45 4 9.23 7.10 6.83
BN 97 54 3 4 1.00 15 9.37 7.13 7.13 hailfinder 56 11 5 0.84 4 6.96 4.01 3.78
BN 99 57 3 4 1.00 16 9.87 7.70 7.70 insurance 27 5 4 0.84 6 6.32 4.50 4.45
BN 101 58 3 4 1.00 15 9.40 7.00 7.00 Mildew 35 100 4 0.62 4 11.54 6.57 6.03
BN 103 76 3 4 1.00 17 10.47 7.43 7.43 Munin1 189 21 4 0.49 11 18.14 8.31 8.15

Randomly generate partialk-trees with forced determinism Munin2 1003 21 4 0.48 8 14.90 6.86 6.70
BN 105 50 2 21 0.60 18 7.42 6.39 2.54 Munin3 1044 21 4 0.47 9 16.24 6.95 6.72
BN 107 50 2 21 0.59 21 8.32 7.48 3.18 Munin4 1041 21 4 0.47 9 16.24 7.54 7.27
BN 109 50 2 20 0.62 20 8.02 7.12 3.49 Pigs 441 3 3 0.70 10 7.89 5.90 5.89
BN 111 50 2 20 0.63 19 7.72 6.92 3.31 Water 32 4 6 0.58 10 8.13 6.66 6.20
BN 113 50 2 21 0.62 21 8.32 7.28 3.38 Genetic linkage

Randomly generate partialk-trees without forced determinism fileEA0 381 4 4 0.81 7 7.40 3.92 3.68
BN 115 50 2 19 1.00 20 8.02 7.07 7.07 fileEA1 836 5 4 0.82 11 11.31 4.68 4.16
BN 117 50 2 20 1.00 18 7.42 6.43 6.43 fileEA2 979 5 4 0.82 11 11.38 4.86 4.48
BN 119 50 2 19 1.00 19 7.72 6.60 6.60 fileEA3 1122 5 4 0.82 13 12.84 5.19 4.70
BN 121 50 2 19 1.00 19 7.72 6.75 6.75 fileEA4 1231 5 4 0.82 13 12.88 5.15 4.71
BN 123 50 2 20 1.00 18 7.42 6.46 6.46 fileEA5 1515 5 4 0.82 12 12.27 5.27 4.94
BN 125 50 2 18 1.00 19 7.72 6.70 6.70 fileEA6 1816 5 4 0.82 14 13.74 5.85 5.36

Digital circuits (WCSP) Satellite scheduling (WCSP)
c432 432 2 10 0.61 27 11.06 8.90 8.90 29 82 4 2 0.74 14 10.94 8.41 6.01
c499 499 2 6 0.63 23 9.92 8.03 7.25 42b 190 4 2 0.78 18 13.72 10.46 7.19
c880 880 2 5 0.64 24 10.47 7.93 6.90 54 67 4 3 0.75 11 9.05 6.33 4.49
s1196 561 2 5 0.82 51 18.40 16.37 13.91 404 100 4 3 0.74 19 14.04 7.65 3.83
s1238 540 2 5 0.87 54 19.29 17.04 14.82 408b 200 4 2 0.75 24 17.35 10.58 5.40
s1423 748 2 5 0.78 22 9.80 7.54 7.54 503 143 4 3 0.76 9 8.18 5.77 4.22
s1488 667 2 5 0.90 44 16.37 14.34 10.99 505b 240 4 2 0.75 16 12.62 8.87 6.67
s1494 661 2 5 0.91 44 16.37 14.34 10.76 Radio frequency assignment (WCSP)
s386 172 2 5 0.82 18 7.96 6.46 4.99 C6-sub0 16 44 2 0.31 7 14.35 12.99 10.20
s953 440 2 5 0.80 62 21.61 19.69 16.30 C6-sub1-24 14 24 2 0.26 9 14.95 14.12 9.67

Mastermind puzzle game (WCSP) C6-sub1 14 44 2 0.24 9 17.58 16.75 11.76
03 08 03 1220 2 3 0.85 20 9.41 7.28 5.29 C6-sub2 16 44 2 0.24 10 19.28 18.01 12.05
03 08 04 2288 2 3 0.87 30 12.69 10.37 7.96 C6-sub3 18 44 2 0.26 10 19.33 18.02 12.48
03 08 05 3692 2 3 0.88 38 15.31 12.73 8.77 C6-sub4-20 22 20 2 0.34 11 16.95 15.94 11.50
04 08 03 1418 2 3 0.85 24 10.68 8.57 6.68 C6-sub4 22 44 2 0.30 11 21.06 19.78 15.30
04 08 04 2616 2 3 0.88 36 14.56 11.99 9.15
10 08 03 2606 2 3 0.88 48 18.17 15.80 13.60

Table 1: Results for experiments on 112 Bayesian networks and 30 weighted CSP instances.

instance nkw+1 twb hwb #cm

90-10-1 204,800 14,154 11,908 11,519
90-14-1 25,690,112 804,822 689,786 683,823
90-16-1 134,217,728 2,637,878 2,335,466 188,625
90-24-1 150,994,944 1,286,726 1,115,509 52,802
cpcs54 442,368 48,842 48,842 48,842
cpcs179 11,730,944 110,560 110,512 110,512
cpcs360b 47,185,920 319,724 319,623 319,623
c432.isc 1,811,939,328 10,793,946 685,001 683,823
c499.isc 1,046,478,848 12,089,118 189,637 188,625
s386.scan 45,088,768 802,526 94,830 52,802
s953.scan 472,446,402,560 2,685,782,044 4,547,508 236,430
fileEA0 24,969,216 9,454 5,316 4,774
fileEA1 1,020,507,812,500 63,520 18,444 14,057
fileEA2 5,975,341,796,875 167,630 33,851 24,203
fileEA3 34,240,722,656,250 253,170 58,147 45,052
fileEA4 939,178,466,796,875 675,230 53,214 30,868
fileEA5 9,246,826,171,875 282,454 101,825 36,146
fileEA6 6,927,490,234,375,000 2,460,002 333,198 62,041

Table 2: Comparison of bounds to exact search space size#cm.

Table 2 shows the upper boundsnkw+1, twb, andhwb (this
time not in theirlog10), as well as the exact number of AND
nodes in the actual context-minimal search graph. The val-
ues in each row were obtained on the same minfill ordering
(not neccessarily the one used for Table 1).

For smaller instances the bound we compute turns out to
be rather tight (note that CPCS instances exhibit no de-
terminism at all and thustwb andhwb match the size of
the search space exactly). As the problems become bigger
and their structure more complicated, however, the bound
quality deteriorates. It should be interesting to perform this
comparison on bigger problem instances, but as of now this
is limited by the resources available in current computers.

6 CONCLUSIONS & FUTURE WORK

While asymptotic bounds for search algorithms can give a
rough idea about problem hardness, it is often desirable to
obtain a tighter, more fine-grained bound. As has previ-
ously been shown, this can be accomplished by looking at
a suitable tree decomposition of the problem’s underlying
graph structure and the domains of variables in the decom-
position clusters. This, however, is blind to determinism,
which can greatly prune the search space in practice.

The contribution of this paper is to introduce ideas from the
framework of hypertree decompositions into the bounding
of the search space. This allows us to exploit determinism
in the function specification, but only if it is beneficial to
the overall complexity bound.

We demonstrated on a set of 112 belief networks and 30
weighted constraint networks that the proposed scheme is
indeed able to further improve the bound on search com-
plexity, in some cases by several orders of magnitude. On
a subset of the instances we also showed that the bound
can indeed be very tight, although it seems to deteriorate
for bigger instances. In this respect we hope to be able to
conduct more in-depth comparisons on even bigger prob-
lem instances in the future. Note that the ability to bound,

sometimes accurately, the size of the search space in lin-
ear time is very important, especially for problem instances
which are completely unsolvable exactly.

We believe that the current version of our bounding scheme
can be further improved by incorporating some form of
propagation of information down the bucket tree. Another
path we plan to pursue is using approximate counting meth-
ods, such as sampling, to compute approximations to the
number of solutions in each cluster, which will also ap-
proximate the number of nodes. Finally, for optimization
tasks and for approximating branch-and-bound and best-
first search algorithms we hope to accomplish further tight-
ening of the search space using the cost function itself.

On a higher level, we plan to use the bounds we obtain to
guide the selection of static and dynamic variable order-
ings. We also intend to deploy our scheme for parallelizing
search algorithms over a networks of many machines (e.g.,
grids and clusters).

Acknowledgments

This work was partially supported by NSF grant IIS-
0713118 and NIH grant R01-HG004175-02.

References
[Dechter and Pearl, 1989] R. Dechter and J. Pearl: Tree Clustering for Constraint

Networks.Artificial Intelligence38 (1989): 353–366.

[Dechter and Mateescu, 2007] R. Dechter and R. Mateescu: AND/OR search
spaces for graphical models. InArtificial Intelligence171 (2007): 73–106.

[Dechter et al., 2008] R. Dechter, L. Otten, and R. Marinescu: On the Practical
Significance of Hypertree vs. Tree Width. InProceedings of ECAI’08.

[Dermaku et al., 2005] A. Dermaku, T. Ganzow, G. Gottlob, B. McMahan, N. Mus-
liu, M. Samer: Heuristic Methods for Hypertree Decompositions.Technical
Report DBAI-TR-2005-53, Vienna University of Technology, 2005

[Fishelson et al., 2005] M. Fishelson, N. Dovgolevsky N, and D. Geiger:Maxi-
mum Likelihood Haplotyping for General Pedigrees.Human Heredity59
(2005): 41–60.

[Gottlob et al., 2000] G. Gottlob, N. Leone, and F. Scarcello: A comparison of
structural CSP decomposition methods.Artificial Intelligence124 (2000):
243–282.

[Johnson, 1973] D. S. Johnson: Approximation algorithms for combinatorial prob-
lems. InProceedings of STOC’73: 38–49.

[Kask et al., 2005] K. Kask, R. Dechter, J. Larrosa, and A. Dechter: Unifying tree
decompositions for reasoning in graphical models.Artificial Intelligence166
(2005): 165–193.

[Kjærulff, 1990] U. Kjærulff: Triangulation of Graphs – Algorithms Giving Small
Total State Space.Research Report R-90-09, Dept. of Mathematics and Com-
puter Science, Aalborg University 1990.

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and D. J. Spiegelhalter: Local
Computations with Probabilities on Graphical Structures and Their Appli-
cation to Expert Systems.Journal of the Royal Statistical Society. Series B
50(2) (1988): 157–224.

[Mateescu and Dechter, 2005] R. Mateescu and R. Dechter: The Relationship Be-
tween AND/OR Search Spaces and Variable Elimination. InProceedings of
UAI’05: 380–387.

[Pearl, 1988] J. Pearl: Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, 1988.

[Silberstein et al., 2006] M. Silberstein, A. Tzemach, N. Dovgolevskiy, M.Fishel-
son, A. Schuster, D. Geiger: Online system for faster linkage analysis via
parallel execution on thousands of personal computers.American Journal of
Human Genetics, 2006.

[Zabiyaka and Darwiche, 2006] Y. Zabiyaka and A. Darwiche: Bounding Com-
plexity in the Presence of Functional Dependencies. InProceedings of
SAT’06: 116–129.

