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Abstract

A lattice-theoretic framework is introduced
that permits the study of the conditional in-
dependence (CI) implication problem relative
to the class of discrete probability measures.
Semi-lattices are associated with CI state-
ments and a finite, sound and complete in-
ference system relative to semi-lattice inclu-
sions is presented. This system is shown to
be (1) sound and complete for saturated CI
statements, (2) complete for general CI state-
ments, and (3) sound and complete for stable
CI statements. These results yield a criterion
that can be used to falsify instances of the
implication problem and several heuristics
are derived that approximate this “lattice-
exclusion” criterion in polynomial time. Fi-
nally, we provide experimental results that
relate our work to results obtained from other
existing inference algorithms.

1 Introduction

Conditional independence is an important concept in
many calculi for dealing with knowledge and uncer-
tainty in artificial intelligence. The notion plays a
fundamental role for learning and reasoning in prob-
abilistic systems which are successfully employed in
areas such as computer vision, computational biology,
and robotics. Hence, new theoretical findings and al-
gorithmic improvements have the potential to impact
many fields of research. A central issue for reason-
ing about conditional independence is the probabilistic
conditional independence implication problem, that is,
to decide whether a CI statement is entailed by a set
of other CI statements relative to the class of discrete
probability measures. While it remains open whether
this problem is decidable, it is known that there ex-
ists no finite, sound and complete inference system

(Studený [8]). However, there exist finite sound in-
ference systems that have attracted special interest.
The most prominent is the semi-graphoid axiom sys-
tem which was introduced as a set of sound inference
rules relative to the class of discrete probability mea-
sures (Pearl [6]). One of the main contributions of this
paper is to extend the semi-graphoids to a finite infer-
ence system, denoted by A, which we will show to be
(1) sound and complete for saturated CI statements,
(2) complete for general CI statements, and (3) sound
and complete for stable CI statements (de Waal and
van der Gaag [2]), all relative to the class of discrete
probability measures.

The techniques we use to obtain these results are made
possible through the introduction of a lattice-theoretic
framework. In this approach, semi-lattices are associ-
ated with conditional independence statements, and A
is shown to be sound and complete relative to certain
inclusion relationships on these semi-lattices. To make
the connection between this framework and the condi-
tional independence implication problem, we first link
the latter to an addition-based version of the problem.
In particular, we introduce the additive implication
problem for CI statements relative to certain classes
of real-valued functions and specify properties of
these classes that guarantee soundness and complete-
ness, respectively, of A for the implication problem.
Through the concept of multi-information functions
induced by probability measures (Studený [9]), we
link the additive implication problem for this class of
functions to the probabilistic CI implication problem.

The combination of the lattice-inclusion techniques
and the completeness result for conditional indepen-
dence statements allows us to derive criteria that can
be used to falsify instances of the implication problem.
We show experimentally that these criteria, some of
which can be tested for in polynomial time, work very
effectively, and we relate the experimental results to
those obtained from a racing algorithm introduced by
Bouckaert and Studený [1].



2 CI Statements and System A

We define CI statements and introduce the finite in-
ference system A for reasoning about the conditional
independence implication problem. We will often write
AB for the union A ∪ B, ab for the set {a, b}, and a
for the singleton set {a} whenever the interpretation
is clear from the context. Throughout the paper, S
denotes a finite implicit set of statistical variables.

Definition 2.1. The expression I(A, B|C) where A,
B, and C are pairwise disjoint subsets of S is called a
conditional independence (CI) statement. If ABC = S
we say that I(A, B|C) is saturated. If either A = ∅
and/or B = ∅ we say that I(A, B|C) is trivial.

I(A, ∅|C) Triviality

I(A, B|C) → I(B, A|C) Symmetry

I(A, BD|C) → I(A, D|C) Decomposition

I(A, B|CD) ∧ I(A, D|C) Contraction

→ I(A, BD|C)

I(A, B|C) → I(A, B|CD) Strong union

I(A, B|C) ∧ I(D, E|AC)∧ Strong

I(D, E|BC) → I(D, E|C) contraction

Figure 1: The inference rules of system A.

The set of inference rules in Figure 1 will be denoted
by A. The triviality, symmetry, decomposition, and
contraction rules are part of the semi-graphoid axioms
(Geiger [6]). Strong union and strong contraction are
two additional inference rules. Note that strong union
is not a sound inference rule relative to the class of
discrete probability measures. The derivability of a CI
statement c from a set of CI statements C under the
inference rules of system A is denoted by C ⊢ c. The
closure of C under A, denoted C+, is the set {c | C ⊢ c}.

Lemma 2.2 (de Waal and van der Gaag [2]). The
inference rule composition

I(A, B|C) ∧ I(A, D|C) → I(A, BD|C) Composition

can be derived using strong union and contraction.

3 Lattice-Theoretic Framework

First, we introduce the lattice-theoretic framework
which is at the core of the theory developed in this pa-
per. The approach we take is made possible through
the association of conditional independence statements
with semi-lattices. In this section, we prove that in-
ference system A is sound and complete relative to
specific semi-lattice inclusions. This result forms the
backbone of our work on the conditional independence
implication problem.

3.1 Semi-Lattices of CI Statements

Given two subsets A and B of S, we will write [A, B]
for the lattice {U | A ⊆ U & U ⊆ B}. We will now
associate semi-lattices with conditional independence
statements.

Definition 3.1. Let I(A, B|C) be a CI state-
ment. The semi-lattice of I(A, B|C) is defined by
L(A, B|C) = [C, S] − ([A, S] ∪ [B, S]).

We will often write L(c) to denote the semi-lattice of a
conditional independence statement c, and L(C) to de-
note the union of semi-lattices,

⋃
c′∈C L(c′), of a set of

conditional independence statements C. Using the no-
tion of witnesses of a conditional independence state-
ment, we can rewrite the associated semi-lattice as a
difference-free union of lattices.

Definition 3.2. Let I(A, B|C) be a CI statement.
The set of all witness sets of I(A, B|C) is defined as
W(A, B|C) = {{a, b} | a ∈ A and b ∈ B}.

Note that if I(A, B|C) is trivial, then W(A, B|C) = ∅.

Lemma 3.3. Let c = I(A, B|C) be a CI statement.
Then L(c) =

⋃
W∈W(c)[C, W ].

Example 3.4. Let S = {a, b, c, d} and let I(bc, d|a)
be a CI statement. Then, L(bc, d|a) = [a, S]−([bc, S]∪
[d, S]) = {a, ab, ac}. Furthermore, W(bc, d|a) =
{bd, cd} and, therefore, L(bc, d|a) = [a, ac] ∪ [a, ab] =
{a, ab, ac}, using Lemma 3.3.

3.2 Soundness and Completeness of Inference

System A for Semi-Lattice Inclusion

We will prove that system A is sound and complete
relative to semi-lattice inclusion. First, we show that
if a CI statement can be derived from a set of CI state-
ments under A, then we have a set inclusion relation-
ship between their associated semi-lattices.

Proposition 3.5. Let C be a set of CI statements, and
let c be a CI statement. If C ⊢ c, then L(C) ⊇ L(c).

Proof. We prove the statement for strong contraction.
The proofs for the other inference rules in A are anal-
ogous and are omitted. Let U ∈ L(D, E|C). Then
U ⊇ C. If U ⊇ A, then U ∈ L(D, E|AC). If U ⊇ B,
then U ∈ L(E, D|BC). If U + A and U + B, then
U ∈ L(A, B|C).

A CI statement can be equivalent to a set of other
CI statements with respect to the inference system A.
The following definition of a witness decomposition of
a CI statement is aimed to prove this property.

Definition 3.6. The witness decomposition of the CI
statement I(A, B|C) is defined by wdec(A, B|C) :=
{I(a, b|C) | a ∈ A and b ∈ B}.



A useful property of the witness decomposition of a
CI statement is that its closure under A is the same
as the closure of the CI statement itself. In addition,
the semi-lattice of a CI statement is equal to the semi-
lattice of its witness decomposition.

Proposition 3.7. Let c be a CI statement. (1)
{c}+ = wdec(c)+; and (2) L(c) =

⋃
c′∈wdec(c) L(c′).

Proof. To prove the first statement, let c = I(A, B|C)
and I(a, b|C) ∈ wdec(c). Then I(a, b|C) can be de-
rived from I(A, B|C) by applications of the decomposi-
tion rule. Hence, wdec(c)+ ⊆ {c}+. By Definition 3.6
we know that for every a ∈ A and for all b ∈ B one has
I(a, b|C) ∈ wdec(c). By repeatedly applying composi-
tion, we can infer the CI statement I(a, B|C). Hence,
for all a ∈ A, one has I(a, B|C) ∈ wdec(c)+ and by
symmetry I(B, a|C) ∈ wdec(c)+. Again, by applying
composition repeatedly, we can infer I(B, A|C) and by
symmetry I(A, B|C). Hence, {c}+ ⊆ wdec(c)+.

To prove the second statement, let I(a, b|C) ∈ wdec(c)
and W = {a, b}. Then L(a, b|C) = [C, W ]. The
statement now follows directly from Definition 3.6 and
Lemma 3.3.

We are now in the position to prove the main result
concerning the soundness and completeness of the in-
ference system A for semi-lattice inclusion.

Theorem 3.8. Let C be a set of CI statements, and
let c be a CI statement. Then C ⊢ c if and only if
L(C) ⊇ L(c).

Proof. We already know by Proposition 3.5 that if C ⊢
c then L(C) ⊇ L(c). We now proceed to show the other
direction. Let us denote wdec(C) =

⋃
c′∈C wdec(c′)

and let I(a, b|C) ∈ wdec(c) with W = {a, b}. From the
assumption L(C) ⊇ L(c) and Proposition 3.7(2) it fol-
lows that L(C) ⊇ L(a, b|C) (1). By Proposition 3.7(1)
it suffices to show that I(a, b|C) ∈ wdec(C)+. How-
ever, we will prove the stronger statement ∀V ∈
[C, W ] : I(a, b|V ) ∈ wdec(C)+ by downward induction
on the lattice [C, W ].

For the base case we need to show that I(a, b|W ) ∈
wdec(C)+. By (1) W is in L(C). Hence, by Propo-
sition 3.7(1), there exists a CI statement I(a, b|C′) ∈
wdec(C) such that W ∈ L(a, b|C′). Now, since C′ ⊆
W , we can derive I(a, b|W ) through strong union.

For the induction step, let C ⊆ V ⊂ W . The induc-
tion hypothesis states that for all V ′ with V ⊂ V ′ ⊆ W
one has I(a, b|V ′) ∈ wdec(C)+. By (1) V is in L(C).
Hence, by Proposition 3.7(1), there exists a CI state-
ment I(a′, b′|C′) ∈ wdec(C) such that V ∈ L(a′, b′|C′).
Since C′ ⊆ V we can use strong union to derive
I(a′, b′|V ). Let W ′ = {a′, b′}. Note that W ′ ∩ V = ∅.
We distinguish three cases:

• W ′ = W . Then we are done.

• Exactly one of the two elements in W ′ is not in
W . Without loss of generality let this element
be b′. Then we can use contraction on the state-
ments I(a, b′|V ) and I(a, b|V b′) (the latter is in
wdec(C)+ by the induction hypothesis) to derive
I(a, b′b|V ), and finally decomposition to derive
I(a, b|V ).

• Both elements in W ′ are not in W . We can use
strong contraction on the statements I(a′, b′|V ),
I(a, b|V a′), and I(a, b|V b′) (the latter two are in
wdec(C)+ by the induction hypothesis) to derive
I(a, b|V ).

This concludes the proof.

Example 3.9. Let S = {a, b, c, d}, let C =
{I(a, b|∅), I(c, d|a), I(c, d|b)} and let c = I(c, d|∅). We
can derive c from C using the inference rule strong con-
traction. In addition, L(C) = {∅, c, d, cd} ∪ {a, ab} ∪
{b, ab} = {∅, a, b, c, d, ab, cd} and L(c) = {∅, a, b, ab},
and, therefore, L(C) ⊇ L(c).

4 The Additive Implication Problem

for CI Statements

An important result in the study of the implication
problem relative to the class of discrete probability
measures was gained by Studený who linked it to
an additive implication problem (Studený [9]). More
specifically, it was shown that for every CI state-
ment I(A, B|C), a discrete probability measure P sat-
isfies I(A, B|C) if and only if the multi-information
function1 MP induced by P satisfies the equality
MP (C) + MP (ABC) = MP (AC) + MP (BC). Thus,
the multiplication-based probabilistic CI implication
problem was related to an addition-based implication
problem. It is this duality that is at the basis of
the results developed in this section. However, rather
than immediately focusing on specific classes of multi-
information functions, which is what we pursue in Sec-
tion 6, we first consider the additive implication prob-
lem for CI statements relative to arbitrary classes of
real-valued functions.

By a real-valued function, we will always mean a func-
tion F : 2S → R, i.e., a function that maps each subset
of S into a real number.

Definition 4.1. Let I(A, B|C) be a CI statement,
and let F be a real-valued function. We say that
F a-satisfies I(A, B|C), and write |=a

F I(A, B|C), if
F (C) + F (ABC) = F (AC) + F (BC).

1The multi-information function of a probability mea-
sure will be formally defined in Section 6.



Relative to the notion of a-satisfaction, we can now
define the additive implication problem for conditional
independence statements.

Definition 4.2 (Additive implication problem). Let
C be a set of CI statements, let c be a CI statement,
and let F be a class of real-valued functions. We say
that C a-implies c relative to F , and write C |=a

F c, if
each function F ∈ F that a-satisfies the CI statements
in C also a-satisfies the CI statement c.

We now define the notion of density of a real-valued
function. The density is again a real-valued function
and plays a crucial role in reasoning about additive
implication problems.

Definition 4.3. Let F be a real-valued function. The
density2 of F is the real-valued function ∆F defined by
∆F (X) =

∑
X⊆U⊆S(−1)|U|−|X|F (U), for each X ⊆ S.

The following relationship between a real-valued func-
tion and its density justifies the name.

Proposition 4.4. Let F be a real-valued function.
Then, for each X ⊆ S, F (X) =

∑
X⊆U⊆S ∆F (U).

The a-satisfaction of a real-valued function for a CI
statement can be characterized in terms of an equation
involving its density function. This characterization is
central in developing our results and is a special case of
a more general result by Sayrafi and Van Gucht who
used it in their study of the frequent itemset mining
problem (Sayrafi and Van Gucht [7]).

Proposition 4.5. Let I(A, B|C) be a CI statement
and and let F be a real-valued function. Then, |=a

F

I(A, B|C) if and only if
∑

U∈L(A,B|C) ∆F (U) = 0.

5 Properties of Classes of Functions -

Soundness and Completeness

In this section we study properties of classes of real-
valued functions that guarantee soundness and com-
pleteness of A, respectively, for the additive implica-
tion problem. How these results relate to probabilis-
tic conditional independence implication will become
clear in Section 7 and Section 8.

5.1 Soundness

First, we define the notion of soundness of system A
for a given class of real-valued functions.

Definition 5.1 (Soundness). Let F be a class of real-
valued functions. We say that A is sound relative to
F if, for each set C of CI statements and each CI state-
ment c, we have that C ⊢ c implies C |=a

F c.

2What we call the density is sometimes referred to as
the Möbius inversion of a real-valued function.

In order to characterize soundness we introduce the
following property of classes of real-valued functions.

Definition 5.2 (Zero-density property). Let F be a
class of real-valued functions. We say that F has the
zero-density property if, for each F ∈ F , for each CI
statement c, and for each U ∈ L(c), one has that if
|=a

F c, then ∆F (U) = 0.

We can now provide various characterizations of the
soundness of inference system A for the additive im-
plication problem for CI statements.

Theorem 5.3. Let F be a class of real-valued func-
tions. Then, the following statements are equivalent:

(1) Strong union and decomposition are sound infer-
ence rules relative to F for the additive implica-
tion problem;

(2) F has the zero-density property; and

(3) A is sound relative to F for the additive implica-
tion problem.

Proof. We first prove that statement (1) implies state-
ment (2). Let F ∈ F , let I(A, B|C) be a CI state-
ment, and assume |=a

F I(A, B|C). We now show that
∆F (V ) = 0 for each V ∈ L(A, B|C). The proof goes
by downward induction on the semi-lattice L(A, B|C).
First, we observe that by Lemma 3.3, L(A, B|C) =⋃

W∈W(A,B|C)[C, W ]. Hence, for the base case we must

prove that ∆F (W ) = 0 for each W ∈ W(A, B|C). Let
W = {a, b} ∈ W(A, B|C). I(a, b|C) is derivable from
I(A, B|C) using the inference rule decomposition and
therefore |=a

F I(a, b|C). Since strong union is assumed
sound and C ⊆ W it follows that |=a

F I(a, b|W ). Since
L(a, b|W ) = {W} we can invoke Proposition 4.5 to
conclude that ∆F (W ) = 0. For the induction step,
let V ∈ L(A, B|C). The induction hypothesis states
that ∆F (U) = 0 for all U ∈ L(A, B|C) that are strict
supersets of V . Similar to the base case, we can in-
fer that |=a

F I(A′, B′|V ) with A′, B′, and V pairwise
disjoint, A′ ⊆ A, B′ ⊆ B, and C ⊆ V . Hence, by
Proposition 4.5,

∑
U∈L(A′,B′|V ) ∆F (U) = ∆F (V ) = 0.

Since for all U ∈ L(A′, B′|V ) with U 6= V , we have by
Proposition 3.5 that V ⊂ U ∈ L(A, B|C) and, thus,
∆F (U) = 0 by the induction hypothesis.

We now prove that statement (2) implies statement
(3). Let C be a set of CI statements, let c be a CI
statement, and assume that C ⊢ c. Since F has the
zero-density property, we have that for each F ∈ F , if
|=a

F C then for each U ∈ L(C), ∆F (U) = 0. From C ⊢ c
and Proposition 3.5, we have L(C) ⊇ L(c). Hence,
for all F ∈ F we have that if F a-satisfies every CI
statements in C, then F a-satisfies c. Thus, C |=a

F c.

Finally, statement (1) follows trivially from (3).



5.2 Completeness

As with soundness in Subsection 5.1, we begin with
the definition of the notion of completeness of inference
system A for a given class of real-valued functions.

Definition 5.4 (Completeness). Let F be a class of
real-valued functions. We say that A is complete for
the additive implication problem for CI statements rel-
ative to F if, for each set C of CI statements and each
CI statement c, one has that C |=a

F c implies C ⊢ c.

We now introduce certain special real-valued functions
that are at the basis of defining a property guarantee-
ing completeness of system A.

Definition 5.5. Let V ⊆ S. The Kronecker-density
function of V , denoted δV , is the real-valued func-
tion such that δV (V ) = 1 and δV (X) = 0 if X 6= V .
The Kronecker-induced function of V , denoted FV , is
the real-valued function whose density function is the
Kronecker density function of V , i.e., for each X ⊆ S,
FV (X) =

∑
X⊆U⊆S δV (U), for each X ⊆ S.

We can now define a property on classes of real-valued
functions that we will show to guarantee the complete-
ness of system A for the additive implication problem.

Definition 5.6 (Kronecker property). Let F be a
class of real-valued functions, and let Ω ⊆ 2S. We
say that F has the Kronecker property on Ω if, for
each U ∈ Ω, there exists a cU ∈ R (cU 6= 0), and a
set DU = {dV ∈ R | V /∈ Ω} such that the following
real-valued function is in F :

FΩ,cU ,DU
:= cUFU +

∑

V ⊆S
V /∈Ω

dV FV .

Note that for all X ∈ Ω, ∆FΩ,cU ,DU
(X) = cU if X = U

and ∆FΩ,cU ,DU
(X) = 0 if X 6= U .

Let Ω(2) be the set of all subsets of S that lack at
least two of their elements, i.e., Ω(2) = {V ⊂ S |
|V | ≤ |S| − 2}. We can now prove that the Kronecker
property on Ω(2) implies the completeness of system A.

Theorem 5.7. Let F be a class of real-valued
functions. If F has the Kronecker property on Ω(2),
then system A is complete for the additive implication
problem for CI statements relative to F .

Proof. Assume that F has the Kronecker property on
Ω(2) but that A is not complete. Then there exists
a set C of CI statements and a CI statement c such
that C |=a

F c but C 6⊢ c, or, equivalently by Theo-
rem 3.8, L(c) * L(C). Let U ∈ L(c) − L(C). U must
be an element in Ω(2) by Lemma 3.3. Since F has
the Kronecker property on Ω(2), we know that there
exists a cU ∈ R (cU 6= 0), and a set DU = {dV ∈

R | V /∈ Ω(2)} such that FΩ(2),cU ,DU
∈ F . By Defini-

tion 5.6, ∆FΩ(2),cU ,DU
(X) = 0 for all other X ∈ Ω(2).

From Proposition 4.5 it follows that |=a

F
Ω(2),cU ,DU

C,

but 6|=a

F
Ω(2),cU ,DU

c, a contradiction to C |=a

F c.

The following example demonstrates the zero-density
and Kronecker properties.

Example 5.8. Let S = {a, b, c}, let F1 =
{F∅, Fa, Fb, Fc} and F2 = {Fx}, where the densities
for each real-valued function are given by the table
in Figure 2. The densities of the remaining subsets
of S are assumed to be 0 for each function. Now,
Ω(2) = {∅, a, b, c} and, therefore, F1 has the Kro-
necker property on Ω(2) since FΩ(2),cU ,DU

= FU for all

U ∈ Ω(2), and the zero-density property. F2 does not
have the Kronecker property. It also does not have the
zero-density property as |=a

Fx
I(b, c|∅) but ∆Fx(∅) 6= 0.

∅ {a} {b} {c}

∆F∅ 0.1 0 0 0

∆Fa 0 -0.3 0 0

∆Fb 0 0 -0.6 0

∆Fc 0 0 0 0.9

∆Fx -0.2 0.2 0.6 0.3

Figure 2: Densities of several real-valued functions.

6 The Conditional Independence

Implication Problem

While the theory presented so far has been concerned
with the additive implication problem for CI state-
ments, it is also applicable to the conditional in-
dependence implication problem. The link between
these two problems is made with the concept of multi-
information functions (Studený [9]) induced by proba-
bility measures. In this paper we will restrict ourselves
to the class of discrete probability measures.

Definition 6.1. A probability model over S =
{s1, . . . , sn} is a pair (dom, P ), where dom is a do-
main mapping that maps each si to a finite do-
main dom(si), and P is a probability measure hav-
ing dom(s1) × · · · × dom(sn) as its sample space. For
A = {a1, . . . , ak} ⊆ S, we will say that a is a domain
vector of A if a ∈ dom(a1) × · · · × dom(ak).

In what follows, we will only refer to probability
measures, keeping their probability models implicit.

Definition 6.2. Let I(A, B|C) be a CI statement, and
let P be a probability measure. We say that P m-
satisfies I(A, B|C), and write |=m

P I(A, B|C), if for
every domain vector a, b, and c of A, B, and C, re-
spectively, P (c)P (a,b, c) = P (a, c)P (b, c).



Relative to the notion of m-satisfaction we can now
define the probabilistic conditional independence im-
plication problem.

Definition 6.3 (Probabilistic conditional indepen-
dence implication problem). Let C be a set of CI state-
ments, let c be a CI statement, and let P be the class
of discrete probability measures. We say that C m-
implies c relative to P , and write C |=m

P c, if each func-
tion P ∈ P that m-satisfies the CI statements in C also
m-satisfies the CI statement c. The set {c | C |=m

P c}
will be denoted by C∗.

Next, we define the multi-information function in-
duced by a probability measure (Studený [9]), which
is based on the Kullback-Leibler divergence (Kullback
and Leibler [4]).

Definition 6.4. Let P and Q be two probability mea-
sures over a discrete sample space. Then, the relative
entropy (Kullback-Leibler divergence) H is defined as

H(P |Q) :=
∑

x

{P (x) log
P (x)

Q(x)
, P (x) > 0},

with x ranging over all elements of the discrete sample
space.

Definition 6.5. Let P be a probability measure, and
let H be the relative entropy. The multi-information
function MP : 2S → [0,∞] induced by P is defined as

MP (A) := H(PA|
∏

a∈A

P {a}),

for each non-empty subset A of S and MP (∅) = 0.3

The class of multi-information functions induced by
the class of discrete probability measures P will be de-
noted by M. We can now state the fundamental result
of Studený that couples the probabilistic CI implica-
tion problem with the additive implication problem for
CI statements relative to M.

Theorem 6.6 (Studený [9]). Let C be a set of CI state-
ments and let c be a CI statement. Then, C |=a

M c if
and only if C |=m

P c.

7 Saturated CI Statements -

Soundness and Completeness of A

In this section we show that system A is sound and
complete for the probabilistic CI implication problem
for saturated CI statements. We recall that a CI state-
ment I(A, B|C) is saturated if ABC = S. We begin
by showing the following technical lemma.

3Here, P A and P {a} denote the marginal probability
measures of P over A and {a}, respectively.

Lemma 7.1. The class of multi-information functions
M induced by the class of discrete probability measures
has the zero-density property with respect to saturated
CI statements.

Proof. We have to show that for each saturated CI
statements c, for each M ∈ M, and for each U ∈ L(c),
if |=a

M c, then ∆M(U) = 0. The semi-graphoid infer-
ence rules are sound relative to the class of probability
measures. Hence, in particular, by Theorem 6.6, weak
union is sound relative to M, i.e., {I(AD, B|C)} |=a

M

I(A, B|CD). Let M ∈ M, let ∆M be the corre-
sponding density function, and let |=a

M I(A, B|C) with
ABC = S. In addition, let I(A, B|C) be non-trivial
since the proposition is obviously true for trivial CI
statements. We will prove by downward induction on
the semi-lattice L(A, B|C) that ∆M(U) = 0 for each
U ∈ L(A, B|C). Note that this proof is similar to the
proof of Proposition 5.3. (Here, weak union is used
instead of decomposition and strong union).

For the base case, we show for each W ∈ W(A, B|C)
that ∆M(W ) = 0. Let W = {a, b}. By repeatedly
applying weak union we can derive |=a

M I(a, b|W ) be-
cause ABC = S. Now, since L(a, b|W ) = {W} we can
conclude that ∆M(W ) = 0.

For the induction step, let V ∈ L(A, B|C). The in-
duction hypothesis states that ∆M(U) = 0 for each
U ∈ L(A, B|C) with U a strict superset of V . From
the given CI statement I(A, B|C) we can derive, again
by weak union, I(A′, B′|V ) with V A′B′ = S since
V − C ⊆ AB. Since L(A′, B′|V ) contains only V and
strict supersets V ′ of V , with V ′ ∈ L(A, B|C), we can
conclude that

∑
U∈L(A′,B′|V ) ∆F (U) = ∆F (V ) = 0 by

the induction hypothesis.

We are now in the position to prove that inference
system A is sound and complete for the probabilistic
implication problem for saturated conditional indepen-
dence statements.

Theorem 7.2. A is sound and complete for the prob-
abilistic conditional independence implication problem
for saturated CI statements.

Proof. The soundness follows directly from
Lemma 7.1, Theorem 5.3, and Theorem 6.6. To
show completeness, notice that the semi-graphoid
axioms are derivable under inference system A.
Furthermore, Geiger and Pearl proved that the semi-
graphoid axioms are complete for the probabilistic
conditional independence implication problem for
saturated CI statements (Geiger and Pearl [3]).



8 CI Statements - Completeness of A

In this section we will show that inference system A
is complete for the probabilistic conditional indepen-
dence implication problem. We first prove that M has
the Kronecker property on Ω(2). To show this, it would
be sufficient to construct a set of discrete probability
measures whose induced multi-information functions
are Kronecker-induced functions. However, instead of
taking this route, we pursue a different approach by
first focusing on results with respect to saturated CI
statements. We first need the following simple lemma.

Lemma 8.1. For U ⊆ S, {X ∈ Ω(2) | X ⊇ U} =⋃
U1∪U2=U
U1∩U2=∅

L(U1, U2|U).

Proposition 8.2. Let F be a class of real-valued func-
tions. If A is sound and complete for the additive im-
plication problem relative to F for saturated CI state-
ments, then F has the Kronecker property on Ω(2).

Proof. If |S| ≤ 1, then Ω(2) = ∅ and the statement
follows trivially. Hence, assume that |S| ≥ 2. Sup-
pose that A is sound and complete for saturated CI
statements but that F does not have the Kronecker
property on Ω(2). Then there exists a set U ∈ Ω(2)

such that for each cU ∈ R (cU 6= 0), and for each set
DU = {dV ∈ R | V /∈ Ω(2)} we have FΩ(2),cU ,DU

6∈ F .
Now, let C be the set of saturated CI statements

{ I(U, U |∅) } ∪
⋃

U1∪U2=U
U1∩U2=∅

{ I(U1, U2|U) } ∪

⋃

v∈U

⋃

V1∪V2=U−{v}
V1∩V2=∅

{ I(V1, V2|U ∪ {v}) },

and let c be the saturated CI statement I(U1, U2|U)
for some non-empty sets U1 and U2. Notice that
such sets exist because |U | ≥ 2. By Lemma 8.1 it is
L(C) = Ω(2) −{U} and U ∈ L(c) ⊆ Ω(2) and therefore
L(c) * L(C). Hence, by Theorem 3.8, C 0 c. We now
show that C |=a

F c to obtain the contradiction to the
completeness of A. If there does not exist an F ∈ F
which a-satisfies C we are done because then C |=a

F c
follows trivially. Thus, let F be in F and assume that
|=a

F C. Since A is sound relative to F for saturated
CI statements, we know by Theorem 5.3 that F has
the zero-density property. Thus, ∆F (X) = 0 for each
X ∈ Ω(2) with X 6= U . But then ∆F (U) = 0 since oth-
erwise there would exist a cU ∈ R, cU = ∆F (U) 6= 0,
and a set DU = {dV ∈ R | V /∈ Ω(2)} such that
FΩ(2),cU ,DU

= F ∈ F . Hence, F must be a function

whose density is zero on every element of Ω(2). Thus,
|=a

F c and it follows that C |=a

F c.

The completeness of A for the CI implication problem
can now be proved based on the previous results.

Theorem 8.3. A is complete for the probabilistic con-
ditional independence implication problem.

Proof. We know from Theorem 7.2 that A is sound
and complete relative to M for saturated CI state-
ments. Now, by Proposition 8.2, M has the Kronecker
property on Ω(2). Finally, through Theorem 5.7 and
Theorem 6.6, the statement follows.

Example 8.4. (Studený [9]) described the following
sound inference rule relative to discrete probability
measures which refuted the conjecture (Pearl [6]) that
the semi-graphoid axioms are complete for the proba-
bilistic CI implication problem:

I(A, B|CD) ∧ I(C, D|A) ∧ I(C, D|B) ∧ I(A, B|∅) →
I(C, D|AB) ∧ I(A, B|C) ∧ I(A, B|D) ∧ I(C, D|∅).

By applying strong contraction to the statements
I(A, B|∅), I(C, D|A), and I(C, D|B) we can derive the
statement I(C, D|∅). All the other statements can be
derived using strong union.

Remark 8.5. The inference system A without
strong contraction is not complete. The consequence
I(C, D|∅) of the clause from Example 8.4 cannot be de-
rived from the antecedents without strong contraction.

9 Complete Axiomatization of Stable

Independence

When new information is available to a probabilistic
system the set of associated relevant CI statements
changes dynamically. However, some of the CI state-
ments will continue to hold. These CI statements were
termed stable by de Waal and van der Gaag [2]. A first
investigation of their structural properties was under-
taken by Matúš who used the term ascending condi-
tional independence (Matúš [5]). Every set of CI state-
ments can be partitioned into its stable and unstable
part. We will show that inference system A is sound
and complete for the probabilistic CI implication prob-
lem for stable conditional independence statements.

Definition 9.1. Let C be a set of CI statements, and
let CSG+ be the semi-graphoid closure of C. Then
I(A, B|C) is said to be stable in C, if I(A, B|C′) ∈
CSG+ for all sets C′ with C ⊆ C′ ⊆ S.

Theorem 9.2. Let CS be a set of stable CI statements.
Then, A is sound and complete for the probabilistic
conditional independence implication problem for CS,
or, equivalently, C∗

S = C+
S .

Proof. The soundness follows from Theorem 5.3 and
from strong union and decomposition being sound in-
ference rules relative to M for stable CI statements.
The completeness follows from Theorem 8.3.



Remark 9.3. The previous result is also interesting
with respect to the problem of finding a minimal, non-
redundant representation of stable independence re-
lations. Here, lattice-inclusion could aid the lossless
compaction of representations of stable CI statements:
L(CS−{c}) = L(CS) if and only if c is redundant in CS .

10 Falsification Algorithm

Theorem 3.8 and Theorem 8.3 lend themselves to a
falsification algorithm, that is, an algorithm which can
falsify instances of the probabilistic conditional inde-
pendence implication problem. We consider the fol-
lowing corollary which directly follows from these two
results.

Corollary 10.1. Let C be a set of CI statements, and
let P be the class of discrete probability measures. If
L(C) + L(c), then C 6|=m

P c.

If the falsified implications were, on average, only
a small fraction of all those that are falsifiable, the
result would be disappointing from a practical point
of view. Fortunately, we will not only be able to show
that a large number of implications can be falsified by
the “lattice-exclusion” criterion identified in Corol-
lary 10.1, but also that polynomial time heuristics ex-
ist that provide good approximations of said criterion.

Falsification Criterion. Input: A set of CI state-
ments C and a CI statement c. Test: if L(C) + L(c),
return “false”, else return “unknown.”

Heuristic 1. Input: A set of CI statements C
and a CI statement I(A, B|C). Test: if for each
I(A′, B′|C′) ∈ C it is C + C′, return “false”, else
return “unknown.”

Heuristic 2. Input: A set of CI statements C, and
a CI statement I(A, B|C). Test: if there exists one
W ∈ W(A, B|C) such that for all I(A′, B′|C′) ∈ C
it is W /∈ W(A′, B′|C′), return “false”, else return
“unknown.”

It follows from Lemma 3.3 that if one of the two
heuristics returns “false,” then L(C) + L(c), and
therefore C 6|=m

P c by Corollary 10.1.

Example 10.2. Let S be a finite set, and
A, B, C, and D be pairwise disjoint sub-
sets of S. The inference rule intersection,
I(A, B|DC) ∧ I(A, D|BC) → I(A, BD|C), is not
sound relative to the class of discrete probability mea-
sures. Heuristic 1 can reject this instance of the im-
plication problem in polynomial time in the size of S.

Remark 10.3. The falsification criterion leads in fact
to a family of polynomial time heuristics. While
Heuristic 1 checks if the unique meet (greatest lower
bound) of the semi-lattice L(c) is not in L(C) and
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(a) Tested implications; overall

(b) Racing algorithm; rejected

(c) Lattice exclusion; rejected

(d) Racing algorithm; accepted

Figure 3: Rejection and acceptance curves of the rac-
ing and falsification algorithms, respectively, for five
attributes.
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 (a) Lattice exclusion

(b) Heuristics combined

(c) Heuristic 2

(d) Heuristic 1

Figure 4: Falsifications based on the lattice-exclusion
criterion and the heuristics, for five attributes. The
combination of the heuristics reaches 95% of the fal-
sifications of the full-blown lattice exclusion criterion
for 3 antecedents down to 77% for 10 antecedents.

Heuristic 2 if the (potentially multiple) joins (least up-
per bounds) of the semi-lattice L(c) are not in L(C),
we may select additional elements in the semi-lattice
L(c) that are located between these two extrema to
derive more falsification heuristics.

With our experiments we want to show that (1) the
lattice-exclusion criterion can falsify a large fraction
of all falsifiable implications, and (2) that the two
provided heuristics are good approximation of the
full-blown lattice-exclusion criterion. To make our
outcomes comparable to existing results, we adopted
the experimental setup for the racing algorithm from
Bouckaert and Studený [1] (also using 5 attributes).
A thousand sets of antecedents each were generated
by randomly selecting 3 up to 10 elementary CI state-
ments, resulting in a total of 8000 sets of antecedents.4

4An elementary CI statement is of the form I(a, b|C),
where a, b ∈ S and C ⊆ S − {a, b}.



The falsification algorithm and the heuristics were run
on these sets with each of the remaining elementary CI
statements as consequence, one at a time. Since there
are 80 elementary CI statements for 5 attributes, this
resulted in 77000 implication problems for sets with 3
antecedents, 76000 for sets with 4 antecedents, down
to 70000 for sets with 10 antecedents.

The rejection procedure of the racing algorithm is
rooted in the theory of imsets: an instance is rejected
if one of the supermodular functions constructed by
the algorithm is a counter-model for this instance. It
has exponential running time and might reject impli-
cations that actually do hold. This is a consequence
of the fact that M is a strict subset of the class of all
supermodular functions. (See Examples 4.1 and 6.2 in
Studený’s monograph [9].) The falsification algorithm
based on Corollary 10.1, on the other hand, ensures
that if an instance of the implication problem is re-
jected, then it is guaranteed not to be valid.

Figure 3 shows the rejection curves of the racing algo-
rithm (b) and the falsification algorithm (c), respec-
tively, and the acceptance curve of the racing algo-
rithm (d). The area between the two rejection curves
can be interpreted as the “decision gap”, i.e., the
amount of instances of the implication problem for
which the validity is unknown. The curve marked with
circles (a) depicts the total number of tested instances.
Figure 4 depicts the rejection curves for the falsifica-
tion algorithm (a), for the combination of Heuristic
1 and Heuristics 2 (b), and for Heuristic 2 (c) and
Heuristic 1 (d) run separately. The combination of
the heuristics compares favorable with the full-blown
falsification criterion. The experiments also show that
Heuristic 2 is more effective than Heuristic 1.

11 Conclusion and Future Work

A complete inference system for the probabilistic
conditional independence implication problem was
presented and related to the lattice-exclusion criterion.
We derived polynomial time approximations that can
be used as a preprocessing step to efficiently shrink the
search space of possibly valid inferences. We already
have experimental evidence that our approach scales
to much larger instances of the implication problem
than those reported on in this paper. This could, for
instance, provide insights into combinatorial bounds
for the number of (stable) CI structures. The falsifi-
cation algorithm and the heuristics can be combined
with algorithms that infer valid implications, like the
one based on structural imsets which is used as part of
the racing algorithm [1]. In addition, the lattice exclu-
sion criterion and the heuristics can be utilized to store
information about conditional independencies more

efficiently, using non-redundant representations. Over-
all, we believe that the lattice-theoretic framework for
reasoning about conditional independence is a novel
and powerful tool. We conjecture that there are inter-
esting connections between our theory and Studený’s
theory of imsets which we will continue to investigate.
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