
A Polynomial-time Nash Equilibrium Algorithm
for Repeated Stochastic Games

Enrique Munoz de Cote∗

DEI, Politecnico di Milano
piazza Leonardo da Vinci, 32

20133 Milan, Italy
munoz@elet.polimi.it

Michael L. Littman†

Dept. of Computer Science
Rutgers University

Piscataway, NJ 08854
mlittman@cs.rutgers.edu

Abstract

We present a polynomial-time algorithm that
always finds an (approximate) Nash equi-
librium for repeated two-player stochastic
games. The algorithm exploits the folk the-
orem to derive a strategy profile that forms
an equilibrium by buttressing mutually ben-
eficial behavior with threats, where possible.
One component of our algorithm efficiently
searches for an approximation of the egali-
tarian point, the fairest pareto-efficient solu-
tion. The paper concludes by applying the
algorithm to a set of grid games to illus-
trate typical solutions the algorithm finds.
These solutions compare very favorably to
those found by competing algorithms, result-
ing in strategies with higher social welfare, as
well as guaranteed computational efficiency.

1 Problem Statement

Stochastic games (Shapley, 1953) are a popular
model of multiagent sequential decision making in the
machine-learning community (Littman, 1994; Bowling
& Veloso, 2001). In the learning setting, these games
are often repeated over multiple rounds to allow learn-
ing agents a chance to discover beneficial strategies.

Mathematically, a two-player stochastic game is a
tuple 〈S, s0, A1, A2, T , U1, U2, γ〉; namely, the set of
states S, an initial state s0 ∈ S, action sets for the two
agents A1 and A2, with joint action space A = A1×A2;
the state-transition function, T : S ×A → Π(S) (Π(·)
is the set of probability distributions over S); the util-
ity functions for the two agents U1, U2 : S × A → ℜ,
and the discount 0 ≤ γ ≤ 1.

∗ Supported by The National Council of Science
and Technology (CONACyT), Mexico, under grant No.
196839.

†Supported, in part, by NSF IIS-0325281.

In an infinitely repeated stochastic game, the stochas-
tic game is played an unbounded number of rounds.
On each round, a stage game is played, starting in s0

and consisting of a series of state transitions (steps),
jointly controlled by the two agents. At each step,
both agents simultaneously select their actions, pos-
sibly stochastically, via strategies πi (for each agent
i). To avoid infinitely long rounds, after each step,
the round is allowed to continue with probability γ,
otherwise it is terminated. The payoff for a player in
a stage game is the total utility obtained before the
stage game is terminated. (Note that the continuation
probability γ is equivalent to a discount factor.) Play-
ers behave so as to maximize their average stage-game
payoffs over the infinite number of rounds.

A strategy profile, π = 〈π1, π2〉, is a Nash equilibrium
(NE) if each strategy is optimized with respect to the
other. In an equilibrium, no agent can do better by
changing strategies given that the other agent contin-
ues to follow its strategy in the equilibrium. In a re-
peated game, the construction of equilibrium strategy
profiles can involve each player changing strategy from
round to round in response to the behavior of the other
agent. Note that an ǫ-approximate NE is one in which
no agent can do better by more than ǫ by changing
strategies given that the other agent continues to fol-
low its strategy in the equilibrium.

Our approach to finding an equilibrium for repeated
stochastic games relies on the idea embodied in the folk
theorems (Osborne & Rubinstein, 1994). The relevant
folk theorem states that if an agent’s performance is
measured via expected average payoff, for any strictly
enforceable (all agents receive a payoff larger than their
minimax values) and feasible (payoffs can be obtained
by adopting some strategy profile) set of average pay-
offs to the players, there exist equilibrium strategy pro-
files that achieve these payoffs. The power of this folk
theorem is that communally beneficial play, such as
mutual cooperation in the Prisoner’s Dilemma, can be
justified as an equilibrium. A conceptual drawback is

that there may exist infinitely many feasible and en-
forceable payoffs (and therefore a daunting set of equi-
librium strategy profiles to choose from). We focus on
the search for a special point inside this (possibly in-
finite) set of solutions that maximizes the minimum
advantage obtained by the players. (The advantage is
the improvement a player gets over the payoff it can
guarantee by playing defensively.) We call this point
the egalitarian point, after Greenwald and Hall (2003).
Other points can also be justified, such as the one that
maximizes the product of advantages—the Nash bar-
gaining solution (Nash, 1950).

Earlier work (Littman & Stone, 2005) has shown that
the folk theorem can be interpreted computationally,
resulting in a polynomial-time algorithm for repeated
games. In the prior work, the game in each round
is represented in matrix form—each strategy for each
player is explicitly enumerated in the input represen-
tation. This paper considers the analogous problem
when each stage game is represented much more com-
pactly as a stochastic game. Representing such games
in matrix form would require an infinitely large ma-
trix since the number steps per round, and therefore
the complexity of the strategies, is unbounded. Even
if we limit ourselves to stationary deterministic strate-
gies, there are exponentially many to consider.

Concretely, we address the following computational
problem. Given a stochastic game, return a strategy
profile that is a Nash equilibrium—one whose payoffs
match those of the egalitarian point—of the average
payoff repeated stochastic game in polynomial time.
In fact, because exact Nash equilibria in stochastic
games can require unbounded precision, our algorithm
returns an arbitrarily accurate approximation.

2 Background

Here, we present background on the problem.

2.1 Minimax Strategies

Minimax strategies guarantee a minimum payoff value,
called the security value, that an agent can guaran-
tee itself by playing a defensive strategy. In addi-
tion, an agent can be held to this level of payoff if
the other agent adopts an aggressive attack strategy
(because minimax equals maximin). Given that mini-
max strategies guarantee a minimum payoff value, no
rational player will agree on any strategy in which it
obtains a payoff lower than its security value. The
pair of security values in a two-player game is called
the disagreement point.

The set X ⊆ R
2 of average payoffs achievable by strat-

egy profiles can be visualized as a region in the x-y

plane. This region is convex because any two strat-
egy profiles can be mixed by alternating over succes-
sive rounds to achieve joint payoffs that are any convex
combination of the joint payoffs of the original strategy
profiles. The disagreement point v = (v1, v2) divides
the plane into two regions (see Figure 1): a) the region
of mutual advantages (all points in X, above and to
the right of v), denotes the strictly enforceable payoff
profiles; and b) the relative complement of the region
of mutual advantage, which are the payoff profiles that
a rational player would reject.

In general-sum bimatrix games, the disagreement
point can be computed exactly by solving two zero-
sum games (von Neumann & Morgenstern, 1947) to
find the attack and defensive strategies and their val-
ues. In contrast, the solution to any zero-sum stochas-
tic game can be approximated to any degree of accu-
racy ǫ > 0 via value iteration (Shapley, 1953). The
running time is polynomial in 1/(1 − γ), 1/ǫ, and the
magnitude of the largest utility Umax.

2.2 Markov Decision Processes

In this paper, we use Markov decision processes (Put-
erman, 1994), or MDPs, as a mathematical framework
for modeling the problem of the two players work-
ing together as a kind of meta-player to maximize a
weighted combination of their payoffs. For any weight
[w, 1 − w] (0 ≤ w ≤ 1) and point p = (p1, p2), define
σw(p) = wp1 + (1 − w)p2.

Note that any strategy profile π for a stochastic game
has a value for the two players that can be represented
as a point pπ ∈ X. To find the strategy profile π for a
stochastic game that maximizes σw(pπ), we can solve
MDP(w), which is the MDP derived from replacing
the utility r = (r1, r2) in each state with σw(r).

2.3 Other Solutions for Stochastic Games

There are several solution concepts that have been con-
sidered in the literature. Generally speaking, a Nash
equilibrium (NE) is a vector of independent strategies
in which all players optimize their independent prob-
ability distributions over actions with respect to ex-
pected payoff. A correlated equilibrium (CE) allows
for dependencies in the agent’s randomizations, so a
CE is a probability distribution over joint spaces of
actions. Minimax strategies maximize payoff in the
face of their worst opponent. At the other extreme,
“friend” strategies maximize behavior assuming the
opponents are working to maximize the agent’s own
utility. Friend strategies are appropriate in purely co-
operative settings but can perform very badly in mixed
incentive settings.

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

C

A

E

F

5

4

2

1

0

3

D

B

v

Figure 1: The convex hull X ⊆ R
2 of all payoff profiles.

Point v ∈ X depicts the disagreement point. Three
different convex hulls are illustrated. The diagonal
line is the egalitarian line.

A powerful and general algorithmic approach for se-
quential decision problems is value iteration (Bellman,
1957). Variants of value iteration can be defined for
each of the solution concepts described above (Zinke-
vich et al., 2005).

3 Algorithm Description

Of all feasible Nash equilibria, we are interested in
one whose payoffs match the egalitarian point, thus
maximizing the minimum of the payoffs of the two
players. Mathematically, we are searching for a point
P = argmaxx∈X minv(x). Here, minv(x) is the egali-
tarian value of x, meaning min(x1−v1, x2−v2) where
x = (x1, x2) and v is the disagreement point. Note
that minv(P) ≥ 0 because X is convex and v is the
disagreement point—there is a strategy in which both
players do at least as well as v.

Define the egalitarian line to be the line corresponding
to the payoffs in which both player’s payoffs are equally
high above the disagreement point. Consider the two
“friend” solutions to the game, where L is the value
to the two players when maximizing Player 2’s payoff
and R is the value to the two players when maximizing
Player 1’s payoff. Because X is convex, the egalitarian
point P is either L, R, or the (highest) intersection
between X and the egalitarian line.

Figure 1 illustrates these three situations with three
different example X sets. The solid L-shaped lines in
the figure are the contour lines with equal egalitarian
values. The egalitarian point in X is the one that
reaches the topmost contour line. In the set filled with
diagonal lines, the point A is the egalitarian point and

minv(A) = 2. All other points are to the left of A,
so A is the point with maximum x coordinate. In the
set filled with circles, E is the egalitarian point with
minv(E) = 2. All other points are below E, so E is
the point with maximum y coordinate.

The intermediate region with the vertical fill lines is
a bit more complex. Point F has the largest y coor-
dinate, but its egalitarian value is negative because of
the x coordinate. Point D has the largest x coordinate,
but its egalitarian value is negative because of the y
coordinate. The point C, which is a linear combina-
tion of the vertices B and D, is the egalitarian point,
again with a value of 2.

Finding points like E and A is easy—it is just a matter
of solving the “friend” MDPs derived using weights of
[0, 1] and [1, 0] and halting if either R is on the left or L
is on the right of the egalitarian line. However, finding
point C is harder, since we need to find points B and
D and then intersect the line between them with the
egalitarian line.

Figure 2 presents the overall FolkEgal algorithm for
finding a strategy profile that achieves the egalitarian
point in stochastic games. FolkEgal(U1, U2, ǫ) works
for utility functions U1 and U2 and seeks an equilib-
rium with accuracy ǫ. The routine (δi, α−i, vi) :=
Game(Ui, ǫ) solves the zero-sum game with utility
function Ui to accuracy ǫ. It returns vi and δi, which
are the value and strategy (respectively) for the maxi-
mizing player i, and α−i, which is the attack strategy
of i’s opponent (−i). We do not provide code for this
subroutine as any zero-sum stochastic game solver can
be used. Littman and Stone (2005) provide details on
using the attack strategies to stabilize the discovered
mutually beneficial payoffs, which we do not repeat
here.

The key missing subroutine is (P, π) :=
EgalSearch(L,R, T), which finds the intersection
between the convex hull of payoffs with the egalitarian
line. It returns the egalitarian point P and a strategy
profile π that achieves it. It is given a point L ∈ X
to the left of the egalitarian line, a point R ∈ X to
the right of the egalitarian line, and a bound T on
the number of iterations. Section 4 explains how to
choose T .

The algorithm is laid out in Figure 3. Its basic struc-
ture is a kind of binary search. On each iteration,
it solves an MDP to try to find a policy closer to
the egalitarian line. It makes use of several support
subroutines. The call w := Balance(L,R) returns the
weight w for which σw(L) = σw(R). It can be found
by solving a linear equation. The payoff of the op-
timal strategy profile π for w should be an improve-
ment on L and R with respect to the weight w, that is,

Define FolkEgal(U1, U2, ǫ):
// Find “minimax” strategies
Let (δ1, α2, v1) := Game(U1, ǫ/2)
Let (δ2, α1, v2) := Game(U2, ǫ/2)
// Make the disagreement point the origin
Let v := (v1, v2)
Let U1 := U1 − v
Let U2 := U2 − v
// Find “friend” strategies
Let (R0, π2) := MDP([1, 0])
Let (L0, π1) := MDP([0, 1])
// Find the egalitarian point and its policy
If R is left of the egalitarian line:

Let (P, π) := (R0, π2)
Elseif L is to the right of the egalitarian line:

Let (P, π) := (L0, π1)
Else:

Let (P, π) := EgalSearch(L0, R0, T)
// If game is like zero sum, compete
If minv(P) ≤ ǫ:

Return (δ1, δ2)
// Else, mutual advantage
Return π, modified to use threat strategies

α1 and α2 to enforce the equilibrium

Figure 2: Our approach to finding the egalitarian point
and a strategy profile that achieves it.

Define EgalSearch(L, R, T):
If T = 0:

Return Intersect(L, R)
Let w := Balance(L, R)
Let (P, π) := MDP(w)
If P · w = L · w:

Return Intersect(L, R)
If P is to the left of egalitarian line:

Return EgalSearch(P, R, T − 1)
Else:

Return EgalSearch(L, P, T − 1)

Figure 3: Our search algorithm for intersecting the
convex payoff region with the egalitarian line.

σw(Pπ) ≥ σw(R) = σw(L). If it is not strictly better,
the search ends. Otherwise, the new point is used as
either L or R and it continues.

The final strategy profile returned is found via
Intersect(L,R), which discovers the right way to al-
ternate between L and R to produces a payoff on the
egalitarian line. Again, a simple linear equation suf-
fices to identify this strategy profile.

Figure 4 illustrates a step of the algorithm. First, note
the disagreement point v and the egalitarian line head-
ing out from it. The algorithm is given points L and
R such that L is on the left of the egalitarian line and
R is on the right. In the diagram, the line passing
through L labeled L̄ is the set of points p such that
σwL

(p) = σwL
(L). Since L was returned as the max-

imum payoff with respect to some weight wL, none

Figure 4: An illustration of the behavior of
EgalSearch.

of the points in the convex set can be above this line.
Similarly, wR is the weight that was used in the deriva-
tion of R and therefore no payoffs are possible beyond
the R̄ line in the figure.

Next, notice that both L and R are the payoffs for
some strategy profile, so both lie in the convex set.
Furthermore, any payoff on the line between L and
R can also be achieved by some strategy profile. The
weight w, derived by Balance(L,R), is the weight such
that every payoff p along the line between L and R has
the same weighted value σw(p). The line is called L̄R
in the figure.

Putting these ideas together, consider what happens
when we solve MDP(w). We know the result will be
at least as high as the L̄R line, since we already know
there is a strategy profile that can achieve this payoff.
However, we also know that it can’t go above the R̄
and L̄ lines. So, the solution is constrained to lie inside
the gray shaded triangle in the figure.

The point P is the hypothetical solution to MDP(w).
Since it is on the right of the egalitarian line, it replaces
R in the next iteration. The black triangle represents
the region that will be searched in the next iteration.
In the next section, we show that each iteration re-
duces the area of this triangle substantially, and thus
that a small number of iterations are needed to reduce
its intersection with the egalitarian line to ǫ/2.

4 Algorithm Analysis

The main open issue is to set the parameter T , which
controls the maximum number of search iterations in
EgalSearch. Since solving MDPs and the various other
steps each take polynomial time, the overall runtime

of FolkEgal is polynomial if and only if T is bounded
by a polynomial.

Let’s say we are given a triangle with area ν where
the corners are possible joint payoffs. Let point p be
the point in the triangle that maximizes minv(p). Let
point r be the point along the longest edge of the tri-
angle that maximizes minv(r).

Claim 1: minv(p) − minv(r) ≤
√

2ν.

To see why, let’s consider two facts.

1. For points x and y, if ‖x − y‖2 ≤ δ, then y =
x+∆ for some ∆ = (∆1,∆2) where |∆1| ≤ δ and
|∆2| ≤ δ. It follows that minv(y) = minv(x+∆) ≤
minv(x + δ) = minv(x) + δ. Reversing x and y,
we find |minv(x) − minv(y)| ≤ δ.

2. A triangle with longest edge b must have an al-
titude, h, where h ≤ b, otherwise it would not
fit inside the triangle. Therefore, its area is
ν = 1/2bh ≥ 1/2h2. Thus, h ≤

√
2ν. This ar-

gument shows that for any point x in the triangle
and y on the largest side, ‖x − y‖2 ≤ h ≤

√
2ν.

Combining these two facts proves the claim:
|minv(p) − minv(r)| ≤

√
2ν.

Claim 2: Figure 4 shows the generic situation in
which the algorithm has found points L and R us-
ing weights that result in the edges labeled with L̄
and R̄. The gray triangle is the remaining region to
search. The algorithm then performs an optimization
that uncovers a point P inside this region using weight
w. The process then repeats with the black triangle.
Note:

1. The angle at the “top” of the triangle gets wider
each iteration.

The fact follows because the new top vertex is
interior to the main triangle.

2. The area of the black triangle is less than or equal
to half of that of gray triangle.

You can visualize the gray triangle as consisting of
three shapes—a top triangle, a trapezoid, and the
black triangle. Note that the black triangle and
the trapezoid share the same height, but the large
base of the trapezoid (L̄R line) is longer than the

base of the black triangle on line L̄R
′

(because
the gray triangle tapers). Therefore, the black
triangle is smaller than the trapezoid and so is
less than half of the area of the gray triangle.

Combining the claims, let pT be the point that maxi-
mizes minv(pT) in the triangle active in the T th iter-
ation. Let rT be the point that maximizes minv(rT)

on the longest edge of the triangle active in the T th
iteration. Let νT be the area of the triangle active in
the T th iteration.

1. νT ≤ ν0 × 1/2T

2. minv(pT) ≤ minv(rT) +
√

2νT .

So, minv(pT) ≤ minv(rT) +
√

2ν0/2T .

If we want the difference to be smaller than, say, ǫ, we
need

√

2ν0/2T ≤ ǫ, or T ≥ log(2ν0/ǫ2).

Since ν0 ≤ U2

max
, the number of iterations is polyno-

mially bounded in the main parameters of the problem
and the approximation factor. Each iteration runs in
polynomial time.

5 Experimental Results

To illustrate the kinds of equilibria produced by our
algorithm and to compare them to existing algorithmic
approaches, we devised a family of stochastic games
played on grids.

All are games played by players A and B. The grids
differ in structure, but they all use the same dynam-
ics. Both players A and B occupy distinct cells of the
grid and can choose one of 5 distinct actions: N, S,
E, W and stand. Actions are executed simultaneously
and transitions from one cell to another are determin-
istic unless a) there is a semi-passable wall in between
cells (depicted as a dotted wall in Figure 5(b)), in
which case the player transitions to the desired cell
with probability 1/2, or, b) both players attempt to
step into the same cell, where the collision is resolved
at random by a coin flip, so only one player ends up
occupying the desired cell and the other makes no tran-
sition. Walls are impassable and players cannot pass
through each other—attempts to do so result in no
transition.

Goal locations can be specific for some agent X (de-
picted as a dollar sign with subindex, for example,
5(a), 5(c), 5(d), 5(e)) or general (depicted as a dol-
lar sign without subindex, for example Figures 5(b)
and 5(c)). The game ends after any player gets to one
of its goals and a goal reward is given. There is a step
cost for each of the actions N, S, E, W, but stand has
no cost. Note that games are general sum in that it
is possible for both players to score by both reaching
goals simultaneously.

All games use γ = 0.95, $ = $A = $B = 100 and step
cost = −1. One exception is that the step cost = −10
for the asymmetric game1.

1This example can be reconstructed with a step cost of

(a) coordina-
tion

(b) chicken

(c) prisoner’s dilemma

(d) compromise

(e) asymmetric

Figure 5: Grid games in their initial state. $X = goal
for agent X, $ = common goal

In our results, we include runs for four solution algo-
rithms. Security-VI uses minimax for each player. It is
guaranteed to find an equilibrium in zero-sum games,
but not in general. Friend-VI uses a self-regarding
optimization strategy for both players—each behaves
under the assumption that the other player is trying to
help it (Littman, 2001). Such an approach can work
well in identical payoff games, but since policies are
computed independently, it need not. CE-VI2 com-
putes a correlated equilibrium for the players at each
state. As a result, actions are guaranteed to be coor-
dinated, but such an algorithm need not converge to a
Nash equilibrium in general. Our FolkEgal algorithm
will always find a Nash equilibrium of the repeated
game.

one, but many more states are needed, so we decided to
keep the example small by modifying the step cost.

2CE-VI stands for all variants (Greenwald & Hall, 2003)
of CE (uCE, eCE, rCE), as their results were identical.

We now present results with the set of grid games in
Figure 5. For each game, for each solution algorithm,
we present the expected payoffs for each agent along
with an informal description of the returned strategy
profiles.

5.1 Coordination

algorithm agent 1 agent 2
security-VI 0.0 0.0
friend-VI 45.7 45.7
CE-VI 82.8 82.8
FolkEgal 82.8 82.8

This game is not terribly interesting, but the fact that
the players need to pass by each other without col-
liding makes it relevant to consider their interaction.
Friend-VI is unable to coordinate with the opponent
and sometimes will collide. Security-VI finds that the
worst opponent can always block the goal, so play-
ers stay still forever to avoid step costs. Both CE-VI
and FolkEgal find a Nash equilibrium by avoiding each
other en route to goal, and both achieve optimal be-
havior.

5.2 Chicken

algorithm agent 1 agent 2
security-VI 43.7 43.7
friend-VI 42.7 42.7
CE-VI 88.3 43.7
FolkEgal 83.6 83.6

This game has an element of the game “chicken” in
that both players prefer taking the center path, but
given that the other player is taking the center path,
the side path is more attractive. We used a variation of
standard grid game (Hu & Wellman, 2003) in which
collisions are resolved by a coin flip (Littman, 1994)
and there is no explicit collision cost.

The difference between security-VI and friend-VI in
this game is how an agent behaves if it cannot make it
to the center square. In the defensive strategy, once a
player does not get the center it will stay put because
it assumes (rightly) that the opponent will proceed di-
rectly to the goal. Friend-VI, on the other hand, will
naively continue moving toward the goal under the as-
sumption that the other player will let it pass. It incurs
a small step cost for its overly optimistic outlook.

CE-VI finds an asymmetric solution in which one
player is assigned to take the center and the other one
uses the side passage, through the semi-passable wall.
This policy is a Nash equilibrium in that neither player
can improve its reward unilaterally.

FolkEgal finds the solution halfway (0.5) along the
edge between vertices (83.14, 84.05) and (84.05, 83.14).
These points correspond to strategies in which one

player takes the center and continues beside the goal,
waiting for the other player to catch up. The two play-
ers reach the goal at the same time. The first player
to go through the center incurs a slightly higher cost
because it must step around the goal before waiting,
hence the asymmetric (but close) values. The weight
of .5 means that each strategy is played with equal
frequency (strict alternation, say), in the equilibrium.

Note that both players score slightly worse than the
dominant player found in the CE-VI solution, due to
the cost of coordination. However, both the value ob-
tained by the minimum player and the total reward
for the two players is better for the FolkEgal algorithm
than for CE-VI.

5.3 Prisoner’s Dilemma

algorithm agent 1 agent 2
security-VI 46.5 46.5
friend-VI 46.0 46.0
CE-VI 46.5 46.5
FolkEgal 88.8 88.8

This game was designed to mimic the Prisoner’s
dilemma. The main choice faced by each of the two
agents is whether to move toward the shared goal lo-
cation in the center or whether to attempt to reach
the goal location further out on the side. If both play-
ers move toward the center, each has a 50–50 chance
of making it to the goal in two steps. If both play-
ers move toward the sides, each has a 100% chance of
reaching the goal in 3 steps. Clearly, moving to the
side is better. However, whichever decision its oppo-
nent makes (side or center), the player scores higher
by moving to the center.

The results closely match what happens when
bimatrix-game versions of the algorithms are applied
to Prisoner’s dilemma. Security-VI and CE-VI find
strategies where both players move to the center (de-
fect). This strategy profile is a Nash equilibrium.
Friend-VI is similar, although (as above) once a player
is unable to take the center, it continues to try to do
so assuming the other player will voluntarily get out
of the way. Again, this behavior results in additional
unnecessary step costs and is not an equilibrium.

We had expected FolkEgal to find a solution where
both players move to their side goals, reserving the
center square as a threat (much like tit-for-tat). In
fact, FolkEgal found a slightly better scheme—one
agent gets the closer common goal (saving step costs)
but waits for the other to get to its private goal be-
fore entering. FolkEgal find points (89.3, 88.3) and
(88.3, 89.3), and players alternate.

5.4 Compromise

algorithm agent 1 agent 2
security-VI 0.0 0.0
friend-VI −20.0 −20.0
CE-VI 68.2 70.1
FolkEgal 78.7 78.7

This game is much like the coordination game, but
with the twist that it is not possible for a player to
reach its goal without the other player stepping aside.

Security-VI adopts the worst-case assumption that the
other player will not step aside. Both players end up
staying still, as a result, to avoid step costs. Friend-VI
is actually even worse. Since both player assumes the
other will step aside, the two players simply ram each
other indefinitely.

CE-VI converges to a very interesting strategy. Player
A steps into Player B’s goal and waits. Player A is
blocking Player B from scoring, but it is also allow-
ing Player B to pass. Player B walks to the upper
left corner and Player A moves back to its initial posi-
tion. Note that both players are now 3 steps from their
respective goals. At this point, both players move to
their goals and arrive simultaneously. One of the more
interesting aspects of this strategy profile is that Player
B waits in the corner until Player A has stepped out
of the goal. The reason is that Player A will not at-
tempt to reach its own goal until it is sure it won’t be
beaten by Player B. Player B, by keeping a respectful
distance, signals to Player A that it is safe to move
and both players benefit. Since both players are also
choosing actions in their own best interest, the result-
ing strategy profile is an equilibrium.

This strategy profile, while ingenious (and unexpected
to us), does not maximize the value of the minimum
player. FolkEgal’s solution is to alternate between L =
(79.6, 77.7) and R = (77.7, 79.6). The strategy profile,
in this case, corresponds to one player moving to the
space between the goals, the other moving in front of
its goal and waiting, then both players reaching their
goals together in 5 steps.

5.5 Asymmetric

algorithm agent 1 agent 2
security-VI 0.0 0.0
friend-VI −200.0 −200.0
CE-VI 32.1 42.1
FolkEgal 37.2 37.2

This game was designed to show how the algorithms
react to an asymmetric starting position. Once again,
overly optimistic (friend-VI) and pessimistic (security-
VI) assumptions result in very low scores for both play-
ers.

Note that the players again need to compromise.
Without Player B’s cooperation, Player A cannot
reach its near goal on the right. It also cannot reach its
far goal on the left, because Player B can trail behind
it and reach its goal before Player A arrives.

CE-VI discovers that Player B can “offer” Player A a
compromise by hanging back exactly one square when
Player A moves to the left. As a result, both players
reach their goal locations on the left simultaneously.
The solution is a Nash equilibrium, although it is not
the egalitarian solution.

FolkEgal finds the egalitarian solution as a weighted
combination of the points L = (32.13, 42.13) and
R = (85,−10) with weight approximately .1. Note
that point L corresponds to the solution found by
CE-VI. Point R corresponds to the strategy where
Player B moves to the right and lets Player A reach
the near goal location.

5.6 Summary

There are a few interesting generalizations to make,
based on these results. First, although CE-VI is not
guaranteed to find a Nash equilibrium, it did so in all 5
games (including games that were designed specifically
to thwart it). We were surprised at the robustness of
the algorithm.

CE-VI only found the egalitarian solution in one game,
however, whereas FolkEgal found it every time. Folk-
Egal also has guaranteed polynomial runtime bounds,
whereas CE-VI is known to fail to converge in some
games (Zinkevich et al., 2005). Friend-VI performed
uniformly badly and security-VI, or foe-VI (Littman,
2001), often returned a Nash equilibrium, but one with
worse overall performance.

6 Future Work

This paper shows how an egalitarian Nash equilibrium
solution can be found efficiently for repeated stochastic
games. Future work will attempt to generalize these
techniques to repeated games on trees (Littman et al.,
2006) or DAGs and perhaps even repeated partial in-
formation games (Koller et al., 1996).

References

Bellman, R. (1957). Dynamic programming. Prince-
ton, NJ: Princeton University Press.

Bowling, M., & Veloso, M. (2001). Rational and con-
vergent learning in stochastic games. Proceedings of
the Seventeenth International Conference On Arti-

ficial Intelligence (IJCAI-01) (pp. 1021–1026). San
Francisco, CA: Morgan Kaufmann Publishers, Inc.

Greenwald, A., & Hall, K. (2003). Correlated-Q learn-
ing. Proceedings of the Twentieth International Con-
ference on Machine Learning (pp. 242–249).

Hu, J., & Wellman, M. P. (2003). Nash Q-learning for
general-sum stochastic games. Journal of Machine
Learning Research, 4, 1039–1069.

Koller, D., Megiddo, N., & von Stengel, B. (1996).
Efficient computation of equilibria for extensive two-
person games. Games and Economic Behavior, 14,
247–259.

Littman, M. L. (1994). Markov games as a frame-
work for multi-agent reinforcement learning. Pro-
ceedings of the Eleventh International Conference on
Machine Learning (pp. 157–163).

Littman, M. L. (2001). Friend-or-foe Q-learning in
general-sum games. Proceedings of the Eighteenth
International Conference on Machine Learning (pp.
322–328). Morgan Kaufmann.

Littman, M. L., Ravi, N., Talwar, A., & Zinkevich, M.
(2006). An efficient optimal-equilibrium algorithm
for two-player game trees. Twenty-Second Confer-
ence on Uncertainty in Artificial Intelligence (UAI-
06).

Littman, M. L., & Stone, P. (2005). A polynomial-time
Nash equilibrium algorithm for repeated games. De-
cision Support Systems, 39, 55–66.

Nash, J. F. (1950). The bargaining problem. Econo-
metrica, 28, 155–162.

Osborne, M. J., & Rubinstein, A. (1994). A course in
game theory. The MIT Press.

Puterman, M. L. (1994). Markov decision processes—
discrete stochastic dynamic programming. New
York, NY: John Wiley & Sons, Inc.

Shapley, L. (1953). Stochastic games. Proceedings
of the National Academy of Sciences of the United
States of America, 39, 1095–1100.

von Neumann, J., & Morgenstern, O. (1947). Theory
of games and economic behavior. Princeton, NJ:
Princeton University Press.

Zinkevich, M., Greenwald, A. R., & Littman, M. L.
(2005). Cyclic equilibria in Markov games. Advances
in Neural Information Processing Systems 18.

